
A

Using Properties and Resources

In this appendix:
• System Properties
• Server Properties
• Resource Bundles

Java provides “property lists” that are similar to Xdefaults in the X Window system.
Programs can use properties to customize their behavior or find out information
about the run-time environment; by reading a property list, a program can set
defaults, choose colors and fonts, and more, without any changes to the code. Java
1.1 makes property lists much more general. Although the basic features of prop-
erty lists did not change between Java 1.0 and 1.1, the way you access them did.
Instead of providing specific locations for files, Java 1.1 provides access to these
resource bundles in a more general scheme, described in Section A.3.

A.1 System Properties
Although Java applications can define property lists as conveniences, there is one
special property list that is common to all applications and applets: System Proper-
ties. This list currently has 14 properties in Java 1.0 and 21 in Java 1.1, although
you may add to it, and more standard properties may be added in the future. An
application has access to all of them. Because of security restrictions, an applet has
access only to 9. Among other things, these properties allow you to customize your
code for different platforms if you want to provide workarounds for platform-spe-
cific deficiencies or load native methods if available.

Table A-1 contains the complete list of system properties. The last column specifies
whether an applet can access each property; applications can access all properties.
As a word of caution, different vendors may report different values for the same
environment (for example, os.arch could be x86 or 80486). The values in the
property list reflect the run-time environment, not the development environment.

981

10 July 2002 22:27



982 APPENDIX A: USING PROPERTIES AND RESOURCES

Table A–1: System Properties

Name Description Sample Value Applet

awt.toolkit � NoToolkit vendor sun.awt.window.Wtoolkit

file.encoding � 8859_1 NoFile encoding

file.encoding.pkg � sun.io NoFile encoding
package

file.separator YesFile separator “\” or “/”

java.class.path NoJava’s CLASSPATH C:\JAVA\LIB;.;
C:\JAVA\BIN\..\classes;
C:\JAVA\BIN\..\lib\classes.zip

java.class.version 45.3 YesJava’s class library
version

java.home C:\JAVA NoJava’s installation
director y

java.vendor YesJava’s virtual
machine vendor

Netscape Communications

java.vendor.url http://www.netscape.com YesJava vendor’s URL

java.version 1.021 YesJava version

line.separator YesLine separator “\n”

os.arch YesOperating system
architecture

x86 or 80486

os.name YesOperating system
name

Windows NT

os.version � 4.0 YesOperating system
version

path.separator YesPath separator “;” or “:”

user.dir NoUser’s working
director y

C:\JAZ\AWTCode\Chapter2

user.home C:\JAVA NoUser’s home
director y

user.language � en NoUser’s language

user.name � JOHNZ NoUser’s login name

user.region � US NoUser’s geographic
region

user.timezone � EST NoUser’s time zone

10 July 2002 22:27



To read one of the system properties, use the getProperty() method of the Sys-

tem class:

System.getProperty (String s); // for the property you want

If s is a valid property and is accessible by your program, the system retrieves the
current value as a String. If it is not, the return value is null. For example, the fol-
lowing line of code retrieves the vendor for the Java platform you are working
with:

String s = System.getProperty ("java.vendor");

If an applet tries to access a property it does not have permission to read, a security
exception is thrown.

For an application, the Java interpreter can add additional system properties at
run-time with the -D flag. The following command runs the program className,
adding the program.name property to the list of available properties; the value of
this property is the string Foo:

java -Dprogram.name=Foo className

An application can also modify its property list by calling various methods of the
Properties class. The following code duplicates the effect of the -D flag in the pre-
vious example:

Properties p = System.getProperties ();
p.put ("program.name", "Foo"); // To add a new one
p.put ("java.vendor", "O’Reilly"); // To replace the current one
System.setProperties(p);

An applet running within Netscape Navigator or Internet Explorer may not add or
change system properties since Netscape Navigator and Internet Explorer do not
let applets touch the local filesystem, and calls to getProperties() generate a
security violation. Version 1.0 of HotJava, the JDK, and the appletviewer allow you to
set properties with the properties file in the .hotjava director y. Other browsers may
or may not enable this option.

NOTE The location of the system properties file depends on the run-time
environment you are using. Ordinarily, the file will go into a subdi-
rector y of the installation directory or, for environments where users
have home directories, in a subdirectory for the user.

Users may add properties to the system property file by hand; of course, in this
case, it’s the Java developer’s responsibility to document what properties the pro-
gram reads, and to provide reasonable defaults in case those properties aren’t set.
The Color and Font classes have methods to read colors and fonts from the system

A.1 SYSTEM PROPERTIES 983

10 July 2002 22:27



984 APPENDIX A: USING PROPERTIES AND RESOURCES

properties list. These are two areas in which it would be appropriate for a program
to define its own properties, expecting the user to set an appropriate value. For
example, a program might expect the property myname.awt.drawingColor to
define a default color for drawing; it would be the user’s responsibility to add a
line defining this property in the property file:

myname.awt.drawingColor=0xe0e0e0 #default drawing color: light gray

A.2 Server Properties
Java programs can read properties from any file to which they have access. Applica-
tions, of course, can open files on the platform where they execute; applets can-
not. However, applets can read certain files from the server. Example A-1 is an
applet that reads a properties file from its server and uses those properties to cus-
tomize itself. This is a useful technique for developers working on commercial
applets: you can deliver an applet to a customer and let the customer customize
the applet by providing a property sheet. The alternative, having the applet read
all of its customizations from HTML parameter tags, is a bit more clumsy. Ser ver
properties let you distinguish between global customizations like company name
(which would be the same on all instances of the applet) and situation-specific cus-
tomizations, like the name of the animation the user wants to display (the user
may use the same applet for many animation sequences). The company name
should be configured through a style sheet; the animation filename should be con-
figured by using a <PARAM> tag.

Example A-1 uses a properties list to read a message and font information. Follow-
ing the source is the actual property file. The property file must be in the same
director y as the HTML file because we use getDocumentBase() to build the prop-
erty file’s URL. Once we have loaded the property list, we can use getProperty()

to read individual properties. Unfortunately, in Java 1.0, we cannot use the Font

class’s methods to read the font information directly; getFont() can only read
properties from the system property list. Therefore, we need to read the font size,
name, and type as strings, and call the Font constructor using the pieces as argu-
ments. Java 1.1 does a lot to fix this problem; we’ll see how in the next section.

Example A–1: Getting Properties from a Server File

import java.util.Properties;
import java.awt.*;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.net.MalformedURLException;

public class Prop extends java.applet.Applet {
Properties p;

10 July 2002 22:27



Example A–1: Getting Properties from a Server File (continued)

String theMessage;
public void init () {

p = new Properties();
try {

URL propSource = new URL (getDocumentBase(), "prop.list");
InputStream propIS = propSource.openStream();
p.load(propIS);
p.list(System.out);
initFromProps(p);
propIS.close();

} catch (MalformedURLException e) {
System.out.println ("Invalid URL");

} catch (IOException e) {
System.out.println ("Error loading properties");

}
}
public void initFromProps (Properties p) {

String fontsize = p.getProperty ("MyProg.font.size");
String fontname = p.getProperty ("MyProg.font.name");
String fonttype = p.getProperty ("MyProg.font.type");
String message = p.getProperty ("MyProg.message");
int size;
int type;
if (fontsize == null) {

size = 12;
} else {

size = Integer.parseInt (fontsize);
}
if (fontname == null) {

fontname = "TimesRoman";
}
type = Font.PLAIN;
if (fonttype != null) {

fonttype.toLowerCase();
boolean bold = (fonttype.indexOf ("bold") != -1);
boolean italic = (fonttype.indexOf ("italic") != -1);
if (bold) type |= Font.BOLD;
if (italic) type |= Font.ITALIC;

}
if (message == null) {

theMessage = "Welcome to Java";
} else {

theMessage = message;
}
setFont (new Font (fontname, type, size));

}
public void paint (Graphics g) {

g.drawString (theMessage, 50, 50);
}

}

A.2 SERVER PROPERTIES 985

10 July 2002 22:27



986 APPENDIX A: USING PROPERTIES AND RESOURCES

The file prop.list :

MyProg.font.size=20
MyProg.font.type=italic-bold
MyProg.font.name=Helvetica
MyProg.message=Hello World

Figure A-1 results from using this applet with this property file.

Figure A–1: Reading server properties

A.3 Resource Bundles
Java 1.1 adds two new pieces to make its property lists more general and flexible.
The first is the ability to use localized resource bundles; the second is the use of
resource files.

Resource bundles let you write internationalized programs. The general idea is
that any string you want to display (for example, a button label) shouldn’t be spec-
ified as a literal constant. Instead, you want to look up the string in a table of equiv-
alents — a “resource bundle”—that contains equivalent strings for different
locales. For example, the string “yes” is equivalent to “ja”, “si”, “oui”, and many
other language-specific alternatives. A resource bundle lets your program look up
the right alternative at run-time, depending on the user’s locale. The list of alter-
natives must be implemented as a subclass of ResourceBundle or ListResource-
Bundle, in which you provide a key value pair for each label. For each locale you
support, a separate subclass and list must be provided. Then you look up the
appropriate string through the ResourceBundle.getString() method. A complete
example of how to use resource bundles could easily require an entire chapter; I
hope this is enough information to get you started.*

Resource bundles have one important implication for more mundane programs.
Resource bundles can be saved in files and read at run-time. To support them, Java
1.1 has added the ability to load arbitrary properties files. In Example A-1, we
looked for the prop.list file on the applet server. What if we want to permit users to

* See the Java Fundamental Classes Reference for a more complete description.

10 July 2002 22:27



modify the default font to be what they want, not what we think they want? With
Java 1.0, that could not be done because there was no way for an applet to access
the local filesystem. Now, with Java 1.1, you can access read-only resource files
located in the CLASSPATH. To do so, you use the Class.getResource() method,
which takes the name of a properties list file as an argument. This method returns
the URL of the file requested, which could be available locally or on the applet
ser ver; where it actually looks depends on the ClassLoader. Once the file is found,
treat it as a Properties file, as in Example A-1, or do anything you want with it. A
similar method, Class.getResourceAsStream(), returns the InputStream to work
with, instead of the URL.

Example A-2 is similar to Example A-1. The file prop11.list includes three proper-
ties: the font to use, a message, and an image. We need only a single property
because we can use the new Font.decode() method to convert a complete font
specification into a Font object: we don’t need to load the font information in
pieces, as we did in the earlier example. As an added bonus, this example displays
an image. The name of the image is given by the property MyProg.image. Like the
property file itself, the image file can be located anywhere. Here’s the properties
list, which should be placed in the file prop11.list:

MyProg.font=Helvetica-italic-30
MyProg.message=Hello World
MyProg.image=ora-icon.gif

And the code for the applet is in Example A-2.

Example A–2: Getting Properties from a Resource File

// Java 1.1 only
import java.io.*;
import java.net.*;
import java.awt.*;
import java.util.Properties;
import java.applet.Applet;
public class Prop11 extends Applet {

Image im;
Font f;
String msg;
public void paint (Graphics g) {

g.setFont (f);
if (im != null)

g.drawImage (im, 50, 100, this);
if (msg != null)

g.drawString (msg, 50, 50);
}
public void init () {

InputStream is = getClass().getResourceAsStream("prop11.list");
Properties p = new Properties();
try {

p.load (is);

A.3 RESOURCE BUNDLES 987

10 July 2002 22:27



988 APPENDIX A: USING PROPERTIES AND RESOURCES

Example A–2: Getting Properties from a Resource File (continued)

f = Font.decode(p.getProperty("MyProg.font"));
msg = p.getProperty("MyProg.message");
String name = p.getProperty("MyProg.image");
URL url = getClass().getResource(name);
im = getImage (url);

} catch (IOException e) {
System.out.println ("error loading props...");

}
}

}

10 July 2002 22:27


	System Properties
	Server Properties
	Resource Bundles

