
1378, Applet Programming with the Java™ Sound API

Applet Programming
With the Java™ Sound API

Matthias Pfisterer
Software Engineer
itservices Pfisterer

Florian Bomers
Software Engineer
bome.com

1378, Applet Programming with the Java™ Sound API2

Overall Presentation Goal

Learn how to create applets that use the
Java™ Sound API for recording and playing
audio data
Get an overview of the possibilities and limits
when deploying sound enabled applets

1378, Applet Programming with the Java™ Sound API3

Learning Objectives

As a result of this presentation, you will
know how to
– Play and record streamed audio data
– Encode and decode to and from GSM
– Transfer sound data to and from a server
– Handle applet and Java Sound API security

management
– Sign applets

1378, Applet Programming with the Java™ Sound API4

Speakers’ Qualifications

• Florian Bomers is freshly hired at Sun
Microsystems in the Java Sound department
• Matthias Pfisterer is an independent contractor

mainly for Java technology-based projects
• Both have been programming with the Java

Sound API since its very beginning
• Both are leading the Tritonus project—an open

source implementation of the Java Sound API

1378, Applet Programming with the Java™ Sound API5

Presentation Agenda

• Demo of the example application:
a web-based answering machine
• General architecture and program details
• Deploying the applets
• Problems and solutions
• Your questions

1378, Applet Programming with the Java™ Sound API6

Answering Machine Demo

• Caller:

• Owner:

1378, Applet Programming with the Java™ Sound API7

General Architecture

• Applet records audio data from soundcard
• Applet sends it to the server
• Server receives audio data
• Server saves data in a file

Internet
Caller Applet Server

Caller Data Flow

1378, Applet Programming with the Java™ Sound API8

Owner Applet

General Architecture

• Server reads audio data from file
• Server sends it to the applet
• Applet receives audio data from server
• Applet plays back the audio data

Internet
 Server

Owner Data Flow

1378, Applet Programming with the Java™ Sound API9

General Architecture

• Audio data flows in streams
• Recording uses a subclass of InputStream

that reads from a TargetDataLine
• Net i/o is done with InputStream /
OutputStream provided by the
java.net.URLConnection class
• Playback uses a subclass of OutputStream

that writes to a SourceDataLine

Streams

1378, Applet Programming with the Java™ Sound API10

General Architecture

• The synchronizer reads from an Input-
Stream and writes to an OutputStream
• It changes flow from pull to push

Caller:

Streams: Synchronizer

Read
 Audio Input Synchronizer

Flow
Net Output

Write

Flow
Owner:

Read
Net Input Synchronizer

Flow

Write

Flow
Audio Output

1378, Applet Programming with the Java™ Sound API11

General Architecture

• Input streams are cascaded to process data
• One stream reads from the underlying

stream and returns the processed output

Stream Cascading

Caller:
Read

 Audio Input GSM Encoder
Flow

Synchronizer
Read

Flow
Owner:

Net Input
Write

Flow
GSM Decoder Synchronizer

Read

Flow

1378, Applet Programming with the Java™ Sound API12

General Architecture

• A standard CGI program for a web server
• Methods implemented by the server CGI:

GET, PUT, LIST, REMOVE
• The CGI program saves uploaded

messages to files
• Could easily be done as Servlet
• We also implemented a stand-alone

server program

Net Communication

1378, Applet Programming with the Java™ Sound API13

Program Details

• The “heart” of audio data flow
• Runs in its own thread
// simplified...
public void run() {
 while (true) {
 int bytesRead =
 inStream.read(
 buffer, 0, buffer.length);
 outStream.write(buffer, 0, bytesRead);
 }
(org.jsresources.am.audio.Synchronizer)

Synchronizer

1378, Applet Programming with the Java™ Sound API14

Program Details

• Open a TargetDataLine
• Get an AudioInputStream from it
• Get a converted AudioInputStream in GSM

format from it
• Open network connection to server and get its OutputStream
• Connect AudioInputStream and network

output stream to Synchronizer

Caller: Overview

1378, Applet Programming with the Java™ Sound API15

Program Details

AudioFormat format =
[signed PCM, 8000Hz, 16bit, mono]

DataLine.Info info = new DataLine.Info
(TargetDataLine.class, format);

TargetDataLine line =
(TargetDataLine)

 AudioSystem.getLine(info);
line.open(format, bufferSizeInBytes);

(org.jsresources.am.audio.AudioCapture)

Caller: open TargetDataLine

1378, Applet Programming with the Java™ Sound API16

Program Details

AudioInputStream pcmAIS =
 new AudioInputStream(line);

• AudioInputStream is an InputStream
with
– Audio format definition
– Optional length definition

(org.jsresources.am.audio.AudioCapture)

Caller: get AudioInputStream

1378, Applet Programming with the Java™ Sound API17

Program Details

• Codecs are plug-ins to the Java™
Sound API using the Extension Mechanism
(Service Providers)
• They work by cascading an AudioInputStream
• Here we use the GSM 06.10 plug-in

released by Tritonus
• GSM provides lossy compression well

adapted for low bitrate speech data

Caller: convert to GSM I

1378, Applet Programming with the Java™ Sound API18

Program Details

AudioFormat.Encoding gsmEncoding =
Encodings.getEncoding("GSM0610");

AudioInputStream gsmAIS =
AudioSystem.getAudioInputStream(

gsmEncoding, pcmAIS);

(org.jsresources.am.CallerClient)

• Encodings is a utility class of Tritonus
(bundled with GSM plug-in)
• AudioSystem retrieves the GSM codecs

from the list of installed plug-ins

Caller: convert to GSM II

1378, Applet Programming with the Java™ Sound API19

Program Details

(org.jsresources.am.BufferedSocketOutputStream)

• Network may be slower than audio data
coming in

➔network connection is buffered
– The network output stream is cascaded in

an OutputStream that queues all data
written to it
– In a thread, it writes all data to the network

output stream

Caller: Network Connection

1378, Applet Programming with the Java™ Sound API20

Program Details

Synchronizer sync = new Synchronizer(
gsmAIS, // input stream
socketOutputStream, // output stream
audio.getBufferSizeInBytes());

// Start audio (TargetDataLine)
audio.start();
// Start network (thread)
socketOutputStream.start();
// Start Synchronizer (thread)
sync.start();

(org.jsresources.am.CallerClient)

Caller: Using the Synchronzer

1378, Applet Programming with the Java™ Sound API21

Program Details

• Open network connection to server and get
its InputStream
• Create AudioInputStream (GSM) from it
• Get a converted AudioInputStream in

PCM format from it
• Open a SourceDataLine in a class that

subclasses OutputStream (AudioPlayStream)

• Connect AudioInputStream and
AudioPlayStream to Synchronizer

Onwer: Overview

1378, Applet Programming with the Java™ Sound API22

Program Details

• Code is analogous to Caller
• Audio data is buffered and stored for later

usage (i.e., rewind)

Onwer: Details

1378, Applet Programming with the Java™ Sound API23

Deploying the Applets

• Write GUI and Applet classes*)

• Package the classes in a jar
• Create HTML pages
• Respect security!
• Signing (optional)

*) Not handled here

Overview

1378, Applet Programming with the Java™ Sound API24

Deploying the Applets

• The applets need the GSM plug-in
• The Class-Path header in a jar manifest

allows to download additional packages
• manifest.mf:

Manifest-Version: 1.0
Class-Path:
tritonus_gsm.jar

• Creation of jar:
jar cmf manifest.mf am.jar *.java org

Create Jar Archive

1378, Applet Programming with the Java™ Sound API25

Deploying the Applets

• Uses JVM* of browser
• Not many browsers have a JDK1.3 JVM

(exception: Netscape 6)

<APPLET CODE =
"CallerClientApplet.class"
 ARCHIVE = "am.jar"
 WIDTH = "600"
 HEIGHT = "250">
 <PARAM NAME = "server"
 VALUE ="/cgi-bin/am.cgi">
</APPLET>

*As used in this presentation, the terms “Java™ virtual machine” or “JVM™”
mean a virtual machine for the Java™ platform

Create HTML Pages: Standard Approach

1378, Applet Programming with the Java™ Sound API26

Deploying the Applets

• Use HTMLConverter to make the HTML page
use Java 2 Plug-In technology
– Creates <object> tag for Internet Explorer

(IE)
– Creates <embed> tag for Netscape

• Netscape ignores the <object> tag, while IE
ignores <embed>

Create HTML Pages: Use Java 2 Plug In Technology

1378, Applet Programming with the Java™ Sound API27

Deploying the Applets

• By default, applets are not allowed to record
audio data (eavesdropping)
• The Java 2 platform offers a flexible

concept of assigning fine-grained
permissions
• Security is handled on the client

Security: Overview

1378, Applet Programming with the Java™ Sound API28

Deploying the Applets

• Each permission is bound to a permission
object (e.g. java.io.FilePermission)

• A permission may have one or more target
names: (e.g., “read”, “write”, or “*” for all)

• Once a protected method is accessed, the
JVM checks if the permission is granted
(e.g., trying to write to a file)

• If not, throws an instance of java.security.AccessControlException

Security: Overview

1378, Applet Programming with the Java™ Sound API29

Deploying the Applets

• Permissions are set in 2 files:
– system policy file inJAVAHOME/lib/security/java.policy
JAVAHOME e.g.:
C:\Program
Files\JavaSoft\JRE\1.3.0_02
– user policy file inUSERHOME/.java.policy
USERHOME e.g.:
C:\Documents and Settings\florian

Security: Policy Files

1378, Applet Programming with the Java™ Sound API30

Deploying the Applets

• For recording audio, the permission
javax.sound.sampled.AudioPermission
with value “record” is needed
• Create a user policy file with this content:

grant {
 permission
 javax.sound.sampled.AudioPermission
 "record";
};

• or...

Security: Setting Permissions in File

1378, Applet Programming with the Java™ Sound API31

• ...use the graphical frontend policytool:
• Click on Add Policy Entry, Add Permission
• Enter Permission:javax.sound.sampled.AudioPermission
• Enter Target Name:record
• OK, Done, File|Save
• More user-friendly than directly editing

the policy file

Deploying the Applets

Security: Setting Permissions With Policytool

1378, Applet Programming with the Java™ Sound API32

Deploying the Applets

• Using cryptographic algorithms to
– Assure the identity of the signer
– Assure the integrity of the code

• But it does not
– Give privacy (no encryption)
– Provide protection against malicious

code/DOS attacks/etc

Security: What is Signing?

1378, Applet Programming with the Java™ Sound API33

Deploying the Applets

• My public key, signed by a CA
(certification authority)
• CA’s act as Trusted Third Party
• CA’s are, e.g., VeriSign, Thawte, Entrust
• A certificate can be validated by verifying its

signature (using the CA’s public key)
• X.509 certificates are used e.g., for signing

applets or for the SSL protocol (https)

Signing: What is a Certificate?

1378, Applet Programming with the Java™ Sound API34

Deploying the Applets

1) Buy a certificate from a CA
2) Make it available locally (import it)
3) Sign the jar file:

4) Verify the signature (optional):

jarsigner -verify [-verbose] am.jar

jarsigner am.jar myname

Signing: How to Sign an Applet

1378, Applet Programming with the Java™ Sound API35

Deploying the Applets

• When a signed applet is loaded with Java
Plug-In technology, a security dialog pops up
– The user can inspect/verify the certificate
– The user can grant “All permissions”

(i.e., fine grained permissions are not possible)
• Silent failure for invalid certificates

(and “All permissions” is not granted)
• A granted certificate is cached by the plug-in

and all applets signed by that certificate are
automatically granted “All Permissions”
(see Java™ plug-in control panel)

Signing: Signed Applets

1378, Applet Programming with the Java™ Sound API36

Problems and Solutions

• Since the JDK™ 1.3.0_01, applets may not
install a Service Provider Extension (like the
GSM plug-in) over the Internet
• Even that the GSM classes are accessible

(due to Class-Path header in manifest),
the GSM plug-in is not installed in AudioSystem

Problem: Plug-ins in Applets

1378, Applet Programming with the Java™ Sound API37

Problems and Solutions

• Instantiate the GSM Service Provider
directly:

// GSMFormatConversionProvider in package
// org.tritonus.sampled.convert.gsm
AudioInputStream gsmAIS = new
 GSMFormatConversionProvider().
 getAudioInputStream(gsmEncoding,
• Not a nice solution !
• Better with Java Web Start software

(org.jsresources.am.audio.AMAppletWorkaround)

“Problem”: Plug-ins in Applets

1378, Applet Programming with the Java™ Sound API38

Problems and Solutions

• We would have liked to use a standard file
format and use AudioSystem methods for
reading/writing
• The “caller name” must be included

in the header
• E.g. field “description text” in AU files or

“list chunk” in WAVE files
• AudioFileFormat does not provide fields

for additional information of a file

Problem: Restricted AudioFileFormat

1378, Applet Programming with the Java™ Sound API39

Problems and Solutions

• We defined our own file format
• It is like AU
• Not nice as we have to “re-invent the wheel”

(org.jsresources.am.audio.AMMsgFileTool)

“Solution”: Own File Format

1378, Applet Programming with the Java™ Sound API40

Problems and Solutions

• When streaming to or from the web server, URLConnection queues the data until the
transfer is finished
– Uses much memory for long

recordings/messages
– Prevents simultaneous transfer over the

Internet while recording or playing
➔Not suitable for this application

Problem: Buffered URLConnection

1378, Applet Programming with the Java™ Sound API41

Problems and Solutions

• An own class that communicates with the
web server
• Not nice, as again we have to create a

class that already exists in the JVM
• New problem: HTTP/1.0 does not allow

upload of unknown length (Content-length
header must be set); better: use HTTP/1.1

(org.jsresources.am.net.AMHttpClientConnection)

Solution: Own URLConnection

1378, Applet Programming with the Java™ Sound API42

Future Enhancements

• Make it a Java™ Web Start software-based
application
• Caller: Possibility to add a text message
• Owner: Access restriction (password)
• Owner: Multi-user
• Server: As a servlet
• Server: Use a database instead of files

1378, Applet Programming with the Java™ Sound API43

Summary

• We showed how to
– Stream audio data in GSM format to and from a

web server
– Deploy applets for different VM’s
– Deal with security restrictions of applets
– Create signed applets
– Overcome limits of the current JDK release

1378, Applet Programming with the Java™ Sound API44

Related Sessions and BOFs

• TS-541: Developing Advanced Multimedia
Applications with Java™ Technology
– Friday June 8, 9:45 AM, Moscone Center—Hall B

1378, Applet Programming with the Java™ Sound API45

Reference

• Demo application download and docs:
http://www.jsresources.org/am/

• Tritonus (incl. download of GSM plug-in):
http://www.tritonus.org

• Java™ 2 plug-in homepage (incl. HTML Converter download):
http://java.sun.com/products/plugin/

• JDK™ 1.3 software security guide:
http://java.sun.com/j2se/1.3/docs/guide/security/

• Java™ Web Start software™:
http://java.sun.com/products/javawebstart/index.html

florian @ bome.com
Matthias.Pfisterer @ web.de

1378, Applet Programming with the Java™ Sound API

1378, Applet Programming with the Java™ Sound API47

