BigNum Math

IMPLEMENTING CRYPTOGRAPHIC
MULTIPLE PRECISION ARITHMETIC

Learn How to Implement Efficient Multiple Precision Algorithms

- Step-by-Step Concept Construction
- Complete Coverage of Karatsuba Multiplication, Montgomery Reduction, and Modular Exponentiation
- Pseudo Code and Real Fielded Portable C Source Code Examples

Tom St Denis, Author of the LibTom Projects
Greg Rose, QUALCOMM
BigNum Math

Implementing Cryptographic Multiple Precision Arithmetic

Tom St Denis
LibTom Projects

Greg Rose
QUALCOMM Australia
Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc. “Syngress: The Definition of a Serious Security Library™,” “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™,” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER

001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 IIJ9899923N
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

BigNum Math: Implementing Cryptographic Multiple Precision Arithmetic
Contents

Preface xv

1 Introduction 1
 1.1 Multiple Precision Arithmetic 1
 1.1.1 What Is Multiple Precision Arithmetic? 1
 1.1.2 The Need for Multiple Precision Arithmetic 2
 1.1.3 Benefits of Multiple Precision Arithmetic 3
 1.2 Purpose of This Text 4
 1.3 Discussion and Notation 5
 1.3.1 Notation .. 5
 1.3.2 Precision Notation 5
 1.3.3 Algorithm Inputs and Outputs 6
 1.3.4 Mathematical Expressions 6
 1.3.5 Work Effort 7
 1.4 Exercises .. 7
 1.5 Introduction to LibTomMath 9
 1.5.1 What Is LibTomMath? 9
 1.5.2 Goals of LibTomMath 9
 1.6 Choice of LibTomMath 10
 1.6.1 Code Base .. 10
 1.6.2 API Simplicity 11
 1.6.3 Optimizations 11
 1.6.4 Portability and Stability 12
 1.6.5 Choice ... 12

v
Getting Started

2.1 Library Basics 13

2.2 What Is a Multiple Precision Integer? 14
 2.2.1 The mp_int Structure 15

2.3 Argument Passing 17

2.4 Return Values 18

2.5 Initialization and Clearing 19
 2.5.1 Initializing an mp_int 19
 2.5.2 Clearing an mp_int 22

2.6 Maintenance Algorithms 24
 2.6.1 Augmenting an mp_int’s Precision 24
 2.6.2 Initializing Variable Precision mp_ints 27
 2.6.3 Multiple Integer Initializations and Clearings 29
 2.6.4 Clamping Excess Digits 31

Basic Operations

3.1 Introduction 35

3.2 Assigning Values to mp_int Structures 35
 3.2.1 Copying an mp_int 35
 3.2.2 Creating a Clone 39

3.3 Zeroing an Integer 41

3.4 Sign Manipulation 42
 3.4.1 Absolute Value 42
 3.4.2 Integer Negation 43

3.5 Small Constants 44
 3.5.1 Setting Small Constants 44
 3.5.2 Setting Large Constants 46

3.6 Comparisons 47
 3.6.1 Unsigned Comparisons 47
 3.6.2 Signed Comparisons 50

Basic Arithmetic

4.1 Introduction 53

4.2 Addition and Subtraction 54
 4.2.1 Low Level Addition 54
 4.2.2 Low Level Subtraction 59
 4.2.3 High Level Addition 63
 4.2.4 High Level Subtraction 66
4.3 Bit and Digit Shifting ... 69
4.3.1 Multiplication by Two .. 69
4.3.2 Division by Two .. 72
4.4 Polynomial Basis Operations 75
4.4.1 Multiplication by x .. 75
4.4.2 Division by x .. 78
4.5 Powers of Two .. 81
4.5.1 Multiplication by Power of Two 82
4.5.2 Division by Power of Two 85
4.5.3 Remainder of Division by Power of Two 88

5 Multiplication and Squaring ... 91
5.1 The Multipliers .. 91
5.2 Multiplication .. 92
5.2.1 The Baseline Multiplication 92
5.2.2 Faster Multiplication by the “Comba” Method 97
5.2.3 Even Faster Multiplication 104
5.2.4 Polynomial Basis Multiplication 107
5.2.5 Karatsuba Multiplication 109
5.2.6 Toom-Cook 3-Way Multiplication 116
5.2.7 Signed Multiplication 126
5.3 Squaring .. 128
5.3.1 The Baseline Squaring Algorithm 129
5.3.2 Faster Squaring by the “Comba” Method 133
5.3.3 Even Faster Squaring 137
5.3.4 Polynomial Basis Squaring 138
5.3.5 Karatsuba Squaring 138
5.3.6 Toom-Cook Squaring 143
5.3.7 High Level Squaring 144

6 Modular Reduction .. 147
6.1 Basics of Modular Reduction 147
6.2 The Barrett Reduction 148
6.2.1 Fixed Point Arithmetic 148
6.2.2 Choosing a Radix Point 150
6.2.3 Trimming the Quotient 151
6.2.4 Trimming the Residue 152
6.2.5 The Barrett Algorithm 153
List of Figures

1.1 Typical Data Types for the C Programming Language 2
1.2 Exercise Scoring System .. 8

2.1 Design Flow of the First Few Original LibTomMath Functions 14
2.2 The mp_int Structure ... 16
2.3 LibTomMath Error Codes ... 18
2.4 Algorithm mp_init ... 20
2.5 Algorithm mp_clear ... 22
2.6 Algorithm mp_grow ... 25
2.7 Algorithm mp_init_size .. 27
2.8 Algorithm mp_init_multi ... 29
2.9 Algorithm mp_clamp .. 31

3.1 Algorithm mp_copy .. 36
3.2 Algorithm mp_init_copy ... 40
3.3 Algorithm mp_zero ... 41
3.4 Algorithm mp_abs ... 42
3.5 Algorithm mp_neg ... 43
3.6 Algorithm mp_set ... 45
3.7 Algorithm mp_set_int .. 46
3.8 Comparison Return Codes ... 48
3.9 Algorithm mp_cmp_mag ... 48
3.10 Algorithm mp_cmp .. 50

4.1 Algorithm s_mp_add .. 55
4.2 Algorithm s_mp_sub .. 60
4.3 Algorithm mp_add .. 64

xi
9.5 Algorithm mp_lcm .. 263
9.6 Algorithm mp_jacobi ... 268
9.7 Algorithm mp_invmod .. 274
9.8 Algorithm mp_prime_is_divisible 280
9.9 Algorithm mp_prime_fermat 283
9.10 Algorithm mp_prime_miller_rabin 285
Preface

The origins of this book are part of an interesting period of my life. A period that saw me move from a shy and disorganized young adult, into a software developer who has toured various parts of the world, and met countless new friends and colleagues. It all began in December of 2001, nearly five years ago. I started a project that would later become known as LibTomCrypt, and be used by developers throughout industry worldwide.

The LibTomCrypt project was originally started as a way to focus my energies on to something constructive, while also learning new skills. The first year of the project taught me quite a bit about how to organize a product, document and support it and maintain it over time. Around the winter of 2002 I was seeking another project to spread my time with. Realizing that the math performance of LibTomCrypt was lacking, I set out to develop a new math library.

Hence, the LibTomMath project was born. It was originally merely a set of patches against an existing project that quickly grew into a project of its own. Writing the math library from scratch was fundamental to producing a stable and independent product. It also taught me what sort of algorithms are available to do operations such as modular exponentiation. The library became fairly stable and reliable after only a couple of months of development and was immediately put to use.

In the summer of 2003, I was yet again looking for another project to grow into. Realizing that merely implementing the math routines is not enough to truly understand them, I set out to try and explain them myself. In doing so, I eventually mastered the concepts behind the algorithms. This knowledge is what I hope will be passed on to the reader. This text is actually derived from the public domain archives I maintain on my www.libtomcrypt.com Web site.

When I tell people about my LibTom projects (of which there are six) and that I release them as public domain, they are often puzzled. They ask why I
did it, and especially why I continue to work on them for free. The best I can explain it is, “Because I can”–which seems odd and perhaps too terse for adult conversation. I often qualify it with “I am able, I am willing,” which perhaps explains it better. I am the first to admit there is nothing that special with what I have done. Perhaps others can see that, too, and then we would have a society to be proud of. My LibTom projects are what I am doing to give back to society in the form of tools and knowledge that can help others in their endeavors.

I started writing this book because it was the most logical task to further my goal of open academia. The LibTomMath source code itself was written to be easy to follow and learn from. There are times, however, where pure C source code does not explain the algorithms properly–hence this book. The book literally starts with the foundation of the library and works itself outward to the more complicated algorithms. The use of both pseudo-code and verbatim source code provides a duality of “theory” and “practice” that computer science students of the world shall appreciate. I never deviate too far from relatively straightforward algebra, and I hope this book can be a valuable learning asset.

This book, and indeed much of the LibTom projects, would not exist in its current form if it were not for a plethora of kind people donating their time, resources, and kind words to help support my work. Writing a text of significant length (along with the source code) is a tiresome and lengthy process. Currently, the LibTom project is five years old, composed of literally thousands of users and over 100,000 lines of source code, TeX, and other material. People like Mads Rasmussen and Greg Rose were there at the beginning to encourage me to work well. It is amazing how timely validation from others can boost morale to continue the project. Definitely, my parents were there for me by providing room and board during the many months of work in 2003.

Both Greg and Mads were invaluable sources of support in the early stages of this project. The initial draft of this text, released in August 2003, was the project of several months of dedicated work. Long hours and still going to school were a constant drain of energy that would not have lasted without support.

Of course this book would not be here if it were not for the success of the various LibTom projects. That success is not only the product of my hard work, but also the contribution of hundreds of other people. People like Colin Percival, Sky Schultz, Wayne Scott, J Harper, Dan Kaminsky, Lance James, Simon Johnson, Greg Rose, Clay Culver, Jochen Katz, Zhi Chen, Zed Shaw, Andrew Mann, Matt Johnston, Steven Dake, Richard Amacker, Stefan Arentz, Richard Outerbridge, Martin Carpenter, Craig Schlenter, John Kuhns, Bruce Guenter, Adam Miller, Wesley Shields, John Dirk, Jean–Luc Cooke, Michael Heyman, Nelson Bolyard,
Jim Wigginton, Don Porter, Kevin Kenny, Peter LaDow, Neal Hamilton, David Hulton, Paul Schmidt, Wolfgang Ehrhardt, Johan Lindt, Henrik Goldman, Alex Polushin, Martin Marcel, Brian Gladman, Benjamin Goldberg, Tom Wu, and Pekka Riikonen took their time to contribute ideas, updates, fixes, or encouragement throughout the various project development phases. To my many friends whom I have met through the years, I thank you for the good times and the words of encouragement. I hope I honor your kind gestures with this project.

I’d like to thank the editing team at Syngress for poring over 300 pages of text and correcting it in the short span of a single week. I’d like to thank my friends whom I have not mentioned, who were always available for encouragement and a steady supply of fun. I’d like to thank my friends J Harper, Zed Shaw, and Simon Johnson for reviewing the text before submission. I’d like to thank Lance James of the Secure Science Corporation and the entire crew at Elliptic Semiconductor for sponsoring much of my later development time, for sending me to Toorcon, and introducing me to many of the people whom I know today.

Open Source. Open Academia. Open Minds.

Tom St Denis
Toronto, Canada
May 2006
It’s all because I broke my leg. That just happened to be about the same time Tom asked for someone to review the section of the book about Karatsuba multiplication. I was laid up, alone and immobile, and thought, “Why not?” I vaguely knew what Karatsuba multiplication was, but not really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.

At the time of writing this, I’ve still not met Tom or Mads in meatspace. I’ve been following Tom’s progress since his first splash on the sci.crypt Usenet newsgroup. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real contributor to the field, over a period of about two years. I’ve been impressed with his obvious intelligence, and astounded by his productivity. Of course, he’s young enough to be my own child, so he doesn’t have my problems with staying awake.

When I reviewed that single section of the book, in its earliest form, I was very pleasantly surprised. So I decided to collaborate more fully, and at least review all of it, and perhaps write some bits, too. There’s still a long way to go with it, and I have watched a number of close friends go through the mill of publication, so I think the way to go is longer than Tom thinks it is. Nevertheless, it’s a good effort, and I’m pleased to be involved with it.

Greg Rose
Sydney, Australia
June 2003
Chapter 1

Introduction

1.1 Multiple Precision Arithmetic

1.1.1 What Is Multiple Precision Arithmetic?

When we think of long-hand arithmetic such as addition or multiplication, we rarely consider the fact that we instinctively raise or lower the precision of the numbers we are dealing with. For example, in decimal we almost immediately can reason that 7 times 6 is 42. However, 42 has two digits of precision as opposed to the one digit we started with. Further multiplications of say 3 result in a larger precision result 126. In these few examples we have multiple precisions for the numbers we are working with. Despite the various levels of precision, a single subset\(^1\) of algorithms can be designed to accommodate them.

By way of comparison, a fixed or single precision operation would lose precision on various operations. For example, in the decimal system with fixed precision \(6 \cdot 7 = 2\).

Essentially, at the heart of computer–based multiple precision arithmetic are the same long-hand algorithms taught in schools to manually add, subtract, multiply, and divide.

\(^1\)With the occasional optimization.
1.1.2 The Need for Multiple Precision Arithmetic

The most prevalent need for multiple precision arithmetic, often referred to as “bignum” math, is within the implementation of public key cryptography algorithms. Algorithms such as RSA [10] and Diffie-Hellman [11] require integers of significant magnitude to resist known cryptanalytic attacks. For example, at the time of this writing a typical RSA modulus would be at least greater than 10^{309}. However, modern programming languages such as ISO C [17] and Java [18] only provide intrinsic support for integers that are relatively small and single precision.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>$-128 \ldots 127$</td>
</tr>
<tr>
<td>short</td>
<td>$-32768 \ldots 32767$</td>
</tr>
<tr>
<td>long</td>
<td>$-2147483648 \ldots 2147483647$</td>
</tr>
<tr>
<td>long long</td>
<td>$-9223372036854775808 \ldots 9223372036854775807$</td>
</tr>
</tbody>
</table>

Figure 1.1: Typical Data Types for the C Programming Language

The largest data type guaranteed to be provided by the ISO C programming language can only represent values up to 10^{19} as shown in Figure 1.1. On its own, the C language is insufficient to accommodate the magnitude required for the problem at hand. An RSA modulus of magnitude 10^{19} could be trivially factored on the average desktop computer, rendering any protocol based on the algorithm insecure. Multiple precision algorithms solve this problem by extending the range of representable integers while using single precision data types.

Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic primitives. Faster modular reduction and exponentiation algorithms such as Barrett’s reduction algorithm, which have appeared in various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient. In fact, several major companies such as RSA Security, Certicom, and Entrust have built entire product lines on the implementation and deployment of efficient algorithms.

However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines. Another auxiliary use of multiple precision integers is high precision floating point data types. The basic IEEE [12] standard

2 As per the ISO C standard. However, each compiler vendor is allowed to augment the precision as they see fit.

3 A Pollard-Rho factoring would take only 2^{16} time.
1.1 Multiple Precision Arithmetic

Floating point type is made up of an integer mantissa \(q \), an exponent \(e \), and a sign bit \(s \). Numbers are given in the form \(n = q \cdot b^e \cdot -1^s \), where \(b = 2 \) is the most common base for IEEE. Since IEEE floating point is meant to be implemented in hardware, the precision of the mantissa is often fairly small (23, 48, and 64 bits). The mantissa is merely an integer, and a multiple precision integer could be used to create a mantissa of much larger precision than hardware alone can efficiently support. This approach could be useful where scientific applications must minimize the total output error over long calculations.

Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e., \(GF(p)[x] \) for large \(p \)). In fact, the library discussed within this text has already been used to form a polynomial basis library\(^4\).

1.1.3 Benefits of Multiple Precision Arithmetic

The benefit of multiple precision representations over single or fixed precision representations is that no precision is lost while representing the result of an operation that requires excess precision. For example, the product of two \(n \)-bit integers requires at least \(2n \) bits of precision to be represented faithfully. A multiple precision algorithm would augment the precision of the destination to accommodate the result, while a single precision system would truncate excess bits to maintain a fixed level of precision.

It is possible to implement algorithms that require large integers with fixed precision algorithms. For example, elliptic curve cryptography (ECC) is often implemented on smartcards by fixing the precision of the integers to the maximum size the system will ever need. Such an approach can lead to vastly simpler algorithms that can accommodate the integers required even if the host platform cannot natively accommodate them\(^5\). However, as efficient as such an approach may be, the resulting source code is not normally very flexible. It cannot, at run time, accommodate inputs of higher magnitude than the designer anticipated.

Multiple precision algorithms have the most overhead of any style of arithmetic. For the the most part the overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved platforms. However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the inputs. That is, the same algorithms based on multiple precision integers can accommodate any reasonable size input without the designer’s

\(^4\)See http://poly.libtomcrypt.org for more details.

\(^5\)For example, the average smartcard processor has an 8–bit accumulator.
explicit forethought. This leads to lower cost of ownership for the code, as it only has to be written and tested once.

1.2 Purpose of This Text

The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms. That is, to explain a limited subset of the core theory behind the algorithms, and the various “housekeeping” elements that are neglected by authors of other texts on the subject. Several texts [1, 2] give considerably detailed explanations of the theoretical aspects of algorithms and often very little information regarding the practical implementation aspects.

In most cases, how an algorithm is explained and how it is actually implemented are two very different concepts. For example, the Handbook of Applied Cryptography (HAC), algorithm 14.7 on page 594, gives a relatively simple algorithm for performing multiple precision integer addition. However, the description lacks any discussion concerning the fact that the two integer inputs may be of differing magnitudes. As a result, the implementation is not as simple as the text would lead people to believe. Similarly, the division routine (algorithm 14.20, pp. 598) does not discuss how to handle sign or the dividend’s decreasing magnitude in the main loop (step #3).

Both texts also do not discuss several key optimal algorithms required, such as “Comba” and Karatsuba multipliers and fast modular inversion, which we consider practical oversights. These optimal algorithms are vital to achieve any form of useful performance in non–trivial applications.

To solve this problem, the focus of this text is on the practical aspects of implementing a multiple precision integer package. As a case study, the “LibTomMath”⁶ package is used to demonstrate algorithms with real implementations⁷ that have been field tested and work very well. The LibTomMath library is freely available on the Internet for all uses, and this text discusses a very large portion of the inner workings of the library.

The algorithms presented will always include at least one “pseudo-code” description followed by the actual C source code that implements the algorithm. The pseudo-code can be used to implement the same algorithm in other programming languages as the reader sees fit.

⁶Available at http://math.libtomcrypt.com
⁷In the ISO C programming language.
This text shall also serve as a walk-through of the creation of multiple precision
algorithms from scratch, showing the reader how the algorithms fit together and
where to start on various taskings.

1.3 Discussion and Notation

1.3.1 Notation

A multiple precision integer of \(n \)-digits shall be denoted as
\(x = (x_{n-1}, \ldots, x_1, x_0)_\beta \)
and represent the integer \(x \equiv \sum_{i=0}^{n-1} x_i \beta^i \). The elements of the array \(x \) are said to
be the radix \(\beta \) digits of the integer. For example, \(x = (1,2,3)_{10} \) would represent
the integer \(1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 = 123 \).

The term “\texttt{mp_int}” shall refer to a composite structure that contains the digits
of the integer it represents, and auxiliary data required to manipulate the data.
These additional members are discussed further in section 2.2.1. For the purposes
of this text, a “multiple precision integer” and an “\texttt{mp_int}” are assumed synony-
mous. When an algorithm is specified to accept an \texttt{mp_int} variable, it is assumed
the various auxiliary data members are present as well. An expression of the type
\texttt{variable_name.item} implies that it should evaluate to the member named “item”
of the variable. For example, a string of characters may have a member “length”
that would evaluate to the number of characters in the string. If the string \(a \)
equals \texttt{hello}, then it follows that \(a.length = 5 \).

For certain discussions, more generic algorithms are presented to help the
reader understand the final algorithm used to solve a given problem. When an
algorithm is described as accepting an integer input, it is assumed the input is a
plain integer with no additional multiple precision members. That is, algorithms
that use integers as opposed to \texttt{mp_ints} as inputs do not concern themselves with
the housekeeping operations required such as memory management. These algo-
rithms will be used to establish the relevant theory that will subsequently be used
to describe a multiple precision algorithm to solve the same problem.

1.3.2 Precision Notation

The variable \(\beta \) represents the radix of a single digit of a multiple precision integer
and must be of the form \(q^p \) for \(q, p \in \mathbb{Z}^+ \). A single precision variable must be able
to represent integers in the range \(0 \leq x < q\beta \), while a double precision variable
must be able to represent integers in the range \(0 \leq x < q\beta^2 \). The extra radix-
q factor allows additions and subtractions to proceed without truncation of the carry. Since all modern computers are binary, it is assumed that q is two.

Within the source code that will be presented for each algorithm, the data type `mp_digit` will represent a single precision integer type, while the data type `mp_word` will represent a double precision integer type. In several algorithms (notably the Comba routines), temporary results will be stored in arrays of double precision `mp_word`s. For the purposes of this text, \(x_j\) will refer to the \(j\)'th digit of a single precision array, and \(\hat{x}_j\) will refer to the \(j\)'th digit of a double precision array. Whenever an expression is to be assigned to a double precision variable, it is assumed that all single precision variables are promoted to double precision during the evaluation. Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single precision data type.

For example, if \(\beta = 10^2\), a single precision data type may represent a value in the range \(0 \leq x < 10^3\), while a double precision data type may represent a value in the range \(0 \leq x < 10^5\). Let \(a = 23\) and \(b = 49\) represent two single precision variables. The single precision product shall be written as \(c \leftarrow a \cdot b\), while the double precision product shall be written as \(\hat{c} \leftarrow a \cdot b\). In this particular case, \(\hat{c} = 1127\) and \(c = 127\). The most significant digit of the product would not fit in a single precision data type and as a result \(c \neq \hat{c}\).

1.3.3 Algorithm Inputs and Outputs

Within the algorithm descriptions all variables are assumed scalars of either single or double precision as indicated. The only exception to this rule is when variables have been indicated to be of type `mp_int`. This distinction is important, as scalars are often used as array indices and various other counters.

1.3.4 Mathematical Expressions

The \(\lfloor \rfloor\) brackets imply an expression truncated to an integer not greater than the expression itself; for example, \(\lfloor 5.7 \rfloor = 5\). Similarly, the \(\lceil \rceil\) brackets imply an expression rounded to an integer not less than the expression itself; for example, \(\lceil 5.1 \rceil = 6\). Typically, when the \(/\) division symbol is used, the intention is to perform an integer division with truncation; for example, \(5/2 = 2\), which will often be written as \(\lfloor 5/2 \rfloor = 2\) for clarity. When an expression is written as a fraction a real value division is implied; for example, \(\frac{5}{2} = 2.5\).

The norm of a multiple precision integer, for example \(||x||\), will be used to represent the number of digits in the representation of the integer; for example,
\[||123|| = 3 \text{ and } ||79452|| = 5. \]

1.3.5 Work Effort

To measure the efficiency of the specified algorithms, a modified big-Oh notation is used. In this system, all single precision operations are considered to have the same cost\(^8\). That is, a single precision addition, multiplication, and division are assumed to take the same time to complete. While this is generally not true in practice, it will simplify the discussions considerably.

Some algorithms have slight advantages over others, which is why some constants will not be removed in the notation. For example, a normal baseline multiplication (section 5.2.1) requires \(O(n^2)\) work, while a baseline squaring (section 5.3) requires \(O\left(\frac{n^2+n}{2}\right)\) work. In standard big-Oh notation, these would both be said to be equivalent to \(O(n^2)\). However, in the context of this text, this is not the case, as the magnitude of the inputs will typically be rather small. As a result, small constant factors in the work effort will make an observable difference in algorithm efficiency.

All algorithms presented in this text have a polynomial time work level; that is, of the form \(O(n^k)\) for \(n, k \in \mathbb{Z}^+\). This will help make useful comparisons in terms of the speed of the algorithms and how various optimizations will help pay off in the long run.

1.4 Exercises

Within the more advanced chapters a section is set aside to give the reader some challenging exercises related to the discussion at hand. These exercises are not designed to be prize–winning problems, but instead to be thought provoking. Wherever possible the problems are forward minded, stating problems that will be answered in subsequent chapters. The reader is encouraged to finish the exercises as they appear to get a better understanding of the subject material.

That being said, the problems are designed to affirm knowledge of a particular subject matter. Students in particular are encouraged to verify they can answer the problems correctly before moving on.

Similar to the exercises as described in [1, pp. ix], these exercises are given a scoring system based on the difficulty of the problem. However, unlike [1], the problems do not get nearly as hard. The scoring of these exercises ranges from

\(8\)Except where explicitly noted.
one (the easiest) to five (the hardest). Figure 1.2 summarizes the scoring system used.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>An easy problem that should only take the reader a manner of minutes to solve. Usually does not involve much computer time to solve.</td>
</tr>
<tr>
<td>2</td>
<td>An easy problem that involves a marginal amount of computer time usage. Usually requires a program to be written to solve the problem.</td>
</tr>
<tr>
<td>3</td>
<td>A moderately hard problem that requires a non-trivial amount of work. Usually involves trivial research and development of new theory from the perspective of a student.</td>
</tr>
<tr>
<td>4</td>
<td>A moderately hard problem that involves a non-trivial amount of work and research, the solution to which will demonstrate a higher mastery of the subject matter.</td>
</tr>
<tr>
<td>5</td>
<td>A hard problem that involves concepts that are difficult for a novice to solve. Solutions to these problems will demonstrate a complete mastery of the given subject.</td>
</tr>
</tbody>
</table>

Figure 1.2: Exercise Scoring System

Problems at the first level are meant to be simple questions the reader can answer quickly without programming a solution or devising new theory. These problems are quick tests to see if the material is understood. Problems at the second level are also designed to be easy, but will require a program or algorithm to be implemented to arrive at the answer. These two levels are essentially entry level questions.

Problems at the third level are meant to be a bit more difficult than the first two levels. The answer is often fairly obvious, but arriving at an exacting solution requires some thought and skill. These problems will almost always involve devising a new algorithm or implementing a variation of another algorithm previously presented. Readers who can answer these questions will feel comfortable with the concepts behind the topic at hand.

Problems at the fourth level are meant to be similar to those of the level–three questions except they will require additional research to be completed. The reader will most likely not know the answer right away, nor will the text provide the exact details of the answer until a subsequent chapter.

Problems at the fifth level are meant to be the hardest problems relative to all the other problems in the chapter. People who can correctly answer fifth–level
problems have a mastery of the subject matter at hand. Often problems will be tied together. The purpose of this is to start a chain of thought that will be discussed in future chapters. The reader is encouraged to answer the follow-up problems and try to draw the relevance of problems.

1.5 Introduction to LibTomMath

1.5.1 What Is LibTomMath?

LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C. By portable it is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on any given platform.

The library has been successfully tested under numerous operating systems, including Unix\(^9\), Mac OS, Windows, Linux, Palm OS, and on standalone hardware such as the Gameboy Advance. The library is designed to contain enough functionality to be able to develop applications such as public key cryptosystems and still maintain a relatively small footprint.

1.5.2 Goals of LibTomMath

Libraries that obtain the most efficiency are rarely written in a high level programming language such as C. However, even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the library. Specifically, the code has been written to work well with the GNU C Compiler (GCC) on both x86 and ARM processors. Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window exponentiation, and Montgomery reduction have been provided to make the library more efficient.

Even with the nearly optimal and specialized algorithms that have been included, the application programming interface (API) has been kept as simple as possible. Often, generic placeholder routines will make use of specialized algorithms automatically without the developer’s specific attention. One such example is the generic multiplication algorithm `mp_mul()`, which will automatically use Toom–Cook, Karatsuba, Comba, or baseline multiplication based on the magnitude of the inputs and the configuration of the library.

\(^9\)All of these trademarks belong to their respective rightful owners.
Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally, the library should be source compatible with another popular library, which makes it more attractive for developers to use. In this case, the MPI library was used as an API template for all the basic functions. MPI was chosen because it is another library that fits in the same niche as LibTomMath. Even though LibTomMath uses MPI as the template for the function names and argument passing conventions, it has been written from scratch by Tom St Denis.

The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow “bignum” library exists that can be used to teach computer science students how to perform fast and reliable multiple precision integer arithmetic. To this end, the source code has been given quite a few comments and algorithm discussion points.

1.6 Choice of LibTomMath

LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same, but for more worthy reasons. Other libraries such as GMP [13], MPI [14], LIP [16], and OpenSSL [15] have multiple precision integer arithmetic routines but would not be ideal for this text for reasons that will be explained in the following sub-sections.

1.6.1 Code Base

The LibTomMath code base is all portable ISO C source code. This means that there are no platform–dependent conditional segments of code littered throughout the source. This clean and uncluttered approach to the library means that a developer can more readily discern the true intent of a given section of source code without trying to keep track of what conditional code will be used.

The code base of LibTomMath is well organized. Each function is in its own separate source code file, which allows the reader to find a given function very quickly. On average there are 76 lines of code per source file, which makes the source very easily to follow. By comparison, MPI and LIP are single file projects making code tracing very hard. GMP has many conditional code segments that also hinder tracing.

When compiled with GCC for the x86 processor and optimized for speed, the entire library is approximately 100KiB\(^{10}\), which is fairly small compared to GMP

\(^{10}\)The notation “KiB” means \(2^{\text{10}}\) octets, similarly “MiB” means \(2^{\text{20}}\) octets.
1.6 Choice of LibTomMath

(over 250KiB). LibTomMath is slightly larger than MPI (which compiles to about 50KiB), but is also much faster and more complete than MPI.

1.6.2 API Simplicity

LibTomMath is designed after the MPI library and shares the API design. Quite often, programs that use MPI will build with LibTomMath without change. The function names correlate directly to the action they perform. Almost all of the functions share the same parameter passing convention. The learning curve is fairly shallow with the API provided, which is an extremely valuable benefit for the student and developer alike.

The LIP library is an example of a library with an API that is awkward to work with. LIP uses function names that are often “compressed” to illegible shorthand. LibTomMath does not share this characteristic.

The GMP library also does not return error codes. Instead, it uses a POSIX.1 signal system where errors are signaled to the host application. This happens to be the fastest approach, but definitely not the most versatile. In effect, a math error (i.e., invalid input, heap error, etc.) can cause a program to stop functioning, which is definitely undesirable in many situations.

1.6.3 Optimizations

While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two), it does feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication, and squaring. GMP and LIP also feature such optimizations, while MPI only uses baseline algorithms with no optimizations. GMP lacks a few of the additional modular reduction optimizations that LibTomMath features11.

LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular exponentiation. In the grand scheme of “bignum” libraries, LibTomMath is faster than the average library and usually slower than the best libraries such as GMP and OpenSSL by only a small factor.

11At the time of this writing, GMP only had Barrett and Montgomery modular reduction algorithms.
New Developments

Since the writing of the original manuscript, a new project, TomsFastMath, has been created. It is directly derived from LibTomMath, with a major focus on multiplication, squaring, and reduction performance. It relaxes the portability requirements to use inline assembly for performance. Readers are encouraged to check out this project at http://tfm.libtomcrypt.com to see how far performance can go with the code in this book.

1.6.4 Portability and Stability

LibTomMath will build “out of the box” on any platform equipped with a modern version of the GNU C Compiler (GCC). This means that without changes the library will build without configuration or setting up any variables. LIP and MPI will build “out of the box” as well but have numerous known bugs. Most notably, the author of MPI has recently stopped working on his library, and LIP has long since been discontinued.

GMP requires a configuration script to run and will not build out of the box. GMP and LibTomMath are still in active development and are very stable across a variety of platforms.

1.6.5 Choice

LibTomMath is a relatively compact, well–documented, highly optimized, and portable library, which seems only natural for the case study of this text. Various source files from the LibTomMath project will be included within the text. However, readers are encouraged to download their own copies of the library to actually be able to work with the library.
Chapter 2

Getting Started

2.1 Library Basics

The trick to writing any useful library of source code is to build a solid foundation and work outward from it. First, a problem along with allowable solution parameters should be identified and analyzed. In this particular case, the inability to accommodate multiple precision integers is the problem. Furthermore, the solution must be written as portable source code that is reasonably efficient across several different computer platforms.

After a foundation is formed, the remainder of the library can be designed and implemented in a hierarchical fashion. That is, to implement the lowest level dependencies first and work toward the most abstract functions last. For example, before implementing a modular exponentiation algorithm, one would implement a modular reduction algorithm. By building outward from a base foundation instead of using a parallel design methodology, you end up with a project that is highly modular. Being highly modular is a desirable property of any project as it often means the resulting product has a small footprint and updates are easy to perform.

Usually, when I start a project I will begin with the header files. I define the data types I think I will need and prototype the initial functions that are not dependent on other functions (within the library). After I implement these base functions, I prototype more dependent functions and implement them. The process repeats until I implement all the functions I require. For example, in the case of LibTomMath, I implemented functions such as mp_init() well before
I implemented `mp_mul()`, and even further before I implemented `mp_exptmod()`. As an example as to why this design works, note that the Karatsuba and Toom-Cook multipliers were written after the dependent function `mp_exptmod()` was written. Adding the new multiplication algorithms did not require changes to the `mp_exptmod()` function itself and lowered the total cost of ownership and development (so to speak) for new algorithms. This methodology allows new algorithms to be tested in a complete framework with relative ease (Figure 2.1).

Figure 2.1: Design Flow of the First Few Original LibTomMath Functions.

Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing the source code. For example, one day I may audit the multipliers and the next day the polynomial basis functions. It only makes sense to begin the text with the preliminary data types and support algorithms required. This chapter discusses the core algorithms of the library that are the dependents for every other algorithm.

2.2 What Is a Multiple Precision Integer?

Recall that most programming languages, in particular ISO C [17], only have fixed precision data types that on their own cannot be used to represent values larger
than their precision will allow. The purpose of multiple precision algorithms is to use fixed precision data types to create and manipulate multiple precision integers that may represent values that are very large.

In the decimal system, the largest single digit value is 9. However, by concatenating digits together, larger numbers may be represented. Newly prepended digits (to the left) are said to be in a different power of ten column. That is, the number 123 can be described as having a 1 in the hundreds column, 2 in the tens column, and 3 in the ones column. Or more formally, $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$. Computer-based multiple precision arithmetic is essentially the same concept. Larger integers are represented by adjoining fixed precision computer words with the exception that a different radix is used.

What most people probably do not think about explicitly are the various other attributes that describe a multiple precision integer. For example, the integer 154_{10} has two immediately obvious properties. First, the integer is positive; that is, the sign of this particular integer is positive as opposed to negative. Second, the integer has three digits in its representation. There is an additional property that the integer possesses that does not concern pencil-and-paper arithmetic. The third property is how many digit placeholders are available to hold the integer.

A visual example of this third property is ensuring there is enough space on the paper to write the integer. For example, if one starts writing a large number too far to the right on a piece of paper, he will have to erase it and move left. Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer will not exceed the allowed boundaries. These three properties make up what is known as a multiple precision integer, or mp_int for short.

2.2.1 The mp_int Structure

The mp_int structure is the ISO C–based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for any such data type, but it does provide for making composite data types known as structures. The following is the structure definition used within LibTomMath.
typedef struct {
 int used, alloc, sign;
 mp_digit *dp;
} mp_int;

Figure 2.2: The mp_int Structure

The mp_int structure (Figure 2.2) can be broken down as follows.

- The **used** parameter denotes how many digits of the array **dp** contain the digits used to represent a given integer. The **used** count must be positive (or zero) and may not exceed the **alloc** count.

- The **alloc** parameter denotes how many digits are available in the array to use by functions before it has to increase in size. When the **used** count of a result exceeds the **alloc** count, all the algorithms will automatically increase the size of the array to accommodate the precision of the result.

- The pointer **dp** points to a dynamically allocated array of digits that represent the given multiple precision integer. It is padded with \((\text{alloc} - \text{used})\) zero digits. The array is maintained in a least significant digit order. As a pencil and paper analogy the array is organized such that the rightmost digits are stored first starting at the location indexed by zero\(^1\) in the array. For example, if \(\text{dp}\) contains \(\{a, b, c, \ldots\}\) where \(\text{dp}_0 = a, \text{dp}_1 = b, \text{dp}_2 = c, \ldots\) then it would represent the integer \(a + b\beta + c\beta^2 + \ldots\)

- The **sign** parameter denotes the sign as either zero/positive (MP_ZPOS) or negative (MP_NEG).

Valid mp_int Structures

Several rules are placed on the state of an mp_int structure and are assumed to be followed for reasons of efficiency. The only exceptions are when the structure is passed to initialization functions such as mp_init() and mp_init_copy().

1. The value of **alloc** may not be less than one. That is, **dp** always points to a previously allocated array of digits.

\(^1\)In C, all arrays begin at the zero index.
2.3 Argument Passing

2. The value of `used` may not exceed `alloc` and must be greater than or equal to zero.

3. The value of `used` implies the digit at index `(used - 1)` of the `dp` array is non-zero. That is, leading zero digits in the most significant positions must be trimmed.

 (a) Digits in the `dp` array at and above the `used` location must be zero.

4. The value of `sign` must be `MP_ZPOS` if `used` is zero; this represents the `mp_int` value of zero.

2.3 Argument Passing

A convention of argument passing must be adopted early in the development of any library. Making the function prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity. In LibTomMath, the multiple precision integer functions accept parameters from left to right as pointers to `mp_int` structures. That means that the source (input) operands are placed on the left and the destination (output) on the right. Consider the following examples.

```c
mp_mul(&a, &b, &c); /* c = a * b */
mp_add(&a, &b, &a); /* a = a + b */
mp_sqr(&a, &b); /* b = a * a */
```

The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the functions and make sense of them. For example, the first function would read “multiply a and b and store in c.”

Certain libraries (*LIP* by Lenstra for instance) accept parameters the other way around, to mimic the order of assignment expressions. That is, the destination (output) is on the left and arguments (inputs) are on the right. In truth, it is entirely a matter of preference. In the case of LibTomMath the convention from the MPI library has been adopted.

Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a destination. For example, the second example (*mp_add*) adds a to b and stores in a. This is an important feature to implement since it allows the calling functions to cut down on the number of
variables it must maintain. However, to implement this feature, specific care has to be given to ensure the destination is not modified before the source is fully read.

2.4 Return Values

A well-implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them to the caller. By catching runtime errors a library can be guaranteed to prevent undefined behavior. However, the end developer can still manage to cause a library to crash. For example, by passing an invalid pointer an application may fault by dereferencing memory not owned by the application.

In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for instance) and memory allocation errors. It will not check that the mp_int passed to any function is valid, nor will it check pointers for validity. Any function that can cause a runtime error will return an error code as an int data type with one of the values in Figure 2.3.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP_OKAY</td>
<td>The function was successful</td>
</tr>
<tr>
<td>MP_VAL</td>
<td>One of the input value(s) was invalid</td>
</tr>
<tr>
<td>MP_MEM</td>
<td>The function ran out of heap memory</td>
</tr>
</tbody>
</table>

Figure 2.3: LibTomMath Error Codes

When an error is detected within a function, it should free any memory it allocated, often during the initialization of temporary mp_ints, and return as soon as possible. The goal is to leave the system in the same state it was when the function was called. Error checking with this style of API is fairly simple.

```c
int err;
if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
    printf("Error: %s\n", mp_error_to_string(err));
    exit(EXIT_FAILURE);
}
```

The GMP [13] library uses C style signals to flag errors, which is of questionable use. Not all errors are fatal and it was not deemed ideal by the author of
LibTomMath to force developers to have signal handlers for such cases.

2.5 Initialization and Clearing

The logical starting point when actually writing multiple precision integer functions is the initialization and clearing of the mp_int structures. These two algorithms will be used by the majority of the higher level algorithms.

Given the basic mp_int structure, an initialization routine must first allocate memory to hold the digits of the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even though the initial integer will represent zero. If only a single digit were allocated, quite a few subsequent reallocations would occur when operations are performed on the integers. There is a trade-off between how many default digits to allocate and how many reallocations are tolerable. Obviously, allocating an excessive amount of digits initially will waste memory and become unmanageable.

If the memory for the digits has been successfully allocated, the rest of the members of the structure must be initialized. Since the initial state of an mp_int is to represent the zero integer, the allocated digits must be set to zero, the used count set to zero, and sign set to MP_ZPOS.

2.5.1 Initializing an mp_int

An mp_int is said to be initialized if it is set to a valid, preferably default, state such that all the members of the structure are set to valid values. The mp_init algorithm will perform such an action (Figure 2.4).
Algorithm **mp_init**.

Input. An `mp_int` `a`
Output. Allocate memory and initialize `a` to a known valid `mp_int` state.

1. Allocate memory for `MP_PREC` digits.
2. If the allocation failed, return(`MP_MEM`)
3. for `n` from 0 to `MP_PREC - 1` do

 3.1 `a_n` ← 0
4. `a.sign` ← `MP_ZPOS`
5. `a.used` ← 0
6. `a.alloc` ← `MP_PREC`
7. Return(`MP_OKAY`)

Figure 2.4: Algorithm mp_init

Algorithm mp_init. The purpose of this function is to initialize an `mp_int` structure so that the rest of the library can properly manipulate it. It is assumed that the input may not have had any of its members previously initialized, which is certainly a valid assumption if the input resides on the stack.

Before any of the members such as `sign`, `used`, or `alloc` are initialized, the memory for the digits is allocated. If this fails, the function returns before setting any of the other members. The `MP_PREC` name represents a constant\(^2\) used to dictate the minimum precision of newly initialized `mp_int` integers. Ideally, it is at least equal to the smallest precision number you’ll be working with.

Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow heap operations later functions will have to perform in the future. If `MP_PREC` is set correctly, the slack memory and the number of heap operations will be trivial.

Once the allocation has been made, the digits have to be set to zero, and the `used`, `sign`, and `alloc` members initialized. This ensures that the `mp_int` will always represent the default state of zero regardless of the original condition of the input.

Remark. This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the “for” keyword, iterate incrementally when the “to” keyword is placed between two expressions. For example, “for `a` from `b` to `c` do” means that a subsequent expression (or body of expressions) is to be evaluated

\(^2\)Defined in the “tommath.h” header file within LibTomMath.
up to $c - b$ times so long as $b \leq c$. In each iteration, the variable a is substituted for a new integer that lies inclusively between b and c. If $b > c$ occurred, the loop would not iterate. By contrast, if the “downto” keyword were used in place of “to,” the loop would iterate decrementally.

File: bn_mp_init.c
018 /* init a new mp_int */
019 int mp_init (mp_int * a)
020 {
021 int i;
022
023 /* allocate memory required and clear it */
024 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
025 if (a->dp == NULL) {
026 return MP_MEM;
027 }
028
029 /* set the digits to zero */
030 for (i = 0; i < MP_PREC; i++) {
031 a->dp[i] = 0;
032 }
033
034 /* set the used to zero, allocated digits to the default precision
035 * and sign to positive */
036 a->used = 0;
037 a->alloc = MP_PREC;
038 a->sign = MP_ZPOS;
039 return MP_OKAY;
040 }

One immediate observation of this initialization function is that it does not return a pointer to a mp_int structure. It is assumed that the caller has already allocated memory for the mp_int structure, typically on the application stack. The call to mp_init() is used only to initialize the members of the structure to a known default state.

Here we see (line 24) the memory allocation is performed first. This allows us to exit cleanly and quickly if there is an error. If the allocation fails, the routine will return MP_MEM to the caller to indicate there was a memory error. The function XMALLOC is what actually allocates the memory. Technically,
XMALLOC is not a function but a macro defined in `tommath.h`. By default, XMALLOC will evaluate to malloc(), which is the C library’s built-in memory allocation routine.

To assure the mp_int is in a known state, the digits must be set to zero. On most platforms this could have been accomplished by using `calloc()` instead of `malloc()`. However, to correctly initialize an integer type to a given value in a portable fashion, you have to actually assign the value. The for loop (line 30) performs this required operation.

After the memory has been successfully initialized, the remainder of the members are initialized (lines 34 through 35) to their respective default states. At this point, the algorithm has succeeded and a success code is returned to the calling function. If this function returns `MP_OKAY`, it is safe to assume the mp_int structure has been properly initialized and is safe to use with other functions within the library.

2.5.2 Clearing an mp_int

When an mp_int is no longer required by the application, the memory allocated for its digits must be returned to the application’s memory pool with the mp_clear algorithm (Figure 2.5).

Algorithm mp_clear.

Input. An mp_int a

Output. The memory for a shall be deallocated.

1. If a has been previously freed, then return(`MP_OKAY`).
2. for n from 0 to a.used – 1 do
 2.1 $a_n \leftarrow 0$
3. Free the memory allocated for the digits of a.
4. $a.used \leftarrow 0$
5. $a.alloc \leftarrow 0$
6. $a.sign \leftarrow MP_ZPOS$
7. Return(`MP_OKAY`).

Figure 2.5: Algorithm mp_clear

Algorithm mp_clear. This algorithm accomplishes two goals. First, it clears the digits and the other mp_int members. This ensures that if a developer acci-
dentally re-uses a cleared structure it is less likely to cause problems. The second goal is to free the allocated memory.

The logic behind the algorithm is extended by marking cleared mp_int structures so that subsequent calls to this algorithm will not try to free the memory multiple times. Cleared mp_ints are detectable by having a pre-defined invalid digit pointer dp setting.

Once an mp_int has been cleared, the mp_int structure is no longer in a valid state for any other algorithm with the exception of algorithms mp_init, mp_init_copy, mp_init_size, and mp_clear.

File: bn_mp_clear.c

018 /* clear one (frees) */
019 void
020 mp_clear (mp_int * a)
021 {
022 int i;
023
024 /* only do anything if a hasn’t been freed previously */
025 if (a->dp != NULL) {
026 /* first zero the digits */
027 for (i = 0; i < a->used; i++) {
028 a->dp[i] = 0;
029 }
030
031 /* free ram */
032 XFREE(a->dp);
033
034 /* reset members to make debugging easier */
035 a->dp = NULL;
036 a->alloc = a->used = 0;
037 a->sign = MP_ZPOS;
038 }
039 }
040

The algorithm only operates on the mp_int if it hasn’t been previously cleared. The if statement (line 25) checks to see if the dp member is not NULL. If the mp_int is a valid mp_int, then dp cannot be NULL, in which case the if statement will evaluate to true.

The digits of the mp_int are cleared by the for loop (line 27), which assigns a
zero to every digit. Similar to mp_init(), the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.

The digits are deallocated off the heap via the XFREE macro. Similar to XMALLOC, the XFREE macro actually evaluates to a standard C library function; in this case, free(). Since free() only deallocates the memory, the pointer still has to be reset to NULL manually (line 35).

Now that the digits have been cleared and deallocated, the other members are set to their final values (lines 36 and 37).

2.6 Maintenance Algorithms

The previous sections described how to initialize and clear an mp_int structure. To further support operations that are to be performed on mp_int structures (such as addition and multiplication), the dependent algorithms must be able to augment the precision of an mp_int and initialize mp_ints with differing initial conditions.

These algorithms complete the set of low–level algorithms required to work with mp_int structures in the higher level algorithms such as addition, multiplication, and modular exponentiation.

2.6.1 Augmenting an mp_int’s Precision

When you are storing a value in an mp_int structure, a sufficient number of digits must be available to accommodate the entire result of an operation without loss of precision. Quite often, the size of the array given by the alloc member is large enough to simply increase the used digit count. However, when the size of the array is too small it must be re-sized appropriately to accommodate the result. The mp_grow algorithm provides this functionality (Figure 2.6).
Algorithm mp_grow.

Input. An mp_int a and an integer b.

Output. a is expanded to accommodate b digits.

1. if a.alloc $\geq b$, then return(MP_OKAY)
2. $u \leftarrow b \pmod{\text{MP_PREC}}$
3. $v \leftarrow b + 2 \cdot \text{MP_PREC} - u$
4. Reallocate the array of digits a to size v
5. If the allocation failed, then return(MP_MEM).
6. for n from a.alloc to $v - 1$ do
 6.1 $a_n \leftarrow 0$
7. a.alloc $\leftarrow v$
8. Return(MP_OKAY)

Figure 2.6: Algorithm mp_grow

Algorithm mp_grow. It is ideal to prevent reallocations from being performed if they are not required (step one). This is useful to prevent mp_ints from growing excessively in code that erroneously calls mp_grow.

The requested digit count is padded up to the next multiple of MP_PREC plus an additional MP_PREC (steps two and three). This helps prevent many trivial reallocations that would grow an mp_int by trivially small values.

It is assumed that the reallocation (step four) leaves the lower a.alloc digits of the mp_int intact. This is much akin to how the realloc function from the standard C library works. Since the newly allocated digits are assumed to contain undefined values, they are initially set to zero.

File: bn_mp_grow.c

```c
018 /* grow as required */
019 int mp\_grow (mp\_int * a, int size)
020 {
021     int i;
022     mp\_digit *tmp;
023
024     /* if the alloc size is smaller alloc more ram */
025     if (a->alloc < size) {
026         /* ensure there are always at least MP\_PREC digits extra on top */
027         size += (MP\_PREC * 2) - (size % MP\_PREC);
028```

```
/* reallocate the array a->dp
 * We store the return in a temporary variable
 * in case the operation failed we don’t want
 * to overwrite the dp member of a.
 */
tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
if (tmp == NULL) {
 /* reallocation failed but "a" is still valid [can be freed] */
 return MP_MEM;
}
/* reallocation succeeded so set a->dp */
a->dp = tmp;
/* zero excess digits */
i = a->alloc;
a->alloc = size;
for (; i < a->alloc; i++) {
a->dp[i] = 0;
}
return MP_OKAY;

A quick optimization is to first determine if a memory reallocation is required at all. The if statement (line 24) checks if the alloc member of the mp_int is smaller than the requested digit count. If the count is not larger than alloc the function skips the reallocation part, thus saving time.

When a reallocation is performed, it is turned into an optimal request to save time in the future. The requested digit count is padded upwards to 2nd multiple of MP_PREC larger than alloc (line 25). The XREALLOC function is used to reallocate the memory. As per the other functions, XREALLOC is actually a macro that evaluates to realloc by default. The realloc function leaves the base of the allocation intact, which means the first alloc digits of the mp_int are the same as before the reallocation. All that is left is to clear the newly allocated digits and return.

Note that the reallocation result is actually stored in a temporary pointer tmp. This is to allow this function to return an error with a valid pointer. Earlier
releases of the library stored the result of XREALLOC into the mp_int a. That would result in a memory leak if XREALLOC ever failed.

2.6.2 Initializing Variable Precision mp_ints

Occasionally, the number of digits required will be known in advance of an initialization, based on, for example, the size of input mp_ints to a given algorithm. The purpose of algorithm mp_init_size is similar to mp_init except that it will allocate at least a specified number of digits (Function 2.7).

Algorithm mp_init_size.

Input. An mp_int a and the requested number of digits b.

Output. a is initialized to hold at least b digits.

1. $u \leftarrow b \pmod{MP_PREC}$
2. $v \leftarrow b + 2 \cdot MP_PREC - u$
3. Allocate v digits.
4. for n from 0 to $v - 1$ do
 4.1 $a_n \leftarrow 0$
5. $a_sign \leftarrow MP_ZPOS$
6. $a_used \leftarrow 0$
7. $a_alloc \leftarrow v$
8. Return(MP_OKAY)

Figure 2.7: Algorithm mp_init_size

Algorithm mp_init_size. This algorithm will initialize an mp_int structure a like algorithm mp_init, with the exception that the number of digits allocated can be controlled by the second input argument b. The input size is padded upwards so it is a multiple of MP_PREC plus an additional MP_PREC digits. This padding is used to prevent trivial allocations from becoming a bottleneck in the rest of the algorithms (Figure 2.7).

Like algorithm mp_init, the mp_int structure is initialized to a default state representing the integer zero. This particular algorithm is useful if it is known ahead of time the approximate size of the input. If the approximation is correct, no further memory reallocations are required to work with the mp_int.

File: bn_mp_init_size.c
018 /* init an mp_init for a given size */
int mp_init_size (mp_int * a, int size)
{
 int x;
 /* pad size so there are always extra digits */
 size += (MP_PREC * 2) - (size % MP_PREC);
 /* alloc mem */
 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
 if (a->dp == NULL) {
 return MP_MEM;
 }
 /* set the members */
 a->used = 0;
 a->alloc = size;
 a->sign = MP_ZPOS;
 /* zero the digits */
 for (x = 0; x < size; x++) {
 a->dp[x] = 0;
 }
 return MP_OKAY;
}

The number of digits b requested is padded (line 24) by first augmenting it to the next multiple of MP_PREC and then adding MP_PREC to the result. If the memory can be successfully allocated, the mp_int is placed in a default state representing the integer zero. Otherwise, the error code MP_MEM will be returned (line 29).

The digits are allocated and set to zero at the same time with the calloc() function (line 27). The used count is set to zero, the alloc count is set to the padded digit count and the sign flag is set to MP_ZPOS to achieve a default valid mp_int state (lines 33, 34, and 35). If the function returns successfully, then it is correct to assume that the mp_int structure is in a valid state for the remainder of the functions to work with.
2.6.3 Multiple Integer Initializations and Clearings

Occasionally, a function will require a series of mp_int data types to be made available simultaneously. The purpose of algorithm mp_init_multi (Figure 2.8) is to initialize a variable length array of mp_int structures in a single statement. It is essentially a shortcut to multiple initializations.

Algorithm mp_init_multi.

Input. Variable length array V_k of mp_int variables of length k.

Output. The array is initialized such that each mp_int of V_k is ready to use.

1. for n from 0 to $k - 1$ do
 1.1. Initialize the mp_int V_n (mp_init)
 1.2. If initialization failed then do
 1.2.1. for j from 0 to n do
 1.2.1.1. Free the mp_int V_j (mp_clear)
 1.2.2. Return(MP_MEM)
 2. Return(MP_OKAY)

Figure 2.8: Algorithm mp_init_multi

Algorithm mp_init_multi. The algorithm will initialize the array of mp_int variables one at a time. If a runtime error has been detected (step 1.2), all of the previously initialized variables are cleared. The goal is an “all or nothing” initialization, which allows for quick recovery from runtime errors (Figure 2.8).

File: bn_mp_init_multi.c

```c
#include <stdarg.h>

int mp_init_multi(mp_int *mp, ...) {
    mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
    int n = 0; /* Number of ok inits */
    mp_int* cur_arg = mp;
    va_list args;
    va_start(args, mp); /* init args to next argument from caller */
    while (cur_arg != NULL) {
        if (mp_init(cur_arg) != MP_OKAY) {
            for (j = 0; j < n; j++) {
                mp_clear(cur_arg);
            }
            res = MP_MEM;
        }
        cur_arg = (mp_int*) va_arg(args, mp_int);
    }
    return(res);
}
```
This function initializes a variable length list of mp_int structure pointers. However, instead of having the mp_int structures in an actual C array, they are simply passed as arguments to the function. This function makes use of the "..." argument syntax of the C programming language. The list is terminated with a final NULL argument appended on the right.

The function uses the "stdarg.h" va functions to step in a portable fashion through the arguments to the function. A count n of successfully initialized mp_int structures is maintained (line 48) such that if a failure does occur, the algorithm can backtrack and free the previously initialized structures (lines 28 to 47).
2.6.4 Clamping Excess Digits

When a function anticipates a result will be \(n \) digits, it is simpler to assume this is true within the body of the function instead of checking during the computation. For example, a multiplication of a \(i \) digit number by a \(j \) digit produces a result of at most \(i + j \) digits. It is entirely possible that the result is \(i + j - 1 \), though, with no final carry into the last position. However, suppose the destination had to be first expanded (via \texttt{mp_grow}) to accommodate \(i + j - 1 \) digits than further expanded to accommodate the final carry. That would be a considerable waste of time since heap operations are relatively slow.

The ideal solution is to always assume the result is \(i + j \) and fix up the \texttt{used} count after the function terminates. This way, a single heap operation (at most) is required. However, if the result was not checked there would be an excess high order zero digit.

For example, suppose the product of two integers was \(x_n = (0x_{n-1}x_{n-2}...x_0)_\beta \). The leading zero digit will not contribute to the precision of the result. In fact, through subsequent operations more leading zero digits would accumulate to the point the size of the integer would be prohibitive. As a result, even though the precision is very low the representation is excessively large.

The \texttt{mp_clamp} algorithm is designed to solve this very problem. It will trim high-order zeros by decrementing the \texttt{used} count until a non-zero most significant digit is found. Also in this system, zero is considered a positive number, which means that if the \texttt{used} count is decremented to zero, the sign must be set to \texttt{MP_ZPOS}.

\begin{algorithm}
\textbf{Algorithm} \texttt{mp_clamp}.

\textbf{Input.} An \texttt{mp_int} \(a \)

\textbf{Output.} Any excess leading zero digits of \(a \) are removed

1. while \(a\text{.used} > 0 \) and \(a\text{.used}_{a\text{.used}-1} = 0 \) do
 1.1 \(a\text{.used} \leftarrow a\text{.used} - 1 \)
2. if \(a\text{.used} = 0 \) then do
 2.1 \(a\text{.sign} \leftarrow \text{MP_ZPOS} \)
\end{algorithm}

Figure 2.9: Algorithm \texttt{mp_clamp}

\textbf{Algorithm} \texttt{mp_clamp}. As can be expected, this algorithm is very simple.
The loop in step one is expected to iterate only once or twice at the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for when all of the digits are zero to ensure that the mp_int is valid at all times (Figure 2.9).

File: bn_mp Clamp.c
018 /* trim unused digits
019 *
020 * This is used to ensure that leading zero digits are
021 * trimmed and the leading "used" digit will be non-zero
022 * Typically very fast. Also fixes the sign if there
023 * are no more leading digits
024 */
025 void
026 mp_clamp (mp_int * a)
027 {
028 /* decrease used while the most significant digit is
029 * zero.
030 */
031 while (a->used > 0 && a->dp[a->used - 1] == 0) {
032 --(a->used);
033 }
034
035 /* reset the sign flag if used == 0 */
036 if (a->used == 0) {
037 a->sign = MP_ZPOS;
038 }
039 }
040
Note on line 31 how to test for the used count is made on the left of the && operator. In the C programming language, the terms to && are evaluated left to right with a boolean short-circuit if any condition fails. This is important since if the used is zero, the test on the right would fetch below the array. That is obviously undesirable. The parenthesis on line 32 is used to make sure the used count is decremented and not the pointer “a”.

Exercises

[1] Discuss the relevance of the \textbf{used} member of the \texttt{mp_int} structure.

[1] Discuss the consequences of not using padding when performing allocations.

[2] Estimate an ideal value for \texttt{MP_PREC} when performing 1024-bit RSA encryption when $\beta = 2^{28}$.

[1] Discuss the relevance of the algorithm \texttt{mp_clamp}. What does it prevent?

[1] Give an example of when the algorithm \texttt{mp_init_copy} might be useful.
Chapter 3

Basic Operations

3.1 Introduction

In the previous chapter, a series of low-level algorithms was established that dealt with initializing and maintaining mp_int structures. This chapter will discuss another set of seemingly non-algebraic algorithms that will form the low-level basis of the entire library. While these algorithms are relatively trivial, it is important to understand how they work before proceeding since these algorithms will be used almost intrinsically in the following chapters.

The algorithms in this chapter deal primarily with more “programmer” related tasks such as creating copies of mp_int structures, assigning small values to mp_int structures and comparisons of the values mp_int structures represent.

3.2 Assigning Values to mp_int Structures

3.2.1 Copying an mp_int

Assigning the value that a given mp_int structure represents to another mp_int structure shall be known as making a copy for the purposes of this text. The copy of the mp_int will be a separate entity that represents the same value as the mp_int it was copied from. The mp_copy algorithm provides this functionality (Figure 3.1).
Algorithm mp_copy.

Input. An mp_int a and b.

Output. Store a copy of a in b.

1. If b.alloc < a.used then grow b to a.used digits. (mp_grow)
2. for n from 0 to a.used − 1 do
 2.1 \(b_n \leftarrow a_n \)
3. for n from a.used to b.used − 1 do
 3.1 \(b_n \leftarrow 0 \)
4. \(b.used \leftarrow a.used \)
5. \(b.sign \leftarrow a.sign \)
6. return(MP_OKAY)

Figure 3.1: Algorithm mp_copy

Algorithm mp_copy. This algorithm copies the mp_int a such that upon successful termination of the algorithm, the mp_int b will represent the same integer as the mp_int a. The mp_int b shall be a complete and distinct copy of the mp_int a, meaning that the mp_int a can be modified and it shall not affect the value of the mp_int b.

If b does not have enough room for the digits of a, it must first have its precision augmented via the mp_grow algorithm. The digits of a are copied over the digits of b, and any excess digits of b are set to zero (steps two and three). The used and sign members of a are finally copied over the respective members of b.

Remark. This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the text. The error return codes of other algorithms are not explicitly checked in the pseudo-code presented. For example, in step one of the mp_copy algorithm, the return of mp_grow is not explicitly checked to ensure it succeeded. Text space is limited so it is assumed that if an algorithm fails it will clear all temporarily allocated mp_ints and return the error code itself. However, the C code presented will demonstrate all of the error handling logic required to implement the pseudo-code.

File: bn_mp_copy.c
018 /* copy, b = a */
019 int
020 mp_copy (mp_int * a, mp_int * b)
021 {
3.2 Assigning Values to mp_int Structures

```c
int res, n;

/* if dst == src do nothing */
if (a == b) {
    return MP_OKAY;
}

/* grow dest */
if (b->alloc < a->used) {
    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
        return res;
    }
}

/* zero b and copy the parameters over */
{
    register mp_digit *tmpa, *tmpb;
    /* pointer aliases */
    /* source */
    tmpa = a->dp;
    /* destination */
    tmpb = b->dp;
    /* copy all the digits */
    for (n = 0; n < a->used; n++) {
        *tmpb++ = *tmpa++;
    }
    /* clear high digits */
    for (; n < b->used; n++) {
        *tmpb++ = 0;
    }
    /* copy used count and sign */
    b->used = a->used;
    b->sign = a->sign;
    return MP_OKAY;
```
Occasionally, a dependent algorithm may copy an `mp_int` effectively into itself such as when the input and output `mp_int` structures passed to a function are one and the same. For this case, it is optimal to return immediately without copying digits (line 25).

The `mp_int b` must have enough digits to accommodate the used digits of the `mp_int a`. If `b.alloc` is less than `a.used`, the algorithm `mp_grow` is used to augment the precision of `b` (lines 30 to 33). To simplify the inner loop that copies the digits from `a` to `b`, two aliases `tmpa` and `tmpb` point directly at the digits of the `mp_ints a` and `b`, respectively. These aliases (lines 43 and 46) allow the compiler to access the digits without first dereferencing the `mp_int` pointers and then subsequently the pointer to the digits.

After the aliases are established, the digits from `a` are copied into `b` (lines 49 to 51) and then the excess digits of `b` are set to zero (lines 54 to 56). Both “for” loops make use of the pointer aliases, and in fact the alias for `b` is carried through into the second “for” loop to clear the excess digits. This optimization allows the alias to stay in a machine register fairly easy between the two loops.

Remarks. The use of pointer aliases is an implementation methodology first introduced in this function that will be used considerably in other functions. Technically, a pointer alias is simply a shorthand alias used to lower the number of pointer dereferencing operations required to access data. For example, a for loop may resemble

```c
for (x = 0; x < 100; x++) {
    a->num[4]->dp[x] = 0;
}
```

This could be re-written using aliases as

```c
mp_digit *tmpa;
a = a->num[4]->dp;
for (x = 0; x < 100; x++) {
    *a++ = 0;
}
```

In this case, an alias is used to access the array of digits within an `mp_int` structure directly. It may seem that a pointer alias is strictly not required, as a
compiler may optimize out the redundant pointer operations. However, there are two dominant reasons to use aliases.

The first reason is that most compilers will not effectively optimize pointer arithmetic. For example, some optimizations may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Moreover, some optimizations may work for GCC and not MSVC. As such it is ideal to find a common ground for as many compilers as possible. Pointer aliases optimize the code considerably before the compiler even reads the source code, which means the end compiled code stands a better chance of being faster.

The second reason is that pointer aliases often can make an algorithm simpler to read. Consider the first “for” loop of the function mp_copy() re-written to not use pointer aliases.

```c
/* copy all the digits */
for (n = 0; n < a->used; n++) {
    b->dp[n] = a->dp[n];
}
```

Whether this code is harder to read depends strongly on the individual. However, it is quantifiably slightly more complicated, as there are four variables within the statement instead of just two.

Nested Statements

Another commonly used technique in the source routines is that certain sections of code are nested. This is used in particular with the pointer aliases to highlight code phases. For example, a Comba multiplier (discussed in Chapter 6) will typically have three different phases. First, the temporaries are initialized, then the columns calculated, and finally the carries are propagated. In this example, the middle column production phase will typically be nested as it uses temporary variables and aliases the most.

The nesting also simplifies the source code, as variables that are nested are only valid for their scope. As a result, the various temporary variables required do not propagate into other sections of code.

3.2.2 Creating a Clone

Another common operation is to make a local temporary copy of an mp_int argument. To initialize an mp_int and then copy another existing mp_int into the
newly initialized mp_int will be known as creating a clone. This is useful within functions that need to modify an argument but do not wish to modify the original copy. The mp_init_copy algorithm has been designed to help perform this task (Figure 3.2).

Algorithm **mp_init_copy**.

Input. An mp_int \(a\) and \(b\)

Output. \(a\) is initialized to be a copy of \(b\).

1. Init \(a\). (*mp_init*)
2. Copy \(b\) to \(a\). (*mp_copy*)
3. Return the status of the copy operation.

Figure 3.2: Algorithm mp_init_copy

Algorithm mp_init_copy. This algorithm will initialize an mp_int variable and copy another previously initialized mp_int variable into it. As such, this algorithm will perform two operations in one step.

File: bn_mp_init_copy.c

```c
018 /* creates "a" then copies b into it */
019 int mp_init_copy (mp_int * a, mp_int * b)
020 {
021   int res;
022   if ((res = mp_init (a)) != MP_OKAY) {
023     return res;
024   }
025   return mp_copy (b, a);
026 }
027
028
```

This will initialize \(a\) and make it a verbatim copy of the contents of \(b\). Note that \(a\) will have its own memory allocated, which means that \(b\) may be cleared after the call and \(a\) will be left intact.
3.3 Zeroing an Integer

Resetting an mp_int to the default state is a common step in many algorithms. The mp_zero algorithm will be used to perform this task (Figure 3.3).

Algorithm mp_zero.
Input. An mp_int \(a\)
Output. Zero the contents of \(a\)

1. \(a\).\textit{used} \(\leftarrow 0\)
2. \(a\).\textit{sign} \(\leftarrow\) MP_ZPOS
3. for \(n\) from 0 to \(a\).\textit{alloc} \(- 1\) do
 3.1 \(a\)_n \(\leftarrow 0\)

Figure 3.3: Algorithm mp_zero

Algorithm mp_zero. This algorithm simply resets a mp_int to the default state.

File: \texttt{bn_mp_zero_c}

```c
018 /* set to zero */
019 void mp\_zero (mp\_int * a)
020 {
021     int n;
022     mp\_digit *tmp;
023
024     a->sign = MP\_ZPOS;
025     a->used = 0;
026
027     tmp = a->dp;
028     for (n = 0; n < a->alloc; n++) {
029         *tmp++ = 0;
030     }
031 }
032
```

After the function is completed, all of the digits are zeroed, the \texttt{used} count is zeroed, and the \texttt{sign} variable is set to MP_ZPOS.
3.4 Sign Manipulation

3.4.1 Absolute Value

With the mp_int representation of an integer, calculating the absolute value is trivial. The mp_abs algorithm will compute the absolute value of an mp_int (Figure 3.4).

Algorithm mp_abs.

Input. An mp_int \(a \)

Output. Computes \(b = |a| \)

1. Copy \(a \) to \(b \). (*mp_copy*)
2. If the copy failed return(*MP_MEM*).
3. \(b.\text{sign} \leftarrow MP_{POS} \)
4. Return(*MP_OKAY*)

Figure 3.4: Algorithm mp_abs

Algorithm mp_abs. This algorithm computes the absolute of an mp_int input. First, it copies \(a \) over \(b \). This is an example of an algorithm where the check in mp_copy that determines if the source and destination are equal proves useful. This allows, for instance, the developer to pass the same mp_int as the source and destination to this function without additional logic to handle it.

File: bn_mp_abs.c

018 /* b = |a| */
019 *
020 /* Simple function copies the input and fixes the sign to positive */
021 *
022 int
023 mp_abs (mp_int * a, mp_int * b)
024 {
025 int res;
026
027 /* copy a to b */
028 if (a != b) {
029 if ((res = mp_copy (a, b)) != MP_OKAY) {
030 return res;
031 } else {
032 return MP_OKAY;
033 }
034 }
035 return MP_OKAY;
036 }
3.4 Sign Manipulation

This fairly trivial algorithm first eliminates non-required duplications (line 28) and then sets the `sign` flag to `MP_ZPOS`.

3.4.2 Integer Negation

With the `mp_int` representation of an integer, calculating the negation is also trivial. The `mp_neg` algorithm will compute the negative of an `mp_int` input (Figure 3.5).

Algorithm `mp_neg`.

Input. An `mp_int` `a`

Output. Computes $b = -a$

1. Copy `a` to `b`. (`mp_copy`)
2. If the copy failed return(`MP_MEM`).
3. If `a.used` = 0 then return(`MP_OKAY`).
4. If `a.sign = MP_ZPOS` then do
 4.1 `b.sign = MP_NEG`.
5. else do
 5.1 `b.sign = MP_ZPOS`.
6. Return(`MP_OKAY`)

Figure 3.5: Algorithm `mp_neg`

Algorithm `mp_neg`. This algorithm computes the negation of an input. First, it copies `a` over `b`. If `a` has no used digits, then the algorithm returns immediately. Otherwise, it flips the sign flag and stores the result in `b`. Note that if `a` had no digits, then it must be positive by definition. Had step three been omitted, the algorithm would return zero as negative.
Like mp_abs(), this function avoids non-required duplications (line 22) and then sets the sign. We have to make sure that only non-zero values get a sign of MP_NEG. If the mp_int is zero, the sign is hard-coded to MP_ZPOS.

3.5 Small Constants

3.5.1 Setting Small Constants

Often, a mp_int must be set to a relatively small value such as 1 or 2. For these cases, the mp_set algorithm is useful (Figure 3.6).
Algorithm \texttt{mp_set}.

\textbf{Input.} An \texttt{mp_int} \texttt{a} and a digit \texttt{b} \\
\textbf{Output.} Make \texttt{a} equivalent to \texttt{b}

1. Zero \texttt{a} (\texttt{mp_zero}).
2. \texttt{a}_0 \leftarrow \texttt{b} \pmod{\beta}
3. \texttt{a_used} \leftarrow \begin{cases} 1 & \text{if } \texttt{a}_0 > 0 \\ 0 & \text{if } \texttt{a}_0 = 0 \end{cases}

Figure 3.6: Algorithm \texttt{mp_set}

\textbf{Algorithm \texttt{mp_set}.} This algorithm sets a \texttt{mp_int} to a small single digit value. Step number 1 ensures that the integer is reset to the default state. The single digit is set (\textit{modulo} \beta) and the \texttt{used} count is adjusted accordingly.

File: \texttt{bn_mp_set.c}
018 /* set to a digit */
019 void mp_set (mp_int * a, mp_digit b)
020 {
021 mp_zero (a);
022 a->dp[0] = b & MP_MASK;
023 a->used = (a->dp[0] != 0) ? 1 : 0;
024 }
025

First, we zero (line 21) the \texttt{mp_int} to make sure the other members are initialized for a small positive constant. \texttt{mp_zero()} ensures that the \texttt{sign} is positive and the \texttt{used} count is zero. Next, we set the digit and reduce it modulo \beta (line 22). After this step, we have to check if the resulting digit is zero or not. If it is not, we set the \texttt{used} count to one, otherwise to zero.

We can quickly reduce modulo \beta since it is of the form \(2^k\), and a quick binary AND operation with \(2^k - 1\) will perform the same operation.

One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses this function should take that into account. Only trivially small constants can be set using this function.
3.5.2 Setting Large Constants

To overcome the limitations of the mp_set algorithm, the mp_set_int algorithm is ideal. It accepts a “long” data type as input and will always treat it as a 32-bit integer (Figure 3.7).

Algorithm mp_set_int.

Input. An mp_int a and a “long” integer b

Output. Make a equivalent to b

1. Zero a (mp_zero)
2. for n from 0 to 7 do
 2.1 a ← a · 16 (mp_mul2d)
 2.2 u ← \[b/2^{4(7-n)}\] (mod 16)
 2.3 a_0 ← a_0 + u
 2.4 a.used ← a.used + 1
3. Clamp excess used digits (mp_clamp)

Figure 3.7: Algorithm mp_set_int

Algorithm mp_set_int. The algorithm performs eight iterations of a simple loop where in each iteration, four bits from the source are added to the mp_int. Step 2.1 will multiply the current result by sixteen, making room for four more bits in the less significant positions. In step 2.2, the next four bits from the source are extracted and are added to the mp_int. The used digit count is incremented to reflect the addition. The used digit counter is incremented since if any of the leading digits were zero, the mp_int would have zero digits used and the newly added four bits would be ignored.

Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp_mul2d and mp Clamp.

File: bn_mp_set_int.c

```c
018 /* set a 32-bit const */
019 int mp_set_int (mp_int * a, unsigned long b)
020 {
021     int x, res;
022     mp_zero (a);
024```
This function sets four bits of the number at a time to handle all practical \texttt{DIGIT\_BIT} sizes. The addition on line 39 ensures that the newly added in bits are added to the number of digits. While it may not seem obvious as to why the digit counter does not grow exceedingly large, it is because of the shift on line 28 and the call to \texttt{mp\_clamp()} on line 41. Both functions will clamp excess leading digits, which keeps the number of used digits low.

### 3.6 Comparisons

#### 3.6.1 Unsigned Comparisons

Comparing a multiple precision integer is performed with the same algorithm used to compare two decimal numbers. For example, to compare 1,234 to 1,264, the digits are extracted by their positions. That is, we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$ to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time, starting with the highest magnitude positions. If any leading digit of one integer is greater than a digit in the same position of another integer, then obviously it must be greater.
The first comparison routine that will be developed is the unsigned magnitude compare, which will perform a comparison based on the digits of two mp_int variables alone. It will ignore the sign of the two inputs. Such a function is useful when an absolute comparison is required or if the signs are known to agree in advance.

To facilitate working with the results of the comparison functions, three constants are required (Figure 3.8).

<table>
<thead>
<tr>
<th>Constant</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP_GT</td>
<td>Greater Than</td>
</tr>
<tr>
<td>MP_EQ</td>
<td>Equal To</td>
</tr>
<tr>
<td>MP_LT</td>
<td>Less Than</td>
</tr>
</tbody>
</table>

Figure 3.8: Comparison Return Codes

Algorithm mp_cmp_mag.

Input. Two mp_ints a and b.

Output. Unsigned comparison results (a to the left of b).

1. If \(a\).used > \(b\).used then return(MP_GT)
2. If \(a\).used < \(b\).used then return(MP_LT)
3. for n from \(a\).used − 1 to 0 do
   3.1 if \(a\)_n > \(b\)_n then return(MP_GT)
   3.2 if \(a\)_n < \(b\)_n then return(MP_LT)
4. Return(MP_EQ)

Figure 3.9: Algorithm mp_cmp_mag

Algorithm mp_cmp_mag. By saying “a to the left of b,” it is meant that the comparison is with respect to a. That is, if a is greater than b it will return MP_GT and similar with respect to when \(a = b\) and \(a < b\). The first two steps compare the number of digits used in both a and b. Obviously, if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is. If both have the same number of digits, the actual digits themselves must be compared starting at the leading digit (Figure 3.9).
By step three, both inputs must have the same number of digits so, it is safe to start from either \( a.used - 1 \) or \( b.used - 1 \) and count down to the zero’th digit. If after all of the digits have been compared and no difference is found, the algorithm returns \texttt{MP_EQ}.

```
File: bn_mp_cmp_mag.c
018 /* compare magnitude of two ints (unsigned) */
019 int mp_cmp_mag (mp_int * a, mp_int * b)
020 {
021 int n;
022 mp_digit *tmpa, *tmpb;
023
024 /* compare based on # of non-zero digits */
025 if (a->used > b->used) {
026 return MP_GT;
027 }
028 if (a->used < b->used) {
029 return MP_LT;
030 }
031
032 /* alias for a */
033 tmpa = a->dp + (a->used - 1);
034
035 /* alias for b */
036 tmpb = b->dp + (a->used - 1);
037
038 /* compare based on digits */
039 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
040 if (*tmpa > *tmpb) {
041 return MP_GT;
042 }
043 }
044
045 if (*tmpa < *tmpb) {
046 return MP_LT;
047 }
048 return MP_EQ;
049 }
```

The two if statements (lines 25 and 29) compare the number of digits in the
two inputs. These two are performed before all the digits are compared, since it is a very cheap test to perform and can potentially save considerable time. The implementation given is also not valid without those two statements. \texttt{b.alloc} may be smaller than \texttt{a.used}, meaning that undefined values will be read from \texttt{b} past the end of the array of digits.

### 3.6.2 Signed Comparisons

Comparing with sign comparisons is also fairly critical in several routines (division, for example). Based on an unsigned magnitude comparison, a trivial signed comparison algorithm can be written.

---

**Algorithm** \texttt{mp\_cmp}.

**Input.** Two \texttt{mp\_ints} \texttt{a} and \texttt{b}

**Output.** Signed Comparison Results (\texttt{a} to the left of \texttt{b})

---

1. if \texttt{a.sign} = \texttt{MP\_NEG} and \texttt{b.sign} = \texttt{MP\_ZPOS} then return(\texttt{MP\_LT})
2. if \texttt{a.sign} = \texttt{MP\_ZPOS} and \texttt{b.sign} = \texttt{MP\_NEG} then return(\texttt{MP\_GT})
3. if \texttt{a.sign} = \texttt{MP\_NEG} then
   3.1 Return the unsigned comparison of \texttt{b} and \texttt{a} (\texttt{mp\_cmp\_mag})
4. Otherwise
   4.1 Return the unsigned comparison of \texttt{a} and \texttt{b}

---

**Figure 3.10:** Algorithm \texttt{mp\_cmp}

**Algorithm** \texttt{mp\_cmp}. The first two steps compare the signs of the two inputs. If the signs do not agree, then it can return right away with the appropriate comparison code. When the signs are equal, the digits of the inputs must be compared to determine the correct result. In step three, the unsigned comparison flips the order of the arguments since they are both negative. For instance, if \(-a > -b\) then \(|a| < |b|\). Step four will compare the two when they are both positive (Figure 3.10).
The two if statements (lines 23 and 24) perform the initial sign comparison. If the signs are not equal, then whichever has the positive sign is larger. The inputs are compared (line 32) based on magnitudes. If the signs were both negative, then the unsigned comparison is performed in the opposite direction (line 34). Otherwise, the signs are assumed to be positive and a forward direction unsigned comparison is performed.
Exercises


[3] Give the probability that algorithm mp_cmp_mag will have to compare $k$ digits of two random digits (of equal magnitude) before a difference is found.

[1] Suggest a simple method to speed up the implementation of mp_cmp_mag based on the observations made in the previous problem.
Chapter 4

Basic Arithmetic

4.1 Introduction

At this point, algorithms for initialization, clearing, zeroing, copying, comparing, and setting small constants have been established. The next logical set of algorithms to develop are addition, subtraction, and digit shifting algorithms. These algorithms make use of the lower level algorithms and are the crucial building block for the multiplication algorithms. It is very important that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms, which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.

All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right logical shifts, respectively. A logical shift is analogous to sliding the decimal point of radix-10 representations. For example, the real number 0.9345 is equivalent to 93.45%, which is found by sliding the decimal two places to the right (multiplying by $\beta^2 = 10^2$). Algebraically, a binary logical shift is equivalent to a division or multiplication by a power of two. For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.

One significant difference between a logical shift and the way decimals are shifted is that digits below the zero’th position are removed from the number. For example, consider $1101_2 >> 1$; using decimal notation this would produce 110.1$_2$. However, with a logical shift the result is 110$_2$. 

53
4.2 Addition and Subtraction

In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus. For example, with 32-bit integers, \( a - b \pmod{2^{32}} \) is the same as \( a + (2^{32} - b) \pmod{2^{32}} \) since \( 2^{32} \equiv 0 \pmod{2^{32}} \). As a result, subtraction can be performed with a trivial series of logical operations and an addition.

However, in multiple precision arithmetic, negative numbers are not represented in the same way. Instead, a sign flag is used to keep track of the sign of the integer. As a result, signed addition and subtraction are actually implemented as conditional usage of lower level addition or subtraction algorithms with the sign fixed up appropriately.

The lower level algorithms will add or subtract integers without regard to the sign flag. That is, they will add or subtract the magnitude of the integers, respectively.

4.2.1 Low Level Addition

An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers; that is, to add the trailing digits first and propagate the resulting carry upward. Since this is a lower level algorithm, the name will have a “s_” prefix. Historically, that convention stems from the MPI library, where “s_” stood for static functions that were hidden from the developer entirely.
Algorithm \texttt{mpAdd}.

\textbf{Input.} Two \texttt{mpInts} \(a\) and \(b\)

\textbf{Output.} The unsigned addition \(c = |a| + |b|\).

1. if \(a\text{.used} > b\text{.used}\) then
   1.1 \(\text{min} \leftarrow b\text{.used}\)
   1.2 \(\text{max} \leftarrow a\text{.used}\)
   1.3 \(x \leftarrow a\)
2. else
   2.1 \(\text{min} \leftarrow a\text{.used}\)
   2.2 \(\text{max} \leftarrow b\text{.used}\)
   2.3 \(x \leftarrow b\)
3. If \(c\text{.alloc} < \text{max} + 1\) then grow \(c\) to hold at least \(\text{max} + 1\) digits (\texttt{mpGrow})
4. \(\text{oldused} \leftarrow c\text{.used}\)
5. \(c\text{.used} \leftarrow \text{max} + 1\)
6. \(u \leftarrow 0\)
7. for \(n\) from 0 to \(\text{min} - 1\) do
   7.1 \(c_n \leftarrow a_n + b_n + u\)
   7.2 \(u \leftarrow c_n \gg \lg(\beta)\)
   7.3 \(c_n \leftarrow c_n \pmod{\beta}\)
8. if \(\text{min} \neq \text{max}\) then do
   8.1 for \(n\) from \(\text{min}\) to \(\text{max} - 1\) do
      8.1.1 \(c_n \leftarrow x_n + u\)
      8.1.2 \(u \leftarrow c_n \gg \lg(\beta)\)
      8.1.3 \(c_n \leftarrow c_n \pmod{\beta}\)
9. \(c_{\text{max}} \leftarrow u\)
10. if \(\text{oldused} > \text{max}\) then
    10.1 for \(n\) from \(\text{max} + 1\) to \(\text{oldused} - 1\) do
    10.1.1 \(c_n \leftarrow 0\)
11. Clamp excess digits in \(c\). (\texttt{mpClamp})
12. Return(\texttt{MP\_OKAY})

Figure 4.1: Algorithm \texttt{mpAdd}
The first thing that has to be accomplished is to sort out which of the two inputs is the largest. The addition logic will simply add all of the smallest input to the largest input and store that first part of the result in the destination. Then, it will apply a simpler addition loop to excess digits of the larger input.

The first two steps will handle sorting the inputs such that \textit{min} and \textit{max} hold the digit counts of the two inputs. The variable \textit{x} will be an mp\texttt{int} alias for the largest input or the second input \textit{b} if they have the same number of digits. After the inputs are sorted, the destination \textit{c} is grown as required to accommodate the sum of the two inputs. The original \textbf{used} count of \textit{c} is copied and set to the new used count.

At this point, the first addition loop will go through as many digit positions as both inputs have. The carry variable \textit{\mu} is set to zero outside the loop. Inside the loop an “addition” step requires three statements to produce one digit of the summand. The first two digits from \textit{a} and \textit{b} are added together along with the carry \textit{\mu}. The carry of this step is extracted and stored in \textit{\mu}, and finally the digit of the result \textit{c}_n is truncated within the range \(0 \leq c_n < \beta\).

Now all of the digit positions that both inputs have in common have been exhausted. If \textit{min} \neq \textit{max}, then \textit{x} is an alias for one of the inputs that has more digits. A simplified addition loop is then used to essentially copy the remaining digits and the carry to the destination.

The final carry is stored in \textit{c}_{\text{max}}, and digits above \textit{max} up to \textit{oldused} are zeroed, which completes the addition.

\begin{verbatim}
File: bn_s_mp_add.c
018 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
019 int
020 s_mp_add (mp_int * a, mp_int * b, mp_int * c)
021 {
022     mp_int *x;
023     int olduse, res, min, max;
024
025     /* find sizes, we let |a| <= |b| which means we have to sort
026      * them. "x" will point to the input with the most digits
027     */
028     if (a->used > b->used) {
029         min = b->used;
030         max = a->used;
031         x = a;
032     } else {
033         min = a->used;
034     
035     ...
\end{verbatim}
max = b->used;
x = b;

/* init result */
if (c->alloc < max + 1) {
  if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
    return res;
  }
}

/* get old used digit count and set new one */
olduse = c->used;
c->used = max + 1;

{
  register mp_digit u, *tmpa, *tmpb, *tmpc;
  register int i;

  /* alias for digit pointers */

  /* first input */
tmpa = a->dp;

  /* second input */
tmpb = b->dp;

  /* destination */
tmpc = c->dp;

  /* zero the carry */
u = 0;
  for (i = 0; i < min; i++) {
    /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
    *tmpc = *tmpa++ + *tmpb++ + u;
  
    /* U = carry bit of T[i] */
    u = *tmpc >> ((mp_digit)DIGIT_BIT);

    /* take away carry bit from T[i] */
    *tmpc++ &= MP_MASK;
We first sort (lines 28 to 36) the inputs based on magnitude and determine the min and max variables. Note that x is a pointer to an mp_int assigned to the largest input, in effect it is a local alias. Next, we grow the destination (38 to 42) to ensure it can accommodate the result of the addition.

Similar to the implementation of mp_copy, this function uses the braced code and local aliases coding style. The three aliases on lines 56, 59 and 62 represent the two inputs and destination variables, respectively. These aliases are used to ensure the compiler does not have to dereference a, b, or c (respectively) to access the digits of the respective mp_int.
The initial carry $u$ will be cleared (line 65); note that $u$ is of type `mp_digit`, which ensures type compatibility within the implementation. The initial addition (lines 66 to 75) adds digits from both inputs until the smallest input runs out of digits. Similarly, the conditional addition loop (lines 81 to 90) adds the remaining digits from the larger of the two inputs. The addition is finished with the final carry being stored in `tmpc` (line 94). Note the “++” operator within the same expression. After line 94, `tmpc` will point to the c.used'th digit of the mp_int $c$. This is useful for the next loop (lines 97 to 99), which sets any old upper digits to zero.

4.2.2 Low Level Subtraction

The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principal difference is that the unsigned subtraction algorithm requires the result to be positive. That is, when computing $a - b$, the condition $|a| \geq |b|$ must be met for this algorithm to function properly. Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly. This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.

For this algorithm, a new variable is required to make the description simpler. Recall from section 1.3.1 that a `mp_digit` must be able to represent the range $0 \leq x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a `mp_digit` represent a larger range of values. For this algorithm, we will assume that the variable $\gamma$ represents the number of bits available in a `mp_digit` (this implies $2^\gamma > \beta$).

For example, the default for LibTomMath is to use a “unsigned long” for the `mp_digit” type” while $\beta = 2^{28}$. In ISO C, an “unsigned long” data type must be able to represent $0 \leq x < 2^{32}$, meaning that in this case $\gamma \geq 32$. 
Algorithm s_mp_sub.

**Input.** Two mp\_int variables $a$ and $b$ ($|a| \geq |b|$)

**Output.** The unsigned subtraction $c = |a| - |b|$.

1. $min \leftarrow b\_used$
2. $max \leftarrow a\_used$
3. If $c\_alloc < max$ then grow $c$ to hold at least $max$ digits. ($mp\_grow$)
4. $oldused \leftarrow c\_used$
5. $c\_used \leftarrow max$
6. $u \leftarrow 0$
7. for $n$ from 0 to $min - 1$ do
   7.1 $c\_n \leftarrow a\_n - b\_n - u$
   7.2 $u \leftarrow c\_n >> (\gamma - 1)$
   7.3 $c\_n \leftarrow c\_n \mod \beta$
8. if $min < max$ then do
   8.1 for $n$ from $min$ to $max - 1$ do
      8.1.1 $c\_n \leftarrow a\_n - u$
      8.1.2 $u \leftarrow c\_n >> (\gamma - 1)$
      8.1.3 $c\_n \leftarrow c\_n \mod \beta$
9. if $oldused > max$ then do
   9.1 for $n$ from $max$ to $oldused - 1$ do
      9.1.1 $c\_n \leftarrow 0$
10. Clamp excess digits of $c$. ($mp\_clamp$).
11. Return($MP\_OKAY$).

Figure 4.2: Algorithm s_mp_sub

Algorithm s_mp_sub. This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive. That is, when passing variables $a$ and $b$ the condition that $|a| \geq |b|$ must be met for the algorithm to function correctly. This algorithm is loosely based on algorithm 14.9 [2, pp. 595] and is similar to algorithm S in [1, pp. 267] as well. As was the case of the algorithm s_mp_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude (Figure 4.2).

The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2 set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry, which means that the result can be at most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm, the used count of $c$ is copied locally and set to
the maximal count for the operation.

The subtraction loop that begins on step 7 is essentially the same as the addition loop of algorithm \texttt{s_mp_add}, except single precision subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (also known as the borrow) within the subtraction loops. Under the assumption that two’s complement single precision arithmetic is used, this will successfully extract the desired carry.

For example, consider subtracting $0101_2$ from $0100_2$, where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to the third bit, which will be set to zero after the borrow. After the very first bit has been subtracted, $4 - 1 \equiv 0011_2$ will remain. When the third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case, though, the carry will be forced to propagate all the way to the most significant bit.

Recall that $\beta < 2^\gamma$. This means that if a carry does occur just before the $\lg(\beta)$'th bit it will propagate all the way to the most significant bit. Thus, the high order bits of the mp_digit that are not part of the actual digit will either be all zero, or all one. All that is needed is a single zero or one bit for the carry. Therefore, a single logical shift right by $\gamma - 1$ positions is sufficient to extract the carry. This method of carry extraction may seem awkward, but the reason for it becomes apparent when the implementation is discussed.

If $b$ has a smaller magnitude than $a$, then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step 10 will ensure that any leading digits of $c$ above the $\text{max}'$th position are zeroed.

File: \texttt{bn\_s\_mp\_sub.c}
018 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
019 int
020 s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
021 {
022   int olduse, res, min, max;
023
024   /* find sizes */
025   min = b->used;
026   max = a->used;
027
028   /* init result */
029   if (c->alloc < max) {
030     if ((res = mp_grow (c, max)) != MP_OKAY) {
031       return res;
olduse = c->used;
c->used = max;

{
    register mp_digit u, *tmpa, *tmpb, *tmpc;
    register int i;

    /* alias for digit pointers */
    tmpa = a->dp;
    tmpb = b->dp;
    tmpc = c->dp;

    /* set carry to zero */
    u = 0;
    for (i = 0; i < min; i++) {
        *tmpc = *tmpa++ - *tmpb++ - u;

        /* U = carry bit of T[i]
        * Note this saves performing an AND operation since
        * if a carry does occur it will propagate all the way to the
        * MSB. As a result a single shift is enough to get the carry
        */
        u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

        /* Clear carry from T[i] */
        *tmpc++ &= MP_MASK;
    }

    /* now copy higher words if any, e.g. if A has more digits than B */
    for (; i < max; i++) {
        /* T[i] = A[i] - U */
        *tmpc = *tmpa++ - u;

        /* U = carry bit of T[i] */
        u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));

        /* Clear carry from T[i] */
        *tmpc++ &= MP_MASK;
    }
}
4.2 Addition and Subtraction

Like low level addition we “sort” the inputs, except in this case, the sorting is hard coded (lines 25 and 26). In reality, the min and max variables are only aliases and are only used to make the source code easier to read. Again, the pointer alias optimization is used within this algorithm. The aliases tmpa, tmpb, and tmpc are initialized (lines 42, 43 and 44) for a, b, and c, respectively.

The first subtraction loop (lines 47 through 61) subtracts digits from both inputs until the smaller of the two has been exhausted. As remarked earlier, there is an implementation reason for using the “awkward” method of extracting the carry (line 57). The traditional method for extracting the carry would be to shift by \( \log_2(\beta) \) positions and logically AND the least significant bit. The AND operation is required because all of the bits above the \( \log_2(\beta) \)'th bit will be set to one after a carry occurs from subtraction. This carry extraction requires two relatively cheap operations to extract the carry. The other method is to simply shift the most significant bit to the least significant bit, thus extracting the carry with a single cheap operation. This optimization only works on twos complement machines, which is a safe assumption to make.

If \( a \) has a larger magnitude than \( b \), an additional loop (lines 64 through 73) is required to propagate the carry through \( a \) and copy the result to \( c \).

4.2.3 High Level Addition

Now that both lower level addition and subtraction algorithms have been established, an effective high level signed addition algorithm can be established. This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data types.
Recall from section 5.2 that an mp_int represents an integer with an unsigned mantissa (the array of digits) and a sign flag. A high level addition is actually performed as a series of eight separate cases that can be optimized down to three unique cases.

---

**Algorithm mp_add.**

**Input.** Two mp_ints $a$ and $b$

**Output.** The signed addition $c = a + b$.

1. if $a.sign = b.sign$ then do
   1.1 $c.sign \leftarrow a.sign$
   1.2 $c \leftarrow |a| + |b|$ (s_mp_add)
2. else do
   2.1 if $|a| < |b|$ then do (mp_cmp_mag)
      2.1.1 $c.sign \leftarrow b.sign$
      2.1.2 $c \leftarrow |b| - |a|$ (s_mp_sub)
   2.2 else do
      2.2.1 $c.sign \leftarrow a.sign$
      2.2.2 $c \leftarrow |a| - |b|$
3. Return(MP_OKAY).

---

**Figure 4.3: Algorithm mp_add**

**Algorithm mp_add.** This algorithm performs the signed addition of two mp_int variables. There is no reference algorithm to draw upon from either [1] or [2] since they both only provide unsigned operations. The algorithm is fairly straightforward but restricted, since subtraction can only produce positive results (Figure 4.3).

Figure 4.4 lists the eight possible input combinations and is sorted to show that only three specific cases need to be handled. The return code of the unsigned operations at steps 1.2, 2.1.2, and 2.2.2 are forwarded to step 3 to check for errors. This simplifies the description of the algorithm considerably and best follows how the implementation actually was achieved.

Also note how the sign is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms s_mp_add and s_mp_sub that the mp_clamp function is used at the end to trim excess digits. The mp_clamp algorithm will set the sign to MP_ZPOS when the used digit count reaches zero.
4.2 Addition and Subtraction

| Sign of $a$ | Sign of $b$ | $|a| > |b|$ | Unsigned Operation | Result Sign Flag |
|-------------|-------------|----------|-------------------|-----------------|
| +           | +           | Yes      | $c = a + b$       | $a.sign$        |
| +           | +           | No       | $c = a + b$       | $a.sign$        |
| −           | −           | Yes      | $c = a + b$       | $a.sign$        |
| −           | −           | No       | $c = a + b$       | $a.sign$        |
| +           | −           | No       | $c = b - a$       | $b.sign$        |
| −           | +           | No       | $c = b - a$       | $b.sign$        |
| +           | −           | Yes      | $c = a - b$       | $a.sign$        |
| −           | +           | Yes      | $c = a - b$       | $a.sign$        |

Figure 4.4: Addition Guide Chart

For example, consider performing $-a + a$ with algorithm mp_add. By the description of the algorithm the sign is set to MP_NEG, which would produce a result of $-0$. However, since the sign is set first, then the unsigned addition is performed, the subsequent usage of algorithm mp_clamp within algorithm s_mp_add will force $-0$ to become $0$.

File: bn_mp_add.c

```c
018 /* high level addition (handles signs) */
019 int mp_add (mp_int * a, mp_int * b, mp_int * c)
020 {
021 int sa, sb, res;
022 /* get sign of both inputs */
023 sa = a->sign;
024 sb = b->sign;
025 /* handle two cases, not four */
026 if (sa == sb) {
027 /* both positive or both negative */
028 /* add their magnitudes, copy the sign */
029 c->sign = sa;
030 res = s_mp_add (a, b, c);
031 } else {
032 /* one positive, the other negative */
033 /* subtract the one with the greater magnitude from */
```

```c
The source code follows the algorithm fairly closely. The most notable new source code addition is the usage of the `res` integer variable, which is used to pass the result of the unsigned operations forward. Unlike in the algorithm, the variable `res` is merely returned as is without explicitly checking it and returning the constant `MP_OKAY`. The observation is this algorithm will succeed or fail only if the lower level functions do so. Returning their return code is sufficient.

4.2.4 High Level Subtraction

The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
4.2 Addition and Subtraction

Algorithm \texttt{mp_sub}.

\textbf{Input.} Two mp_ints \textit{a} and \textit{b}

\textbf{Output.} The signed subtraction \(c = a - b \).

1. if \textit{a.sign} \(\neq \) \textit{b.sign} then do
 1.1 \(\textit{c.sign} \leftarrow \textit{a.sign} \)
 1.2 \(c \leftarrow |a| + |b| \) (\texttt{s_mp_add})
2. else do
 2.1 if \(|a| \geq |b| \) then do (\texttt{mp_cmp_mag})
 2.1.1 \(\textit{c.sign} \leftarrow \textit{a.sign} \)
 2.1.2 \(c \leftarrow |a| - |b| \) (\texttt{s_mp_sub})
 2.2 else do
 2.2.1 \(\textit{c.sign} \leftarrow \begin{cases} \text{MP_ZPOS} & \text{if } \textit{a.sign} = \text{MP_NEG} \\ \text{MP_NEG} & \text{otherwise} \end{cases} \)
 2.2.2 \(c \leftarrow |b| - |a| \)
3. Return(\texttt{MP_OKAY}).

\begin{figure}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\text{Sign of \textit{a}} & \text{Sign of \textit{b}} & \text{\(|a| \geq |b|\)} & \text{Unsigned Operation} & \text{Result Sign Flag} \\
\hline
+ & - & Yes & \(c = a + b \) & \textit{a.sign} \\
+ & - & No & \(c = a + b \) & \textit{a.sign} \\
- & + & Yes & \(c = a + b \) & \textit{a.sign} \\
- & + & No & \(c = a + b \) & \textit{a.sign} \\
+ & + & Yes & \(c = a - b \) & \textit{a.sign} \\
- & - & Yes & \(c = a - b \) & \textit{a.sign} \\
+ & + & No & \(c = b - a \) & \text{opposite of } \textit{a.sign} \\
- & - & No & \(c = b - a \) & \text{opposite of } \textit{a.sign} \\
\hline
\end{tabular}
\caption{Subtraction Guide Chart}
\end{figure}
Similar to the case of algorithm mp_add, the sign is set first before the unsigned addition or subtraction, to prevent the algorithm from producing \(-a - (-a) = -0\) as a result.

File: bn_mp_sub.c

```c
/* high level subtraction (handles signs) */
int mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
    int sa, sb, res;

    sa = a->sign;
    sb = b->sign;

    if (sa != sb) {
        /* subtract a negative from a positive, OR */
        /* subtract a positive from a negative. */
        /* In either case, ADD their magnitudes, */
        /* and use the sign of the first number. */
        c->sign = sa;
        res = s_mp_add (a, b, c);
    } else {
        /* subtract a positive from a positive, OR */
        /* subtract a negative from a negative. */
        /* First, take the difference between their */
        /* magnitudes, then... */
        if (mp_cmp_mag (a, b) != MP_LT) {
            /* Copy the sign from the first */
            c->sign = sa;
            /* The first has a larger or equal magnitude */
            res = s_mp_sub (a, b, c);
        } else {
            /* The result has the *opposite* sign from */
            /* the first number. */
            c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
            /* The second has a larger magnitude */
            res = s_mp_sub (b, a, c);
        }
    }

    return res;
```
4.3 Bit and Digit Shifting

Much like the implementation of algorithm mp_add, the variable res is used to catch the return code of the unsigned addition or subtraction operations and forward it to the end of the function. On line 39, the “not equal to” MP_LT expression is used to emulate a “greater than or equal to” comparison.

4.3 Bit and Digit Shifting

It is quite common to think of a multiple precision integer as a polynomial in \(x \); that is, \(y = f(\beta) \) where \(f(x) = \sum_{i=0}^{n-1} a_i x^i \). This notation arises within discussion of Montgomery and Diminished Radix Reduction, and Karatsuba multiplication and squaring.

To facilitate operations on polynomials in \(x \) as above, a series of simple “digit” algorithms have to be established. That is to shift the digits left or right and to shift individual bits of the digits left and right. It is important to note that not all “shift” operations are on radix-\(\beta \) digits.

4.3.1 Multiplication by Two

In a binary system where the radix is a power of two, multiplication by two arises often in other algorithms and is a fairly efficient operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two.
Algorithm \texttt{mp_mul_2}.

\textbf{Input.} One \texttt{mp_int} \(a\)

\textbf{Output.} \(b = 2a\).

1. If \(b.\text{alloc} < a.\text{used} + 1\) then grow \(b\) to hold \(a.\text{used} + 1\) digits. \((\texttt{mp_grow})\)
2. \(\text{oldused} \leftarrow b.\text{used}\)
3. \(b.\text{used} \leftarrow a.\text{used}\)
4. \(r \leftarrow 0\)
5. for \(n\) from 0 to \(a.\text{used} - 1\) do
 5.1 \(rr \leftarrow a_n >> (\log(\beta) - 1)\)
 5.2 \(b_n \leftarrow (a_n << 1) + r \mod \beta\)
 5.3 \(r \leftarrow rr\)
6. If \(r \neq 0\) then do
 6.1 \(b_{n+1} \leftarrow r\)
 6.2 \(b.\text{used} \leftarrow b.\text{used} + 1\)
7. If \(b.\text{used} < \text{oldused} - 1\) then do
 7.1 for \(n\) from \(b.\text{used}\) to \(\text{oldused} - 1\) do
 7.1.1 \(b_n \leftarrow 0\)
8. \(b.\text{sign} \leftarrow a.\text{sign}\)
9. Return(\texttt{MP_OKAY}).

Figure 4.7: Algorithm \texttt{mp_mul_2}

Algorithm \texttt{mp_mul_2}. This algorithm will quickly multiply a \texttt{mp_int} by two provided \(\beta\) is a power of two. Neither \cite{1} nor \cite{2} describes such an algorithm despite the fact it arises often in other algorithms. The algorithm is set up much like the lower level algorithm \texttt{s_mp_add} since it is for all intents and purposes equivalent to the operation \(b = |a| + |a|\) (Figure 4.7).

Steps 1 and 2 grow the input as required to accommodate the maximum number of \texttt{used} digits in the result. The initial \texttt{used} count is set to \(a.\text{used}\) at step 4. Only if there is a final carry will the \texttt{used} count require adjustment.

Step 6 is an optimization implementation of the addition loop for this specific case. That is, since the two values being added together are the same, there is no need to perform two reads from the digits of \(a\). Step 6.1 performs a single precision shift on the current digit \(a_n\) to obtain what will be the carry for the next iteration. Step 6.2 calculates the \(n\)’th digit of the result as single precision shift of \(a_n\) plus the previous carry. Recall from Chapter 5 that \(a_n << 1\) is equivalent to \(a_n \cdot 2\). An iteration of the addition loop is finished with forwarding the carry to the next iteration.
Step 7 takes care of any final carry by setting the \textit{a.used}'th digit of the result to the carry and augmenting the \textit{used} count of \textit{b}. Step 8 clears any leading digits of \textit{b} in case it originally had a larger magnitude than \textit{a}.

File: \texttt{bn_mp_mul_2.c}

```c
018 /* b = a*2 */
019 int mp_mul_2(mp_int * a, mp_int * b)
020 {  
021     int x, res, oldused;
022     /* grow to accommodate result */
023     if (b->alloc < a->used + 1) {
024         if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
025             return res;
026         }
027     }
028     oldused = b->used;
029     b->used = a->used;
030     {
031         register mp_digit r, rr, *tmpa, *tmpb;
032         /* alias for source */
033         tmpa = a->dp;
034         /* alias for dest */
035         tmpb = b->dp;
036         /* carry */
037         r = 0;
038         for (x = 0; x < a->used; x++) {
039             /* get what will be the *next* carry bit from the
040              * MSB of the current digit */
041             rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
042             /* now shift up this digit, add in the carry [from the previous] */
043             *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
044         }
```
054 /* copy the carry that would be from the source
055 * digit into the next iteration
056 */
057 r = rr;
058 }
059
060 /* new leading digit? */
061 if (r != 0) {
062 /* add a MSB which is always 1 at this point */
063 *tmpb = 1;
064 ++(b->used);
065 }
066
067 /* now zero any excess digits on the destination
068 * that we didn’t write to
069 */
070 tmpb = b->dp + b->used;
071 for (x = b->used; x < oldused; x++) {
072 *tmpb++ = 0;
073 }
074 }
075 b->sign = a->sign;
076 return MP_OKAY;
077 }
078

This implementation is essentially an optimized implementation of s_mp_add for the case of doubling an input. The only noteworthy difference is the use of the logical shift operator on line 52 to perform a single precision doubling.

4.3.2 Division by Two

A division by two can just as easily be accomplished with a logical shift right, as multiplication by two can be with a logical shift left.
Algorithm mp_div_2.

Input. One mp_int \(a\)

Output. \(b = a/2\).

1. If \(b\).alloc < \(a\).used then grow \(b\) to hold \(a\).used digits. (mp_grow)
2. If the reallocation failed return(MP_MEM).
3. \(oldused \leftarrow b\).used
4. \(b\).used \leftarrow \(a\).used
5. \(r \leftarrow 0\)
6. for \(n\) from \(b\).used \(-\) 1 to 0 do
 6.1 \(rr \leftarrow a_n \mod 2\)
 6.2 \(b_n \leftarrow (a_n >> 1) + (r << (\log_b(\beta) - 1)) \mod \beta\)
 6.3 \(r \leftarrow rr\)
7. If \(b\).used < \(oldused\) \(-\) 1 then do
 7.1 for \(n\) from \(b\).used to \(oldused\) \(-\) 1 do
 7.1.1 \(b_n \leftarrow 0\)
8. \(b\).sign \leftarrow \(a\).sign
9. Clamp excess digits of \(b\). (mp_clamp)
10. Return(MP_OKAY).

Figure 4.8: Algorithm mp_div_2

Algorithm mp_div_2. This algorithm will divide an mp_int by two using logical shifts to the right. Like mp_mul_2, it uses a modified low level addition core as the basis of the algorithm. Unlike mp_mul_2, the shift operations work from the leading digit to the trailing digit. The algorithm could be written to work from the trailing digit to the leading digit; however, it would have to stop one short of \(a\).used \(-\) 1 digits to prevent reading past the end of the array of digits (Figure 4.8).

Essentially, the loop at step 6 is similar to that of mp_mul_2, except the logical shifts go in the opposite direction and the carry is at the least significant bit, not the most significant bit.

File: bn_mp_div_2.c

```c
018 /* b = a/2 */
019 int mp\_div\_2(mp\_int * a, mp\_int * b)
020 {
021     int x, res, oldused;
022
023     /* copy */
```
if (b->alloc < a->used) {
 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 return res;
 }
}

oldused = b->used;
b->used = a->used;
{
 register mp_digit r, rr, *tmpa, *tmpb;
 /* source alias */
 tmpa = a->dp + b->used - 1;
 /* dest alias */
 tmpb = b->dp + b->used - 1;
 /* carry */
 r = 0;
 for (x = b->used - 1; x >= 0; x--) {
 /* get the carry for the next iteration */
 rr = *tmpa & 1;
 /* shift the current digit, add in carry and store */
 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
 /* forward carry to next iteration */
 r = rr;
 }
 /* zero excess digits */
 tmpb = b->dp + b->used;
 for (x = b->used; x < oldused; x++) {
 *tmpb++ = 0;
 }
 b->sign = a->sign;
 mp_clamp (b);
 return MP_OKAY;
}
4.4 Polynomial Basis Operations

Recall from section 4.3 that any integer can be represented as a polynomial in x as $y = f(\beta)$. Such a representation is also known as the polynomial basis [3, pp. 48]. Given such a notation, a multiplication or division by x amounts to shifting whole digits a single place. The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer division, and Karatsuba multiplication.

Converting from an array of digits to polynomial basis is very simple. Consider the integer $y \equiv (a_2, a_1, a_0)_\beta$ and recall that $y = \sum_{i=0}^{2} a_i \beta^i$. Simply replace β with x and the expression is in polynomial basis. For example, $f(x) = 8x + 9$ is the polynomial basis representation for 89 using radix ten. That is, $f(10) = 8(10) + 9 = 89$.

4.4.1 Multiplication by x

Given a polynomial in x such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$, multiplying by x amounts to shifting the coefficients up one degree. In this case, $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + \ldots + a_0 x$. From a scalar basis point of view, multiplying by x is equivalent to multiplying by the integer β.
Algorithm \textbf{mp_lshd}.
\textbf{Input}. One \texttt{mp_int} a and an integer b.
\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by x^b).

\begin{enumerate}
\item If $b \leq 0$ then return(MP_OKAY).
\item If $a.alloc < a.used + b$ then grow a to at least $a.used + b$ digits. (mp_grow).
\item If the reallocation failed return(MP_MEM).
\item $a.used \leftarrow a.used + b$
\item $i \leftarrow a.used - 1$
\item $j \leftarrow a.used - 1 - b$
\item for n from $a.used - 1$ to b do
 \begin{enumerate}
 \item $a_i \leftarrow a_j$
 \item $i \leftarrow i - 1$
 \item $j \leftarrow j - 1$
 \end{enumerate}
\item for n from 0 to $b - 1$ do
 \begin{enumerate}
 \item $a_n \leftarrow 0$
 \end{enumerate}
\item Return(MP_OKAY).
\end{enumerate}

\textbf{Figure 4.9: Algorithm mp_lshd}

\textbf{Algorithm mp_lshd.} This algorithm multiplies an \texttt{mp_int} by the b’th power of x. This is equivalent to multiplying by β^b. The algorithm differs from the other algorithms presented so far as it performs the operation in place instead of storing the result in a separate location. The motivation behind this change is the way this function is typically used. Algorithms such as \texttt{mp_add} store the result in an optionally different third \texttt{mp_int} because the original inputs are often still required. Algorithm \texttt{mp_lshd} (and similarly algorithm \texttt{mp_rshd}) is typically used on values where the original value is no longer required. The algorithm will return success immediately if $b \leq 0$, since the rest of algorithm is only valid when $b > 0$ (Figure 4.9).

First, the destination a is grown as required to accommodate the result. The counters i and j are used to form a \textit{sliding window} over the digits of a of length b (Figure 4.10). The head of the sliding window is at i (the leading digit) and the tail at j (the trailing digit). The loop in step 7 copies the digit from the tail to the head. In each iteration, the window is moved down one digit. The last loop in step 8 sets the lower b digits to zero.
Figure 4.10: Sliding Window Movement

File: bn_mp_lshd.c

```c
/* shift left a certain amount of digits */
int mp_lshd (mp_int * a, int b)
{
    int x, res;
    /* if its less than zero return */
    if (b <= 0) {
        return MP_OKAY;
    }
    /* grow to fit the new digits */
    if (a->alloc < a->used + b) {
        if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
            return res;
        }
    }
    /* increment the used by the shift amount then copy upwards */
    a->used += b;
    /* top */
```

The if statement (line 24) ensures that the \(b \) variable is greater than zero since we do not interpret negative shift counts properly. The \texttt{used} count is incremented by \(b \) before the copy loop begins. This eliminates the need for an additional variable in the for loop. The variable \(\texttt{top} \) (line 42) is an alias for the leading digit, while \(\texttt{bottom} \) (line 45) is an alias for the trailing edge. The aliases form a window of exactly \(b \) digits over the input.

4.4.2 Division by \(x \)

Division by powers of \(x \) is easily achieved by shifting the digits right and removing any that will end up to the right of the zero’th digit.
Algorithm mp_rshd.

Input. One mp_int a and an integer b

Output. \(a \leftarrow a/\beta^b \) (Divide by \(x^b \)).

1. If \(b \leq 0 \) then return.
2. If \(a.used \leq b \) then do
 2.1 Zero a. (mp_zero).
 2.2 Return.
3. \(i \leftarrow 0 \)
4. \(j \leftarrow b \)
5. for \(n \) from 0 to \(a.used - b - 1 \) do
 5.1 \(a_i \leftarrow a_j \)
 5.2 \(i \leftarrow i + 1 \)
 5.3 \(j \leftarrow j + 1 \)
6. for \(n \) from \(a.used - b \) to \(a.used - 1 \) do
 6.1 \(a_n \leftarrow 0 \)
7. \(a.used \leftarrow a.used - b \)
8. Return.

Figure 4.11: Algorithm mp_rshd

Algorithm mp_rshd. This algorithm divides the input in place by the \(b \)'th power of \(x \). It is analogous to dividing by a \(\beta^b \) but much quicker since it does not require single precision division. This algorithm does not actually return an error code as it cannot fail (Figure 4.11).

If the input \(b \) is less than one, the algorithm quickly returns without performing any work. If the \texttt{used} count is less than or equal to the shift count \(b \) then it will simply zero the input and return.

After the trivial cases of inputs have been handled, the sliding window is set up. Much like the case of algorithm mp_lshd, a sliding window that is \(b \) digits wide is used to copy the digits. Unlike mp_lshd, the window slides in the opposite direction from the trailing to the leading digit. In addition, the digits are copied from the leading to the trailing edge.

Once the window copy is complete, the upper digits must be zeroed and the \texttt{used} count decremented.

File: bn_mp_rshd.c

018 /* shift right a certain amount of digits */
019 void mp_rshd (mp_int * a, int b)
{
 int x;

 if (b <= 0)
 return;

 if (a->used <= b)
 mp_zero (a);
 return;

 {
 register mp_digit *bottom, *top;

 bottom = a->dp;

 for (x = 0; x < (a->used - b); x++)
 *bottom++ = *top++;

 for (; x < a->used; x++)
 *bottom++ = *top++;
4.5 Powers of Two

The only noteworthy element of this routine is the lack of a return type since it cannot fail. Like mp_lshd(), we form a sliding window except we copy in the other direction. After the window (line 60), we then zero the upper digits of the input to make sure the result is correct.

4.5 Powers of Two

Now that algorithms for moving single bits and whole digits exist, algorithms for moving the “in between” distances are required. For example, to quickly multiply by 2^k for any k without using a full multiplier algorithm would prove useful. Instead of performing single shifts k times to achieve a multiplication by $2^{\pm k}$, a mixture of whole digit shifting and partial digit shifting is employed.
4.5.1 Multiplication by Power of Two

Algorithm mp_mul_2d.

Input. One mp_int \(a\) and an integer \(b\)

Output. \(c ← a \cdot 2^b\).

1. \(c ← a.\) (mp_copy)
2. If \(c.alloc < c.used + \lfloor b/lg(\beta) \rfloor + 2\) then grow \(c\) accordingly.
3. If the reallocation failed return(MP_MEM).
4. If \(b \geq lg(\beta)\) then
 4.1 \(c ← c \cdot \beta^{\lfloor b/lg(\beta) \rfloor}\) (mp_lshd).
 4.2 If step 4.1 failed return(MP_MEM).
5. \(d ← b \mod lg(\beta)\)
6. If \(d \neq 0\) then do
 6.1 \(mask ← 2^d\)
 6.2 \(r ← 0\)
 6.3 for \(n\) from 0 to \(c.used - 1\) do
 6.3.1 \(rr ← c_n >> (lg(\beta) - d) \mod mask\)
 6.3.2 \(c_n ← (c_n << d) + r \mod \beta\)
 6.3.3 \(r ← rr\)
 6.4 If \(r > 0\) then do
 6.4.1 \(c.c.use ← r\)
 6.4.2 \(c.used ← c.used + 1\)
7. Return(MP_OKAY).

Figure 4.12: Algorithm mp_mul_2d

Algorithm mp_mul_2d. This algorithm multiplies \(a\) by \(2^b\) and stores the result in \(c\). The algorithm uses algorithm mp_lshd and a derivative of algorithm mp_mul_2 to quickly compute the product (Figure 4.12).

First, the algorithm will multiply \(a\) by \(x^{\lfloor b/lg(\beta) \rfloor}\), which will ensure that the remainder multiplicand is less than \(\beta\). For example, if \(b = 37\) and \(\beta = 2^{28}\), then this step will multiply by \(x\) leaving a multiplication by \(2^{37-28} = 2^9\) left.

After the digits have been shifted appropriately, at most \(lg(\beta) - 1\) shifts are left to perform. Step 5 calculates the number of remaining shifts required. If it is non-zero, a modified shift loop is used to calculate the remaining product. Essentially, the loop is a generic version of algorithm mp_mul_2 designed to handle any shift count in the range \(1 \leq x < lg(\beta)\). The \(mask\) variable is used to extract the upper \(d\) bits to form the carry for the next iteration.
This algorithm is loosely measured as a $O(2^n)$ algorithm, which means that if the input is n-digits, it takes 2^n “time” to complete. It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.

File: `bn_mp_mul_2d.c`

```c
018 /* shift left by a certain bit count */
019 int mp_mul_2d (mp_int * a, int b, mp_int * c)
020 {
021   mp_digit d;
022   int res;
023
024   /* copy */
025   if (a != c) {
026     if ((res = mp_copy (a, c)) != MP_OKAY) {
027       return res;
028     }
029   }
030
031   if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
032     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
033       return res;
034     }
035   }
036
037   /* shift by as many digits in the bit count */
038   if (b >= (int)DIGIT_BIT) {
039     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
040       return res;
041     }
042   }
043
044   /* shift any bit count < DIGIT_BIT */
045   d = (mp_digit) (b % DIGIT_BIT);
046   if (d != 0) {
047     register mp_digit *tmpc, shift, mask, r, rr;
048     register int x;
049
050     /* bitmask for carries */
051     mask = (((mp_digit)1) << d) - 1;
052```
The shifting is performed in place, which means the first step (line 25) is to copy the input to the destination. We avoid calling mp_copy() by making sure the mp_ints are different. The destination then has to be grown (line 32) to accommodate the result.

If the shift count $b$ is larger than $lg(\beta)$, then a call to mp_lshd() is used to handle all the multiples of $lg(\beta)$, leaving only a remaining shift of $lg(\beta) - 1$ or fewer bits left. Inside the actual shift loop (lines 61 to 71) we make use of pre-computed values $shift$ and $mask$ to extract the carry bit(s) to pass into the next iteration of the loop. The $r$ and $rr$ variables form a chain between consecutive iterations to propagate the carry.
4.5 Powers of Two

4.5.2 Division by Power of Two

Algorithm mp\_div\_2d.

**Input.** One mp\_int a and an integer b

**Output.** \( c \leftarrow \lfloor a/2^b \rfloor, \; d \leftarrow a \text{ (mod } 2^b) \). 

1. If \( b \leq 0 \) then do
   1.1 \( c \leftarrow a \) (mp\_copy)
   1.2 \( d \leftarrow 0 \) (mp\_zero)
   1.3 Return(MP\_OKAY).
2. \( c \leftarrow a \)
3. \( d \leftarrow a \) (mod \( 2^b \)) (mp\_mod\_2d)
4. If \( b \geq \lg(\beta) \) then do
   4.1 \( c \leftarrow \lfloor c/\beta^{\lfloor b/\lg(\beta) \rfloor} \rfloor \) (mp\_rshd).
5. \( k \leftarrow b \) (mod \( \lg(\beta) \))
6. If \( k \neq 0 \) then do
   6.1 \( \text{mask} \leftarrow 2^k \)
   6.2 \( r \leftarrow 0 \)
   6.3 for \( n \) from \( c\text{.used} - 1 \) to 0 do
      6.3.1 \( \text{rr} \leftarrow c_n \) (mod \( \text{mask} \))
      6.3.2 \( c_n \leftarrow (c_n >> k) + (r << (\lg(\beta) - k)) \)
      6.3.3 \( r \leftarrow \text{rr} \)
7. Clamp excess digits of \( c \). (mp\_clamp)
8. Return(MP\_OKAY).

Figure 4.13: Algorithm mp\_div\_2d

**Algorithm mp\_div\_2d.** This algorithm will divide an input \( a \) by \( 2^b \) and produce the quotient and remainder. The algorithm is designed much like algorithm mp\_mul\_2d by first using whole digit shifts then single precision shifts. This algorithm will also produce the remainder of the division by using algorithm mp\_mod\_2d (Figure 4.13).

File: bn\_mp\_div\_2d.c

```
018 /* shift right by a certain bit count */
019 (store quotient in c, optional remainder in d) */
020 int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
021 {
022 mp_digit D, r, rr;
```
023    int x, res;
024    mp_int t;
025
026    /* if the shift count is <= 0 then we do no work */
027    if (b <= 0) {
028        res = mp_copy (a, c);
029        if (d != NULL) {
030            mp_zero (d);
031        }
032        return res;
033    }
034    if ((res = mp_init (&t)) != MP_OKAY) {
035        return res;
036    }
037    /* get the remainder */
038    if (d != NULL) {
039        if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
040            mp_clear (&t);
041            return res;
042        }
043    }
044    /* copy */
045    if ((res = mp_copy (a, c)) != MP_OKAY) {
046        mp_clear (&t);
047        return res;
048    }
049    /* shift by as many digits in the bit count */
050    if (b >= (int)DIGIT_BIT) {
051        mp_rshd (c, b / DIGIT_BIT);
052    }
053    /* shift any bit count < DIGIT_BIT */
054    D = (mp_digit) (b % DIGIT_BIT);
055    if (D != 0) {
056        register mp_digit *tmpc, mask, shift;
4.5 Powers of Two

/* mask */
mask = (((mp_digit)1) << D) - 1;

/* shift for lsb */
shift = DIGIT_BIT - D;

/* alias */
tmpc = c->dp + (c->used - 1);

/* carry */
r = 0;
for (x = c->used - 1; x >= 0; x--)
{
    /* get the lower bits of this word in a temp */
    rr = *tmpc & mask;
    /* shift the current word and 
       mix in the carry bits from the previous word */
    *tmpc = (*tmpc >> D) | (r << shift);
    --tmpc;
    /* set the carry to the carry bits of the current word found above */
    r = rr;
}
mp_clamp (c);
if (d != NULL)
{
    mp_exch (&t, d);
}
mp_clear (&t);
return MP_OKAY;

The implementation of algorithm mp_div_2d is slightly different than the algorithm specifies. The remainder d may be optionally ignored by passing NULL as the pointer to the mp_int variable. The temporary mp_int variable t is used to hold the result of the remainder operation until the end. This allows d and a to represent the same mp_int without modifying a before the quotient is obtained.

The remainder of the source code is essentially the same as the source code for mp_mul_2d. The only significant difference is the direction of the shifts.
4.5.3 Remainder of Division by Power of Two

The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This algorithm benefits from the fact that in two's complement arithmetic, $a \pmod{2^b}$ is the same as $a \text{ AND } 2^b - 1$.

---

Algorithm **mp_mod_2d**

**Input.** One `mp_int` $a$ and an integer $b$

**Output.** $c \leftarrow a \pmod{2^b}$.

1. If $b \leq 0$ then do
   1.1 $c \leftarrow 0$ (mp_zero)
   1.2 Return(`MP_OKAY`).
2. If $b > a\cdot\text{lg}(\beta)$ then do
   2.1 $c \leftarrow a$ (mp_copy)
   2.2 Return the result of step 2.1.
3. $c \leftarrow a$
4. If step 3 failed return(`MP_MEM`).
5. for $n$ from $\lceil b/\text{lg}(\beta) \rceil$ to $c\cdot\text{used}$ do
   5.1 $c_n \leftarrow 0$
6. $k \leftarrow b \pmod{\text{lg}(\beta)}$
7. $c_{\lfloor b/\text{lg}(\beta) \rfloor} \leftarrow c_{\lfloor b/\text{lg}(\beta) \rfloor} \pmod{2^k}$.
8. Clamp excess digits of $c$. (mp_clamp)

---

Figure 4.14: Algorithm mp_mod_2d

Algorithm **mp_mod_2d**. This algorithm will quickly calculate the value of $a \pmod{2^b}$. First, if $b$ is less than or equal to zero the result is set to zero. If $b$ is greater than the number of bits in $a$, then it simply copies $a$ to $c$ and returns. Otherwise, $a$ is copied to $b$, leading digits are removed and the remaining leading digit is trimmed to the exact bit count (Figure 4.14).

File: bn_mp_mod_2d.c
018 /* calc a value mod 2**b */
019 int
020 mp_mod_2d (mp_int * a, int b, mp_int * c)
021 {
022 int x, res;
023
4.5 Powers of Two

024 /* if b is <= 0 then zero the int */
025 if (b <= 0) {
026    mp_zero (c);
027    return MP_OKAY;
028 }
029
030 /* if the modulus is larger than the value than return */
031 if (b >= (int) (a->used * DIGIT_BIT)) {
032    res = mp_copy (a, c);
033    return res;
034 }
035
036 /* copy */
037 if ((res = mp_copy (a, c)) != MP_OKAY) {
038    return res;
039 }
040
041 /* zero digits above the last digit of the modulus */
042 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1);
043     x < c->used; x++) {
044    c->dp[x] = 0;
045 }
046 /* clear the digit that is not completely outside/inside the modulus */
047 c->dp[b / DIGIT_BIT] &=
048    (mp_digit) (((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) -
049    ((mp_digit) 1));
050 mp_clamp (c);
051 return MP_OKAY;
052 }
053

We first avoid cases of $b \leq 0$ by simply `mp_zero()`ing the destination in such cases. Next, if $2^b$ is larger than the input, we just `mp_copy()` the input and return right away. After this point we know we must actually perform some work to produce the remainder.

Recalling that reducing modulo $2^k$ and a binary “and” with $2^k - 1$ are numerically equivalent we can quickly reduce the number. First, we zero any digits above the last digit in $2^b$ (line 42). Next, we reduce the leading digit of both (line 47) and then `mp_clamp()`.
Exercises

[3] Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ in $O(n)$ time.

[3] Devise an efficient algorithm to multiply by small low hamming weight values such as 3, 5, and 9. Extend it to handle all values up to 64 with a hamming weight less than three.

[2] Modify the preceding algorithm to handle values of the form $2^k - 1$.

[3] Using only algorithms mp\_mul\_2, mp\_div\_2, and mp\_add, create an algorithm to multiply two integers in roughly $O(2n^2)$ time for any $n$-bit input. Note that the time of addition is ignored in the calculation.

[5] Improve the previous algorithm to have a working time of at most $O\left(2^{(k-1)n} + \frac{2n^2}{k}\right)$ for an appropriate choice of $k$. Again, ignore the cost of addition.

[2] Devise a chart to find optimal values of $k$ for the previous problem for $n = 64 \ldots 1024$ in steps of 64.

[2] Using only algorithms mp\_abs and mp\_sub, devise another method for calculating the result of a signed comparison.
Chapter 5

Multiplication and Squaring

5.1 The Multipliers

For most number theoretic problems, including certain public key cryptographic algorithms, the “multipliers” form the most important subset of algorithms of any multiple precision integer package. The set of multiplier algorithms include integer multiplication, squaring, and modular reduction, where in each of the algorithms single precision multiplication is the dominant operation performed. This chapter discusses integer multiplication and squaring, leaving modular reductions for the subsequent chapter.

The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular exponentiation; that is, computing \( d \equiv a^b \mod c \) for some arbitrary choice of \( a \), \( b \), \( c \), and \( d \). During a modular exponentiation the majority\(^1\) of the processor time is spent performing single precision multiplications.

For centuries, general-purpose multiplication has required a lengthy \( O(n^2) \) process, whereby each digit of one multiplicand has to be multiplied against every digit of the other multiplicand. Traditional long-hand multiplication is based on this process; while the techniques can differ, the overall algorithm used is essentially the same. Only “recently” have faster algorithms been studied. First Karatsuba multiplication was discovered in 1962. This algorithm can multiply two

\(^1\)Roughly speaking, a modular exponentiation will spend about 40\% of the time performing modular reductions, 35\% of the time performing squaring, and 25\% of the time performing multiplications.
numbers with considerably fewer single precision multiplications when compared to the long-hand approach. This technique led to the discovery of polynomial basis algorithms [19] and subsequently Fourier Transform based solutions.

5.2 Multiplication

5.2.1 The Baseline Multiplication

Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication algorithm that schoolchildren are taught. The algorithm is considered an $O(n^2)$ algorithm, since for two $n$-digit inputs $n^2$ single precision multiplications are required. More specifically, for an $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required. To simplify most discussions, it will be assumed that the inputs have a comparable number of digits.

The “baseline multiplication” algorithm is designed to act as the “catch-all” algorithm, only to be used when the faster algorithms cannot be used. This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible. One important facet of this algorithm is that it has been modified to only produce a certain amount of output digits as resolution. The importance of this modification will become evident during the discussion of Barrett modular reduction. Recall that for an $n$ and $m$ digit input the product will be at most $n + m$ digits. Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.

Recall from section 4.2.2 the definition of $\gamma$ as the number of bits in the type mp_digit. We shall now extend the variable set to include $\alpha$, which shall represent the number of bits in the type mp_word. This implies that $2^\alpha > 2 \cdot \beta^2$. The constant $\delta = 2^\alpha - 2 \lg(\beta)$ will represent the maximal weight of any column in a product (see 6.2 for more information).
Algorithm \texttt{s_mp_mul_digs}.

\textbf{Input.} \texttt{mp_int} \texttt{a}, \texttt{mp_int} \texttt{b} and an integer \texttt{digs}

\textbf{Output.} \( c \leftarrow |a| \cdot |b| \) (mod \( \beta^{digs} \)).

1. If min(\texttt{a.used}, \texttt{b.used}) \(< \delta \) then do
   1.1 Calculate \( c = |a| \cdot |b| \) by the Comba method (see algorithm 5.5).
   1.2 Return the result of step 1.1

Allocate and initialize a temporary \texttt{mp_int}.
2. Init \texttt{t} to be of size \texttt{digs}
3. If step 2 failed return(\texttt{MP_MEM}).
4. \texttt{t.used} \leftarrow \texttt{digs}

Compute the product.
5. for \texttt{ix} from 0 to \texttt{a.used} – 1 do
   5.1 \( u \leftarrow 0 \)
   5.2 \( pb \leftarrow \min(\texttt{b.used}, \texttt{digs} – \texttt{ix}) \)
   5.3 If \( pb < 1 \) then goto step 6.
   5.4 for \texttt{iy} from 0 to \texttt{pb} – 1 do
      5.4.1 \( \hat{r} \leftarrow t_{iy+ix} + a_{ix} \cdot b_{iy} + u \)
      5.4.2 \( t_{iy+ix} \leftarrow \hat{r} \) (mod \( \beta \))
      5.4.3 \( u \leftarrow \lfloor \hat{r}/\beta \rfloor \)
   5.5 if \texttt{ix + pb} < \texttt{digs} then do
      5.5.1 \( t_{ix+pb} \leftarrow u \)
   6. Clamp excess digits of \texttt{t}.
7. Swap \texttt{c} with \texttt{t}
8. Clear \texttt{t}
9. Return(\texttt{MP_OKAY}).

Figure 5.1: Algorithm \texttt{s_mp_mul_digs}

**Algorithm \texttt{s_mp_mul_digs}**. This algorithm computes the unsigned product of two inputs \texttt{a} and \texttt{b}, limited to an output precision of \texttt{digs} digits. While it may seem a bit awkward to modify the function from its simple \( O(n^2) \) description, the usefulness of partial multipliers will arise in a subsequent algorithm. The algorithm is loosely based on algorithm 14.12 from [2, pp. 595] and is similar to Algorithm M of Knuth [1, pp. 268]. Algorithm \texttt{s_mp_mul_digs} differs from these cited references since it can produce a variable output precision regardless of the precision of the inputs (Figure 5.1).

The first thing this algorithm checks for is whether a Comba multiplier can
be used instead. If the minimum digit count of either input is less than $\delta$, then the Comba method may be used instead. After the Comba method is ruled out, the baseline algorithm begins. A temporary mp_int variable $t$ is used to hold the intermediate result of the product. This allows the algorithm to be used to compute products when either $a = c$ or $b = c$ without overwriting the inputs.

All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce up to $digs$ digits of output. The $pb$ variable is given the count of digits to read from $b$ inside the nested loop. If $pb \leq 1$, then no more output digits can be produced and the algorithm will exit the loop. The best way to think of the loops are as a series of $pb \times 1$ multiplications. That is, in each pass of the innermost loop, $a_{ix}$ is multiplied against $b$ and the result is added (with an appropriate shift) to $t$.

For example, consider multiplying 576 by 241. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$, which is best visualized in Figure 5.2.

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>7</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\times$</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>$10^0(1)(576)$</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Figure 5.2: Long-Hand Multiplication Diagram

Each row of the product is added to the result after being shifted to the left (multiplied by a power of the radix) by the appropriate count. That is, in pass $ix$ of the inner loop the product is added starting at the $ix$’th digit of the result.

Step 5.4.1 introduces the hat symbol ($\hat{e}$, e.g., $\hat{r}$), which represents a double precision variable. The multiplication on that step is assumed to be a double wide output single precision multiplication. That is, two single precision variables are multiplied to produce a double precision result. The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step 5.4.1 is propagated through the nested loop. If the carry were not propagated immediately, it would overflow the single precision digit $t_{ix+iys}$ and the result would be lost.

At step 5.5 the nested loop is finished and any carry that was left over should be forwarded. The carry does not have to be added to the $ix + pb$’th digit since
that digit is assumed to be zero at this point. However, if $ix + pb \geq digs$, the carry is not set, as it would make the result exceed the precision requested.

File: bn_s_mp_mul_digs.c

```c
/* multiplies |a| * |b| and only computes up to digs digits of result
 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
 * many digits of output are created.
 */

int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
 mp_int t;
 int res, pa, pb, ix, iy;
 mp_digit u;
 mp_word r;
 mp_digit tmpx, *tmpt, *tmpy;

 /* can we use the fast multiplier? */
 if (((digs) < MP_WARRAY) &&
 MIN (a->used, b->used) <
 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 return fast_s_mp_mul_digs (a, b, c, digs);
 }

 if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
 return res;
 }
 t.used = digs;

 /* compute the digits of the product directly */
 pa = a->used;
 for (ix = 0; ix < pa; ix++) {
 /* set the carry to zero */
 u = 0;

 /* limit ourselves to making digs digits of output */
 pb = MIN (b->used, digs - ix);

 /* setup some aliases */
 /* copy of the digit from a used within the nested loop */
 tmpx = a->dp[ix];
```
/* an alias for the destination shifted ix places */
tmpt = t.dp + ix;
/* an alias for the digits of b */
tmpy = b->dp;
/* compute the columns of the output and propagate the carry */
for (iy = 0; iy < pb; iy++) {
    /* compute the column as a mp_word */
    r = ((mp_word)*tmpt) + ((mp_word)tmpx) * ((mp_word)*tmpy++) + ((mp_word) u);
    /* the new column is the lower part of the result */
    *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
    /* get the carry word from the result */
    u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* set carry if it is placed below digs */
if (ix + iy < digs) {
    *tmpt = u;
}
mp_clamp (&t);
mp_exch (&t, c);
mp_clear (&t);
return MP_OKAY;

First, we determine (line 31) if the Comba method can be used since it is faster. The conditions for using the Comba routine are that \( \min(a\.used, b\.used) < \delta \) and the number of digits of output is less than \( \text{MP\_WARRAY} \). This new constant is used to control the stack usage in the Comba routines. By default it is set to \( \delta \), but can be reduced when memory is at a premium.

If we cannot use the Comba method we proceed to set up the baseline routine. We allocate the the destination mp_int \( t \) (line 37) to the exact size of the output to avoid further reallocations. At this point, we now begin the \( O(n^2) \) loop.
This implementation of multiplication has the caveat that it can be trimmed to only produce a variable number of digits as output. In each iteration of the outer loop the $pb$ variable is set (line 49) to the maximum number of inner loop iterations.

Inside the inner loop we calculate $\hat{r}$ as the $\text{mp}_d \text{-word}$ product of the two $\text{mp}_d \text{-digits}$ and the addition of the carry from the previous iteration. A particularly important observation is that most modern optimizing C compilers (GCC for instance) can recognize that an $N \times N \rightarrow 2N$ multiplication is all that is required for the product. In x86 terms, for example, this means using the MUL instruction.

Each digit of the product is stored in turn (line 69) and the carry propagated (line 72) to the next iteration.

### 5.2.2 Faster Multiplication by the “Comba” Method

One of the huge drawbacks of the “baseline” algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards. This makes the nested loop very sequential and hard to unroll and implement in parallel. The “Comba” [4] method is named after little known (in cryptographic venues) Paul G. Comba, who described a method of implementing fast multipliers that do not require nested carry fix-up operations. As an interesting aside it seems that Paul Barrett describes a similar technique in his 1986 paper [6] written five years before.

At the heart of the Comba technique is again the long-hand algorithm, except in this case a slight twist is placed on how the columns of the result are produced. In the standard long-hand algorithm, rows of products are produced and then added together to form the result. In the baseline algorithm, the columns are added together after each iteration to get the result instantaneously.

In the Comba algorithm, the columns of the result are produced entirely independently of each other; that is, at the $O(n^2)$ level a simple multiplication and addition step is performed. The carries of the columns are propagated after the nested loop to reduce the amount of work required. Succinctly, the first step of the algorithm is to compute the product vector $\vec{x}$ as follows:

$$
\vec{x}_n = \sum_{i+j=n} a_i b_j \forall n \in \{0, 1, 2, \ldots, i+j\}
$$

(5.1)

where $\vec{x}_n$ is the $n^{th}$ column of the output vector. Consider Figure 5.3, which computes the vector $\vec{x}$ for the multiplication of 576 and 241.
At this point the vector $x = \langle 10, 34, 45, 31, 6 \rangle$ is the result of the first step of the Comba multiplier. Now the columns must be fixed by propagating the carry upwards. The resultant vector will have one extra dimension over the input vector, which is congruent to adding a leading zero digit (Figure 5.4).

Algorithm **Comba Fixup**.

**Input.** Vector $\vec{x}$ of dimension $k$

**Output.** Vector $\vec{x}$ such that the carries have been propagated.

1. for $n$ from 0 to $k - 1$ do
   1.1 $\vec{x}_{n+1} \leftarrow \vec{x}_{n+1} + \lfloor \vec{x}_n / \beta \rfloor$
   1.2 $\vec{x}_n \leftarrow \vec{x}_n \mod \beta$
2. Return($\vec{x}$).

With that algorithm and $k = 5$ and $\beta = 10$ the $\vec{x} = \langle 1, 3, 8, 8, 1, 6 \rangle$ vector is produced. In this case, $241 \cdot 576$ is in fact 138816 and the procedure succeeded. If the algorithm is correct and, as will be demonstrated shortly, more efficient than the baseline algorithm, why not simply always use this algorithm?

**Column Weight.**

At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output independently. A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix the carries. For example, in the multiplication of two three-digit numbers, the third column of output will be the sum of three single precision multiplications. If the precision of the accumulator for the output digits is less than $3 \cdot (\beta - 1)^2$, 

<table>
<thead>
<tr>
<th>×</th>
<th>5</th>
<th>7</th>
<th>6</th>
<th>First Input</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>Second Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4·5 = 20</td>
<td>1·5 = 5</td>
<td>1·6 = 6</td>
<td>First pass</td>
<td>4·7 + 5 = 33</td>
<td>4·6 + 7 = 31</td>
<td>6</td>
<td>Second pass</td>
</tr>
<tr>
<td>2·5 = 10</td>
<td>2·7 + 20 = 34</td>
<td>2·6 + 33 = 45</td>
<td>31</td>
<td>Third pass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>45</td>
<td>31</td>
<td>6</td>
<td>Final Result</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.3: Comba Multiplication Diagram
5.2 Multiplication

then an overflow can occur and the carry information will be lost. For any \( m \) and \( n \) digit inputs the maximum weight of any column is \( \min(m, n) \), which is fairly obvious.

The maximum number of terms in any column of a product is known as the “column weight” and strictly governs when the algorithm can be used. Recall that a double precision type has \( \alpha \) bits of resolution and a single precision digit has \( \log_2(\beta) \) bits of precision. Given these two quantities we must not violate:

\[
k \cdot (\beta - 1)^2 < 2^\alpha
\]

which reduces to

\[
k \cdot (\beta^2 - 2\beta + 1) < 2^\alpha
\]

Let \( \rho = \log_2(\beta) \) represent the number of bits in a single precision digit. By further re-arrangement of the equation the final solution is found.

\[
k < \frac{2^\alpha}{(2^{2\rho} - 2^{\rho+1} + 1)}
\]

The defaults for LibTomMath are \( \beta = 2^{28} \) and \( \alpha = 2^{64} \), which means that \( k \) is bounded by \( k < 257 \). In this configuration, the smaller input may not have more than 256 digits if the Comba method is to be used. This is quite satisfactory for most applications, since 256 digits would allow for numbers in the range of \( 0 \leq x < 2^{7168} \), which is much larger than most public key cryptographic algorithms require.
Algorithm `fast_smpl_mul_digs`.

**Input.** `mp_int a, mp_int b` and an integer `digs`

**Output.** `c ← |a| · |b| (mod β^{digs})`.

Place an array of `MP_WARRAY` single precision digits named `W` on the stack.

1. If `c.alloc < digs` then grow `c` to `digs` digits. (`mp_grow`)
2. If step 1 failed return(`MP_MEM`).

3. `pa ← \text{MIN}(digs, a\text{.used} + b\text{.used})`

4. `\hat{W} ← 0`

5. for `ix` from 0 to `pa - 1` do
   5.1 `ty ← \text{MIN}(b\text{.used} - 1, ix)`
   5.2 `tx ← ix - ty`
   5.3 `iy ← \text{MIN}(a\text{.used} - tx, ty + 1)`
   5.4 for `iz` from 0 to `iy - 1` do
      5.4.1 `\hat{W} ← \hat{W} + a_{tx+iy}b_{ty-iy}`
   5.5 `W_{ix} ← \hat{W} (\text{mod } \beta)`
   5.6 `\hat{W} ← \lfloor \hat{W} / \beta \rfloor`

6. `oldused ← c\text{.used}`

7. `c\text{.used} ← digs`

8. for `ix` from 0 to `pa` do
   8.1 `c_{ix} ← W_{ix}`

9. for `ix` from `pa + 1` to `oldused - 1` do
   9.1 `c_{ix} ← 0`

10. Clamp `c`.


Figure 5.5: Algorithm `fast_smpl_mul_digs`

**Algorithm fast_smpl_mul_digs.** This algorithm performs the unsigned multiplication of `a` and `b` using the Comba method limited to `digs` digits of precision (Figure 5.5).

The outer loop of this algorithm is more complicated than that of the baseline multiplier. This is because on the inside of the loop we want to produce one column per pass. This allows the accumulator `\hat{W}` to be placed in CPU registers and reduce the memory bandwidth to two `mp_digit` reads per iteration.
The $ty$ variable is set to the minimum count of $ix$, or the number of digits in $b$. That way, if $a$ has more digits than $b$, this will be limited to $b\.used - 1$. The $tx$ variable is set to the distance past $b\.used$ the variable $ix$ is. This is used for the immediately subsequent statement where we find $iy$.

The variable $iy$ is the minimum digits we can read from either $a$ or $b$ before running out. Computing one column at a time means we have to scan one integer upwards and the other downwards. $a$ starts at $tx$ and $b$ starts at $ty$. In each pass we are producing the $ix$'th output column and we note that $tx + ty = ix$. As we move $tx$ upwards, we have to move $ty$ downwards so the equality remains valid. The $iy$ variable is the number of iterations until $tx \geq a\.used$ or $ty < 0$ occurs.

After every inner pass we store the lower half of the accumulator into $W_{ix}$ and then propagate the carry of the accumulator into the next round by dividing $\hat{W}$ by $\beta$.

To measure the benefits of the Comba method over the baseline method, consider the number of operations that are required. If the cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$, then a baseline multiplication would require $O\left((p + q)n^2\right)$ time to multiply two $n$-digit numbers. The Comba method requires only $O(pn^2 + qn)$ time; however, in practice the speed increase is actually much more. With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply and addition operations in the nested loop in parallel.

File: bn_fast_s_mp_mul_digs.c

```c
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
```

/* Fast (comba) multiplier

This is the fast column-array [comba] multiplier. It is
* designed to compute the columns of the product first
* then handle the carries afterwards. This has the effect
* of making the nested loops that compute the columns very
* simple and schedulable on super-scalar processors.

This has been modified to produce a variable number of
* digits of output so if say only a half-product is required
* you don’t have to compute the upper half (a feature
* required for fast Barrett reduction).

Based on Algorithm 14.12 on pp.595 of HAC.
```
{
 int olduse, res, pa, ix, iz;
 mp_digit W[MP_WARRAY];
 register mp_word _W;

 /* grow the destination as required */
 if (c->alloc < digs) {
 if ((res = mp_grow (c, digs)) != MP_OKAY) {
 return res;
 }
 }

 /* number of output digits to produce */
 pa = MIN(digs, a->used + b->used);

 /* clear the carry */
 _W = 0;
 for (ix = 0; ix < pa; ix++) {
 int tx, ty;
 int iy;
 mp_digit *tmpx, *tmpy;

 /* get offsets into the two bignums */
 ty = MIN(b->used-1, ix);
 tx = ix - ty;

 /* setup temp aliases */
 tmpx = a->dp + tx;
 tmpy = b->dp + ty;

 /* this is the number of times the loop will iterate, essentially
 while (tx++ < a->used && ty-- >= 0) { ... }
 */
 iy = MIN(a->used-tx, ty+1);

 /* execute loop */
 for (iz = 0; iz < iy; ++iz) {
 _W += ((mp_word)*tmpx++)*((*mp_word)*tmpy--);
 }
 }

 /* store term */
As per the pseudo-code we first calculate pa (line 48) as the number of digits to output. Next, we begin the outer loop to produce the individual columns of the product. We use the two aliases $tmpx$ and $tmpy$ (lines 62, 63) to point inside the two multiplicands quickly.

The inner loop (lines 71 to 73) of this implementation is where the trade-off come into play. Originally, this Comba implementation was “row–major,” which means it adds to each of the columns in each pass. After the outer loop it would then fix the carries. This was very fast, except it had an annoying drawback. You had to read an mp_word and two mp_digits and write one mp_word per iteration. On processors such as the Athlon XP and P4 this did not matter much since the cache bandwidth is very high and it can keep the ALU fed with data. It did, however, matter on older and embedded CPUs where cache is often slower and
often does not exist. This new algorithm only performs two reads per iteration under the assumption that the compiler has aliased \(\hat{W} \) to a CPU register.

After the inner loop we store the current accumulator in \(W \) and shift \(\hat{W} \) (lines 76, 79) to forward it as a carry for the next pass. After the outer loop we use the final carry (line 76) as the last digit of the product.

5.2.3 Even Faster Multiplication

In the realm of \(O(n^2) \) multipliers, we can actually do better than Comba multipliers. In the case of the portable code, only \(\log_2(\beta) \) bits of each digit are being used. This is only because accessing carry bits from the CPU flags is not efficient in portable C.

In the TomsFastMath\(^2\) project, a triple-precision register is used to accumulate products. The multiplication algorithm produces digits of the result at a time. The benefit of this algorithm is that we are packing more bits per digit resulting in fewer single precision multiplications. For example, a 1024-bit multiplication on a 32-bit platform involves 1024 single precision multiplications with TomsFastMath and \(37^2 = 1369 \) with LibTomMath (33% more).

\(^2\)See http://tfm.libtomcrypt.com.
Algorithm `fast_mult`.

Input. \(mp_int \) \(a \) and \(mp_int \) \(b \)

Output. \(c \leftarrow |a| \cdot |b| \).

Let \(c_0 \), \(c_1 \), \(c_2 \) be three single precision variables.
Let \(tmp \) represent an \(mp_int \).

1. Allocate \(tmp \), an \(mp_int \) of \(a_used + b_used \) digits. (\(mp_init_size \))
2. \(pa \leftarrow a_used + b_used \)
3. for \(ix \) from 0 to \(pa - 1 \) do
 3.1 \(ty \leftarrow \text{MIN}(ix, b_used - 1) \)
 3.2 \(tx \leftarrow ix - ty \)
 3.3 \(iy \leftarrow \text{MIN}(a_used - tx, ty + 1) \)
 3.4 \(\{c_2 : c_1 : c_0\} \leftarrow \{0 : c_2 : c_1\} \)
 3.5 for \(iz \) from 0 to \(iy - 1 \) do
 3.5.1 \(\{c_2 : c_1 : c_0\} \leftarrow \{c_2 : c_1 : c_0\} + a_{tx+iz}b_{ty-iz} \)
 3.6 \(\text{tmp}_{ix} \leftarrow c_0 \)
4. \(\text{tmp_used} \leftarrow a_used + b_used \)
5. Clamp \(tmp \)
6. Exchange \(c \) and \(tmp \)
7. Clear \(tmp \)

Figure 5.6: Algorithm `fast_mult`

Algorithm `fast_mult`. This algorithm performs a multiplication using the full precision of the digits (Figure 5.6). It is not strictly part of LibTomMath, instead this is part of TomsFastMath. Quite literally the TomsFastMath library was a port of LibTomMath.

The first noteworthy change from our LibTomMath conventions is that we are indeed using the full precision of the digits. For example, on a 32-bit platform, a 1024-bit number would require 32 digits to be fully represented (instead of the 37 that LibTomMath would require).

The shuffle in step 3.4 is effectively a triple-precision shift right by the size of one digit. Similarly, in step 3.5.1, a double-precision product is being accumulated in the triple-precision array \(\{c_2 : c_1 : c_0\} \).

The TomsFastMath library gets its significant speed increase over LibTomMath not only due to the use of full precision digits, but also the fact that the multipliers are unrolled and use inline assembler. It unrolls the multipliers in steps of 1 through 16, 20, 24, 28, 32, 48 and 64 digits. The unrolling takes considerable space, but the savings in time from not having all of the loop control overhead is
significant. The use of inline assembler also lets us perform the inner loop with code such as the following x86 assembler.

```c
#define MULADD(i, j) \
asm( \
    "movl %6,%%eax    \n\t" \
    "mull %7          \n\t" \
    "addl %%%eax,%0   \n\t" \
    "adcl %%%edx,%1   \n\t" \
    "adcl $0,%2      \n\t" \
    ":=r"(c0), "=r"(c1), "=r"(c2): \
    "0"(c0), "1"(c1), "2"(c2), "m"(i), "m"(j): \
    ":%eax","%edx","%cc"));
```

This performs the 32×32 multiplication and accumulates it in the 96-bit array \{c$_2$: c$_1$: c$_0$\}, as required in step 3.5.1. A particular feature of the TomsFastMath approach is to use these functional macro blocks instead of hand-tuning the implementation for a given platform. As a result, we can change the macro to the following and produce a math library for ARM processors.

```c
#define MULADD(i, j) \
asm( \
    "UMULL r0,r1,%6,%7   \n\t" \
    "ADDS %0,%0,r0       \n\t" \
    "ADCS %1,%1,r1      \n\t" \
    "ADC   %2,%2,#0      \n\t" \
    ":=r"(c0), "=r"(c1), "=r"(c2): \
    "0"(c0), "1"(c1), "2"(c2), "r"(i), "r"(j): \
    "r0", "r1", "%cc"));
```

In total, TomsFastMath supports four distinct hardware architectures covering x86, PPC32 and ARM platforms from a relatively consistent code base. Adding new ports for most platforms is usually a matter of implementing the macros, and then choosing a suitable level of loop unrolling to match the processor cache.

When fully unrolled, the x86 assembly code achieves very high performance on the AMD K8 series of processors. An “instructions per cycle” count close to 2 can be observed through 1024-bit multiplications. This means that, on average, more than one processor pipeline is actively processing opcodes. This is particularly significant due to the long delay of the single precision multiplication instruction.
Unfortunately, while this routine could be adapted to LibTomMath (using a more complicated right shift in step 3.4), it would not help as we still have to perform the same number of single precision multiplications. Readers are encouraged to investigate the TomsFastMath library on its own to see how far these optimizations can push performance.

5.2.4 Polynomial Basis Multiplication

To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms the use of polynomial basis representation for two integers a and b as $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{n} b_i x^i$, respectively, is required. In this system, both $f(x)$ and $g(x)$ have $n+1$ terms and are of the n'th degree.

The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients w_i will directly yield the desired product when β is substituted for x. The direct solution to solve for the $2n+1$ coefficients requires $O(n^2)$ time and would in practice be slower than the Comba technique.

However, numerical analysis theory indicates that only $2n+1$ distinct points in $W(x)$ are required to determine the values of the $2n+1$ unknown coefficients. This means by finding $\zeta_y = W(y)$ for $2n+1$ small values of y, the coefficients of $W(x)$ can be found with Gaussian elimination. This technique is also occasionally referred to as the interpolation technique [20], since in effect an interpolation based on $2n+1$ points will yield a polynomial equivalent to $W(x)$.

The coefficients of the polynomial $W(x)$ are unknown, which makes finding $W(y)$ for any value of y impossible. However, since $W(x) = f(x)g(x)$, the equivalent $\zeta_y = f(y)g(y)$ can be used in its place. The benefit of this technique stems from the fact that $f(y)$ and $g(y)$ are much smaller than either a or b, respectively. As a result, finding the $2n+1$ relations required by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.

When you are picking points to gather relations, there are always three obvious points to choose, $y = 0, 1, \text{and } \infty$. The ζ_0 term is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The ζ_1 term is the product $W(1) = (\sum_{i=0}^{n} a_i)(\sum_{i=0}^{n} b_i)$. The third point ζ_∞ is less obvious but rather simple to explain. The $2n+1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication. The point at ∞ is used symbolically to represent the most significant column--$W(\infty) = w_{2n} = a_n \cdot b_n$. Note that the points at $y = 0$ and ∞ yield the coefficients w_0 and w_{2n} directly.

If more points are required they should be of small values and powers of two
<table>
<thead>
<tr>
<th>Split into n Parts</th>
<th>Exponent</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.584962501</td>
<td>This is Karatsuba Multiplication.</td>
</tr>
<tr>
<td>3</td>
<td>1.464973520</td>
<td>This is Toom-Cook 3-Way Multiplication.</td>
</tr>
<tr>
<td>4</td>
<td>1.403677461</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.365212389</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.278753601</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.149426538</td>
<td>Beyond this point Fourier Transforms are used.</td>
</tr>
<tr>
<td>1000</td>
<td>1.100270931</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>1.075252070</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.7: Asymptotic Running Time of Polynomial Basis Multiplication

such as 2^q and the related mirror points $(2^q)^{2n} \cdot \zeta_{2^{-q}}$ for small values of q. The term “mirror point” stems from the fact that $(2^q)^{2n} \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as ζ_{2^q}. For example, when $n = 2$ and $q = 1$, the following two equations are equivalent to the point ζ_2 and its mirror.

$$
\zeta_2 = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0)
$$

$$
16 \cdot \zeta_{\frac{1}{2}} = 4f\left(\frac{1}{2}\right) \cdot 4g\left(\frac{1}{2}\right) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0) \quad (5.5)
$$

Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts. For example, when $n = 2$ the polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$. This technique of polynomial representation is known as Horner’s method.

As a general rule of the algorithm when the inputs are split into n parts each, there are $2n - 1$ multiplications. Each multiplication is of multiplicands that have n times fewer digits than the inputs. The asymptotic running time of this algorithm is $O \left(k \log_n(2^{n-1})\right)$ for k digit inputs (assuming they have the same number of digits). Figure 5.7 summarizes the exponents for various values of n.

At first, it may seem like a good idea to choose $n = 1000$ since the exponent is approximately 1.1. However, the overhead of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large numbers.
5.2 Multiplication

Cutoff Point

The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However, the algorithms incur an overhead \((at \ the \ O(n) \ work \ level)\) since they require a system of equations to be solved. This makes the polynomial basis approach more costly to use with small inputs.

Let \(m\) represent the number of digits in the multiplicands (\(assume \ both \ multiplicands \ have \ the \ same \ number \ of \ digits\)). There exists a point \(y\) such that when \(m < y\), the polynomial basis algorithms are more costly than Comba; when \(m = y\), they are roughly the same cost; and when \(m > y\), the Comba methods are slower than the polynomial basis algorithms.

The exact location of \(y\) depends on several key architectural elements of the computer platform in question.

1. The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example on the AMD Athlon the ratio is roughly 17 : 1, while on the Intel P4 it is 29 : 1. The higher the ratio in favor of multiplication, the lower the cutoff point \(y\) will be.

2. The complexity of the linear system of equations (\(for \ the \ coefficients \ of \ W(x)\)) is, generally speaking, as the number of splits grows the complexity grows substantially. Ideally, solving the system will only involve addition, subtraction, and shifting of integers. This directly reflects on the ratio previously mentioned.

3. To a lesser extent, memory bandwidth and function call overhead affect the location of \(y\). Provided the values and code are in the processor cache, this is less of an influence over the cutoff point.

A clean cutoff point separation occurs when a point \(y\) is found such that all the cutoff point conditions are met. For example, if the point is too low, there will be values of \(m\) such that \(m > y\) and the Comba method is still faster. Finding the cutoff points is fairly simple when a high-resolution timer is available.

5.2.5 Karatsuba Multiplication

Karatsuba [19] multiplication when originally proposed in 1962 was among the first set of algorithms to break the \(O(n^2)\) barrier for general-purpose multiplication.
Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with light algebra [5] that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.

$$f(x) \cdot g(x) = acx^2 + ((a + b)(c + d) - (ac + bd))x + bd$$

(5.6)

Using the observation that ac and bd could be re-used, only three half-sized multiplications would be required to produce the product. Applying this algorithm recursively the work factor becomes $O(n^{\log(3)})$, which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points ζ_0, ζ_∞, and ζ_1. Consider the resultant system of equations.

$$\begin{align*}
\zeta_0 &= w_0 \\
\zeta_1 &= w_2 + w_1 + w_0 \\
\zeta_\infty &= w_2
\end{align*}$$

By adding the first and last equation to the equation in the middle, the term w_1 can be isolated and all three coefficients solved for. The simplicity of this system of equations has made Karatsuba fairly popular. In fact, the cutoff point is often fairly low3, making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.

3With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon, respectively.
Algorithm \texttt{mp_karatsuba_mul}.

\textbf{Input.} \texttt{mp_int} \(a\) and \texttt{mp_int} \(b\)

\textbf{Output.} \(c \leftarrow |a| \cdot |b|\)

1. Init the following \texttt{mp_int} variables: \(x_0, x_1, y_0, y_1, t_1, x_0y_0, x_1y_1\).
2. If step 2 failed, then return(\texttt{MP_MEM}).

Split the input. e.g. \(a = x_1 \cdot \beta^B + x_0\)

3. \(B \leftarrow \min(a.\text{used}, b.\text{used})/2\)
4. \(x_0 \leftarrow a \pmod{\beta^B} \) (\texttt{mp_mod_2d})
5. \(y_0 \leftarrow b \pmod{\beta^B} \)
6. \(x_1 \leftarrow \lfloor a/\beta^B \rfloor \) (\texttt{mp_rshd})
7. \(y_1 \leftarrow \lfloor b/\beta^B \rfloor \)

Calculate the three products.
8. \(x_0y_0 \leftarrow x_0 \cdot y_0 \) (\texttt{mp_mul})
9. \(x_1y_1 \leftarrow x_1 \cdot y_1\)
10. \(t_1 \leftarrow x_1 + x_0 \) (\texttt{mp_add})
11. \(x_0 \leftarrow y_1 + y_0\)
12. \(t_1 \leftarrow t_1 \cdot x_0\)

Calculate the middle term.
13. \(x_0 \leftarrow x_0y_0 + x_1y_1\)
14. \(t_1 \leftarrow t_1 - x_0 \) (\texttt{s_mp_sub})

Calculate the final product.
15. \(t_1 \leftarrow t_1 \cdot \beta^B \) (\texttt{mp_lshd})
16. \(x_1y_1 \leftarrow x_1y_1 \cdot \beta^{2B}\)
17. \(t_1 \leftarrow x_0y_0 + t_1\)
18. \(c \leftarrow t_1 + x_1y_1\)
19. Clear all of the temporary variables.
20. Return(\texttt{MP_OKAY}).

Figure 5.8: Algorithm \texttt{mp_karatsuba_mul}

\textbf{Algorithm \texttt{mp_karatsuba_mul}}. This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm. It is loosely based on the description from Knuth [1, pp. 294-295] (Figure 5.8).

To split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen. The radix point chosen must be used for both of the inputs, meaning
that it must be smaller than the smallest input. Step 3 chooses the radix point B as half of the smallest input used count. After the radix point is chosen, the inputs are split into lower and upper halves. Steps 4 and 5 compute the lower halves. Steps 6 and 7 compute the upper halves.

After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products $x_0 \cdot y_0$ and $x_1 \cdot y_1$. The mp_int x_0 is used as a temporary variable after $x_1 + x_0$ has been computed. By using x_0 instead of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.

The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.

File: bn_mp_karatsuba_mul.c

```c
018 /* c = |a| * |b| using Karatsuba Multiplication using
019 * three half size multiplications
020 *
021 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
022 * let n represent half of the number of digits in
023 * the min(a,b)
024 *
025 * a = a1 * B**n + a0
026 * b = b1 * B**n + b0
027 *
028 * Then, a * b =>
029   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
030 *
031 * Note that a1b1 and a0b0 are used twice and only need to be
032 * computed once. So in total three half size (half # of
033 * digit) multiplications are performed, a0b0, a1b1 and
034 * (a1+b1)(a0+b0)
035 *
036 * Note that a multiplication of half the digits requires
037 * 1/4th the number of single precision multiplications so in
038 * total after one call 25% of the single precision multiplications
039 * are saved. Note also that the call to mp_mul can end up back
040 * in this function if the a0, a1, b0, or b1 are above the threshold.
041 * This is known as divide-and-conquer and leads to the famous
042 * O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than
043 * the standard O(N**2) that the baseline/comba methods use.
044 * Generally though the overhead of this method doesn't pay off
045 * until a certain size (N ~ 80) is reached.
```
5.2 Multiplication

```c
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
    mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
    int B, err;

    /* default the return code to an error */
    err = MP_MEM;

    /* min # of digits */
    B = MIN (a->used, b->used);

    /* now divide in two */
    B = B >> 1;

    /* init copy all the temps */
    if (mp_init_size (&x0, B) != MP_OKAY)
        goto ERR;
    if (mp_init_size (&x1, a->used - B) != MP_OKAY)
        goto X0;
    if (mp_init_size (&y0, B) != MP_OKAY)
        goto X1;
    if (mp_init_size (&y1, b->used - B) != MP_OKAY)
        goto Y0;

    /* init temps */
    if (mp_init_size (&t1, B * 2) != MP_OKAY)
        goto Y1;
    if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
        goto X0Y0;
    if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
        goto X1Y1;

    /* now shift the digits */
    x0.used = y0.used = B;
    x1.used = a->used - B;
    y1.used = b->used - B;

    {
        register int x;
        register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
```
/* we copy the digits directly instead of using higher level functions
 * since we also need to shift the digits */
tmpa = a->dp;
tmpb = b->dp;
tmpx = x0.dp;
tmpy = y0.dp;
for (x = 0; x < B; x++) {
 *tmpx++ = *tmpa++;
 *tmpy++ = *tmpb++;
}
tmpx = x1.dp;
for (x = B; x < a->used; x++) {
 *tmpx++ = *tmpa++;
}
tmpy = y1.dp;
for (x = B; x < b->used; x++) {
 *tmpy++ = *tmpb++;
}
/* only need to clamp the lower words since by definition the
 * upper words x1/y1 must have a known number of digits */
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
/* after this x0 is no longer required, free temp [x0==t2]! */
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
/* now calc x1+x0 and y1+y0 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x1 - x0 */
The new coding element in this routine, not seen in previous routines, is the usage of goto statements. The conventional wisdom is that goto statements should be avoided. This is generally true; however, when every single function call can fail, it makes sense to handle error recovery with a single piece of code. Lines 62
to 76 handle initializing all of the temporary variables required. Note how each of
the if statements goes to a different label in case of failure. This allows the routine
to correctly free only the temporaries that have been successfully allocated so far.

The temporary variables are all initialized using the mp_init_size routine since
they are expected to be large. This saves the additional reallocation that would
have been necessary. Moreover, x_0, x_1, y_0, and y_1 have to be able to hold at least
their respective number of digits for the next section of code.

The first algebraic portion of the algorithm is to split the two inputs into their
halves. However, instead of using mp_mod_2d and mp_rshd to extract the halves,
the respective code has been placed inline within the body of the function. To
initialize the halves, the used and sign members are copied first. The first for
loop on line 96 copies the lower halves. Since they are both the same magnitude,
it is simpler to calculate both lower halves in a single loop. The for loop on lines
102 and 107 calculate the upper halves x_1 and y_1, respectively.

By inlining the calculation of the halves, the Karatsuba multiplier has a slightly
lower overhead and can be used for smaller magnitude inputs.

When line 151 is reached, the algorithm has completed successfully. The “error
status” variable err is set to MP_OKAY so the same code that handles errors
can be used to clear the temporary variables and return.

5.2.6 Toom-Cook 3-Way Multiplication

The 3-Way multiplication scheme, usually known as Toom–Cook, is actually a
variation of the Toom–Cook multiplication [1, pp. 296–299] algorithm. In their
combined approach, multiplication is essentially linearized by increasing the num-
ber of ways as the size of the inputs increase. The 3-Way approach is the polyno-
mial basis algorithm for $n = 2$, except that the points are chosen such that ζ is
easy to compute and the resulting system of equations easy to reduce. Here, the
points ζ_0, $16 \cdot \zeta_{\frac{1}{2}}$, ζ_1, ζ_2, and ζ_{∞} make up the five required points to solve for the
coefficients of $W(x)$.

With the five relations Toom-Cook specifies, the following system of equations
is formed.

$$
\begin{align*}
\zeta_0 &= 0w_4 + 0w_3 + 0w_2 + 0w_1 + 1w_0 \\
16 \cdot \zeta_{\frac{1}{2}} &= 1w_4 + 2w_3 + 4w_2 + 8w_1 + 16w_0 \\
\zeta_1 &= 1w_4 + 1w_3 + 1w_2 + 1w_1 + 1w_0 \\
\zeta_2 &= 16w_4 + 8w_3 + 4w_2 + 2w_1 + 1w_0 \\
\zeta_{\infty} &= 1w_4 + 0w_3 + 0w_2 + 0w_1 + 0w_0
\end{align*}
$$
A trivial solution to this matrix requires 12 subtractions, two multiplications by a small power of two, two divisions by three, and one multiplication by three. All of these 19 sub-operations require less than quadratic time, meaning that the algorithm can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cut-off point (TOOM_MUL_CUTOFF) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.

Algorithm mp_toom_mul.
Input. mp_int a and mp_int b
Output. \(c \leftarrow a \cdot b \)

Split \(a \) and \(b \) into three pieces. E.g. \(a = a_2 \beta^{2k} + a_1 \beta^k + a_0 \)
1. \(k \leftarrow \lfloor \min(a.\text{used}, b.\text{used})/3 \rfloor \)
2. \(a_0 \leftarrow a \mod \beta^k \)
3. \(a_1 \leftarrow \lfloor a/\beta^k \rfloor, a_1 \leftarrow a_1 \mod \beta^k \)
4. \(a_2 \leftarrow \lfloor a/\beta^{2k} \rfloor, a_2 \leftarrow a_2 \mod \beta^k \)
5. \(b_0 \leftarrow a \mod \beta^k \)
6. \(b_1 \leftarrow \lfloor a/\beta^k \rfloor, b_1 \leftarrow b_1 \mod \beta^k \)
7. \(b_2 \leftarrow \lfloor a/\beta^{2k} \rfloor, b_2 \leftarrow b_2 \mod \beta^k \)

Find the five equations for \(w_0, w_1, ..., w_4 \).
8. \(w_0 \leftarrow a_0 \cdot b_0 \)
9. \(w_4 \leftarrow a_2 \cdot b_2 \)
10. \(\text{tmp}_1 \leftarrow 2 \cdot a_0, \text{tmp}_1 \leftarrow a_1 + \text{tmp}_1, \text{tmp}_1 \leftarrow 2 \cdot \text{tmp}_1, \text{tmp}_1 \leftarrow \text{tmp}_1 + a_2 \)
11. \(\text{tmp}_2 \leftarrow 2 \cdot b_0, \text{tmp}_2 \leftarrow b_1 + \text{tmp}_2, \text{tmp}_2 \leftarrow 2 \cdot \text{tmp}_2, \text{tmp}_2 \leftarrow \text{tmp}_2 + b_2 \)
12. \(w_1 \leftarrow \text{tmp}_1 \cdot \text{tmp}_2 \)
13. \(\text{tmp}_1 \leftarrow 2 \cdot a_2, \text{tmp}_1 \leftarrow a_1 + \text{tmp}_1, \text{tmp}_1 \leftarrow 2 \cdot \text{tmp}_1, \text{tmp}_1 \leftarrow \text{tmp}_1 + a_0 \)
14. \(\text{tmp}_2 \leftarrow 2 \cdot b_2, \text{tmp}_2 \leftarrow b_1 + \text{tmp}_2, \text{tmp}_2 \leftarrow 2 \cdot \text{tmp}_2, \text{tmp}_2 \leftarrow \text{tmp}_2 + b_0 \)
15. \(w_3 \leftarrow \text{tmp}_1 \cdot \text{tmp}_2 \)
16. \(\text{tmp}_1 \leftarrow a_0 + a_1, \text{tmp}_1 \leftarrow \text{tmp}_1 + a_2, \text{tmp}_2 \leftarrow b_0 + b_1, \text{tmp}_2 \leftarrow \text{tmp}_2 + b_2 \)
17. \(w_2 \leftarrow \text{tmp}_1 \cdot \text{tmp}_2 \)

Continued on the next page.
Algorithm `mp_toom_mul` (continued).

Input. `mp_int` `a` and `mp_int` `b`
Output. `c ← a · b`

Now solve the system of equations.
18. \(w_1 ← w_4 - w_1, w_3 ← w_3 - w_0 \)
19. \(w_1 ← \lfloor w_1/2 \rfloor, w_3 ← \lfloor w_3/2 \rfloor \)
20. \(w_2 ← w_2 - w_0, w_2 ← w_2 - w_4 \)
21. \(w_1 ← w_1 - w_2, w_3 ← w_3 - w_2 \)
22. \(\text{tmp}_1 ← 8 · w_0, w_1 ← w_1 - \text{tmp}_1, \text{tmp}_1 ← 8 · w_4, w_3 ← w_3 - \text{tmp}_1 \)
23. \(w_2 ← 3 · w_2, w_2 ← w_2 - w_1, w_2 ← w_2 - w_3 \)
24. \(w_1 ← w_1 - w_2, w_3 ← w_3 - w_2 \)
25. \(w_1 ← \lfloor w_1/3 \rfloor, w_3 ← \lfloor w_3/3 \rfloor \)

Now substitute \(β^k \) for \(x \) by shifting \(w_0, w_1, ..., w_4 \).
26. for \(n \) from 1 to 4 do
26.1 \(w_n ← w_n · β^{nk} \)
27. \(c ← w_0 + w_1, c ← c + w_2, c ← c + w_3, c ← c + w_4 \)
28. Return(``MP_OKAY``)

Figure 5.9: Algorithm `mp_toom_mul`

Algorithm `mp_toom_mul`. This algorithm computes the product of two `mp_int` variables `a` and `b` using the Toom-Cook approach. Compared to the Karatsuba multiplication, this algorithm has a lower asymptotic running time of approximately \(O(n^{1.464}) \) but at an obvious cost in overhead. In this description, several statements have been compounded to save space. The intention is that the statements are executed from left to right across any given step (Figure 5.9).

The two inputs `a` and `b` are first split into three \(k \)-digit integers \(a_0, a_1, a_2 \) and \(b_0, b_1, b_2 \), respectively. From these smaller integers the coefficients of the polynomial basis representations \(f(x) \) and \(g(x) \) are known and can be used to find the relations required.

The first two relations \(w_0 \) and \(w_4 \) are the points \(ζ_0 \) and \(ζ_∞ \), respectively. The relation \(w_1, w_2, \) and \(w_3 \) correspond to the points \(16 · ζ_4, ζ_2 \) and \(ζ_1 \), respectively. These are found using logical shifts to independently find \(f(y) \) and \(g(y) \), which significantly speeds up the algorithm.

After the five relations \(w_0, w_1, ..., w_4 \) have been computed, the system they represent must be solved in order for the unknown coefficients \(w_1, w_2, \) and \(w_3 \) to be
isolated. Steps 18 through 25 perform the system reduction required as previously described. Each step of the reduction represents the comparable matrix operation that would be performed had this been performed by pencil. For example, step 18 indicates that row 1 must be subtracted from row 4, and simultaneously row 0 subtracted from row 3.

Once the coefficients have been isolated, the polynomial \(W(x) = \sum_{i=0}^{2n} w_i x^i \) is known. By substituting \(\beta^k \) for \(x \), the integer result \(a \cdot b \) is produced.

File: bn_mp_toom_mul.c

```c
018 /* multiplication using the Toom-Cook 3-way algorithm */
019 * Much more complicated than Karatsuba but has a lower
020 * asymptotic running time of O(N**1.464). This algorithm is
021 * only particularly useful on VERY large inputs
022 * (we're talking 1000s of digits here...).
023 */
024 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
025 {
026    mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
027    int res, B;
028
029    /* init temps */
030    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
031          &a0, &a1, &a2, &b0, &b1,
032          &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
033        return res;
034    }
035
036    /* B */
037    B = MIN(a->used, b->used) / 3;
038
039    /* a = a2 * B**2 + a1 * B + a0 */
040    if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
041        goto ERR;
042    }
043
044    if ((res = mp_copy(a, &a1)) != MP_OKAY) {
045        goto ERR;
046    }
047
048    mp_rshd(&a1, B);
049    mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
```

if ((res = mp_copy(a, &a2)) != MP_OKAY) {
 goto ERR;
}
mp_rshd(&a2, B*2);

/* b = b2 * B**2 + b1 * B + b0 */
if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
 goto ERR;
}

if ((res = mp_copy(b, &b1)) != MP_OKAY) {
 goto ERR;
}
mp_rshd(&b1, B);
mp_mod_2d(&b1, DIGIT_BIT * B, &b1);

if ((res = mp_copy(b, &b2)) != MP_OKAY) {
 goto ERR;
}
mp_rshd(&b2, B*2);

/* w0 = a0*b0 */
if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
 goto ERR;
}

/* w4 = a2 * b2 */
if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
 goto ERR;
}

/* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 goto ERR;
}
5.2 Multiplication

```c
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
    goto ERR;
}

/* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
    goto ERR;
}

if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
    goto ERR;
}
```

if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
 goto ERR;
}

/* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
 goto ERR;
}

/* now solve the matrix */
0 0 0 0 1
1 2 4 8 16
1 1 1 1 1
16 8 4 2 1
1 0 0 0 0

using 12 subtractions, 4 shifts,
2 small divisions and 1 small multiplication
*/
5.2 Multiplication

```c
/* r1 - r4 */
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
    goto ERR;
}
/* r3 - r0 */
if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
    goto ERR;
}
/* r1/2 */
if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
    goto ERR;
}
/* r3/2 */
if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
    goto ERR;
}
/* r2 - r0 - r4 */
if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
    goto ERR;
}
if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
    goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
    goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
    goto ERR;
}
/* r1 - 8r0 */
if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
    goto ERR;
}
if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
    goto ERR;
}
/* r3 - 8r4 */
if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
    goto ERR;
}
```
goto ERR;

if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
 goto ERR;
}

/* 3r2 - r1 - r3 */
if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
 goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 goto ERR;
}
/* r1/3 */
if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
 goto ERR;
}
/* r3/3 */
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
 goto ERR;
}

/* at this point shift W[n] by B*n */
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
 goto ERR;
}
if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
 goto ERR;
The first obvious thing to note is that this algorithm is complicated. The complexity is worth it if you are multiplying very large numbers. For example, a 10,000 digit multiplication takes approximately 99,282,205 fewer single precision multiplications with Toom–Cook than a Comba or baseline approach (a savings of more than 99%). For most “crypto” sized numbers this algorithm is not practical, as Karatsuba has a much lower cutoff point.

First, we split a and b into three roughly equal portions. This has been accomplished (lines 41 to 70) with combinations of `mp_rshd()` and `mp_mod2d()` function calls. At this point, $a = a_2 \cdot \beta^2 + a_1 \cdot \beta + a_0$, and similarly for b.

Next, we compute the five points $w_0, w_1, w_2, w_3,$ and w_4. Recall that w_0 and w_4 can be computed directly from the portions so we get those out of the way first (lines 73 and 78). Next, we compute $w_1, w_2,$ and w_3 using Horner’s method.

After this point we solve for the actual values of $w_1, w_2,$ and w_3 by reducing
the 5×5 system, which is relatively straightforward.

5.2.7 Signed Multiplication

Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required. So far, all of the multiplication algorithms have been unsigned multiplications, which leaves only a signed multiplication algorithm to be established.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>mp_mul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input.</td>
<td>mp_int a and mp_int b</td>
</tr>
<tr>
<td>Output.</td>
<td>$c \leftarrow a \cdot b$</td>
</tr>
</tbody>
</table>

1. If $a_sign = b_sign$ then
 1.1 $sign = MP_ZPOS$
2. else
 2.1 $sign = MP_ZNEG$
3. If $\min(a_used, b_used) \geq TOOM_MUL_CUTOFF$ then
 3.1 $c \leftarrow a \cdot b$ using algorithm mp_toom_mul
4. else if $\min(a_used, b_used) \geq KARATSUBA_MUL_CUTOFF$ then
 4.1 $c \leftarrow a \cdot b$ using algorithm mp_karatsuba_mul
5. else
 5.1 $digs \leftarrow a_used + b_used + 1$
 5.2 If $digs < MP_ARRAY$ and $\min(a_used, b_used) \leq \delta$ then
 5.2.1 $c \leftarrow a \cdot b \pmod{\beta^{digs}}$ using algorithm fast_mp_mul_digs.
 5.3 else
 5.3.1 $c \leftarrow a \cdot b \pmod{\beta^{digs}}$ using algorithm s_mp_mul_digs.
6. $c_sign \leftarrow sign$
7. Return the result of the unsigned multiplication performed.

Figure 5.10: Algorithm mp_mul

Algorithm mp_mul. This algorithm performs the signed multiplication of two inputs (Figure 5.10). It will make use of any of the three unsigned multiplication algorithms available when the input is of appropriate size. The $sign$ of the result is not set until the end of the algorithm, since algorithm s_mp_mul_digs (Figure 5.1) will clear it.
5.2 Multiplication

File: bn_mp_mul.c
018 /* high level multiplication (handles sign) */
019 int mp_mul (mp_int * a, mp_int * b, mp_int * c)
020 {
021 int res, neg;
022 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
023
024 /* use Toom-Cook? */
025 #ifdef BN_MP_TOOM_MUL_C
026 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
027 res = mp_toom_mul(a, b, c);
028 } else
029 #endif
030
031 #ifdef BN_MP_KARATSUBA_MUL_C
032 /* use Karatsuba? */
033 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
034 res = mp_karatsuba_mul (a, b, c);
035 } else
036 #endif
037
038 {
039 /* can we use the fast multiplier? */
040 *
041 * The fast multiplier can be used if the output will
042 * have less than MP_WARRAY digits and the number of
043 * digits won't affect carry propagation
044 */
045 int digs = a->used + b->used + 1;
046
047 #ifdef BN_FAST_S_MP_MUL_DIGS_C
048 if ((digs < MP_WARRAY) &&
049 MIN(a->used, b->used) <=
050 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
051 res = fast_s_mp_mul_digs (a, b, c, digs);
052 } else
053 #endif
054
055 #ifdef BN_S_MP_MUL_DIGS_C
056 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
057 #else
058 res = MP_VAL;
059 #endif
060
061 }
The implementation is rather simplistic and is not particularly noteworthy. Line 22 computes the sign of the result using the "?" operator from the C programming language. Line 48 computes δ using the fact that $1 \ll k$ is equal to 2^k.

5.3 Squaring

Squaring is a special case of multiplication where both multiplicands are equal. At first, it may seem like there is no significant optimization available, but in fact there is. Consider the multiplication of 576 against 241. In total there will be nine single precision multiplications performed: $1 \cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$, and $2 \cdot 5$. Now consider the multiplication of 123 against 123. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$, $1 \cdot 3$, $1 \cdot 2$, and $1 \cdot 1$. On closer inspection some of the products are equivalent; for example, $3 \cdot 2 = 2 \cdot 3$ and $3 \cdot 1 = 1 \cdot 3$.

For any n-digit input, there are $\binom{n^2+n}{2}$ possible unique single precision multiplications required compared to the n^2 required for multiplication. Figure 5.11 gives an example of the operations required.

$$\begin{array}{cccc}
 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 \\
\hline
3 & 1 & 3 & 2 & 3 & \text{Row 0} \\
2 & 2 & 2 & 2 & 3 & \text{Row 1} \\
1 & 1 & 1 & 2 & 3 & \text{Row 2} \\
\end{array}$$

Figure 5.11: Squaring Optimization Diagram

Starting from zero and numbering the columns from right to left, you will see a very simple pattern become obvious. For the purposes of this discussion, let x represent the number being squared. The first observation is that in row k, the $2k^{th}$ column of the product has a $(x_k)^2$ term in it.
The second observation is that every column \(j \) in row \(k \) where \(j \neq 2k \) is part of a double product. Every non-square term of a column will appear twice, hence the name “double product.” Every odd column is made up entirely of double products. In fact, every column is made up of double products and at most one square (see the Exercise section).

The third and final observation is that for row \(k \) the first unique non-square term—that is, one that hasn’t already appeared in an earlier row—occurs at column \(2k + 1 \). For example, on row 1 of the previous squaring, column one is part of the double product with column one from row zero. Column two of row one is a square, and column three is the first unique column.

5.3.1 The Baseline Squaring Algorithm

The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines will not handle.
Algorithm `s_mp_sqr`.

Input. `mp_int a`
Output. `b ← a^2`

1. Init a temporary `mp_int` of at least $2 \cdot a.used + 1$ digits. (`mp_init_size`)
2. If step 1 failed return(`MP_MEM`)
3. `t.used ← 2 \cdot a.used + 1`
4. For `ix` from 0 to `a.used − 1`
 Calculate the square.
 4.1 $\hat{r} ← t_{2ix} + (a_{ix})^2$
 4.2 $t_{2ix} ← \hat{r} \pmod{\beta}$
 Calculate the double products after the square.
 4.3 $u ← \lfloor \hat{r}/\beta \rfloor$
 4.4 For `iy` from `ix + 1` to `a.used − 1`
 4.4.1 $\hat{r} ← 2 \cdot a_{ix}a_{iy} + t_{ix+iy} + u$
 4.4.2 $t_{ix+iy} ← \hat{r} \pmod{\beta}$
 4.4.3 $u ← \lfloor \hat{r}/\beta \rfloor$
 Set the last carry.
 4.5 While $u > 0$ do
 4.5.1 `iy ← iy + 1`
 4.5.2 $\hat{r} ← t_{ix+iy} + u$
 4.5.3 $t_{ix+iy} ← \hat{r} \pmod{\beta}$
 4.5.4 $u ← \lfloor \hat{r}/\beta \rfloor$
5. Clamp excess digits of `t`. (`mp_clamp`)
6. Exchange `b` and `t`.
7. Clear `t` (`mp_clear`)
8. Return(`MP_OKAY`)

Figure 5.12: Algorithm `s_mp_sqr`

Algorithm s_mp_sqr. This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of HAC [2, pp.596-597]. Similar to algorithm `s_mp_mul_digs`, a temporary `mp_int` is allocated to hold the result of the squaring. This allows the destination `mp_int` to be the same as the source `mp_int` (Figure 5.12).

The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while the inner loop computes the columns of the partial result. Steps 4.1 and 4.2 compute the square term for each row, and steps 4.3 and 4.4 propagate the carry and compute the
5.3 Squaring

double products.

The requirement that an mp_word be able to represent the range \(0 \leq x < 2\beta^2\)
arises from this very algorithm. The product \(a_ia_y\) will lie in the range \(0 \leq x \leq \beta^2 - 2\beta + 1\), which is obviously less than \(\beta^2\), meaning that when it is multiplied by two, it can be properly represented by an mp_word.

Similar to algorithm s_mp_mul_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial results calculated so far. This involves expensive carry propagation, which will be eliminated in the next algorithm.

File: bn_s_mp_sqr.c

```c
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr (mp_int * a, mp_int * b)
{
    mp_int t;
    int res, ix, iy, pa;
    mp_word r;
    mp_digit u, tmpx, *tmpt;

    pa = a->used;
    if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY)
    {
        return res;
    }

    /* default used is maximum possible size */
    t.used = 2*pa + 1;

    for (ix = 0; ix < pa; ix++) {
        /* first calculate the digit at 2*ix */
        /* calculate double precision result */
        r = ((mp_word) t.dp[2*ix]) +
            ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);

        /* store lower part in result */
        t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
        /* get the carry */
        u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

        tmpx = a->dp[ix];
```
tmpt = t.dp + (2*ix + 1);

for (iy = ix + 1; iy < pa; iy++) {
 /* first calculate the product */
 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 /* now calculate the double precision result, note we use
 * addition instead of *2 since it’s easier to optimize
 */
 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
 /* store lower part */
 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 /* get carry */
 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 /* propagate upwards */
 while (u != ((mp_digit) 0)) {
 r = ((mp_word) *tmpt) + ((mp_word) u);
 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 }

mp_clamp (&t);
mp_exch (&t, b);
mp_clear (&t);
return MP_OKAY;
}

Inside the outer loop (line 34) the square term is calculated on line 37. The carry (line 44) has been extracted from the mp_word accumulator using a right shift. Aliases for \(a_{ix} \) and \(t_{ix+iy} \) are initialized (lines 47 and 50) to simplify the inner loop. The doubling is performed using two additions (line 59), since it is usually faster than shifting, if not at least as fast.

The important observation is that the inner loop does not begin at \(iy = 0 \) like for multiplication. As such, the inner loops get progressively shorter as the
algorithm proceeds. This is what leads to the savings compared to using a multiplication to square a number.

5.3.2 Faster Squaring by the “Comba” Method

A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop. Squaring has an additional drawback in that it must double the product inside the inner loop as well. As for multiplication, the Comba technique can be used to eliminate these performance hazards.

The first obvious solution is to make an array of mp_words that will hold all the columns. This will indeed eliminate all of the carry propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact that $2a + 2b + 2c = 2(a + b + c)$. That is, the sum of all of the double products is equal to double the sum of all the products. For example, $ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.

However, we cannot simply double all the columns, since the squares appear only once per row. The most practical solution is to have two mp_word arrays. One array will hold the squares, and the other will hold the double products. With both arrays, the doubling and carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level. In this case, we have an even simpler solution in mind.
Algorithm `fast_s_mp_sqr`.

Input. `mp_int a`

Output. \(b ← a^2 \)

Place an array of `MP_WARRAY` `mp` digits named \(W \) on the stack.

1. If \(b.alloc < 2a.used + 1 \) then grow \(b \) to \(2a.used + 1 \) digits. (\textit{mp_grow}).
2. If step 1 failed return(\textit{MP_MEM}).

3. \(pa ← 2 \cdot a.used \)
4. \(\hat{W}1 ← 0 \)
5. for \(ix \) from 0 to \(pa - 1 \) do
 5.1 \(\hat{W} ← 0 \)
 5.2 \(ty ← \text{MIN}(a.used - 1, ix) \)
 5.3 \(tx ← ix - ty \)
 5.4 \(iy ← \text{MIN}(a.used - tx, ty + 1) \)
 5.5 \(iy ← \text{MIN}(iy, [(ty - tx + 1)/2]) \)
 5.6 for \(iz \) from 0 to \(iz - 1 \) do
 5.6.1 \(\hat{W} ← \hat{W} + a_{tx+iz}a_{ty-iz} \)
 5.7 \(\hat{W} ← 2 \cdot \hat{W} + \hat{W}1 \)
 5.8 if \(ix \) is even then
 5.8.1 \(\hat{W} ← \hat{W} + (a_{\lfloor ix/2 \rfloor})^2 \)
 5.9 \(W_{ix} ← \hat{W} \mod \beta \)
 5.10 \(\hat{W}1 ← \lfloor \hat{W}/\beta \rfloor \)
6. \(oldused ← b.used \)
7. \(b.used ← 2 \cdot a.used \)
8. for \(ix \) from 0 to \(pa - 1 \) do
 8.1 \(b_{ix} ← W_{ix} \)
9. for \(ix \) from \(pa \) to \(oldused - 1 \) do
 9.1 \(b_{ix} ← 0 \)
10. Clamp excess digits from \(b \). (\textit{mp_clamp})
11. Return(\textit{MP_OKAY}).

Figure 5.13: Algorithm `fast_s_mp_sqr`

Algorithm `fast_s_mp_sqr`. This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm `s_mp_sqr` when the number of input digits is less than `MP_WARRAY` and less than \(\frac{\delta}{2} \). This algorithm is very similar to the Comba multiplier, except with a few
5.3 Squaring

key differences we shall make note of (Figure 5.13).

First, we have an accumulator and carry variables \(\hat{W} \) and \(\hat{W}_1 \), respectively. This is because the inner loop products are to be doubled. If we had added the previous carry in we would be doubling too much. Next, we perform an addition MIN condition on \(i_y \) (step 5.5) to prevent overlapping digits. For example, \(a_3 \cdot a_5 \) is equal \(a_5 \cdot a_3 \), whereas in the multiplication case we would have \(5 < a.used \), and \(3 \geq 0 \) is maintained since we double the sum of the products just outside the inner loop, which we have to avoid doing. This is also a good thing since we perform fewer multiplications and the routine ends up being faster.

The last difference is the addition of the “square” term outside the inner loop (step 5.8). We add in the square only to even outputs, and it is the square of the term at the \(\lfloor ix/2 \rfloor \) position.

File: bn_fast_s_mp_sqr.c
018 /* the gist of squaring...
019 * you do like mult except the offset of the tmpx [one that
020 * starts closer to zero] can’t equal the offset of tmpy.
021 * So basically you set up iy like before then you min it with
022 * (ty-tx) so that it never happens. You double all those
023 * you add in the inner loop
024
025 After that loop you do the squares and add them in.
026 */
027
028 int fast_s_mp_sqr (mp_int * a, mp_int * b)
029 {
030 int olduse, res, pa, ix, iz;
031 mp_digit W[MP_WARRAY], *tmpx;
032 mp_word W1;
033
034 /* grow the destination as required */
035 pa = a->used + a->used;
036 if (b->alloc < pa) {
037 if ((res = mp_grow (b, pa)) != MP_OKAY) {
038 return res;
039 }
040 }
041
042 /* number of output digits to produce */
043 W1 = 0;
for (ix = 0; ix < pa; ix++) {
 int tx, ty, iy;
 mp_word _W;
 mp_digit *tmpy;

 /* clear counter */
 _W = 0;

 /* get offsets into the two bignums */
 ty = MIN(a->used-1, ix);
 tx = ix - ty;

 /* setup temp aliases */
 tmpx = a->dp + tx;
 tmpy = a->dp + ty;

 /* this is the number of times the loop will iterate, essentially */
 while (tx++ < a->used && ty-- >= 0) { ... }

 /* now for squaring tx can never equal ty */
 /* we halve the distance since they approach at a rate of 2x */
 /* and we have to round because odd cases need to be executed */
 iy = MIN(iy, (ty-tx+1)>>1);

 /* execute loop */
 for (iz = 0; iz < iy; iz++) {
 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 }

 /* double the inner product and add carry */
 _W = _W + _W + W1;

 /* even columns have the square term in them */
 if ((ix&1) == 0) {
 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
 }

 /* store it */
5.3 Squaring

```c
W[ix] = (mp_digit)(_W & MP_MASK);
/* make next carry */
W1 = _W >> (mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = b->used;
b->used = a->used+a->used;
{
mp_digit *tmpb;
tmpb = b->dp;
for (ix = 0; ix < pa; ix++) {
    *tmpb++ = W[ix] & MP_MASK;
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
    *tmpb++ = 0;
}
mp_clamp (b);
return MP_OKAY;
}
```

This implementation is essentially a copy of Comba multiplication with the appropriate changes added to make it faster for the special case of squaring. The innermost loop (lines 72 to 74) computes the products the same way the multiplication routine does. The sum of the products is doubled separately (line 77) outside the innermost loop. The square term is added if `ix` is even (lines 80 to 82), indicating column with a square.

5.3.3 Even Faster Squaring

Just like the case of algorithm fast_mult (Section 5.2.3), squaring can be performed using the full precision of single precision variables. This algorithm borrows much from the algorithm in Figure 5.13. Except that, in this case, we will be accumulating into a triple-precision accumulator. Similarly, loop unrolling can boost the
performance of this operation significantly.

The TomsFastMath library incorporates fast squaring that is a direct port of algorithm fast_mp_sqr. Readers are encouraged to research this project to learn more.

5.3.4 Polynomial Basis Squaring

The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$, since $f(y) = g(y)$. Instead of performing $2n + 1$ multiplications to find the ζ relations, squaring operations are performed instead.

5.3.5 Karatsuba Squaring

Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square. Let $h(x) = (f(x))^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a number with the following equation.

$$h(x) = a^2x^2 + ((a + b)^2 - (a^2 + b^2))x + b^2 \quad (5.7)$$

Upon closer inspection, this equation only requires the calculation of three half-sized squares: a^2, b^2, and $(a + b)^2$. As in Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of $O(n^{\log_2(3)})$.

If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm instead? The answer to this arises from the cutoff point for squaring. As in multiplication, there exists a cutoff point, at which the time required for a Comba–based squaring and a Karatsuba–based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.

Consider squaring a 200–digit number with this technique. It will be split into two 100–digit halves that are subsequently squared. The 100–digit halves will not be squared using Karatsuba, but instead using the faster Comba–based squaring algorithm. If Karatsuba multiplication were used instead, the 100–digit numbers would be squared with a slower Comba–based multiplication.
Algorithm mp_karatsuba_sqr.

Input. mp_int \(a\)

Output. \(b \leftarrow a^2\)

1. Initialize the following temporary mp_ints: \(x_0\), \(x_1\), \(t_1\), \(t_2\), \(x_0x_0\), and \(x_1x_1\).
2. If any of the initializations on step 1 failed return \((MP_MEM)\).

Split the input. e.g. \(a = x_1 \beta^B + x_0\)

3. \(B \leftarrow \lfloor a\text{.used}/2 \rfloor\)
4. \(x_0 \leftarrow a \mod \beta^B\) \((mp_mod_2d)\)
5. \(x_1 \leftarrow \lfloor a/\beta^B \rfloor\) \((mp_lshd)\)

Calculate the three squares.

6. \(x_0x_0 \leftarrow x_0^2\) \((mp_sqr)\)
7. \(x_1x_1 \leftarrow x_1^2\)
8. \(t_1 \leftarrow x_1 + x_0\) \((s_mp_add)\)
9. \(t_1 \leftarrow t_1^2\)

Compute the middle term.

10. \(t_2 \leftarrow x_0x_0 + x_1x_1\) \((s_mp_add)\)
11. \(t_1 \leftarrow t_1 - t_2\)

Compute final product.

12. \(t_1 \leftarrow t_1 \beta^B\) \((mp_lshd)\)
13. \(x_1x_1 \leftarrow x_1x_1 \beta^{2B}\)
14. \(t_1 \leftarrow t_1 + x_0x_0\)
15. \(b \leftarrow t_1 + x_1x_1\)
16. Return \((MP_OKAY)\).

Figure 5.14: Algorithm mp_karatsuba_sqr

Algorithm mp_karatsuba_sqr. This algorithm computes the square of an input \(a\) using the Karatsuba technique. It is very similar to the Karatsuba–based multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings (Figure 5.14).

The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits; otherwise, it is placed just below the middle. Steps 3, 4, and 5 compute the two halves required using \(B\) as the radix point. The first two squares in steps 6 and 7 are straightforward, while the last
square is of a more compact form.

By expanding \((x_1 + x_0)^2\), the \(x_1^2\) and \(x_0^2\) terms in the middle disappear; that is, \((x_0 - x_1)^2 - (x_1^2 + x_0^2) = 2 \cdot x_0 \cdot x_1\). Now if \(5n\) single precision additions and a squaring of \(n\)-digits is faster than multiplying two \(n\)-digit numbers and doubling, then this method is faster. Assuming no further recursions occur, the difference can be estimated with the following inequality.

Let \(p\) represent the cost of a single precision addition and \(q\) the cost of a single precision multiplication both in terms of time\(^4\).

\[
5pn + \frac{q(n^2 + n)}{2} \leq pn + qn^2 \tag{5.8}
\]

For example, on an AMD Athlon XP processor, \(p = \frac{1}{3}\) and \(q = 6\). This implies that the following inequality should hold.

\[
\frac{5n}{3} + 3n^2 + 3n < \frac{n}{3} + 6n^2
\]

This results in a cutoff point around \(n = 2\). As a consequence, it is actually faster to compute the middle term the “long way” on processors where multiplication is substantially slower\(^5\) than simpler operations such as addition.

File: bn_mp_karatsuba_sqr.c

```c
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
    mp_int x0, x1, t1, t2, x0x0, x1x1;
    int B, err;
    err = MP_MEM;
```

\(^4\)Or machine clock cycles.

\(^5\)On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On the Intel P4 processor this ratio is 1:29, making this method even more beneficial. The only common exception is the ARMv4 processor, which has a ratio of 1:7.
5.3 Squaring

031
032 /* min # of digits */
033 B = a->used;
034
035 /* now divide in two */
036 B = B >> 1;
037
038 /* init copy all the temps */
039 if (mp_init_size (&x0, B) != MP_OKAY)
040 goto ERR;
041 if (mp_init_size (&x1, a->used - B) != MP_OKAY)
042 goto X0;
043
044 /* init temps */
045 if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
046 goto X1;
047 if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
048 goto T1;
049 if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
050 goto T2;
051 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
052 goto X0X0;
053
054 {
055 register int x;
056 register mp_digit *dst, *src;
057
058 src = a->dp;
059
060 /* now shift the digits */
061 dst = x0.dp;
062 for (x = 0; x < B; x++) {
063 *dst++ = *src++;
064 }
065
066 dst = x1.dp;
067 for (x = B; x < a->used; x++) {
068 *dst++ = *src++;
069 }
070 }
x0.used = B;
x1.used = a->used - B;
mp Clamp (&x0);

/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
goto X0X0;
/* x0x0 = x0*x0 */
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
goto X1X1;
/* x1x1 = x1*x1 */

/* now calc (x1+x0)**2 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1X1;
/* t1 = x1 - x0 */
if (mp_sqr (&t1, &t1) != MP_OKAY)
goto X1X1;
/* t1 = (x1 - x0) * (x1 - x0) */

/* add x0y0 */
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
goto X1X1;
/* t2 = x0x0 + x1x1 */
if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
goto X1X1;
/* t1 = (x1+x0)**2 - (x0x0 + x1x1) */

/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1X1;
/* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
goto X1X1;
/* x1x1 = x1x1 << 2*B */

if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
goto X1X1;
/* t1 = x0x0 + t1 */
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
goto X1X1;
/* t1 = x0x0 + t1 + x1x1 */

er = MP_OKAY;

X1X1:mp_clear (&x1x1);
X0X0:mp_clear (&x0x0);
T2:mp_clear (&t2);
T1:mp_clear (&t1);
X1:mp_clear (&x1);
This implementation is largely based on the implementation of algorithm `mp_karatsuba_mul`. It uses the same inline style to copy and shift the input into the two halves. The loop from line 54 to line 70 has been modified since only one input exists. The used count of both x_0 and x_1 is fixed up, and x_0 is clamped before the calculations begin. At this point, x_1 and x_0 are valid equivalents to the respective halves as if `mp_rshd` and `mp_mod_2d` had been used.

By inlining the copy and shift operations, the cutoff point for Karatsuba multiplication can be lowered. On the Athlon, the cutoff point is exactly at the point where Comba squaring can no longer be used (128 digits). On slower processors such as the Intel P4, it is actually below the Comba limit (at 110 digits).

This routine uses the same error trap coding style as `mp_karatsuba_sqr`. As the temporary variables are initialized, errors are redirected to the error trap higher up. If the algorithm completes without error, the error code is set to `MP_OKAY` and `mp_clears` are executed normally.

5.3.6 Toom-Cook Squaring

The Toom-Cook squaring algorithm `mp_toom_sqr` is heavily based on the algorithm `mp_toom_mul`, with the exception that squarings are used instead of multiplication to find the five relations. Readers are encouraged to read the description of the latter algorithm and try to derive their own Toom-Cook squaring algorithm.
5.3.7 High Level Squaring

Algorithm `mp_sqr`

Input. `mp_int a`
Output. `b ← a^2`

1. If `a.used ≥ TOOM_SQR_CUTOFF` then
 1.1 `b ← a^2` using algorithm `mp_toom_sqr`
2. else if `a.used ≥ KARATSUBA_SQR_CUTOFF` then
 2.1 `b ← a^2` using algorithm `mp_karatsuba_sqr`
3. else
 3.1 `digs ← a.used + b.used + 1`
 3.2 If `digs < MP_ARRAY` and `a.used ≤ δ` then
 3.2.1 `b ← a^2` using algorithm `fast_smp_sqr`
 3.3 else
 3.3.1 `b ← a^2` using algorithm `smp_sqr`
4. `b.sign ← MP_ZPOS`
5. Return the result of the unsigned squaring performed.

Figure 5.15: Algorithm `mp_sqr`

Algorithm `mp_sqr`. This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least `TOOM_SQR_CUTOFF` or `KARATSUBA_SQR_CUTOFF` digits, then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If neither of the polynomial basis algorithms should be used, then either the Comba or baseline algorithm is used (Figure 5.15).

File: `bn_mp_sqr.c`

```c
018 /* computes b = a*a */
019 int
020 mp_sqr (mp_int * a, mp_int * b)
021 {
022     int res;
023
024 #ifdef BN_MP_TOOM_SQR_C
025     /* use Toom-Cook? */
026     if (a->used >= TOOM_SQR_CUTOFF) {
027         res = mp_toom_sqr(a, b);
```
5.3 Squaring

028 /* Karatsuba? */
029 } else
030 #endif
031 #ifdef BN_MP_KARATSUBA_SQR_C
032 if (a->used >= KARATSUBA_SQR_CUTOFF) {
033 res = mp_karatsuba_sqr (a, b);
034 } else
035 #endif
036 {
037 #ifdef BN_FAST_S_MP_SQR_C
038 /* can we use the fast comba multiplier? */
039 if ((a->used * 2 + 1) < MP_WARRAY &&
040 a->used <
041 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
042 res = fast_s_mp_sqr (a, b);
043 } else
044 #endif
045 #ifdef BN_S_MP_SQR_C
046 res = s_mp_sqr (a, b);
047 #else
048 res = MP_VAL;
049 #endif
050 }
051 b->sign = MP_ZPOS;
052 return res;
053 }
054
Exercises

[3] Devise an efficient algorithm for selection of the radix point to handle inputs that have different numbers of digits in Karatsuba multiplication.

[2] In section 5.3, we stated, that every column of a squaring is made up of double products and at most one square is stated. Prove this statement.

[1] Prove that Karatsuba squaring requires $O(n^{\lg(3)})$ time.

[3] Implement a threaded version of Comba multiplication (and squaring) where you compute subsets of the columns in each thread. Determine a cutoff point where it is effective, and add the logic to mp_mul() and mp_sqr().

[4] Same as the previous, but also modify the Karatsuba and Toom-Cook. You must increase the throughput of mp_exptmod() for random odd moduli in the range 512...4096 bits significantly ($>2x$) to complete this challenge.
Chapter 6

Modular Reduction

6.1 Basics of Modular Reduction

Modular reduction arises quite often within public key cryptography algorithms and various number theoretic algorithms, such as factoring. Modular reduction algorithms are the third class of algorithms of the “multipliers” set. A number \(a \) is said to be reduced modulo another number \(b \) by finding the remainder of the division \(a/b \). Full integer division with remainder is covered in Section 8.1.

Modular reduction is equivalent to solving for \(r \) in the following equation:
\[
 a = bq + r \quad \text{where} \quad q = \lfloor a/b \rfloor.
\]
The result \(r \) is said to be “congruent to \(a \) modulo \(b \),” which is also written as \(r \equiv a \pmod{b} \). In other vernacular, \(r \) is known as the “modular residue,” which leads to “quadratic residue”\(^1\) and other forms of residues.

Modular reductions are normally used to create finite groups, rings, or fields. The most common usage for performance driven modular reductions is in modular exponentiation algorithms; that is, to compute \(d = a^b \pmod{c} \) as fast as possible. This operation is used in the RSA and Diffie-Hellman public key algorithms, for example. Modular multiplication and squaring also appears as a fundamental operation in elliptic curve cryptographic algorithms. As will be discussed in the subsequent chapter, there exist fast algorithms for computing modular exponentiations without having to perform \((in\ this\ example) \) \(b - 1 \) multiplications. These algorithms will produce partial results in the range \(0 \leq x < c^2 \), which can be taken

\(^1\)That’s fancy talk for \(b \equiv a^2 \pmod{p} \).
advantage of to create several efficient algorithms. They have also been used to create redundancy check algorithms known as CRCs, error correction codes such as Reed-Solomon, and solve a variety of number theoretic problems.

6.2 The Barrett Reduction

The Barrett reduction algorithm [6] was inspired by fast division algorithms that multiply by the reciprocal to emulate division. Barrett’s observation was that the residue \(c \) of \(a \) modulo \(b \) is equal to

\[
c = a - b \cdot \lfloor a/b \rfloor
\]

(6.1)

Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\(^2\) intuition would indicate the next step would be to replace \(a/b \) by a multiplication by the reciprocal. However, DSP intuition on its own will not work, as these numbers are considerably larger than the precision of common DSP floating point data types. It would take another common optimization to optimize the algorithm.

6.2.1 Fixed Point Arithmetic

The trick used to optimize equation 6.1 is based on a technique of emulating floating point data types with fixed precision integers. Fixed point arithmetic would become very popular, as it greatly optimized the “3D–shooter” genre of games in the mid 1990s when floating point units were fairly slow, if not unavailable. The idea behind fixed point arithmetic is to take a normal \(k \)-bit integer data type and break it into \(p \)-bit integer and a \(q \)-bit fraction part (where \(p + q = k \)).

In this system, a \(k \)-bit integer \(n \) would actually represent \(n/2^q \). For example, with \(q = 4 \) the integer \(n = 37 \) would actually represent the value 2.3125. To multiply two fixed point numbers, the integers are multiplied using traditional arithmetic and subsequently normalized by moving the implied decimal point back to where it should be. For example, with \(q = 4 \), to multiply the integers 9 and 5 they must be converted to fixed point first by multiplying by \(2^q \). Let \(a = 9(2^q) \) represent the fixed point representation of 9, and \(b = 5(2^q) \) represent the fixed point representation of 5. The product \(ab \) is equal to \(45(2^{2q}) \), which when normalized by dividing by \(2^q \) produces \(45(2^q) \).

\(^2\)It is worth noting that Barrett’s paper targeted the DSP56K processor.
6.2 The Barrett Reduction

This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication of two fixed point numbers. Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal. If 2^q is equivalent to one, then $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic. Using this fact, dividing an integer a by another integer b can be achieved with the following expression.

$$\lfloor a/b \rfloor \sim \lfloor (a \cdot [2^q/b])/2^q \rfloor$$ \hspace{1cm} (6.2)

The precision of the division is proportional to the value of q. If the divisor b is used frequently, as is the case with modular exponentiation, pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations are considerably faster than division on most processors.

Consider dividing 19 by 5. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$, the reciprocal is $\lfloor 2^q/5 \rfloor = 1$, which leads to a product of 19, which when divided by 2^q produces 2. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and the result of the emulated division is $\lfloor 3 \cdot 19/2^q \rfloor = 3$, which is correct. The value of 2^q must be close to or ideally larger than the dividend. In effect, if a is the dividend, then q should allow $0 \leq \lfloor a/2^q \rfloor \leq 1$ for this approach to work correctly. Plugging this form of division into the original equation, the following modular residue equation arises.

$$c = a - b \cdot \lfloor (a \cdot [2^q/b])/2^q \rfloor$$ \hspace{1cm} (6.3)

Using the notation from [6], the value of $\lfloor 2^q/b \rfloor$ will be represented by the μ symbol. Using the μ variable also helps reinforce the idea that it is meant to be computed once and re-used.

$$c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor$$ \hspace{1cm} (6.4)

Provided that $2^q \geq a$, this algorithm will produce a quotient that is either exactly correct or off by a value of one. In the context of Barrett reduction the value of a is bound by $0 \leq a \leq (b - 1)^2$, meaning that $2^q \geq b^2$ is sufficient to ensure the reciprocal will have enough precision.

Let n represent the number of digits in b. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient, and another n^2 single precision multiplications to find the residue. In total, $3n^2$ single precision multiplications are required to reduce the number.
For example, if \(b = 1179677 \) and \(q = 41 \) \((2^q > b^2)\), the reciprocal \(\mu \) is equal to \(\lfloor 2^q/b \rfloor = 1864089 \). Consider reducing \(a = 18038862647 \) modulo \(b \) using the preceding reduction equation. The quotient using the new formula is \(\lfloor (a \cdot \mu)/2^q \rfloor = 152913 \). By subtracting 152913 \(b \) from \(a \), the correct residue \(a \equiv 677346 \) \((\text{mod } b)\) is found.

6.2.2 Choosing a Radix Point

Using the fixed point representation, a modular reduction can be performed with \(3n^2 \) single precision multiplications\(^3\). If that were the best that could be achieved, a full division\(^4\) might as well be used in its place. The key to optimizing the reduction is to reduce the precision of the initial multiplication that finds the quotient.

Let \(a \) represent the number of which the residue is sought. Let \(b \) represent the modulus used to find the residue. Let \(m \) represent the number of digits in \(b \). For the purposes of this discussion we will assume that the number of digits in \(a \) is \(2m \), which is generally true if two \(m \)-digit numbers have been multiplied. Dividing \(a \) by \(b \) is the same as dividing a \(2m \) digit integer by an \(m \) digit integer. Digits below the \(m-1 \)st digit of \(a \) will contribute at most a value of 1 to the quotient, because \(\beta^k < b \) for any \(0 \leq k \leq m-1 \). Another way to express this is by re-writing \(a \) as two parts. If \(a' \equiv a \) \((\text{mod } b^m)\) and \(a'' = a - a' \), then \(\frac{a}{b} \equiv \frac{a' + a''}{b} \), which is equivalent to \(\frac{a'}{b} + \frac{a''}{b} \). Since \(a' \) is bound to be less than \(b \), the quotient is bound by \(0 \leq \frac{a'}{b} < 1 \).

Since the digits of \(a' \) do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits “might as well be zero,” they might as well not be there in the first place. Let \(q_0 = \lfloor a/\beta^{m-1} \rfloor \) represent the input with the irrelevant digits trimmed. Now the modular reduction is trimmed to the almost equivalent equation

\[
 c = a - b \cdot \lfloor (q_0 \cdot \mu)/\beta^{m+1} \rfloor
\]

(6.5)

Note that the original divisor \(2^q \) has been replaced with \(\beta^{m+1} \) where in this case \(q \) is a multiple of \(\log(\beta) \). Also note that the exponent on the divisor when added to the amount \(q_0 \) was shifted by equals \(2m \). If the optimization had not been performed the divisor would have the exponent \(2m \), so in the end the exponents

\(^3\)One division and two multiplications require \(3n^2 \) single precision multiplications.

\(^4\)A division requires approximately \(O(2cn^2) \) single precision multiplications for a small value of \(c \). See 8.1 for further details.
do “add up.” Using equation 6.5 the quotient \([(q_0 \cdot \mu)/\beta^{m+1}] \) can be off from the true quotient by at most two. The original fixed point quotient can be off by as much as one (provided the radix point is chosen suitably), and now that the lower irrelevant digits have been trimmed the quotient can be off by an additional value of one for a total of at most two. This implies that \(0 \leq a - b \cdot [(q_0 \cdot \mu)/\beta^{m+1}] < 3b \).

By first subtracting \(b \) times the quotient and then conditionally subtracting \(b \) once or twice the residue is found.

The quotient is now found using \((m + 1)(m) = m^2 + m \) single precision multiplications and the residue with an additional \(m^2 \) single precision multiplications, ignoring the subtractions required. In total, \(2m^2 + m \) single precision multiplications are required to find the residue. This is considerably faster than the original attempt.

For example, let \(\beta = 10 \) represent the radix of the digits. Let \(b = 9999 \) represent the modulus, which implies \(m = 4 \). Let \(a = 99929878 \) represent the value of which the residue is desired; in this case, \(q = 8 \) since \(10^7 < 9999^2 \), meaning that \(\mu = \lfloor \beta^q/b \rfloor = 10001 \). With the new observation the multiplicand for the quotient is equal to \(q_0 = \lfloor a/\beta^{m-1} \rfloor = 99929 \). The quotient is then \([(q_0 \cdot \mu)/\beta^{m+1}] = 9993 \). Subtract 9993\(b \) from \(a \) and the correct residue \(a \equiv 9871 \pmod{b} \) is found.

6.2.3 Trimming the Quotient

So far, the reduction algorithm has been optimized from \(3m^2 \) single precision multiplications down to \(2m^2 + m \) single precision multiplications. As it stands now, the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for optimization.

After the first multiplication inside the quotient \((q_0 \cdot \mu) \) the value is shifted right by \(m + 1 \) places, effectively nullifying the lower half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision multiplications. If the number of digits in the modulus \(m \) is far less than \(\beta \), a full product is not required for the algorithm to work properly. In fact, the lower \(m - 2 \) digits will not affect the upper half of the product at all and do not need to be computed.

The value of \(\mu \) is an \(m \)-digit number and \(q_0 \) is an \(m + 1 \) digit number. Using a full multiplier \((m + 1)(m) = m^2 + m \) single precision multiplications would be required. Using a multiplier that will only produce digits at and above the \(m - 1 \)’th digit reduces the number of single precision multiplications to \(\frac{m^2 + m}{2} \) single precision multiplications.
6.2.4 Trimming the Residue

After the quotient has been calculated it is used to reduce the input. As previously noted, the algorithm is not exact and can be off by a small multiple of the modulus; that is, \(0 \leq a - b \cdot \lfloor (q_0 \cdot \mu)/\beta^{m+1} \rfloor < 3b\). If \(b\) is \(m\) digits, the result of reduction equation is a value of at most \(m + 1\) digits (provided \(3 < \beta\)) implying that the upper \(m - 1\) digits are implicitly zero.

The next optimization arises from this very fact. Instead of computing \(b \cdot \lfloor (q_0 \cdot \mu)/\beta^{m+1} \rfloor\) using a full \(O(m^2)\) multiplication algorithm, only the lower \(m + 1\) digits of the product have to be computed. Similarly, the value of \(a\) can be reduced modulo \(\beta^{m+1}\) before the multiple of \(b\) is subtracted, which simplifies the subtraction as well. A multiplication that produces only the lower \(m + 1\) digits requires \(m^2 + 3m - 2\) single precision multiplications.

With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires \(m^2 + 2m - 1\) single precision multiplications, which are considerably faster than the straightforward \(3m^2\) method.
6.2 The Barrett Reduction

6.2.5 The Barrett Algorithm

Algorithm \texttt{mp_reduce}.

\textbf{Input.} \texttt{mp_int} a, \texttt{mp_int} b and $\mu = \lceil \beta^{2m}/b \rceil$, $m = \lceil \log_\beta(b) \rceil$, $(0 \leq a < b^2, b > 1)$

\textbf{Output.} $a \pmod{b}$

Let m represent the number of digits in b.

1. Make a copy of a and store it in q. (*\texttt{mp_init_copy}*)

2. $q \leftarrow \lfloor q/\beta^{m-1} \rfloor$ (*\texttt{mp_rshd}*)

 Produce the quotient.

3. $q \leftarrow q \cdot \mu$ (*note: only produce digits at or above $m - 1$*)

4. $q \leftarrow \lfloor q/\beta^{m+1} \rfloor$

 Subtract the multiple of modulus from the input.

5. $a \leftarrow a \pmod{\beta^{m+1}}$ (*\texttt{mp_mod_2d}*)

6. $q \leftarrow q \cdot b \pmod{\beta^{m+1}}$ (*\texttt{s_mp_mul_digs}*)

7. $a \leftarrow a - q$ (*\texttt{mp_sub}*)

 Add β^{m+1} if a carry occurred.

8. If $a < 0$ then (*\texttt{mp_cmp_d}*)

8.1 $q \leftarrow 1$ (*\texttt{mp_set}*)

8.2 $q \leftarrow q \cdot \beta^{m+1}$ (*\texttt{mp_lshd}*)

8.3 $a \leftarrow a + q$

 Now subtract the modulus if the residue is too large (e.g., quotient too small).

9. While $a \geq b$ do (*\texttt{mp_cmp}*)

9.1 $c \leftarrow a - b$

10. Clear q.

11. Return(*\texttt{MP_OKAY}*)

Figure 6.1: Algorithm \texttt{mp_reduce}

\textbf{Algorithm \texttt{mp_reduce}.} This algorithm will reduce the input a modulo b in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of HAC [2, pp. 602], which is based on the paper from Paul Barrett [6]. The algorithm has several restrictions and assumptions that must be adhered to for the algorithm to work (Figure 6.1).

First, the modulus b is assumed positive and greater than one. If the modulus
were less than or equal to one, subtracting a multiple of it would either accomplish nothing or actually enlarge the input. The input \(a \) must be in the range \(0 \leq a < b^2 \) for the quotient to have enough precision. If \(a \) is the product of two numbers that were already reduced modulo \(b \), this will not be a problem. Technically, the algorithm will still work if \(a \geq b^2 \) but it will take much longer to finish. The value of \(\mu \) is passed as an argument to this algorithm and is assumed calculated and stored before the algorithm is used.

Recall that the multiplication for the quotient in step 3 must only produce digits at or above the \(m - 1 \)'th position. An algorithm called \texttt{s_mul_high_digs} that has not been presented is used to accomplish this task. The algorithm is based on \texttt{s_mul_digs}, except that instead of stopping at a given level of precision it starts at a given level of precision. This optimal algorithm can only be used if the number of digits in \(b \) is much smaller than \(\beta \).

While it is known that \(a \geq b \cdot \lceil (q_0 \cdot \mu)/\beta^{m+1} \rceil \), only the lower \(m + 1 \) digits are being used to compute the residue, so an implied “borrow” from the higher digits might leave a negative result. After the multiple of the modulus has been subtracted from \(a \), the residue must be fixed up in case it is negative. The invariant \(\beta^{m+1} \) must be added to the residue to make it positive again.

The while loop in step 9 will subtract \(b \) until the residue is less than \(b \). If the algorithm is performed correctly, this step is performed at most twice, and on average once. However, if \(a \geq b^2 \), it will iterate substantially more times than it should.

File: bn_mp_reduce.c
018 /* reduces x mod m, assumes 0 < x < m**2, mu is
019 * precomputed via mp_reduce_setup.
020 * From HAC pp.604 Algorithm 14.42
021 */
022 int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
023 {
024 mp_int q;
025 int res, um = m->used;
026
027 /* q = x */
028 if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
029 return res;
030 }
031
032 /* q1 = x / b**(k-1) */
033 mp_rshd (&q, um - 1);
6.2 The Barrett Reduction

/* according to HAC this optimization is ok */
if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
 goto CLEANUP;
 }
} else {
 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 goto CLEANUP;
 }
 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 goto CLEANUP;
 }
 #else
 res = MP_VAL;
 goto CLEANUP;
 #endif
}

/* q3 = q2 / b**(k+1) */
mp_rshd (&q, um + 1);

/* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
 goto CLEANUP;
}

/* q = q * m mod b**(k+1), quick (no division) */
if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
 goto CLEANUP;
}

/* x = x - q */
if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
 goto CLEANUP;
}
The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves the number of single precision multiplications required. However, the optimization is only safe if β is much larger than the number of digits in the modulus. In the source code, this is evaluated on lines 36 to 44 where algorithm `mp_mul_high_digs` is used when it is safe to do so.

6.2.6 The Barrett Setup Algorithm

To use algorithm `mp_reduce`, the value of μ must be calculated in advance. Ideally, this value should be computed once and stored for future use so the Barrett algorithm can be used without delay.
Algorithm mp_reduce_setup. This algorithm computes the reciprocal μ required for Barrett reduction. First, β^{2m} is calculated as $2^{2\cdot\lg(\beta)\cdot m}$, which is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu/b \rfloor$ (Figure 6.2).

File: bn_mp_reduce_setup.c
018 /* pre-calculate the value required for Barrett reduction
019 * For a given modulus "b" it calculates the value required in "a"
020 */
021 int mp_reduce_setup (mp_int * a, mp_int * b)
022 {
023 int res;
024
025 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
026 return res;
027 }
028 return mp_div (a, b, a, NULL);
029 }
030
This simple routine calculates the reciprocal μ required by Barrett reduction. Note the extended usage of algorithm mp_div where the variable that would receive the remainder is passed as NULL. As will be discussed in 8.1, the division routine allows both the quotient and the remainder to be passed as NULL, meaning to ignore the value.
6.3 The Montgomery Reduction

Montgomery reduction\(^5\) \([7]\) is by far the most interesting form of reduction in common use. It computes a modular residue that is not actually equal to the residue of the input, yet instead equal to a residue times a constant. However, as perplexing as this may sound, the algorithm is relatively simple and very efficient.

Throughout this entire section the variable \(n\) will represent the modulus used to form the residue. As will be discussed shortly, the value of \(n\) must be odd. The variable \(x\) will represent the quantity of which the residue is sought. Similar to the Barrett algorithm, the input is restricted to \(0 \leq x < n^2\). To begin the description, some simple number theory facts must be established.

Fact 1. Adding \(n\) to \(x\) does not change the residue, since in effect it adds one to the quotient \([x/n]\). Another way to explain this is that \(n\) is (or multiples of \(n\) are) congruent to zero modulo \(n\). Adding zero will not change the value of the residue.

Fact 2. If \(x\) is even, then performing a division by two in \(\mathbb{Z}\) is congruent to \(x \cdot 2^{-1} \pmod{n}\). Actually, this is an application of the fact that if \(x\) is evenly divisible by any \(k \in \mathbb{Z}\), then division in \(\mathbb{Z}\) will be congruent to multiplication by \(k^{-1}\) modulo \(n\).

From these two simple facts the following simple algorithm can be derived.

<table>
<thead>
<tr>
<th>Algorithm Montgomery Reduction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input. Integer (x), (n) and (k)</td>
</tr>
<tr>
<td>Output. (2^{-k}x \pmod{n})</td>
</tr>
</tbody>
</table>

1. for \(t\) from 1 to \(k\) do
 1.1 If \(x\) is odd then
 1.1.1 \(x \leftarrow x + n\)
 1.2 \(x \leftarrow x/2\)
2. Return \(x\).

Figure 6.3: Algorithm Montgomery Reduction

The algorithm in Figure 6.3 reduces the input one bit at a time using the two congruencies stated previously. Inside the loop \(n\), which is odd, is added to \(x\) if \(x\) is odd. This forces \(x\) to be even, which allows the division by two in \(\mathbb{Z}\) to be congruent to a modular division by two. Since \(x\) is assumed initially much larger

\(^5\)Thanks to Niels Ferguson for his insightful explanation of the algorithm.
than \(n \), the addition of \(n \) will contribute an insignificant magnitude to \(x \). Let \(r \) represent the result of the Montgomery algorithm. If \(k > \log(n) \) and \(0 \leq x < n^2 \), then the result is limited to \(0 \leq r < \lceil x/2^k \rceil + n \). At most, a single subtraction is required to get the residue desired.

<table>
<thead>
<tr>
<th>Step number ((t))</th>
<th>Result ((x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x + n = 5812, x/2 = 2906)</td>
</tr>
<tr>
<td>2</td>
<td>(x/2 = 1453)</td>
</tr>
<tr>
<td>3</td>
<td>(x + n = 1710, x/2 = 855)</td>
</tr>
<tr>
<td>4</td>
<td>(x + n = 1112, x/2 = 556)</td>
</tr>
<tr>
<td>5</td>
<td>(x/2 = 278)</td>
</tr>
<tr>
<td>6</td>
<td>(x/2 = 139)</td>
</tr>
<tr>
<td>7</td>
<td>(x + n = 396, x/2 = 198)</td>
</tr>
<tr>
<td>8</td>
<td>(x/2 = 99)</td>
</tr>
<tr>
<td>9</td>
<td>(x + n = 356, x/2 = 178)</td>
</tr>
</tbody>
</table>

Figure 6.4: Example of Montgomery Reduction (I)

Consider the example in Figure 6.4, which reduces \(x = 5555 \) modulo \(n = 257 \) when \(k = 9 \) (note \(\beta^k = 512 \), which is larger than \(n \)). The result of the algorithm \(r = 178 \) is congruent to the value of \(2^{-9} \cdot 5555 \mod 257 \). When \(r \) is multiplied by \(2^9 \) modulo 257, the correct residue \(r \equiv 158 \) is produced.

Let \(k = \lceil \log(n) \rceil + 1 \) represent the number of bits in \(n \). The current algorithm requires \(2k^2 \) single precision shifts and \(k^2 \) single precision additions. At this rate, the algorithm is most certainly slower than Barrett reduction and not terribly useful. Fortunately, there exists an alternative representation of the algorithm.

<table>
<thead>
<tr>
<th>Algorithm Montgomery Reduction (modified I).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input. Integer (x, n) and (k) ((2^k > n))</td>
</tr>
<tr>
<td>Output. (2^{-k}x \mod n)</td>
</tr>
</tbody>
</table>

1. for \(t \) from 1 to \(k \) do
 1.1 If the \(t \)'th bit of \(x \) is one then
 1.1.1 \(x \leftarrow x + 2^k n \)
 2. Return \(x/2^k \).

Figure 6.5: Algorithm Montgomery Reduction (modified I)
This algorithm is equivalent since $2^k n$ is a multiple of n and the lower k bits of x are zero by step 2. The number of single precision shifts has now been reduced from $2k^2$ to $k^2 + k$, which is only a small improvement (Figure 6.5).

<table>
<thead>
<tr>
<th>Step number (t)</th>
<th>Result (x)</th>
<th>Result (x) in Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>5555</td>
<td>1010110110011</td>
</tr>
<tr>
<td>1</td>
<td>$x + 2^9n = 5812$</td>
<td>1011010110100</td>
</tr>
<tr>
<td>2</td>
<td>5812</td>
<td>1011010110100</td>
</tr>
<tr>
<td>3</td>
<td>$x + 2^3n = 6840$</td>
<td>1101010111000</td>
</tr>
<tr>
<td>4</td>
<td>$x + 2^5n = 8896$</td>
<td>100010110000000</td>
</tr>
<tr>
<td>5</td>
<td>8896</td>
<td>100010110000000</td>
</tr>
<tr>
<td>6</td>
<td>8896</td>
<td>100010110000000</td>
</tr>
<tr>
<td>7</td>
<td>$x + 2^6n = 25344$</td>
<td>110001100000000</td>
</tr>
<tr>
<td>8</td>
<td>25344</td>
<td>110001100000000</td>
</tr>
<tr>
<td>9</td>
<td>$x + 2^7n = 91136$</td>
<td>101100100000000000</td>
</tr>
<tr>
<td>–</td>
<td>$x/2^k = 178$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.6: Example of Montgomery Reduction (II)

Figure 6.6 demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 9$. With this algorithm, a single shift right at the end is the only right shift required to reduce the input instead of k right shifts inside the loop. Note that for the iterations $t = 2, 5, 6, 8$ where the result x is not changed. In those iterations the t’th bit of x is zero and the appropriate multiple of n does not need to be added to force the t’th bit of the result to zero.

6.3.1 Digit Based Montgomery Reduction

Instead of computing the reduction on a bit-by-bit basis it is much faster to compute it on digit-by-digit basis. Consider the previous algorithm re-written to compute the Montgomery reduction in this new fashion (Figure 6.7).
6.3 The Montgomery Reduction

Algorithm **Montgomery Reduction** (modified II).

Input. Integer \(x\), \(n\) and \(k\) \((\beta^k > n)\)

Output. \(\beta^{-k}x \pmod{n}\)

1. for \(t\) from 0 to \(k - 1\) do
 1.1 \(x \leftarrow x + \mu n \beta^t\)
2. Return \(x/\beta^k\).

Figure 6.7: Algorithm Montgomery Reduction (modified II)

The value \(\mu n \beta^t\) is a multiple of the modulus \(n\), meaning that it will not change the residue. If the first digit of the value \(\mu n \beta^t\) equals the negative (modulo \(\beta\)) of the \(t\)’th digit of \(x\), then the addition will result in a zero digit. This problem breaks down to solving the following congruency.

\[
\begin{align*}
 x_t + \mu n_0 & \equiv 0 \pmod{\beta} \\
 \mu n_0 & \equiv -x_t \pmod{\beta} \\
 \mu & \equiv -x_t/n_0 \pmod{\beta}
\end{align*}
\]

In each iteration of the loop in step 1 a new value of \(\mu\) must be calculated. The value of \(-1/n_0 \pmod{\beta}\) is used extensively in this algorithm and should be precomputed. Let \(\rho\) represent the negative of the modular inverse of \(n_0\) modulo \(\beta\).

For example, let \(\beta = 10\) represent the radix. Let \(n = 17\) represent the modulus, which implies \(k = 2\) and \(\rho \equiv 7\). Let \(x = 33\) represent the value to reduce.

The result in Figure 6.8 of 900 is then divided by \(\beta^k\) to produce the result 9. The first observation is that \(9 \not\equiv x \pmod{n}\), which implies the result is not the modular residue of \(x\) modulo \(n\). However, recall that the residue is actually multiplied by \(\beta^{-k}\) in the algorithm. To get the true residue the value must be

<table>
<thead>
<tr>
<th>Step ((t))</th>
<th>Value of (x)</th>
<th>Value of (\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>33</td>
<td>(-)</td>
</tr>
<tr>
<td>0</td>
<td>(33 + \mu n = 50)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(50 + \mu n \beta = 900)</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 6.8: Example of Montgomery Reduction
multiplied by β^k. In this case, $\beta^k \equiv 15 \pmod{n}$ and the correct residue is $9 \cdot 15 \equiv 16 \pmod{n}$.

6.3.2 Baseline Montgomery Reduction

The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algorithm for Montgomery reductions.
6.3 The Montgomery Reduction

Algorithm \texttt{mp_montgomery_reduce}.

Input. \texttt{mp_int} \(x\), \texttt{mp_int} \(n\) and a digit \(\rho \equiv -1/n_0 \mod n\).
\((0 \leq x < n^2, n > 1, (n, \beta) = 1, \beta^k > n)\)

Output. \(\beta^{-k}x \mod n\)

1. \(\text{digs} \leftarrow 2n.\text{used} + 1\)
2. If \(\text{digs} < \text{MP_ARRAY}\) and \(\text{m}\text{.used} < \delta\) then
 2.1 Use algorithm fast_mp_montgomery_reduce instead.

Setup \(x\) for the reduction.
3. If \(x.\text{alloc} < \text{digs}\) then grow \(x\) to \(\text{digs}\) digits.
4. \(x.\text{used} \leftarrow \text{digs}\)

Eliminate the lower \(k\) digits.
5. For \(ix\) from 0 to \(k - 1\) do
 5.1 \(\mu \leftarrow x_{ix} \cdot \rho \mod \beta\)
 5.2 \(u \leftarrow 0\)
 5.3 For \(iy\) from 0 to \(k - 1\) do
 5.3.1 \(\hat{r} \leftarrow \mu n_{iy} + x_{ix+iy} + u\)
 5.3.2 \(x_{ix+iy} \leftarrow \hat{r} \mod \beta\)
 5.3.3 \(u \leftarrow \lfloor \hat{r}/\beta \rfloor\)
 5.4 While \(u > 0\) do
 5.4.1 \(iy \leftarrow iy + 1\)
 5.4.2 \(x_{ix+iy} \leftarrow x_{ix+iy} + u\)
 5.4.3 \(u \leftarrow \lfloor x_{ix+iy}/\beta \rfloor\)
 5.4.4 \(x_{ix+iy} \leftarrow x_{ix+iy} \mod \beta\)

Divide by \(\beta^k\) and fix up as required.
6. \(x \leftarrow \lfloor x/\beta^k \rfloor\)
7. If \(x \geq n\) then
 7.1 \(x \leftarrow x - n\)
8. Return(\text{MP_OKAY}).

Figure 6.9: Algorithm \texttt{mp_montgomery_reduce}

Algorithm \texttt{mp_montgomery_reduce}. This algorithm reduces the input \(x\) modulo \(n\) in place using the Montgomery reduction algorithm. The algorithm is loosely based on algorithm 14.32 of [2, pp.601], except it merges the multiplication of \(\mu n/\beta^t\) with the addition in the inner loop. The restrictions on this algorithm are fairly easy to adapt to. First, \(0 \leq x < n^2\) bounds the input to numbers in the
same range as for the Barrett algorithm. Additionally, if \(n > 1 \) and \(n \) is odd there will exist a modular inverse \(\rho \). \(\rho \) must be calculated in advance of this algorithm. Finally, the variable \(k \) is fixed and a pseudonym for \(n\text{.used} \) (Figure 6.9).

Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique, meaning that there are limits on the size of the input. This algorithm is discussed in 7.9.

Step 5 is the main reduction loop of the algorithm. The value of \(\mu \) is calculated once per iteration in the outer loop. The inner loop calculates \(x + \mu n\beta^ix \) by multiplying \(\mu n \) and adding the result to \(x \) shifted by \(ix \) digits. Both the addition and multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.

On quick inspection, this algorithm requires \(n \) single precision multiplications for the outer loop and \(n^2 \) single precision multiplications in the inner loop for a total \(n^2 + n \) single precision multiplications, which compares favorably to Barrett at \(n^2 + 2n - 1 \) single precision multiplications.

File: bn_mp_montgomery_reduce.c

```c
018 /* computes \( xR^{-1} \mod N \) via Montgomery Reduction */
019 int
020 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
021 {
022   int ix, res, digs;
023   mp_digit mu;
024
025   /* can the fast reduction [comba] method be used?
026   *
027   * Note that unlike in mul you’re safely allowed *less*
028   * than the available columns [255 per default] since carries
029   * are fixed up in the inner loop.
030   */
031   digs = n->used * 2 + 1;
032   if ((digs < MP_WARRAY) &&
033       n->used <
034       (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
035     return fast_mp_montgomery_reduce (x, n, rho);
036   }
037
038   /* grow the input as required */
039   if (x->alloc < digs) {
040     if ((res = mp_grow (x, digs)) != MP_OKAY) {
```
6.3 The Montgomery Reduction

```c
    return res;
    }
}
x->used = digs;

for (ix = 0; ix < n->used; ix++) {
    /* mu = ai * rho mod b */
    * The value of rho must be precalculated via
    * montgomery_setup() such that
    * it equals -1/n0 mod b this allows the
    * following inner loop to reduce the
    * input one digit at a time
    */
    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);

    /* a = a + mu * m * b**i */
    {
        register int iy;
        register mp_digit *tmpn, *tmpx, u;
        register mp_word r;

        /* alias for digits of the modulus */
        tmpn = n->dp;

        /* alias for the digits of x [the input] */
        tmpx = x->dp + ix;

        /* set the carry to zero */
        u = 0;

        /* Multiply and add in place */
        for (iy = 0; iy < n->used; iy++) {
            /* compute product and sum */
            r     = ((mp_word)mu) * ((mp_word)*tmpn++) +
                    ((mp_word) u) + ((mp_word) * tmpx);

            /* get carry */
            u     = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

            /* fix digit */
```
This is the baseline implementation of the Montgomery reduction algorithm. Lines 31 to 36 determine if the Comba–based routine can be used instead. Line 47 computes the value of μ for that particular iteration of the outer loop.

The multiplication $\mu n \beta^i x$ is performed in one step in the inner loop. The alias $tmpx$ refers to the ix’th digit of x, and the alias $tmpn$ refers to the modulus n.

```c
*tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
}
/* At this point the ix’th digit of x should be zero */

/* propagate carries upwards as required*/
while (u) {
    *tmpx += u;
    u = *tmpx >> DIGIT_BIT;
    *tmpx++ &= MP_MASK;
}
/* at this point the n.used’th least
* significant digits of x are all zero
* which means we can shift x to the
* right by n.used digits and the
* residue is unchanged.
*/

/* x = x/b**n.used */
mp_clamp(x);
mp_rshd (x, n->used);

/* if x >= n then x = x - n */
if (mp_cmp_mag (x, n) != MP_LT) {
    return s_mp_sub (x, n, x);
}
return MP_OKAY;
```
6.3 The Montgomery Reduction

6.3.3 Faster “Comba” Montgomery Reduction

The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction; however, it is much slower due to the serial nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers, which can be implemented with the Comba technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates a $k \times 1$ product k times.

The biggest obstacle is that at the ix’th iteration of the outer loop, the value of x_{ix} is required to calculate μ. This means the carries from 0 to $ix - 1$ must have been propagated upwards to form a valid ix’th digit. The solution as it turns out is very simple. Perform a Comba–like multiplier, and inside the outer loop just after the inner loop, fix up the $ix + 1$’th digit by forwarding the carry.

With this change in place, the Montgomery reduction algorithm can be performed with a Comba–style multiplication loop, which substantially increases the speed of the algorithm.
Place an array of MP_WARRAY mp_word variables called W_on the stack.

1. if x.alloc < n.used + 1 then grow x to n.used + 1 digits.
2. For ix from 0 to x.used – 1 do
 2.1 \(W_{ix} \leftarrow x_{ix} \)
3. For ix from x.used to 2n.used – 1 do
 3.1 \(W_{ix} \leftarrow 0 \)

Eliminate the lower k digits.

4. for ix from 0 to n.used – 1 do
 4.1 \(\mu \leftarrow W_{ix} \cdot \rho \pmod{\beta} \)
 4.2 For iy from 0 to n.used – 1 do
 4.2.1 \(W_{iy+ix} \leftarrow W_{iy+ix} + \mu \cdot n_{iy} \)
 4.3 \(W_{ix+1} \leftarrow W_{ix+1} + \lfloor W_{ix}/\beta \rfloor \)

Propagate the rest of the carries upwards.

5. for ix from n.used to 2n.used + 1 do
 5.1 \(W_{ix+1} \leftarrow W_{ix+1} + \lfloor W_{ix}/\beta \rfloor \)

Shift right and reduce modulo \(\beta \) simultaneously.

6. for ix from 0 to n.used + 1 do
 6.1 \(x_{ix} \leftarrow W_{ix+n.used} \pmod{\beta} \)

Zero excess digits and fixup x.

7. if x.used > n.used + 1 then do
 7.1 for ix from n.used + 1 to x.used – 1 do
 7.1.1 \(x_{ix} \leftarrow 0 \)

8. x.used \leftarrow n.used + 1

9. Clamp excessive digits of x.

10. If \(x \geq n \) then
 10.1 \(x \leftarrow x - n \)

11. Return(MP_OKAY).

Figure 6.10: Algorithm fast.mp.montgomery_reduce

Algorithm fast.mp.montgomery_reduce. This algorithm will compute
the Montgomery reduction of \(x \) modulo \(n \) using the Comba technique. It is on most
computer platforms significantly faster than algorithm mp_montgomery_reduce.
6.3 The Montgomery Reduction

and algorithm mt_reduce (Barrett reduction). The algorithm has the same restrictions on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits \(k \) in the modulus \(n \) must not violate \(MP WARRAY > 2k + 1 \) and \(n < \delta \). When \(\beta = 2^{28} \), this algorithm can be used to reduce modulo a modulus of at most 3,556 bits in length (Figure 6.10).

As in the other Comba reduction algorithms there is a \(\hat{W} \) array that stores the columns of the product. It is initially filled with the contents of \(x \) with the excess digits zeroed. The reduction loop is very similar to the baseline loop at heart. The multiplication in step 4.1 can be single precision only, since \(ab \mod \beta \equiv (a \mod \beta)(b \mod \beta) \). Some multipliers such as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing a single precision multiplication instead, half the amount of time is spent.

Also note that digit \(\hat{W}ix \) must have the carry from the \(ix-1 \)'th digit propagated upwards for this to work. That is what step 4.3 will do. In effect, over the \(n.used \) iterations of the outer loop the \(n.used \)'th lower columns all have their carries propagated forwards. Note how the upper bits of those same words are not reduced modulo \(\beta \). This is because those values will be discarded shortly and there is no point.

Step 5 will propagate the remainder of the carries upwards. In step 6, the columns are reduced modulo \(\beta \) and shifted simultaneously as they are stored in the destination \(x \).

File: bn_fast_mp_montgomery_reduce.c

```c
/* computes xR*-1 = x (mod N) via Montgomery Reduction */

int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{ int ix, res, olduse;
  mp_word W[MP_WARRAY];

  /* get old used count */
```

olduse = x->used;

/* grow a as required */
if (x->alloc < n->used + 1) {
 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
 return res;
 }
}

/* first we have to get the digits of the input into
 * an array of double precision words W[...]
 */
{
 register mp_word *W;
 register mp_digit *tmpx;

 /* alias for the W[] array */
 W = W;

 /* alias for the digits of x*/
 tmpx = x->dp;

 /* copy the digits of a into W[0..a->used-1] */
 for (ix = 0; ix < x->used; ix++) {
 *W++ = *tmpx++;
 }

 /* zero the high words of W[a->used..m->used*2] */
 for (; ix < n->used * 2 + 1; ix++) {
 *W++ = 0;
 }

 /* now we proceed to zero successive digits
 * from the least significant upwards
 */
 for (ix = 0; ix < n->used; ix++) {
 /* mu = ai * m' mod b
 * We avoid a double precision multiplication (which isn’t required)
 * by casting the value down to a mp_digit. Note this requires...
6.3 The Montgomery Reduction

```c
/* that W[ix-1] have the carry cleared (see after the inner loop)
 */
register mp_digit mu;
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

/* a = a + mu * m * b**i
 * This is computed in place and on the fly. The multiplication
 * by b**i is handled by offsetting which columns the results
 * are added to.
 *
 * Note the comba method normally doesn't handle carries in the
 * inner loop In this case we fix the carry from the previous
 * column since the Montgomery reduction requires digits of the
 * result (so far) [see above] to work. This is
 * handled by fixing up one carry after the inner loop. The
 * carry fixups are done in order so after these loops the
 * first m->used words of W[] have the carries fixed
 */
{
  register int iy;
  register mp_digit *tmpn;
  register mp_word *_W;

  /* alias for the digits of the modulus */
  tmpn = n->dp;

  /* Alias for the columns set by an offset of ix */
  _W = W + ix;

  /* inner loop */
  for (iy = 0; iy < n->used; iy++) {
    *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
  }

  /* now fix carry for next digit, W[ix+1] */
  W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
}

/* now we have to propagate the carries and
```
* shift the words downward [all those least
* significant digits we zeroed].
*/
{
 register mp_digit *tmpx;
 register mp_word *_W, *_W1;
 /* nox fix rest of carries */
 /* alias for current word */
 _W1 = W + ix;
 /* alias for next word, where the carry goes */
 _W = W + ++ix;
 for (; ix <= n->used * 2 + 1; ix++) {
 *W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
 }
 /* copy out, A = A/b**n
 * The result is A/b**n but instead of converting from an
 * array of mp_word to mp_digit then calling mp_rshd
 * we just copy them in the right order
 */
 /* alias for destination word */
 tmpx = x->dp;
 /* alias for shifted double precision result */
 _W = W + n->used;
 for (ix = 0; ix < n->used + 1; ix++) {
 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
 }
 /* zero oldused digits, if the input a was larger than
 * n->used+1 we’ll have to clear the digits
 */
 for (; ix < olduse; ix++) {
 *tmpx++ = 0;
/* set the max used and clamp */
x->used = n->used + 1;
mp_clamp (x);

/* if \(A \geq m \) then \(A = A - m \) */
if (mp_cmp_mag (x, n) != MP_LT) {
 return s_mp_sub (x, n, x);
}
return MP_OKAY;

The \(\hat{W} \) array is first filled with digits of \(x \) on line 55, then the rest of the digits are zeroed on line 60. Both loops share the same alias variables to make the code easier to read.

The value of \(\mu \) is calculated in an interesting fashion. First, the value \(\hat{W}_ix \) is reduced modulo \(\beta \) and cast to a mp_digit. This forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line 110 fixes the carry for the next iteration of the loop by propagating the carry from \(\hat{W}_ix \) to \(\hat{W}_{ix+1} \).

The for loop on line 129 propagates the rest of the carries upwards through the columns. The for loop on line 146 reduces the columns modulo \(\beta \) and shifts them \(k \) places at the same time. The alias \(\hat{W}_i \) actually refers to the array \(\hat{W} \) starting at the \(n.used \)’th digit, that is \(\hat{W}_t = \hat{W}_{n.used+t} \).

6.3.4 Montgomery Setup

To calculate the variable \(\rho \), a relatively simple algorithm will be required.
Algorithm \texttt{mp_montgomery_setup}.

\textbf{Input.} mp_int \(n \) (\(n > 1 \) and \((n,2) = 1 \))

\textbf{Output.} \(\rho \equiv -1/n_0 \pmod{\beta} \)

1. \(b \leftarrow n_0 \)
2. If \(b \) is even return (\texttt{MP_VAL})
3. \(x \leftarrow (((b + 2) \text{ AND } 4) \ll 1) + b \)
4. for \(k \) from 0 to \(\lceil \log_2(\log_2(\beta)) \rceil - 2 \) do
 4.1 \(x \leftarrow x \cdot (2 - bx) \)
5. \(\rho \leftarrow \beta - x \pmod{\beta} \)
6. Return (\texttt{MP_OKAY}).

Figure 6.11: Algorithm \texttt{mp_montgomery_setup}

Algorithm \texttt{mp_montgomery_setup}. This algorithm will calculate the value of \(\rho \) required within the Montgomery reduction algorithms. It uses a very interesting trick to calculate \(1/n_0 \) when \(\beta \) is a power of two (Figure 6.11).

File: \texttt{bn_mp_montgomery_setup.c}

\begin{verbatim}
018 /* sets up the montgomery reduction stuff */
019 int
020 mp_montgomery_setup (mp_int * n, mp_digit * rho)
021 {
022 mp_digit x, b;
023
024 /* fast inversion mod 2**k */
025 *
026 * Based on the fact that
027 *
028 * XA = 1 \pmod{2**n} \Rightarrow (X(2-XA)) A = 1 \pmod{2**2n}
029 *
030 * \Rightarrow 2*X*A - X*X*A*A = 1
031 * /
032 b = n->dp[0];
033
034 if ((b & 1) == 0) {
035 return MP_VAL;
036 }
037
038 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
\end{verbatim}
This source code computes the value of ρ required to perform Montgomery reduction. It has been modified to avoid performing excess multiplications when β is not the default 28 bits.

6.4 The Diminished Radix Algorithm

The Diminished Radix method of modular reduction [8] is a fairly clever technique that can be more efficient than either the Barrett or Montgomery methods for certain forms of moduli. The technique is based on the following simple congruence.

\[(x \mod n) + k\lfloor x/n \rfloor \equiv x \pmod{(n-k)}\] \hspace{1cm} (6.6)

This observation was used in the MMB [9] block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k = 1$, an x86 multiplier could produce the 62-bit product and use the “shrd” instruction to perform a double-precision right shift. The proof of equation 6.6 is very simple. First, write x in the product form.

\[x = qn + r\] \hspace{1cm} (6.7)

Now reduce both sides modulo $(n-k)$.

\[x \equiv qk + r \pmod{(n - k)} \quad (6.8) \]

The variable \(n \) reduces modulo \(n - k \) to \(k \). By putting \(q = \lfloor x/n \rfloor \) and \(r = x \mod n \) into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.

Algorithm Diminished Radix Reduction.

Input. Integer \(x, n, k \)

Output. \(x \mod(n - k) \)

1. \(q \leftarrow \lfloor x/n \rfloor \)
2. \(q \leftarrow k \cdot q \)
3. \(x \leftarrow x \pmod{n} \)
4. \(x \leftarrow x + q \)
5. If \(x \geq (n - k) \) then
 5.1 \(x \leftarrow x - (n - k) \)
 5.2 Goto step 1.
6. Return \(x \)

Figure 6.12: Algorithm Diminished Radix Reduction

This algorithm will reduce \(x \) modulo \(n - k \) and return the residue. If \(0 \leq x < (n - k)^2 \), then the algorithm will loop almost always once or twice and occasionally three times. For simplicity’s sake, the value of \(x \) is bounded by the following simple polynomial.

\[0 \leq x < n^2 + k^2 - 2nk \quad (6.9) \]

The true bound is \(0 \leq x < (n - k - 1)^2 \), but this has quite a few more terms. The value of \(q \) after step 1 is bounded by the following equation.

\[q < n - 2k - k^2/n \quad (6.10) \]

Since \(k^2 \) is going to be considerably smaller than \(n \), that term will always be zero. The value of \(x \) after step 3 is bounded trivially as \(0 \leq x < n \). By step 4, the sum \(x + q \) is bounded by

\[0 \leq q + x < (k + 1)n - 2k^2 - 1 \quad (6.11) \]
6.4 The Diminished Radix Algorithm

<table>
<thead>
<tr>
<th>$x = 123456789$, $n = 256$, $k = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q \leftarrow \lfloor x/n \rfloor = 482253$</td>
</tr>
<tr>
<td>$q \leftarrow q \times k = 1446759$</td>
</tr>
<tr>
<td>$x \leftarrow x \mod n = 21$</td>
</tr>
<tr>
<td>$x \leftarrow x + q = 1446780$</td>
</tr>
<tr>
<td>$x \leftarrow x - (n - k) = 1446527$</td>
</tr>
<tr>
<td>$q \leftarrow \lfloor x/n \rfloor = 5650$</td>
</tr>
<tr>
<td>$q \leftarrow q \times k = 16950$</td>
</tr>
<tr>
<td>$x \leftarrow x \mod n = 127$</td>
</tr>
<tr>
<td>$x \leftarrow x + q = 17077$</td>
</tr>
<tr>
<td>$x \leftarrow x - (n - k) = 16824$</td>
</tr>
<tr>
<td>$q \leftarrow \lfloor x/n \rfloor = 65$</td>
</tr>
<tr>
<td>$q \leftarrow q \times k = 195$</td>
</tr>
<tr>
<td>$x \leftarrow x \mod n = 184$</td>
</tr>
<tr>
<td>$x \leftarrow x + q = 379$</td>
</tr>
<tr>
<td>$x \leftarrow x - (n - k) = 126$</td>
</tr>
</tbody>
</table>

Figure 6.13: Example Diminished Radix Reduction

With a second pass, q will be loosely bounded by $0 \leq q < k^2$ after step 2, while x will still be loosely bounded by $0 \leq x < n$ after step 3. After the second pass it is highly unlikely that the sum in step 4 will exceed $n - k$. In practice, fewer than three passes of the algorithm are required to reduce virtually every input in the range $0 \leq x < (n - k - 1)^2$.

Figure 6.13 demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$. Note that even while x is considerably larger than $(n - k - 1)^2 = 63504$, the algorithm still converges on the modular residue exceedingly fast. In this case, only three passes were required to find the residue $x \equiv 126$.

6.4.1 Choice of Moduli

On the surface, this algorithm looks very expensive. It requires a couple of subtractions followed by multiplication and other modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.

Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used. Division by
10, for example, is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right. Similarly, division by 2 (or powers of 2) is very simple for binary computers to perform. It would therefore seem logical to choose \(n \) of the form \(2^p \), which would imply that \(\lfloor x/n \rfloor \) is a simple shift of \(x \) right \(p \) bits.

However, there is one operation related to division of power of twos that is even faster. If \(n = \beta^p \), then the division may be performed by moving whole digits to the right \(p \) places. In practice, division by \(\beta^p \) is much faster than division by \(2^p \) for any \(p \). Also, with the choice of \(n = \beta^p \) reducing \(x \) modulo \(n \) merely requires zeroing the digits above the \(p - 1 \)'th digit of \(x \).

Throughout the next section the term \textit{restricted modulus} will refer to a modulus of the form \(\beta^p - k \), whereas the term \textit{unrestricted modulus} will refer to a modulus of the form \(2^p - k \). The word \textit{restricted} in this case refers to the fact that it is based on the \(2^p \) logic, except \(p \) must be a multiple of \(\lg(\beta) \).

6.4.2 Choice of \(k \)

Now that division and reduction (\textit{steps 1 and 3 of Figure 6.12}) have been optimized to simple digit operations, the multiplication by \(k \) in step 2 is the most expensive operation. Fortunately, the choice of \(k \) is not terribly limited. For all intents and purposes it might as well be a single digit. The smaller the value of \(k \), the faster the algorithm will be.

6.4.3 Restricted Diminished Radix Reduction

The Restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form \(n = \beta^p - k \). This algorithm can reduce an input \(x \) within the range \(0 \leq x < n^2 \) using only a couple of passes of the algorithm demonstrated in Figure 6.12. The implementation of this algorithm has been optimized to avoid additional overhead associated with a division by \(\beta^p \), the multiplication by \(k \) or the addition of \(x \) and \(q \). The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular exponentiations are performed.
Algorithm mp\textsubscript{-dr}_reduce.

Input. mp_int \(x \), \(n \) and a mp_digit \(k = \beta - n_0 \) \((0 \leq x < n^2, n > 1, 0 < k < \beta)\)

Output. \(x \mod n \)

1. \(m \leftarrow n.\text{used} \)
2. If \(x.\text{alloc} < 2m \) then grow \(x \) to \(2m \) digits.
3. \(\mu \leftarrow 0 \)
4. for \(i \) from 0 to \(m - 1 \) do
 4.1 \(\hat{r} \leftarrow k \cdot x_{m+i} + x_i + \mu \)
 4.2 \(x_i \leftarrow \hat{r} \mod \beta \)
 4.3 \(\mu \leftarrow \lfloor \hat{r} / \beta \rfloor \)
5. \(x_m \leftarrow \mu \)
6. for \(i \) from \(m + 1 \) to \(x.\text{used} - 1 \) do
 6.1 \(x_i \leftarrow 0 \)
7. Clamp excess digits of \(x \).
8. If \(x \geq n \) then
 8.1 \(x \leftarrow x - n \)
 8.2 Goto step 3.
9. Return(MP_OKAY).

Figure 6.14: Algorithm mp_dr_reduce

Algorithm mp_dr_reduce. This algorithm will perform the Diminished Radix reduction of \(x \) modulo \(n \). It has similar restrictions to that of the Barrett reduction with the addition that \(n \) must be of the form \(n = \beta^m - k \) where \(0 < k < \beta \) (Figure 6.14).

This algorithm essentially implements the pseudo-code in Figure 6.12, except with a slight optimization. The division by \(\beta^m \), multiplication by \(k \), and addition of \(x \mod \beta^m \) are all performed simultaneously inside the loop in step 4. The division by \(\beta^m \) is emulated by accessing the term at the \(m + i \)’th position, which is subsequently multiplied by \(k \) and added to the term at the \(i \)’th position. After the loop the \(m \)’th digit is set to the carry and the upper digits are zeroed. Steps 5 and 6 emulate the reduction modulo \(\beta^m \) that should have happened to \(x \) before the addition of the multiple of the upper half.

In step 8, if \(x \) is still larger than \(n \), another pass of the algorithm is required. First, \(n \) is subtracted from \(x \) and then the algorithm resumes at step 3.
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm. *
 * Based on algorithm from the paper
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
 * Chae Hoon Lim, Pil Joong Lee,
 * POSTECH Information Research Laboratories
 *
 * The modulus must be of a special format [see manual]
 * Has been modified to use algorithm 7.10 from the LTM book instead
 * Input x must be in the range 0 <= x <= (n-1)**2 */

int
mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
{
 int err, i, m;
 mp_word r;
 mp_digit mu, *tmpx1, *tmpx2;

 /* m = digits in modulus */
 m = n->used;

 /* ensure that "x" has at least 2m digits */
 if (x->alloc < m + m) {
 if ((err = mp_grow (x, m + m)) != MP_OKAY) {
 return err;
 }
 }

 /* top of loop, this is where the code resumes if
 * another reduction pass is required.
 */
 /* aliases for digits */
 /* alias for lower half of x */
 tmpx1 = x->dp;
 /* alias for upper half of x, or x/B**m */
The first step is to grow \(x \) as required to \(2^m \) digits, since the reduction is performed in place on \(x \). The label on line 52 is where the algorithm will resume if further reduction passes are required. In theory, it could be placed at the top of the function. However, the size of the modulus and question of whether \(x \) is large enough are invariant after the first pass, meaning that it would be a waste of time.

The aliases \(\text{tmpx1} \) and \(\text{tmpx2} \) refer to the digits of \(x \), where the latter is offset
by \(m \) digits. By reading digits from \(x \) offset by \(m \) digits, a division by \(\beta^m \) can be simulated virtually for free. The loop on line 64 performs the bulk of the work (corresponds to step 4 of algorithm 7.11) in this algorithm.

By line 67 the pointer \(tmpx1 \) points to the \(m \)’th digit of \(x \), which is where the final carry will be placed. Similarly, by line 74 the same pointer will point to the \(m + 1 \)’th digit where the zeroes will be placed.

Since the algorithm is only valid if both \(x \) and \(n \) are greater than zero, an unsigned comparison suffices to determine if another pass is required. With the same logic at line 81 the value of \(x \) is known to be greater than or equal to \(n \), meaning that an unsigned subtraction can be used as well. Since the destination of the subtraction is the larger of the inputs, the call to algorithm \(s_{mp_sub} \) cannot fail and the return code does not need to be checked.

Setup

To set up the Restricted Diminished Radix algorithm the value \(k = \beta - n_0 \) is required. This algorithm is not complicated but is provided for completeness (Figure 6.15).

Algorithm mp_dr_setup.

Input. mp_int \(n \)

Output. \(k = \beta - n_0 \)

1. \(k \leftarrow \beta - n_0 \)

Figure 6.15: Algorithm mp_dr_setup

File: bn_mp_dr_setup.c
018 /* determines the setup value */
019 void mp_dr_setup(mp_int *a, mp_digit *d)
020 {
021 /* the casts are required if DIGIT_BIT is one less than
022 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
023 */
024 *d = (mp_digit)(((mp_word)1) << ((mp_word)DIGIT_BIT)) -
025 ((mp_word)a->dp[0]));
026 }
027 028
6.4 The Diminished Radix Algorithm

Modulus Detection

Another useful algorithm gives the ability to detect a Restricted Diminished Radix modulus. An integer is said to be of Restricted Diminished Radix form if all the digits are equal to $\beta - 1$ except the trailing digit, which may be any value.

<table>
<thead>
<tr>
<th>Algorithm: mp_dr_is_modulus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input. mp_int n</td>
</tr>
<tr>
<td>Output. 1 if n is in D.R form, 0 otherwise</td>
</tr>
<tr>
<td>1. If $n.used < 2$ then return(0).</td>
</tr>
<tr>
<td>2. for ix from 1 to $n.used - 1$ do</td>
</tr>
<tr>
<td>2.1 If $n_{ix} \neq \beta - 1$ return(0).</td>
</tr>
<tr>
<td>3. Return(1).</td>
</tr>
</tbody>
</table>

Figure 6.16: Algorithm mp_dr_is_modulus

Algorithm mp_dr_is_modulus. This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are in the mp_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to step 3, then n must be of Diminished Radix form (Figure 6.16).

File: bn_mp_dr_is_modulus.c

```c
018 /* determines if a number is a valid DR modulus */
019 int mp_dr_is_modulus(mp_int *a)
020 {
021    int ix;
022
023    /* must be at least two digits */
024    if (a->used < 2) {
025        return 0;
026    }
027
028    /* must be of the form $b^k - a$ [a <= b] so all
029       * but the first digit must be equal to -1 (mod b).
030    */
031    for (ix = 1; ix < a->used; ix++) {
032        if (a->dp[ix] != MP_MASK) {
033            return 0;
034        }
035    }
```
6.4.4 Unrestricted Diminished Radix Reduction

The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm is a straightforward adaptation of algorithm 6.12.

In general, the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.

Algorithm mp_reduce_2k.

Input. mp_int a and n. mp_digit k

(a ≥ 0, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two)

Output. $a \pmod n$

1. $p \leftarrow \lceil \log_2(n) \rceil$ (mp_count_bits)
2. While $a \geq n$ do
 2.1 $q \leftarrow \lfloor a/2^p \rfloor$ (mp_div_2d)
 2.2 $a \leftarrow a \pmod{2^p}$ (mp_mod_2d)
 2.3 $q \leftarrow q \cdot k$ (mp_mul_2d)
 2.4 $a \leftarrow a - q$ (s_mp_sub)
 2.5 If $a \geq n$ then do
 2.5.1 $a \leftarrow a - n$
3. Return(MP_OKAY).

Figure 6.17: Algorithm mp_reduce_2k

Algorithm mp_reduce_2k. This algorithm quickly reduces an input a modulo an unrestricted Diminished Radix modulus n. Division by 2^p is emulated with a right shift, which makes the algorithm fairly inexpensive to use (Figure 6.17).

File: bn_mp_reduce_2k.c

```c
/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
```
6.4 The Diminished Radix Algorithm

```c
020 {  
021     mp_int q;
022     int  p, res;
023
024     if ((res = mp_init(&q)) != MP_OKAY) {
025         return res;
026     }
027
028     p = mp_count_bits(n);
029     top:
030     /* q = a/2**p, a = a mod 2**p */
031     if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
032         goto ERR;
033     }
034
035     if (d != 1) {
036         /* q = q * d */
037         if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
038             goto ERR;
039         }
040     }
041     /* a = a + q */
042     if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
043         goto ERR;
044     }
045     }
046
047     if (mp_cmp_mag(a, n) != MP_LT) {
048         s_mp_sub(a, n, a);
049         goto top;
050     }
051
052 ERR:
053     mp_clear(&q);
054     return res;
055 }
056
057
The algorithm `mp_count_bits` calculates the number of bits in an `mp_int`, which is used to find the initial value of `p`. The call to `mp_div_2d` on line 31 calculates
```
both the quotient q and the remainder a required. By doing both in a single
function call, the code size is kept fairly small. The multiplication by k is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without any multiplications.

The unsigned s_mp_add, mp_cmp_mag, and s_mp_sub are used in place of their full sign counterparts since the inputs are only valid if they are positive. By using the unsigned versions, the overhead is kept to a minimum.

Unrestricted Setup

To set up this reduction algorithm, the value of $k = 2^p - n$ is required.

Algorithm mp_reduce_2k_setup.

Input. mp_int n

Output. $k = 2^p - n$

1. $p \left\lceil \lg(n) \right\rceil$ (mp_count_bits)
2. $x \leftarrow 2^p$ (mp_2expt)
3. $x \leftarrow x - n$ (mp_sub)
4. $k \leftarrow x_0$
5. Return(MP_OKAY).

Figure 6.18: Algorithm mp_reduce_2k_setup

Algorithm mp_reduce_2k_setup. This algorithm computes the value of k required for the algorithm mp_reduce_2k. By making a temporary variable x equal to 2^p, a subtraction is sufficient to solve for k. Alternatively if n has more than one digit the value of k is simply $\beta - n_0$ (Figure 6.18).

File: bn_mp_reduce_2k_setup.c

```c
018 /* determines the setup value */
019 int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
020 {
021    int res, p;
022    mp_int tmp;
023    if ((res = mp_init(&tmp)) != MP_OKAY) {
024        return res;
025    }
026 }
027```
6.4 The Diminished Radix Algorithm

```
028 p = mp_count_bits(a);
029 if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
030 mp_clear(&tmp);
031 return res;
032 }
033
034 if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
035 mp_clear(&tmp);
036 return res;
037 }
038
039 *d = tmp.dp[0];
040 mp_clear(&tmp);
041 return MP_OKAY;
042 }
043
Unrestricted Detection

An integer n is a valid unrestricted Diminished Radix modulus if either of the following are true.

- The number has only one digit.
- The number has more than one digit, and every bit from the β'th to the most significant is one.

If either condition is true, there is a power of two 2^p such that $0 < 2^p - n < \beta$. If the input is only one digit, it will always be of the correct form. Otherwise, all of the bits above the first digit must be one. This arises from the fact that there will be value of k that when added to the modulus causes a carry in the first digit that propagates all the way to the most significant bit. The resulting sum will be a power of two.
Algorithm \(\text{mp_reduce_is_2k} \).

Input. \(\text{mp_int} \ n \)

Output. 1 if of proper form, 0 otherwise

1. If \(n.\text{used} = 0 \) then return(0).
2. If \(n.\text{used} = 1 \) then return(1).
3. \(p \leftarrow \lfloor \log(n) \rfloor \) (\(\text{mp_count_bits} \))
4. for \(x \) from \(\log(\beta) \) to \(p \) do
 4.1 If the \((x \mod \log(\beta))'\text{th bit of the } \lfloor x/\log(\beta) \rfloor \) of \(n \) is zero then return(0).
5. Return(1).

Figure 6.19: Algorithm \(\text{mp_reduce_is_2k} \)

Algorithm \(\text{mp_reduce_is_2k} \). This algorithm quickly determines if a modulus is of the form required for algorithm \(\text{mp_reduce_2k} \) to function properly (Figure 6.19).

File: \(\text{bn_mp_reduce_is_2k.c} \)

```c
/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(mp_int *a)
{
    int ix, iy, iw;
    mp_digit iz;
    if (a->used == 0) {
        return MP_NO;
    } else if (a->used == 1) {
        return MP_YES;
    } else if (a->used > 1) {
        iy = mp_count_bits(a);
        iz = 1;
        iw = 1;
        /* Test every bit from the second digit up, must be 1 */
        for (ix = DIGIT_BIT; ix < iy; ix++) {
            if (((a->dp[iw] & iz) == 0) {
                return MP_NO;
            }
            iz <<= 1;
        }
        if (iz > (mp_digit)MP_MASK) {
            ++iw;
```
6.5 Algorithm Comparison

So far, three very different algorithms for modular reduction have been discussed. Each algorithm has its own strengths and weaknesses that make having such a selection very useful. The following table summarizes the three algorithms along with comparisons of work factors. Since all three algorithms have the restriction that $0 \leq x < n^2$ and $n > 1$, those limitations are not included in the table.

<table>
<thead>
<tr>
<th>Method</th>
<th>Work Required</th>
<th>Limitations</th>
<th>$m = 8$</th>
<th>$m = 32$</th>
<th>$m = 64$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrett</td>
<td>$m^2 + 2m - 1$</td>
<td>None</td>
<td>79</td>
<td>1087</td>
<td>4223</td>
</tr>
<tr>
<td>Montgomery</td>
<td>$m^2 + m$</td>
<td>n must be odd</td>
<td>72</td>
<td>1056</td>
<td>4160</td>
</tr>
<tr>
<td>D.R.</td>
<td>$2m$</td>
<td>$n = \beta^m - k$</td>
<td>16</td>
<td>64</td>
<td>128</td>
</tr>
</tbody>
</table>

In theory, Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery reduction can be written as a single function with the Comba technique, it is much faster. Barrett reduction suffers from the overhead of calling the half precision multipliers, addition and division by β algorithms.

For almost every cryptographic algorithm, Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly shines is based on the discrete logarithm problem such as Diffie-Hellman and ElGamal. In these algorithms, primes of the form $\beta^m - k$ can be found and shared among users. These primes will allow the Diminished Radix algorithm to be used in modular exponentiation to greatly speed up the operation.
Exercises

[3] Prove that the “trick” in algorithm mp_montgomery_setup actually calculates the correct value of ρ.

[2] Devise an algorithm to reduce modulo $n + k$ for small k quickly.

[4] Prove that the pseudo-code algorithm “Diminished Radix Reduction” (Figure 6.12) terminates. Also prove the probability that it will terminate within $1 \leq k \leq 10$ iterations.
Chapter 7

Exponentiation

Exponentiation is the operation of raising one variable to the power of another; for example, a^b. A variant of exponentiation, computed in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any such cryptosystem, and many methods have been sought to speed it up.

7.1 Exponentiation Basics

A trivial algorithm would simply multiply a against itself $b-1$ times to compute the exponentiation desired. However, as b grows in size the number of multiplications becomes prohibitive. Imagine what would happen if $b \sim 2^{1024}$, as is the case when computing an RSA signature with a 1024-bit key. Such a calculation could never be completed, as it would take far too long.

Fortunately, there is a very simple algorithm based on the laws of exponents. Recall that $\lg_a(a^b) = b$ and that $\lg_a(a^{b+c}) = b+c$ which are two trivial relationships between the base and the exponent. Let b_i represent the i'th bit of b starting from the least significant bit. If b is a k-bit integer, equation 7.1 is true.

$$a^b = \prod_{i=0}^{k-1} a^{2^i b_i}$$ \hspace{1cm} (7.1)
By taking the base a logarithm of both sides of the equation, equation 7.2 is the result.

$$b = \sum_{i=0}^{k-1} 2^i \cdot b_i$$ \hspace{1cm} (7.2)

The term a^{2^i} can be found from the $i - 1$'th term by squaring the term, since $(a^{2^i})^2$ is equal to $a^{2^{i+1}}$. This observation forms the basis of essentially all fast exponentiation algorithms. It requires k squarings and on average $k/2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by a a total of $b - 1$ times.

While this current method is considerably faster, there are further improvements to be made. For example, the a^{2^i} term does not need to be computed in an auxiliary variable. Consider the equivalent algorithm in Figure 7.1.

Algorithm Left to Right Exponentiation.

Input. Integer a, b and k

Output. $c = a^b$

1. $c \leftarrow 1$
2. for i from $k - 1$ to 0 do
 2.1 $c \leftarrow c^2$
 2.2 $c \leftarrow c \cdot a^{b_i}$
3. Return c.

Figure 7.1: Left to Right Exponentiation

This algorithm starts from the most significant bit and works toward the least significant bit. When the i'th bit of b is set, a is multiplied against the current product. In each iteration the product is squared, which doubles the exponent of the individual terms of the product.

For example, let $b = 101100_2 \equiv 44_{10}$. Figure 7.2 demonstrates the actions of the algorithm.
7.1 Exponentiation Basics

When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified, it is equal to a^{44}, which is the desired exponentiation. This particular algorithm is called “Left to Right” because it reads the exponent in that order. All the exponentiation algorithms that will be presented are of this nature.

7.1.1 Single Digit Exponentiation

The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended to be used when a small power of an input is required (e.g., a^5). It is faster than simply multiplying $b - 1$ times for all values of b that are greater than three.
Algorithm `mp_expt_d`.

Input. `mp_int a` and `mp_digit b`

Output. `c = a^b`

1. `g ← a (mp_init_copy)`
2. `c ← 1 (mp_set)`
3. for `x` from 1 to `lg(β)` do
 3.1 `c ← c^2 (mp_sqr)`
 3.2 If `b AND 2^{lg(β)-1} ≠ 0` then
 3.2.1 `c ← c · g (mp_mul)`
 3.3 `b ← b << 1` (mp_assign)
4. Clear `g`.
5. Return(`MP_OKAY`).

Figure 7.3: Algorithm `mp_expt_d`

Algorithm mp_expt_d. This algorithm computes the value of `a` raised to the power of a single digit `b`. It uses the left to right exponentiation algorithm to quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC [2, pp. 615], with the difference that the exponent is a fixed width (Figure 7.3).

A copy of `a` is made first to allow destination variable `c` be the same as the source variable `a`. The result is set to the initial value of 1 in the subsequent step.

Inside the loop the exponent is read from the most significant bit first down to the least significant bit. First, `c` is invariably squared in step 3.1. In the following step, if the most significant bit of `b` is one, the copy of `a` is multiplied against `c`. The value of `b` is shifted left one bit to make the next bit down from the most significant bit the new most significant bit. In effect, each iteration of the loop moves the bits of the exponent `b` upwards to the most significant location.

File: `bn_mp_expt_d.c`

```c
/* calculate c = a**b using a square-multiply algorithm */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
    int res, x;
    mp_int g;

    if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
        return res;
    }
    ```
Line 29 sets the initial value of the result to 1. Next, the loop on line 31 steps through each bit of the exponent starting from the most significant down toward the least significant. The invariant squaring operation placed on line 33 is performed first. After the squaring the result c is multiplied by the base g if and only if the most significant bit of the exponent is set. The shift on line 47 moves all of the bits of the exponent upwards toward the most significant location.

7.2 k-ary Exponentiation

When you are calculating an exponentiation, the most time-consuming bottleneck is the multiplications, which are in general a small factor slower than squaring.
Recall from the previous algorithm that b_i refers to the i’th bit of the exponent b. Suppose instead it referred to the i’th k-bit digit of the exponent of b. For $k = 1$ the definitions are synonymous, and for $k > 1$ algorithm 7.4 computes the same exponentiation. A group of k bits from the exponent is called a window, a small window on only a portion of the entire exponent. Consider the modification in Figure 7.4 to the basic left to right exponentiation algorithm.

| Algorithm k-ary Exponentiation. |
| Input. Integer a, b, k and t |
| Output. $c = a^b$ |
| 1. $c \leftarrow 1$ |
| 2. for i from $t - 1$ to 0 do |
| 2.1 $c \leftarrow c^{2^k}$ |
| 2.2 Extract the i’th k-bit word from b and store it in g. |
| 2.3 $c \leftarrow c \cdot a^g$ |
| 3. Return c. |

Figure 7.4: k-ary Exponentiation

The squaring in step 2.1 can be calculated by squaring the value c successively k times. If the values of a^g for $0 < g < 2^k$ have been precomputed, this algorithm requires only t multiplications and tk squarings. The table can be generated with $2^{k-1} - 1$ squarings and $2^{k-1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by k. However, when it is not, the remaining $0 < x \leq k - 1$ bits can be handled with algorithm 7.1.

Suppose $k = 4$ and $t = 100$. This modified algorithm will require 109 multiplications and 408 squarings to compute the exponentiation. The original algorithm would on average have required 200 multiplications and 400 squarings to compute the same value. The total number of squarings has increased slightly but the number of multiplications has nearly halved.

7.2.1 Optimal Values of k

An optimal value of k will minimize $2^k + \lceil n/k \rceil + n - 1$ for a fixed number of bits in the exponent n. The simplest approach is to brute force search among the values $k = 2, 3, \ldots, 8$ for the lowest result. Figure 7.5 lists optimal values of k for various exponent sizes and compares the number of multiplication and squarings
required against algorithm 7.1.

<table>
<thead>
<tr>
<th>Exponent (bits)</th>
<th>Optimal k</th>
<th>Work at k</th>
<th>Work with 7.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>49</td>
<td>48</td>
</tr>
<tr>
<td>64</td>
<td>3</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>175</td>
<td>192</td>
</tr>
<tr>
<td>256</td>
<td>4</td>
<td>335</td>
<td>384</td>
</tr>
<tr>
<td>512</td>
<td>5</td>
<td>645</td>
<td>768</td>
</tr>
<tr>
<td>1024</td>
<td>6</td>
<td>1257</td>
<td>1536</td>
</tr>
<tr>
<td>2048</td>
<td>6</td>
<td>2452</td>
<td>3072</td>
</tr>
<tr>
<td>4096</td>
<td>7</td>
<td>4808</td>
<td>6144</td>
</tr>
</tbody>
</table>

Figure 7.5: Optimal Values of k for k-ary Exponentiation

7.2.2 Sliding Window Exponentiation

A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \leq g < 2^k$. Essentially, this is a table for all values of g where the most significant bit of g is a one. However, for this to be allowed in the algorithm, values of g in the range $0 \leq g < 2^{k-1}$ must be avoided.

Figure 7.6 lists optimal values of k for various exponent sizes and compares the work required against algorithm 7.4.

<table>
<thead>
<tr>
<th>Exponent (bits)</th>
<th>Optimal k</th>
<th>Work at k</th>
<th>Work with 7.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td>64</td>
<td>4</td>
<td>87</td>
<td>92</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>167</td>
<td>175</td>
</tr>
<tr>
<td>256</td>
<td>5</td>
<td>322</td>
<td>335</td>
</tr>
<tr>
<td>512</td>
<td>6</td>
<td>628</td>
<td>645</td>
</tr>
<tr>
<td>1024</td>
<td>6</td>
<td>1225</td>
<td>1257</td>
</tr>
<tr>
<td>2048</td>
<td>7</td>
<td>2403</td>
<td>2452</td>
</tr>
<tr>
<td>4096</td>
<td>8</td>
<td>4735</td>
<td>4808</td>
</tr>
</tbody>
</table>

Figure 7.6: Optimal Values of k for Sliding Window Exponentiation
Algorithm Sliding Window k-ary Exponentiation.

Input. Integer a, b, k and t

Output. $c = a^b$

1. $c ← 1$
2. for i from $t − 1$ to 0 do
 2.1 If the i'th bit of b is a zero then
 2.1.1 $c ← c^2$
 2.2 else do
 2.2.1 $c ← c^{2^k}$
 2.2.2 Extract the k bits from $(b_ib_{i−1} \ldots b_{i−(k−1)})$ and store it in g.
 2.2.3 $c ← c \cdot a^g$
 2.2.4 $i ← i − (k − 1)$ (We assume there is a decrement of i before the loop re-iterates)
3. Return c.

Figure 7.7: Sliding Window k-ary Exponentiation

Similar to the previous algorithm, this algorithm must have a special handler when fewer than k bits are left in the exponent. While this algorithm requires the same number of squarings, it can potentially have fewer multiplications. The pre-computed table a^g is also half the size as the previous table.

Consider the exponent $b = 11101011001000_2 \equiv 31432_{10}$, with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as the following five 3-bit words $b \equiv (111, 101, 011, 001, 000)_2$. The second algorithm will break the exponent as $b \equiv (111, 101, 0, 110, 0, 100, 0)_2$. The single digit 0 in the second representation is where a single squaring took place instead of a squaring and multiplication. In total, the first method requires 10 multiplications and 18 squarings. The second method requires 8 multiplications and 18 squarings.

In general, the sliding window method is never slower than the generic k-ary method and often is slightly faster (Figure 7.7).

7.3 Modular Exponentiation

Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing $d \equiv a^b \pmod{c}$ is a modular exponentiation. Instead of first computing a^b and then reducing it modulo c, the intermediate result is reduced modulo c after every squaring or multiplication operation.
This guarantees that any intermediate result is bounded by $0 \leq d \leq c^2 - 2c + 1$ and can be reduced modulo c quickly using one of the algorithms presented in Chapter 7.

Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written. This algorithm will allow the exponent b to be negative, which is computed as $c \equiv (1/a)^{|b|} (\text{mod } d)$. The value of $(1/a) \mod c$ is computed using the modular inverse (see Section 9.4). If no inverse exists, the algorithm terminates with an error.

Algorithm **mp_exptmod**.

Input. mp_int a, b and c

Output. $y \equiv g^x (\text{mod } p)$

1. If $c.\text{sign} = \text{MP_NEG}$ return(MP_VAL).
2. If $b.\text{sign} = \text{MP_NEG}$ then
 2.1 $g' \leftarrow g^{-1} (\text{mod } c)$
 2.2 $x' \leftarrow |x|$
 2.3 Compute $d \equiv g'^x (\text{mod } c)$ via recursion.
3. if p is odd OR p is a D.R. modulus then
 3.1 Compute $y \equiv g^x (\text{mod } p)$ via algorithm **mp_exptmod_fast**.
4. else
 4.1 Compute $y \equiv g^x (\text{mod } p)$ via algorithm **s_mp_exptmod**.

Figure 7.8: Algorithm **mp-exptmod**

Algorithm mp_exptmod. The first algorithm that actually performs modular exponentiation is a sliding window k-ary algorithm that uses Barrett reduction to reduce the product modulo p. The second algorithm **mp_exptmod_fast** performs the same operation, except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation algorithm since their arguments are essentially the same (*two mp ints and one mp_digit*) (Figure 7.8).

File: bn_mp_exptmod.c

```c
019 /* this is a shell function that calls either the normal or Montgomery
020 * exptmod functions. Originally the call to the montgomery code was
021 * embedded in the normal function but that wasted alot of stack space
022 * for nothing (since 99% of the time the Montgomery code would be called)
023 */
```
```c
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
    int dr;

    /* modulus P must be positive */
    if (P->sign == MP_NEG) {
        return MP_VAL;
    }

    /* if exponent X is negative we have to recurse */
    if (X->sign == MP_NEG) {
        #ifdef BN_MP_INVMOD_C
            mp_int tmpG, tmpX;
            int err;

            /* first compute 1/G mod P */
            if ((err = mp_init(&tmpG)) != MP_OKAY) {
                return err;
            }

            if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
                mp_clear(&tmpG);
                return err;
            }

            /* now get |X| */
            if ((err = mp_init(&tmpX)) != MP_OKAY) {
                mp_clear(&tmpG);
                return err;
            }

            if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
                mp_clear_multi(&tmpG, &tmpX, NULL);
                return err;
            }

            /* and now compute (1/G)**|X| instead of G**X [X < 0] */
            err = mp_exptmod(&tmpG, &tmpX, P, Y);
            mp_clear_multi(&tmpG, &tmpX, NULL);
            return err;
        #else
            /* no invmod */
            return MP_VAL;
        #endif
    }
```
7.3 Modular Exponentiation

```c
#endif

/* modified diminished radix reduction */
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
if (mp_reduce_is_2k_l(P) == MP_YES) {
    return s_mp_exptmod(G, X, P, Y, 1);
}
#endif

#ifdef BN_MP_DR_IS_MODULUS_C
/* is it a DR modulus? */
dr = mp_dr_is_modulus(P);
#else
/* default to no */
dr = 0;
#endif

#ifdef BN_MP_REDUCE_IS_2K_C
/* if not, is it an unrestricted DR modulus? */
if (dr == 0) {
    dr = mp_reduce_is_2k(P) << 1;
}
#endif

/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if (mp_isodd (P) == 1 || dr != 0) {
    return mp_exptmod_fast (G, X, P, Y, dr);
} else {
#endif
#ifdef BN_S_MP_EXPTMOD_C
/* otherwise use the generic Barrett reduction technique */
return s_mp_exptmod (G, X, P, Y, 0);
#else
/* no exptmod for evens */
return MP_VAL;
#endif
#endif
```
To keep the algorithms in a known state, the first step on line 29 is to reject any negative modulus as input. If the exponent is negative, the algorithm tries to perform a modular exponentiation with the modular inverse of the base G. The temporary variable $tmpG$ is assigned the modular inverse of G, and $tmpX$ is assigned the absolute value of X. The algorithm will call itself with these new values with a positive exponent.

If the exponent is positive, the algorithm resumes the exponentiation. Line 77 determines if the modulus is of the restricted Diminished Radix form. If it is not, line 86 attempts to determine if it is of an unrestricted Diminished Radix form. The integer dr will take on one of three values.

1. $dr = 0$ means that the modulus is not either restricted or unrestricted Diminished Radix form.

2. $dr = 1$ means that the modulus is of restricted Diminished Radix form.

3. $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.

Line 49 determines if the fast modular exponentiation algorithm can be used. It is allowed if $dr \neq 0$ or if the modulus is odd. Otherwise, the slower `smp_exptmod` algorithm is used, which uses Barrett reduction.
7.3 Modular Exponentiation

7.3.1 Barrett Modular Exponentiation

Algorithm \texttt{mp_exptmod}.

\textbf{Input.} mp_int \(a, b\) and \(c\)

\textbf{Output.} \(y \equiv g^x \pmod{p}\)

1. \(k \leftarrow \log(x)\)
 \[
 \begin{cases}
 2 & \text{if } k \leq 7 \\
 3 & \text{if } 7 < k \leq 36 \\
 4 & \text{if } 36 < k \leq 140 \\
 5 & \text{if } 140 < k \leq 450 \\
 6 & \text{if } 450 < k \leq 1303 \\
 7 & \text{if } 1303 < k \leq 3529 \\
 8 & \text{if } 3529 < k \\
 \end{cases}
 \]

2. \(\text{winsize} \leftarrow\)

3. Initialize \(2^\text{winsize}\) mp_ints in an array named \(M\) and one mp_int named \(\mu\)

4. Calculate the \(\mu\) required for Barrett Reduction (\texttt{mp_reduce_setup}).

5. \(M_1 \leftarrow g \pmod{p}\)

Set up the table of small powers of \(g\). First find \(g^{2^\text{winsize}}\) and then all the multiples of it.

6. \(k \leftarrow 2^{\text{winsize}-1}\)

7. \(M_k \leftarrow M_1\)

8. for \(ix\) from 0 to \(\text{winsize} - 2\) do
 \[
 \begin{align*}
 &8.1 M_k \leftarrow (M_k)^2 \text{ (mp_sqr)} \\
 &8.2 M_k \leftarrow M_k \pmod{p} \text{ (mp_reduce)}
 \end{align*}
 \]

9. for \(ix\) from \(2^\text{winsize} - 1\) + 1 to \(2^\text{winsize} - 1\) do
 \[
 \begin{align*}
 &9.1 M_{ix} \leftarrow M_{ix-1} \cdot M_1 \text{ (mp_mul)} \\
 &9.2 M_{ix} \leftarrow M_{ix} \pmod{p} \text{ (mp_reduce)}
 \end{align*}
 \]

10. \(\text{res} \leftarrow 1\)

Start Sliding Window.

11. \(\text{mode} \leftarrow 0, \text{bitcnt} \leftarrow 1, \text{buf} \leftarrow 0, \text{digidx} \leftarrow x_used - 1, \text{bitcpy} \leftarrow 0, \text{bitbuf} \leftarrow 0\)

Continued on next page.
Algorithm $s_{\text{mp_exptmod}}$ (continued).

Input. mp_int a, b and c

Output. $y \equiv g^x \pmod{p}$

12. Loop

12.1 $\text{bitcnt} \leftarrow \text{bitcnt} - 1$

12.2 If $\text{bitcnt} = 0$ then do

12.2.1 If $\text{digidx} = -1$ goto step 13.

12.2.2 $\text{buf} \leftarrow x_{\text{digidx}}$

12.2.3 $\text{digidx} \leftarrow \text{digidx} - 1$

12.2.4 $\text{bitcnt} \leftarrow \lg(\beta)$

12.3 $y \leftarrow (\text{buf} >> (\lg(\beta) - 1)) \text{ AND } 1$

12.4 $\text{buf} \leftarrow \text{buf} \ll 1$

12.5 if $\text{mode} = 0$ and $y = 0$ then goto step 12.

12.6 if $\text{mode} = 1$ and $y = 0$ then do

12.6.1 $\text{res} \leftarrow \text{res}^2$

12.6.2 $\text{res} \leftarrow \text{res} \pmod{p}$

12.6.3 Goto step 12.

12.7 $\text{bitcpy} \leftarrow \text{bitcpy} + 1$

12.8 $\text{bitbuf} \leftarrow \text{bitbuf} + (y \ll (\text{winsize} - \text{bitcpy}))$

12.9 $\text{mode} \leftarrow 2$

12.10 If $\text{bitcpy} = \text{winsize}$ then do

Window is full so perform the squarings and single multiplication.

12.10.1 for ix from 0 to $\text{winsize} - 1$ do

12.10.1.1 $\text{res} \leftarrow \text{res}^2$

12.10.1.2 $\text{res} \leftarrow \text{res} \pmod{p}$

12.10.2 $\text{res} \leftarrow \text{res} \cdot M_{\text{bitbuf}}$

12.10.3 $\text{res} \leftarrow \text{res} \pmod{p}$

Reset the window.

12.10.4 $\text{bitcpy} \leftarrow 0, \text{bitbuf} \leftarrow 0, \text{mode} \leftarrow 1$

Continued on the next page.
Algorithm \texttt{mp_exptmod} (continued).
\textbf{Input.} mp_int \(a, b\) and \(c\)
\textbf{Output.} \(y \equiv g^x \pmod{p}\)

No more windows left. Check for residual bits of exponent.

13. If \(mode = 2\) and \(bitcpy > 0\) then do
 13.1 for \(ix\) form 0 to \(bitcpy - 1\) do
 13.1.1 \(res \leftarrow res^2\)
 13.1.2 \(res \leftarrow res \pmod{p}\)
 13.1.3 \(bitbuf \leftarrow bitbuf << 1\)
 13.1.4 If \(bitbuf \text{ AND } 2^\text{winsize} \neq 0\) then do
 13.1.4.1 \(res \leftarrow res \cdot M_1\)
 13.1.4.2 \(res \leftarrow res \pmod{p}\)
 14. \(y \leftarrow res\)
15. Clear \(res, mu\) and the \(M\) array.
16. Return(\texttt{MP_OKAY}).

Figure 7.9: Algorithm \texttt{mp_exptmod}

Algorithm \texttt{mp_exptmod}. This algorithm computes the \(x\)'th power of \(g\) modulo \(p\) and stores the result in \(y\). It takes advantage of the Barrett reduction algorithm to keep the product small throughout the algorithm (Figure 7.9).

The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent, the larger the window size becomes. After a window size \(\text{winsize}\) has been chosen, an array of \(2^\text{winsize}\) mp_int variables is allocated. This table will hold the values of \(g^x \pmod{p}\) for \(2^\text{winsize}-1 \leq x < 2^\text{winsize}\).

After the table is allocated, the first power of \(g\) is found. Since \(g \geq p\) is allowed it must be first reduced modulo \(p\) to make the rest of the algorithm more efficient. The first element of the table at \(2^\text{winsize}-1\) is found by squaring \(M_1\) successively \(\text{winsize} - 2\) times. The rest of the table elements are found by multiplying the previous element by \(M_1\) modulo \(p\).

Now that the table is available, the sliding window may begin (Figure 7.10). The following list describes the functions of all the variables in the window.

1. The variable \(mode\) dictates how the bits of the exponent are interpreted.

 (a) When \(mode = 0\), the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
1, then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.

(b) When $mode = 1$, a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode, leading 0 bits are read and a single squaring is performed. If a non-zero bit is read, a new window is created.

(c) When $mode = 2$, the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit downwards.

2. The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero, a new digit is fetched from the exponent.

3. The variable buf holds the currently read digit of the exponent.

4. The variable $digidx$ is an index into the exponent’s digits. It starts at the leading digit $x.used - 1$ and moves toward the trailing digit.

5. The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and the appropriate operations performed.

6. The variable $bitbuf$ holds the current bits of the window being formed.

Step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left, a new digit is read, and if there are no digits left, the loop terminates.

After a digit is made available, step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit upwards. In effect, the digit is read from most significant bit to least significant bit, and since the digits are read from leading to trailing edges, the entire exponent is read from most significant bit to least significant bit.

At step 12.5, if the $mode$ and currently extracted bit y are both zero the bit is ignored and the next bit is read. This prevents the algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read. Steps 12.6 and 12.7 through 12.10 handle the two cases of $mode = 1$ and $mode = 2$, respectively.
By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If mode = 2 then a Left-to-Right algorithm is used to process the remaining few bits.

File: bn_s_mp_exptmod.c

```c
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) {
    mp_int M[TAB_SIZE], res, mu;
    mp_digit buf;
    int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
    int (*redux)(mp_int*,mp_int*,mp_int*);

    /* find window size */
    x = mp_count_bits (X);
    if (x <= 7) {
        winsize = 2;
    }
```
```c
} else if (x <= 36) {
    winsize = 3;
} else if (x <= 140) {
    winsize = 4;
} else if (x <= 450) {
    winsize = 5;
} else if (x <= 1303) {
    winsize = 6;
} else if (x <= 3529) {
    winsize = 7;
} else {
    winsize = 8;
}

#ifdef MP_LOW_MEM
    if (winsize > 5) {
        winsize = 5;
    }
#endif

/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
    return err;
}

/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init(&M[x])) != MP_OKAY) {
        for (y = 1<<(winsize-1); y < x; y++) {
            mp_clear (&M[y]);
        }
        mp_clear(&M[1]);
        return err;
    }
}

/* create mu, used for Barrett reduction */
if ((err = mp_init (&mu)) != MP_OKAY) {
    goto LBL_M;
}
```
if (redmode == 0) {
 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 goto LBL_MU;
 }
 redux = mp_reduce;
} else {
 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
 goto LBL_MU;
 }
 redux = mp_reduce_2k_l;
}

/* create M table

* The M table contains powers of the base,
* e.g. M[x] = G**x mod P
* The first half of the table is not
* computed except for M[0]=1 and M[1]=g
*/
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 goto LBL_MU;
}

/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = mp_copy (&M[1], &M[1 << (winsize-1)])) != MP_OKAY) {
 goto LBL_MU;
}

for (x = 0; x < (winsize - 1); x++) {
 /* square it */
 if ((err = mp_sqr (&M[1 << (winsize-1)],
 &M[1 << (winsize-1)])) != MP_OKAY) {
 goto LBL_MU;
 }
}

/* reduce modulo P */
if ((err = redux (&M[1 << (winsize-1)], P, &mu)) != MP_OKAY) {
goto LBL_MU;
}
}

/* create upper table, that is \(M[x] = M[x-1] \times M[1] \) (mod P)
* for \(x = (2**(\text{winsize} - 1) + 1) \) to \((2**\text{winsize} - 1) \)
*/
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 goto LBL_MU;
 }
 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
 goto LBL_MU;
 }
}

/* setup result */
if ((err = mp_init (&res)) != MP_OKAY) {
 goto LBL_MU;
}
mp_set (&res, 1);

/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;

for (;;) {
 /* grab next digit as required */
 if (--bitcnt == 0) {
 /* if digidx == -1 we are out of digits */
 if (digidx == -1) {
 break;
 }
 }
 /* read next digit and reset the bitcnt */
 buf = X->dp[digidx--];
 bitcnt = (int) DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;

/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0) {
 continue;
}

/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 goto LBL_RES;
 }
 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 goto LBL_RES;
 }
 continue;
}

/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;

if (bitcpy == winsize) {
 /* ok window is filled so square as required and multiply */
 /* square first */
 for (x = 0; x < winsize; x++) {
 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 goto LBL_RES;
 }
 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 goto LBL_RES;
 }
 }
 goto LBL_RES;
}

7.3 Modular Exponentiation
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 goto LBL_RES;
}

if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 goto LBL_RES;
}

/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}

/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
 /* square then multiply if the bit is set */
 for (x = 0; x < bitcpy; x++) {
 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 goto LBL_RES;
 }
 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 goto LBL_RES;
 }
 }
 bitbuf <<= 1;
 if ((bitbuf & (1 << winsize)) != 0) {
 /* then multiply */
 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 goto LBL_RES;
 }
 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 goto LBL_RES;
 }
 }
}

mp_exch (&res, Y);
err = MP_OKAY;
7.3 Modular Exponentiation

Lines 32 through 46 determine the optimal window size based on the length of the exponent in bits. The window divisions are sorted from smallest to greatest so that in each if statement, only one condition must be tested. For example, by the if statement on line 38 the value of \(x \) is already known to be greater than 140.

The conditional piece of code beginning on line 48 allows the window size to be restricted to five bits. This logic is used to ensure the table of precomputed powers of \(G \) remains relatively small.

The for loop on line 61 initializes the \(M \) array, while lines 72 and 77 through 86 initialize the reduction function that will be used for this modulus. Next, we populate (lines 88 through 129) the \(M \) table with the appropriate powers of \(g \). At this point, we are ready to start the sliding window (lines 138 through 144), and begin processing bits of the exponent.

The first block of code inside the for loop extracts the next digit as required. We enter this loop initially in the state of requiring the next digit, which is why \(bitcnt \) is initially set to 1. Once we have a digit we can extract the most significant bit (line 159). If the bit is zero, and we have not seen a non–zero bit yet we jump to the top of the loop. Otherwise, we either square and loop (lines 171 through 179) or add the bit to the window.

Note on line 176 how we call the reduction function through our callback pointer \(redux \). Provided the function has a consistent calling interface, it could be literally any sort of reduction function.

The block of code starting on line 213 is used to handle cases where the window was not complete. In this case, we use a left–to–right exponentiation on single bits. Since the windows are small, this will involve doing at most 4 to 7 square–multiply steps which is acceptable given the runtime of the remainder of the algorithm.
7.4 Quick Power of Two

Calculating \(b = 2^a \) can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left \(m << k \) is equivalent to \(m \cdot 2^k \). By this logic, when \(m = 1 \) a quick power of two can be achieved.

<table>
<thead>
<tr>
<th>Algorithm mp_2expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input. integer (b)</td>
</tr>
<tr>
<td>Output. (a = 2^b)</td>
</tr>
</tbody>
</table>

1. \(a \leftarrow 0 \)
2. If \(a.\text{alloc} < \lfloor b/\log(\beta) \rfloor + 1 \) then grow \(a \) appropriately.
3. \(a.\text{used} \leftarrow \lfloor b/\log(\beta) \rfloor + 1 \)
4. \(a_{\lfloor b/\log(\beta) \rfloor} \leftarrow 1 << (b \mod \log(\beta)) \)
5. Return(\text{MP_OKAY}).

Figure 7.11: Algorithm mp_2expt

Algorithm mp_2expt. This algorithm computes a quick power of two by setting the desired bit of the result. It is used by various reduction functions such as Barrett and Montgomery (Figure 7.11).

File: bn_mp_2expt.c

```c
018 /* computes a = 2**b */
019 *
020 * Simple algorithm which zeroes the int, grows it then just sets one bit
021 * as required.
022 */
023 int
024 mp_2expt (mp_int * a, int b)
025 {
026     int res;
027     /* zero a as per default */
028     mp_zero (a);
029     /* grow a to accommodate the single bit */
030     if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
031         return res;
032     }
033 }
```
/* set the used count of where the bit will go */
a->used = b / DIGIT_BIT + 1;

/* put the single bit in its place */
a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
return MP_OKAY;
Exercises

[2] Devise an algorithm to perform square and multiply exponentiation by reading the exponent from right to left.

[5] Explore the use of exponent recoding (such as signed representations). Describe situations where it could be beneficial.

[5] Devise an exponentiation algorithm which does not leak timing information. Try to avoid using randomization.

[5] Explore the use of vector addition chains. Develop a greedy encoding algorithm which can beat algorithm `smp.exptmod` for static (fixed), and then random exponents.
Chapter 8

Higher Level Algorithms

This chapter discusses the various higher level algorithms that are required to complete a well-rounded multiple precision integer package. These routines are less performance oriented than the algorithms in Chapters 5, 6, and 7, but are no less important.

The first section describes a method of integer division with remainder that is universally well known. It provides the signed division logic for the package. The subsequent section discusses a set of algorithms that allow a single digit to be the 2nd operand for a variety of operations. These algorithms serve mostly to simplify other algorithms where small constants are required. The last two sections discuss how to manipulate various representations of integers; for example, converting from an mp_int to a string of character.

8.1 Integer Division with Remainder

Integer division aside from modular exponentiation is the most intensive algorithm to compute. Like addition, subtraction, and multiplication, the basis of this algorithm is the long-hand division algorithm taught to schoolchildren. Throughout this discussion several common variables will be used. Let \(x \) represent the divisor and \(y \) represent the dividend. Let \(q \) represent the integer quotient \(\lfloor y/x \rfloor \) and let \(r \) represent the remainder \(r = y - x\lfloor y/x \rfloor \). The following simple algorithm will be used to start the discussion (Figure 8.1).
Figure 8.1: Algorithm Radix-β Integer Division

As children we are taught this very simple algorithm for the case of $\beta = 10$. Almost instinctively, several optimizations are taught for which their reason of existing are never explained. For this example, let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.

To find the first digit of the quotient the value of k must be maximized such that $kx\beta^t$ is less than or equal to y, and simultaneously $(k + 1)x\beta^t$ is greater than y. Implicitly, k is the maximum value the t'th digit of the quotient may have. The habitual method used to find the maximum is to “eyeball” the two numbers, typically only the leading digits, and quickly estimate a quotient. By only using leading digits, a much simpler division may be used to form an educated guess at what the value must be. In this case, $k = [54/23] = 2$ quickly arises as a possible solution. Indeed, $2x\beta^2 = 4600$ is less than $y = 5471$, and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than y. As a result, $k\beta^2$ is added to the quotient which now equals $q = 200$, and 4600 is subtracted from y to give a remainder of $y = 841$.

This process is repeated to produce the quotient digit $k = 3$, which makes the quotient $q = 200 + 3\beta = 230$ and the remainder $y = 841 - 3x\beta = 181$. Finally, the last iteration of the loop produces $k = 7$, which leads to the quotient $q = 230 + 7 = 237$ and the remainder $y = 181 - 7x = 20$. The final quotient and remainder found are $q = 237$ and $r = y = 20$, which are indeed correct since $237 \cdot 23 + 20 = 5471$ is true.
8.1 Integer Division with Remainder

8.1.1 Quotient Estimation

As alluded to earlier, the quotient digit k can be estimated from only the leading digits of both the divisor and dividend. When p leading digits are used from both the divisor and dividend to form an estimation, the accuracy of the estimation rises as p grows. Technically speaking, the estimation is based on assuming the lower $||y||-p$ and $||x||-p$ lower digits of the dividend and divisor are zero.

The value of the estimation may off by a few values in either direction and in general is fairly correct. A simplification [1, pp. 271] of the estimation technique is to use $t+1$ digits of the dividend and t digits of the divisor, particularly when $t = 1$. The estimate using this technique is never too small. For the following proof, let $t = ||y|| - 1$ and $s = ||x|| - 1$ represent the most significant digits of the dividend and divisor, respectively.

Theorem. The quotient $\hat{k} = \lfloor (y_t \beta + y_{t-1})/x_s \rfloor$ is greater than or equal to $k = \lfloor y/(x \cdot \beta ||y||-||x||-1) \rfloor$.

Proof. Adapted from [1, pp. 271]. The first obvious case is when $\hat{k} = \beta - 1$, in which case the proof is concluded since the real quotient cannot be larger. For all other cases $\hat{k} = \lfloor (y_t \beta + y_{t-1})/x_s \rfloor$ and $\hat{k} x_s \geq y_t \beta + y_{t-1} - x_s + 1$. The latter portion of the inequality $-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values. Next, a series of inequalities will prove the hypothesis.

$$y - \hat{k} x \leq y - \hat{k} x_s \beta^s$$ \hspace{1cm} (8.1)

This is trivially true since $x \geq x_s \beta^s$. Next, we replace $\hat{k} x_s \beta^s$ by the previous inequality for $\hat{k} x_s$.

$$y - \hat{k} x \leq y_t \beta^t + \ldots + y_0 - (y_t \beta^t + y_{t-1} \beta^{t-1} - x_s \beta^t + \beta^s)$$ \hspace{1cm} (8.2)

By simplifying the previous inequality the following inequality is formed.

$$y - \hat{k} x \leq y_{t-2} \beta^{t-2} + \ldots + y_0 + x_s \beta^s - \beta^s$$ \hspace{1cm} (8.3)

Subsequently,

$$y_{t-2} \beta^{t-2} + \ldots + y_0 + x_s \beta^s - \beta^s < x_s \beta^s \leq x$$ \hspace{1cm} (8.4)

which proves that $y - \hat{k} x \leq x$ and by consequence $\hat{k} \geq k$, which concludes the proof.
QED

8.1.2 Normalized Integers

For the purposes of division, a normalized input is when the divisor’s leading digit x_n is greater than or equal to $\beta/2$. By multiplying both x and y by $j = \lfloor (\beta/2)/x_n \rfloor$, the quotient remains unchanged and the remainder is simply j times the original remainder. The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will lie in the domain of a single digit. Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta/2$.

$$\frac{\beta^2 - 1}{\beta/2} \leq 2\beta - \frac{2}{\beta} \quad (8.5)$$

At most, the quotient approaches 2β; however, in practice this will not occur since that would imply the previous quotient digit was too small.
Algorithm \texttt{mp}$_{\text{div}}$.

\textbf{Input.} \texttt{mp}$_{\text{int}}$ \(a, b\)

\textbf{Output.} \(c = \lfloor a/b \rfloor, d = a - bc\)

1. If \(b = 0\) return(\texttt{MP}_\text{VAL}).
2. If \(|a| < |b|\) then do
 2.1 \(d \leftarrow a\)
 2.2 \(c \leftarrow 0\)
 2.3 Return(\texttt{MP}_\text{OKAY}).

Setup the quotient to receive the digits.
3. Grow \(q\) to \(a.\text{used} + 2\) digits.
4. \(q \leftarrow 0\)
5. \(x \leftarrow |a|, y \leftarrow |b|\)
6. \(\text{sign} \leftarrow \begin{cases} \text{MP}_\text{ZPOS} & \text{if } a.\text{sign} = b.\text{sign} \\ \text{MP}_\text{NEG} & \text{otherwise} \end{cases}\)

Normalize the inputs such that the leading digit of \(y\) is greater than or equal to \(\beta/2\).
7. \(\text{norm} \leftarrow (\log(\beta) - 1) - (\lceil \log(y) \rceil \mod \log(\beta))\)
8. \(x \leftarrow x \cdot 2^{\text{norm}}, y \leftarrow y \cdot 2^{\text{norm}}\)

Find the leading digit of the quotient.
9. \(n \leftarrow x.\text{used} - 1, t \leftarrow y.\text{used} - 1\)
10. \(y \leftarrow y \cdot \beta^{n-t}\)
11. While \((x \geq y)\) do
 11.1 \(q_{n-t} \leftarrow q_{n-t} + 1\)
 11.2 \(x \leftarrow x - y\)
12. \(y \leftarrow \lfloor y/\beta^{n-t} \rfloor\)

Continued on the next page.
Algorithm mp_div (continued).

Input. $\text{mp_int } a, b$

Output. $c = \lfloor a/b \rfloor$, $d = a - bc$

Now find the remainder for the digits.

13. for i from n down to $(t + 1)$ do
 13.1 If $i > x.used$ then jump to the next iteration of this loop.
 13.2 If $x_i = y_t$ then
 13.2.1 $q_{i-t-1} \leftarrow \beta - 1$
 13.3 else
 13.3.1 $\hat{r} \leftarrow x_i \cdot \beta + x_{i-1}$
 13.3.2 $\hat{r} \leftarrow \lfloor \hat{r}/y_t \rfloor$
 13.3.3 $q_{i-t-1} \leftarrow \hat{r}$
 13.4 $q_{i-t-1} \leftarrow q_{i-t-1} + 1$

Fixup quotient estimation.

13.5 Loop
 13.5.1 $q_{i-t-1} \leftarrow q_{i-t-1} - 1$
 13.5.2 $t1 \leftarrow 0$
 13.5.3 $t1_0 \leftarrow y_{t-1}$, $t1_1 \leftarrow y_t$, $t1.used \leftarrow 2$
 13.5.4 $t1 \leftarrow t1 \cdot q_{i-t-1}$
 13.5.5 $t2_0 \leftarrow x_{i-2}$, $t2_1 \leftarrow x_{i-1}$, $t2_2 \leftarrow x_i$, $t2.used \leftarrow 3$
 13.5.6 If $|t1| > |t2|$ then goto step 13.5.
 13.6 $t1 \leftarrow y \cdot q_{i-t-1}$
 13.7 $t1 \leftarrow t1 \cdot \beta^{i-t-1}$
 13.8 $x \leftarrow x - t1$
 13.9 If $x.sign = \text{MP_NEG}$ then
 13.10 $t1 \leftarrow y$
 13.11 $t1 \leftarrow t1 \cdot \beta^{i-t-1}$
 13.12 $x \leftarrow x + t1$
 13.13 $q_{i-t-1} \leftarrow q_{i-t-1} - 1$

Continued on the next page.
Algorithm \texttt{mp_div} (continued).
\begin{itemize}
 \item \textbf{Input.} \texttt{mp_int} \texttt{a,b}
 \item \textbf{Output.} \texttt{c} = \lfloor \texttt{a/b} \rfloor, \texttt{d} = \texttt{a} - \texttt{bc}
\end{itemize}

Finalize the result.
14. Clamp excess digits of \texttt{q}
15. \texttt{c} ← \texttt{q}, \texttt{c.sign} ← \texttt{sign}
16. \texttt{x.sign} ← \texttt{a.sign}
17. \texttt{d} ← \lfloor \texttt{x/2}^{\texttt{norm}} \rfloor
18. Return(\texttt{MP_OKAY}).

Figure 8.2: Algorithm \texttt{mp_div}

\textbf{Algorithm \texttt{mp_div}.} This algorithm will calculate the quotient and remainder from an integer division given a dividend and divisor. The algorithm is a signed division and will produce a fully qualified quotient and remainder (Figure 8.2).

First, the divisor \texttt{b} must be non-zero, which is enforced in step 1. If the divisor is larger than the dividend, the quotient is implicitly zero and the remainder is the dividend.

After the first two trivial cases of inputs are handled, the variable \texttt{q} is set up to receive the digits of the quotient. Two unsigned copies of the divisor \texttt{y} and dividend \texttt{x} are made as well. The core of the division algorithm is an unsigned division and will only work if the values are positive. Now the two values \texttt{x} and \texttt{y} must be normalized such that the leading digit of \texttt{y} is greater than or equal to \(\beta/2\). This is performed by shifting both to the left by enough bits to get the desired normalization.

At this point, the division algorithm can begin producing digits of the quotient. Recall that maximum value of the estimation used is \(2\beta - \frac{2}{\beta}\), which means that a digit of the quotient must be first produced by another means. In this case, \texttt{y} is shifted to the left (\textit{step 10}) so that it has the same number of digits as \texttt{x}. The loop in step 11 will subtract multiples of the shifted copy of \texttt{y} until \texttt{x} is smaller. Since the leading digit of \texttt{y} is greater than or equal to \(\beta/2\), this loop will iterate at most two times to produce the desired leading digit of the quotient.

Now the remainder of the digits can be produced. The equation \(\hat{q} = \left\lfloor \frac{x_{i+\beta} + x_{i-1}}{y_{i-1}} \right\rfloor\) is used to fairly accurately approximate the true quotient digit. The estimation can in theory produce an estimation as high as \(2\beta - \frac{2}{\beta}\), but by induction the upper quotient digit is correct (\textit{as established in step 11}) and the estimate must be less than \(\beta\).
Recall from section 8.1.1 that the estimation is never too low but may be too high. The next step of the estimation process is to refine the estimation. The loop in step 13.5 uses \(x_i\beta^2 + x_{i-1}\beta + x_{i-2} \) and \(q_{i-t-1}(y_t\beta + y_{t-1}) \) as a higher order approximation to adjust the quotient digit.

After both phases of estimation the quotient digit may still be off by a value of one\(^1\). Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (similar to step 3.3 of algorithm 8.1) and then add a multiple of the divisor if the quotient was too large.

Now that the quotient has been determined, finalizing the result is a matter of clamping the quotient, fixing the sizes, and de-normalizing the remainder. An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC 2, pp. 598] is that when the estimations are being made (inside the loop in step 13.5), that the digits \(y_{t-1}, x_{i-2} \) and \(x_{i-1} \) may lie outside their respective boundaries. For example, if \(t = 0 \) or \(i \leq 1 \) then the digits would be undefined. In those cases, the digits should respectively be replaced with a zero.

\(^1\)This is similar to the error introduced by optimizing Barrett reduction.
8.1 Integer Division with Remainder

```c
if (c != NULL) {
    mp_zero (c);
    return res;
}

/* init our temps */
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
    return res;
}

mp_set(&tq, 1);

n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
    ((res = mp_abs(b, &tb)) != MP_OKAY) ||
    ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
    ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
    goto LBL_ERR;
}

while (n-- >= 0) {
    if (mp_cmp(&tb, &ta) != MP_GT) {
        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
            goto LBL_ERR;
        }
    }
    if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
        ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
        goto LBL_ERR;
    }
}

/* now q == quotient and ta == remainder */
n = a->sign;
n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
if (c != NULL) {
    mp_exch(c, &q);
    c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
}
```

if (d != NULL) {
 mp_exch(d, &ta);
 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
}

LBL_ERR:
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
return res;

#else
/* integer signed division.
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 * Note that the description in HAC is horribly
 * incomplete. For example, it doesn't consider
 * the case where digits are removed from 'x' in
 * the inner loop. It also doesn't consider the
 * case that y has fewer than three digits, etc..
 * The overall algorithm is as described as
 * 14.20 from HAC but fixed to treat these cases.
 */
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
 mp_int q, x, y, t1, t2;
 int res, n, t, i, norm, neg;
 /* is divisor zero ? */
 if (mp_iszero (b) == 1) {
 return MP_VAL;
 }

 /* if a < b then q=0, r = a */
 if (mp_cmp_mag (a, b) == MP_LT) {
 if (d != NULL) {
 res = mp_copy (a, d);
 } else {
 res = MP_OKAY;
 }
 }
8.1 Integer Division with Remainder

```c
if (c != NULL) {
    mp_zero (c);
    return res;
}

if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
    return res;
    q.used = a->used + 2;
}

if ((res = mp_init (&t1)) != MP_OKAY) {
    goto LBL_Q;
}

if ((res = mp_init (&t2)) != MP_OKAY) {
    goto LBL_T1;
}

if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
    goto LBL_T2;
}

if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
    goto LBL_X;
}

/* fix the sign */
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
    x.sign = y.sign = MP_ZPOS;

/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
    norm = mp_count_bits(&y) % DIGIT_BIT;
    if (norm < (int)(DIGIT_BIT-1)) {
        norm = (DIGIT_BIT-1) - norm;
        if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
            goto LBL_Y;
        }
        if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
            goto LBL_Y;
        }
    }
```

} else {
 norm = 0;
}

/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
165 n = x.used - 1;
166 t = y.used - 1;
167
168 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
169 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
 goto LBL_Y;
}
170
171 while (mp_cmp (&x, &y) != MP_LT)
172 {
173 ++(q.dp[n - t]);
174 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY)
175 {
176 goto LBL_Y;
177 }
178 }
179
180 /* reset y by shifting it back down */
181 mp_rshd (&y, n - t);
182
183 /* step 3. for i from n down to (t + 1) */
184 for (i = n; i >= (t + 1); i--)
185 {
186 if (i > x.used) {
187 continue;
188 }
189
190 /* step 3.1 if xi == yt then set q{i-t-1} to b-1, *
191 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
192 if (x.dp[i] == y.dp[t])
193 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
194 else {
195 mp_word tmp;
196 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
197 tmp |= ((mp_word) x.dp[i - 1]);
198 tmp /= ((mp_word) y.dp[t]);
199 if (tmp > (mp_word) MP_MASK)
200 tmp = MP_MASK;
201 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)));
8.1 Integer Division with Remainder

```c
/* while (q[i-t-1] * (yt * b + y[t-1])) >
   xi * b**2 + xi-1 * b + xi-2
   do q[i-t-1] -= 1;
*/
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
do {
  q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
/* find left hand */
mp_zero(&t1);
t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
t1.dp[1] = y.dp[t];
t1.used = 2;
if ((res = mp_mul_d(&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
  goto LBL_Y;
}
/* find right hand */
t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
t2.dp[2] = x.dp[i];
t2.used = 3;
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
/* step 3.3 x = x - q[i-t-1] * y * b**(i-t-1) */
if ((res = mp_mul_d(&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
  goto LBL_Y;
}
if ((res = mp_lshd(&t1, i - t - 1)) != MP_OKAY) {
  goto LBL_Y;
}
if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) {
  goto LBL_Y;
}
/* if x < 0 then { x = x + y*b**(i-t-1); q[i-t-1] -= 1; } */
```
if (x.sign == MP_NEG) {
 if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
 goto LBL_Y;
 }
 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
 goto LBL_Y;
 }
 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
}

/* now q is the quotient and x is the remainder
 * [which we have to normalize]
 */
/* get sign before writing to c */
x.sign = x.used == 0 ? MP_ZPOS : a->sign;

if (c != NULL) {
 mp_clamp (&q);
 mp_exch (&q, c);
 c->sign = neg;
}

if (d != NULL) {
 mp_div_2d (&x, norm, &x, NULL);
 mp_exch (&x, d);
}
res = MP_OKAY;

LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
LBL_Q:mp_clear (&q);
return res;
The implementation of this algorithm differs slightly from the pseudo-code presented previously. In this algorithm, either of the quotient \(c \) or remainder \(d \) may be passed as a NULL pointer, which indicates their value is not desired. For example, the C code to call the division algorithm with only the quotient is

```c
mp_div(&a, &b, &c, NULL); /* c = \lfloor a/b \rfloor */
```

Lines 109 and 113 handle the two trivial cases of inputs, which are division by zero and dividend smaller than the divisor, respectively. After the two trivial cases all of the temporary variables are initialized. Line 148 determines the sign of the quotient, and line 148 ensures that both \(x \) and \(y \) are positive.

The number of bits in the leading digit is calculated on line 151. Implicitly, an mp_int with \(r \) digits will require \(\lg(\beta)(r - 1) + k \) bits of precision that when reduced modulo \(\lg(\beta) \) produces the value of \(k \). In this case, \(k \) is the number of bits in the leading digit, which is exactly what is required. For the algorithm to operate, \(k \) must equal \(\lg(\beta) - 1 \), and when it does not, the inputs must be normalized by shifting them to the left by \(\lg(\beta) - 1 - k \) bits.

Throughout, the variables \(n \) and \(t \) will represent the highest digit of \(x \) and \(y \), respectively. These are first used to produce the leading digit of the quotient. The loop beginning on line 184 will produce the remainder of the quotient digits.

The conditional “continue” on line 187 is used to prevent the algorithm from reading past the leading edge of \(x \), which can occur when the algorithm eliminates multiple non-zero digits in a single iteration. This ensures that \(x_i \) is always non-zero since by definition the digits above the \(i \)’th position \(x \) must be zero for the quotient to be precise\(^2\).

Lines 215, 216, and 223 through 225 manually construct the high accuracy estimations by setting the digits of the two mp_int variables directly.

8.2 Single Digit Helpers

This section briefly describes a series of single digit helper algorithms that come in handy when working with small constants. All the helper functions assume the

\(^2\)Precise as far as integer division is concerned.
single digit input is positive and will treat them as such.

8.2.1 Single Digit Addition and Subtraction

Both addition and subtraction are performed by “cheating” and using mp_set followed by the higher level addition or subtraction algorithms. As a result, these algorithms are substantially simpler with a slight cost in performance.

<table>
<thead>
<tr>
<th>Algorithm mp_add_d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input. mp_int a and a mp_digit b</td>
</tr>
<tr>
<td>Output. c = a + b</td>
</tr>
</tbody>
</table>

1. t ← b (mp_set)
2. c ← a + t
3. Return(MP_OKAY)

Figure 8.3: Algorithm mp_add_d

Algorithm mp_add_d. This algorithm initiates a temporary mp_int with the value of the single digit and uses algorithm mp_add to add the two values together (Figure 8.3).

File: bn_mp_add_d.c
018 /* single digit addition */
019 int
020 mp_add_d (mp_int * a, mp_digit b, mp_int * c)
021 {
022 int res, ix, oldused;
023 mp_digit *tmpa, *tmpc, mu;
024 /* grow c as required */
025 if (c->alloc < a->used + 1) {
026 if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
027 return res;
028 }
029 }
030 /* if a is negative and |a| >= b, call c = |a| - b */
031 if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
032 /* temporarily fix sign of a */
8.2 Single Digit Helpers

```c
035  a->sign = MP_ZPOS;
036
037  /* c = |a| - b */
038    res = mp_sub_d(a, b, c);
039
040  /* fix sign */
041    a->sign = c->sign = MP_NEG;
042
043  /* clamp */
044    mp_clamp(c);
045
046    return res;
047  }
048
049  /* old number of used digits in c */
050    oldused = c->used;
051
052  /* sign always positive */
053    c->sign = MP_ZPOS;
054
055  /* source alias */
056    tmpa = a->dp;
057
058  /* destination alias */
059    tmpc = c->dp;
060
061  /* if a is positive */
062    if (a->sign == MP_ZPOS) {
063      /* add digit, after this we're propagating
064        * the carry. */
065        *tmpc = *tmpa++ + b;
066        mu = *tmpc >> DIGIT_BIT;
067        *tmpc++ &= MP_MASK;
068    }
069  /* now handle rest of the digits */
070  for (ix = 1; ix < a->used; ix++) {
071    *tmpc = *tmpa++ + mu;
072    mu = *tmpc >> DIGIT_BIT;
073    *tmpc++ &= MP_MASK;
074  }
```
/* set final carry */
ix++;
*tmpc++ = mu;

/* setup size */
c->used = a->used + 1;

} else {
/* a was negative and |a| < b */
c->used = 1;

/* the result is a single digit */
if (a->used == 1) {
 *tmpc++ = b - a->dp[0];
} else {
 *tmpc++ = b;
}

/* setup count so the clearing of oldused can fall through correctly */
ix = 1;

/* now zero to oldused */
while (ix++ < oldused) {
 *tmpc++ = 0;
}
mp_clamp(c);

return MP_OKAY;

Unlike the simple description in Figure 8.3, the implementation is more complicated. This is because we want to avoid the cost of building a new mp_int temporary variable just for a simple addition.

First, we handle the case of negative numbers (line 33). If the number is negative, and sufficiently large, then we subtract instead. After this point, we are going to add a single digit (line 66), and then propagate the carry upwards (lines 71 through 78).
8.2 Single Digit Helpers

Subtraction

The single digit subtraction algorithm mp_sub_d is essentially the same, except it uses mp_sub to subtract the digit from the mp_int.

8.2.2 Single Digit Multiplication

Single digit multiplication arises enough in division and radix conversion that it ought to be implemented as a special case of the baseline multiplication algorithm. Essentially, this algorithm is a modified version of algorithm s_mp_mul_digs where one of the multiplicands only has one digit.

Algorithm mp_mul_d.

Input. mp_int a and a mp_digit b
Output. c = ab

1. \(pa \leftarrow a.used\)
2. Grow c to at least \(pa + 1\) digits.
3. \(oldused \leftarrow c.used\)
4. \(c.used \leftarrow pa + 1\)
5. \(c.sign \leftarrow a.sign\)
6. \(\mu \leftarrow 0\)
7. for \(ix\) from 0 to \(pa - 1\) do
 7.1 \(\hat{r} \leftarrow \mu + a.ix\).b
 7.2 \(c_{ix} \leftarrow \hat{r} \mod \beta\)
 7.3 \(\mu \leftarrow \lfloor \hat{r}/\beta \rfloor\)
8. \(c_{pa} \leftarrow \mu\)
9. for \(ix\) from \(pa + 1\) to \(oldused\) do
 9.1 \(c_{ix} \leftarrow 0\)
10. Clamp excess digits of c.
11. Return(MP_OKAY).

Figure 8.4: Algorithm mp_mul_d

Algorithm mp_mul_d. This algorithm quickly multiplies an mp_int by a small single digit value. It is specially tailored to the job and has minimal overhead. Unlike the full multiplication algorithms, this algorithm does not require any significant temporary storage or memory allocations (Figure 8.4).
/* multiply by a digit */

int mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
{
 mp_digit u, *tmpa, *tmpc;
 mp_word r;
 int ix, res, olduse;

 /* make sure c is big enough to hold a*b */
 if (c->alloc < a->used + 1) {
 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY)
 return res;
 }

 /* get the original destinations used count */
 olduse = c->used;

 /* set the sign */
 c->sign = a->sign;

 /* alias for a->dp [source] */
 tmpa = a->dp;

 /* alias for c->dp [dest] */
 tmpc = c->dp;

 /* zero carry */
 u = 0;

 /* compute columns */
 for (ix = 0; ix < a->used; ix++) {
 /* compute product and carry sum for this term */
 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
 /* mask off higher bits to get a single digit */
 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
 /* send carry into next iteration */
 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
8.2 Single Digit Helpers

 }
059
060 /* store final carry [if any] and increment ix offset */
061 *tmpc++ = u;
062 ++ix;
063
064 /* now zero digits above the top */
065 while (ix++ < olduse) {
066 *tmpc++ = 0;
067 }
068
069 /* set used count */
070 c->used = a->used + 1;
071 mp_clamp(c);
072
073 return MP_OKAY;
074 }
075

In this implementation, the destination c may point to the same mp_int as the source a, since the result is written after the digit is read from the source. This function uses pointer aliases tmpa and tmpc for the digits of a and c, respectively.

8.2.3 Single Digit Division

Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion. Since the divisor is only a single digit, a specialized variant of the division algorithm can be used to compute the quotient.
Algorithm `mp_div_d`. This algorithm divides the `mp_int` `a` by the single `mp_digit` `b` using an optimized approach. Essentially, in every iteration of the algorithm another digit of the dividend is reduced and another digit of quotient produced. Provided \(b < \beta \), the value of \(\hat{w} \) after step 7.1 will be limited such that \(0 \leq \lfloor \hat{w}/b \rfloor < \beta \) (Figure 8.5).

If the divisor `b` is equal to three a variant of this algorithm is used, which is `mp_div_3`. It replaces the division by three with a multiplication by \(\lfloor \beta/3 \rfloor \) and the appropriate shift and residual fixup. In essence, it is much like the Barrett reduction from Chapter 7.

File: `bn_mp_div_d.c`

```c
018 static int s_is_power_of_two(mp_digit b, int *p)
019 {
020   int x;
021```
022 for (x = 1; x < DIGIT_BIT; x++) {
023     if (b == (((mp_digit)1)<<x)) {
024         *p = x;
025         return 1;
026     }
027 }
028 return 0;
029 }
030
031 /* single digit division (based on routine from MPI) */
032 int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
033 {
034     mp_int q;
035     mp_word w;
036     mp_digit t;
037     int res, ix;
038
039     /* cannot divide by zero */
040     if (b == 0) {
041         return MP_VAL;
042     }
043
044     /* quick outs */
045     if (b == 1 || mp_iszero(a) == 1) {
046         if (d != NULL) {
047             *d = 0;
048         }
049         if (c != NULL) {
050             return mp_copy(a, c);
051         }
052         return MP_OKAY;
053     }
054
055     /* power of two ? */
056     if (s_is_power_of_two(b, &ix) == 1) {
057         if (d != NULL) {
058             *d = a->dp[0] & (((mp_digit)1)<<ix) - 1);
059         }
060         if (c != NULL) {
061             return mp_div_2d(a, ix, c, NULL);
062         }
063  return MP_OKAY;
064  }
065
066 #ifdef BN_MP_DIV_3_C
067 /* three? */
068 if (b == 3) {
069    return mp_div_3(a, c, d);
070 }
071 #endif
072
073 /* no easy answer [c'est la vie]. Just division */
074 if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
075   return res;
076 }
077
078 q.used = a->used;
079 q.sign = a->sign;
080 w = 0;
081 for (ix = a->used - 1; ix >= 0; ix--) {
082   w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
083   if (w >= b) {
084     t = (mp_digit)(w / b);
085     w -= ((mp_word)t) * ((mp_word)b);
086   } else {
087     t = 0;
088   }
089   q.dp[ix] = (mp_digit)t;
090 }
091
092 if (d != NULL) {
093   *d = (mp_digit)w;
094 }
095
096 if (c != NULL) {
097   mp_clamp(&q);
098   mp_exch(&q, c);
099 }
100 mp_clear(&q);
101 return res;
Like the implementation of algorithm mp_div, this algorithm allows either the quotient or remainder to be passed as a **NULL** pointer to indicate the respective value is not required. This allows a trivial single digit modular reduction algorithm, mp_mod_d, to be created.

The division and remainder on lines 85 and 86 can be replaced often by a single division on most processors. For example, the 32-bit x86 based processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously. Unfortunately, the GCC compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder, respectively.

### 8.2.4 Single Digit Root Extraction

Finding the $n$’th root of an integer is fairly easy as far as numerical analysis is concerned. Algorithms such as the Newton-Raphson approximation (8.6) series will converge very quickly to a root for any continuous function $f(x)$.

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \quad (8.6)$$

In this case, the $n$’th root is desired and $f(x) = x^n - a$, where $a$ is the integer of which the root is desired. The derivative of $f(x)$ is simply $f'(x) = nx^{n-1}$. Of particular importance is that this algorithm will be used over the integers, not over a more continuous domain such as the real numbers. As a result, the root found can be above the true root by few and must be manually adjusted. Ideally, at the end of the algorithm the $n$’th root $b$ of an integer $a$ is desired such that $b^n \leq a$. 
Algorithm mp\_n\_root.

**Input.** mp\_int $a$ and a mp\_digit $b$

**Output.** $c^b \leq a$

1. If $b$ is even and $a.sign = MP\_NEG$ return($MP\_VAL$).
2. $sign \leftarrow a.sign$
3. $a.sign \leftarrow MP\_ZPOS$
4. $t2 \leftarrow 2$
5. Loop
   5.1 $t1 \leftarrow t2$
   5.2 $t3 \leftarrow t1^{b-1}$
   5.3 $t2 \leftarrow t3 \cdot t1$
   5.4 $t2 \leftarrow t2 - a$
   5.5 $t3 \leftarrow t3 \cdot b$
   5.6 $t3 \leftarrow \lfloor t2/t3 \rfloor$
   5.7 $t2 \leftarrow t1 - t3$
   5.8 If $t1 \neq t2$ then goto step 5.
6. Loop
   6.1 $t2 \leftarrow t1^b$
   6.2 If $t2 > a$ then
      6.2.1 $t1 \leftarrow t1 - 1$
   6.2.2 Goto step 6.
7. $a.sign \leftarrow sign$
8. $c \leftarrow t1$
9. $c.sign \leftarrow sign$
10. Return($MP\_OKAY$).

Figure 8.6: Algorithm mp\_n\_root

**Algorithm mp\_n\_root.** This algorithm finds the integer $n$’th root of an input using the Newton-Raphson approach. It is partially optimized based on the observation that the numerator of $\frac{f(x)}{f'(x)}$ can be derived from a partial denominator. That is, at first the denominator is calculated by finding $x^{b-1}$. This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator. This saves a total of $b - 1$ multiplications by $t1$ inside the loop (Figure 8.6).

The initial value of the approximation is $t2 = 2$, which allows the algorithm to start with very small values and quickly converge on the root. Ideally, this algorithm is meant to find the $n$’th root of an input where $n$ is bounded by $2 \leq n \leq 5$. 
8.2 Single Digit Helpers

File: bn_mp_n_root.c

018 /* find the n’th root of an integer
019 *
020 * Result found such that (c)**b <= a and (c+1)**b > a
021 *
022 * This algorithm uses Newton’s approximation
023 * x[i+1] = x[i] - f(x[i])/f'(x[i])
024 * which will find the root in log(N) time where
025 * each step involves a fair bit. This is not meant to
026 * find huge roots [square and cube, etc].
027 */
028 int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
029 {
030     mp_int t1, t2, t3;
031     int res, neg;
032     /* input must be positive if b is even */
033     if ((b & 1) == 0 && a->sign == MP_NEG) {
034         return MP_VAL;
035     }
036     if ((res = mp_init (&t1)) != MP_OKAY) {
037         return res;
038     }
039     if ((res = mp_init (&t2)) != MP_OKAY) {
040         goto LBL_T1;
041     }
042     if ((res = mp_init (&t3)) != MP_OKAY) {
043         goto LBL_T1;
044     }
045     if ((res = mp_init (&t3)) != MP_OKAY) {
046         goto LBL_T2;
047     }
048     /* if a is negative fudge the sign but keep track */
049     neg = a->sign;
050     a->sign = MP_ZPOS;
051     /* t2 = 2 */
052     mp_set (&t2, 2);
053     do {
054         /* Newton's iteration */
055         t1 = t2;
056         t2 = \ldots
057         /* Check for convergence */
058         if (\ldots) {
059             break;
060         }
061     } while (\ldots);
062     a->sign = neg;
063     return mp_n_root (t1, t2, t3);
064 }
/* t1 = t2 */
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
  goto LBL_T3;
}

/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
  goto LBL_T3;
}

/* numerator */
/* t2 = t1**b */
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
  goto LBL_T3;
}

/* t2 = t1**b - a */
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
  goto LBL_T3;
}

/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
  goto LBL_T3;
}

/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
  goto LBL_T3;
}

if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
  goto LBL_T3;
}
} while (mp_cmp (&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
for (;;) {

8.3 Random Number Generation

Random numbers come up in a variety of activities, from public key cryptography to simple simulations and various randomized algorithms. Pollard-Rho factoring, for example, can make use of random values as starting points to find factors of a composite integer. In this case, the algorithm presented is solely for simulations and not intended for cryptographic use.
Algorithm **mp_rand**.

**Input.** An integer \( b \)

**Output.** A pseudo-random number of \( b \) digits

1. \( a \leftarrow 0 \)
2. If \( b \leq 0 \) return (MP_OKAY)
3. Pick a non-zero random digit \( d \).
4. \( a \leftarrow a + d \)
5. for \( ix \) from 1 to \( d - 1 \) do
   5.1 \( a \leftarrow a \cdot \beta \)
   5.2 Pick a random digit \( d \).
   5.3 \( a \leftarrow a + d \)
6. Return (MP_OKAY).

---

Figure 8.7: Algorithm mp_rand

**Algorithm mp_rand.** This algorithm produces a pseudo-random integer of \( b \) digits. By ensuring that the first digit is non-zero, the algorithm also guarantees that the result has at least \( b \) digits. It relies heavily on a third-part random number generator, which should ideally generate uniformly all of the integers from 0 to \( \beta - 1 \) (Figure 8.7).

File: bn_mp_rand.c
018 /* makes a pseudo-random int of a given size */
019 int
020 mp_rand (mp_int * a, int digits)
021 {
022   int res;
023   mp_digit d;
024   mp_zero (a);
025   if (digits <= 0) {
026     return MP_OKAY;
027   }
028 }
029
030 /* first place a random non-zero digit */
031 do {
032   d = ((mp_digit) abs (rand ()) & MP_MASK;
033 } while (d == 0);
8.4 Formatted Representations

The ability to emit a radix-\( n \) textual representation of an integer is useful for interacting with human parties. For example, the ability to be given a string of characters such as “114585” and turn it into the radix-\( \beta \) equivalent would make it easier to enter numbers into a program.

8.4.1 Reading Radix-n Input

For the purposes of this text we will assume that a simple lower ASCII map (Figure 8.8) is used for the values of from 0 to 63 to printable characters. For example, when the character “N” is read it represents the integer 23. The first 16 characters of the map are for the common representations up to hexadecimal. After that, they match the “base64” encoding scheme suitably chosen such that they are printable. While outputting as base64 may not be too helpful for human operators, it does allow communication via non–binary mediums.
<table>
<thead>
<tr>
<th>Value</th>
<th>Char</th>
<th>Value</th>
<th>Char</th>
<th>Value</th>
<th>Char</th>
<th>Value</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>A</td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>13</td>
<td>D</td>
<td>14</td>
<td>E</td>
<td>15</td>
<td>F</td>
</tr>
<tr>
<td>16</td>
<td>G</td>
<td>17</td>
<td>H</td>
<td>18</td>
<td>I</td>
<td>19</td>
<td>J</td>
</tr>
<tr>
<td>20</td>
<td>K</td>
<td>21</td>
<td>L</td>
<td>22</td>
<td>M</td>
<td>23</td>
<td>N</td>
</tr>
<tr>
<td>24</td>
<td>O</td>
<td>25</td>
<td>P</td>
<td>26</td>
<td>Q</td>
<td>27</td>
<td>R</td>
</tr>
<tr>
<td>28</td>
<td>S</td>
<td>29</td>
<td>T</td>
<td>30</td>
<td>U</td>
<td>31</td>
<td>V</td>
</tr>
<tr>
<td>32</td>
<td>W</td>
<td>33</td>
<td>X</td>
<td>34</td>
<td>Y</td>
<td>35</td>
<td>Z</td>
</tr>
<tr>
<td>36</td>
<td>a</td>
<td>37</td>
<td>b</td>
<td>38</td>
<td>c</td>
<td>39</td>
<td>d</td>
</tr>
<tr>
<td>40</td>
<td>e</td>
<td>41</td>
<td>f</td>
<td>42</td>
<td>g</td>
<td>43</td>
<td>h</td>
</tr>
<tr>
<td>44</td>
<td>i</td>
<td>45</td>
<td>j</td>
<td>46</td>
<td>k</td>
<td>47</td>
<td>l</td>
</tr>
<tr>
<td>48</td>
<td>m</td>
<td>49</td>
<td>n</td>
<td>50</td>
<td>o</td>
<td>51</td>
<td>p</td>
</tr>
<tr>
<td>52</td>
<td>q</td>
<td>53</td>
<td>r</td>
<td>54</td>
<td>s</td>
<td>55</td>
<td>t</td>
</tr>
<tr>
<td>56</td>
<td>u</td>
<td>57</td>
<td>v</td>
<td>58</td>
<td>w</td>
<td>59</td>
<td>x</td>
</tr>
<tr>
<td>60</td>
<td>y</td>
<td>61</td>
<td>z</td>
<td>62</td>
<td>+</td>
<td>63</td>
<td>/</td>
</tr>
</tbody>
</table>

Figure 8.8: Lower ASCII Map
Algorithm **mp_read_radix**.

**Input.** A string \( str \) of length \( sn \) and radix \( r \).

**Output.** The radix-\( \beta \) equivalent \( mp\_int \).

1. If \( r < 2 \) or \( r > 64 \) return \( MP\_VAL \).
2. \( ix \leftarrow 0 \)
3. If \( str_0 = "-" \) then do
   3.1 \( ix \leftarrow ix + 1 \)
   3.2 \( sign \leftarrow MP\_NEG \)
4. else
   4.1 \( sign \leftarrow MP\_ZPOS \)
5. \( a \leftarrow 0 \)
6. for \( iy \) from \( ix \) to \( sn - 1 \) do
   6.1 Let \( y \) denote the position in the map of \( str_{iy} \).
   6.2 If \( str_{iy} \) is not in the map or \( y \geq r \) then goto step 7.
   6.3 \( a \leftarrow a \cdot r \)
   6.4 \( a \leftarrow a + y \)
7. If \( a \neq 0 \) then \( a\_sign \leftarrow sign \)
8. Return \( MP\_OKAY \).

---

Figure 8.9: Algorithm mp_read_radix

**Algorithm mp_read_radix.** This algorithm will read an ASCII string and produce the radix-\( \beta \) \( mp\_int \) representation of the same integer. A minus symbol “-” may precede the string to indicate the value is negative; otherwise, it is assumed positive. The algorithm will read up to \( sn \) characters from the input and will stop when it reads a character it cannot map. The algorithm stops reading characters from the string, which allows numbers to be embedded as part of larger input without any significant problem (Figure 8.9).

File: bn_mp_read_radix.c

```c
018 /* read a string [ASCII] in a given radix */
019 int mp_read_radix (mp_int * a, const char *str, int radix)
020 {
021 int y, res, neg;
022 char ch;
023
024 /* zero the digit bignum */
025 mp_zero(a);
```
/* make sure the radix is ok */
if (radix < 2 || radix > 64) {
    return MP_VAL;
}

/* if the leading digit is a
* minus set the sign to negative. */
if (*str == '-') {
    ++str;
    neg = MP_NEG;
} else {
    neg = MP_ZPOS;
}

/* set the integer to the default of zero */
mp_zero (a);

/* process each digit of the string */
while (*str) {
    /* if the radix < 36 the conversion is case insensitive
     * this allows numbers like 1AB and 1ab to represent the same value
     * [e.g. in hex]
     */
    ch = (char) ((radix < 36) ? toupper (*str) : *str);
    for (y = 0; y < 64; y++) {
        if (ch == mp_s_rmap[y]) {
            break;
        }
    }

    /* if the char was found in the map
    * and is less than the given radix add it
    * to the number, otherwise exit the loop.
    */
    if (y < radix) {
        if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
            return res;
        }
        if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
            return res;
        }
    }
068            } 
069        } else {
070            break;
071        } 
072        ++str;
073    } 
074 */ set the sign only if a != 0 */
075 if (mp_iszero(a) != 1) {
076    a->sign = neg;
077 } 
079 return MP_OKAY;
080 } 
081
8.4.2 Generating Radix-\(n\) Output

Generating radix-\(n\) output is fairly trivial with a division and remainder algorithm.

---

**Algorithm mp_toradix.**

**Input.** A mp\_int \(a\) and an integer \(r\)

**Output.** The radix-\(r\) representation of \(a\)

1. If \(r < 2\) or \(r > 64\) return(\texttt{MP\_VAL}).
2. If \(a = 0\) then \(str = \text{“0”}\) and return(\texttt{MP\_OKAY}).
3. \(t \leftarrow a\)
4. \(str \leftarrow \text{“”}\)
5. if \(t\).\texttt{sign} = \texttt{MP\_NEG} then
   5.1 \(str \leftarrow str + \text{“-”}\)
   5.2 \(t\).\texttt{sign} = \texttt{MP\_ZPOS}
6. While \((t \neq 0)\) do
   6.1 \(d \leftarrow t \mod r\)
   6.2 \(t \leftarrow \lfloor t/r \rfloor\)
   6.3 Look up \(d\) in the map and store the equivalent character in \(y\).
   6.4 \(str \leftarrow str + y\)
7. If \(str_0 = \text{“-”}\) then
   7.1 Reverse the digits \(str_1, str_2, \ldots, str_n\).
8. Otherwise
   8.1 Reverse the digits \(str_0, str_1, \ldots, str_n\).
9. Return(\texttt{MP\_OKAY}).

---

**Figure 8.10: Algorithm mp_toradix**

**Algorithm mp_toradix.** This algorithm computes the radix-\(r\) representation of an mp\_int \(a\). The “digits” of the representation are extracted by reducing successive powers of \(\lfloor a/r^k \rfloor\) the input modulo \(r\) until \(r^k > a\). Note that instead of actually dividing by \(r^k\) in each iteration, the quotient \(\lfloor a/r \rfloor\) is saved for the next iteration. As a result, a series of trivial \(n \times 1\) divisions are required instead of a series of \(n \times k\) divisions. One design flaw of this approach is that the digits are produced in the reverse order (see 8.11). To remedy this flaw, the digits must be swapped or simply “reversed” (Figure 8.10).
Figure 8.11 is an example of the values in algorithm `mp_toradix` at the various iterations.

File: `bn_mp_toradix.c`

```c
018 /* stores a bignum as a ASCII string in a given radix (2..64) */
019 int mp_toradix (mp_int * a, char *str, int radix)
020 {
021 int res, digs;
022 mp_int t;
023 mp_digit d;
024 char *s = str;
025
026 /* check range of the radix */
027 if (radix < 2 || radix > 64) {
028 return MP_VAL;
029 }
030
031 /* quick out if its zero */
032 if (mp_iszero(a) == 1) {
033 *str++ = '0';
034 *str = '\0';
035 return MP_OKAY;
036 }
037
038 if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
039 return res;
040 }
041
042 /* if it is negative output a - */
043 if (t.sign == MP_NEG) {
```
++s;
*str++ = '-';
t.sign = MP_ZPOS;
}

digs = 0;
while (mp_iszero (&t) == 0) {
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
        mp_clear (&t);
        return res;
    }
    *str++ = mp_s_rmap[d];
    ++digs;
}
/* reverse the digits of the string. In this case _s points
   to the first digit [excluding the sign] of the number*/
bn_reverse ((unsigned char *)_s, digs);
/* append a NULL so the string is properly terminated */
*str = '\0';
mp_clear (&t);
return MP_OKAY;
This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple, and Jacobi symbol computation. These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and various sieve–based factoring algorithms.

9.1 Greatest Common Divisor

The greatest common divisor of two integers \(a\) and \(b\), often denoted as \((a, b)\), is the largest integer \(k\) that is a proper divisor of both \(a\) and \(b\). That is, \(k\) is the largest integer such that \(0 \equiv a \pmod{k}\) and \(0 \equiv b \pmod{k}\) occur simultaneously.

The most common approach [1, pp. 337] is to reduce one operand modulo the other operand. That is, if \(a\) and \(b\) are divisible by some integer \(k\) and if \(qa + r = b\), then \(r\) is also divisible by \(k\). The reduction pattern follows \((a, b) \rightarrow (b, a \mod b)\).
Algorithm **Greatest Common Divisor (I)**.

**Input.** Two positive integers $a$ and $b$ greater than zero.

**Output.** The greatest common divisor $(a, b)$.

1. While $(b > 0)$ do
   1.1 $r \leftarrow a \pmod{b}$
   1.2 $a \leftarrow b$
   1.3 $b \leftarrow r$
2. Return($a$).

---

Figure 9.1: Algorithm Greatest Common Divisor (I)

This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends to diminish rapidly (Figure 9.1). However, divisions are relatively expensive operations to perform and should ideally be avoided. There is another approach based on a similar relationship of greatest common divisors. The faster approach is based on the observation that if $k$ divides both $a$ and $b$, it will also divide $a - b$. In particular, we would like $a - b$ to decrease in magnitude, which implies that $b \geq a$.

Algorithm **Greatest Common Divisor (II)**.

**Input.** Two positive integers $a$ and $b$ greater than zero.

**Output.** The greatest common divisor $(a, b)$.

1. While $(b > 0)$ do
   1.1 Swap $a$ and $b$ such that $a$ is the smallest of the two.
   1.2 $b \leftarrow b - a$
2. Return($a$).

---

Figure 9.2: Algorithm Greatest Common Divisor (II)

**Theorem** Algorithm 9.2 will return the greatest common divisor of $a$ and $b$.

**Proof** The algorithm in Figure 9.2 will eventually terminate; since $b \geq a$ the subtraction in step 1.2 will be a value less than $b$. In other words, in every iteration that tuple $(a, b)$, decrease in magnitude until eventually $a = b$. Since both $a$ and $b$ are always divisible by the greatest common divisor (until the last iteration) and in the last iteration of the algorithm $b = 0$, therefore, in the second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$, which concludes the proof.
9.1 Greatest Common Divisor

QED

As a matter of practicality, algorithm 9.1 decreases far too slowly to be useful, especially if \( b \) is much larger than \( a \) such that \( b - a \) is still very much larger than \( a \). A simple addition to the algorithm is to divide \( b - a \) by a power of some integer \( p \) that does not divide the greatest common divisor but will divide \( b - a \). In this case, \( \frac{b-a}{p} \) is also an integer and still divisible by the greatest common divisor.

However, instead of factoring \( b - a \) to find a suitable value of \( p \), the powers of \( p \) can be removed from \( a \) and \( b \) that are in common first. Then, inside the loop whenever \( b - a \) is divisible by some power of \( p \) it can be safely removed.

<table>
<thead>
<tr>
<th>Algorithm Greatest Common Divisor (III).</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input.</strong> Two positive integers ( a ) and ( b ) greater than zero.</td>
</tr>
<tr>
<td><strong>Output.</strong> The greatest common divisor ((a,b)).</td>
</tr>
</tbody>
</table>

1. \( k \leftarrow 0 \)
2. While \( a \) and \( b \) are both divisible by \( p \) do
   2.1 \( a \leftarrow \lfloor a/p \rfloor \)
   2.2 \( b \leftarrow \lfloor b/p \rfloor \)
   2.3 \( k \leftarrow k + 1 \)
3. While \( a \) is divisible by \( p \) do
   3.1 \( a \leftarrow \lfloor a/p \rfloor \)
4. While \( b \) is divisible by \( p \) do
   4.1 \( b \leftarrow \lfloor b/p \rfloor \)
5. While \((b > 0)\) do
   5.1 Swap \( a \) and \( b \) such that \( a \) is the smallest of the two.
   5.2 \( b \leftarrow b - a \)
   5.3 While \( b \) is divisible by \( p \) do
      5.3.1 \( b \leftarrow \lfloor b/p \rfloor \)
5.4 Return\((a \cdot p^k)\).

Figure 9.3: Algorithm Greatest Common Divisor (III)

This algorithm is based on the first, except it removes powers of \( p \) first and inside the main loop to ensure the tuple \((a,b)\) decreases more rapidly (Figure 9.3). The first loop in step 2 removes powers of \( p \) that are in common. A count, \( k \), is kept that will present a common divisor of \( p^k \). After step 2 the remaining common
divisor of $a$ and $b$ cannot be divisible by $p$. This means that $p$ can be safely divided out of the difference $b - a$ as long as the division leaves no remainder.

In particular, the value of $p$ should be chosen such that the division in step 5.3.1 occurs often. It also helps that division by $p$ be easy to compute. The ideal choice of $p$ is two since division by two amounts to a right logical shift. Another important observation is that by step 5 both $a$ and $b$ are odd. Therefore, the difference $b - a$ must be even, which means that each iteration removes one bit from the largest of the pair.

9.1.1 Complete Greatest Common Divisor

The algorithms presented so far cannot handle inputs that are zero or negative. The following algorithm can handle all input cases properly and will produce the greatest common divisor.
Algorithm **mp\_gcd**.

**Input.** mp\_int \(a\) and \(b\)

**Output.** The greatest common divisor \(c = (a, b)\).

1. If \(a = 0\) then
   1.1 \(c \leftarrow |b|\)
   1.2 Return(*MP\_OKAY*).
2. If \(b = 0\) then
   2.1 \(c \leftarrow |a|\)
   2.2 Return(*MP\_OKAY*).
3. \(u \leftarrow |a|, v \leftarrow |b|\)
4. \(k \leftarrow 0\)
5. While \(u\).used > 0 and \(v\).used > 0 and \(u_0 \equiv v_0 \equiv 0 \pmod{2}\)
   5.1 \(k \leftarrow k + 1\)
   5.2 \(u \leftarrow \lfloor u/2 \rfloor\)
   5.3 \(v \leftarrow \lfloor v/2 \rfloor\)
6. While \(u\).used > 0 and \(u_0 \equiv 0 \pmod{2}\)
   6.1 \(u \leftarrow \lfloor u/2 \rfloor\)
7. While \(v\).used > 0 and \(v_0 \equiv 0 \pmod{2}\)
   7.1 \(v \leftarrow \lfloor v/2 \rfloor\)
8. While \(v\).used > 0
   8.1 If \(|u| > |v|\) then
      8.1.1 Swap \(u\) and \(v\).
   8.2 \(v \leftarrow |v| - |u|\)
   8.3 While \(v\).used > 0 and \(v_0 \equiv 0 \pmod{2}\)
      8.3.1 \(v \leftarrow \lfloor v/2 \rfloor\)
9. \(c \leftarrow u \cdot 2^k\)
10. Return(*MP\_OKAY*).

---

**Figure 9.4: Algorithm mp\_gcd**

**Algorithm mp\_gcd.** This algorithm will produce the greatest common divisor of two mp\_ints \(a\) and \(b\). It was originally based on Algorithm B, of Knuth [1, pp. 338] but has been modified to be simpler to explain. In theory, it achieves the same asymptotic working time as Algorithm B, and in practice, this appears to be true (Figure 9.4).

The first two steps handle the cases where either one or both inputs are zero. If either input is zero, the greatest common divisor is the largest input or zero if they are both zero. If the inputs are not trivial, \(u\) and \(v\) are assigned the absolute
values of \( a \) and \( b \), respectively, and the algorithm will proceed to reduce the pair.

Step 5 will divide out any common factors of two and keep track of the count in the variable \( k \). After this step, two is no longer a factor of the remaining greatest common divisor between \( u \) and \( v \) and can be safely evenly divided out of either whenever they are even. Steps 6 and 7 ensure that the \( u \) and \( v \), respectively, have no more factors of two. At most, only one of the while loops will iterate since they cannot both be even.

By step 8 both \( u \) and \( v \) are odd, which is required for the inner logic. First, the pair are swapped such that \( v \) is equal to or greater than \( u \). This ensures that the subtraction in step 8.2 will always produce a positive and even result. Step 8.3 removes any factors of two from the difference \( u \) to ensure that in the next iteration of the loop both are again odd.

After \( v = 0 \) occurs the variable \( u \) has the greatest common divisor of the pair \( \langle u, v \rangle \) just after step 6. The result must be adjusted by multiplying by the common factors of two \( (2^k) \) removed earlier.

File: bn_mp_gcd.c

```c
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
 mp_int u, v;
 int k, u_lsb, v_lsb, res;
 /* either zero then gcd is the largest */
 if (mp_iszero (a) == MP_YES) {
 return mp_abs (b, c);
 }
 if (mp_iszero (b) == MP_YES) {
 return mp_abs (a, c);
 }
 /* get copies of a and b we can modify */
 if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
 return res;
 }
 if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
 goto LBL_U;
 }
```
9.1 Greatest Common Divisor

041 /* must be positive for the remainder of the algorithm */
042 u.sign = v.sign = MP_ZPOS;
043
044 /* B1. Find the common power of two for u and v */
045 u_lsb = mp_cnt_lsb(&u);
046 v_lsb = mp_cnt_lsb(&v);
047 k = MIN(u_lsb, v_lsb);
048
049 if (k > 0) {
    /* divide the power of two out */
050 if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
051 }
052
053 if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
054 }
055
056 /* divide any remaining factors of two out */
057 if (u_lsb != k) {
058 if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
        goto LBL_V;
059 }
060 }
061
062 if (v_lsb != k) {
063 if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
        goto LBL_V;
064 }
065 }
066
067 while (mp_iszero(&v) == 0) {
    /* make sure v is the largest */
068 if (mp_cmp_mag(&u, &v) == MP_GT) {
069 /* swap u and v to make sure v is >= u */
070 mp_exch(&u, &v);
071 }
072
073 /* subtract smallest from largest */
074 if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
075 }
082     goto LBL_V;
083 
084 } /* Divide out all factors of two */
085 if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
086     goto LBL_V;
087 
088 } /* multiply by 2**k which we divided out at the beginning */
089 if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
090     goto LBL_V;
091     c->sign = MP_ZPOS;
092     res = MP_OKAY;
093     LBL_V:mp_clear (&u);
094     LBL_U:mp_clear (&v);
095     return res;
096 }
097 
098 }
099 
100 
101 

This function makes use of the macros mp_iszero and mp_iseven. The former evaluates to 1 if the input mp_int is equivalent to the integer zero; otherwise, it evaluates to 0. The latter evaluates to 1 if the input mp_int represents a non-zero even integer; otherwise, it evaluates to 0. Note that just because mp_iseven may evaluate to 0 does not mean the input is odd; it could also be zero. The three trivial cases of inputs are handled on lines 24 through 30. After those lines, the inputs are assumed non-zero.

Lines 32 and 37 make local copies u and v of the inputs a and b respectively. At this point, the common factors of two must be divided out of the two inputs. The block starting at line 44 removes common factors of two by first counting the number of trailing zero bits in both. The local integer k is used to keep track of how many factors of 2 are pulled out of both values. It is assumed that the number of factors will not exceed the maximum value of a C “int” data type\(^1\).

At this point, there are no more common factors of two in the two values. The divisions by a power of two on lines 62 and 68 remove any independent factors of two such that both u and v are guaranteed to be an odd integer before hitting the

---
\(^{1}\)Strictly speaking, no array in C may have more than entries than are accessible by an “int” so this is not a limitation.
9.2 Least Common Multiple

The least common multiple of a pair of integers is their product divided by their greatest common divisor. For two integers \( a \) and \( b \) the least common multiple is normally denoted as \([a, b]\) and numerically equivalent to \( \frac{ab}{(a, b)} \). For example, if \( a = 2 \cdot 2 \cdot 3 = 12 \) and \( b = 2 \cdot 3 \cdot 3 \cdot 7 = 126 \), the least common multiple is \( \frac{126}{(12, 126)} = \frac{126}{6} = 21 \).

The least common multiple arises often in coding theory and number theory. If two functions have periods of \( a \) and \( b \), respectively, they will collide, that is be in synchronous states, after only \([a, b]\) iterations. This is why, for example, random number generators based on Linear Feedback Shift Registers (LFSR) tend to use registers with periods that are co-prime (e.g., the greatest common divisor is 1.). Similarly, in number theory if a composite \( n \) has two prime factors \( p \) and \( q \), then maximal order of any unit of \( \mathbb{Z}/n\mathbb{Z} \) will be \([p - 1, q - 1]\).

---

**Algorithm \texttt{mp\_lcm}**.

**Input.** \texttt{mp\_int} \( a \) and \( b \)

**Output.** The least common multiple \( c = [a, b] \).

1. \( c \leftarrow (a, b) \)
2. \( t \leftarrow a \cdot b \)
3. \( c \leftarrow \lfloor t/c \rfloor \)
4. Return(\texttt{MP\_OKAY}).

---

**Figure 9.5: Algorithm \texttt{mp\_lcm}**

\textbf{Algorithm \texttt{mp\_lcm}.} This algorithm computes the least common multiple of two \texttt{mp\_int} inputs \( a \) and \( b \). It computes the least common multiple directly by dividing the product of the two inputs by their greatest common divisor (Figure 9.5).
int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
{
    int res;
    mp_int t1, t2;

    if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
        return res;
    }

    /* t1 = get the GCD of the two inputs */
    if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
        goto LBL_T;
    }

    /* divide the smallest by the GCD */
    if (mp_cmp_mag(a, b) == MP_LT) {
        /* store quotient in t2 such that t2 * b is the LCM */
        if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
            goto LBL_T;
        }
        res = mp_mul(b, &t2, c);
    } else {
        /* store quotient in t2 such that t2 * a is the LCM */
        if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
            goto LBL_T;
        }
        res = mp_mul(a, &t2, c);
    }

    /* fix the sign to positive */
    c->sign = MP_ZPOS;

    LBL_T:
    mp_clear_multi (&t1, &t2, NULL);
    return res;
}
9.3 Jacobi Symbol Computation

To explain the Jacobi Symbol we will first discuss the Legendre function off which the Jacobi symbol is defined. The Legendre function computes whether an integer \( a \) is a quadratic residue modulo an odd prime \( p \). Numerically it is equivalent to equation 9.1.

\[
a^{(p-1)/2} \equiv \begin{cases} 
-1 & \text{if } a \text{ is a quadratic non-residue.} \\
0 & \text{if } a \text{ divides } p. \\
1 & \text{if } a \text{ is a quadratic residue.}
\end{cases} \quad (\text{mod } p) \quad (9.1)
\]

**Theorem.** Equation 9.1 correctly identifies the residue status of an integer \( a \) modulo a prime \( p \).

**Proof.** Adapted from [21, pp. 68]. An integer \( a \) is a quadratic residue if the following equation has a solution.

\[
x^2 \equiv a \pmod{p} \tag{9.2}
\]

Consider the following equation.

\[
0 \equiv x^{p-1} - 1 \equiv \left\{ (x^2)^{(p-1)/2} - a^{(p-1)/2} \right\} + \left( a^{(p-1)/2} - 1 \right) \pmod{p} \quad (9.3)
\]

Whether equation 9.2 has a solution or not, equation 9.3 is always true. If \( a^{(p-1)/2} - 1 \equiv 0 \pmod{p} \), then the quantity in the braces must be zero. By reduction,

\[
(x^2)^{(p-1)/2} - a^{(p-1)/2} \equiv 0 \]
\[
(x^2)^{(p-1)/2} \equiv a^{(p-1)/2} 
\]
\[
x^2 \equiv a \pmod{p} \quad (9.4)
\]

As a result there must be a solution to the quadratic equation, and in turn, \( a \) must be a quadratic residue. If \( a \) does not divide \( p \) and \( a \) is not a quadratic residue, then the only other value \( a^{(p-1)/2} \) may be congruent to is \(-1\) since

\[
0 \equiv a^{p-1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \pmod{p} \quad (9.5)
\]

One of the terms on the right-hand side must be zero.
9.3.1 Jacobi Symbol

The Jacobi symbol is a generalization of the Legendre function for any odd non-prime moduli \( p \) greater than 2. If \( p = \prod_{i=0}^{n} p_i \), then the Jacobi symbol \( \left( \frac{a}{p} \right) \) is equal to the following equation.

\[
\left( \frac{a}{p} \right) = \left( \frac{a}{p_0} \right) \left( \frac{a}{p_1} \right) \cdots \left( \frac{a}{p_n} \right)
\]

(9.6)

By inspection if \( p \) is prime, the Jacobi symbol is equivalent to the Legendre function. The following facts\(^2\) will be used to derive an efficient Jacobi symbol algorithm. Where \( p \) is an odd integer greater than two and \( a, b \in \mathbb{Z} \), the following are true.

1. \( \left( \frac{a}{p} \right) \) equals \(-1, 0\) or \(1\).

2. \( \left( \frac{ab}{p} \right) = \left( \frac{a}{p} \right) \left( \frac{b}{p} \right) \).

3. If \( a \equiv b \) then \( \left( \frac{a}{p} \right) = \left( \frac{b}{p} \right) \).

4. \( \left( \frac{2}{p} \right) \) equals \(1\) if \( p \equiv 1 \) or \(7 \mod 8\). Otherwise, it equals \(-1\).

5. \( \left( \frac{a}{p} \right) \equiv (\frac{a}{p}) \cdot (-1)^{(p-1)(a-1)/4} \). More specifically, \( \left( \frac{a}{p} \right) = (\frac{2}{a}) \) if \( p \equiv a \equiv 1 \mod 4 \).

Using these facts if \( a = 2^k \cdot a' \) then

\[
\left( \frac{a}{p} \right) = \left( \frac{2^k}{p} \right) \left( \frac{a'}{p} \right)
\]

\[
= \left( \frac{2}{p} \right)^k \left( \frac{a'}{p} \right)
\]

(9.7)

By fact five,

\(^2\)See HAC [2, pp. 72-74] for further details.
\[
\left(\frac{a}{p}\right) = \left(\frac{p}{a}\right) \cdot (-1)^{(p-1)(a-1)/4} \quad (9.8)
\]

Subsequently, by fact three since \( p \equiv (p \mod a) \pmod{a} \), then
\[
\left(\frac{a}{p}\right) = \left(\frac{p \mod a}{a}\right) \cdot (-1)^{(p-1)(a-1)/4} \quad (9.9)
\]

By putting both observations into equation 9.7, the following simplified equation is formed.
\[
\left(\frac{a}{p}\right) = \left(\frac{2}{p}\right)^k \left(\frac{p \mod a'}{a'}\right) \cdot (-1)^{(p-1)(a'-1)/4} \quad (9.10)
\]

The value of \( \left(\frac{p \mod a'}{a'}\right) \) can be found using the same equation recursively. The value of \( \left(\frac{2}{p}\right)^k \) equals 1 if \( k \) is even; otherwise, it equals \( \left(\frac{2}{p}\right)^k \). Using this approach the factors of \( p \) do not have to be known. Furthermore, if \((a, p) = 1\), then the algorithm will terminate when the recursion requests the Jacobi symbol computation of \( \left(\frac{1}{a'}\right) \), which is simply 1.
**Algorithm mp\_jacobi.**

**Input.** mp\_int $a$ and $p$, $a \geq 0$, $p \geq 3$, $p \equiv 1 \pmod{2}$

**Output.** The Jacobi symbol $c = \left( \frac{a}{p} \right)$.

1. If $a = 0$ then
   1.1 $c \leftarrow 0$
   1.2 Return(MP\_OKAY).
2. If $a = 1$ then
   2.1 $c \leftarrow 1$
   2.2 Return(MP\_OKAY).
3. $a' \leftarrow a$
4. $k \leftarrow 0$
5. While $a'.used > 0$ and $a'_0 \equiv 0 \pmod{2}$
   5.1 $k \leftarrow k + 1$
   5.2 $a' \leftarrow \lfloor a'/2 \rfloor$
6. If $k \equiv 0 \pmod{2}$ then
   6.1 $s \leftarrow 1$
7. else
   7.1 $r \leftarrow p_0 \pmod{8}$
   7.2 If $r = 1$ or $r = 7$ then
   7.2.1 $s \leftarrow 1$
   7.3 else
   7.3.1 $s \leftarrow -1$
8. If $p_0 \equiv a'_0 \equiv 3 \pmod{4}$ then
   8.1 $s \leftarrow -s$
9. If $a' \neq 1$ then
   9.1 $p' \leftarrow p \pmod{a'}$
   9.2 $s \leftarrow s \cdot mp\_jacobi(p', a')$
10. $c \leftarrow s$
11. Return(MP\_OKAY).

**Figure 9.6: Algorithm mp\_jacobi**

**Algorithm mp\_jacobi.** This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three. The algorithm is based on algorithm 2.149 of HAC [2, pp. 73] (Figure 9.6).

Steps 1 and 2 handle the trivial cases of $a = 0$ and $a = 1$, respectively. Step 5 determines the number of two factors in the input $a$. If $k$ is even, the term $\left( \frac{2^k}{p} \right)$ must always evaluate to one. If $k$ is odd, the term evaluates to one if $p_0$ is
congruent to one or seven modulo eight; otherwise, it evaluates to $-1$. After the \[ \left( \frac{2}{p} \right)_k \] term is handled, the \[ (-1)^{(p-1)(a'-1)/4} \] is computed and multiplied against the current product $s$. The latter term evaluates to one if both $p$ and $a'$ are congruent to one modulo four; otherwise, it evaluates to negative one.

By step 9 if $a'$ does not equal one a recursion is required. Step 9.1 computes $p' \equiv p \pmod{a'}$ and will recurse to compute \( \left( \frac{p'}{a'} \right) \), which is multiplied against the current Jacobi product.

File: bn_mp_jacobi.c

```c
018 /* computes the jacobi c = (a | n) (or Legendre if n is prime) 019 * HAC pp. 73 Algorithm 2.149 020 */
021 int mp_jacobi (mp_int * a, mp_int * p, int *c)
022 {
023 mp_int a1, p1;
024 int k, s, r, res;
025 mp_digit residue;
026 027 /* if p <= 0 return MP_VAL */
028 if (mp_cmp_d(p, 0) != MP_GT) {
029 return MP_VAL;
030 }
031
032 /* step 1. if a == 0, return 0 */
033 if (mp_iszero (a) == 1) {
034 *c = 0;
035 return MP_OKAY;
036 }
037
038 /* step 2. if a == 1, return 1 */
039 if (mp_cmp_d (a, 1) == MP_EQ) {
040 *c = 1;
041 return MP_OKAY;
042 }
043
044 /* default */
045 s = 0;
046 047 /* step 3. write a = a1 * 2**k */
048 if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
```

049       return res;
050     }
051
052     if ((res = mp_init (&p1)) != MP_OKAY) {
053       goto LBL_A1;
054     }
055
056     /* divide out larger power of two */
057     k = mp_cnt_lsb(&a1);
058     if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
059       goto LBL_P1;
060     }
061
062     /* step 4. if e is even set s=1 */
063     if ((k & 1) == 0) {
064       s = 1;
065     } else {
066       /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
067       residue = p->dp[0] & 7;
068
069       if (residue == 1 || residue == 7) {
070         s = 1;
071       } else if (residue == 3 || residue == 5) {
072         s = -1;
073       }
074     }
075
076     /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
077     if (((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
078       s = -s;
079     }
080
081     /* if a1 == 1 we’re done */
082     if (mp_cmp_d (&a1, 1) == MP_EQ) {
083       *c = s;
084     } else {
085       /* n1 = n mod a1 */
086       if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
087         goto LBL_P1;
088       }
089       if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
9.4 Modular Inverse

As a matter of practicality the variable \( a' \) as per the pseudo-code is represented by the variable \( a1 \) since the ' symbol is not valid for a C variable name character.

The two simple cases of \( a = 0 \) and \( a = 1 \) are handled at the very beginning to simplify the algorithm. If the input is non-trivial, the algorithm has to proceed and compute the Jacobi. The variable \( s \) is used to hold the current Jacobi product. Note that \( s \) is merely a C “int” data type since the values it may obtain are merely \(-1, 0 \) and \( 1 \).

After a local copy of \( a \) is made, all the factors of two are divided out and the total stored in \( k \). Technically, only the least significant bit of \( k \) is required; however, it makes the algorithm simpler to follow to perform an addition. In practice, an exclusive-or and addition have the same processor requirements, and neither is faster than the other.

Lines 62 through 73 determine the value of \( \left( \frac{2}{p} \right)^k \). If the least significant bit of \( k \) is zero, then \( k \) is even and the value is one. Otherwise, the value of \( s \) depends on which residue class \( p \) belongs to modulo eight. The value of \( (-1)^{(p-1)(a'−1)/4} \) is computed and multiplied against \( s \) on lines 76 through 91.

Finally, if \( a1 \) does not equal one, the algorithm must recurse and compute \( \left( \frac{p'}{a'} \right) \).

9.4 Modular Inverse

The modular inverse of a number refers to the modular multiplicative inverse. For any integer \( a \) such that \( (a, p) = 1 \) there exists another integer \( b \) such that \( ab \equiv 1 \pmod{p} \). The integer \( b \) is called the multiplicative inverse of \( a \) which is denoted as \( b = a^{-1} \). Modular inversion is a well-defined operation for any finite
ring or field, not just for rings and fields of integers. However, the former will be
the matter of discussion.

The simplest approach is to compute the algebraic inverse of the input; that
is, to compute \( b \equiv a^{\Phi(p)^{-1}} \). If \( \Phi(p) \) is the order of the multiplicative subgroup
modulo \( p \), then \( b \) must be the multiplicative inverse of \( a \)--the proof of which is
trivial.

\[
ab = a^{\Phi(p)^{-1}} \equiv a^\Phi(p) \equiv a^0 \equiv 1 \pmod{p}
\]

(9.11)

However, as simple as this approach may be it has two serious flaws. It requires
that the value of \( \Phi(p) \) be known, which if \( p \) is composite requires all of the prime
factors. This approach also is very slow as the size of \( p \) grows.

A simpler approach is based on the observation that solving for the multiplica-
tive inverse is equivalent to solving the linear Diophantine\(^3\) equation.

\[
ab + pq = 1
\]

(9.12)

Where \( a, b, p, \) and \( q \) are all integers. If such a pair of integers \( \langle b, q \rangle \) exists,
\( b \) is the multiplicative inverse of \( a \) modulo \( p \). The extended Euclidean algorithm
(Knuth [1, pp. 342]) can be used to solve such equations provided \( (a, p) = 1 \).
However, instead of using that algorithm directly, a variant known as the binary
Extended Euclidean algorithm will be used in its place. The binary approach
is very similar to the binary greatest common divisor algorithm, except it will
produce a full solution to the Diophantine equation.

---

\(^3\)See LeVeque [21, pp. 40-43] for more information.
9.4 Modular Inverse

9.4.1 General Case

Algorithm \texttt{mp\_invmod}.

\textbf{Input}. \(\texttt{mp\_int} a \) and \( b \), \( (a, b) = 1 \), \( p \geq 2 \), \( 0 < a < p \).

\textbf{Output}. The modular inverse \( c \equiv a^{-1} \pmod{b} \).

1. If \( b \leq 0 \) then return(\texttt{MP\_VAL}).
2. If \( b_0 \equiv 1 \pmod{2} \) then use algorithm \texttt{fast\_mp\_invmod}.
3. \( x \leftarrow |a|, y \leftarrow b \)
4. If \( x_0 \equiv y_0 \equiv 0 \pmod{2} \) then return(\texttt{MP\_VAL}).
5. \( B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1 \)
6. While \( u\_used > 0 \) and \( u_0 \equiv 0 \pmod{2} \)
   \hspace{1cm} 6.1 \( u \leftarrow \lfloor u/2 \rfloor \)
   \hspace{1cm} 6.2 If \((A\_used > 0 \text{ and } A_0 \equiv 1 \pmod{2}) \) or \((B\_used > 0 \text{ and } B_0 \equiv 1 \pmod{2}) \) then
      \hspace{1.5cm} 6.2.1 \( A \leftarrow A + y \)
      \hspace{1.5cm} 6.2.2 \( B \leftarrow B - x \)
   \hspace{1cm} 6.3 \( A \leftarrow \lfloor A/2 \rfloor \)
   \hspace{1cm} 6.4 \( B \leftarrow \lfloor B/2 \rfloor \)
7. While \( v\_used > 0 \) and \( v_0 \equiv 0 \pmod{2} \)
   \hspace{1cm} 7.1 \( v \leftarrow \lfloor v/2 \rfloor \)
   \hspace{1cm} 7.2 If \((C\_used > 0 \text{ and } C_0 \equiv 1 \pmod{2}) \) or \((D\_used > 0 \text{ and } D_0 \equiv 1 \pmod{2}) \) then
      \hspace{1.5cm} 7.2.1 \( C \leftarrow C + y \)
      \hspace{1.5cm} 7.2.2 \( D \leftarrow D - x \)
   \hspace{1cm} 7.3 \( C \leftarrow \lfloor C/2 \rfloor \)
   \hspace{1cm} 7.4 \( D \leftarrow \lfloor D/2 \rfloor \)
8. If \( u \geq v \) then
   \hspace{1cm} 8.1 \( u \leftarrow u - v \)
   \hspace{1cm} 8.2 \( A \leftarrow A - C \)
   \hspace{1cm} 8.3 \( B \leftarrow B - D \)
9. else
   \hspace{1cm} 9.1 \( v \leftarrow v - u \)
   \hspace{1cm} 9.2 \( C \leftarrow C - A \)
   \hspace{1cm} 9.3 \( D \leftarrow D - B \)

Continued on the next page.
Algorithm mp_invmod (continued).
Input. \texttt{mp\_int} \( a \) and \( b \), \((a, b) = 1\), \( p \geq 2\), \( 0 < a < p \).
Output. The modular inverse \( c \equiv a^{-1} \mod b \).

10. If \( u \neq 0 \) goto step 6.
11. If \( v \neq 1 \) return(\texttt{MP\_VAL}).
12. While \( C \leq 0 \) do
   12.1 \( C \leftarrow C + b \)
13. While \( C \geq b \) do
   13.1 \( C \leftarrow C - b \)
14. \( c \leftarrow C \)
15. Return(\texttt{MP\_OKAY}).

Figure 9.7: Algorithm mp_invmod

Algorithm mp_invmod. This algorithm computes the modular multiplicative inverse of an integer \( a \) modulo an integer \( b \). It is a variation of the extended binary Euclidean algorithm from HAC [2, pp. 608], and it has been modified to only compute the modular inverse and not a complete Diophantine solution (Figure 9.7).

If \( b \leq 0 \), the modulus is invalid and \texttt{MP\_VAL} is returned. Similarly if both \( a \) and \( b \) are even, there cannot be a multiplicative inverse for \( a \) and the error is reported.

The astute reader will observe that steps 7 through 9 are very similar to the binary greatest common divisor algorithm mp_gcd. In this case, the other variables to the Diophantine equation are solved. The algorithm terminates when \( u = 0 \), in which case the solution is

\[ Ca + Db = v \quad (9.13) \]

If \( v \), the greatest common divisor of \( a \) and \( b \), is not equal to one, then the algorithm will report an error as no inverse exists. Otherwise, \( C \) is the modular inverse of \( a \). The actual value of \( C \) is congruent to, but not necessarily equal to, the ideal modular inverse, which should lie within \( 1 \leq a^{-1} < b \). Steps 12 and 13 adjust the inverse until it is in range. If the original input \( a \) is within \( 0 < a < p \), then only a couple of additions or subtractions will be required to adjust the inverse.
9.4 Modular Inverse

File: bn_mp_invmod.c
018 /* hac 14.61, pp608 */
019 int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
020 {
021     /* b cannot be negative */
022     if (b->sign == MP_NEG || mp_iszero(b) == 1) {
023         return MP_VAL;
024     }
025
026     #ifdef BN_FAST_MP_INVMOD_C
027     /* if the modulus is odd we can use a faster routine instead */
028     if (mp_isodd (b) == 1) {
029         return fast_mp_invmod (a, b, c);
030     }
031     #endif
032
033     #ifdef BN_MP_INVMOD_SLOW_C
034     return mp_invmod_slow(a, b, c);
035     #endif
036
037     return MP_VAL;
038 }
039

Odd Moduli

When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse. In particular, by attempting to solve the Diophantine $Cb + Da = 1$, only $B$ and $D$ are required to find the inverse of $a$.

The algorithm fast_mp_invmod is a direct adaptation of algorithm mp_invmod with all steps involving either $A$ or $C$ removed. This optimization will halve the time required to compute the modular inverse.

File: bn_fast_mp_invmod.c
018 /* computes the modular inverse via binary extended euclidean algorithm,
019     * that is c = 1/a mod b
020     *
021     * Based on slow invmod except this is optimized for the case where b is
022     * odd as per HAC Note 14.64 on pp. 610
023     */
024 int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
025  {  
026     mp_int x, y, u, v, B, D;
027     int   res, neg;
028
029     /* 2. [modified] b must be odd */
030     if (mp_iseven (b) == 1) {
031         return MP_VAL;
032     }
033
034     /* init all our temps */
035     if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
036         return res;
037     }
038
039     /* x == modulus, y == value to invert */
040     if ((res = mp_copy (b, &x)) != MP_OKAY) {
041         goto LBL_ERR;
042     }
043
044     /* we need y = |a| */
045     if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
046         goto LBL_ERR;
047     }
048
049     /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
050     if ((res = mp_copy (&x, &u)) != MP_OKAY) {
051         goto LBL_ERR;
052     }
053     if ((res = mp_copy (&y, &v)) != MP_OKAY) {
054         goto LBL_ERR;
055     }
056     mp_set (&D, 1);
057
058     top:
059     /* 4. while u is even do */
060     while (mp_iseven (&u) == 1) {
061         /* 4.1 u = u/2 */
062         if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
063             goto LBL_ERR;
064         }
065         /* 4.2 if B is odd then */
if (mp_isodd (&B) == 1) {
    if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
        goto LBL_ERR;
    }
}
/* B = B/2 */
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
    goto LBL_ERR;
}
/* 5. while v is even do */
while (mp_iseven (&v) == 1) {
    /* 5.1 v = v/2 */
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
        goto LBL_ERR;
    }
    /* 5.2 if D is odd then */
    if (mp_isodd (&D) == 1) {
        /* D = (D-x)/2 */
        if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
            goto LBL_ERR;
        }
        /* D = D/2 */
        if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
            goto LBL_ERR;
        }
    }
    /* 6. if u >= v then */
    if (mp_cmp (&u, &v) != MP_LT) {
        /* u = u - v, B = B - D */
        if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
            goto LBL_ERR;
        }
    }
} else {
    /* 5. while v is even do */
    while (mp_iseven (&v) == 1) {
        /* 5.1 v = v/2 */
        if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
            goto LBL_ERR;
        }
/* 5.2 if D is odd then */
        if (mp_isodd (&D) == 1) {
            /* D = (D-x)/2 */
            if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
                goto LBL_ERR;
            }
            /* D = D/2 */
            if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
                goto LBL_ERR;
            }
        }
        /* 6. if u >= v then */
        if (mp_cmp (&u, &v) != MP_LT) {
            /* u = u - v, B = B - D */
            if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
                goto LBL_ERR;
            }
        }
    }
    } else {

/* v - v - u, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
    goto LBL_ERR;
}

if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
    goto LBL_ERR;
}

/* if not zero goto step 4 */
if (mp_iszero (&u) == 0) {
    goto top;
}

/* now a = C, b = D, gcd == g*v */

/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
    res = MP_VAL;
    goto LBL_ERR;
}

/* b is now the inverse */
neg = a->sign;
while (D.sign == MP_NEG) {
    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
        goto LBL_ERR;
    }
}

mp_exch (&D, c);
c->sign = neg;
res = MP_OKAY;
LBL_ERR: mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
    return res;
}
9.5 Primality Tests

A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself. For example, $a = 7$ is prime since the integers $2 \ldots 6$ do not evenly divide $a$. By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$.

Prime numbers arise in cryptography considerably as they allow finite fields to be formed. The ability to determine whether an integer is prime quickly has been a viable subject in cryptography and number theory for considerable time. The algorithms that will be presented are all probabilistic algorithms in that when they report an integer is composite it must be composite. However, when the algorithms report an integer is prime the algorithm may be incorrect.

As will be discussed, it is possible to limit the probability of error so well that for practical purposes the probability of error might as well be zero. For the purposes of these discussions, let $n$ represent the candidate integer of which the primality is in question.

9.5.1 Trial Division

Trial division means to attempt to evenly divide a candidate integer by small prime integers. If the candidate can be evenly divided, it obviously cannot be prime. By dividing by all primes $1 < p \leq \sqrt{n}$, this test can actually prove whether an integer is prime. However, such a test would require a prohibitive amount of time as $n$ grows.

Instead of dividing by every prime, a smaller, more manageable set of primes may be used instead. By performing trial division with only a subset of the primes less than $\sqrt{n} + 1$, the algorithm cannot prove if a candidate is prime. However, often it can prove a candidate is not prime.

The benefit of this test is that trial division by small values is fairly efficient, especially when compared to the other algorithms that will be discussed shortly. The probability that this approach correctly identifies a composite candidate when tested with all primes up to $q$ is given by $1 - \frac{12}{\ln(q)}$.

At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly. At $q = 90$, further testing is generally not going to be of any practical use. In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate approximately 80% of all candidate integers. The constant PRIME_SIZE is equal to the number of primes in the test base. The array _prime_tab is an array of the first PRIME_SIZE prime numbers.
Algorithm \texttt{mp\_prime\_is\_divisible}.

\textbf{Input.} \texttt{mp\_int a}

\textbf{Output.} \( c = 1 \) if \( n \) is divisible by a small prime, otherwise \( c = 0 \).

1. for \( ix \) from 0 to \texttt{PRIME\_SIZE} do
   1.1 \( d \leftarrow n \mod \texttt{prime\_tab[\texttt{ix}]} \)
   1.2 If \( d = 0 \) then
      1.2.1 \( c \leftarrow 1 \)
      1.2.2 Return(\texttt{MP\_OKAY}).
2. \( c \leftarrow 0 \)
3. Return(\texttt{MP\_OKAY}).

Figure 9.8: Algorithm \texttt{mp\_prime\_is\_divisible}

\textbf{Algorithm \texttt{mp\_prime\_is\_divisible}.} This algorithm attempts to determine if a candidate integer \( n \) is composite by performing trial divisions (Figure 9.8).

File: \texttt{bn\_mp\_prime\_is\_divisible.c}

\begin{verbatim}
018 /* determines if an integers is divisible by one
019  * of the first PRIME\_SIZE primes or not
020  *
021  * sets result to 0 if not, 1 if yes
022 */
023 int mp_prime_is_divisible (mp_int * a, int *result)
024 {
025  int err, ix;
026  mp_digit res;
027
028  /* default to not */
029  *result = MP\_NO;
030
031  for (ix = 0; ix < PRIME\_SIZE; ix++) {
032    /* what is a mod LBL\_prime\_tab[ix] */
033    if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP\_OKAY) {
034      return err;
035    }
036
037    /* is the residue zero? */
038    if (res == 0) {
039      *result = MP\_YES;
040      return MP\_OKAY;
\end{verbatim}
The algorithm defaults to a return of 0 in case an error occurs. The values in the prime table are all specified to be in the range of an mp_digit. The table _prime_tab is defined in the following file.

File: bn_prime_tab.c

```c
const mp_digit ltm_prime_tab[] = {
 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
 0x0017, 0x001D, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053,
 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
 #ifndef MP_8BIT
 0x0083,
 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
 0x00B3, 0x00B5, 0x00BC, 0x00CD, 0x00CE, 0x00D3, 0x00D7,
 0x00DB, 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00F5,
 0x00F9, 0x0101, 0x0107, 0x010D, 0x010F, 0x0115, 0x0119,
 0x011B, 0x0125, 0x0127, 0x012F, 0x0133, 0x0137,
 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161,
 0x0167, 0x0169, 0x016D, 0x0171, 0x0173, 0x0177, 0x017B,
 0x017F, 0x0185, 0x0187, 0x0189, 0x018B, 0x018F, 0x0191,
 0x0199, 0x019D, 0x019F, 0x01A3, 0x01A5, 0x01AF, 0x01B1,
 0x01B3, 0x01BB, 0x01C1, 0x01C9, 0x01CD, 0x01CF, 0x01D3,
 0x01DF, 0x01E9, 0x01E7, 0x01EB, 0x01F1, 0x01F7,
 0x0203, 0x0209, 0x020B, 0x021D, 0x0227, 0x0229, 0x022B,
 0x0239, 0x023D, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259,
 0x0265, 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287,
 0x028B, 0x0293, 0x0295, 0x02A1, 0x02A5, 0x02A9, 0x02AD,
 0x02BE, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9,
 0x0301, 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335,
 0x0337, 0x033B, 0x033D, 0x0347, 0x0355, 0x0359, 0x035B,
 0x035F, 0x036D, 0x0371, 0x0373, 0x0377, 0x038B, 0x038F,
 0x0397, 0x03A1, 0x03A9, 0x03AD, 0x03B3, 0x03B9, 0x03CB,
 0x03C1, 0x03D1, 0x03D7, 0x03DF, 0x03E5, 0x03F1, 0x03F5,
 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, 0x041B, 0x0425,
 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481,
 0x048B,
```
```
Note that there are two possible tables. When an mp_digit is 7-bits long, only the primes up to 127 may be included; otherwise, the primes up to 1619 are used. Note that the value of `PRIME_SIZE` is a constant dependent on the size of a mp_digit.

9.5.2 The Fermat Test

The Fermat test is probably one the oldest tests to have a non-trivial probability of success. It is based on the fact that if \(n \) is in fact prime, then \(a^n \equiv a \pmod{n} \) for all \(0 < a < n \). The reason being that if \(n \) is prime, the order of the multiplicative subgroup is \(n - 1 \). Any base \(a \) must have an order that divides \(n - 1 \), and as such, \(a^n \) is equivalent to \(a^1 = a \).

If \(n \) is composite then any given base \(a \) does not have to have a period that divides \(n - 1 \), in which case it is possible that \(a^n \not\equiv a \pmod{n} \). However, this test is not absolute as it is possible that the order of a base will divide \(n - 1 \), which would then be reported as prime. Such a base yields what is known as a Fermat pseudo-prime. Several integers known as Carmichael numbers will be a pseudo-prime to all valid bases. Fortunately, such numbers are extremely rare as \(n \) grows in size.
9.5 Primality Tests

Algorithm \texttt{mp_prime_fermat}.

\textbf{Input.} mp_int \(a\) and \(b\), \(a \geq 2\), \(0 < b < a\).

\textbf{Output.} \(c = 1\) if \(b^a \equiv b \pmod{a}\), otherwise \(c = 0\).

1. \(t \leftarrow b^a \pmod{a}\)
2. If \(t = b\) then
 2.1 \(c = 1\)
3. else
 3.1 \(c = 0\)
4. Return(\texttt{MP_OKAY}).

\begin{figure}[h]
\centering
\begin{verbatim}
int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
{
 int err;
 /* default to composite */
 *result = MP_NO;

 if (mp_cmp_d(b, 1) != MP_GT) {
 return MP_VAL;
 }
 /* init t */
 mp_int t;

 /* ensure b > 1 */
 if (mp_cmp_d(b, 1) != MP_GT) {
 return MP_VAL;
 }

 /* perform one Fermat test. */
 *result = 1;

 /* if "a" were prime then b**a == b (mod a) since the order of
 * the multiplicative sub-group would be phi(a) = a-1. That means
 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
 */

 return *result;
}
\end{verbatim}
\caption{Algorithm mp_prime_fermat}
\end{figure}

\textbf{Algorithm \texttt{mp_prime_fermat}.} This algorithm determines whether an \texttt{mp_int} \(a\) is a Fermat prime to the base \(b\) or not. It uses a single modular exponentiation to determine the result (Figure 9.9).

File: \texttt{bn_mp_prime_fermat.c}

018 /* performs one Fermat test.
019 *
020 * If "a" were prime then b**a == b (mod a) since the order of
021 * the multiplicative sub-group would be phi(a) = a-1. That means
022 * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
023 *
024 * Sets result to 1 if the congruence holds, or zero otherwise.
025 */
026 int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
027 {
028 mp_int t;
029 int err;
030
031 /* default to composite */
032 *result = MP_NO;
033
034 /* ensure b > 1 */
035 if (mp_cmp_d(b, 1) != MP_GT) {
036 return MP_VAL;
037 }
038
039 /* init t */
if ((err = mp_init (&t)) != MP_OKAY) {
 return err;
}

/* compute t = b**a mod a */
if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
 goto LBL_T;
}

/* is it equal to b? */
if (mp_cmp (&t, b) == MP_EQ) {
 *result = MP_YES;
}

er = MP_OKAY;
LBL_T:mp_clear (&t);
return err;

9.5.3 The Miller-Rabin Test

The Miller-Rabin test is another primality test that has tighter error bounds than the Fermat test specifically with sequentially chosen candidate integers. The algorithm is based on the observation that if \(n - 1 = 2^k r \) and \(b^r \neq \pm 1 \), then after up to \(k - 1 \) squarings the value must be equal to \(-1\). The squarings are stopped as soon as \(-1\) is observed. If the value of \(1 \) is observed first, it means that some value not congruent to \(\pm 1 \) when squared equals one, which cannot occur if \(n \) is prime.
Algorithm \texttt{mp_prime_miller_rabin}.

\textbf{Input.} \texttt{mp_int} \(a\) and \(b\), \(a \geq 2\), \(0 < b < a\).

\textbf{Output.} \(c = 1\) if \(a\) is a Miller-Rabin prime to the base \(a\), otherwise \(c = 0\).

1. \(a' \leftarrow a - 1\)
2. \(r \leftarrow n1\)
3. \(c \leftarrow 0, s \leftarrow 0\)
4. While \(r\.used > 0\) and \(r0 \equiv 0 \pmod{2}\)
 4.1 \(s \leftarrow s + 1\)
 4.2 \(r \leftarrow \lfloor r/2 \rfloor\)
5. \(y \leftarrow b^r \pmod{a}\)
6. If \(y \not\equiv \pm 1\) then
 6.1 \(j \leftarrow 1\)
 6.2 While \(j \leq (s - 1)\) and \(y \not\equiv a'\)
 6.2.1 \(y \leftarrow y^2 \pmod{a}\)
 6.2.2 If \(y = 1\) then goto step 8.
 6.2.3 \(j \leftarrow j + 1\)
 6.3 If \(y \neq a'\) goto step 8.
7. \(c \leftarrow 1\)
8. Return(\texttt{MP_OKAY}).

Figure 9.10: Algorithm \texttt{mp_prime_miller_rabin}

\textbf{Algorithm \texttt{mp_prime_miller_rabin}.} This algorithm performs one trial round of the Miller-Rabin algorithm to the base \(b\). It will set \(c = 1\) if the algorithm cannot determine if \(b\) is composite or \(c = 0\) if \(b\) is provably composite. The values of \(s\) and \(r\) are computed such that \(a' = a - 1 = 2^s r\) (Figure 9.10).

If the value \(y \equiv b^r\) is congruent to \(\pm 1\), then the algorithm cannot prove if \(a\) is composite or not. Otherwise, the algorithm will square \(y\) up to \(s - 1\) times stopping only when \(y \equiv -1\). If \(y^2 \equiv 1\) and \(y \not\equiv \pm 1\), then the algorithm can report that \(a\) is provably composite. If the algorithm performs \(s - 1\) squarings and \(y \not\equiv -1\), then \(a\) is provably composite. If \(a\) is not provably composite, then it is \textit{probably} prime.

\textbf{File:} \texttt{bn_mp_prime_miller_rabin.c}

018 /* Miller-Rabin test of "a" to the base of "b" as described in
019 * HAC pp. 139 Algorithm 4.24
020 *
021 * Sets result to 0 if definitely composite or 1 if probably prime.
022 * Randomly the chance of error is no more than 1/4 and often
023 * very much lower.
int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) {
 mp_int n1, y, r;
 int s, j, err;

 /* default */
 *result = MP_NO;

 /* ensure b > 1 */
 if (mp_cmp_d(b, 1) != MP_GT) {
 return MP_VAL;
 }

 /* get n1 = a - 1 */
 if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
 return err;
 }
 if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
 goto LBL_N1;
 }

 /* set 2**s * r = n1 */
 if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
 goto LBL_N1;
 }

 /* count the number of least significant bits
 * which are zero */
 s = mp_cnt_lsb(&r);

 /* now divide n - 1 by 2**s */
 if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
 goto LBL_R;
 }

 /* compute y = b**r mod a */
 if ((err = mp_init (&y)) != MP_OKAY) {
 goto LBL_R;
 }
}
if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
 goto LBL_Y;
}

/* if y != 1 and y != n1 do */
if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
 j = 1;
 /* while j <= s-1 and y != n1 */
 while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
 if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
 goto LBL_Y;
 }
 }
 /* if y == 1 then composite */
 if (mp_cmp_d (&y, 1) == MP_EQ) {
 goto LBL_Y;
 }
 ++j;
}

/* if y != n1 then composite */
if (mp_cmp (&y, &n1) != MP_EQ) {
 goto LBL_Y;
}

/* probably prime now */
*result = MP_YES;
LBL_Y:mp_clear (&y);
LBL_R:mp_clear (&r);
LBL_N1:mp_clear (&n1);
return err;
Exercises

[2] Look up and implement the “Almost Inverse” algorithm for integers. (Hint: Look in the IACR Crypto’95 proceedings.)

[4] Devise and implement a method of generating random primes that avoids the need for trial division.

[4] Devise and implement a method of generating large primes which are provably prime. Hint: Use a constructive approach to avoid the need for primality proof algorithms such as ECCP or AKS.
Bibliography

Index

k-ary exponentiation, 195
Algorithm mp_grow, 25
Algorithm mp_init, 20
Algorithm mp_init_copy, 40
Algorithm mp_init_multi, 29
Algorithm mp_init_size, 27
Algorithm mp_invmod, 273
Algorithm mp_jacobi, 268
Algorithm mp_karasubamul, 111
Algorithm mp_karatsubasqr, 139
Algorithm mp_lcm, 263
Algorithm mp_lshd, 76
Algorithm mp_mod2d, 88
Algorithm mp_montgomery_reduce, 163
Algorithm mp_montgomery_setup, 174
Algorithm mp_mul, 126
Algorithm mp_mul2, 70
Algorithm mp_mul2d, 82
Algorithm mp_mul2d, 235
Algorithm mp_mulroot, 242
Algorithm mp_prime_fermat, 283
Algorithm mp_prime_is_divisible, 280
Algorithm mp_prime_miller_rabin, 285
Algorithm mp_rand, 246
Algorithm mp_read_radix, 249
Algorithm mp_reduce, 153
Algorithm mp_reduce_2k, 184
Algorithm mp_reduce_2k_setup, 186
Algorithm mp_reduce_is_2k, 188
Algorithm mp_reduce_setup, 157

Absoute value, 42
Addition, 54
 single digit, 232
Algorithm fast_mp_montgomery_reduce, 168
Algorithm fast_mult, 105
Algorithm fast_s_mp_mul_digs, 100
Algorithm fast_s_mp_sqr, 134
Algorithm mp_2expt, 214
Algorithm mp_abs, 42
Algorithm mp_add, 64
Algorithm mp_clamp, 31
Algorithm mp_clear, 22
Algorithm mp_cmp, 50
Algorithm mp_cmp_mag, 48
Algorithm mp_copy, 36
Algorithm mp_div(), 221
Algorithm mp_div2, 73
Algorithm mp_div2d, 85
Algorithm mp_div_d, 238
Algorithm mp_dr_is_modulus, 183
Algorithm mp_dr_reduce, 179
Algorithm mp_dr_setup, 182
Algorithm mp_expt_d, 194
Algorithm mp_exptmod, 199
Algorithm mp_gcd, 259
Algorithm mp_rshd, 79
Algorithm mp_set, 45
Algorithm mp_set_int, 46
Algorithm mp_sqr, 144
Algorithm mp_sub, 67
Algorithm mp_toom_mul, 117
Algorithm mp_toradix, 252
Algorithm mp_zero, 41
Algorithm s_mp_add, 55
Algorithm s_mp_exptmod, 203
Algorithm s_mp_mul_digs, 93
Algorithm s_mp_sqr, 130
Algorithm s_mp_sub, 60
Algorithms
 calling convention, see Argument passing
 inputs and outputs, 6
 reduction, 147
 single digit helpers, 231
Aliases, see pointer aliases
Angled brackets <>, 53
Argument passing, 17–18
Arithmetic, 53
 addition and subtraction, 54
 bit shifting, 69
 by powers of two, 81
 digit shifting, 69
 division by 2^b, 85
 division by x, 78
 division by two, 72
 fixed point, 148
 high level addition, 63
 high level subtraction, 66
 low level addition, 54
 low level subtraction, 59
 multiplication by 2^b, 82
 multiplication by x, 75
 multiplication by two, 69
 polynomial operations, 75
 Remainder of division by 2^b, 88
Arithmetic on polynomials, 3
ASCII map
 lower, 248
Asymptotic Running Time of Polynomial Basis Multiplication, 108
Barrett algorithm, 153
Barrett modular exponentiation, 203
Barrett reduction, 2, 148, 189
 choosing a radix point, 150
 setup, 156
 trimming the quotient, 151
 trimming the residue, 152
Barrett, Paul, 97
big-Oh, 7
Bignum math, 2
Bit shifting, 53
bn_mp_lshd(), 76
Brackets
 in mathematical expressions, 6
C programming language
 Data types, 2
Carmichael numbers, 282
Code, see Source code
Code Base, 10–11
Comba method, 94
 fixup algorithm, 98
 multiplication with, 97
 squaring with, 133
Comba, Paul, 97
Comparing
 modular reduction algorithms, 189
 signed comparisons, 50
 unsigned comparisons, 47
Comparisons, see Comparing
INDEX

Constants, 44
setting large, 46
setting small, 44

Cryptography
public key, 148, 191, 245

Data types
definition, 13
high precision floating point, 2
precision notation, 6

Destinations
allowing arguments sources to be, 18

Diffie-Hellman, 2, 148

Digit shifting, 53

Diminished radix algorithm, 175, 189

Division
by power of two, 85
integer, with remainder, 217
normalized integers, 220
quotient estimation, 219
radix-β with remainder, 221
remainder of division by power of two, 88
single digit, 237

Downloading
LibTomMath library, 12

ECC, see Elliptic Curve Cryptography

Elliptic curve cryptography, 3

Errors
trapping runtime, 18

Exponentiation, 203
k-ary, 195
Barrett modular, 203
modular, 198
overview, 191
power of two, 214
single digit, 193
sliding window, 197

Expressions
precision notation, 6

Fast multiplication, 105
fast_mpm_invmmod(), 275
fast_mpm_montgomery_reduce(), 169
fast_s_mp_mul_digs(), 101
fast_s_mp_sqr(), 135

Fixed point arithmetic, 148
Floating point math, see high precision floating point

Formatted Representations, 247

GCC
pointer arithmetic, 39

GMP library, 10, 11
GNU C Compiler, 9

Goals
of LibTomMath, 9–12
Greatest common divisor, 255, 256

Handbook of Applied Cryptography, 4
Header files, 13
Horner’s method, 108

Integer
comparing signed, 50
comparing unsigned, 47
division, 218
division with remainder, 217
greatest common divisor, 255
Jacobi symbol, 265
least common multiple, 263
modular inverse, 271
negation, 43

Jacobi symbol computation, 265
Karatsuba
 multiplication, 91, 109
 squaring, 138

Least common multiple, 263
Left to Right Exponentiation, 192
Legendre function, 265
Libraries
 writing useful source code, 13
LibTom, xv
 Public Domain, xv
LibTomMath, 9
LibTomMath library, 4
Linear feedback shift register, 263
LIP library, 10, 11, 17

Maintenance Algorithms, 24
Measuring
 algorithms' efficiency, 7
Memory management
 algorithms, 15
 multiple precision algorithm overhead, 3
Miller-Rabin test, 284
Mirror points, 108
Modular exponentiation, 198
Modular inversion, 271
Modular reduction
 algorithm compared, 189
 Barrett algorithm, 153
 Barrett reduction, 148
 diminished radix algorithm, 175
 Montgomery reduction, 158
 overview, 147
Modular residue, 147
Modularity of projects, 13
Montgomery reduction, 158, 189
 baseline, 162
 digit based, 160
 Faster “Comba”, 167
mp_2expt(), 214
mp_abs(), 42
mp_add(), 65
mp_add_d(), 232
mp_clamp(), 32
mp_clear(), 23
mp_cmp(), 51
mp_cmp_dneg(), 49
mp_copy(), 36
mp_digit, 6
mp_div(), 224
mp_div_2(), 73
mp_div_2d(), 85
mp_div_d(), 238
mp_dr_is_modulus(), 183
mp_dr_reduce(), 180
mp_dr_setup(), 182
mp_expt_d(), 194
mp_exptmod(), 14, 199
mp_gcd(), 260
mp_grow(), 25
mp_init(), 21
mp_init_copy(), 40
mp_init_multi(), 29
mp_init_size(), 27
mp_int, 5, 16
mp_int structure, 15–17
 assigning value, 35
 augmenting precision, 24
 clamping, 31
 clearing, 22
 copying, 35
 creating a clone (copy), 39
 initializing, 19
 initializing variable precision, 27
 zeroing, 41
INDEX

MPI library, 10, 11
MSVC
 pointer arithmetic, 39
Multiple integer
 initialization and clearing, 29
Multiple Precision Arithmetic
 Initialization and clearing, 19
 notation, 5–7
 overview, 1–4
Multiple precision integers, 14–17
Multiplication
 baseline multiplication, 92
 by power of two, 82
 Comba method, 97
 Karatsuba, 91, 109
 polynomial basis, 107
 polynomial basis squaring, 138
 signed, 126
 single digit, 235
 squaring, 128
 the multipliers, 91
 Toom-Cook Algorithm, 116
Multiplication algorithm mp_mul(), 9
Nested statements, 39
Newton-Raphson approximation, 241
Open source
 LibTom Projects, xv
OpenSSL library, 10
Optimizations, 11–12
Pointer aliases, 38
Pointer arithmetic, 39
Polynomial basis, 3
 multiplication, 107
 squaring, 138
Portability, 12
Power of two, 214
precision, 3
Primality tests, 279
 Fermat test, 282
 Miller-Rabin test, 284
 trial division, 279
Prime numbers
 tests, 279
pseudo-code, 4
Public key cryptography, 2
Radix Point, 111
Radix-n input
 reading, 247
Random number generation, 245
Representations
 formatted, 247
Return values, 18
Rose, Greg, xviii
RSA Algorithm, 2
RSA algorithm, 148, 191
Runtime errors, 18

s_mp_add(), 56
s_mp_exptmod(), 207
s_mp_mul_digs(), 95
s_mp_sqr(), 131
s_mp_sub(), 61
Scoring system
 book’s exercises, 8
Sign manipulation, 42
Signed addition, see High level addition
Signed comparisons, 50
Signed subtraction, see High level subtraction
Single digit
 division, 237
 exponentiation, 193
 multiplication, 235
 root extraction, 241
Sliding Window Exponentiation, 198
Source, see Source code
Source code
 header files, 13
 LibTomMath, xv, 10
 modular design, 13
 precision data types in, 6
 return values, 18
 writing useful libraries, 13
Speed
 measuring algorithms’, 7
Squaring
 Comba method, 133
 high level, 144
 Karatsuba, 138
 polynomial basis, 138
St Denis, Tom, xvii, 10
Stability, 12
Subtraction, 54
 single digit, 232
TomsFastMath project, 12
Toom-Cook
 multiplication, 116
 squaring, 143
Variables
 algorithm inputs and outputs, 6
XFREE, 24
XMALLOC, 21
XREALLOC, 26