
Guide 58
Version 2.2

Getting started with Java
Java is an object-oriented programming language developed by Sun
Microsystems. Besides being object-oriented, it also has garbage collection,
multithreading, exception handling and no architecture-dependent constructs.
The language is accompanied by many packages (collections of classes)
including one for building graphical user interfaces. As well as being used to
create standalone Java programs, Java can be used to produce applets that
enhance WWW pages. Once a Java program has been compiled, it can be
used on other platforms without re-compilation. Supported platforms include
Linux, Solaris 2.x and Windows.
This tutorial on Java aims to get you started with Java and to realise its
capabilities. Details about writing programs that involve GUIs, collections of
data and applets are given in Guide 108: Advanced Java.
You will need to be familiar with programming in a language like Ada, C, C++,
Fortran 77, Fortran 90, Modula-2 or Pascal.

£1.50

Title: Getting started with Java
Version: 2.2
Date: June 2006
Produced by: University of Durham Information Technology Service

Copyright © 1996-2006 University of Durham Information Technology
Service and Barry Cornelius

Conventions:
In this document, the following conventions are used:
• A bold typewriter font is used to represent the actual characters you type at

the keyboard.
• A slanted typewriter font is used for items such as filenames which you

should replace with particular instances.
• A typewriter font is used for what you see on the screen.
• A bold font is used to indicate named keys on the keyboard, for example, Esc

and Enter, represent the keys marked Esc and Enter, respectively.
• Where two keys are separated by a forward slash (as in Ctrl/B, for example),

press and hold down the first key (Ctrl), tap the second (B), and then release
the first key.

• A bold font is also used where a technical term or command name is used in
the text.

Contents

1 Introduction ..1
1.1 What is Java? ..1
1.2 How is it executed?..1
1.3 What are Java applications?..2
1.4 What are Java applets? ...2
1.5 APIs ...3
1.6 A digression: what is JavaScript? ..3

2 Declarations, statements, input and output ..4
2.1 A simple Java program ..4
2.2 Primitive types..5
2.3 Declarations and initializers ...5
2.4 Expressions ...6
2.5 Statements...6

2.5.1 Blocks ...6
2.5.2 Conditional statements ...7
2.5.3 Looping statements ..7
2.5.4 Other control statements ..8

2.6 Objects...8
2.6.1 Reference variables..8
2.6.2 Creating an object...9
2.6.3 Referring to the fields of an object ..10
2.6.4 Applying methods to an object..10
2.6.5 Copying objects ..10
2.6.6 Comparing objects..11
2.6.7 The value null ...12
2.6.8 Garbage collection..12

2.7 Arrays...12
2.7.1 Introduction ...12
2.7.2 An array of integers ..13
2.7.3 An array of points..14
2.7.4 Flexible arrays ..14
2.7.5 Even more flexible arrays ...14

2.8 Methods ...14
2.9 Output and input ..16

2.9.1 Attaching an output stream...16
2.9.2 Outputting values to the output stream...16
2.9.3 Closing a file ...16
2.9.4 Attaching an input stream ...16
2.9.5 Reading a line of characters ...17
2.9.6 Reading a value..17
2.9.7 Handling more than one data item per line...18
2.9.8 Flushing the output ...18
2.9.9 Dealing with java.io.IOException ..18
2.9.10 JDK Version 1.0.x ...18

Guide 58: Getting started with Java i

3 Handling strings .. 19
3.1 Creating an object of the class String .. 19
3.2 Applying methods to a String object .. 19
3.3 The exception StringIndexOutOfBoundsException 20
3.4 Changing a String object ... 20
3.5 Copying String objects... 21
3.6 String concatenation .. 21
3.7 A program that uses these ideas about Strings... 22
3.8 The class StringBuffer ... 22

4 Using classes for data abstraction .. 23
4.1 Introduction .. 23
4.2 Using a class declaration to define your own type....................................... 23
4.3 A class called Date .. 23
4.4 Stage A: providing a primitive version of the class Date.............................. 24
4.5 Stage B: adding a constructor and a method declaration............................ 25

4.5.1 Stage B1: adding a constructor declaration.. 25
4.5.2 Stage B2: using a method to display the value of an object 26

4.6 Grouping fields and methods together to implement a type 27
4.7 Stage C: hiding fields, providing access methods and toString 27

4.7.1 Stage C1: hiding the fields and accessing them using methods 27
4.7.2 Stage C2: using toString instead of display .. 29
4.7.3 Using the default version of toString... 30

4.8 Stage D: providing class variables, class methods and class constants 31
4.9 Stage E: the final version of the Date class ... 33

4.9.1 Stage E1: the text of the final version of the Date class 33
4.9.2 Stage E2: providing other constructors... 34
4.9.3 Stage E3: defining a method called equals .. 35
4.9.4 Stage E4: adding hashCode (to help with using collections)................ 36
4.9.5 Stage E5: using the new version of the Date class 37

4.10 The role of a class ... 37

5 Another example of data abstraction: the class Person.............................. 39
5.1 A class called Person .. 39
5.2 Using the class Person .. 39

6 Grouping classes into packages.. 40
6.1 Package declarations .. 40
6.2 Setting the CLASSPATH ... 40
6.3 It’s a small world: how can unique names be generated? 41
6.4 Compiling from a private directory into one that is visible from the WWW .. 42

7 Object-oriented programming .. 42
7.1 Introduction .. 42
7.2 Using inheritance to form a subclass... 42
7.3 A class called Student ... 43
7.4 Package members and protected members.. 44
7.5 Method overriding .. 44
7.6 Using the class Student ... 45
7.7 Dynamic binding .. 45
7.8 Inheritance should be used for is-a relationships .. 45

8 Another example of OO programming: 2D shapes 46
8.1 The class Shape .. 46

Guide 58: Getting started with Java ii

8.2 The class Circle ...46
8.3 The class Rectangle ..47
8.4 Using the class Shape and its subclasses...47

9 Exception handling..49
9.1 What is exception handling? ..49
9.2 Altering Date to deal with invalid dates ..51

10 Interfaces ..52
10.1 What is an interface? ...52
10.2 Producing classes that conform to an interface ...53
10.3 Using interfaces ...53
10.4 Other points ...53

11 Starting another thread ...54
11.1 The class java.lang.Thread..54
11.2 Deriving the class ClockStdout from java.lang.Thread54
11.3 Using the class ClockStdout in the UseClockStdout program55
11.4 Using synchronized for accessing a variable from different threads............56

12 Other information about Java...56
12.1 ITS Guide 108 Advanced Java ..56
12.2 Primary resources..57
12.3 Important secondary resources ...57
12.4 Books ...57

Guide 58: Getting started with Java iii

1 Introduction

1.1 What is Java?
Java is an object-oriented programming language developed by
Sun Microsystems.

It has: garbage collection, multithreading and exception handling.

It does not have: architecture-dependent constructs, structs, unions, pointer
arithmetic, operator-overloading and multiple inheritance.

It is accompanied by many packages (each of which is a group of related
classes). Each package forms an Application Programming Interface or
API. One of the key packages is one for building GUIs (graphical user
interfaces).

The definition of the Java language and its accompanying APIs is known as
the Java 2 Platform. The current version is Version 1.4.2.

1.2 How is it executed?
Unlike most programming languages, Java source code is not compiled
into native code. Instead, a Java compiler translates Java source code into
an architecturally-neutral intermediate form known as bytecode.

Instructions in this bytecode are interpreted by a Java interpreter.

Sun provide a Software Development Kit (SDK) for the Java 2 Platform.
This includes a compiler and an interpreter. Previous versions of the SDK
were known as the Java Development Kit (JDK).

At the present time, the latest version of the product is Java 2 SDK v 1.4.2.
However, people developing code may be using earlier versions of the
product such as Java 2 SDK v 1.3.1, JDK 1.1.x and JDK 1.0.2. Whenever
possible, new systems should be written using the latest version of the
Java 2 SDK.

Sun provide implementations of each of these versions for Solaris 2.x (both
sparc and x86), Linux and Windows. All of these products can be
downloaded (free of charge) from: http://java.sun.com/products/

Other companies provide rival products to Sun’s SDK.

Programs written for an early version of Java can be compiled by a more
recent compiler. Bytecodes produced by an old compiler can be interpreted
by a more recent interpreter.

Guide 58: Getting started with Java 1

http://java.sun.com/products/

1.3 What are Java applications?
A Java application is a conventional program. It must have a “method” (i.e.,
a function) called main.

Suppose the file HWTion.java contains the Java application:

 1: public class HWTion { // HWTion.java
 2: public static void main(String[] args) {
 3: System.out.println("Hello World!");
 4: }
 5: }

Note: the line numbers should be ignored: they do not form part of the
program.

The application can be compiled by using the Unix/MS-DOS command:
javac HWTion.java

This produces a file of bytecodes in the file HWTion.class.

The file HWTion.class can be interpreted (i.e., executed) by using the
command:

java HWTion

1.4 What are Java applets?
A Java applet is Java source code whose bytecodes will be executed as
part of viewing a WWW page. The applet’s author compiles the Java
source code into bytecodes.

These bytecodes will be downloaded from their author’s site by a WWW
browser when the WWW page is visited. So, the browser needs a Java
interpreter to interpret the bytecodes.

This is true for browsers that are Java-aware, e.g., Microsoft’s Internet
Explorer, Netscape’s Navigator (which is now part of Netscape’s
Communicator product) or Mozilla. The earlier versions of these browsers
only understand JDK 1.0.2. You will have to use the latest version of a
browser if you have JDK 1.1.x or Java 2 SDK bytecode files that use the
facilities of JDK 1.1.x. Examples are Version 4.0x (and later versions) of
Netscape’s Navigator (which supports most aspects of JDK 1.1.x) and
Version 4.x (and later versions) of Microsoft’s Internet Explorer (which
supports some aspects of JDK 1.1.x).

Only the latest versions of WWW browsers have a Java interpreter that
understand bytecodes that use the new features of the Java 2 Platform v
1.2 or later. For more details see ITS Guide 108 Advanced Java.

Sun’s Java 2 SDK (and the earlier JDKs) also include an appletviewer that
can be used if you do not have a Java-aware browser.

Suppose the file HWLet.java contains the Java applet:

 6: import java.applet.Applet; // HWLet.java
 7: import java.awt.Graphics;
 8: public class HWLet extends Applet {
 9: public void paint(Graphics rGraphics) {
 10: rGraphics.drawString("Hello World!", 50, 25);
 11: }
 12: }

Guide 58: Getting started with Java 2

The applet can be compiled by using the UNIX/MS-DOS command:
javac HWLet.java

This produces a file of bytecodes in the file HWLet.class.

When a browser reads the WWW page given below, it finds that it has to
retrieve the file HWLet.class. When the bytecodes in this file arrive, the
browser can interpret them.

 13: <HTML
 14: <HEAD
 15: <TITLE HWLet example </TITLE
 16: </HEAD
 17: <BODY
 18: Before the output from the applet.
 19: <APPLET CODE="HWLet.class" WIDTH=150 HEIGHT=25
 20: </APPLET
 21: After the output from the applet.
 22: </BODY
 23: </HTML

You can access a WWW page containing the above HTML instructions by
using the URL
http://www.dur.ac.uk/barry.cornelius/java/a.taste.of.java/code/HWLet.html

1.5 APIs
Related classes can be grouped together in a package. Together the
classes of a package form a way of programming in a particular area:
together they define what is called an application programming interface
(an API).

Java has a large number of APIs already defined. Examples include APIs:

• for file I/O,
• for doing 2D and 3D graphics,
• communicating with databases (JDBC),
• for sending an e-mail message,
• for enabling access to WWW pages,
• for accessing objects of Java programs running on other computers,
• for supporting the writing of applets.

Some of these APIs are considered to be crucial, called the Core APIs.

There are WWW pages documenting the Core APIs:
http://java.sun.com/j2se/1.4.2/docs/api — these WWW pages can also be
downloaded to filespace on your own computer.

This Guide uses the notation $API/java/lang/String.html to refer to the
WWW page http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

1.6 A digression: what is JavaScript?
Here is a WWW page containing some source code that is written in
JavaScript:

Guide 58: Getting started with Java 3

http://www.dur.ac.uk/barry.cornelius/java/a.taste.of.java/code/HWLet.html
http://java.sun.com/j2se/1.3/docs/api
http://java.sun.com/j2se/1.3/docs/api/java/lang/String.html

 24: <HTML <HEAD <TITLE Square demo </TITLE </HEAD
 25: <BODY
 26: <P Start. </P
 27: <SCRIPT LANGUAGE="JavaScript"
 28: <!-- hide this script from some browsers
 29: function mysquare(myarg) {
 30: document.write("<P Hello once more </P");
 31: document.write("<P <codemyarg</code is: ", myarg, "</P");
 32: return myarg*myarg;
 33: } ;
 34: document.write("<P Value returned is: ", mysquare(7), "</P");
 35: // end of hide --
 36: </SCRIPT
 37: <P Finish. </P
 38: </BODY </HTML

JavaScript is another programming language.

You put JavaScript code in HTML documents with a <SCRIPT> tag.

The JavaScript code is not compiled: instead, it is interpreted by a
JavaScript-aware WWW browser. Unlike Java, JavaScript is understood by
all browsers, including most of the early versions of Microsoft’s Internet
Explorer and Netscape’s Navigator for the Windows 3.x platform.

You can access a WWW page containing the above HTML instructions by
using the URL
http://www.dur.ac.uk/barry.cornelius/java/a.taste.of.java/code/square.html

JavaScript has most of Java’s expression syntax and basic control flow
constructs, but it does not have Java’s strong type checking and static
typing. You cannot write your own classes.

So, JavaScript is not as powerful as Java. And it is confusing for Java to be
included as part of the name JavaScript.

2 Declarations, statements, input and output

2.1 A simple Java program
 39: import java.io.BufferedReader; // Convert.java
 40: import java.io.InputStreamReader;
40.5: import java.io.IOException;
 41: public class Convert { /* BJC 960603 */
 42: public static void main(String[] args) throws IOException {
 43: System.out.println("type in the lowest Fahrenheit value");
 44: BufferedReader input =
44.5: new BufferedReader(new InputStreamReader(System.in));
 45: int lower = Integer.parseInt(input.readLine());
 46: System.out.println("type in the number of lines: ");
 47: int numOfLines = Integer.parseInt(input.readLine());
 48: int upper = lower + numOfLines - 1;
 49: for (int fahrenheit = lower; fahrenheit <= upper; fahrenheit++) {
 50: float celsius = to_celsius(fahrenheit);
 51: System.out.println(fahrenheit + " F is " + celsius + " C");
 52: }
 53: }
 54: // function to convert a temperature from degrees Fahrenheit
 55: // to degrees Celsius
 56: private static float to_celsius(float fahr) {
 57: return (fahr - 32.0F)*5.0F/9.0F;
 58: }
 59: }

Guide 58: Getting started with Java 4

http://www.dur.ac.uk/barry.cornelius/java/a.taste.of.java/code/square.html

2.2 Primitive types
name purpose of the type default value examples of literal values
boolean logical values false false, true
char Unicode characters \u0000 ' ', 'A', '\101', '\u0041', '\'', '\t'
byte signed integers 0 use int literal values
short signed integers 0 use int literal values
int signed integers 0 0, 42, 2147483647
long signed integers 0 0L, 42L, 9223372036854775807L
float IEEE 754 floating

point values
0.0 0.0F, 9.81F, 2.9979E8F, 6.6252e-34F

double IEEE 754 floating
point values

0.0 0.0, 9.81, 1.0e100, 0.5E-100

Later we will see that the fields of a class declaration are initially given the
default value given above, whereas a variable declared in a method
declaration has no default value. However, a Java compiler will generate a
compilation error for most attempts to use an uninitialized variable.

In Java, each of these types has a range that is defined by the language.
So the range does not change as you move your Java source code from
one platform to another. Here are the ranges:

name size (bits) smallest value of type largest value of type
boolean 1 N/A N/A
char 16 \u0000 \uFFFF
byte 8 -128 +127
short 16 -32768 +32767
int 32 -2147483648 +2147483647
long 64 -9223372036854775808 +9223372036854775807
float 32 -3.40282347E+38 +3.40282347E+38
double 64 -

1.79769313486231570E+308
+1.79769313486231570E+30
8

Values of the types float and double that are small in magnitude are
considered to be zero:

name smallest negative value smallest positive value
float -1.40239846E-45 +1.40239846E-45
double -4.94065645841246544E-

324
+4.94065645841246544E-
324

2.3 Declarations and initializers
In Java, a local variable declaration is a form of statement, and so such
declarations may appear at any point in a block. Here is an example:

60: char ch, separator, delimiter;

When a variable is declared, you can include an initializer that gives the
variable its initial value. However, often the initial value of a variable can
only be established after the execution of a few statements. In these cases,
it is sometimes argued that less errors occur if the declaration is left until an
appropriate initial value is known.

Guide 58: Getting started with Java 5

The initializer may be an expression that is calculated at runtime as is the
case with the lower, numOfLines and upper variables in the program Convert
given above.

If the value of a variable is never changed after it has been initialized, this
can be (and should be) documented by using the final keyword. In the
program Convert, this change could be made for the declarations of input,
lower, numOfLines, upper and celsius, e.g.:

61: final int upper = lower + numOfLines - 1;

Note that this particular use of final is not permitted in JDK 1.0.x.

2.4 Expressions
Java’s operators are similar to those of C. For example, Java has the
operators +, -, *, /, and % for performing arithmetic. Each of these has an
associated assignment operator. For example, the statement: a += b; has
the same meaning as the statement: a = a + b;

The operator ++ is a unary operator that is used to increment its operand
which must be a variable. If it is used as a prefix operator, the value of the
expression is the value of the variable after it has been incremented,
whereas if it is used as a postfix operator, the value of the expression is the
value of the variable before it has been incremented. The operator --
behaves like the operator ++ except that the variable is decremented
instead of incremented.

Java also has the relational operators ==, !=, <, <=, >, >=. It has the two
operators && and ||, that can be used to and and or boolean values. Like C,
these two operators do short-circuit evaluation. Unlike C, full evaluation can
be performed by using the operators & and | instead.

An expression that is preceded by the name of a type enclosed in
parentheses is called a cast expression. The value of the expression is
converted to a value of the type. Here are two examples:

 62: double speedOfLight = ...;
 63: int roughSpeedOfLight = (int)speedOfLight;
 64: int someInt = ...;
 65: char someChar = (char)someInt;

2.5 Statements

2.5.1 Blocks
There are many situations where the syntax of Java requires a single
statement. A sequence of statements can be considered to be a single
statement if they are turned into a block (which is called a compound
statement in some other languages). This is done by surrounding the
sequence of statements by { and }. Examples of this appear in the following
section.

Guide 58: Getting started with Java 6

2.5.2 Conditional statements
Java has 2 kinds of conditional statements. Here are some examples of an
if statement:

 66: if (a < 0) if (a > b) if (a > b) {
 67: a = -a; larger = a; larger = a;
 68: else System.out.println("a>b");
 69: larger = b; }
 70: else {
 71: larger = b;
 72: System.out.println("a<=b");
 73: }

Although C (and C++) allow the condition after the if to have an arithmetic
value, this is not permitted in Java: the condition must be a boolean
expression.

Here are two examples of a switch statement:

 74: switch (dayNumber) { switch (dayNumber) {
 75: case 2: case 3: case 4: case 1:
 76: case 5: case 6: readRatherHeavyNewspaper();
 77: gotoWork(); break;
 78: doWork(); case 7:
 79: goHome(); break;
 80: watchTV(); default:
 81: gotoPub(); gotoWork();
 82: break; doWork();
 83: case 7: goHome();
 84: break; watchTV();
 85: case 1: gotoPub();
 86: readRatherHeavyNewspaper(); }
 87: }

Following the symbol switch there should be an expression which is
enclosed by parentheses. In the above examples, this expression is on
line 74 and it just consists of the variable dayNumber. The expression
should be of type char, byte, short, or int.

When the switch statement is executed, the expression is evaluated and
then control is passed to the statement whose associated case label has a
value equal to that of the expression. If there is no such statement, then
control is passed to the statement associated with the default label if there is
one; otherwise, control is passed to the statement following the switch
statement.

A break statement must be executed if you wish to leave the switch
statement before the last statement of the switch statement. So, normally,
there will be a break statement just before each case label and before the
default label (if there is one).

2.5.3 Looping statements
Java has 3 kinds of looping statements. Here is an example of a for
statement:

Guide 58: Getting started with Java 7

 88: int numMonths = Integer.parseInt(input.readLine());
 89: int rainfallSum = 0;
 90: for (int monthNum = 0; monthNum < numMonths; monthNum++) {
 91: int figureForMonth = Integer.parseInt(input.readLine());
 92: rainfallSum += figureForMonth;
 93: }
 94: System.out.println(rainfallSum);

The above example has the variable monthNum declared in the for
statement itself. If you do this, then this variable can only be used within the
for statement. If you leave out the type, then the variable must be declared
elsewhere and the variable is similar to any other variable of the block
containing the for statement.

Here is an example of a while statement:

 95: int rainfallSum = 0;
 96: int figureForMonth = Integer.parseInt(input.readLine());
 97: while (figureForMonth >= 0) {
 98: rainfallSum += figureForMonth;
 99: figureForMonth = Integer.parseInt(input.readLine());
100: }
101: System.out.println(rainfallSum);

Here is an example of a do statement:

102: int rainfallSum = 0;
103: do {
104: int figureForMonth >= Integer.parseInt(input.readLine());
105: if (figureForMonth = 0)
106: rainfallSum += figureForMonth;
107: } while (figureForMonth >= 0) ;
108: System.out.println(rainfallSum);

Although C (and C++) allow the condition of a while statement or a do
statement to have an arithmetic value, this is not permitted in Java: the
condition must be a boolean expression.

2.5.4 Other control statements
A break statement terminates the execution of a for, do, while or switch
statement, and transfers control to the statement following that statement.
A break statement may include a label, and this label indicates that it is the
statement with that label that is to be terminated.

A continue statement transfers control to end of the current iteration of a for,
do or while statement. A continue statement may include a label, and, if this
is the case, control skips to the end of the loop that has this label.

Java also has try statements, catch clauses, finally clauses, and throw
statements. These are all used for exception handling, and details about
these will be given later.

2.6 Objects

2.6.1 Reference variables
Besides the primitive types that can be used for simple values, we often
want to represent structured values. For example, we might want to
represent a date in history, a point in two-dimensional space, and so on. In

Guide 58: Getting started with Java 8

Java, a variable that is of a reference type is used to refer to a structured
value.

For example, in order to represent a point in two-dimensional space, the
package java.awt provides a “class declaration” called Point. Such a class
declaration automatically provides a reference type called Point, and we can
declare a variable called myPoint to be of this reference type by the
declaration:

109: java.awt.Point myPoint;

To avoid having to repeat the package name every time we want to use
Point, we can use an import declaration at the start of the file containing the
Java source code:

110: import java.awt.Point;

Having done this, we can declare the variable myPoint by:

111: Point myPoint;

Such a declaration only introduces a reference variable, a variable that can
refer to an object that contains the details about the point.

myPoint

In some ways, a reference variable is like a pointer variable in Pascal, C or
C++.

2.6.2 Creating an object
Having declared the reference variable, we ought to get it to refer to a Point
object. This is done by using an assignment statement where the RHS
contains a class instance creation expression:

112: myPoint = new Point(100,200);

The creation expression new Point(100,200) uses a “constructor” for the
class Point to create an object of that class with x and y fields of 100 and
200. We will see later that we can do this because this kind of constructor
has been provided by the designers of the java.awt package. Often a class
provides several different constructors, e.g., as well as a constructor that
has two parameters which are the x and y coordinates, the designers of the
class Point could also have provided a constructor to construct a Point from
a String:

113: myPoint = new Point("100:200");

but they chose not to do this.

So we now have a variable called myPoint that refers to a point that has the
x and y coordinates 100 and 200.

myPoint x y

100 200

Guide 58: Getting started with Java 9

The above declaration of myPoint together with the above assignment
statement can be shortened to a declaration that has an initializer:

114: Point myPoint = new Point(100,200);

2.6.3 Referring to the fields of an object
We can use the dot notation to refer to the fields of an object, e.g., we can
use myPoint.x and myPoint.y. For example, we could change the point being
represented by 10 units in the x direction and 20 units in the y direction by
the assignment statements:

115: myPoint.x += 10;
116: myPoint.y += 20;

myPoint x y

110 220

Note that this is a little different to the languages Pascal, C and C++ where
some extra syntax is used to say that we are dereferencing a pointer.

2.6.4 Applying methods to an object
The designers of the java.awt package have thought that we may want to
move an existing point to a new point in space, and so they have provided
a method to do this. A method is what would be called a function or
procedure in other programming languages. The method that they have
provided is called translate. So, instead of the above two assignment
statements, we could write:

117: myPoint.translate(10,20);

Note that the dot notation that we used above to refer to the two fields of a
Point object is also used in the call of a method. You should look at this call
in the following way: “apply the translate method with arguments 10 and 20
to the myPoint object”. Note: you would have written something like:
translate(myPoint,10,20) in languages like Pascal and C.

2.6.5 Copying objects
Suppose we have:

118: Point otherPoint;
119: otherPoint = myPoint;

The assignment statement causes otherPoint to refer to the same object that
myPoint refers to.

Guide 58: Getting started with Java 10

myPoint x y

110 220

otherPoint

So, the above assignment statement does not produce a clone. The
classes of the Core APIs use two different ways of enabling you to produce
a clone of an object:

• a class sometimes provides a method called clone;
• a class sometimes provides a suitable constructor.

Although Point does not provide a clone method, it does provide a suitable
constructor:

120: Point clonePoint;
121: clonePoint = new Point(myPoint);

x ymyPoint

110 220

110 220

clonePoint yx

2.6.6 Comparing objects
The == operator in the following condition is asking whether the two
reference variables refer to the same object:

122: if (myPoint == otherPoint) { ... } else { ... }

myPoint x y

110 220

otherPoint

If, instead, you want to ask whether the two objects referred to by two
reference variables have the same value, you can often use a method
called equals:

123: if (myPoint.equals(clonePoint)) { ... } else { ... }

Guide 58: Getting started with Java 11

x ymyPoint

110 220

110 220

clonePoint yx

2.6.7 The value null
If a reference variable has the value null, then this means that the variable
does not currently refer to any object. An assignment statement can be
used to indicate this:

124: myPoint = null;

myPoint

null

You can test whether a reference variable does not refer to an object:

125: if (myPoint == null) { ... } else { ... }

Note: whilst null appears to be a keyword of the language, it is technically
the null literal.

2.6.8 Garbage collection
Pascal/C/C++ programs inadvertently dispose/free/delete objects which are
still in use:

126: var p, q:^integer; int *p, *q; int *p, *q;
127: new(p); p = malloc(sizeof(int)); p = new int;
128: p^ := 27; *p = 27; *p = 27;
129: q := p; q = p; q = p;
130: dispose(p); free(p); delete p;
131: writeln(q^); printf("%d\n", *q); cout << *q << endl;

And programs often cause memory leaks by not using dispose/free/delete on
unwanted objects.

In Java, you do not delete objects: instead, Java has garbage collection.
The garbage collector detects objects no longer in use, and reuses their
space. Also, unlike C++, you do not have to provide destructors for classes.

2.7 Arrays

2.7.1 Introduction
In Java, an array is a collection of values that are of the same primitive type
or of the same reference type. Since an array type is itself a reference type,
arrays of arrays can be constructed.

Guide 58: Getting started with Java 12

2.7.2 An array of integers
The numbers of the days in a non-leap year on which each of the twelve
months start are 1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305 and 335.
For example, March 1st is the 60th day of the year. Suppose we want to
provide an array called monthStarts that contains this information.

In Java, there are two syntaxes for an array declaration. To keep C
programmers happy, an array declaration can be written using the following
syntax:

132: int monthStarts[];

However, the following syntax is better:

133: int[] monthStarts;

Note that the number of elements in the array is not included in this
declaration. This is because this declaration only declares a reference
variable that can be used to refer to an array object.

monthStarts

In order to create the actual array object we need to use an assignment
statement that contains an array creation expression on its RHS:

134: monthStarts = new int[12];

So this has set up monthStarts to be a reference variable that refers to an
array of 12 integers, with indexes from 0 to 11.

0 2 3 4 5 6 7 8 9 10 110 1

monthStarts

You can access each individual element using the usual notation:

135: monthStarts[0] = 1;
136: monthStarts[1] = 32;
137: ...
138: monthStarts[11] = 335;

0 2 3 4 5 6 7 8 9 10 110 1monthStarts

3351 32 60 91 121 152 182 213 244 274 305

If an index is out of bounds, the exception ArrayIndexOutOfBoundsException
will be thrown: details about “exception handling” are given later.

As before, the creation expression can be used as an initializer:

139: int[] monthStarts = new int[12];
140: monthStarts[0] = 1;
141: monthStarts[1] = 32;
142: ...
143: monthStarts[11] = 335;

This code can be abbreviated to:

Guide 58: Getting started with Java 13

144: int[] monthStarts = { 1,32,60,91,121,152,182,213,244,274,305,335 };

2.7.3 An array of points
Suppose we want an array where each element is an object of class
java.awt.Point. Perhaps we want an array to represent the four vertices of
the rectangle (100,100), (300,100), (300,400) and (100,400). We can do
this as follows:

145: Point[] vertices = new Point[4];
146: vertices[0] = new Point(100,100);
147: vertices[1] = new Point(300,100);
148: vertices[2] = new Point(300,400);
149: vertices[3] = new Point(100,400);

0 2 31

100 100 100 100

300 300 400 400

0vertices

Once again, this code can be abbreviated:

150: Point[] vertices = { new Point(100,100), new Point(300,100),|
151: new Point(300,400), new Point(100,400) };

2.7.4 Flexible arrays
Within the square brackets of an array creation expression, there needs to
be an expression indicating the number of elements that are required in the
array object. This expression may be one whose value is not known until
runtime. For example:

152: BufferedReader input = ...;
153: int size = Integer.parseInt(input.readLine());
154: int[] monthStarts = new int[size];

2.7.5 Even more flexible arrays
Having created an array object, the size of the array object is fixed.
Suppose you are storing details about a collection of people, and suppose
the size of the collection changes during the course of the execution of a
program. It may be that you have no idea what the maximum size of the
collection will be. Although you could arbitrarily choose a large value, this is
wasteful of space, and no matter what value you choose, your program will
fail if the value you choose is too small. In such situations, it is probably
better to use a List, a Set or a Map. These are facilities that are provided by
the Collections API of the Java 2 Platform. For more details, see ITS Guide
108 Advanced Java.

2.8 Methods
In Java, the word method is used instead of function, procedure or
subroutine. The argument to println in:

Guide 58: Getting started with Java 14

155: System.out.println(convertToCelsius(82.0));

is convertToCelsius(82.0). This is an example of a call of a method such as:

156: private static double convertToCelsius(double fahr) {
157: return (fahr - 32.0)*5.0/9.0;
158: }

Unlike C and C++, there is no default return type: you must specify it. If the
method does not return a result, void should be used as the return type.

In Java, a parameter of a method behaves like a local variable of the
method. It gets its initial value from the argument passed in the call. Any
assignment to the parameter within the method only affects the value of the
local variable. If a method does not assign a value to the parameter, this
can be (and should be) documented by using the final keyword. However,
note that this use of final is not permitted in JDK 1.0.x. Here is an example:

159: private static double convertToCelsius(final double fahr) {
160: return (fahr - 32.0)*5.0/9.0;
161: }

Unlike other languages, a method cannot change the value of the variable
that is passed as an argument. So given:

162: private static void silly(double p) {
163: p = p + 4.2;
164: System.out.println(p);
165: }

the following code will not alter the value of the variable a:

166: a = 2.7;
167: silly(a);
168: System.out.println(a);

If a method has no parameters, then it is declared with an empty parameter
list:

169: private static void m() { ... }

and a call has an empty argument list:

170: m();

It is possible to declare several methods having the same name provided
that they can be distinguished by the types of their parameters. This is
called method overloading. Here is an example where the name min is
declared twice:

171: private static long min(long a, long b) { return a<b ? a : b; }
172: private static Date min(Date a, Date b) { return a.before(b) ? a : b; }

At a call of min, the compiler can look at the arguments to see which min is
required.

Note: the modifiers private and static will be discussed later.

Guide 58: Getting started with Java 15

2.9 Output and input

2.9.1 Attaching an output stream
To write values to a file called results, you can use a variable of the type
PrintWriter. Suppose you want to use a variable called filout:

173: PrintWriter filout =
174: new PrintWriter(new BufferedWriter(new FileWriter("results")));

This declaration assumes that the following imports appear at the start of
the file of source code:

175: import java.io.BufferedWriter;
176: import java.io.FileWriter;
177: import java.io.PrintWriter;

If you want some output to be sent to the standard output, which is usually
the screen, you can use System.out as an output stream. The variable out is
a variable (of the type java.io.PrintStream) that is a “class variable” of the
class System which is defined in the package java.lang. Any class of this
package is automatically available to a program without the need for any
import declaration.

2.9.2 Outputting values to the output stream
In order to output a textual representation of a value, the print method
should be applied to an object of the class PrintWriter or PrintStream. Here
are two examples:

178: filout.print("Hello World!");
179: System.out.print("Hello World!");

The print method can be passed:

• an argument of any primitive type;
• an argument of any reference type for which the method toString is

defined;
• an expression that uses the string concatenation operator, e.g.:

180: int first = 42;
181: System.out.print("first has the value " + first);

If you want the output to move on to the next line after the value has been
printed, use println instead of print.

2.9.3 Closing a file
As output to a BufferedWriter stream is buffered, the stream will need to be
closed when you have finished using it:

182: filout.close();

2.9.4 Attaching an input stream
To read values, you will need a variable of the type BufferedReader that is in
the package java.io. To read from the standard input, which is normally the

Guide 58: Getting started with Java 16

keyboard, you can use System.in as an input stream. So, if you want to use
a variable called input for this input stream, you can use the following
declaration:

183: BufferedReader input =
184: new BufferedReader(new InputStreamReader(System.in));

This declaration assumes that the following imports appear at the start of
the file of source code:

185: import java.io.BufferedReader;
186: import java.io.InputStreamReader;

If, instead, you want to read values from a file called data, you can use:

187: BufferedReader filin = new BufferedReader(new FileReader("data"));

This declaration assumes that the following imports appear at the start of
the file of source code:

188: import java.io.BufferedReader;
189: import java.io.FileReader;

2.9.5 Reading a line of characters
The method readLine can be used to read in a line of characters from an
input stream. It returns a value of type String. Here are two examples:

190: String inputLine = input.readLine();
191: String filinLine = filin.readLine();

The class String is defined in the package java.lang, and so it can be used in
a program without the need for an import declaration.

2.9.6 Reading a value
If you would like to read a value into a variable whose type is one of the
primitive types, you first need to call readLine to read in a line of characters
and then call an appropriate method to parse the string. Here is an example
where a value of type int is obtained from the keyboard:

192: String line = input.readLine();
193: int intVal = Integer.parseInt(line);

This can be abbreviated to:

194: int intVal = Integer.parseInt(input.readLine());

Given a variable called line containing a String:

195: String line = input.readLine();

values of the other primitive types can be obtained using the following
statements:

196: long longVal = Long.parseLong(line);
197: float floatVal = Float.parseFloat(line);
198: double doubleVal = Double.parseDouble(line);
199: boolean booleanVal = new Boolean(line).booleanValue();

Guide 58: Getting started with Java 17

Note that the methods parseFloat and parseDouble were introduced into Java
when the Java 2 Platform was released, and so, if you are using JDK 1.0.2
or JDK 1.1.x, you will have to use methods called floatValue or doubleValue
instead (in a similar way in which booleanValue is used above).

The classes Integer, Long, Float, Double and Boolean are defined in the
package java.lang, and so they can be used in a program without the need
for any import declarations.

2.9.7 Handling more than one data item per line
You can use the class java.util.StringTokenizer if you want more than one
data item per line. Suppose a line contains an int, followed by a float,
followed by another int. You could use:

200: String line = input.readLine();
201: StringTokenizer tokens = new StringTokenizer(line);
202: String token = tokens.nextToken();
203: int firstInt = Integer.parseInt(token);
204: token = tokens.nextToken();
205: float theFloatVal = Float.parseFloat(token);
206: token = tokens.nextToken();
207: int secondInt = Integer.parseInt(token);

2.9.8 Flushing the output
If you want the user to type on the same line as a prompt, you will need to
flush the output stream after outputting the prompt:

208: BufferedReader input =
209: new BufferedReader(new InputStreamReader(System.in));
210: System.out.print("Type in an integer: ");
211: System.out.flush();
212: String line = input.readLine();
213: int value = Integer.parseInt(line);

2.9.9 Dealing with java.io.IOException
If you are going to use the classes and methods from the java.io package,
you will find that you are unable to compile your program unless it indicates
what you want to happen if an exception called java.io.IOException occurs.
Details about “exception handling” are given later. So, to begin with, you
may be happy for your program to crash if an IO exception occurs. This can
be done by adding the clause throws IOException to the heading of any
method that does IO. For example:

214: public static void main(String[] args) throws IOException { ... }

This code assumes that the following import appears at the start of the file
of source code:

215: import java.io.IOException;

2.9.10 JDK Version 1.0.x
Many of the classes given above are not available if you use Version 1.0.x
of the JDK. And the input-output facilities provided by Version 1.0.x can
only handle byte streams. Those of JDK Version 1.1.x (and later) include

Guide 58: Getting started with Java 18

support for character streams, i.e., streams containing 16-bit Unicode
characters rather than just 8-bit bytes.

3 Handling strings

3.1 Creating an object of the class String
Although:

String tName = new String("James Gosling");

is the obvious way of creating a string object and making tName point to it,
for strings there is an alternative syntax for the class instance creation
expression. You can use "James Gosling" instead of using new String("James
Gosling") as in:

String tName = "James Gosling";

So you have a choice here: both forms of syntax can be used to create new
string objects.

A string literal can include characters that are non-graphic characters. This
is done by using an escape sequence. An escape sequence is also
necessary for putting a single quote, a double quote or a backslash in a
string:

System.out.println("Lister glared at Rimmer. \"You really are a smeghead\", he said.");

We will sometimes need to represent a string that has no characters. The
string literal "" or the expression new String("") can be used. Such a string is
called the empty string.

3.2 Applying methods to a String object
The class java.lang.String comes with a large number of methods for
manipulating strings. A list of these methods is documented in the Method
Detail section of $API/java/lang/String.html.

For example, if you want to access an individual character of a string, you
can use a method called charAt. The value that is returned is of type char.
You use an argument that is an int value to indicate the position of the
character which you want to be returned. However, its value needs to be
one less than the position of the character. So if you want the first character
of the string to be returned, you need an argument with the value 0:

String tName = new String("James Gosling");
char tFirstChar = tName.charAt(0);
System.out.println("The first character of the name is: " + tFirstChar);

The println statement will output the line:

The first character of the name is: J

There is also a method that can be used to find out how many characters
there are in a string:

Guide 58: Getting started with Java 19

String tName = new String("James Gosling");
int tNameLength = tName.length();
char tLastChar = tName.charAt(tNameLength - 1);
System.out.println("The last character of the name is: " + tLastChar);

This will output:

The last character of the name is: g

3.3 The exception StringIndexOutOfBoundsException
Many of the methods of the class String have an argument that is an integer
that is the position of a character within a string. If you pass an argument
that is invalid, the method will signify that it cannot handle this situation, by
throwing an exception called StringIndexOutOfBoundsException. An exception
is an occurrence of an exceptional circumstance, a situation that does not
normally occur.

For example, if you call charAt with the value 5 when a string has 5
characters, your program will crash displaying lines like:

java.lang.StringIndexOutOfBoundsException: String index out of range: 5
 at java.lang.String.charAt(String.java)
 at StringIndexTest.main(StringIndexTest.java:6)

Instead of letting the program crash like this, we can include code in our
program that will be executed when an exception occurs. Java has a
statement called a try statement that is used to handle exceptions, and we
will look at try statements later.

Java divides exceptions into two categories: checked exceptions and
unchecked exceptions. A StringIndexOutOfBoundsException is an unchecked
exception, and Java says that a program does not have to say what it
wants to happen when an unchecked exception occurs.

3.4 Changing a String object
The class java.lang.String is rather unusual: none of its methods alter the
object to which the method is being applied. The objects of the class are
said to be immutable.

Instead of a method altering the value of a string object, it will produce a
new string object. For example, consider:

String tToday = new String("1999-07-11");
tToday = tToday.replace('-', ':');
System.out.println(tToday);

First, a string object containing the string "1999-07-11" is created and tToday
is made to point to it. Then the method replace is applied to the string object
that is pointed to by tToday. This does not change that string object, but
instead creates a new string object in which any occurrences of the '-'
character are replaced by a ':' character. Then the value of tToday is
changed. It is currently pointing to the first string object, and it is now
altered to point to the new string object. There is now no variable pointing
to the first string object: it is lost. Finally, the string that tToday points to is
output by the call of the println method:

1999:07:11

Guide 58: Getting started with Java 20

3.5 Copying String objects
As was shown with the class java.awt.Point, you can make another variable
refer to the same string by an assignment statement:

String tName = new String("James Gosling");
String tSameName = tName;

Both reference variables refer to the same object.

Earlier, when we used the String constructor, we passed a string literal as
an argument. If you want a clone of a String object, then you can pass that
String object as the argument of a String constructor:

String tName = new String("James Gosling");
String cloneName = new String(tName);

3.6 String concatenation
The class java.lang.String is unusual because an operator is defined in the
language specifically for the concatenation of the values of two objects of
this class:

String tFirstName = new String("James");
String tSurname = new String("Gosling");
String tName = tFirstName + tSurname;

The variable tName now points to a string object containing the string
"JamesGosling". Perhaps that is not what we were after. So use this instead:

String tName = tFirstName + " " + tSurname;

The string concatenation operator is very flexible in that it will convert any
operand (that is permitted) into a string. Here is an example:

Point tFirstPoint = new Point(100, 200);
String tLine = "The point has the value " + tFirstPoint;
System.out.println(tLine);

This will output:

The point has the value java.awt.Point[x=100,y=200]

If you have a long string literal, the string concatenation operator can be
used to help in the layout of the text. For example, the statement:

System.out.println("Lister glared at Rimmer. \"You really are a smeghead\", he said.");

can instead be written as:

System.out.println("Lister glared at Rimmer." +
 " \"You really are a smeghead\", he said.");

Guide 58: Getting started with Java 21

3.7 A program that uses these ideas about Strings
Suppose we want a program that takes a person’s name arranged as
FirstName Surname and outputs it in the format Surname, Initial where
Initial is the first letter of the FirstName. We will also suppose that the
output must be displayed in upper-case. Here is a program that does this
for the name "James Gosling":

216: public class SimpleString { // SimpleString.java
217: public static void main(final String[] pArgs) {
218: final String tName = new String("James Gosling");
219: System.out.println(tName);
220: final char tFirstChar = tName.charAt(0);
221: final int tPositionOfSpace = tName.indexOf(" ");
222: final String tSurname = tName.substring(tPositionOfSpace + 1);
223: String tLabel = tSurname + ", " + tFirstChar;
224: tLabel = tLabel.toUpperCase();
225: System.out.println(tLabel);
226: }
227: }

The two printlns of this program produce the following output:

James Gosling
GOSLING, J

3.8 The class StringBuffer
Besides the class String, there is another class called StringBuffer (which is
also in the java.lang package). When you wish to build up a string gradually
by performing a lot of string manipulation, it is more efficient to use a
StringBuffer rather than create a lot of String objects. If you have a
StringBuffer variable called tStringBuffer, you can apply toString method to the
variable in order to create a String from tStringBuffer:

228: public static String reverse(String source) {
229: int charNum;
230: int numChars = source.length();
231: StringBuffer temp = new StringBuffer(numChars);
232: for (charNum = numChars-1; charNum>=0; charNum--) {
233: temp.append(source.charAt(charNum));
234: }
235: return temp.toString();
236: }

Guide 58: Getting started with Java 22

4 Using classes for data abstraction

4.1 Introduction
Typically a program has to maintain several data structures each of which
is manipulated in many different ways. It is best for the pieces of code that
manipulate a particular data structure to be located in a small number of
functions. And it would be desirable if the program could be written so that
each data structure can only be accessed from its associated functions,
i.e., it is not directly accessible to the rest of the program. In this way, we
would then prevent a data structure from accidentally being misused. What
we want is a way of building a wall around a data structure and the
functions that manipulate it, and only allowing some of these functions to be
accessible from outside the wall. Modern programming languages have a
construct to do this: for example, Ada has packages, Fortran90 and
Modula-2 both have modules, and C++ and Java both have classes.

In this section, we look at how to write our own class declarations.

4.2 Using a class declaration to define your own type
There are two main characteristics to a type:

• a type has a set of values associated with it;
• a type has a set of operations that are permitted on these values.

For example, the type int refers to the set of integer values from some large
negative value to some large positive value, together with operations such
as addition and subtraction (denoted by + and -).

One approach to writing a program is to identify the objects of the problem
that you need to represent in the program. Each object can be in a number
of states (i.e., may possess one of a number of different values) and has a
set of operations that can be performed on it.

Although some of these objects can be realised in your program by a
variable of a type that is pre-defined in the programming language you are
using, it would be useful to be able to define your own types to represent
the other objects. The process of identifying the types needed for these
objects is referred to as data abstraction.

4.3 A class called Date
In Java, it is possible to use a class declaration to define your own type. For
example, suppose that it is necessary to manipulate some dates in a
program. We can think of dates as being composed of three parts, the day,
month and year. Operations that are performed on dates include
constructing dates, copying dates, comparing two dates, getting the day,
month and year parts of a date, and performing input-output for values that
are dates.

Guide 58: Getting started with Java 23

4.4 Stage A: providing a primitive version of the class Date
To begin with, we will produce a class declaration that is just able to
represent values that are dates: it provides no operations, and so there will
be little that we can do with these date values.

Within each object of this class, three ints will be used to represent the
year, month and day parts of a date. Here is the class declaration:

237: // A class for representing values that are dates. // Date.java
238: public class Date
239: {
240: public int year;
241: public int month;
242: public int day;
243: }

This class declaration for the class Date needs to be stored in the file
Date.java.

Here is a program that uses the class Date. It is called NoelProg, and so
these lines need to be stored in the file NoelProg.java:

244: // This program creates an object of the class Date // NoelProg.java
245: // and then sets its fields to represent Christmas Day 1999.
246: public class NoelProg
247: {
248: public static void main(final String[] pArgs)
249: {
250: final Date tNoelDate = new Date();
251: tNoelDate.year = 1999;
252: tNoelDate.month = 12;
253: tNoelDate.day = 25;
254: System.out.println(tNoelDate.year + "-" +
255: tNoelDate.month + "-" + tNoelDate.day);
256: }
257: }

When we want to execute the NoelProg program, we first have to compile
the two pieces of Java source code:

javac Date.java
javac NoelProg.java

This produces the files Date.class and NoelProg.class. Since it is the file
NoelProg.java that contains the main method, we can execute the program
by typing:

java NoelProg

What does the NoelProg program do? The first statement:

final Date tNoelDate = new Date();

is a declaration. The left-hand side establishes a reference variable called
tNoelDate. The initializer on the right-hand side is a class instance creation
expression:

new Date()

This creates an object that is just big enough to hold the fields of the class,
i.e., the three fields called year, month and day.

Guide 58: Getting started with Java 24

Each field will be initialized to a value which depends on the type of the
field. The default values for fields were given earlier. As the three fields of
the class Date have the type int, they will be initialized to zero. The initializer
causes tNoelDate to be assigned a value that points to this object.

Following the declaration of tNoelDate, there are three assignment
statements that assign values to each of these three fields. For example:

tNoelDate.year = 1999;

puts a value in the year field of tNoelDate. Here the dot notation introduced
earlier is being used. Although it is possible to assign values to the year,
month and day fields that do not represent a date, we will ignore this
deficiency.

The last statement of the program outputs the line:

1999-12-25

Here is some jargon: a piece of code that uses another class is said to be a
client of the class. So the program NoelProg is a client of the class Date.

Although this is exciting because we have declared this class ourselves,
there is nothing new about the way in which we are using the class. It is
much like what we did with the class Point earlier.

4.5 Stage B: adding a constructor and a method declaration

4.5.1 Stage B1: adding a constructor declaration
The three assignment statements in the NoelProg program (given above)
ensure that the Date object has the values that we want it to have. When we
create an object, we will frequently want to assign values to all of the fields
of the object. For this reason, Java allows class declarations to have
constructors.

With a class to represent dates, an obvious constructor is one that creates
a date object from three integers:

final Date tNoelDate = new Date(1999, 12, 25);

Here the class instance creation expression uses a constructor that has
three int arguments. This is only possible if the class declaration for Date
has a constructor declaration that has three int arguments:

public Date(final int pYear, final int pMonth, final int pDay)
{
 year = pYear;
 month = pMonth;
 day = pDay;
}

In many ways, a constructor looks like a method declaration. However,
there are two differences: there is no result type and the declaration has the
same name as the class.

So, when the declaration:

final Date tNoelDate = new Date(1999, 12, 25);

Guide 58: Getting started with Java 25

is executed, first the object is constructed with default initial values, and
then the constructor is executed. So, the values 1999, 12, 25 are assigned
to pYear, pMonth and pDay, and then the block of the constructor leads to
the following statements being executed:

year = 1999;
month = 12;
day = 25;

A constructor can refer to the fields of the object being initialized by using
the names of the fields. So these statements result in the fields of the
object having their values changed. The final act of the declaration is to
make tNoelDate refer to the object that has just been created by the class
instance creation expression.

After this declaration, the NoelProg program executes:

tNoelDate.day++;

This statement increases the value of the day field of this object by 1.

4.5.2 Stage B2: using a method to display the value of an object
The NoelProg program that was given earlier outputs the value of a Date
object by using:

System.out.println(tNoelDate.year + "-" +
 tNoelDate.month + "-" + tNoelDate.day);

Displaying the value of an object is a common task and:

• to save us from writing the above code each time we want to output a
date;

• to ensure that we get consistent output;

it is useful to put the code for outputting a date into a method.

The following class declaration for Date includes a method declaration for a
method called display:

258: // A class for representing values that are dates. // Date.java
259: public class Date
260: {
261: public int year;
262: public int month;
263: public int day;
264: public Date(final int pYear, final int pMonth, final int pDay)
265: {
266: year = pYear;
267: month = pMonth;
268: day = pDay;
269: }
270: public void display()
271: {
272: System.out.println(year + "-" + month/10 + month%10 +
273: "-" + day/10 + day%10);
274: }
275: }

Its use is illustrated by this version of the NoelProg program:

Guide 58: Getting started with Java 26

276: // This program creates an object of class Date // NoelProg.java
277: // representing Christmas Day 1999, then moves
278: // the day field on by 1, and then outputs the new date.
279: public class NoelProg
280: {
281: public static void main(final String[] pArgs)
282: {
283: final Date tNoelDate = new Date(1999, 12, 25);
284: tNoelDate.day++;
285: tNoelDate.display();
286: }
287: }

When the NoelProg program executes the statement:

tNoelDate.display();

the method called display will get called, and it will be applied to the object
pointed to by the tNoelDate variable. When the block of display is executed,
i.e., when the statement:

System.out.println(year + "-" + month/10 + month%10 + "-" + day/10 + day%10);

is executed, the references to year, month and day are references to the
year, month and day fields of tNoelDate. The uses of /10 and %10 ensure that
two digits are always output for the month and day values.

The call of this method will output the line:

1999-12-26

4.6 Grouping fields and methods together to implement a type
The above class declaration for Date not only has the declaration of three
fields (year, month and day): it also has the declaration of a method (display).
Earlier, it was suggested that the two main characteristics of a type are a
set of values and some operations to perform on those values. So, one of
the major attractions of a class declaration is that it allows us to group
together:

• fields to implement the values of a type;
• methods to implement the operations of a type.

The fields and methods are sometimes referred to as the members of the
class.

4.7 Stage C: hiding fields, providing access methods and toString

4.7.1 Stage C1: hiding the fields and accessing them using methods
With the previous class declaration for a date, the fields of an object are
directly accessible from a client, i.e., a program like NoelProg can refer to
the day field of the object pointed to by tNoelDate by using tNoelDate.day. It
can do this because, in the class declaration, the fields have a public
modifier, e.g.:

public int day;

Back in the real world, when you want to get off a bus, you usually indicate
this by signalling to the bus driver in some way, e.g., by pressing a button

Guide 58: Getting started with Java 27

that rings a bell. Giving everyone a brake pedal would not be a good idea!
In the same way, it is unusual to expose the fields of an object to a client.
Instead of making a field public, we will make it private and usually we will
provide some methods to allow access to the field. Such methods are
called access methods.

So in the following class declaration for Date the three fields for year, month
and day have been made private:

private int iYear;
private int iMonth;
private int iDay;

At the same time, the names of these fields have been changed. In this
Guide, the i prefix will be used for entities that are internal to a class. You
can also remember the meaning of i because it is also a letter of the words
hidden and private.

288: // A class for representing values that are dates. // Date.java
289: public class Date
290: {
291: private int iYear;
292: private int iMonth;
293: private int iDay;
294: public Date(final int pYear, final int pMonth, final int pDay)
295: {
296: iYear = pYear;
297: iMonth = pMonth;
298: iDay = pDay;
299: }
300: public int getYear()
301: {
302: return iYear;
303: }
304: public int getMonth()
305: {
306: return iMonth;
307: }
308: public int getDay()
309: {
310: return iDay;
311: }
312: public void setYear(final int pYear)
313: {
314: iYear = pYear;
315: }
316: public void setMonth(final int pMonth)
317: {
318: iMonth = pMonth;
319: }
320: public void setDay(final int pDay)
321: {
322: iDay = pDay;
323: }
324: public String toString()
325: {
326: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
327: }
328: }

The above class declaration also provides six access methods called
getYear, getMonth, getDay, setYear, setMonth and setDay. Two of these are
used by the following version of the NoelProg program:

Guide 58: Getting started with Java 28

329: // This program creates an object of class Date // NoelProg.java
330: // representing Christmas Day 1999, then moves the
331: // day component on by 1, and then outputs the new date.
332: public class NoelProg
333: {
334: public static void main(final String[] pArgs)
335: {
336: final Date tNoelDate = new Date(1999, 12, 25);
337: final int tDay = tNoelDate.getDay();
338: tNoelDate.setDay(tDay + 1);
339: System.out.println(tNoelDate.toString());
340: System.out.println(tNoelDate);
341: }
342: }
343:

When the program calls getDay as in tNoelDate.getDay(), the block of getDay
will execute the statement:

return iDay;

So the value of the iDay field of the object that is the target of the method
invocation is returned. In the case of the NoelProg program, getDay is being
applied to the object pointed to by tNoelDate, and the method returns the
value of its iDay field. So, 25 gets returned.

In the next statement, the program executes:

tNoelDate.setDay(tDay + 1);

So pDay (the parameter of setDay) is assigned the value 26 and this value is
used in the block of setDay to change iDay to 26. Once again, the object
pointed to by tNoelDate is the target of this call and so it is this object’s iDay
field that is changed to 26.

The technique of hiding fields behind access methods is an important one.
It is called data encapsulation (or information hiding). If you look at the
WWW pages for the Core APIs you will find very few classes that have
public fields. Possibly the only ones are in the classes java.awt.Point and
java.awt.Rectangle.

4.7.2 Stage C2: using toString instead of display
Although in Stage B2, we found it useful to introduce a method (display)
which uses println to display the value of a Date object, in Java it is more
usual:

• for a class to declare a method (called toString) that returns a string
that is some textual representation of the value;

• for a client to do whatever it wants with the string, e.g., one possibility
being to call print or println to output the string.

So, instead of having a method called display that calls println, the version of
the class Date given above declares a method called toString that just
returns a string that NoelProg passes as an argument to println:

System.out.println(tNoelDate.toString());

When toString gets called, it just executes:

return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;

Guide 58: Getting started with Java 29

You can see that the result type of toString is the type String. So the
execution of this return statement forms a string consisting of the
concatenation of the iYear field of tNoelDate, a hyphen, the two digits of the
iMonth field of tNoelDate, another hyphen, and then the two digits of the iDay
field of tNoelDate, e.g., "1999-12-25". This is the string that NoelProg passes
as an argument to println.

It is usual to call this method toString. The reason for this is that the
statement:

System.out.println(tNoelDate.toString());

can be abbreviated to:

System.out.println(tNoelDate);

This is because both print and println are defined so that if a variable of a
reference type is passed as an argument then that type’s toString method is
called.

4.7.3 Using the default version of toString
If you provide a class declaration but fail to provide a toString method, it is
still possible for a program to apply the toString method to an object of the
class. For example, if the toString declaration of Date’s declaration is
removed, the NoelProg program is still a valid program. When it is run, the
program will execute the toString method of a class called Object. The two
calls of println would then produce output that is something like:

Date@80cb419
Date@80cb419

This is the name of the class, followed by an @, followed by the hashcode
of the object (given in the hexadecimal notation).

One of the key aspects of an object-oriented programming language such
as Java is inheritance. This is a topic which will be described later. What we
need to know at this stage is that a class is derived, by default, from a class
called Object (belonging to the package java.lang). It is said to be a subclass
of the class Object. This means that, if a program applies a method to an
object, and the class of the object does not provide the method, but it is
provided by the class Object, then Object’s method will be called. The WWW
page $API/java/lang/Object.html contains a list of the methods provided by
the class Object: they are clone, equals, finalize, getClass, hashCode, notify,
notifyAll, toString and wait.

On the WWW page $API/java/lang/Object.html#toString(), it says: “ In
general, the toString method returns a string that `textually represents` this
object. The result should be a concise but informative representation that is
easy for a person to read. It is recommended that all subclasses override
this method. “ And this is exactly what is happening above: the definition of
toString given in the class declaration for Date overrides the one given in
Object.

Guide 58: Getting started with Java 30

4.8 Stage D: providing class variables, class methods and class constants
If a class declaration includes a field, then every object that is of this class
will include this field. Such a field is called an instance variable. It is also
possible to have a field that is associated with the class rather than with
each object of the class. Such a field is called a class variable, and it is
indicated by using a static modifier.

A superficial example would be a class declaration that has a field that is
used to count how many times methods of the class have been called:

private static int tNumberOfCalls = 0;

In order for this to work, we would need to add the statement:

tNumberOfCalls++:

to each of the methods of the class. Here is such a class declaration:

344: // A class for representing values that are dates.
345: // Barry Cornelius, 20th September 1999
346: import java.util. StringTokenizer;
347: public class Date
348: {
349: private static int iNumberOfCalls = 0;
350: private int iYear;
351: private int iMonth;
352: private int iDay;
353: public static int getNumberOfCalls()
354: {
355: return iNumberOfCalls;
356: }
357: public Date(final int pYear, final int pMonth, final int pDay)
358: {
359: iNumberOfCalls++;
360: iYear = pYear;
361: iMonth = pMonth;
362: iDay = pDay;
363: }
364: public int getYear()
365: {
366: iNumberOfCalls++;
367: return iYear;
368: }
369: ...
370: public void setYear(final int pYear)
371: {
372: iNumberOfCalls++;
373: iYear = pYear;
374: }
375: ...
376: public String toString()
377: {
378: iNumberOfCalls++;
379: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
380: }
381: }

A method that can be applied to any object of its class is called an instance
method. It is also possible for a class to have standalone methods: such a
method is called a class method.

So we could add to the Date declaration a method that returns the value of
the class variable iNumberOfCalls, i.e., that returns the number of times
methods of the class have been called. Such a method declaration appears
in the above class declaration. Note that it is easy to detect a class method
because its declaration includes static.

Guide 58: Getting started with Java 31

A class method is called by putting the name of the class on the left of the
dot. An example of the call of getNumberOfCalls() is shown in the following
version of the NoelProg program. It outputs the value 7:

382: // This program creates objects of the version of the // NoelProg.java
383: // class Date that keeps track of the number of calls of its methods.
384: public class NoelProg
385: {
386: public static void main(final String[] pArgs)
387: {
388: final Date tNoelDate = new Date(1999, 12, 25); // 1
389: final int tDay = tNoelDate.getDay(); // 2
390: tNoelDate.setDay(tDay + 1); // 3
391: System.out.println(tNoelDate.toString()); // 4
392: System.out.println(tNoelDate); // 5
393: final Date tAnotherDate = new Date(2000, 12, 25); // 6
394: System.out.println(tAnotherDate); // 7
395: System.out.println("number of calls is: " + Date.getNumberOfCalls());
396: }
397: }
398:

As a class method is not applied to an instance of a class, it does not make
sense to refer to non-static members (e.g., iDay and toString) in the block of
the method of a class method (e.g., getNumberOfCalls). Any attempt to do
this produces a compilation error like Can’t make a static reference to
nonstatic variable iDay in class Date.

If it is appropriate for a class to have a constant associated with it, then you
can use a class variable whose declaration includes the final modifier. For
example, the class java.lang.Math includes:

public static final double PI = 3.14159265358979323846;

Guide 58: Getting started with Java 32

4.9 Stage E: the final version of the Date class

4.9.1 Stage E1: the text of the final version of the Date class
The final version of the class declaration for Date is given below. It contains
a number of new features.

399: // A class for representing values that are dates. // Date.java
400: import java.util. StringTokenizer;
401: public class Date
402: {
403: private int iYear;
404: private int iMonth;
405: private int iDay;
406: public Date()
407: {
408: this(0, 0, 0);
409: }
410: public Date(final Date pDate)
411: {
412: this(pDate.iYear, pDate.iMonth, pDate.iDay);
413: }
414: public Date(final int pYear, final int pMonth, final int pDay)
415: {
416: iYear = pYear; iMonth = pMonth; iDay = pDay;
417: }
418: public Date(final String pDateString)
419: {
420: try
421: {
422: final StringTokenizer tTokens = new StringTokenizer(pDateString, "-");
423: final String tYearString = tTokens.nextToken();
424: iYear = Integer.parseInt(tYearString);
425: final String tMonthString = tTokens.nextToken();
426: iMonth = Integer.parseInt(tMonthString);
427: final String tDayString = tTokens.nextToken();
428: iDay = Integer.parseInt(tDayString);
429: }
430: catch(Exception pException)
431: {
432: iYear = 0; iMonth = 0; iDay = 0;
433: }
434: }
435: public int getYear()
436: {
437: return iYear;
438: }
439: public int getMonth()
440: {
441: return iMonth;
442: }
443: public int getDay()
444: {
445: return iDay;
446: }
447: public void setYear(final int pYear)
448: {
449: iYear = pYear;
450: }
451: public void setMonth(final int pMonth)
452: {
453: iMonth = pMonth;
454: }
455: public void setDay(final int pDay)
456: {
457: iDay = pDay;
458: }

Guide 58: Getting started with Java 33

459: public boolean equals(final Object pObject)
460: {
461: if (! (pObject instanceof Date))
462: {
463: return false;
464: }
465: return iYear==((Date)pObject).iYear &&
466: iMonth==((Date)pObject).iMonth &&
467: iDay==((Date)pObject).iDay;
468: }
469: public int hashCode()
470: {
471: return iYear*416 + iMonth*32 + iDay;
472: }
473: public String toString()
474: {
475: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
476: }
477: }

4.9.2 Stage E2: providing other constructors
Earlier, we saw that a class declaration can have several method
declarations each having the same name provided the types of the
parameters of each declaration are different (method overloading). In the
same way, a class declaration can provide several constructors so long as
the types of the parameters of each constructor are different.

Although we have a means of outputting the value of a date object, we
currently have no means of reading a textual representation of a date from
the keyboard or from a file. Obviously, we could use readLine to read a
textual representation of a date and store it in a string. What we then need
is a way of parsing the string and forming an appropriate Date object. The
above class declaration contains a constructor that can be used to initialize
a new Date object from a string (as well as one for initializing a date from
three integers). It could be used as follows:

Date tTodaysDate = new Date("1999-09-26");

The above class declaration for Date also contains the constructor:

public Date()
{
 this(0, 0, 0);
}

This constructor is one which has no parameters, and so it would get used
for the following declaration:

Date tDate = new Date();

The body of this constructor contains some magic: the this means “use the
constructor that you will find elsewhere in this class declaration that
matches the arguments following the this”. So since the 0, 0, 0 are three ints
then the this(0, 0, 0) leads to using the constructor that has three ints as
parameters. If you use this in this way, the this statement must appear as
the first statement of the constructor.

By this means, you can provide a constructor that has no arguments in
order to generate an object with default values (that you can choose).

Guide 58: Getting started with Java 34

Earlier it was mentioned that the classes of the Core APIs use two different
ways of producing a copy of an object:

• a class sometimes provides a method called clone;
• a class sometimes provides a suitable constructor.

Getting the code of a clone method completely right is difficult: instead, the
above class declaration provides Date with a constructor that can be used
for cloning.

Here is an example of how this constructor can be used. If we first do
something like:

final Date tNoelDate = new Date(1999, 12, 25);

we can later pass this reference variable as an argument to the new
constructor:

final Date tHappyDate = new Date(tNoelDate);

We finish up with two reference variables pointing to two different objects
that have the same value.

4.9.3 Stage E3: defining a method called equals
If a client uses Date variables, then using == on these variables only
determines whether they are pointing to the same object. However, if a
class declares an appropriate method called equals, then a client can
determine whether the dates are the same. So, when you declare a class, it
is important to declare a method called equals. This is done in the class
declaration for Date that is given above.

If we declare a class and fail to declare a method called equals, then equals
can still be applied to an object of the class because the class
java.lang.Object has a method called equals. However, Object’s equals will
just tell you whether the target and the argument point to the same objects
(i.e., it does the same as ==): it will not compare the values of the two
objects.

The above declaration of equals has the following header:

public boolean equals(final Object pObject);

rather than:

public boolean equals(final Date pDate);

So why would you want to work with a parameter of type Object? Well, one
important reason will occur when we look at forming collections of data: for
example, we may be wanting to represent a collection of dates, a collection
of strings, a collection of points, and so on. Java has a number of useful
classes that can be used to manipulate collections. So as to make these
classes generally useful the methods of these classes are written in terms
of the type Object.

Guide 58: Getting started with Java 35

For example:

public boolean add(Object pObject);
public void add(int pIndex, Object pObject);
public boolean contains(Object pObject);
public Object get(int pIndex);
public boolean remove(Object pObject);
public Object remove(int pIndex);

are methods that can be used to perform operations on one kind of
collection (a list). These collection classes are discussed in ITS Guide 108:
Advanced Java.

These collection classes are wonderful because they allow us to create
dynamically growing collections of objects. But the person who wrote the
code of the methods of these collection classes was not in a position to
know what sort of objects you would be storing in a collection. When you
call a method like contains (that finds out whether an object is in the
collection), behind the scenes contains will call a method with the header:

public boolean equals(Object pObject);

Now, if you are storing Dates in the collection, and if in the class Date you
have declared equals with a parameter of type Date:

public boolean equals(final Date pDate);

then this equals will not be called (because the type of the parameter is
different). Instead, the method called equals from the class Object will be
called: as explained earlier this returns true if and only if the target and the
argument point to the same object (and not if the two objects have the
same values). This would be an inappropriate method to be used by
contains. So instead we declare equals with a parameter of type Object.

Such a method declaration overrides the
public boolean equals(Object pObject) that is declared in the class
java.lang.Object.

4.9.4 Stage E4: adding hashCode (to help with using collections)
You can imagine that when checking whether a collection contains a
particular object it can be quite time-consuming to use equals on each of the
objects of the collection in turn. Instead, clever techniques are used to
reduce the number of items of the collection that need to be checked.
Some of these techniques require there to be an integer (called a
hashcode) associated with each of the possible values that can be stored in
the collection. And to speed up the execution of methods like contains, the
objects in the collection are arranged so that the ones that have the same
hashcode are kept together.

In order to support this, the class java.lang.Object has a method called
hashCode:

public int hashCode();

The integer that is returned is one that is unique for that object.

Guide 58: Getting started with Java 36

However, this method is inappropriate when a class declares a method
called equals. What we need to do is to provide our own version of
hashCode that overrides the one of java.lang.Object.

The WWW page that documents hashCode says: “If two objects are equal
according to the equals(Object) method, then calling the hashCode method
on each of the two objects must produce the same integer result. It is not
required that if two objects are unequal according to the equals(Object)
method, then calling the hashCode method on each of the two objects must
produce distinct integer results. However, the programmer should be aware
that producing distinct integer results for unequal objects may improve the
performance of hashtables.”

The above class declaration gives one possibility for hashCode. However,
there are many other possibilities. Instead, you could get hashCode to return
the value of iYear*10000 + iMonth*100 + iDay. Although it would still work if
you got it to return the value of iYear + iMonth + iDay, or the value iDay, or
the value 42, these will lead to poorer performance as the same integer
value is being produced for unequal objects.

4.9.5 Stage E5: using the new version of the Date class
The following program uses some of the facilities of the new class
declaration for Date:

478: // This program makes tNoelDate, a variable of // NoelProg.java
479: // the class type Date, refer to an object of class Date
480: // representing Christmas Day 1999.
481: // It then makes tOtherDate refer to another Date object,
482: // and then uses both == and equals to compare the two variables.
483: import java.io. BufferedReader;
484: import java.io. InputStreamReader;
485: import java.io. IOException;
486: public class NoelProg
487: {
488: public static void main(final String[] pArgs) throws IOException
489: {
490: final Date tNoelDate = new Date(1999, 12, 25);
491: System.out.println("tNoelDate is: " + tNoelDate);
492: final BufferedReader tKeyboard =
493: new BufferedReader(new InputStreamReader(System.in));
494: System.out.print("Type in the date, e.g., 1999-12-25: ");
495: System.out.flush();
496: final String tOtherDateString = tKeyboard.readLine();
497: final Date tOtherDate = new Date(tOtherDateString);
498: System.out.println("tOtherDate is: " + tOtherDate);
499: System.out.println("tUsingOperator: " + (tNoelDate==tOtherDate));
500: System.out.println("tNoelDate.equals: " + tNoelDate.equals(tOtherDate));
501: System.out.println("tOtherDate.equals: " + tOtherDate.equals(tNoelDate));
502: System.out.println("tNoelDate.iIsLeap: " + iIsLeap(tNoelDate));
503: System.out.println("tOtherDate.iIsLeap: " + iIsLeap(tOtherDate));
504: }
505: private static boolean iIsLeap(final Date pDate)
506: {
507: int tYear = pDate.getYear();
508: return (tYear%400==0) || (tYear%4==0 && tYear%100!=0);
509: }
510: }

4.10 The role of a class
You should view a class declaration as being split into two sections. The
text of the headings of the public methods (together with the names of any

Guide 58: Getting started with Java 37

public fields) gives information as to what services are offered by the class.
The text of the bodies of the public members together with the text of the
private members give the details of how the services are to be provided.

The class declaration for Date hides three ints and provides four
constructors to create a date and a rather formal way of accessing the
fields of a date by means of the three access methods getYear, getMonth
and getDay. This idea of hiding fields behind access methods is often
termed information hiding or encapsulation.

It may seem like a complicated way of providing an object and accessing it.
However, you should view the class declaration as documenting a design
decision. At the moment we have chosen to represent a date by three ints.
At a later stage, we may feel that that is wrong: for example, we might
choose three shorts, three bytes, or a single int giving the number of days
since a particular date. Since we have retained control over the access to
the fields of the class by providing access methods, we can make changes
like this with only minimal impact to the code of the program: we know that
the only code that needs to be changed is located in the methods of the
class.

Guide 58: Getting started with Java 38

5 Another example of data abstraction: the class Person

5.1 A class called Person
Here is a class declaration for a class called Person. It is rather basic as it
can be used to store only a name, a date of birth and a height:

511: import java.util.StringTokenizer; // Person.java
512: public class Person {
513: public Person() { this("", 0.0F, new Date()); }
514: public Person(String pString) {
515: StringTokenizer tTokens = new StringTokenizer(pString, "%");
516: oName = tTokens.nextToken();
517: iHeight = Float.valueOf(tTokens.nextToken()).floatValue();
518: oDateOfBirth = new Date(tTokens.nextToken());
519: }
520: public Person(String pName, float pHeight, Date pDate) {
521: oName = pName; iHeight = pHeight; oDateOfBirth = pDate;
522: }
523: public String getName() { return oName; }
524: public boolean equals(Object pObject) {
525: return oName.equals(((Person) pObject).oName);
526: }
527: public String toString() {
528: return oName + "%" + iHeight + "%" + oDateOfBirth;
529: }
530: protected String oName;
531: private float iHeight;
532: protected Date oDateOfBirth;
533: }

Although this class declaration has protected fields, for the time being treat
the protected fields as if they were private fields. The distinction between the
two will be discussed later.

5.2 Using the class Person
Here is a Java application that tests some aspects of the class Person:

534: import java.io.BufferedReader; // UsePerson.java
535: import java.io.InputStreamReader;
536: import java.io.IOException;
537: public class UsePerson {
538: public static void main(String[] args) throws IOException {
539: BufferedReader input =
540: new BufferedReader(new InputStreamReader(System.in));
541: Person tGirlfriend =
542: new Person("Smith", 5.5F, new Date(1973, 2, 27));
543: System.out.print("Girlfriend "); System.out.println(tGirlfriend);
544: Person tWife = new Person();
545: System.out.print("Wife "); System.out.println(tWife);
546: Person tBaby;
547: tWife = tGirlfriend;
548: System.out.print("Wife "); System.out.println(tWife);
549: tBaby = new Person(input.readLine());
550: System.out.print("Baby "); System.out.println(tBaby);
551: System.out.println(tWife.getName().equals(tBaby.getName()));
552: }
553: }

Guide 58: Getting started with Java 39

When this program is executed, it produces output like:

Girlfriend Smith%5.5%1973-02-27
Wife %0.0%0-00-00
Wife Smith%5.5%1973-02-27
Smith%1.5%1990-4-9
Baby Smith%1.5%1990-04-09
true

6 Grouping classes into packages

6.1 Package declarations
By default, a class/interface declaration belongs to the default package.
And .class files are stored in the current directory.

It is useful to be able to group related classes/interfaces together. And for
this, Java has the concept of a package.

You can use a package declaration to indicate that a class/interface
belongs to a particular package. For example, suppose you have a file
containing the text of a class called Date and that you want it to belong to a
package called dateutils. You just need to insert a package declaration at
the start of the file:

package dateutils;

Any class/interface declaration that contains this line belongs to this
package. The .class files associated with these files of source code must
appear in a directory called dateutils. And any client that wishes to use this
class could use an import declaration, such as:

import dateutils.Date;

If instead some class/interface declarations each have a package
declaration that takes the form:

package utils.dateutils;

then the .class files should be in a subdirectory called dateutils that is itself in
a directory called utils. Any client that wishes to use the class called Date
belonging to this package could use the import declaration:

import utils.dateutils.Date;

6.2 Setting the CLASSPATH
When the Java compiler/interpreter is executed, it looks for any packages
in the directories that are mentioned in the CLASSPATH. By default, the
CLASSPATH is empty, and if this is the case it will instead look for
packages in the current directory.

So, if you have put some class/interface declarations into a package called
utils.dateutils, the utils directory must be a subdirectory of the current
directory.

Although the use of a subdirectory of the current directory is a useful place
to hide the files of a package, this mechanism can be too restrictive. For

Guide 58: Getting started with Java 40

example, if you build a number of useful classes and store them in one or
more packages, it would be useful to put these in a standard place. The
Java compiler/interpreter allows you to specify other directories in which it
can find packages by setting the CLASSPATH.

The way in which this is done depends on whether you are using a Unix or
an MS-DOS command line. When using Unix, then for csh/tcsh, an
example is:

setenv CLASSPATH .:/users/dcl0bjc/classes:/users/dxy3abc/public_html

or, if you are using sh, ksh or bash, this would be:

CLASSPATH=.:/users/dcl0bjc/classes:/users/dxy3abc/public_html
export CLASSPATH

At an MS-DOS prompt, you could type something like:

set CLASSPATH=.;C:\project\classes;D:\myjava

Note that for UNIX, items in the list of directories are separated by a colon,
whereas the semicolon is used at an MS-DOS prompt. If you also want the
compiler/interpreter to look in the current directory, then it must be included
in the CLASSPATH: a dot can be used in the CLASSPATH in order to refer
to this directory.

The Java compiler/interpreter knows how to find the packages that form
part of Java’s Development Kit, and so there is no need to include anything
in the CLASSPATH to help the compiler/interpreter find these packages.
Note: this was not the case with earlier versions of the Development Kit.

6.3 It’s a small world: how can unique names be generated?
Java specifies a convention for generating globally unique names for
classes/interfaces. The convention is that a package name starts with the
components of the author’s Internet address (in reverse order). Examples
are:

organization domain name an example of a class/interface name
Sun Microsystems sun.com com.sun.xxx.yyyyy
IBM ibm.com com.ibm.wwww.vvv.uuuuu
University of Durham dur.ac.uk uk.ac.dur.aaaaa.bbb.ccc.dddd

If the University of Durham wanted to establish a convention for the
uniqueness of the names of classes/interfaces, it could utilise a person’s
username. So I might prefer to put the Date class mentioned earlier into the
package:

package uk.ac.dur.dcl0bjc.utils.dateutils;

And if I wanted this package to be accessible from the WWW (see below),
then it would be sensible to put the files of this package into the directory:

/users/dcl0bjc/public_html/uk/ac/dur/dcl0bjc/utils/dateutils

Having done this, if you needed to use this package in a Java application,
you would need something like:

import uk.ac.dur.dcl0bjc.utils.dateutils.Date;

Guide 58: Getting started with Java 41

and you would need to set the CLASSPATH:

setenv CLASSPATH .:/users/dcl0bjc/public_html

in order for the Java compiler/interpreter to find the .class files.

The reason for putting these .class files in a directory that is below a user’s
public_html directory is that they can then be accessed by a Java applet
running on a WWW browser elsewhere in the world. You can use the
CODEBASE attribute of an APPLET/OBJECT/EMBED tag if you want to
indicate that an applet’s .class files are all stored in a particular place, e.g.:

CODEBASE=http://www.dur.ac.uk/~dcl0bjc/

6.4 Compiling from a private directory into one that is visible from the
WWW

Although it may be useful to put your .class files into a publically accessible
place, you may want to hide the source files. So, if the current directory
contains some Java source code and the current directory is inaccessible
from the WWW, you can easily arrange for the Java compiler to put the
.class files into a different directory (a directory that is accessible from the
WWW) by using the d option of the javac command, e.g.:

setenv CLASSPATH .:/users/dcl0bjc/public_html
javac -d /users/dcl0bjc/public_html Date.java

If the file Date.java contains the line:

package uk.ac.dur.dcl0bjc.utils.dateutils;

then the directory /users/dcl0bjc/public_html/uk/ac/dur/dcl0bjc/utils/dateutils will
be used by the compiler to store the Date.class file. If need be, it will
automatically create any directories that do not exist.

7 Object-oriented programming

7.1 Introduction
We have seen that classes can be used to describe objects existing in the
problems that you wish to solve. Although the programs we have written
have used objects, many people view this as just object-based
programming: you need to use both inheritance and dynamic binding
before you are doing object-oriented programming. These two topics form
the main thrust of this section.

7.2 Using inheritance to form a subclass
So far, the classes we have produced have been for objects that are
distinct from one another: a date is nothing like a person, and vice-versa.
However, there will be occasions when a new class is in fact a more
specialized form of another class.

For example, if we now have to produce a program that manipulates data
about students, we will need a class to represent a student. Such a class
will have a lot in common with the class representing a person which we

Guide 58: Getting started with Java 42

http://www.dur.ac.uk/~dcl0bjc

have already produced. Instead of producing a completely new class for a
student, we can derive the Student class from the Person class:

554: public class Student extends Person {
555: ...
556: }

This is called inheritance: the class Student is said to inherit from the class
Person: the class Student is the subclass and the class Person is the
superclass.

Note: you cannot derive a subclass from a class that has the modifier final,
for example:

557: public final class String { ... }

Note: unlike C++, in Java, you cannot derive a class from more than one
class, i.e., Java does not have multiple inheritance.

7.3 A class called Student
Here is a class declaration for the class Student:

558: import java.util.StringTokenizer; // Student.java
559: public class Student extends Person {
560: public Student(String pName, float pHeight, Date pDateOfBirth,
561: String pCourseName, int pStudentNumber) {
562: super(pName, pHeight, pDateOfBirth);
563: iCourseName = pCourseName; iStudentNumber = pStudentNumber;
564: }
565: public int getStudentNumber() { return iStudentNumber; }
566: public boolean equals(Object pObject) {
567: return oName.equals(((Student) pObject).oName);
568: }
569: public String toString() {
570: return oName + "=" + oDateOfBirth
571: + "=" + iCourseName + "=" + iStudentNumber;
572: }
573: private String iCourseName;
574: private int iStudentNumber;
575: }

Suppose you declare an object to be of the subclass:

576: Student tStudent = new Student(...);

As well as having the members of the subclass, the object has all the
members of the superclass. So, the object tStudent has the members:

• Student, getStudentNumber, equals, toString,

iCourseName, iStudentNumber

from the class Student and the following members:

• Person, Person, Person, getName, equals, toString,

oName, iHeight oDateOfBirth,

from the class Person.

So an object of the class Student has five fields that are called oName,
iHeight, oDateOfBirth, iCourseName and iStudentNumber. The constructor for
the class Student has arguments that are used to initialize not only the fields

Guide 58: Getting started with Java 43

of the class Student but also the fields from the class Person. In the body of
the constructor, a special method called super is used to initialize the fields
of the superclass (Person).

Because each of these five fields is declared to be private or protected, they
are inaccessible to a client of the class Student. However, a client can use
any public members of the class or any public members of the superclass.
Examples are:

577: System.out.println(tStudent.getName());
578: System.out.println(tStudent.getStudentNumber());

7.4 Package members and protected members
Previously, we have declared members of classes to be either public or
private. We look now at what it means for a member to have a protected
modifier or to have no modifier at all.

If a member of a class has no modifier at all, it can be accessed by the
code of any class within the same package. Such a member is sometimes
called a package member.

If a member of a class has a protected modifier, it can be accessed by the
code of any class within the same package or by the code of any subclass
(whether or not it is in the same package).

So, the code of any method of a subclass may access any public and
protected members of a superclass. Consider the class Person again. If we
want some members of the class Person to be accessible in Person and in
any subclass of Person but generally to be inaccessible, then those
members can be protected members of the class Person. However, if we
want a member of the class Person to be inaccessible in the code of the
subclass, then it needs to be a private member of the class Person.

The class declaration for Person has oName and oDateOfBirth as protected
fields and iHeight as a private field. So the code of a method of the class
Student is able to access the fields oName and oDateOfBirth but is unable to
access iHeight.

Some people argue that it is inappropriate for a subclass to be able to
access fields of its superclass: they would argue that it is better for these
fields to be private and for the superclass to provide public methods to
access them.

7.5 Method overriding
You can give a method of a subclass the same name as a method of the
superclass. This often occurs when more appropriate code can be devised
for the method of the subclass. This is called method overriding. Note: you
cannot override a method that has the modifier final (or static or private) in
the superclass.

There are two examples of this with the Person and Student classes: the
methods equals and toString appear in both the superclass Person and the
subclass Student.

Guide 58: Getting started with Java 44

Method overriding should not be confused with method overloading which
was introduced earlier.

7.6 Using the class Student
Here is a Java application that tests some aspects of the class Student:

579: public class UseStudent { // UseStudent.java
580: public static void main(String[] args) {
581: Person tPerson = new Person("Jones", 1.6F, new Date(1969,12,25));
582: System.out.println(tPerson);
583: Student tStudent =
584: new Student("Smith", 1.85F, new Date(1970,6,12), "Computing", 27);
585: System.out.println(tStudent);
586: tPerson = tStudent;
587: System.out.println(tPerson);
588: }
589: }

7.7 Dynamic binding
So far, a reference variable of the type Person has been given values that
causes it to refer to a Person object. However, a reference variable can be
given a value that causes it to refer to an object of its class or any subclass
of that class. For example, in the UseStudent program, the variable tPerson
is first made to refer to an object of class Person, but, at the end of the
program, it is made to refer to an object of class Student.

So, suppose you have written a method:

590: public void task(Person pPerson) {
591: ...
592: }

The code of the method task is written in terms of the variable pPerson. We
can pass as an argument to task an object that is of class Person or an
object that is of any subclass of Person. If the code of task calls a method
and this method is one that has been overridden in the subclass, then the
actual method that is called will depend on what kind of object has been
passed to task. For example, if task calls equals then Person’s equals method
will be called if the object passed as an argument is of class Person,
whereas Student’s equals method will be called if the object passed as an
argument is of class Student. So the actual version of the equals method that
will be called is unknown until runtime: it depends on what kind of object
pPerson refers to. This is known as dynamic binding.

The code of the method task will also continue to work if, later, another
subclass of Person is produced: the code of task does not have to be
modified every time a new subclass of Person is produced.

7.8 Inheritance should be used for is-a relationships
Earlier, we used the class Date when constructing the class Person, and we
have now used the class Person when constructing the class Student. We
used inheritance to produce the class Student from the class Person,
whereas the class Person contains a field (called oDateOfBirth) of type Date.
This is called composition (or layering): the class Person is composed of a
field of type Date.

Guide 58: Getting started with Java 45

Earlier, we said we used inheritance because the new class “is a more
specialized form of another class”. It is best to use inheritance for is-a
relationships and composition for has-a relationships. So, one test for
deciding whether to use inheritance or composition is to see whether it
makes sense to use the words is a or has a. For example, “every person is
a date” is nonsense whereas “every person has a date for his/her date of
birth” makes sense.

8 Another example of OO programming: 2D shapes

8.1 The class Shape
We can use the following class for objects that are two-dimensional
geometrical figures. The class includes a constructor to create an object
representing a shape at some position in two-dimensional space. It also
includes a method called translate that moves a shape to a new position
relative to its current position.

593: public class Shape { // Shape.java
594: public Shape(int vX, int vY) {
595: iX = vX; iY = vY;
596: }
597: public Shape() { this(0, 0); }
598: public int getX() { return iX; }
599: public int getY() { return iY; }
600: public void translate(int vX, int vY) { iX += vX; iY += vY; }
601: public boolean equals(Object rObject) {
602: return iX == ((Shape) rObject).iX && iY == ((Shape) rObject).iY;
603: }
604: public String toString() { return iX + ":" + iY; }
605: private int iX, iY;
606: }

8.2 The class Circle
Suppose we now want a class Circle to represent shapes that are circles.
We can create this class by inheritance from the class Shape as follows:

607: public class Circle extends Shape { // Circle.java
608: public Circle(int vRadius, int vX, int vY) {
609: super(vX, vY); iRadius = vRadius;
610: }
611: public Circle() { this(0, 0, 0); }
612: public int getRadius() { return iRadius; }
613: public boolean equals(Object rObject) {
614: return super.equals(rObject) && iRadius == ((Circle)rObject).iRadius;
615: }
616: public String toString() { return super.toString() + ":" + iRadius; }
617: private int iRadius;
618: }

Objects of this class have three fields iX, iY and iRadius. Once again, the
constructor for this class uses the special method called super:

619: super(vX, vY);

in order to initialize the iX and iY fields (with the values that are passed
through vX and vY).

The bodies of the equals and the toString methods show a different use of
the super keyword. In these methods, it appears as super.methodname(...).

Guide 58: Getting started with Java 46

This notation means: “apply the method methodname as defined in the
superclass to the current object”.

In this example, instead of using super.methodname(...), the getX and getY
methods of the superclass could be used. For example, toString could be
declared as:

620: public String toString() { return getX() + ":" + getY() + ":" + iRadius; }

Note that:

621: public String toString() { return iX + ":" + iY + ":" + iRadius; }

would not be possible unless the iX and iY fields of the class Shape were
changed from private fields to protected fields.

8.3 The class Rectangle
In a similar way, the class Rectangle can also be built from the class Shape:

622: public class Rectangle extends Shape { // Rectangle.java
623: public Rectangle(int vWidth, int vHeight, int vX, int vY) {
624: super(vX, vY); iWidth = vWidth; iHeight = vHeight;
625: }
626: public Rectangle() { this(0, 0, 0, 0); }
627: public int getWidth() { return iWidth; }
628: public int getHeight() { return iHeight; }
629: public boolean equals(Object rObject) {
630: return super.equals(rObject)
631: && iWidth == ((Rectangle) rObject).iWidth
632: && iHeight == ((Rectangle) rObject).iHeight;
633: }
634: public String toString() { return super.toString()
635: + ":" + iWidth + ":" + iHeight; }
636: private int iWidth;
637: private int iHeight;
638: }

8.4 Using the class Shape and its subclasses
The following program uses the classes Shape, Circle and Rectangle. It
reads some data describing some shapes from a file called data. The file
could contain the values: 4, 2, 100, 200, 30, 50, 1, 150, 200, 30, 2, 200,
200, 50, 80, 1, 250, 200 and 40 (where each value is on a separate line of
the file). This data is meant to be interpreted as follows: there are four
shapes; the first one is a rectangle with an x-coordinate of 100, a y-
coordinate of 200, a width of 30, a height of 50; the second shape is a circle
with an x-coordinate of 150, a y-coordinate of 200, a radius of 30; and so
on.

Guide 58: Getting started with Java 47

639: import java.io.BufferedReader; // FileToScreen.java
640: import java.io.FileReader;
641: import java.io.IOException;
642: public class FileToScreen {
643: public static void main(String[] args) throws IOException {
644: BufferedReader input =
645: new BufferedReader(new FileReader("data"));
646: String line = input.readLine();
647: int numShapes = Integer.parseInt(line);
648: Shape[] shapes = new Shape[numShapes];
649: for (int shapeNumber = 0; shapeNumber<numShapes; shapeNumber++) {
650: line = input.readLine(); int shape = Integer.parseInt(line);
651: line = input.readLine(); int x = Integer.parseInt(line);
652: line = input.readLine(); int y = Integer.parseInt(line);
653: switch (shape) {
654: case 1:
655: line = input.readLine();
656: int radius = Integer.parseInt(line);
657: shapes[shapeNumber] = new Circle(radius, x, y);
658: break;
659: case 2:
660: line = input.readLine();
661: int width = Integer.parseInt(line);
662: line = input.readLine();
663: int height = Integer.parseInt(line);
664: shapes[shapeNumber] = new Rectangle(width, height, x, y);
665: break;
666: }
667: }
668: for (int shapeNumber = 0; shapeNumber<numShapes; shapeNumber++) {
669: Shape tShape = shapes[shapeNumber];
670: tShape.translate(1, 2);
671: System.out.println(tShape);
672: }
673: }
674: }

The program stores the details about the shapes in an array called shapes:

648: Shape[] shapes = new Shape[numShapes];

and uses the following two statements to put values into the array:

657: shapes[shapeNumber] = new Circle(radius, x, y);

664: shapes[shapeNumber] = new Rectangle(width, height, x, y);

So the program does not use the array to store any references to objects of
the class Shape: instead, each element is either a reference to a Circle
object or a reference to a Rectangle object.

At the end of the program, there is a for statement whose aim is to output
the details about the shapes that have been stored. It repeatedly executes
the following three statements:

669: Shape tShape = shapes[shapeNumber];
670: tShape.translate(1, 2);
671: System.out.println(tShape);

In the first of these, the variable tShape is made to refer to either a Circle
object or a Rectangle object. Then the translate method is applied to the
object. Because neither Circle nor Rectangle declare a translate method, it
will be the translate method of the superclass (Shape) that will be used.
Finally, the println statement will use either Circle’s or Rectangle’s toString
method in order to print the shape referred to by tShape. This is another
example of dynamic binding.

Guide 58: Getting started with Java 48

When the program is executed with the above data, this for statement
produces the following output:

101:202:30:50
151:202:30
201:202:50:80
251:202:40

0 2 310shapes

101 202 30 50 151 202 30 201 202 50 80 251 202 40

9 Exception handling

9.1 What is exception handling?
A method often detects situations which it knows it cannot handle. It may
be that the arguments for the method were inappropriate; it may be that a
series of calculations has led to a situation that should not occur; it may be
that its attempt to allocate space using new has failed; and so on. What
should the programmer of this method do when such untoward events
(exceptions) arise?

The method could output an error message and then terminate execution.
However, the user of the method might be extremely unhappy if this
happens: he/she might want to do some “cleanup” code before the program
terminates.

Instead, the programmer of the method could return some value that
signifies that an error has occurred. However, returning an error value may
be inconvenient to the user of the method as the point of call of the method
may not be the best place to handle the error. So his/her code has to be
littered with error-handling code.

Some programming languages allow the code of the method to signify that
an exception has occurred and this is then handled by some code that
occurs elsewhere in the program. In Java, a try statement consists of a try
block together with zero or more exception handlers (each introduced by
the keyword catch) and an optional finally clause:

675: try {
676: ...
677: }
678: catch(...) {
679: ...
680: }
681: catch(...) {
682: ...
683: }
684: finally {
685: ...
686: }

Guide 58: Getting started with Java 49

A try statement can be used to indicate that a piece of code wishes to
handle exceptions. In the code executed by the try block, a throw statement
is used to signify that an exception has occurred. When a throw statement
is executed, control is transferred to the exception handler of the most
recently entered try statement containing an appropriate exception handler.
It is possible to write an exception handler that handles all exceptions, and
to write one that re-throws an exception.

How does a try statement end? If an exception occurs, the last-statement-
to-be-executed will be in an exception handler; otherwise, it will be in the try
block. The last-statement-to-be-executed may be a statement that causes a
transfer of control (such as a return, continue or a break statement) or it may
the statement that appears at the end of the exception handler or the try
block. If a try statement has a finally clause, the statements of the finally
clause will then be executed. If the last-statement-to-be-executed is one
that causes a transfer of control, the finally clause will be executed before
control is actually transferred to its new destination. So, if a try statement
has a finally clause, it will always be executed.

Because a finally clause provides a way of guaranteeing that some code
will be executed before a block is left, it is sometimes useful to write try
statements that have a finally clause but do not have any exception
handlers.

Guide 58: Getting started with Java 50

9.2 Altering Date to deal with invalid dates
The Date class given earlier can be modified to deal with invalid dates in the
following way:

687: // A class for representing values that are dates.
688: // Barry Cornelius, 20th September 1999
689: import java.util. StringTokenizer;
690: public class Date
691: {
692: private int iYear;
693: private int iMonth;
694: private int iDay;
695: ...
696: public Date(final int pYear, final int pMonth, final int pDay)
697: throws InvalidDateException
698: {
699: iYear = pYear; iMonth = pMonth; iDay = pDay;
700: iCheckDate();
701: }
702: ...
703: public int getYear()
704: {
705: return iYear;
706: }
707: ...
708: public void setYear(final int pYear)
709: throws InvalidDateException
710: {
711: iYear = pYear;
712: iCheckDate();
713: }
714: ...
715: private void iCheckDate()
716: throws InvalidDateException
717: {
718: if (iYear<1900 || iYear>2100 ||
719: iMonth>12 || iDay>31)
720: {
721: throw new InvalidDateException();
722: }
723: }
724: }

The Date class requires a file containing the following supporting class:

725: // // InvalidDateException.java
726: public class InvalidDateException extends Exception {
727: public InvalidDateException() {
728: super();
729: }
730: }

Guide 58: Getting started with Java 51

The following version of the NoelProg program contains some code that
catches the exceptions caused by inappropriate uses of the constructors
and methods of this new version of the Date class:

731: ...
732: public class NoelProg
733: {
734: public static void main(final String[] pArgs)
735: throws InvalidDateException,IOException
736: {
737: final Date tNoelDate = new Date(1999, 12, 25);
738: System.out.println("tNoelDate is: " + tNoelDate);
739: final BufferedReader tKeyboard =
740: new BufferedReader(new InputStreamReader(System.in));
741: Date tOtherDate = new Date();
742: while (true)
743: {
744: System.out.println("Type in the date, e.g., 1999-12-25");
745: final String tOtherDateString = tKeyboard.readLine();
746: try {
747: tOtherDate = new Date(tOtherDateString);
748: break;
749: }
750: catch(InvalidDateException pInvalidDateException) {
751: System.out.println("Invalid date");
752: }
753: }
754: System.out.println("tOtherDate is: " + tOtherDate);
755: ...
756: }
757: }

10 Interfaces

10.1 What is an interface?
Earlier, in The role of a class, it was suggested that, when looking at a
class declaration, you should distinguish between the text that describes
what services are offered and the text that describes how these services
are provided. The what describes the interface whereas the how describes
the implementation. Java allows us to document the what by means of a
construct called an interface.

So, in Java, an interface is a construct that gives a list of related methods
(and/or constants). Here is an example that lists a set of methods for
manipulating a date:

758: public interface DateIF {
759: public int getYear();
760: public int getMonth();
761: public int getDay();
762: public void setYear(int pYear);
763: public void setMonth(int pMonth);
764: public void setDay(int pDay);
765: public boolean equals(Object pObject);
766: public int hashCode();
767: public String toString();
768: }

With a class, we use new and a constructor (i.e., a class instance creation
expression) to create an object, an instance of the class. It does not make
sense to create an instance of an interface (and for this reason an interface
does not have a constructor).

Guide 58: Getting started with Java 52

10.2 Producing classes that conform to an interface
Instead, the purpose of Java’s interface construct is to describe the interface
to which a set of classes conform, i.e., each class implements the interface.

For example, there are several ways of providing a class for representing a
date each of which stores the details of a date in a different way: we could
use three ints representing a year, a month and a day; a short and two bytes
representing a year, a month and a day; one int that stores the number of
days since the beginning of time; and so on. So we could provide several
classes, each one of which conforms to the DateIF interface.

We should document that a class implements an interface. This is done by
means of an implements clause:

769: import java.util. StringTokenizer;
770: public class Date implements DateIF
771: {
772: private int iYear;
773: ...
774: public String toString()
775: {
776: return iYear + "-" + iMonth/10 + iMonth%10 + "-" + iDay/10 + iDay%10;
777: }
778: }

If Date says that it implements DateIF, then Date must at least include
declarations for each method that is defined in DateIF.

10.3 Using interfaces
Suppose that, besides Date we have also created other classes that
implement the DateIF interface, e.g.:

779: public class DateA implements DateIF { ... }
780: public class DateB implements DateIF { ... }

If the code of some client needs to refer to a class (e.g., a parameter of
some method is a date), then it should use the name of the interface (e.g.,
DateIF) rather than the name of a class (e.g., Date). For example:

781: private static boolean iIsLeap(final DateIF pDateIF) {
782: final int tYear = pDateIF.getYear();
783: return (tYear%400==0) || (tYear%4==0 && tYear%100!=0);
784: }

The only time when the code of a client needs to refer to one of the classes
is when it wants to create a date. Then it has to choose which
implementation to use, e.g., to choose between one of the following
statements:

785: DateIF tDateIF = new Date();
786: DateIF tDateIF = new DateA();
787: DateIF tDateIF = new DateB();

The variable tDateIF is a reference variable that is of an interface type. It
can refer to any object which is of a class that implements the interface.

10.4 Other points
Here are some other points:

Guide 58: Getting started with Java 53

• Only constants (i.e., variables that are static final) and methods can be
listed in an interface.

• An interface can be derived from another interface or from several
interfaces:

788: interface a extends b, c { ... }

• A class can implement more than one interface:

789: public class x implements y, z { ... }

• A class can be derived from another class as well as implement one
or more interfaces:

790: public class x extends w implements y, z { ... }

We saw earlier that multiple inheritance is not possible in Java. An interface
is Java’s way of achieving some of the possibilities of multiple inheritance.
It is an idea that is borrowed from the programming language Objective C.

11 Starting another thread

11.1 The class java.lang.Thread
Often the user of a program does something that causes the program to do
some task that is time-consuming. In this situation, you may prefer the user
to have the ability to get on with something else at the same time as the
time-consuning task. In Java, you can put the time-consuming task into a
separate thread of execution.

It is easy to start another thread: you just need to create an object of the
class Thread (from the package java.lang), and execute its start method. So,
suppose a method, e.g., the main method of a program, contains:

791: Thread tThread = new Thread();
792: ...
793: tThread.start();

The the call of start does two things:

• it starts the execution of tThread.run() in a separate thread;
• it then immediately returns to the statement following the call of

tThread.start().

So we now have two threads of activity that are running concurrently: the
main method and the tThread.run method.

This is not so exciting as it sounds because java.lang.Thread’s run method
does nothing because it has a null body: it stops executing straightaway.
And so we are just left with the thread of execution that is executing the
main method.

11.2 Deriving the class ClockStdout from java.lang.Thread
However, because Java has inheritance, we can derive a class from
java.lang.Thread and provide a run method that does something useful.

Guide 58: Getting started with Java 54

In the code below, a class called ClockStdout is derived from
java.lang.Thread, and ClockStdout’s declaration overrides Thread’s run
method. The code of ClockStdout’s run method is an infinite loop inside
which we first get the current date and time, then output that to the
standard output, and then wait for two seconds.

794: import java.util.Date; // ClockStdout.java
795: public class ClockStdout extends Thread {
796: public void run() {
797: while (true) {
798: Date tDate = new Date();
799: System.out.println(tDate);
800: try { Thread.sleep(2000); }
801: catch (InterruptedException tInterruptedException) { }
802: }
803: }
804: }

11.3 Using the class ClockStdout in the UseClockStdout program
The main method of the UseClockStdout program (given below) creates an
object (tClockStdout) of the class ClockStdout, and then calls tClockStdout’s
start method. However, the class ClockStdout does not itself declare a start
method, and so it is java.lang.Thread’s start method that gets called. As
explained earlier, this does two things:

• it causes tClockStdout’s run method (i.e., the infinite loop) to start
executing in a separate thread;

• it then immediately returns to execute the rest of the main method.

So we now have two threads of activity that are running concurrently: the
main method and the tClockStdout.run method. Having started the
tClockStdout thread, the main method then goes on to output the digits from
0 to 7 stopping for one second after it has output each digit:

805: public class UseClockStdout { // UseClockStdout.java
806: public static void main(String[] args) {
807: System.out.println("UseClockStdout program");
808: ClockStdout tClockStdout = new ClockStdout();
809: tClockStdout.start();
810: for (int count = 0; count < 8 ; count++) {
811: System.out.println("count is: " + count);
812: try { Thread.sleep(1000); }
813: catch (InterruptedException tInterruptedException) { }
814: }
815: System.out.println("UseClockStdout program");
816: }
817: }

Guide 58: Getting started with Java 55

Here is the sort of output that the program produces:

UseClockStdout program
count is: 0
Sat Jun 14 15:49:15 GMT+01:00 1997
count is: 1
count is: 2
Sat Jun 14 15:49:17 GMT+01:00 1997
count is: 3
count is: 4
Sat Jun 14 15:49:19 GMT+01:00 1997
count is: 5
count is: 6
Sat Jun 14 15:49:21 GMT+01:00 1997
count is: 7
UseClockStdout program
Sat Jun 14 15:49:23 GMT+01:00 1997
Sat Jun 14 15:49:25 GMT+01:00 1997
Sat Jun 14 15:49:27 GMT+01:00 1997
Sat Jun 14 15:49:29 GMT+01:00 1997
...

You can see that the output is from both threads, and that the program will
not finish because the tClockStdout thread is an infinite loop. So, if you
execute this program, you will need to press Ctrl/C to stop its execution.

Two ways of getting the program to terminate properly are:

• The main method can terminate the execution of tClockStdout’s thread
by the call:

818: tClockStdout.stop();

• The main method can terminate the execution of the program by the
call:

819: System.exit(0);

11.4 Using synchronized for accessing a variable from different threads
If you wish to access the same variable from more than one thread, you will
need to use the synchronized keyword to ensure that accesses to the
variable are performed correctly. You can control access either by means
of a synchronized statement or by using synchronized methods. An
example of the use of synchronized methods is:

820: public class Store {
821: public Store(int vStore) { iStore = vStore; }
822: public synchronized int get() { ... return iStore; }
823: public synchronized void put(int vStore) { iStore = vStore; ... }
824: ...
825: private int iStore;
826: }

12 Other information about Java

12.1 ITS Guide 108 Advanced Java
ITS Guide 108 Advanced Java introduces some other topics about Java. In
particular, it discusses:

• the creation of Java programs that have graphical user interfaces
(GUIs);

Guide 58: Getting started with Java 56

• the handling of collections of data using the List, Set and Map
interfaces of Java's Collections API;

• the production of Java applets, code that gets executed when a
person visits a WWW page.

12.2 Primary resources
• The most important URL for information about Java is:

http://java.sun.com
• In particular, Sun's Java documentation is at:

http://java.sun.com/docs/
• A definition of the language is at:

http://java.sun.com/docs/books/jls/
• A definition of the 1.4.2 API is at:

http://java.sun.com/j2se/1.4.2/docs/api/
• A java tutorial is at: http://java.sun.com/docs/books/tutorial/
• To download a copy of Java 2 SDK, go to:

http://java.sun.com/products/
Sun has produced a list of Java FAQs at:

http://java.sun.com/reference/faqs/

12.3 Important secondary resources
• Cafe au Lait contains news about Java. It is updated daily. See:

http://www.ibiblio.org/javafaq/ — it is a valuable source of
information about Java.

• Probably the best monthly magazine about Java is available at:
http://www.javaworld.com/

• Two other interesting WWW sites are: http://www.javalobby.org/
and http://www.bejug.org/

12.4 Books
Both Addison-Wesley and O'Reilly have an excellent series of books on
Java. For more details see: http://www.awprofessional.com/series/ and
http://java.oreilly.com/.

One of the best books for someone already familiar with programming is:

Beginning Java 2, SDK 1.4 Edition, by Ivor Horton.
Published by John Wiley (was previously a Wrox Press book), March 2002.
ISBN 0-7645-4365-2.

A new version of this book for Java 2 SDK 1.5 is due out in October 2004
(ISBN 0-7645-6874-4).

My own book on Java is targeted at those people who have done no
programming before:

Understanding Java, by Barry Cornelius.
Published by Addison Wesley, March 2001.
ISBN 0-201-71107-9.

Guide 58: Getting started with Java 57

http://java.sun.com/
http://java.sun.com/docs/
http://java.sun.com/docs/books/jls/
http://java.sun.com/j2se/1.3/docs/api/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/
http://java.sun.com/reference/faqs/
http://www.ibiblio.org/javafaq/
http://www.javaworld.com/
http://www.javaworld.com/
http://www.javalobby.org/
http://www.awprofessional.com/series/
http://java.oreilly.com/

	1 Introduction
	1.1 What is Java?
	1.2 How is it executed?
	1.3 What are Java applications?
	1.4 What are Java applets?
	1.5 APIs
	1.6 A digression: what is JavaScript?

	2 Declarations, statements, input and output
	2.1 A simple Java program
	2.2 Primitive types
	2.3 Declarations and initializers
	2.4 Expressions
	2.5 Statements
	2.5.1 Blocks
	2.5.2 Conditional statements
	2.5.3 Looping statements
	2.5.4 Other control statements

	2.6 Objects
	2.6.1 Reference variables
	2.6.2 Creating an object
	2.6.3 Referring to the fields of an object
	2.6.4 Applying methods to an object
	2.6.5 Copying objects
	2.6.6 Comparing objects
	2.6.7 The value null
	2.6.8 Garbage collection

	2.7 Arrays
	2.7.1 Introduction
	2.7.2 An array of integers
	2.7.3 An array of points
	2.7.4 Flexible arrays
	2.7.5 Even more flexible arrays

	2.8 Methods
	2.9 Output and input
	2.9.1 Attaching an output stream
	2.9.2 Outputting values to the output stream
	2.9.3 Closing a file
	2.9.4 Attaching an input stream
	2.9.5 Reading a line of characters
	2.9.6 Reading a value
	2.9.7 Handling more than one data item per line
	2.9.8 Flushing the output
	2.9.9 Dealing with java.io.IOException
	2.9.10 JDK Version 1.0.x

	3 Handling strings
	3.1 Creating an object of the class String
	3.2 Applying methods to a String object
	3.3 The exception StringIndexOutOfBoundsException
	3.4 Changing a String object
	3.5 Copying String objects
	3.6 String concatenation
	3.7 A program that uses these ideas about Strings
	3.8 The class StringBuffer

	4 Using classes for data abstraction
	4.1 Introduction
	4.2 Using a class declaration to define your own type
	4.3 A class called Date
	4.4 Stage A: providing a primitive version of the class Date
	4.5 Stage B: adding a constructor and a method declaration
	4.5.1 Stage B1: adding a constructor declaration
	4.5.2 Stage B2: using a method to display the value of an object

	4.6 Grouping fields and methods together to implement a type
	4.7 Stage C: hiding fields, providing access methods and toString
	4.7.1 Stage C1: hiding the fields and accessing them using methods
	4.7.2 Stage C2: using toString instead of display
	4.7.3 Using the default version of toString

	4.8 Stage D: providing class variables, class methods and class constants
	4.9 Stage E: the final version of the Date class
	4.9.1 Stage E1: the text of the final version of the Date class
	4.9.2 Stage E2: providing other constructors
	4.9.3 Stage E3: defining a method called equals
	4.9.4 Stage E4: adding hashCode (to help with using collections)
	4.9.5 Stage E5: using the new version of the Date class

	4.10 The role of a class

	5 Another example of data abstraction: the class Person
	5.1 A class called Person
	5.2 Using the class Person

	6 Grouping classes into packages
	6.1 Package declarations
	6.2 Setting the CLASSPATH
	6.3 It’s a small world: how can unique names be generated?
	6.4 Compiling from a private directory into one that is visible from the WWW

	7 Object-oriented programming
	7.1 Introduction
	7.2 Using inheritance to form a subclass
	7.3 A class called Student
	7.4 Package members and protected members
	7.5 Method overriding
	7.6 Using the class Student
	7.7 Dynamic binding
	7.8 Inheritance should be used for is-a relationships

	8 Another example of OO programming: 2D shapes
	8.1 The class Shape
	8.2 The class Circle
	8.3 The class Rectangle
	8.4 Using the class Shape and its subclasses

	9 Exception handling
	9.1 What is exception handling?
	9.2 Altering Date to deal with invalid dates

	10 Interfaces
	10.1 What is an interface?
	10.2 Producing classes that conform to an interface
	10.3 Using interfaces
	10.4 Other points

	11 Starting another thread
	11.1 The class java.lang.Thread
	11.2 Deriving the class ClockStdout from java.lang.Thread
	11.3 Using the class ClockStdout in the UseClockStdout program
	11.4 Using synchronized for accessing a variable from different threads

	12 Other information about Java
	12.1 ITS Guide 108 Advanced Java
	12.2 Primary resources
	Important secondary resources
	12.4 Books

