Customized Onsite Training: Java 7, JSF 2, PrimeFaces, Servlets/JSP, Ajax/jQuery, Android, Spring, Hibernate, Hadoop, GWT, REST, etc: http://courses.coreservlets.com/

Multithreaded Programming

1. Make a coin-flipping class that implements Runnable. The run method should flip 1000
coins and print out whenever they get 3 or more consecutive heads. Make a task queue, and
put 5 separate instances of the Runnable class in the queue. In the printouts, you can use the
Thread.currentThread() .getName() to identify the thread. You are following varia-
tion 1 of the basic threading approach (separate classes that implement Runnable), so your
code will look something like this (or, you should call execute from a loop):

public class Foo implements Runnable {
public void run() { loop, flip coins, check for 3+ heads in a row }

public class Driver {
public static void main(String[] args) {

tasks.execute(new Foo()); // Multiple instances of Foo
tasks.execute(new Foo());
tasks.execute(new Foo());

}
}

2. Do asimilar task, but this time make only one instance of your main class (the one that imple-
ments Runnable). Still have 5 tasks in the queue. You are following variation 2 of the basic
threading approach (main class implementing Runnable). Now your code will look roughly
like this (or, with the calls to execute in a loop):

public class Foo implements Runnable {
public Foo(Q) {

tasks.execute(this);
tasks.execute(this);
tasks.execute(this);

}

public void run() { loop, flip coins, check for 3+ heads in a row }

public class Driver {
public static void main(String[] args) {
new Foo(); // One instance of Foo, not multiple
}

}

3. Pop up a Frame or JFrame (or use an applet). Change the layout manager to GridLayout
with 5 rows and 1 column. Create 5 coin-flipping tasks and associate each with a Label or
JLabel. Which approach (separate class, interface, inner class) should you use for the code
that has the “run” method? Have each task flip 1000 coins and print the number of heads in

the label. Hints:

* Use setText to put text in the label.
* Remember that String.format is the Java equivalent of C’s sprintf.



