

U ndergraduate Topics in C om puter Science
Series E ditor

Ian M ackie

U ndergraduate Topics in C om puter Science (U TiC S) delivers high-quality instructional
content for undergraduates studying in all areas of com puting and inform ation science.
From core foundational and theoretical m aterial to final-year topics and applications,
U TiC S books take a fresh, concise, and m odern approach and are ideal for self-study or
for a one- or tw o-sem ester course. The texts are all authored by established experts in their
fields, review ed by an international advisory board, and contain num erous exam ples and
problem s. M any include fully w orked solutions.

M ore inform ation about this series at http:// w w w . springer. com / series/ 7592

K ent D . Lee

Python Program m ing Fundam entals
2nd ed. 2014

K ent D . Lee

Luther C ollege, D ecorah, IA , U SA

ISSN 1863-7310 e-ISSN 2197-1781

ISB N 978-1-4471-6641-2 e-ISB N 978-1-4471-6642-9

D O I 10.1007/978-1-4471-6642-9

Springer London H eidelberg N ew York D ordrecht

Library of C ongress C ontrol N um ber: 2014956498

¨ Springer-Verlag London 2014

This w ork is subject to copyright. A ll rights are reserved by the Publisher, w hether the
w hole or part of the m aterial is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on m icrofilm s or in any other
physical w ay, and transm ission or inform ation storage and retrieval, electronic adaptation,
com puter softw are, or by sim ilar or dissim ilar m ethodology now know n or hereafter
developed.

The use of general descriptive nam es, registered nam es, tradem arks, service m arks, etc. in
this publication does not im ply, even in the absence of a specific statem ent, that such
nam es are exem pt from the relevant protective law s and regulations and therefore free for
general use.

The publisher, the authors and the editors are safe to assum e that the advice and
inform ation in this book are believed to be true and accurate at the date of publication.
N either the publisher nor the authors or the editors give a w arranty, express or im plied,
w ith respect to the m aterial contained herein or for any errors or om issions that m ay have
been m ade.

Printed on acid-free paper

Springer-Verlag London Ltd. is part of Springer Science+B usiness M edia
(w w w .springer.com)

Preface
C om puter Science is a creative, challenging, and rew arding discipline. C om puter
program m ers, som etim es called softw are engineers, solve problem s involving data:
com puting, m oving, and handling large quantities of data are all tasks m ade easier or
possible by com puter program s. M oney m agazine ranked softw are engineer as the num ber
one job in A m erica in term s of flexibility, creativity, low stress levels, ease of entry,
com pensation, and job grow th w ithin the field [4].

Learning to program a com puter is a skill that can bring you great enjoym ent because
of the creativity involved in designing and im plem enting a solution to a problem . Python
is a good first language to learn because there is very little overhead in learning to w rite
sim ple program s. Python also has m any libraries available that m ake it easy to w rite som e
very interesting program s including program s in the areas of C om puter G raphics and
G raphical U ser Interfaces: tw o topics that are covered in this text.

In this text, students are taught to program by giving them m any exam ples and
practice exercises w ith solutions that they can w ork on in an interactive classroom
environm ent. The interaction can be accom plished using a com puter or using pen and
paper. B y m aking the classroom experience active, students reflect on and apply w hat they
have read and heard in the classroom . B y using a skill or concept right aw ay, students
quickly discover if they need m ore reinforcem ent of the concept, w hile teachers also get
im m ediate feedback. There is a big difference betw een seeing a concept dem onstrated and
using it yourself and this text encourages applying concepts im m ediately to test
understanding. This is vital in C om puter Science since new skills and concepts build on
w hat w e have already learned.

In several places w ithin this book there are exam ples presented that highlight patterns
of program m ing. These patterns appear over and over in program s w e w rite. In this text,
patterns like the Accum ulator Pattern and the G uess and C heck Pattern are presented and
exercises reinforce the recognition and application of these and other abstract patterns
used in problem -solving. Learning a language is certainly one im portant goal of an
introductory text, but acquiring the necessary problem -solving skills is even m ore
im portant. Students learn to solve problem s on their ow n by recognizing w hen certain
patterns are relevant and then applying these patterns in their ow n program s.

R ecent studies in C om puter Science Education indicate the use of a debugger can
greatly enhance a student‒s understanding of program m ing [1]. A debugger is a tool that
lets the program m er inspect the state of a program at any point w hile it is executing. There
is som ething about actually seeing w hat is happening as a program is executed that helps
m ake an abstract concept m ore concrete. This text introduces students to the use of a
debugger and includes exercises and exam ples that show students how to use a debugger
to discover how program s w ork.

There are additional resources available for instructors teaching from this text. They
include lecture slides and a sam ple schedule of lectures for a sem ester long course.
Solutions to all program m ing exercises are also available upon request. V isit http:// cs. 
luther. edu/ ~leekent/ C S1 for m ore inform ation.

Python is a good language for teaching introductory C om puter Science because it is
very accessible and can be increm entally taught so students can start to w rite program s
before having to learn the w hole language. H ow ever, at the sam e tim e, Python is also a
developing language. Python 3.1 w as recently released to the public. This release of
Python included m any perform ance enhancem ents w hich w ere very good additions to the
language. There w ere also som e language issues w ith version 2.6 and earlier that w ere
cleaned up at the sam e tim e that w ere not backw ards com patible. The result is that not all
Python 2 program s are com patible w ith Python 3 and vice versa. B ecause both Python 2
and Python 3 are in use today, this text w ill point out the differences betw een the tw o
versions w here appropriate. These differences w ill be described by inset boxes titled

 w ithin the text w here the differences are first encountered.

It is recom m ended that students reading this text use Python 3.1 or later for w riting
and running their program s. A ll Python program s presented in the text are Python 3
program s. The libraries used in this text all w ork w ith Python 3. H ow ever, there m ay be
som e libraries that have not been ported to Python 3 that a particular instructor w ould like
to use. In term s of w hat is covered in this text, the differences betw een Python 2 and 3 are
pretty m inor and either language im plem entation w ill w ork to use w ith the text.

A cknow ledgm ents
I w ould like to thank N athaniel Lee, w ho not only let his dad teach him , but w as a great
sounding board and test subject for this text. Thank you, N athan, for all your valuable
feedback and for your w illingness to learn. I‒d also like to thank m y w ife, D enise, for her
ongoing support w hile I have w ritten. Thanks D enise. I know it has been w ork for you too.

C redits
A t tim es in this text M icrosoft W indow s is referred to w hen installing softw are. W indow s
is a registered tradem ark of M icrosoft C orporation in the U nited States and other
countries. M ac O S X is referred to at tim es w ithin this text. M ac and M ac O S are
tradem arks of A pple Inc., registered in the U .S. and other countries.

This book also introduces readers to W ing ID E 101, w hich is used in exam ples
throughout the text. W ing ID E 101 is a free sim plified edition of W ing ID E Professional, a
full-featured integrated developm ent environm ent designed specifically for Python. For
m ore inform ation on W ing ID E, see w w w . w ingw are. com . W ingw are and W ing ID E are
tradem arks or registered tradem arks of W ingw are in the U nited States and other countries.

Suggestions
I w elcom e suggestions for future printings of this text. If you like this text and have
suggestions for future printings, please w rite up your suggestion(s) and em ail them to m e.
The m ore com plete your w rite up, the m ore likely I w ill be to consider your suggestion. If
I select your suggestion for a future printing I‒ll be sure to include your nam e in the
preface as a contributor to the text. Suggestions can be em ailed to kentdlee@ luther.edu or
kentdlee@ gm ail.com .

C ontents
1 Introduction

1. 1 T he Python Program m ing L anguage

1. 2 Installing Python and W ing ID E 101

1. 3 W riting Your First Program

1. 4 W hat Is a C om puter? 

1. 5 B inary N um ber R epresentation

1. 6 W hat Is a Program m ing L anguage? 

1. 7 H exadecim al and O ctal R epresentation

1. 8 W riting Your Second Program

1. 9 Syntax E rrors

1. 10 Types of Values

1. 11 T he R eference Type and A ssignm ent Statem ents

1. 12 Integers and R eal N um bers

1. 13 Strings

1. 14 Integer to String C onversion and B ack A gain

1. 15 G etting Input

1. 16 Form atting O utput

1. 17 W hen T hings G o W rong

1. 18 R eview Q uestions

1. 19 E xercises

1. 20 Solutions to Practice Problem s

2 D ecision M aking

2. 1 Finding the M ax of T hree Integers

2. 2 T he G uess and C heck Pattern

2. 3 C hoosing from a L ist of A lternatives

2. 4 T he B oolean Type

2. 5 Short C ircuit L ogic

2. 6 C om paring Floats for E quality

2. 7 E xception H andling

2. 8 R eview Q uestions

2. 9 E xercises

2. 10 Solutions to Practice Problem s

3 R epetitive Tasks

3. 1 O perators

3. 2 Iterating O ver a Sequence

3. 3 L ists

3. 4 T he G uess and C heck Pattern for L ists

3. 5 M utability of L ists

3. 6 T he A ccum ulator Pattern

3. 7 R eading from and W riting to a File

3. 8 R eading R ecords from a File

3. 9 R eview Q uestions

3. 10 E xercises

3. 11 Solutions to Practice Problem s

4 U sing O bjects

4. 1 C onstructors

4. 2 A ccessor M ethods

4. 3 M utator M ethods

4. 4 Im m utable C lasses

4. 5 O bject-O riented Program m ing

4. 6 W orking w ith X M L Files

4. 7 E xtracting E lem ents from an X M L File

4. 8 X M L A ttributes and D ictionaries

4. 9 R eading an X M L File and B uilding Parallel L ists

4. 10 U sing Parallel L ists to D raw a Picture

4. 11 R eview Q uestions

4. 12 E xercises

4. 13 Solutions to Practice Problem s

5 D efining Functions

5. 1 W hy W rite Functions? 

5. 2 Passing A rgum ents and R eturning a Value

5. 3 Scope of Variables

5. 4 T he R un-Tim e Stack

5. 5 M utable D ata and Functions

5. 6 Predicate Functions

5. 7 Top-D ow n D esign

5. 8 B ottom -U p D esign

5. 9 R ecursive Functions

5. 10 T he M ain Function

5. 11 K eyw ord A rgum ents

5. 12 D efault Values

5. 13 Functions w ith Variable N um ber of Param eters

5. 14 D ictionary Param eter Passing

5. 15 R eview Q uestions

5. 16 E xercises

5. 17 Solutions to Practice Problem s

6 E vent-D riven Program m ing

6. 1 T he R oot W indow

6. 2 M enus

6. 3 Fram es

6. 4 T he Text W idget

6. 5 T he B utton W idget

6. 6 C reating a R em inder!

6. 7 Finishing up the R em inder! A pplication

6. 8 L abel and E ntry W idgets

6. 9 L ayout M anagem ent

6. 10 M essage B oxes

6. 11 R eview Q uestions

6. 12 E xercises

6. 13 Solutions to Practice Problem s

7 D efining C lasses

7. 1 C reating an O bject

7. 2 Inheritance

7. 3 A B ouncing B all E xam ple

7. 4 Polym orphism

7. 5 G etting H ooked on Python

7. 6 R eview Q uestions

7. 7 E xercises

7. 8 Solutions to Practice Problem s

8 A ppendix A :  Integer O perators

9 A ppendix B :  Float O perators

10 A ppendix C :  String O perators and M ethods

11 A ppendix D :  L ist O perators and M ethods

12 A ppendix E :  D ictionary O perators and M ethods

13 A ppendix F:  Turtle M ethods

14 A ppendix G :  TurtleScreen M ethods

15 A ppendix H :  T he R em inder! Program

16 A ppendix I:  T he B ouncing B all Program

G lossary

R eferences

Index

¨ Springer-Verlag London 2014

K ent D . LeePython Program m ing Fundam entalsU ndergraduate Topics in C om puter Science10.1007/978-1-4471-6642-
9_1

1. Introduction
K ent D . Lee1

(1)

Luther C ollege, D ecorah, IA , U SA

K ent D . L ee
E m ail: kentdlee@ luther.edu

The intent of this text is to introduce you to com puter program m ing using the Python
program m ing language. Learning to program is a bit like learning to play piano, although
quite a bit easier since w e w on‒t have to program w hile keeping tim e according to a tim e
signature. Program m ing is a creative process so w e‒ll be w orking on developing som e
creative skills. A t the sam e tim e, there are certain patterns that can be used over and over
again in this creative process. The goal of this text and the course you are taking is to get
you fam iliar w ith these patterns and show you how they can be used in program s. A fter
w orking through this text and studying and practicing you w ill be able to identify w hich of
these patterns are needed to im plem ent a program for a particular task and you w ill be able
to apply these patterns to solve new and interesting problem s.

A s hum an beings our intelligent behavior hinges on our ability to m atch patterns. W e
are pattern-m atchers from the m om ent w e are born. W e w atch and listen to our parents and
siblings to learn how to react to situations. B abies w atch us to learn to talk, w alk, eat, and
even to sm ile. A ll these behaviors are learned through pattern m atching. C om puter
Science is no different. M any of the program s w e create in C om puter Science are based on
just a few patterns that w e learn early in our education as program m ers. O nce w e‒ve
learned the patterns w e becom e effective program m ers by learning to apply the patterns to
new situations. A s babies w e are w ired to learn quickly w ith a little practice. A s w e grow
older w e can learn to use patterns that are m ore abstract. That is w hat C om puter Science is
all about: the application of abstract patterns to solve new and interesting problem s.

PR A C TIC E is im portant. There is a huge difference betw een reading som ething in
this text or understanding w hat is said during a lecture and being able to do it yourself. A t
tim es this m ay be frustrating, but w ith practice you w ill get better at it. A s you read the
text m ake sure you take tim e to do the practice exercises. Practice exercises are clearly
labeled w ith a gray background color. These exercises are your chance to use a concept
that you have just learned. A nsw ers to practice exercises are included at the end of each
chapter so you can check your answ ers.

1.1 The Python Program m ing Language
Python is the program m ing language this text uses to introduce com puter program m ing.
To run a Python program you need an interpreter. The Python interpreter is a program that
reads a Python program and then executes the statem ents found in it, as depicted in
Fig. 1.1. W hile studying this text you w ill w rite m any Python program s. O nce your
program is w ritten and you are ready to try it you w ill tell the Python interpreter to execute
your Python program so you can see w hat it does.

F ig. 1.1 The Python Interpreter

For this process to w ork you m ust first have Python installed on your com puter.
Python is free and available for dow nload from the internet. The next section of this
chapter w ill take you through dow nloading and installing Python. W ithin the last few
years there w ere som e changes to the Python program m ing language betw een Python 2
and Python 3. The text w ill describe differences betw een the tw o versions of Python as
they com e up. In term s of learning to program , the differences betw een the tw o versions of
Python are pretty m inor.

To w rite Python program s you need an editor to type in the program . It is convenient
to have an editor that is designed for w riting Python program s. A n editor that is
specifically designed for w riting program s is called an ID E or Integrated D evelopm ent
Environm ent. A n ID E is m ore than just an editor. It provides highlighting and indentation
that can help as you w rite a program . It also provides a w ay to run your program straight
from the editor. Since you w ill typically run your program m any tim es as you w rite it,
having a w ay to run it quickly is handy. This text uses the W ing ID E 101 in m any of its
exam ples. This ID E is sim ple to install and is free for educational use. W ing ID E 101 is
available for M ac O S X , M icrosoft W indow s, and Linux.

W hen learning to program and even as a seasoned professional, it can be
advantageous to run your program using a tool called a debugger. A debugger allow s you
to run your program , stop it at any point, and inspect the state of the program to help you
better understand w hat is happening as your program executes. The W ing ID E includes an
integrated debugger for that purpose. There are certainly other ID Es that m ight be used
and nothing presented in this text precludes you from using som ething else. Som e
exam ples of ID Es for Python developm ent include N etbeans, Eclipse, Eric, and ID LE.
Eric‒s debugger is really quite nice and could serve as an alternative to W ing should W ing
ID E 101 not be an option for som e reason.

1.2 Installing Python and W ing ID E 101
To begin w riting Python program s on your ow n com puter, you need to have Python
installed. There w ere som e significant changes betw een Python 2.7 and Python 3 w hich
included a few changes that m ake program s w ritten for version 3 incom patible w ith
program s w ritten for version 2.7 and vice versa. If you are using this book as part of an
introductory course, your instructor m ay prefer you install one version or the other.
Exam ple program s in this text are w ritten using Python 3 syntax but the differences
betw een Python 2 and 3 are few enough that it is possible to use either Python 2 or 3 w hen
w riting program s for the exercises in this text. Inset boxes titled Python 2 3 w ill highlight
the differences w hen they are first encountered in the text.

F ig. 1.2 Installing Python on W indow s

If you are running W indow s you w ill likely have to install Python yourself. You can
get the installation package from http:// python. org. C lick the D O W N LO AD link on the
page. Then pick the appropriate installer package. M ost w ill w ant to dow nload the latest
version of the Python 3 W indow s x86 M SI Installer package. O nce you have dow nloaded
it, double-click the package and take all the defaults to install it as pictured in Fig. 1.2.

F ig. 1.3 Installing Python on M ac O S X

If you have a M ac, then Python is already installed and m ay be the version you w ant
to use, depending on how new your M ac is. You can find out w hich version of Python you
have by opening a term inal w indow . G o to the A pplications folder and look in the U tilities
sub-folder for the Term inal application. Start a term inal and in the w indow type python.
You should see som ething like this:

F ig. 1.4 Installing W ing ID E 101 on W indow s

You can press and hold the control key (i.e. the ctrl key) and press ‐d‒ to exit Python
or just close the term inal w indow . If you do not have version 3.1 or new er installed on
your M ac you m ay w ish to dow nload the latest Python 3 M acO S Installer D isk Im age
from the http:// python. org w eb site. O nce the file is dow nloaded you can double-click the
disk im age file and then look for the Python.m pkg file and double-click it as pictured in
Fig. 1.3. You w ill need an adm inistrator passw ord to install it w hich in m ost cases is just
your ow n passw ord.

W hile you don‒t need an ID E like W ing to w rite and run Python program s, the
debugger support that an ID E like W ing provides w ill help you understand how Python
program s w ork. It is also convenient to w rite your program s in an ID E so you can run
them quickly and easily. To install W ing ID E 101 you need to go to the http:// w ingw are. 
com w eb site. Find the D ow nload link at the top of the w eb page and select W ing ID E 101
to dow nload the installation package. B e sure to pick W ing ID E 101 to dow nload if you
don‒t w ant to pay for a license. If you are installing on a M ac, pick the M ac version. If you
are installing on W indow s, pick the W indow s version. D ow nload and run the installation
package if you are using W indow s. R unning the W indow s installer should display an
installer w indow like that pictured in Fig. 1.4. Take all the defaults to install it.

If you are installing W ing ID E 101 on a M ac then you need to m ount the disk im age.
To do this you m ust double-click a file that looks like w ingide-101-3.2.2-1-i386.dm g.
A fter double-clicking that file you w ill have a m ounted disk im age of the sam e nam e,
m inus the .dm g extension). If you open a Finder w indow for that disk im age you w ill see a
w indow that looks like Fig. 1.5. D rag the W ing ID E icon to your A pplications folder and
you can add it to your dock if you like.

F ig. 1.5 Installing W ing ID E 101 on a M ac

F ig. 1.6 C onfiguring W ing‒s Python Interpreter

1.2.1 C onfiguring W ing
If you look at Fig. 1.8 you w ill see that the Python interpreter show s up as Python 3.1.1.
W hen you install W ing, you should open it and take a look at your Python Shell tab. If you
see the w rong version of Python then you need to configure W ing to use the correct
Python Shell. To do this you m ust open W ing and go to the Edit m enu. U nder the Edit
m enu, select C onfigure Python and type in the appropriate interpreter. If you are using
a M ac and w ish to use version 3.1 then you w ould type python3.1. Figure 1.6 show s you
w hat this dialog box looks like and w hat you w ould type in on a M ac. In W indow s, you
should click the brow se button and find python.exe. This w ill be in a directory like :

 if you chose the defaults w hen installing.

F ig. 1.7 C onfiguring Indent G uides

There is one m ore configuration change that should be m ade. The logical flow of a
Python program depends on the program ‒s indentation. Since indentation is so im portant,
W ing can provide a visual cue to the indentation in your program called an indent guide.

These indent guides w ill not show up in this chapter, but they w ill in subsequent chapters.
G o to the Edit m enu again and select Preferences. Then click on the Indentation selection
in the dialog box as show n in Fig. 1.7. Select the checkbox that says Show Indent G uides.

That‒s it! W hether you are a M ac or W indow s user if you‒ve follow ed the directions
in this section you should have Python and W ing ID E 101 installed and ready to use. The
next section show s you how to w rite your first program so you can test your installation of
W ing ID E 101 and Python.

1.3 W riting Your First Program
To try out the installation of your ID E and Python you should w rite a program and run it.
The traditional first program is the H ello W orld program . This program sim ply prints
―H ello W orld!‖ to the screen w hen it is run. This can be done w ith one statem ent in
Python. O pen your ID E if you have not already done so. If you are using W indow s you
can select it by going to the Start m enu in the bottom left hand corner and selecting All
Program s. Look for W ing ID E 101 under the Start m enu and select it. If you are using a
M ac, go to the A pplications folder and double-click the W ing ID E icon or click on it in
your dock if you installed the icon on your dock. O nce you‒ve done this you w ill have a
w indow that looks like Fig. 1.8.

In the ID E w indow you go to the File m enu and select N ew to get a new edit tab w ithin
the ID E. You then enter one statem ent, the print statem ent show n in Fig. 1.8 to print H ello
W orld! to the screen. A fter entering the one line program you can run it by clicking the
green debug button (i.e. that button that looks like a bug) at the top of the w indow . You
w ill be prom pted to save the file. C lick the Save Selected Files button and save it as
hellow orld.py. You should then see H ello W orld! printed at the bottom of the ID E w indow
in the D ebug I/O tab.

F ig. 1.8 The W ing ID E

The print statem ent that you see in this program prints the string ―H ello W orld!‖ to
standard output. Text printed to standard output appears in the D ebug I/O tab in the W ing
ID E. That should do it. If it doesn‒t you‒ll need to re-read the installation instructions
either here or on the w ebsites you dow nloaded Python and W ing ID E from or you can find
som eone to help you install them properly. A n ID E is used in exam ples and practice
exercises throughout this text so you‒ll need a w orking installation of an ID E and Python
to m ake full use of this text.

1.4 W hat Is a C om puter?
So you‒ve w ritten your first program and you‒ve been using a com puter all your life. B ut,
w hat is a com puter, really? A com puter is com posed of a C entral Processing U nit
(abbreviated C PU), m em ory, and Input/O utput (abbreviated I/O) devices. A screen is an
output device. A m ouse is an input device. A hard drive is an I/O device.

The C PU is the brain of the com puter. It is able to store values in m em ory, retrieve
values from m em ory, add/subtract tw o num bers, com pare tw o num bers and do one of tw o
things depending on the outcom e of that com parison. The C PU can also control w hich
instruction it w ill execute next. N orm ally there are a list of instructions, one after another,
that the C PU executes. Som etim es the C PU m ay jum p to a different location w ithin that
list of instructions depending on the outcom e of som e com parison.

That‒s it. A C PU can‒t do m uch m ore than w hat w as described in the previous
paragraph. C PU ‒s aren‒t intelligent by any leap of the im agination. In fact, given such
lim ited pow er, it‒s am azing how m uch w e are able to do w ith a com puter. Everything w e
use a com puter for is built on the w ork of m any, m any people w ho have built layers and
layers of program s that m ake our life easier.

The m em ory of a com puter is a place w here values can be stored and retrieved. It is a
relatively fast storage device, but it loses its contents as soon as the com puter is turned off.
It is called volatile store. The m em ory of a com puter is divided into different locations.
Each location w ithin m em ory has an address and can hold a value. Figure 1.9 show s the
contents of m em ory location 100 containing the num ber 48.

F ig. 1.9 C onceptual view of a com puter

The hard drive is non-volatile storage or som etim es called persistent storage. Values
can be stored and retrieved from the hard drive, but it is relatively slow com pared to the
m em ory and C PU . H ow ever, it retains its contents even w hen the pow er is off.

In a com puter, everything is stored as a sequence of 0‒s and 1‒s. For instance, the
string 01010011 can be interpreted as the decim al num ber 83. It can also represent the
capital letter ‐S‒. H ow w e interpret these strings of 0‒s and 1‒s is up to us. W e can tell the
C PU how to interpret a location in m em ory by w hich instruction w e tell the C PU to
execute. Som e instructions treat 01010011 as the num ber 83. O ther instructions treat it as
the letter ‐S‒.

O ne digit in a binary num ber is called a bit. Eight bits grouped together are called a
byte. Four bytes grouped together are called a w ord. bytes are called a kilobyte (i.e.
K B). kilobytes are called a m egabyte (i.e. M B). m egabytes are called a gigabyte

(i.e. G B). gigabytes are called a terabyte (i.e. TB). C urrently m em ories on com puters
are usually in the 1‌8 G B range. H ard D rives on com puters are usually in the 500 G B to
2 TB range.

1.5 B inary N um ber R epresentation
Each digit in a decim al num ber represents a pow er of 10. The right-m ost digit is the
num ber of ones, the next digit is the num ber of 10‒s, and so on. To interpret integers as
binary num bers w e use pow ers of 2 just as w e use pow ers of 10 w hen interpreting integers
as decim al num bers. The right-m ost digit of a binary num ber represents the num ber of
tim es is needed in the representation of the integer. O ur choices are only 0 or 1 (i.e.
w e can use one if the num ber is odd), because 0 and 1 are the only choices for digits in
a binary num ber. The next right-m ost is and so on. So 01010011 is

. A ny binary num ber can be
converted to its decim al representation by follow ing the steps given above. A ny decim al
num ber can be converted to its binary representation by subtracting the largest pow er of
tw o that is less than the num ber, m arking that digit as a 1 in the binary num ber and then
repeating the process w ith the rem ainder after subtracting that pow er of tw o from the
num ber.

Practice 1.1

W hat is the decim al equivalent of the binary num ber

E xam ple 1.1
There is an elegant algorithm for converting a decim al num ber to a binary num ber.
You need to carry out long division by 2 to use this algorithm . If w e w ant to convert

 to binary then w e can repeatedly perform long division by 2 on the quotient of
each result until the quotient is zero. Then, the string of the rem ainders that w ere
accum ulated w hile dividing m ake up the binary num ber. For exam ple,

The rem ainders from last to first are w hich is . This set of steps is called
an algorithm . A n algorithm is like a recipe for doing a com putation. W e can use this
algorithm any tim e w e w ant to convert a num ber from decim al to binary.

Practice 1.2

U se the conversion algorithm to find the binary representation of .

To add tw o num bers in binary w e perform addition just the w ay w e w ould in base 10

form at. So, for instance, . In decim al form at this is . In binary
form at, any tim e w e add tw o 1‒s, the result is 0 and 1 is carried.

To represent negative num bers in a com puter w e w ould like to pick a form at so that
w hen a binary num ber and its opposite are added together w e get zero as the result. For
this to w ork w e m ust have a specific num ber of bits that w e are w illing to w ork w ith.
Typically thirty-tw o or sixty-four bit addition is used. To keep things sim ple w e‒ll do som e

eight bit addition in this text. C onsider .

It turns out that the 2‒s com plem ent of a num ber is the negative of that num ber in

binary. For exam ple, the num bers and . is the 2‒s
com plem ent of . It can be found by reversing all the 1‒s and 0‒s (w hich is called
the 1‒s com plem ent) and then adding 1 to the result.

E xam ple 1.2
A dding 00000011 and 11111101 together gives us

This only w orks if w e lim it ourselves to 8 bit addition. The carried 1 is in the ninth
digit and is throw n aw ay. The result is 0.

Practice 1.3

If , then w hat does look like in binary? H IN T: Take the 2‒s

com plem ent of 83 or figure out w hat to add to to get 0.

F ig. 1.10 The A SC II table

If binary does that m ean that 253 can‒t be represented? The answ er

is yes and no. It turns out that can represent or it can represent
depending on w hether w e w ant to represent both negative and positive values or just
positive values. The C PU instructions w e choose to operate on these values determ ine
w hat types of values they are. W e can choose to use signed integers in our program s or
unsigned integers. The type of value is determ ined by us w hen w e w rite the program .

Typically, 4 bytes, or one w ord, are used to represent an integer. This m eans that

different signed integers can be represented from to . In fact, Python can
handle m ore integers than this but it sw itches to a different representation to handle
integers outside this range. If w e chose to use unsigned integers w e could represent

num bers from 0 to using one w ord of m em ory.

N ot only can represent , it can also represent a character in the alphabet.

If is to be interpreted as a character alm ost all com puters use a convention called
A SC II w hich stands for the A m erican Standard C ode for Inform ation Interchange [12].
This standard equates num bers from 0 to 127 to characters. In fact, num bers from 128 to

255 also define extended A SC II codes w hich are used for som e character graphics. Each
A SC II character is contained in one byte. Figure 1.10 show s the characters and their
equivalent integer representations.

Practice 1.4
W hat is the binary and decim al equivalent of the space character?

Practice 1.5
W hat determ ines how the bytes in m em ory are interpreted? In other w ords, w hat
m akes 4 bytes an integer as opposed to four A SC II characters?

1.6 W hat Is a Program m ing Language?
If w e w ere to have to w rite program s as sequences of num bers w e w ouldn‒t get very far. It
w ould be so tedious to program that no one w ould w ant to be a program m er. In the spring
of 2006 M oney M agazine ranked Softw are Engineer [4] as the num ber one job in A m erica
in term s of overall satisfaction w hich included things like com pensation, grow th, and
stress-levels. So it m ust not be all that tedious.

A program m ing language is really a set of tools that allow us to program at a m uch
higher level than the 0‒s and 1‒s that exist at the low est levels of the com puter. Python and
the W ing ID E provides us w ith a couple of tools. The low er right corner of the W ing ID E
has a tab labeled Python Shell. The shell allow s program m ers to interact w ith the Python
interpreter. The interpreter is a program that interprets the program s w e w rite. If you have
a M ac or Linux com puter you can also start the Python interpreter by opening up a
term inal w indow . If you use W indow s you can start a C om m and Prom pt by looking under
the A ccessories program group. Typing python at a com m and prom pt starts a Python
interpreter as show n in Fig. 1.11.

F ig. 1.11 The Python shell

F ig. 1.12 O verlapping rectangles

C onsider com puting the area of a shape constructed of overlapping regular polygons.
In Fig. 1.12 all angles are right angles and all distances are in m eters. O ur job is to figure
out the area in square m eters. The lighter lines in the m iddle help us figure out how to
com pute the area. W e can com pute the area of the tw o rectangles and then subtract one of
the overlapping parts since otherw ise the overlapping part w ould be counted tw ice.

This can be com puted on your calculator of course. The Python Shell is like a
calculator and Fig. 1.11 show s how it can be used to com pute the area of the shape. The

first line sets a variable called R1_w idth to the value of 10. Then R1_height is set to 8. W e
can store a value in m em ory and give it a nam e. This is called an assignm ent statem ent.
Your calculator can store values. So can Python. In Python these values can be given
nam es that m ean som ething in our program . R1_height is the nam e w e gave to the height
of the R 1 rectangle. A nytim e w e w ant to retrieve that value w e can just w rite R1_height
and Python w ill retrieve its value for us.

Practice 1.6
O pen up the W ing ID E or a com m and prom pt and try out the assignm ent and print
statem ents show n in Fig. 1.11. M ake sure to type the statem ents into the python shell.

You D O N O T type the . That is the Python shell prom pt and is printed by
Python. N otice that you can‒t fix a line once you have pressed enter. This w ill be
rem edied soon.

Practice 1.7
Take a m om ent and answ er these questions from the m aterial you just read.

1.
W hat is an assignm ent statem ent?

2.
H ow do w e retrieve a value from m em ory?

3.
C an w e retrieve a value before it has been stored? W hat happens w hen w e try to do
that?

Interacting directly w ith the Python shell is a good w ay to quickly see how som ething
w orks. H ow ever, it is also painful because m istakes can‒t be undone. In the next section
w e‒ll go back to w riting program s in an editor so they can be changed and run as m any
tim es as w e like. In fact, this is how m ost Python program m ing is done. W rite a little, then
test it by running it. Then w rite a little m ore and run it again. This is called prototyping
and is an effective w ay to w rite program s. You should w rite all your program s using
prototyping w hile reading this text. W rite a little, then try it. That‒s an effective w ay to
program and takes less tim e than w riting a lot and then trying to figure out w hat w ent
w rong.

1.7 H exadecim al and O ctal R epresentation
M ost program m ers do not have to w ork w ith binary num ber representations. Program m ing
languages let program m ers w rite num bers in base 10 and they do the conversion for us.
H ow ever, once in a w hile a program m er m ust be concerned about the binary
representation of a num ber. A s w e‒ve seen, converting betw een binary and decim al isn‒t
hard, but it is som ew hat tedious. The difficulty arises because 10 is not a pow er of 2.
C onverting betw een base 10 and base 2 w ould be a lot easier if 10 w ere a pow er of 2.
W hen com puter program m ers have to w ork w ith binary num bers they don‒t w ant to have
to w rite out all the zeroes and ones. This w ould obviously be tedious as w ell. Instead of
converting num bers to base 10 or w riting all num bers in binary, com puter program m ers
have adopted tw o other representations for binary num bers, base 16 (called hexadecim al)
and base 8 (called octal).

In hexadecim al each digit of a num ber can represent 16 different binary num bers.
The 16 hexadecim al digits are 0‌9, and A ‌F. Since 16 is a pow er of 2, there are exactly

four binary digits that m ake up each hexadecim al digit. So, is and is .
So, the binary num ber is in hexadecim al notation and in octal notation. If
w e w ish to convert either of these tw o num bers to binary form at the conversion is just as

easy. is for instance. A gain, these conversions can be done quickly because there
are four binary digits in each hexadecim al digit and three binary digits in each octal digit.

E xam ple 1.3

To convert the binary num ber to hexadecim al w e have only to break the

num ber into tw o four digit binary num bers and . and

. So the hexadecim al representation of is .
Python has built-in support of hexadecim al num bers. If you w ant to express a

num ber in hexadecim al form you preface it w ith a to signify that it is a
hexadecim al num ber. For instance, here is how Python responds to being
entered into the Python shell.

Since , each digit of an octal num ber represents three binary digits. The octal digits

are 0‌7. The num ber . W hen converting a binary num ber to octal or
hexadecim al w e m ust be sure to start w ith the right-m ost bits. Since there are only 8 bits in

 the left-m ost octal digit corresponds to the left-m ost tw o binary digits. The other
tw o octal digits each have three binary digits. A gain, Python has built-in support for
representing octal digits. W riting a num ber w ith a leading zero and the letter o m eans that

it is in octal form at. So is the Python representation of and it is equal to .

Practice 1.8

C onvert the num ber to binary and then to hexadecim al and octal.

F ig. 1.13 The W ing ID E

1.8 W riting Your Second Program
W riting program s is an error-prone activity. Program m er‒s alm ost never w rite a non-trivial
program perfectly the first tim e. A s program m ers w e need a tool like an Integrated
D evelopm ent Environm ent (i.e. ID E) that helps us find and fix our m istakes. G oing to the
File m enu of the W ing ID E w indow and selecting N ew opens a new edit pane. A n edit
pane can be used to w rite a program but it w on‒t execute each line as you press enter.
W hen w riting a program w e can w rite a little bit and then execute it in the Python
interpreter by pressing F5 on the keyboard or by clicking the debug button.

W hen w e w rite a program w e w ill alm ost certainly have to debug it. D ebugging is the
w ord w e use w hen w e have to find errors in our program . Errors are very com m on and
typically you w ill find a lot of them before the program w orks perfectly. D ebugging refers
to rem oving bugs from a program . B ugs are another nam e for errors. The use of the w ords
bug and debugging in C om puter Science dates back to at least 1952 and probably m uch
earlier. W ikipedia has an interesting discussion of the w ord debugging if you w ant to
know m ore. W hile you can use the Python Shell for som e lim ited debugging, a debugger
is a program that assists you in debugging your program . Figure 1.13 has a picture of the
W ing ID E w ith the program w e‒ve been w orking on typed into the editor part of the ID E.
To use the debugger w e can click the m ouse in the area w here the red circle appears next
to the num bers. This is called setting a breakpoint. A breakpoint tells Python to stop
running w hen Python reaches that statem ent in the program . The program is not finished
w hen it reaches that step, but it stops so you can inspect the state of the program .

The state of the program is contained in the bottom left corner of the ID E. This show s
you the Stack D ata w hich is just another nam e for the program ‒s state. You can see that
the variables that w ere defined in the program are all located here along w ith their values
at the present tim e.

Practice 1.9
C reate an edit pane w ithin the W ing ID E and w rite the program as it appears in
Fig. 1.13. W rite a few lines, then run it by pressing F5 on the keyboard or clicking on
the D ebug button. The first tim e you press F5 you w ill be prom pted to save the
program . M ake sure you save your program w here you can find it later.

Try setting a break point by clicking w here the circle appears next to the
num bers in Fig. 1.13. You should see a red circle appear if you did it right. Then run
the program again to see that it stops at the breakpoint as it appears in Fig. 1.13. You
can stop a program at any point by setting a breakpoint on that line. W hen the
debugger stops at a breakpoint it stops before the statem ent is executed. You m ust
click the D ebug button, not the Run button to get it to stop at breakpoints.

Look at the Stack D ata to inspect the state of the program just before the w ord
D one is printed. M ake sure it m atches w hat you see here. Then continue the
execution by clicking the D ebug button or pressing F5 again to see that D one is
printed.

