
Python System Hacking
Essentials

Earnest Wish, Leo

Copyright © 2015 Earnest Wish, Leo

All rights reserved.

ISBN: 1511797568
ISBN-13: 978-1511797566

ABOUT THE AUTHORS

Earnest Wish

Earnest Wish has 15 years of experience as an information security

professional and a white hacker. He developed the internet stock

trading system at Samsung SDS at the beginning of his IT career,

and he gained an extensive amount experience in hacking and

security while operating the Internet portal system at KTH (Korea

Telecom Hitel). He is currently responsible for privacy and

information security work in public institutions and has deep

knowledge with respect to vulnerability assessments, programming

and penetration testing. He obtained the Comptia Network +

Certification and the license of Professional Engineer for Computer

System Applications. This license is provided by the Republic of

Korea to leading IT Professionals.

Leo

Leo is a computer architect and a parallel processing expert. He is
the author of six programming books. As a junior programmer, he
developed a billing system and a hacking tool prevention system in
China. In recent years, he has studied security vulnerability analysis
and the improvement in measures for parallel programming. Now,
he is a lead optimization engineer to improve CPU and GPU
performance.

CONTENTS IN DETAIL

Chapter 1 Preparation for Hacking 1

1.1 Starting Python 1

1.2. Basic Grammar 3

1.3 Functions 8

1.4 Class and Object 11

1.5 Exception Handling 14

1.6 Module 17

1.7 File Handling 21

1.8 String Format 25

Chapter 2 System Hacking 28

2.1 System Hacking Overview 28

2.2 Backdoor 30

2.3 Registry 42

2.4 Buffer Overflow 51

2.5 Stack-Based Buffer Overflow 54

2.6 SEH Based Buffer Overflow 67

Chapter 3 Conclusion 83

6

the indentation.

(7) The Program Block Representation: The �´�6�S�D�F�H�µ or the
�´�7�D�E�µ key represent a program block. Developers that are
familiar with other languages may feel a little awkward at first.
However, once used to it, you can feel that syntax errors are
reduced and coding becomes simplified.

(8) Comparison and Branch Statement: It is possible to use an
�´�L�I�µ statement to determine a �´�W�U�X�H�µ or �´�I�D�O�V�H�µ condition. The
colon �´���µ specifies the start of the branch statement block, and
in a manner similar to C and Java, a comparison uses the �´� � �µ
symbol.

(9) Multiple Lines of Program Block Representation: If you
use the same number of �´�6�S�D�F�H�µ or �´�7�D�E�µ characters, the lines
are regarded as part of the same block.

(10) New Program Block: If a smaller number of �´�6�S�D�F�H�µ or
�´�7�D�E�µ characters are used than a previous block, this indicates
that the new lines correspond to a new program block.

(11) Operator: Similar to C and Java, Python uses the �´���µ
operator. Python also uses the following reserved words,
and these reserved words cannot be used as variable names.

List 1-1 Reserved Words

And del for is raise

assert elif form lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

7

Python is a language that dynamically determines the type for a

variable. When the variable name is first declared, the type of

variable is not specified, and Python will automatically recognize the

type when you assign the value of the variable and store it in

memory. There are some drawbacks in terms of performance, but

this provides a high level of convenience to the programmer. Python

supports data types, such as the following.

List 1-2 Frequently Used Data types

Numerics int Integer 1024, 768

 float Floating-point 3.14, 1234.45

 complex Complex 3+4j

Sequence str Strings, Immutable

objects

�´�+�H�O�O�R �:�R�U�O�G�µ

 list List, Mutable objects �>�´�D�µ���·�·�E�µ���������@

 tuple Tuple, Immutable

objects

���´�D�µ���µ�E�µ����������

Mapping dict Key viewable list,

Mutable objects

�^�´�D�µ���µ�K�L�µ��

�´�E�µ���µ�J�R�µ�`

1.2.2 Branch Statements and Loop

In addition to Java and C, Python supports branch statements and
loops. The usage is similar, but there are some differences in the
detailed syntax. First, let's learn the basic structure and usage of the
branch statement.

if <Conditions comparison 1>:

 Execution syntax 1

elif <Conditions comparison 2>:

8

 Execution syntax 2

else:

 Execution syntax 3

Python uses a structure that is similar to that of other languages, but
it has a difference in that it uses �´�H�O�L�I�� instead of �´�H�O�V�H �L�I�µ��

Next, let's look at the loop. There are two kinds of loops: �´�Z�K�L�O�H�µ
and �´�I�R�U�µ�� The function is similar, but there are some differences in
terms of implementation. The most significant difference from other
languages is that the �´�H�O�V�H�µ statement is used at the end.

while for

while <Execution syntax>:

 Execution syntax

else:

 Execution syntax

for <Variable> in <Object>:

 Execution syntax

else:

 Execution syntax

The �´�I�R�U�µ statement is used to repeatedly assigns an item to a
variable for only the number of items contained in the object. It runs
a statement every time that an item is assigned, one by one. When
the allocation of the item is completed, the loop ends after executing
the commands defined in the �´�H�O�V�H�µ statement.

1.3 Functions

1.3.1 Built-in Functions

As with other languages, Python uses functions to improve the
program structurally and to remove duplicate code. Python supports
a variety of built-in functions that can be used by including a
function call or importing a module. The �´�S�U�L�Q�W�µ function is used

9

most frequently and can be used without import statements, but
mathematical functions can only be used after importing the �´�P�D�W�K�µ
module.

import math

print �´�Y�D�O�X�H of cos �������µ�� math.cos(30)

>>>>>cos value of 30: 0.154251449888

1.3.2 User-defined Functions

It is possible to define functions to improve the program structure at
the user level. The most typical grammar to use as a reserved word is
�´�G�H�I�µ�� �´�G�H�I�µ explicitly defines functions, and the function name and
arguments then follow. It is therefore possible to specify the default
values behind an argument.

def function(argument 1, argument 2=default value)

Let's change the Example 1-1 by using the user-defined function.

#story of "hong gil dong"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

#start of function

def printItem(inSkill, idx=0): #(1)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

10

 print "\ n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

#end of function

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 printItem(querySkill, i) #(2)

 i = i+1

print "--"

print "\ n"

Example 1-2 User-defined Functions

(1) Function declaration: Declare the �´�S�U�L�Q�W�,�W�H�P�µ function that
prints the value of the �´�S�R�Z�H�U�µ list at a position corresponding
to �´�L�Q�6�N�L�O�O�µ and �´�L�G�[�µ received as an argument

(2) Calling User-Defined Functions: To perform a function, an
index value for the �´�T�X�H�U�\�6�N�L�O�O�µ value is passed, and the �´�V�N�L�O�O�µ
list that is received on the user input matches as the function
of an argument

Since the default value is declared in the second argument �´�L�G�[�µ of

11

the �´�S�U�L�Q�W�,�W�H�P�µ function, the function can be called without error
even when passing only one argument at the time of the function call.

�S�U�L�Q�W�,�W�H�P���´�V�Z�R�U�G�µ�� 1)

�S�U�L�Q�W�,�W�H�P���´�V�Z�R�U�G�µ��

�S�U�L�Q�W�,�W�H�P���´�V�Z�R�U�G�µ�� i=0)

1.4 Class and Object

1.4.1 Basis of Class

It is possible to develop all programs with Python both in a
procedural way and in an object-oriented way. To develop simple
hacking programs, it is convenient to use a procedural manner.
However, to develop complex programs that are needed for
operation in an enterprise environment, it is necessary to structure
the program. An object-oriented language can be used to improve
productivity during development by allowing for reusability and
inheritance. If you use an object-oriented language, it is possible to
develop a program that is logically constructed.

The basic structure to declare a class is as follows.

class name: #(1)

 def __init__(self, argument): #(2)

 def functioin(argument): #(3)

class name(inherited class ame): #(4)

 def functioin (argument):

(1) Create a Class: If you specify a class name after using the

12

reserved word �´�F�O�D�V�V�µ�� the class is declared.

(2) Constructor: The �´�B�B �L�Q�L�W�B�B�µ function is a constructor that is
called by default when the class is created. The �´�V�H�O�I�µ pointing
to the class itself is always entered as an argument into the
constructor. In particular, the constructor may be omitted
when there is no need to initialize.

(3) Function: It is possible to declare a function in the class. An
instance is then generated to call the function.

(4) Inheritance: In order inherit from another class, the name of
the inherited class must be used as an argument when the class
is declared. Inheritance supports the use of member variables
and functions of the upper class as is.

1.4.2 Creating a Class

Through this example, let us find out use for the class declaration,
initialization, and inheritance by replacing Example 4-2 with a class.

class Hero: #(1)

 def __init__(self, name, age, weight): #(2)

 self.name = name #(3)

 self.age = age

 self.weight = weight

 def printHero(self): #(4)

 print "\ n"

 print "--------------------------------------"

 print "1.name:" , self.name #(5)

 print "2.age:" , self.age

 print "3.weight:" , self.weight

13

class MyHero(Hero): #(6)

 def __init__(self, inSkill, inPower, idx):

 Hero.__init__(self, "hong gil dong", 18, 69.3) #(7)

 self.skill = inSkill

 self.power = inPower

 self.idx = idx

 def printSkill(self):

 print "4.armed weapon:" , self.skill + "[power:" ,

self.power[self.idx], "]"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 myHero = MyHero(querySkill, power, i) #(8)

 myHero.printHero() #(9)

 myHero.printSkill()

 i = i+1

print "--------------------------------------"

print "\ n"

Example 1-3 Creating a Class

(1) Class Declaration: Declare the class �´�+�H�U�R�µ��

(2) Constructor Declaration: Declare the constructor that takes

14

three arguments and the �´�V�H�O�I�µ representing the class itself.

(3) Variable Initialization : Initialize the class variables by
assigning the arguments.

(4) Function Declaration: Declare the �´�S�U�L�Q�W�+�H�U�R�µ function in
the class.

(5) Using Variables: Use class variables in the format of
�´�V�H�O�I���Y�D�U�L�D�E�O�H �Q�D�P�H�µ��

(6) Class Inheritance: Declare the �´�0�\�+�H�U�R�µ class that inherits
the �´�+�H�U�R�µ class.

(7) Calling the Constructor: Generate and initialize the object by
calling the constructor of the upper class.

(8) Creating a Class: Generate a �´�0�\�+�H�U�R�µ class. Pass along the
arguments required to the constructor.

(9) Calling Class Function: The tasks are run by calling the
functions that are declared for the �´�P�\�+�H�U�R�µ object.

1.5 Exception Handling

1.5.1 Basis for Exception Handling

Even if you create a program that has no errors in syntax, errors can
occur during execution. Errors that occur during the execution of a
program are called �´�H�[�F�H�S�W�L�R�Q�V�µ�� Since it is not possible to take into
account all of the circumstances that might occur during the
execution, even when errors occur, the program must have special
equipment to be able to operate normally. It is possible to make a
program operate safely with exception handling.

The basic structure for exception handling is as follows.

15

try: #(1)

Program with Errors #(2)

except Exception type: #(3)

 Exception Handling

else: #(4)

 Normal Processing

finally: #(5)

 Unconditionally executed, irrespective of the occurrence of the

exception

(1) Start: Exception handling is started by using the reserved word
�´�W�U�\�µ��

(2) Program with Errors: An error may occur during program
execution.

(3) Exception Handling : Specify the type of exception that is to
be handled. Multiple exception types can be specified, and
when it is not clear what kind of exception can occur, it can be
omitted.

(4) Normal Processing: If an exception does not occur, the �´�H�O�V�H�µ
statement can be omitted.

(5) Unconditional Execution: This will be executed
unconditionally, irrespective of the occurrence of the exception.
The �´�I�L�Q�D�O�O�\�µ statement can be omitted.

1.5.2 Exception Handling

This simple example can be used to learn about the behavior to
handle exceptions. Here, a division operation is used to divide by 0
in an attempt to intentionally generate errors. Let's then make a

16

program for normal operation using the �´�W�U�\ �H�[�F�H�S�W�· statement.

try:

 a = 10 / 0 #(1)

except: #(2)

 print "1.[exception] divided by zero "

print "\ n"

try:

 a = 10 / 0

 print "value of a: ", a

except ZeroDivisionError: #(3)

 print "2.[exception] divided by zero "

print "\ n"

try:

 a = 10

 b = "a"

 c = a / b

except (TypeError, ZeroDivisionError): #(4)

 print "3.[exception] type error occurred"

else:

 print "4.type is proper" #(5)

finally:

 print "5.end of test program" #(6)

>>>

1.[exception] divided by zero

17

2.[exception] divided by zero

3.[exception] type error occurred

5.end of test program

Example 1-4 Exception Handling

(1) An Exception Occurs: In the middle of executing the division,
an exception is generated by using 0 as the dividend.

(2) Exception Handling : Exception handling starts without
specifying the type of exception, and an error message is
printed.

(3) Indicating the Type of Exception: Start the exception
handling by specifying the type of exception
(ZeroDivisionError)

(4) Explicit Multiple Exceptions: It is possible to explicitly
process multiple exceptions.

(5) Normal Processing: If no exception occurs, normal
processing prints a message.

(6) Unconditional Execution: Regardless of whether or not an
exception occurs, the program prints this message.

1.6 Module

1.6.1 Basis of Module

A module in Python is a kind of file that serves as a collection of
functions that are frequently used. If you use a module, a complex
function is separated into a separate file. Therefore, it is possible to

18

create a simple program structure.

The basic syntax of the module is as follows.

import module #(1)

import module, module #(2)

from module import function/attribute #(3)

import module as alias #(4)

(1) Import : Specify the module to be used with the import
statement.

(2) A Plurality of Modules: It is possible to use multiple modules
with a comma.

(3) Specifying Function: Specify the module name with �´�I�U�R�P�µ��
Using �´�L�P�S�R�U�W�µ after that, specify the name of the function
that is to be used.

(4) Using the Alias: It is possible to rename the module using a
name that is appropriate for the program features.

You can check the module path that Python recognizes as follows.
To save the module to another path, it is necessary to add the path
by yourself.

import sys #(1)

print sys.path #(2)

sys.path.append("D:\ Python27\ Lib\ myModule") #(3)

(1) Import sys Module: The � �́V�\�V�µ module provides information
and functions that are related to the interpreter.

(2) sys.path: Provides the path information that can be used to
locate the referenced module.

19

(3) Add the Path: It is possible to add the path of new module by
using the �´�S�D�W�K���D�S�S�H�Q�G�µ function.

1.6.2 Custom Module

In addition to the basic modules that are provided in Python,
modules can also be defined by the user. Here, we can learn how to
create a custom module through a simple example. For convenience,
�O�H�W�·�V save the user-defined module in the same directory as the
example. The prefix "mod" is used to distinguish it from a general
program.

skill = ["sword","spear","bow","axe"] #(1)

power = [98.5, 89.2, 100, 79.2]

def printItem(inSkill, idx=0): #(2)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

 print "\ n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

Example 1-5 modHero.py

(0) Creating a Module: Save it in the same directory as the
program that calls the �´�P�R�G�+�H�U�R���S�\�µ module.

20

(1) Declaring Variable: Declare a variable that can be used
internally or externally

(2) Declaring Function: Define a function according to the
feature that the module provides.

To import a previously declared module, let's create a program that
uses the functions in the module.

import modHero #(1)

querySkill = raw_input("select weapon: ")

i=0

for each_item in modHero.skill: #(2)

 if(each_item == querySkill):

 modHero.printItem(querySkill, i) #(3)

 i = i+1

print "--"

print "\ n"

Module 1-6 Calling of Module

(1) Import Module: Explicitly import the �´�P�R�G�+�H�U�R�µ module

(2) Module Variables: Use the �´�V�N�L�O�O�µ variable that has been
declared in the module �´�P�R�G�+�H�U�R�µ��

(3) Module Function: Use the �´�S�U�L�Q�W�,�W�H�P�µ function that has been
declared in the module �´�P�R�G�+�H�U�R�µ��

�´�V�\�V�µ module supports the program to recognize the module in a
different manner. It can be used in the same way as

21

�´�V�\�V���S�D�W�K���D�S�S�H�Q�G���G�L�U�H�F�W�R�U�\���µ��

1.7 File Handling

1.7.1 Basis of File Input and Output

In the examples that have been developed so far, all of the data are
lost when the program is finished, and when a new program is
started, it is then necessary to enter the data again. Therefore, Python
also has the ability to save and use data easily by accessing files.

The basic syntax for file input and output is as follows.

File object = open(file name, open mode) #(1)

File object.close() #(2)

Open mode

r read: Open for read

w write: Open for write

a append: Open for append

(1) Creating Object: Open the file object to handle files with a
specified name. Depending on the open mode, it is possible to
deal with file objects in different ways.

(2) Closing Object: After the use of the file object has finished,
you must close the object. Python automatically closes all file
objects at the end of the program, but if you try to use the file
opened in the �´�Z�µ mode, an error will occur.

1.7.2 File Handling

The following example can be used to learn how to create and read a

22

file and add content. If you do not specify the location at the time of
the file creation, the file is created in the same location as the
program. After the �´�I�L�O�H�)�L�U�V�W���W�[�W�µ and �´�I�L�O�H�6�H�F�R�Q�G���W�[�W�µ files have been
created, let's create a simple program that print out each file.

import os

def makeFile(fileName, message, mode): #(1)

 a=open(fileName, mode) #(2)

 a.write(message) #(3)

 a.close() #(4)

def openFile(fileName): #(5)

 b=open(fileName, "r") #(6)

 lines = b.readlines() #(7)

 for line in lines: #(8)

 print(line)

 b.close()

makeFile("fileFirst.txt","This is my first file1\ n","w") #(9)

makeFile("fileFirst.txt","This is my first file2\ n","w")

makeFile("fileFirst.txt","This is my first file3\ n","w")

makeFile("fileSecond.txt","This is my second file 1\ n","a") #(10)

makeFile("fileSecond.txt","This is my second file 2\ n","a")

makeFile("fileSecond.txt","This is my second file 3\ n","a")

print("write fileFirst.txt")

print("-----------------------------")

openFile("fileFirst.txt") #(11)

print("-----------------------------")

23

print("\ n")

print("write secondFirst.txt")

print("-----------------------------")

openFile("fileSecond.txt") #(12)

print("-----------------------------")

>>>

write fileFirst.txt

This is my first file3

write secondFirst.txt

This is my second file 1

This is my second file 2

This is my second file 3

Example 1-7 File Handling

(1) Creating a Function: To handle a file, a function is declared
to receive the file name, message, an open mode as an
argument.

(2) Opening File: Creates a file object with the specified file

24

name and open mode.

(3) Writing File: Records the message received in the file
depending on the mode.

(4) Closing Object: After the use of the file object is finished,
the object is closed. To create a more efficient program, it is
preferable to place �´�R�S�H�Q�����µ before and �´�F�O�R�V�H�����µ after the
user-defined function. To provide for a simple explanation,
place it inside the user-defined function.

(5) Creating a Function: Declare a function that receives the
file name as an argument.

(6) Opening File: Create a file object that opens the file in the
�´�U�µ mode.

(7) Reading the Content: Read all of the content contained in
the file and save it to the list variable "lines".

(8) Loop: Repeat as many times as the number stored in the list.

(9) Creating a Write Mode File: Create a file named
"fileFirst.txt" in the write mode. While this is repeated three
times to record the content, in the write mode, only one
piece of content that is recorded at last remains.

(10) Creating an Append Mode File: Create a file named
"fileSecond.txt" in the append mode. All content that was
repeatedly recorded three times is stored in the file.

(11) Opening the File: Open the file named �´�I�L�O�H�)�L�U�V�W���W�[�W�µ for
which you want to print the content. Only one row is printed.

(12) Opening the file: Open the file named �´�I�L�O�H�6�H�F�R�Q�G���W�[�W�µ for
which you want to print the content. All three lines are
printed.

25

You can copy and delete the files using a variety of modules, and it
is possible to move and copy by using the �´�V�K�X�W�L�O�µ module, and to
delete the file by using the �´�R�V�µ module.

1.8 String Format

1.8.1 Basis of the String Format

The string format is a technique that can be used to insert a specific
value into the string that you want to print out. The type of value
inserted is determined by a string format code. The string format is
used in the following manner.

�S�U�L�Q�W���´�R�X�W�S�X�W string1 %s output �V�W�U�L�Q�J���µ % inserted string)

Insert the string format code in the middle of the output string.
Place the characters that you want to insert with the �´���µ code after
the string.

List 1-3 String Format Code

%s String

%c Character

%d Integer

%f Floating Pointer

%o Octal Number

%x Hexadecimal Number

1.8.2 String Formatting

Let's learn how to use the string format through a simple example.

26

print("print string: [%s]" % "test")

print("print string: [%10s]" % "test") #(1)

print("print character: [%c]" % "t")

print("print character: [%5c]" % "t") #(2)

print("print Integer: [%d]" % 17)

print("print Float: [%f]" % 17) #(3)

print("print Octal: [%o]" % 17) #(4)

print("print Hexadecimal: [%x]" % 17) #(5)

>>>

print string: [test]

print string: [test]

print character: [t]

print character: [t]

print Integer: [17]

print Float: [17.000000]

print Octal: [21]

print Hexadecimal: [11]

Example 1-8 Format String

If you use the string formatting codes and the numbers together, the
characters can be used to secure a space according to the size of the
numbers that are printed on the screen.

(1) Printing a Fixed Length Character String: If �´���V�µ is used
with a number, it secures space by an amount corresponding to
the number. In the example, �´�W�H�V�W�µ is printed using 4 digits, and
spaces are printed for the remaining six digits, so all 10
characters are printed.

(2) Printing a Fixed Character Containing Spaces of a Certain
Length: If �´���F�µ is used with a number, the amount
corresponding to the number that is same a �´���V�µ is printed.

27

Therefore, one character and four blanks are printed.

(3) The string is the same as that used with the number "% c",
which can be output only as a long number. The character of
you, 4-digit blank is output

(3) Real Number: �´�����µ is converted into a real number.

(4) Octal: �´�����µ is converted into an octal number, and �´�����µ is
printed.

(5) Hex: �´�����µ is converted into a hex number, and �´�����µ is printed.

29

are internally divided into threads. The data used by a process is
stored in a certain area in memory, and the memory is divided into a
stack, heap, and code area according to the corresponding
characteristics.

System hacking exploits the specific operating characteristics of the
operating system on which the applications are running. The first
step involves installing a hacking program inside the system. It is not
easy to install a hacking program through normal routes, and the
most commonly used method involves inducing a file to be
downloaded from a web site or a torrent. When video files and
music files are downloaded and opened, a hacking program can be
installed on the system without notice. If the infected user is the
administrator for a PC operating as a main system inside of a firewall,
a serious situation can result.

A buffer overflow attack, which will be described later, can be
examined to easily understand how to plant hacking code inside of
Word documents, videos, music, and image files. First, find
vulnerabilities in the application code. If you make a program
execute the stored code in unintended memory areas, you can easily
install a backdoor or registry search program.

The hacking code that is installed can operate as a backdoor that
transmits user information to the hacker. It can also search registry
key information or can change values and cause problems in the
system. Furthermore, it can be used as a means to acquire the
financial information of the user.

Most known attacks can be blocked by installing system patches and
anti-virus programs. However, it is sometimes necessary to also
prevent new types of attacks. Hacking technology continually
evolves, and although vaccines and defense technologies have been
developed for operating systems, the spear is always one step ahead
of the shield, and a variety of hacking attacks are still prevalent on
the Internet.

31

environment that has relatively weak security. The file upload
functionality on a bulletin board is most commonly used. Hackers
upload a useful program or video file that contains malicious code
on a bulletin board, and users inadvertently click and download the
file. The moment the user clicks on the file, the backdoor client will
be installed on the PC without the users knowledge. The PC then
becomes a zombie PC and can be remotely controlled.

An antivirus program installed on a PC can detect most backdoors,
and the hackers who want to access the powerful features of that
backdoor continue to write malicious code in a form that cannot be
identified by vaccine programs. Here, we can use a simple Python
program to learn the concept of a backdoor. This command can be
used to retrieve personal information stored on a PC and to check
the risk that a backdoor can be installed.

2.2.2 Backdoor Program Development

A backdoor consists of communication between a server and a client.
The backdoor server runs in the hacker PC, and the backdoor client
runs on the server PC. First, the backdoor server is started at the
hacker PC, and then the backdoor client is installed on the server PC
and starts trying to connect to the server. The backdoor server may
send a command to the backdoor client, and it is therefore possible
to perform various deadly attacks, such as acquiring personal
information, retrieving registry information, or making changes to
account passwords.

		2015-05-06T02:40:34+0000
	Preflight Ticket Signature

