Undergraduate Topics in Computer Science

Kent D. Lee

Python
Programming
Fundamentals

Second Edition

Under graduate Topicsin Computer Science

Series Editor
lan M ackie

Undergraduate Topics in Computer Science (UTICS) delivers high-quality instructional
content for undergraduates studying in al areas of computing and information science.
From core foundational and theoretical material to final-year topics and applications,
UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or
for aone- or two-semester course. The texts are all authored by established expertsin their
fields, reviewed by an international advisory board, and contain numerous examples and
problems. Many include fully worked solutions.

More information about this series at http://www.springer.com/series/ 7592

Kent D. Lee

Python Programming Fundamentals

2nd ed. 2014
@ Springer

Kent D. Lee

Luther College, Decorah, IA, USA

ISSN 1863-7310 e-ISSN 2197-1781

|ISBN 978-1-4471-6641-2 e-ISBN 978-1-4471-6642-9
DOI 10.1007/978-1-4471-6642-9

Springer London Heidelberg New York Dordrecht
Library of Congress Control Number: 2014956498

" Springer-Verlag London 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of tranglation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
devel oped.

The use of general descriptive names, registered names, trademarks, service marks, etc. in
this publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free for
general use.

The publisher, the authors and the editors are safe to assume that the advice and
information in this book are believed to be true and accurate at the date of publication.
Neither the publisher nor the authors or the editors give a warranty, express or implied,
with respect to the material contained herein or for any errors or omissions that may have
been made.

Printed on acid-free paper

Springer-Verlag London Ltd. is part of Springer SciencetBusiness Media
(www.springer.com)

Preface

Computer Science is a cregtive, challenging, and rewarding discipline. Computer
programmers, sometimes called software engineers, solve problems involving data
computing, moving, and handling large quantities of data are al tasks made easier or
possible by computer programs. Money magazine ranked software engineer as the number
one job in America in terms of flexibility, creativity, low stress levels, ease of entry,
compensation, and job growth within the field [4].

L earning to program a computer is a skill that can bring you great enjoyment because
of the creativity involved in designing and implementing a solution to a problem. Python
Is a good first language to learn because there is very little overhead in learning to write
simple programs. Python also has many libraries available that make it easy to write some
very interesting programs including programs in the areas of Computer Graphics and
Graphical User Interfaces: two topics that are covered in this text.

In this text, students are taught to program by giving them many examples and
practice exercises with solutions that they can work on in an interactive classroom
environment. The interaction can be accomplished using a computer or using pen and
paper. By making the classroom experience active, students reflect on and apply what they
have read and heard in the classroom. By using a skill or concept right away, students
quickly discover if they need more reinforcement of the concept, while teachers also get
iImmediate feedback. There is a big difference between seeing a concept demonstrated and
using it yourself and this text encourages applying concepts immediately to test
understanding. This is vital in Computer Science since new skills and concepts build on
what we have already |earned.

In several places within this book there are examples presented that highlight patterns
of programming. These patterns appear over and over in programs we write. In this text,
patterns like the Accumulator Pattern and the Guess and Check Pattern are presented and
exercises reinforce the recognition and application of these and other abstract patterns
used in problem-solving. Learning a language is certainly one important goal of an
introductory text, but acquiring the necessary problem-solving skills is even more
important. Students learn to solve problems on their own by recognizing when certain
patterns are relevant and then applying these patterns in their own programs.

Recent studies in Computer Science Education indicate the use of a debugger can
greatly enhance a student-s understanding of programming [1]. A debugger is a tool that
lets the programmer inspect the state of a program at any point while it is executing. There
Is something about actually seeing what is happening as a program is executed that helps
make an abstract concept more concrete. This text introduces students to the use of a
debugger and includes exercises and examples that show students how to use a debugger
to discover how programs work.

There are additional resources available for instructors teaching from this text. They
include lecture dides and a sample schedule of lectures for a semester long course.
Solutions to all programming exercises are also available upon request. Visit http://cs.
|uther.edu/~leekent/CS1 for more information.

Python is a good language for teaching introductory Computer Science because it is
very accessible and can be incrementally taught so students can start to write programs
before having to learn the whole language. However, at the same time, Python is also a
developing language. Python 3.1 was recently released to the public. This release of
Python included many performance enhancements which were very good additions to the
language. There were also some language issues with version 2.6 and earlier that were
cleaned up at the same time that were not backwards compatible. The result is that not all
Python 2 programs are compatible with Python 3 and vice versa. Because both Python 2
and Python 3 are in use today, this text will point out the differences between the two

versions where appropriate. These differences will be described by inset boxes titled
Python2 -~ 3

within the text where the differences are first encountered.
It is recommended that students reading this text use Python 3.1 or later for writing
and running their programs. All Python programs presented in the text are Python 3
programs. The libraries used in this text all work with Python 3. However, there may be
some libraries that have not been ported to Python 3 that a particular instructor would like
to use. In terms of what is covered in this text, the differences between Python 2 and 3 are
pretty minor and either language implementation will work to use with the text.

Acknowledgments

| would like to thank Nathaniel Lee, who not only let his dad teach him, but was a great
sounding board and test subject for this text. Thank you, Nathan, for all your valuable
feedback and for your willingness to learn. 1-d also like to thank my wife, Denise, for her
ongoing support while | have written. Thanks Denise. | know it has been work for you too.

Credits

At timesin this text Microsoft Windows is referred to when installing software. Windows
IS a registered trademark of Microsoft Corporation in the United States and other
countries. Mac OS X is referred to at times within this text. Mac and Mac OS are
trademarks of Apple Inc., registered in the U.S. and other countries.

This book also introduces readers to Wing IDE 101, which is used in examples
throughout the text. Wing IDE 101 is afree simplified edition of Wing IDE Professional, a
full-featured integrated development environment designed specifically for Python. For
more information on Wing IDE, see www.wingware.com . Wingware and Wing IDE are
trademarks or registered trademarks of Wingware in the United States and other countries,

Suggestions

| welcome suggestions for future printings of this text. If you like this text and have
suggestions for future printings, please write up your suggestion(s) and email them to me.
The more complete your write up, the more likely | will be to consider your suggestion. If
| select your suggestion for a future printing |4l be sure to include your name in the
preface as a contributor to the text. Suggestions can be emailed to kentdlee@luther.edu or
kentdlee@gmail.com.

Contents

1 Introduction

1.1 The Python Programming L anguage
1.2 Installing Python and Wing IDE 101
1.3 Writing Your First Program

1.4 What |sa Computer?

1.5 Binary Number Representation

1.6 What |sa Programming L anguage?

1.7 Hexadecimal and Octal Representation

1.8 Writing Your Second Program

1.9 Syntax Errors

1.10 Types of Values

1.11 The Reference Type and Assignment Statements
1.12 Integers and Real Numbers

1.13 Strings

1.14 Integer to String Conversion and Back Again
1.15 Getting I nput

1.16 For matting Output
1.17 When Things Go Wrong

1.18 Review Questions
1.19 Exercises

1.20 Solutionsto Practice Problems

2 Decision Making

2.1 Finding the Max of Three Integers
2.2 The Guess and Check Pattern
2.3 Choosing from a List of Alternatives

2.4 The Boolean Type

2.5 Short Circuit Logic

2.6 Comparing Floatsfor Equality

2.7 Exception Handling
2.8 Review Questions
2.9 Exercises

2.10 Solutionsto Practice Problems
3 Repetitive Tasks
3.1 Operators

3.2 Iterating Over a Sequence

3.3Lists

3.4 The Guess and Check Pattern for Lists
3.5 Mutability of Lists

3.6 The Accumulator Pattern

3.7 Reading from and Writing to a File

3.8 Reading Recordsfrom a File
3.9 Review Questions
3.10 Exercises

3.11 Solutionsto Practice Problems

4 Using Objects
4.1 Constructors

4.2 Accessor M ethods

4.3 Mutator Methods

4.4 Immutable Classes

4.5 Object-Oriented Programming

4.6 Working with XML Files

4.7 Extracting Elementsfrom an XML File
4.8 XML Attributesand Dictionaries

4.9 Reading an XML Fileand Building Parallel Lists
4.10 Using Parallel Liststo Draw a Picture
4.11 Review Questions

4.12 Exercises

4.13 Solutionsto Practice Problems

5 Defining Functions

5.1 Why Write Functions?

5.2 Passing Arguments and Returning a Value
5.3 Scope of Variables

5.4 The Run-Time Stack

5.5 Mutable Data and Functions

5.6 Predicate Functions

5.7 Top-Down Design

5.8 Bottom-Up Design

5.9 Recursive Functions

5.10 The Main Function

5.11 Keyword Arguments

5.12 Default Values

5.13 Functionswith Variable Number of Parameters

5.14 Dictionary Parameter Passing
5.15 Review Questions
5.16 Exercises

5.17 Solutionsto Practice Problems

6 Event-Driven Programming
6.1 The Root Window

6.2 Menus

6.3 Frames

6.4 The Text Widget

6.5 The Button Widget

6.6 Creating a Reminder!

6.7 Finishing up the Reminder! Application
6.8 L abel and Entry Widgets
6.9 L ayout M anagement

6.10 M essage Boxes
6.11 Review Questions
6.12 Exercises

6.13 Solutionsto Practice Problems

7 Defining Classes
7.1 Creating an Object

7.2 Inheritance

7.3 A Bouncing Ball Example

7.4 Polymor phism

7.5 Getting Hooked on Python
7.6 Review Questions
7.7 Exercises

7.8 Solutionsto Practice Problems

8 Appendix A: Integer Operators

9 Appendix B: Float Operators

10 Appendix C: String Operators and M ethods

11 Appendix D: List Operatorsand Methods

12 Appendix E: Dictionary Operators and Methods
13 Appendix F: Turtle Methods

14 Appendix G: TurtleScreen M ethods

15 Appendix H: The Reminder! Program

16 Appendix |: The Bouncing Ball Program

Glossary
References

Index

" Springer-Verlag London 2014

Kent D. LeePython Programming FundamentalsUndergraduate Topics in Computer Sciencel0.1007/978-1-4471-6642-
91

1. Introduction

Kent D. Lee"

(1)
Luther College, Decorah, IA, USA

Kent D. Lee
Email: kentdlee@luther.edu

The intent of this text is to introduce you to computer programming using the Python
programming language. Learning to program is a bit like learning to play piano, athough
quite a bit easier since we won+ have to program while keeping time according to a time
signature. Programming is a creative process so wel be working on developing some
creative skills. At the same time, there are certain patterns that can be used over and over
again in this creative process. The goal of this text and the course you are taking is to get
you familiar with these patterns and show you how they can be used in programs. After
working through this text and studying and practicing you will be able to identify which of
these patterns are needed to implement a program for a particular task and you will be able
to apply these patterns to solve new and interesting problems.

As human beings our intelligent behavior hinges on our ability to match patterns. We
are pattern-matchers from the moment we are born. We watch and listen to our parents and
siblings to learn how to react to situations. Babies watch us to learn to talk, walk, eat, and
even to smile. All these behaviors are learned through pattern matching. Computer
Scienceis no different. Many of the programs we create in Computer Science are based on
just a few patterns that we learn early in our education as programmers. Once we-ve
learned the patterns we become effective programmers by learning to apply the patterns to
new situations. As babies we are wired to learn quickly with alittle practice. As we grow
older we can learn to use patterns that are more abstract. That is what Computer Science is
all about: the application of abstract patterns to solve new and interesting problems.

PRACTICE is important. There is a huge difference between reading something in
this text or understanding what is said during a lecture and being able to do it yourself. At
times this may be frustrating, but with practice you will get better at it. As you read the
text make sure you take time to do the practice exercises. Practice exercises are clearly
labeled with a gray background color. These exercises are your chance to use a concept
that you have just learned. Answers to practice exercises are included at the end of each
chapter so you can check your answers.

1.1 The Python Programming Language

Python is the programming language this text uses to introduce computer programming.
To run a Python program you need an interpreter. The Python interpreter is a program that
reads a Python program and then executes the statements found in it, as depicted in
Fig. 1.1. While studying this text you will write many Python programs. Once your
program is written and you are ready to try it you will tell the Python interpreter to execute
your Python program so you can see what it does.

Your | A The 4 b Screen,
Python EEREGGLER S Keyboard,
Program " | Interpreter & Other I/O

Fig. 1.1 The Python Interpreter

For this process to work you must first have Python installed on your computer.
Python is free and available for download from the internet. The next section of this
chapter will take you through downloading and installing Python. Within the last few
years there were some changes to the Python programming language between Python 2
and Python 3. The text will describe differences between the two versions of Python as
they come up. In terms of learning to program, the differences between the two versions of
Python are pretty minor.

To write Python programs you need an editor to type in the program. It is convenient
to have an editor that is designed for writing Python programs. An editor that is
specifically designed for writing programs is called an IDE or Integrated Development
Environment. An IDE is more than just an editor. It provides highlighting and indentation
that can help as you write a program. It also provides a way to run your program straight
from the editor. Since you will typically run your program many times as you write it,
having a way to run it quickly is handy. This text uses the Wing IDE 101 in many of its
examples. This IDE is ssimple to install and is free for educational use. Wing IDE 101 is
available for Mac OS X, Microsoft Windows, and Linux.

When learning to program and even as a seasoned professional, it can be
advantageous to run your program using a tool called a debugger. A debugger allows you
to run your program, stop it at any point, and inspect the state of the program to help you
better understand what is happening as your program executes. The Wing IDE includes an
integrated debugger for that purpose. There are certainly other IDEs that might be used
and nothing presented in this text precludes you from using something else. Some
examples of IDEs for Python development include Netbeans, Eclipse, Eric, and IDLE.
Eric-s debugger is really quite nice and could serve as an aternative to Wing should Wing
IDE 101 not be an option for some reason.

1.2 Installing Python and Wing IDE 101

To begin writing Python programs on your own computer, you need to have Python
installed. There were some significant changes between Python 2.7 and Python 3 which
included a few changes that make programs written for version 3 incompatible with
programs written for version 2.7 and vice versa. If you are using this book as part of an
introductory course, your instructor may prefer you install one version or the other.
Example programs in this text are written using Python 3 syntax but the differences
between Python 2 and 3 are few enough that it is possible to use either Python 2 or 3 when
writing programs for the exercises in this text. Inset boxes titled python 2 ~ 3 will highlight
the differences when they are first encountered in the text.

1 Pthon 311 Setup =
Select whether to install Python 3.1.1
r for all users of this computer.
T
python
windows
T Cancal

Fig. 1.2 Instaling Python on Windows

If you are running Windows you will likely have to install Python yourself. You can
get the installation package from http://python.org. Click the DOWNLOAD link on the
page. Then pick the appropriate installer package. Most will want to download the latest
version of the Python 3 Windows x86 MS Installer package. Once you have downloaded
it, double-click the package and take all the defaultsto install it as pictured in Fig. 1.2.

Python 3111

- ﬁ

Build.tx1t License.txt m

T

ReadMe.txt
Fig. 1.3 Installing Python on Mac OS X

If you have a Mac, then Python is already installed and may be the version you want
to use, depending on how new your Mac is. You can find out which version of Python you
have by opening atermina window. Go to the Applications folder and ook in the Utilities
sub-folder for the Terminal application. Start a terminal and in the window type python.

You should see something like this:

Kent ‘s Mac> python

Python 3.1.1 (r311 :74543, Aug 24 2009, 18:44:04)

[Goe 4.0.1 (Apple Ine. build 5493)] on darwin

Type "help*, “copyright®, *"credits* or "license" for more info.

g

45 setup - wing 1DE 101 32 R Lol el |

Welcome to the Wing IDE 101 3.2 |
Setup Wizard |
This will install Wing IDE 107 3.2.2-1 on your computer

1 iz recommended that you close all other appcations before
continung.

Click Maod to continue, or Cancel to eodt Setup

Fig. 1.4 Instaling Wing IDE 101 on Windows

You can press and hold the control key (i.e. the ctrl key) and press -d-to exit Python
or just close the terminal window. If you do not have version 3.1 or newer installed on
your Mac you may wish to download the latest Python 3 MacOS Installer Disk Image
from the http://python.org web site. Once the file is downloaded you can double-click the
disk image file and then look for the Python.mpkg file and double-click it as pictured in
Fig. 1.3. You will need an administrator password to install it which in most casesis just
your own password.

While you don+ need an IDE like Wing to write and run Python programs, the
debugger support that an IDE like Wing provides will help you understand how Python
programs work. It is also convenient to write your programs in an IDE so you can run
them quickly and easily. To install Wing IDE 101 you need to go to the http://wingware.
com web site. Find the Download link at the top of the web page and select Wing IDE 101
to download the installation package. Be sure to pick Wing IDE 101 to download if you
don+ want to pay for alicense. If you are installing on a Mac, pick the Mac version. If you
are installing on Windows, pick the Windows version. Download and run the installation
package if you are using Windows. Running the Windows installer should display an
installer window like that pictured in Fig. 1.4. Take all the defaults to install it.

If you are installing Wing IDE 101 on a Mac then you need to mount the disk image.
To do this you must double-click a file that looks like wingide-101-3.2.2-1-i386.dmg.
After double-clicking that file you will have a mounted disk image of the same name,
minus the .dmg extension). If you open a Finder window for that disk image you will see a
window that looks like Fig. 1.5. Drag the Wing IDE icon to your Applications folder and
you can add it to your dock if you like.

B | WisgiDE=101-3.22 =

BB - REINERN Q@

CHANCILOC 3] RILLREL it FLADRL Axt

A pras, £,7 VR avadibds il

Fig. 1.5 Instaling Wing IDE 101 on aMac

Aanm % Python Configuration

Python Executable (' Use default @ Cugtom

pythend.j| (Browse...|
Python Bath # Use default) Custom
Epvironment Use inherited environment =

Initial Directory @ Use default ") Custom

vor) [@cancel) [# apply |
— — —

Fig. 1.6 Configuring Wing-s Python Interpreter
1.2.1 Configuring Wing

If you look at Fig. 1.8 you will see that the Python interpreter shows up as Python 3.1.1.
When you install Wing, you should open it and take alook at your Python Shell tab. If you
see the wrong version of Python then you need to configure Wing to use the correct
Python Shell. To do this you must open Wing and go to the Edit menu. Under the Edit
menu, select Configure Python ... and type in the appropriate interpreter. If you are using
a Mac and wish to use version 3.1 then you would type python3.1. Figure 1.6 shows you
what this dialog box looks like and what you would type in on a Mac. In Windows, you
should click the browse button and find python.exe. This will be in a directory like C:
\PuthonSL e | o1 chose the defaults when installing.

M T % Preferences
s Editor: Indentation
Layos
Toolbars Defaut ndent Size
Calors
Keyboard
- Files

B Show ndent Gudes

External Display
= Edior
Cargt
T ereaon
Line Wrapping
Printang
T Debugger
e
Hatwark

{3 Eacrory Dafauts) < o) (Fcancel| [+ apply

Fig. 1.7 Configuring Indent Guides

There is one more configuration change that should be made. The logical flow of a
Python program depends on the program-s indentation. Since indentation is so important,
Wing can provide a visual cue to the indentation in your program called an indent guide.

These indent guides will not show up in this chapter, but they will in subsequent chapters.
Go to the Edit menu again and select Preferences. Then click on the Indentation selection
in the dialog box as shown in Fig. 1.7. Select the checkbox that says Show Indent Guides.

Thats it! Whether you are a Mac or Windows user if you-ve followed the directions
in this section you should have Python and Wing IDE 101 installed and ready to use. The

next section shows you how to write your first program so you can test your installation of
Wing IDE 101 and Python.

1.3 Writing Your First Program

To try out the installation of your IDE and Python you should write a program and run it.
The traditional first program is the Hello World program. This program simply prints
—Hello World!ll to the screen when it is run. This can be done with one statement in
Python. Open your IDE if you have not already done so. If you are using Windows you
can select it by going to the Start menu in the bottom left hand corner and selecting All
Programs. Look for Wing IDE 101 under the Start menu and select it. If you are using a
Mac, go to the Applications folder and double-click the Wing IDE icon or click on it in
your dock if you installed the icon on your dock. Once you-ve done this you will have a
window that lookslike Fig. 1.8.

Python 2~ 3

Prior to Python version 3 print statements were different than many other statements in
Python because they lacked parentheses[8]. Parentheses were added to print statement
in Python 3. S0,

print "Hello World!"

became

print ("Hello World!"™)

in Python 3 and later: A print statement prints its data and then moves to a new line
unless the newline character is suppressed. Before Python 3 the newline was suppressed

by adding a comma to the end of the print statement.

print "Hello"™,
print " World!"

In Python 3 the same can be done by specifying an empty line end.

print {("Hello",end="")
print (" World!")

In the IDE window you go to the File menu and select New to get a new edit tab within
the IDE. You then enter one statement, the print statement shown in Fig. 1.8 to print Hello
World! to the screen. After entering the one line program you can run it by clicking the
green debug button (i.e. that button that looks like a bug) at the top of the window. You
will be prompted to save the file. Click the Save Selected Files button and save it as
helloworld.py. You should then see Hello World! printed at the bottom of the IDE window
in the Debug 1/0 tab.

&) O [\ Wing IDE: heblowsrld. oy (/Users /leekent Dacuments/ Teaching,/intraTolomp |
Brle Edn Source Debug Teols Window Help
Geae B Sy HED B W S

Emﬂd w!

E D & w K
|
|

1 print(Hello Warld®®}
g |

—— 1]

= s

foebug 10l search 'stack our [rytionshen] -

o debug process « Options. | Commands execute without debwg. L Dpticns

Python 3.1.1 [r311:74543, Ag 24 2005, I~
[GCC 4.0, 1 dApple Inc. build 54930)
Type “help®, “cepyright®, “credits® or =

S

= | | &

&% Line 2 Col 0 - Debugger. No debug process § ot lstening for connectons

Hello World®

H—F

b

Fig. 1.8 TheWing IDE

The print statement that you see in this program prints the string -Hello World!ll to
standard output. Text printed to standard output appears in the Debug 1/0 tab in the Wing
IDE. That should do it. If it doesn+t youl need to re-read the installation instructions
either here or on the websites you downloaded Python and Wing IDE from or you can find
someone to help you install them properly. An IDE is used in examples and practice
exercises throughout this text so you-4 need a working installation of an IDE and Python
to make full use of thistext.

1.4 What Isa Computer?

So you-ve written your first program and you-ve been using a computer all your life. But,
what is a computer, really? A computer is composed of a Central Processing Unit
(abbreviated CPU), memory, and Input/Output (abbreviated I/O) devices. A screen is an
output device. A mouseis an input device. A hard driveisan I/O device.

The CPU is the brain of the computer. It is able to store values in memory, retrieve
values from memory, add/subtract two numbers, compare two numbers and do one of two
things depending on the outcome of that comparison. The CPU can also control which
instruction it will execute next. Normally there are a list of instructions, one after another,
that the CPU executes. Sometimes the CPU may jump to a different location within that
list of instructions depending on the outcome of some comparison.

Thats it. A CPU can+t do much more than what was described in the previous
paragraph. CPU-s aren+t intelligent by any leap of the imagination. In fact, given such
limited power, it-s amazing how much we are able to do with a computer. Everything we
use a computer for is built on the work of many, many people who have built layers and
layers of programs that make our life easier.

The memory of a computer is a place where values can be stored and retrieved. It is a
relatively fast storage device, but it loses its contents as soon as the computer is turned off.
It is called volatile store. The memory of a computer is divided into different locations.
Each location within memory has an address and can hold a value. Figure 1.9 shows the
contents of memory location 100 containing the number 48.

il -

Memory
Address | Value
100 48

hog

—_—

Fig. 1.9 Conceptual view of acomputer

The hard drive is non-volatile storage or sometimes called persistent storage. Values
can be stored and retrieved from the hard drive, but it is relatively slow compared to the
memory and CPU. However, it retains its contents even when the power is off.

In a computer, everything is stored as a sequence of 0-s and 1-s. For instance, the
string 01010011 can be interpreted as the decimal number 83. It can also represent the
capital letter -S= How we interpret these strings of 0-s and 1-sis up to us. We can tell the
CPU how to interpret a location in memory by which instruction we tell the CPU to
execute. Some instructions treat 01010011 as the number 83. Other instructions treat it as
the letter -S—

One digit in a binary number is called a bit. Eight bits grouped together are called a
byte. Four bytes grouped together are called a word. 2 bytes are called a kilobyte (i.e.
KB). 2* kilobytes are called a megabyte (i.e. MB). 21 megabytes are called a gigabyte

(i.e. GB). 2" gigabytes are called a terabyte (i.e. TB). Currently memories on computers
are usualy in the 1] 8 GB range. Hard Drives on computers are usually in the 500 GB to
2 TB range.

1.5 Binary Number Representation

Each digit in a decimal number represents a power of 10. The right-most digit is the
number of ones, the next digit is the number of 10-s, and so on. To interpret integers as
binary numbers we use powers of 2 just as we use powers of 10 when interpreting integers
as decimal numbers. The right-most digit of a binary number represents the number of
times 2° =1 is needed in the representation of the integer. Our choicesare only O or 1 (i.e.
we can use one 2° if the number is odd), because 0 and 1 are the only choices for digitsin
a binary number. The next right-most is 2'=2 and so on. So 01010011 is
D27+ 126 4+ 0%2°4+ 1928+ 022 +0+22+ 1421 +14P =83

. Any binary number can be
converted to its decimal representation by following the steps given above. Any decimal
number can be converted to its binary representation by subtracting the largest power of
two that is less than the number, marking that digit as a 1 in the binary number and then
repeating the process with the remainder after subtracting that power of two from the
number.

Practice 1.1
: . . : 0101010157
What is the decimal equivalent of the binary number)

Example 1.1
There is an elegant algorithm for converting a decimal number to a binary number.
You need to carry out long division by 2 to use this algorithm. If we want to convert

83.

** to binary then we can repeatedly perform long division by 2 on the quotient of
each result until the quotient is zero. Then, the string of the remainders that were
accumulated while dividing make up the binary number. For example,

83/2 = 41 remainder 1
41/2 = 20 remainder 1

20/2 = 10 remainder 0

10/2 = 5 remainder 0
5/2 = 2 remainder 1
2/2 = 1 remainder 0
1/2 = 0 remainder 1

_ . 1010011, . . . 83 : :
The remainders from last to first are *whichis ~ . This set of stepsis called
an algorithm. An algorithm is like a recipe for doing a computation. We can use this

algorithm any time we want to convert a number from decimal to binary.

Practice 1.2
: : . : _ B8.
Use the conversion algorithm to find the binary representation of ~ .
To add two numbers in binary we perform addition just the way we would in base 10

. 0011, + 0101, = 1000, . . . 3+5=8 :
format. So, for instance, g : “. In decimal format thisis . In binary

format, any time we add two 1-s, theresult isO and 1 is carried.

To represent negative numbers in a computer we would like to pick a format so that
when a binary number and its opposite are added together we get zero as the result. For
this to work we must have a specific number of bits that we are willing to work with.
Typically thirty-two or sixty-four bit addition is used. To keep things simple we-Hl do some

. : L . 00000011, = 3.
eight bit addition in this text. Consider A3

It turns out that the 2-s complement of a number is the negative of that number in
: 340 = 00000011, —3yp = 11111101, 11111101, .
binary. For example, the numbers and : Is the 2-s

complement of 00000011. It can be found by reversing all the 1-s and O-s (which is called
the 1-s complement) and then adding 1 to the result.

Example 1.2

Adding 00000011 and 11111101 together gives us

00000011
+11111101
= 100000000

This only works if we limit ourselves to 8 bit addition. The carried 1 is in the ninth
digit and isthrown away. Theresult is 0.

Practice 1.3
01010011, = 83. —83. L

If 77 then what does " look like in binary? HINT: Take the 2-s
01010011,

complement of 83 or figure out what to add to to get O.

| Binary | Dec | Char || Binary | Dec | Char | Binary | Dec | Char ||

0100000 32 U 1000000 64 @ 1100000 96
0100001 33 , 1000001 635 A 1100001 97 a
0100010 34 " 1000010 66 B 1100010 98 b
0100011 35 4 1000011 67 C 1100011 99 [r:
0100100 36 5 1000100 68 D 1100100 | 100 d
0100101 37 % 1000101 69 E 1100101 | 101 e
0100110 38 & 1000110 70 F 1100110 | 102 i 2
0100111 39 k 1000111 71 G 1100111 | 103 g
0101000 40 { 1001000 T2 H 1101000 | 104 h
0101001 41) 1001001 13 I 1101001 | 105 i
0101010 42 * 1001010 74 J 1101010 | 106 3
0101011 43 + 1001011 75 K 1101011 | 107 k
0101100 44 : 1001100 76 L 1101100 | 108 1
0101101 45 = 1001101 77 M 1101101 | 109 m
0101110 46 . 1001110 78 N 1101110 | 110 n
0101111 47 f 1001111 79 o] 1101111 | 111 o
0110000 48 0 1010000 80 P 1110000 | 112 =
0110001 49 | 1010001 81 Q 1110001 | 113 g
0110010 a0 2 1010010 82 R 1110010 | 114 E
0110011 51 3 1010011 83 5 1110011 | 115 5
0110100 52 4 1010100 84 T 1110100 | 116 o
0110101 53 5 1010101 85 U 1110101 | 117 u
0110110 54 B 1010110 86 v 1110110 | 118 v
0110111 35 7 1010111 87 1] 1110111 | 119 W
0111000 56 8 1011000 88 X 1111000 | 120 X
0111001 57] 1011001 89 Y 1111001 | 121 y
0111010 58 : 1011010 90 Z 1111010 | 122 z
0111011 59 ; 1011011 91 [1111011 | 123 {
0111100 60 < 1011100 92 i 1111100 | 124 I
0111101 61 = 1011101 93] 1111101 | 125 }
0111110 62 > 1011110 94 % 1111110 | 126 5
0111111 63 ? 1011111 95 _ 1111111 | 127 DEL

Fig. 1.10 The ASCII table

11111101, = —34g

If binary does that mean that 253 can- be represented? The answer

. 11111101, - 25319
is yes and no. It turns out that can represent or it can represent

depending on whether we want to represent both negative and positive values or just
positive values. The CPU instructions we choose to operate on these values determine
what types of values they are. We can choose to use signed integers in our programs or
unsigned integers. The type of value is determined by us when we write the program.

Typically, 4 bytes, or one word, are used to represent an integer. This means that 2°*

_231 231 2
different signed integers can be represented from to . In fact, Python can
handle more integers than this but it switches to a different representation to handle

integers outside this range. If we chose to use unsigned integers we could represent

21
numbers from O to using one word of memory.
01010011, 8310 | :
Not only can * represent ", it can also represent a character in the alphabet.
01010011,

If " isto beinterpreted as a character amost all computers use a convention called
ASCII which stands for the American Standard Code for Information Interchange [12].
This standard equates numbers from 0 to 127 to characters. In fact, numbers from 128 to

255 also define extended ASCII codes which are used for some character graphics. Each
ASCII character is contained in one byte. Figure 1.10 shows the characters and their
equivalent integer representations.

Practice 1.4
What isthe binary and decimal equivalent of the space character?

Practice 1.5
What determines how the bytes in memory are interpreted? In other words, what
makes 4 bytes an integer as opposed to four ASCII characters?

1.6 What |s a Programming Language?

If we were to have to write programs as sequences of numbers we wouldn- get very far. It
would be so tedious to program that no one would want to be a programmer. In the spring
of 2006 Money Magazine ranked Software Engineer [4] as the number one job in America
in terms of overall satisfaction which included things like compensation, growth, and
stress-levels. So it must not be al that tedious.

A programming language is really a set of tools that allow us to program at a much
higher level than the O-s and 1-s that exist at the lowest levels of the computer. Python and
the Wing IDE provides us with a couple of tools. The lower right corner of the Wing IDE
has a tab labeled Python Shell. The shell allows programmers to interact with the Python
interpreter. The interpreter is a program that interprets the programs we write. If you have
a Mac or Linux computer you can aso start the Python interpreter by opening up a
termina window. If you use Windows you can start a Command Prompt by looking under
the Accessories program group. Typing python at a command prompt starts a Python
interpreter as shownin Fig. 1.11.

a0 Torminal — Prikea — THx21
Kent's Mac> python :
Python 3.1.1 (r311:74543, Aug 24 2009, 18:44:04)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help”, “copyright®, "credits® or “licensa" for more information.
»=> Rl_width = 10

=== R1_height = &

‘»>> R2_height = Rl _height + 3 - 2

»»» RZ_width = 4 + R1L_width - 9

=r> print(R2_width}

5

‘»a> print(R2_height)
.}

»»=> totaldrea = Rl_width # R1_height + RZ_width ® RZ_height - 1 = &
x> print{totalArea)

119

oy |

Fig. 1.11 The Python shell

Fig. 1.12 Overlapping rectangles

Consider computing the area of a shape constructed of overlapping regular polygons.
In Fig. 1.12 al angles are right angles and all distances are in meters. Our job is to figure
out the area in square meters. The lighter lines in the middle help us figure out how to
compute the area. We can compute the area of the two rectangles and then subtract one of
the overlapping parts since otherwise the overlapping part would be counted twice.

This can be computed on your calculator of course. The Python Shell is like a
calculator and Fig. 1.11 shows how it can be used to compute the area of the shape. The

first line sets a variable called R1_width to the value of 10. Then R1_height is set to 8. We
can store a value in memory and give it a name. This is called an assignment statement.
Your calculator can store values. So can Python. In Python these values can be given
names that mean something in our program. R1_height is the name we gave to the height
of the R1 rectangle. Anytime we want to retrieve that value we can just write R1_height
and Python will retrieve its value for us.

Practice 1.6
Open up the Wing IDE or a command prompt and try out the assignment and print
statements shown in Fig. 1.11. Make sure to type the statements into the python shell.

-

You DO NOT type the “77 . That is the Python shell prompt and is printed by
Python. Notice that you can+ fix a line once you have pressed enter. This will be
remedied soon.

Practice 1.7
Take amoment and answer these questions from the material you just read.

1.
What is an assignment statement?

2.
How do we retrieve a value from memory?

3.
Can we retrieve a value before it has been stored? What happens when we try to do
that?

Interacting directly with the Python shell is a good way to quickly see how something
works. However, it is also painful because mistakes can+ be undone. In the next section
we-l go back to writing programs in an editor so they can be changed and run as many
times as we like. In fact, thisis how most Python programming is done. Write a little, then
test it by running it. Then write a little more and run it again. This is called prototyping
and is an effective way to write programs. You should write all your programs using
prototyping while reading this text. Write a little, then try it. That-s an effective way to
program and takes less time than writing a lot and then trying to figure out what went
wrong.

1.7 Hexadecimal and Octal Representation

Most programmers do not have to work with binary number representations. Programming
languages let programmers write numbers in base 10 and they do the conversion for us.
However, once in a while a programmer must be concerned about the binary
representation of a number. As we-ve seen, converting between binary and decimal isn+
hard, but it is somewhat tedious. The difficulty arises because 10 is not a power of 2.
Converting between base 10 and base 2 would be a lot easier if 10 were a power of 2.
When computer programmers have to work with binary numbers they don+ want to have
to write out all the zeroes and ones. This would obviously be tedious as well. Instead of
converting numbers to base 10 or writing all numbers in binary, computer programmers
have adopted two other representations for binary numbers, base 16 (called hexadecimal)
and base 8 (called octal).

In hexadecimal each digit of a number can represent 16 different binary numbers.

The 16 hexadecimal digitsare G 9, and Al F. Since 16 isa power of 2, there are exactly
000, . O 1111, . F
four binary digits that make up each hexadecimal digit. So, > is " and jis
S0, the binary number 10101110 is AE' in hexadecimal notation and 256 in octal notation. If
we wish to convert either of these two numbers to binary format the conversion is just as

1010,
* for instance. Again, these conversions can be done quickly because there

arefour bi nary digitsin each hexadecimal digit and three binary digits in each octal digit.

Example 1.3
: 01010011, :
To convert the binary number " to hexadecimal we have only to break the
: L 0101, 0011, 0101, =5 0011, =3
number into two four digit binary numbers ~ “and ~ . % “and @

. So the hexadecimal representation of T

Python has built-in support of hexadecimal numbers. If you want to express a
number in hexadecima form you preface it with a 0z to signify that it is a
hexadecimal number. For instance, here is how Python responds to 0z53 being

entered into the Python shell.

Kent 's Mac> python

Python 3.1.1 (r311:74543, Aug 24 2009, 18:44:04)

[GcCc 4.0.1 {Apple Inc. build 54%3}] on darwin

Type "help®, "copyright", "credits® or "license" for more info.

Python2 - 3

Originally, octal numbers were written with a leading zero (i.e. 0123). In Python 3, octal
numbers must be preceded with a zero and the letter o (i.e. 0o0123).[8]

Since 8 =2*, each digit of an octal number represents three binary digits. The octal digits
01010011, = 123 . :
are Q 7. The number g . When converting a binary number to octal or

hexadecimal we must be sure to start with the right-most bits. Since there are only 8 bitsin

01010011 the left-most octal digit corresponds to the left-most two binary digits. The other

two octal digits each have three binary digits. Again, Python has built-in support for
representing octal digits. Writing a number with aleading zero and the letter o0 means that

123 3

e . . . 83-
it isin octal format. So 00123 is the Python representation of = and itisequal to ~ .

Practice 1.8
58. _ .
Convert the number ~ to binary and then to hexadecimal and octal.

L Wing TE: neitanglen gy (€7 Uneroent | seRocumenty] = 5
Ble ot Sowce Qebey Took Wisiow Hep
Do Pr0pen-. i« [Gato Dafinisizn = Flan besd Elesuy $ice
B tepinen 2] Strp Over () b Dt
ke Ey 'y B ¥ W ~Opiem
- e » x| E
| -
1 Ri_widih = = F
| = R reign: = i
e &
| 2 BI_neight = Bi 1 =
| 4 Br wissh w4 & o E
| & LF:
| = {RZ_madsh)
T cvetallkrea = B1 widch » BL hexghe ¢ B3 wadeh 8 B2 heighe
| & pziczi*The coisl ages d*.seialaoesl
| b peieT{*Bese) -)
feanch | Sueci Clels " | el Python Sl
<prnder (| retarglec g, baed * Dby 10 iredan, thoedd. ciden] apgens BHDy = Cpbar
Wl Vs = ®
5
. ALY hane The Tosal ares ip 1iF
&1_hmght &
ol walth 00
B2 height 3
BRI el b
E i« dorr D] B350 b]
des Hers
T T e ek Lt
narne u"_sain "
etilisne 11D
B Lme® Cell

Fig. 1.13 TheWing IDE

1.8 Writing Your Second Program

Writing programs is an error-prone activity. Programmer-s almost never write a non-trivial
program perfectly the first time. As programmers we need a tool like an Integrated
Development Environment (i.e. IDE) that helps us find and fix our mistakes. Going to the
File menu of the Wing IDE window and selecting New opens a new edit pane. An edit
pane can be used to write a program but it won+ execute each line as you press enter.
When writing a program we can write a little bit and then execute it in the Python
interpreter by pressing F5 on the keyboard or by clicking the debug button.

When we write a program we will ailmost certainly have to debug it. Debugging is the
word we use when we have to find errors in our program. Errors are very common and
typically you will find alot of them before the program works perfectly. Debugging refers
to removing bugs from a program. Bugs are another name for errors. The use of the words
bug and debugging in Computer Science dates back to at least 1952 and probably much
earlier. Wikipedia has an interesting discussion of the word debugging if you want to
know more. While you can use the Python Shell for some limited debugging, a debugger
IS a program that assists you in debugging your program. Figure 1.13 has a picture of the
Wing IDE with the program we-ve been working on typed into the editor part of the IDE.
To use the debugger we can click the mouse in the area where the red circle appears next
to the numbers. This is called setting a breakpoint. A breakpoint tells Python to stop
running when Python reaches that statement in the program. The program is not finished
when it reaches that step, but it stops so you can inspect the state of the program.

The state of the program is contained in the bottom left corner of the IDE. This shows
you the Stack Data which is just another name for the program-s state. You can see that
the variables that were defined in the program are all located here along with their values
at the present time.

Practice 1.9

Create an edit pane within the Wing IDE and write the program as it appears in
Fig. 1.13. Write afew lines, then run it by pressing F5 on the keyboard or clicking on
the Debug button. The first time you press F5 you will be prompted to save the
program. Make sure you save your program where you can find it later.

Try setting a break point by clicking where the circle appears next to the
numbersin Fig. 1.13. You should see ared circle appear if you did it right. Then run
the program again to see that it stops at the breakpoint as it appearsin Fig. 1.13. You
can stop a program at any point by setting a breakpoint on that line. When the
debugger stops at a breakpoint it stops before the statement is executed. You must
click the Debug button, not the Run button to get it to stop at breakpoints.

Look at the Stack Data to inspect the state of the program just before the word
Done is printed. Make sure it matches what you see here. Then continue the
execution by clicking the Debug button or pressing F5 again to see that Done is
printed.

