R. Meyer
J. Köhler
A. Homburg

Explosives
Rudolf Meyer
Josef Köhler
Axel Homburg

Explosives

Fifth, Completely Revised Edition

WILEY-VCH
IN MEMORIAM

Rudolf Meyer
(1908–2000)

Dr. Rudolf Meyer was born on 4. 3. 1908 in Spandau (Berlin) and took his degree in Physical Chemistry. He began his initial studies in the area of energetic compounds in connection with his Doctor's degree in 1931 at Professor Bodenstein's Institute in Berlin with a paper on the enthalpy of formation and thermal decomposition of hydrazoic acid. After taking his Doctor's degree, he entered the Dynamit Nobel Company in 1934 as assistant to Dr. Ph. Naoum. He worked there from 1936–1945 on the development of pourable ammonium nitrate explosives and on hollow charges.

After the WWII he accepted a position as scientific adviser to the Government of Argentina in Buenos Aires. He returned to Germany in 1954 and was Technical Director of the WASAG Chemie AG Company, Essen until his retirement.

Dr. Rudolf Meyer died on 23. 5. 2000 in Essen. He is survived by his wife, to whom he was married for more than 60 years, and two grown-up sons.

Dr. Meyer devoted his entire professional life to the chemistry of explosives.
Preface

The continued positive response which the last edition of “Explosives” again received from our readers has encouraged the publishers and authors to retain the concept on which it has been based up to now. Fortunately it was possible to obtain the services of Dr.-Ing. Axel Homburg to co-operate in this publication, and so this book now bears the names of three authors. Dr. Homburg was Chairman of the Management Board of the German Dynamit Nobel AG Company for many years and has been a member of the Supervisory Board since 1996. Unfortunately, the original creator of this book, Dr. Rudolf Meyer, passed away during its preparation. Dr. Rudolf Meyer was also responsible for reviving and extensively revising “Explosivstoffe” in the German language, this work having initially been published by the WASAG-Chemie Company, Berlin, in a first edition in 1932. It has since become a standard work, already in its ninth edition.

In comparison with the fourth edition, and in addition to a few new and commercially attractive compounds of an explosive nature, particular importance has been given to the keyword “Airbag” because of its great topicality. At this point the authors would like to express special thanks to Dr. E. Gast (Contec GmbH) for providing the corresponding information. The authors would like to thank the Fraunhofer Institut für Chemische Technologie (ICT), Pfinztal/Berghausen, in particular Dr.-Ing. P. Elsner, Dr. S. Kelzenberg, Dr. Th. Keicher, Mr. Bathelt, Dr. N. Eisenreich, Dr. K. Menke and Dr. Volk for their advice and contributions to this book.

Because production figures in the explosives industry have been declining markedly for a number of years, the tabulation of product and trade names has been omitted for the time being.

As a new addition, a CD with a tabulation of the current enthalpies of formation and free energies of formation of the compounds occurring in this publication is included with the book for the first time. This tabulation is a compilation of data from the very comprehensive thermodynamic data base published and continually updated by the Fraunhofer Institute for Chemical Technology (ICT).

The authors would like to thank all our patrons and specialist colleagues who have helped to prepare this and previous editions of “Explosives”.

Among these may be mentioned Dr. D. Eckhart (BAM, Berlin), Dipl.-Ing. W. Franke (BAM, Berlin), Dipl.-Ing. H. Grosse † (WASAG Chemie), Dr. E. Häusler † (BICT), Dr. R. Hagel (DNAG, Fürth), Dr. H. Hornberg † (ICT), Dr. H. Krebs (BAM, Berlin), Dr. G. Kistner (ICT), Dr. J. Knobloch (WNC Nitrochemie), Prof. Dr H. Köhler † (Austron), Dr. A. Kratsch (Rheinmetall Industrie GmbH), Dipl.-Ing. H. Krätschmer (DN
Wien GmbH), Dr. K. Meyer † (ICT), Prof. Dr.-Ing. K. Nixdorff (BW University, Hamburg), Dipl.-Ing. J. Prinz (Sprengtechnischer Dienst, Dortmund), Dr. K. Redecker (DNAG, Fürth), Dr. H. J. Rodner (BAM, Berlin), Dr. J. F. Roth † (DNAG, Troisdorf), Prof. Dr. H. Schubert (ICT), Prof. Dr. M. Steidinger (BAM, Berlin), Dipl.-Ing. G. Stockmann (WNC-Nitrochemie), Dr. G. Traxler (ORS Wien), Mr. R. Varosh (RISI, USA), Dr. F. E. Walker (Interplay, USA), Mr. J. Wraige (Solar Pyrotechnics, GB) and Dr. R. Zimmermann (BVS, Dortmund).

We hope that the large number of people who remain unmentioned will also feel that they share in this expression of thanks.

The authors also wish to thank the publishers, the WILEY-VCH Verlag GmbH Company, and in particular Mrs. K. Sora and Mr. P. Biel, for the most pleasant co-operation in the production and printing of this book.

The publishers and authors continue to welcome suggestions and communications of any kind. We hope that our book will remain an important reference work and a quick source of information in this edition as well.

Schardenberg, December 2001 Josef Köhler Axel Homburg
From the preface of previous editions:

“Explosives” is a concise handbook covering the entire field of explosives. It was preceded by the booklet “Explosivstoffe” published in 1932 by WASAG, Berlin, and by the handbook of industrial and military explosives published by WASAG-CHEMIE in 1961 under the same name.

The book contains about 500 entries arranged in alphabetical order. These include formulas and descriptions of about 120 explosive chemicals, about 60 additives, fuels, and oxidizing agents, and a 1500-entry subject index.

The objective of the book is to provide fundamental information on the subject of explosives not only to experts but also to the general public. The book will therefore, apart from industrial companies and research facilities concerned, be found useful in documentary centers, translation bureaus, editorial offices, patent and lawyer offices, and other institutions of this nature.

The properties, manufacturing methods, and applications of each substance are briefly described. In the case of key explosives and raw materials, the standard purity specifications are also listed.

The asymmetric margins are provided for entries and marginal notes of the reader.

Instructions for the thermodynamic calculations of the performance parameters of high explosives, gun propellants, and rocket propellants are given in somewhat greater detail. The basic thermodynamic data will be found in the extensive synoptic tables. They are based on the metric system; conversion from the English or the U.S. system can be made using the conversion tables on the back flyleaf. The front flyleaf contains a glossary of the terms denoting the characteristics of explosive materials in six languages.

The standard temperature selected for the energy of formation and enthalpy of formation data is 25 °C = 299.25 K. The elementary form of carbon was taken to be graphite (and not diamond, as before). The numerical values of the energies of formation (which, as known, appear both in the relevant entry and in the tables) are the optimum molar values found in the enthalpy tables of *Volk, Bathelt and Kuthe: “Thermochemische Daten von Raketenpropellern, Treibladungspulvern sowie deren Komponenten”, published by the Institut für Chemische Technologie (ICT), D-76327 Pfinztal-Berghausen 1972.*

The US experts in rocket-techniques* and the Institute of Makers of Explosives** published glossaries on the definition and explanations of technical terms. Parts of them have been incorporated in the text.

* Published as appendix 4 of the Aerospace Ordnance Handbook by Pollard, F. B. and Arnold, J. H. Prentice Hall Inc., 1966
** Published as Publication No. 12 by the Institute of Makers of Explosives.
The book is not intended as a systematic presentation of the science of explosives. Interested readers are referred to the many excellent publications on the subject, which are available in English (see, for example, the books by M. A. Cook) and the now nearly complete encyclopedia covering the whole explosive field, edited by Seymour M. Kaye (formerly by Basil T. Fedoroff †: “Encyclopedia of Explosives and Related Items”). Users of explosives should consult the “Blaster’s Handbook” of DU PONT Inc., which is by far the best book on the subject.

A comprehensive list of literature references will be found at the end of the book.
<table>
<thead>
<tr>
<th>English</th>
<th>German</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross formula</td>
<td>Bruttoformel</td>
<td>Formule brute</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>Molekulargewicht</td>
<td>Poids moléculaire</td>
</tr>
<tr>
<td>Heat of formation</td>
<td>Bildungswärme</td>
<td>Chaleur de formation</td>
</tr>
<tr>
<td>Oxygen balance</td>
<td>Sauerstoffwert</td>
<td>Bilan d’oxygène</td>
</tr>
<tr>
<td>Nitrogen percentage</td>
<td>Stickstoffgehalt</td>
<td>Taux d’azote</td>
</tr>
<tr>
<td>Volume of detonation gases</td>
<td>Normalgasvolumen</td>
<td>Volume de gaz de détonation</td>
</tr>
<tr>
<td>Heat of explosion</td>
<td>Explosionswärme</td>
<td>Chaleur d’explosion (chaleur spécifique)</td>
</tr>
<tr>
<td>Specific energy</td>
<td>Spezifische Energie</td>
<td>Énergie spécifique</td>
</tr>
<tr>
<td>Density</td>
<td>Dichte</td>
<td>Densité</td>
</tr>
<tr>
<td>Melting point</td>
<td>Schmelzpunkt</td>
<td>Point de fusion</td>
</tr>
<tr>
<td>Lead block test</td>
<td>Bleiblockausbauchung</td>
<td>Évasement du bloc de plomb</td>
</tr>
<tr>
<td>Detonation velocity</td>
<td>Detonationsgeschwindigkeit</td>
<td>Vitesse de détonation</td>
</tr>
<tr>
<td>Deflagration point</td>
<td>Verpuffungspunkt</td>
<td>Point de déflagration</td>
</tr>
<tr>
<td>Impact sensitivity</td>
<td>Schlag-Empfindlichkeit</td>
<td>Sensibilité au choc</td>
</tr>
<tr>
<td>Friction sensitivity</td>
<td>Reib-Empfindlichkeit</td>
<td>Sensibilité au frottement</td>
</tr>
<tr>
<td>Critical diameter of steel sleeve test</td>
<td>Grenzdurchmesser</td>
<td>Diamètre critique dans l’essai en douille d’acier</td>
</tr>
<tr>
<td>Stahlhülsentest</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium</td>
</tr>
<tr>
<td>antimony</td>
</tr>
<tr>
<td>barium</td>
</tr>
<tr>
<td>boron</td>
</tr>
<tr>
<td>calcium</td>
</tr>
<tr>
<td>carbon</td>
</tr>
<tr>
<td>cerium</td>
</tr>
<tr>
<td>chlorine</td>
</tr>
<tr>
<td>chromium</td>
</tr>
<tr>
<td>copper</td>
</tr>
<tr>
<td>fluorine</td>
</tr>
<tr>
<td>iodine</td>
</tr>
<tr>
<td>iron</td>
</tr>
</tbody>
</table>
Mass

<table>
<thead>
<tr>
<th></th>
<th>kg</th>
<th>g</th>
<th>oz.</th>
<th>lb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilogram:</td>
<td>1 kg =</td>
<td>1</td>
<td>1000</td>
<td>35.274</td>
</tr>
<tr>
<td>grain:</td>
<td>1 gr. =</td>
<td>6.4799 · 10⁻⁵</td>
<td>6.4799 · 10⁻²</td>
<td>2.2857 · 10⁻³</td>
</tr>
<tr>
<td>ounce:</td>
<td>1 oz. =</td>
<td>2.8350 · 10⁻²</td>
<td>28.350</td>
<td>1</td>
</tr>
<tr>
<td>troy ounce*)</td>
<td>=</td>
<td>3.11035 · 10⁻²</td>
<td>31.1035</td>
<td>1</td>
</tr>
<tr>
<td>pound:)</td>
<td>1 lb. =</td>
<td>4.5359 · 10⁻¹</td>
<td>453.59</td>
<td>16</td>
</tr>
<tr>
<td>short ton:</td>
<td>1 sh. t. =</td>
<td>907.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metric ton:</td>
<td>1 t = 1000 = 1.1023 sh. t.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* usual for noble metals.

Length

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>in.</th>
<th>ft.</th>
<th>yd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>meter:</td>
<td>1 m =</td>
<td>1</td>
<td>39.370</td>
<td>3.2808</td>
</tr>
<tr>
<td>Inch:</td>
<td>1 in. =</td>
<td>2.54 · 10⁻²</td>
<td>1</td>
<td>8.3333 · 10⁻²</td>
</tr>
<tr>
<td>foot:</td>
<td>1 ft. =</td>
<td>3.048 · 10⁻¹</td>
<td>12"</td>
<td>1</td>
</tr>
<tr>
<td>yard:</td>
<td>1 yd. =</td>
<td>9.144 · 10⁻¹</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>mile:</td>
<td>1 ml. =</td>
<td>1609.3</td>
<td>63 360</td>
<td>5280</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th></th>
<th>m²</th>
<th>cm²</th>
<th>in²</th>
<th>ft²</th>
</tr>
</thead>
<tbody>
<tr>
<td>square meter:</td>
<td>1 m² =</td>
<td>1</td>
<td>10⁴</td>
<td>1550.0</td>
</tr>
<tr>
<td>square inch:</td>
<td>1 in² =</td>
<td>6.4516 · 10⁻⁴</td>
<td>6.4516</td>
<td>1</td>
</tr>
<tr>
<td>square foot:</td>
<td>1 ft.² =</td>
<td>9.2903 · 10⁻²</td>
<td>929.03</td>
<td>144</td>
</tr>
<tr>
<td>acre:</td>
<td>1 A.² =</td>
<td>4046.9 = 0.4 ha</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volume

<table>
<thead>
<tr>
<th></th>
<th>l</th>
<th>gal</th>
<th>in³</th>
<th>ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>liter:</td>
<td>1 l =</td>
<td>1</td>
<td>2.1997 · 10⁻¹</td>
<td>61.024</td>
</tr>
<tr>
<td>milliliters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cubic centimeter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cubic cm³:</td>
<td>1 cm³ =</td>
<td>10⁻³</td>
<td>2.2007 · 10⁻⁴</td>
<td>6.1024 · 10⁻²</td>
</tr>
<tr>
<td>cubic inch:</td>
<td>1 in³ =</td>
<td>1.6387 · 10⁻²</td>
<td>3.6063 · 10⁻³</td>
<td>1</td>
</tr>
<tr>
<td>fluid ounce:</td>
<td>1 oz fl =</td>
<td>2.8413 · 10⁻²</td>
<td>6.2528 · 10⁻³</td>
<td>1.7339</td>
</tr>
<tr>
<td>liquid pint:</td>
<td>1 pt =</td>
<td>5.68 · 10⁻¹</td>
<td>1.25 · 10⁻¹</td>
<td>34.662</td>
</tr>
<tr>
<td>liquid quart:</td>
<td>1 qt = 2 pt =</td>
<td>1.136</td>
<td>2.5 · 10⁻¹</td>
<td>69.323</td>
</tr>
<tr>
<td>gallon:</td>
<td>1 gal = qt =</td>
<td>4.544</td>
<td>1</td>
<td>277.29</td>
</tr>
<tr>
<td>cubic foot:</td>
<td>1 ft³ =</td>
<td>28.317</td>
<td>6.2317</td>
<td>1728.0</td>
</tr>
<tr>
<td>dry barrel:</td>
<td>1 bbl dry =</td>
<td>115.63</td>
<td>23.447</td>
<td>7056.2</td>
</tr>
</tbody>
</table>

Force

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>kp</th>
<th>ib (wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton = 10⁵ Dyn</td>
<td>1 N =</td>
<td>1</td>
<td>1.0197 · 10⁻¹</td>
</tr>
<tr>
<td>Kilopond</td>
<td>1 kp =</td>
<td>9.8067</td>
<td>1</td>
</tr>
<tr>
<td>pound weight:</td>
<td>1 lb (wt) =</td>
<td>4.4482</td>
<td>4.5359 · 10⁻¹</td>
</tr>
<tr>
<td>pressure</td>
<td>bar</td>
<td>kp/cm²</td>
<td>Atm.</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>bar = 10 Newton per cm²:</td>
<td>1 bar = 1</td>
<td>1.0197</td>
<td>0.98692</td>
</tr>
<tr>
<td>physical atmosphere:</td>
<td>1 Atm. = 1.01325</td>
<td>1.0332</td>
<td>1</td>
</tr>
<tr>
<td>technical atmosphere:</td>
<td>1 kp/cm² = 0.98067</td>
<td>1</td>
<td>0.96784</td>
</tr>
<tr>
<td>water column:</td>
<td>10 m = 0.98064</td>
<td>0.99997</td>
<td>0.96781</td>
</tr>
<tr>
<td>pound per square inch:</td>
<td>1 p. s. l. or lb/in² = 6.8947 · 10⁻²</td>
<td>7.0307 · 10⁻²</td>
<td>6.8046 · 10⁻²</td>
</tr>
<tr>
<td>pound per square foot:</td>
<td>1 p. s. ft. or lb/ft² = 4.7880 · 10⁻⁴</td>
<td>4.8824 · 10⁻⁴</td>
<td>4.7254 · 10⁻⁴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>energy:</th>
<th>kJ</th>
<th>kcal</th>
<th>mt</th>
<th>l atm</th>
<th>l bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joule = meter-Newton:</td>
<td>1 J = 1 m N = 10⁻³</td>
<td>2.3884 · 10⁻⁴</td>
<td>1.0197 · 10⁻⁴</td>
<td>9.8687 · 10⁻³</td>
<td>10⁻²</td>
</tr>
<tr>
<td>kilojoule:</td>
<td>1 kJ = 1</td>
<td>2.3884 · 10⁻¹</td>
<td>1.0197 · 10⁻¹</td>
<td>9.8687</td>
<td>10</td>
</tr>
<tr>
<td>kilocalorie:</td>
<td>1 kcal = 4.1868</td>
<td>1</td>
<td>4.2694 · 10⁻¹</td>
<td>41.319</td>
<td>41.869</td>
</tr>
<tr>
<td>meter-ton (1000 kp):</td>
<td>1 mt = 9.8067</td>
<td>2.3423</td>
<td>1</td>
<td>96.782</td>
<td>98.069</td>
</tr>
<tr>
<td>liter-atmosphere:</td>
<td>1 l atm = 1.0133 · 10⁻¹</td>
<td>2.4202 · 10⁻²</td>
<td>1.0333 · 10⁻²</td>
<td>1</td>
<td>1.0133</td>
</tr>
<tr>
<td>liter-bar:</td>
<td>1 l bar = 10⁻¹</td>
<td>2.3885 · 10⁻²</td>
<td>1.0197 · 10⁻²</td>
<td>9.8687 · 10⁻¹</td>
<td>1</td>
</tr>
<tr>
<td>kilowatt-hour:</td>
<td>1 kWh = 3600</td>
<td>859.85</td>
<td>367.10</td>
<td>3.5528 · 10⁻⁵</td>
<td>3.6 · 10⁵</td>
</tr>
<tr>
<td>horse-power-hour:</td>
<td>1 PS h = 2647.8</td>
<td>632.42</td>
<td>270</td>
<td>2.6131 · 10⁻⁵</td>
<td>2.6478 · 10⁵</td>
</tr>
<tr>
<td>gas-equation-factor:</td>
<td>R · °K · Mol = 8.313 · 10⁻³</td>
<td>1.9858 · 10⁻³</td>
<td>8.478 · 10⁻⁴</td>
<td>8.204 · 10⁻²</td>
<td>8.313 · 10⁻²</td>
</tr>
<tr>
<td>british thermal unit:</td>
<td>1 BTU = 1.055</td>
<td>2.520 · 10⁻¹</td>
<td>1.076 · 10⁻¹</td>
<td>3.5528 · 10⁻⁵</td>
<td>3.6 · 10⁵</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>specific impulse:</th>
<th>kp s / kp = s</th>
<th>kp s / kg = s</th>
<th>N s / kg = m / s</th>
</tr>
</thead>
<tbody>
<tr>
<td>kp s / kp = lb (wt) s / lb (wt) = s</td>
<td>1</td>
<td>1</td>
<td>9.8067</td>
</tr>
<tr>
<td>kp s / kg = lb (wt) s / lb</td>
<td>1</td>
<td>1</td>
<td>9.8067</td>
</tr>
<tr>
<td>N s / kg = m / s</td>
<td>1.0197 · 10⁻¹</td>
<td>1.0197 · 10⁻¹</td>
<td>1</td>
</tr>
</tbody>
</table>
Index
and Technical Dictionary with short information without text reference

A
A → 1-black blasting powder 35
A → bridgewire detonator A (german. now absolute) 41
A → composition A 62
AA = antiaircraft A-IX-2 = RDX/aluminum/wax 73/23/4
abattage par chambre de mine = coyote blasting 65
Abbrand = combustion 60
Abbrandgeschwindigkeit = burning rate 45
abrennen = to burn down 77
Abel's equation 23
Abel test 1: 179
abkerben, abspalten → smooth blasting 64
Ablonite = french commercial explosive
abschlagen einer Sprengladung → cut off 67
Absperrzone = blast area 36
Abstand; Sicherheitsabstand = safety distance 138
Abstandsieberung → scaled distance 278
abstechen → dismantling 77
Abstichladung = jet tapper 194
Acardite → Akardite 9
accessoires pour le sautage = blasting accessories 36
acceptor 1
Accord Européen relatif au Transport International des Marchandises Dangereuses par Route → A. D. R. 3, 72
α-cellulose content 224
acétate-dinitrate de glycérine 151
acetone peroxide = tricycloacetone peroxide 252; 346
acétylacétonate de ter 193
Acetyldinitroglycerin 151
acétylsalicylate de plomb 196
Acetylensilber; acétylure d’argent 285
acide picramique 255
acide picrique 256
acide styphnique 303
acide trinitrobenzoique 352
acquisition, handling and storing 139
Acremite 1
active binders 1, 206
actuator 2
ADR 3, 72
A.D.C. test = Adreer double cartridge (gap test)
ADN = Ammonium dinitramide 14; 326
adiabatic 2
adobe charge = mud capping 3; 220
Aeroplex K = solid rocket propellant based on KClO₄ and resin
Aeroplex N = solid rocket propellant based on NH₄ClO₄ and resin
Aerozin = hydrazine/dimethylhydrazine 50/50 3
Aethanolamindinitrat 124
Aethriotrininitrat 124
Aethylidiphenylharnstoff 10
Aethylendiamindinitrat 126
Aethylendinitramin 126
Aethylenglykolnitrat 229
Aethylglykolnitrat = propyleneglycol dinitrate 269
Aethylnitrat 127
Aethylphenylurethan 127
Aethylpikrat 128
AGARD 3
Airbag 3; 148
air blast 8
airloader 8
Akardit I, II, III 9; 10; 163; 298; 326
Akremit → Acremite 1
Albanite = propellant based on → DINA 109
Alex 20 = → composition B plus 20% aluminium
alginites 10
aliphatic nitramines 68; 126; 134; 176
all fire 11
allumage spontané = pre-ignition 265
allumer = to inflame 190
allumeur 183
Almatrity = russian trade name for chlorate and perchlorate explosives
Alumatol = AN/TNT/aluminum 77/20/3
aluminum oxide 331
aluminum powder 11; 12; 217; 218
Amatex 11
Amatol 11
Amilol = diamylphthalate 94
aminoguanidinnitrate → tetracene 313
Ammodyte = powder from commercial explosive (USA)
Ammoksil (Ammokcil; Ammonxyl) = russian name for the mixture AN/trinitroxylene/aluminium 82/12/6
Ammonal = powder form commercial explosive
Ammongelit = german gelatinous commercial explosive 12
ammoniinaya selitra = ammonium nitrate (russian)
Ammonit = powder form commercial explosive (Austria; Germany) 12
ammonium azide 12
ammoniumchlorate 58
ammonium chloride 13; 242; 326
ammonium dichromate 14
Ammonium dinitramide 14; 326
ammonium nitrate 15; 16; 20; 36; 126; 163; 218; 241; 318; 326
ammonium nitrate explosive 16; 20
ammonium oxalate 326
ammonium perchlorate 17; 62; 167; 241; 242; 326
ammonium picrate 19
Ammonpek = AN/tar 95/5 (russian)
Ammonpulver = ammonium nitrate containing gun powder, now obsolete (german)
Ammonsalpeter = ammonium nitrate 15
Ammonsalpeter-Sprengstoffe = ammonium nitrate based explosives 16; 167; 199
amorçage = priming 267
amorce à pont = birdgewire detonator 41
amorce électrique à l’étincelle = spark detonator 294
amorces 19; 247; 290
AN = ammonium nitrate 16
analyse thermique différentielle = differential thermal analysis 98
ANC = ANFO (german) 20
Andex = trade name for ANFO (german) 20
ANF-58 = liquid fuel for rocket motors, say octane (USA)
ANFO = ammonium nitrate fuel oil 16; 20; 167; 199
angle shot mortar test 269
Anilite = mixture of N₂O₄ and butane (french)
Anlaufstrecke = detonation development distance 90
Antenne → bus wire 47
antigrisouteux → permitted explosives 248
antilueur = muzzle flash damping additive (french)
antimony (in delay compositions) 76
anwürgen = crimping 66
anzünden = to inflame 190
Anzünder = squib 183; 296
Anzündhütchen = amorce 19; 247; 290
Anzündkette = igniter train 184
Anzündlitzete = igniter cord 184
Anzündlitztenverbinder = igniter cord connectors 184
Anzündschraube = fuze head 148
Anzündverzug = functioning time 147
APC = ammonium perchlorate 17
APU 20
aquarium test 21; 301
Arbeitsvermögen = strength 300
area ratio = propellant area ratio (“Klemmung”) 269
Argol = crude potassium hydrogen tartrate = muzzle flash damping additive
argon flash 21
armor plate impact test 21; 268
Armstrong blasting method 22
aromatic nitramines 134
ARRADCOM (Picatinny Arsenal) 22
Arsol = trimethylene trinitrosamine 71
Artillerietreibmittel → gun powder 158
as dimethylydrazine 99
ASTM = American Society for
 Testing Materials
AT = anti-tank = armor piercing weapon
Athodyd = aerodynamic-thermody-
 namic = ramjet
Attrappen = mock explosives 218
Audibert tube 22; 249
Auflegerladung = mud cap 3; 43; 220
Aunt Jemima = 80 % fine ground
 HMX (→ Octogen) and 20 % plain,
 old flour. It served for camouflage
 storage of sabotage explosive in
 World War II.
Aurol = concentrated hydrogen
 peroxide (german) 23
Ausbauchung → lead block test 197
aushärten = curing 67
ausschwitzen = exudation 139
Ausströmungsgeschwindigkeit = jet
 velocity 149
AUSTROGEL G1= commercial
 explosives (Austria) 23
average burning rate 23
azides 12; 23; 196; 286; 345
azoture d’ammonium 12
azoture d’argent 286
azoture de plomb 196
azotures 12; 23; 196; 286; 345

B

B → B-black powder 31, 35
B → composition B 62
B → poudre B = nitrocellulose powder
 (french) 264
B → B-Stoff = german turning name
 for methanol
B4 = mixture 60–70 % trinitroanisol
 and 30–40 % aluminum (italy)
Bachmann process (RDX-Synthesis)
 70
ballistic bomb 23
ballistic modfiers 140; 196; 200
ballistic mortar 26; 37; 300
Ballistite = double base powder with
 high percentage of nitroglycerine
 ball powder 28; 159
BAM = Bundesanstalt für Material-
 prüfung (german) 28; 144; 165;
 187
BAM testing methods 144; 165; 187
banc d’essai = rocket test stand
 275
Baratols 28
barium chlorate 28
barium nitrate 29; 163; 326
barium perchlorate 29
barium sulfate 163; 331
Barlow bomb = mixture of liquid
 oxygen with fuel
Baronal = mixture of barium nitrate
 with TNT ald aluminum 50/35/15
 barricade 29
base bleed propellants 31
base charge 31
bâtiment habite = inhabited building
 138
Bazooka 31
B-black blasting powder 31; 35
Bengal fire works → pyrotechnical
 compositions 271
Benzit = trinitrobenzene (german)
 351
benzyol peroxide 31
Bergbau-Versuchsstrasse = german
 institution for testing and amittance
 of permissible explosives, detonators
 and accessories 366
Bergmann-Junk-test 32; 179
Bernoulli’s equation 293
Berstscheibe = safety diaphragm 276
Berthollet’s detonating silver 287
Besatz = stemming 299
Beschußempfindlichkeit = bullet
 impact sensitivity 43; 268; 275
bewohntes Gebäude = inhabited
 building 138
BF-122; -151 = polysulfide binder
 propellant (thiokol)
BGO; BGY; BIC; BIE; BIL; BIM;
 BIP; BLB; BLC: various castable
 double base propellants (USA)
Bichel bomb 33; 367
Bickford’s safety fuse 276
BICT = Bundesinstitut für Chemisch-
 Technische Untersuchungen (ger-
 man) 33
bilan d’oxygène = oxygen balance
Bildungs-Energie-Enthalpie = formation energy (enthalpy) 118; 326
billet 33
binder 34
Bis-cyclopentadienyl-Eisen = ferrocene 140
BITA = aziridine curing agent 34
bi-trinitroethynitramine 34
bi-trinitroethylurea 35
BKW = Becker Kistiakowski Wilson state equation
black powder 31 35; 120; 271
Blättchenpulver = gun powder 158
Blasgeräte = air loaders; also → pneumatic placing 8; 259
blast area 36
blast effect 8
blaster; shot firer 36; 285
blasting accessories 36
blasting agent 16; 20; 36; 37; 43; 191; 192; 254
blasting galvanometer = circuit tester 58
bullet squib 43
blasting gelatin 26; 37; 144; 199
blasting machines 37; 41
blasting mat 38
blasting soluble nitrocotton 224
blasting switch 39
Bleiacetylsalicylat 196
Bleiethylhexoat 200
Bleiazid 196
Bleiblockausbauchung = lead block test 197
Bleinitrat 201
Blei-Trizinat 202
BN = barium nitrate 29
Böllerpulver = black powder 35
Bohrlochabstand = spacing 293
Bohrlochpfeife = bootleg 40
Bohrpatrone (german) = castable mixture of RDX, TNT and boron, e.g., 46/44/10 (USA)
boss 40
bouclier contre l’érosion = flame shield 142
Boudouard equilibrium 322; 337
boullies = slurries 289; 368
bourrage = stemming 299
bourrage à l’eau = water stemming 369
bourroir 308
boutefeu = blaster; shot firer 36; 285
BP = russian abbreviation name for → shaped charges
BPZ Russian denomination for hollow charges with incendiary effect
branchement en parallèle = parallel connection 243
break 40
break test 250
breech 41
Brenngeschwindigkeit = burning rate 45
Brennkammer = case; combustion chamber 60
Brennschluß = end of burning 118
Brennschlußgeschwindigkeit = endburning velocity 118
Brennstoff = fuel 145
bridgewire detonators 41; 94
brisance 42; 84; 362
Brückenzünder = bridgewire detonator 41
brulage = combustion 60
brülüage regressive = regressive burning 272
B-Stoff = german tarning name for methylalcohol
BSX = 1,7-diacetoxy-2,4,6-tetramethylene-2,4,6-trinitramine
BTM = castable mixture of Tetryl, TNT and aluminum 55/25/20
BTNENA = bi-trinitroethylnitramine
BTNEU = bi-trinitroethylurea
BTTN = butanetriol trinitrate
bulk density
bulk mix; bulk mix delivery equipment
bulk powder = porous nitrocellulose powder for hunting
bulk strength
bulldoze = mudcap
bullet resistant
bullet sensitive explosive material
bullet hit squib
Bundesanstalt für Materialprüfung; BAM
burden
Bureau of Alcohol, Tobacco and Firearms
Bureau of Explosives
Bureau of Mines
burning chamber → combustion chamber
burning rate
bus wire
Butarez = carboxy terminated polybutadiene (german)
butanetriol trinitrate
BWC = board wood cellulose (UK)
BZ = russian abbreviation for armor piercing charges with incendiary effect

C
C ↔ composition C
CA₁ = nitrocellulose 12% N for lacquers
CA₂ = nitrocellulose 11–12,5% N for blasting gelatin (french)
calcium carbonate
calcium nitrate
calcium stearate
calculation of explosives and gun powders
colorimetric bomb
camphor; camphre
candelilla wax

Cannon (testing device in test galleries)
caps, detonating
cap sensitivity; cap test
capacitor (blasting) machines
Carbamite denominates al Ethyl-Centralite
Carbitol = diethyleneyleycol monoethyl-ether (USA)
carbazol = tetranitrocarbazol
carbene
carbon black
carbon dioxide
carbon oxide
Carbonit → Wetter-Carbonit (german permissible explosive)
carboxyl-terminated polybutadiene
cardial medicine
Cardox blasting process
cartouche = cartridge
cartridge density
case = combustion chamber
case bonding
caseless ammunition
casting of explosives
casting of propellants
Catergol = catalytic decomposing rocket propellant (e.g., hydrazine)
cavity effect
CBI = clean burning igniter (USA)
CBS = plastic explosive composed of 84% RDX, 16% butyl stearate plus 1,5 stabilizer
CBS-128 K; –162 A = composite rocket propellants (USA)
C.C. = collodion cotton = nitrocellulose 11–12% N (UK)
C.C.-propellants = “Cyclonit cannon” = RDX containing gun powders (USA)
CDB-propellants = combined composite and double base rocket propellants (german)
CDT (80) = castable double base propellant (USA)
CE = Tetryl (UK)
CEF = tri-β-choroethylphosphate
Cellamite = ammonium nitrate industrial explosive (french)
cellular explosive = foam explosive with closed cavities (USA)
Celluloidwolle = nitrocellulose with about 11% N (german)
Cellulosenitrat → nitrocellulose 222
Centralit I, II, III = stabilizers (german) 56; 57; 158; 163; 298; 327
Centralite TA = ammonium nitrate industrial explosive (Belgium)
CH₄, methane, fire damp 248
Chakatsuyaku = TNT (Japan) 339
chaleur de combustion = heat of combustion 161
chaleur de formation = energy of formation 118
chaleur d’explosion = heat of explosion 161
chaleur partielle d’explosion = partial heat of explosion 162
chambre de combustion 60
chambre de mine, abattage par = coyote blasting 65
channel effect 58
chantier de tir = blast area 36
Chapman-Jouguet point 85
Charbonniers equation 46; 292
charcoal 35
charge creuse = hollow charge;
shaped charge 67; 283
charge d’armorçage = primer charge 267
charge de base = base charge 31
charge excitatrice = donor charge 114
charges génératrices de gaz = gas generating units 3, 148
charges nucléaires = nuclear charges
charge réceptrice = acceptor charge 1
chargeurs pneumatiques = air loaders 8
Chauyaku = RDX (Japan) 68
Cheddite = chlorate explosive (swiss)
Chemecol blasting process 147
Chilesalpeter = sodium nitrate (german) 291
chlorate de sodium 291
chlorate explosives 58
chlorodinitrobenzene 102
chlorotrifluoride 241
chlorure d’ammonium 13
chlorure de picryle 353
Chornyi porokh = black powder (russian) 35
chromite de cuivre 64
“cigarette”-burning 58; 140
circuit en série 282
circuit parallèle 282
circuit tester 58
C-J = Chapman-Jouguet-condition → detonation 80
CL20 = Hexanitrohexaazaisowurtzitane 176
class A; class B; class C explosives 59
class I, II, III = german safety classes for permitted explosives 250
clearing blasts in oil and gas wells 79
Cloratita = chorate explosive (spanish) 58
closed vessel 23
colcoal-cement pipe, detonation transmission in 87
coal dust 59; 327
coated = surface smoothed propel-
lant; → ball powder 28
coefficient of detonation transmission 87
coefficient de selfexitation → sympathetic detonation 87
coefficient d’utilisation pratique c.u.p. (french) → lead block test 197
collodion → nitrocellulose 222
Colloïdumwolle = nitrocellulose 12–12,6% N (german)
column charge 59
comburant = oxidizer 241
combustibility 59
combustible = fuel 145
combustible cartridge cases 60
combustion 60
combustion chamber 60
combustion érosive = erosive burning 123
combustion heat 161
combustion-modifying additive 140; 193; 196; 200
combustion of explosives 77
commande de tir = blasting switch 39
commercial explosives 61
commercial waterproof primers 61
compatibility 61
compatibility testing 365
composite propellants 17; 61; 140; 193; 196; 200
composition A etc. 62
composition B etc. 62
composition C etc. 62
compositions I, II 63
composition lumineuse = illuminant composition 185; 342
compositions pyrotechniques 271
compositions retardatrices = delay compositions 76
confined detonation velocity 63
confinement 64; 299
consommation specifique d’explosifs = explosive loading factor 132
contained detonating fuse 64
conventional explosive performance data 317
cook off = premature inflammation (→ caseless ammunition) 54
copeperchromite 64
cordeau Bickford = detonating fuse of lead coated TNT
cordeau détonant = detonating cord 64; 79; 218
cordeau détonant gainé = contained detonating fuse 64
corde d’allumage = igniter cord 184
Cordite = double base gun powder (UK) 65
Corpent = PETN 253
Coruscatives = Delay Compositions 65; 76
cotton fibres 222
coulée de charges des projectiles = casting of explosives 55
coulée de propergol = casting of propellants 55
coyote blasting 65; 79
CP 1 BFP = nitrocellulose 13 % N 222
CP 2 = nitrocellulose 11,7–12,2 % N
CP SD = nitrocellulose 11,6 % N (french)
crater method 301
Crawford bomb 66
crésylite = mixture of trinito cresol and picric acid (french)
crimping 66
critical diameter 66
CR-propellants = RDX containing rifle powders (USA)
cross section ratio → propellant area ratio 269
crusher 149; 362
C.T.D. = coefficient of detonation transmission (coefficient de self exitation) (french) 87
CTPB = carboxyl-terminated polybutadiene (USA) 61; 329
cumulative priming 66
c.u.p. = coefficient d’utilisation pratique (french) 198
cuprene 52
cupric salicylate 163
curing 67
cushion blasting 67
cutt off 67
cutting charge 67; 283
C.W. = nitrocellulose 10–12 % N (german) 222
cyanur triazide 68
Cyclofive = RDX/Fivonite 53/47 (→ page 310) (USA)
Cyclonite = RDX = Hexogen 35; 62; 63; 69; 116; 134; 144; 167; 188; 199; 207; 255; 327; 340; 342
Cyclops = high energetic rocket propellant
Cyclopentadienyl-Eisen = Ferrocene 140
cyclotetramethylenetetranitramine = HMX = Octogen 134; 144; 207; 239; 241; 255; 329
Cyclotol = RDX-TNT mixture (USA) 71
cyclotrimethylenetritramine = RDX = Cyclonite = Hexogen 69
cyclotrimethylenetritrosamine 71

D
D-1; D-2 = phlegmatizer for explosives = 84 % paraffin wax, 14 % nitrocellulose and 2 % lecithine
DADNPh = diazodinitrophenol 94
danger d’explosion en masse = mass explosion risk 210
danger d’inflammation = combustibility 59
DAP = diamylphthalate 94; 163
DATNB; DATE = dianinotrinobenzene
Dautriche method 74; 79; 90
DBP = dibutylphthalate 163
DBS = dibutylsebacate 163
DBT = mixture of dinitrobenzene and TNT (Russian)
DBT = dibutyltartrate 163
DBX = depth bomb explosive (USA) 74
DCDA = dicyanodiamide
DD = mixture of picric acid and dinitrophenol (French)
DDNP = diazodinitrophenol 94
déblai = muckpile 219
decade counter (chronograph) 90
décapitation de la charge = cut of 67
deflagration 75; 80; 86; 249
deflagration point 75
DEGDN, DEGN = diethyleneglycol dinitrate 96
degressiver Abbrand = regressive burning 272
Delaborierung = dismantling of ammunition 112
delay; delay compositions 65; 76
delay fuze 76
delayed initiation; delayed inflammation 76
dense prills 16
densité 77
densité de cartouche = cartridge density 53
densité de chargement = loading density 206
density 42; 77; 83; 206
Dentex = mixture of RDX/DNT/aluminium 48/34/18 (UK)
dénudation de la charge = cut off 67
DEP = diethylphthalate 163
dépôt = magazine 209
depth charge 360
DER 332 = epoxy compound (USA) 77
DES = dimethylsebacate 163
destressing blasting 78
destruction of explosive materials 77; 112
Detacord = small diameter detonating cord (USA)
Detasflex = detonating cord made of Detasheet
Detasheet = plate shaped flexible explosive consisting of PETN and binders (USA)
détonateur 37; 94
détonateur à fil explosé = mild detonating fuse 218
détonateur instantané = instantaneous detonator 41
détonateur pour tir sous l’eau = water resistant detonator 369
detonating cord, detonating fuse 74; 79; 115; 192; 254; 367
detonating cord connectors 80
detonation 80ff.
detonation development distance 90
détonation par influence = sympathetic detonation 87; 142
detonation, selective 86
detonation, sympathetic 87; 142
detonation temperature 319
detonation velocity 42; 74; 77; 90
detonation wave, hydrodynamic theory of 83
détonations dans l’eau = underwater detonations 360
Detonationsgeschwindigkeit = detonation velocity 90
Detonationstemperatur = detonation temperature 319
Detonationssübertragung = sympathetic detonation 87
Detonationsverzögerer = non-electric delay device 238
Detonationswelle = detonation wave 80ff.
detonator → blasting cap 37; 94
detoninooyuschii shnoor = detonating cord (Russian) 79
detonierende Zündschnur, Sprengschnur = detonating cord 79
Deutsch-Französisches Forschungsinstitut St. Louis I. S. L. 193
dextrinated (lead azide) 196
Diaethylendiphenylharnstoff = Centralit II 56
Diaethylenglykoldinitrat 96
diamètre critique = critical diameter 66
diamylphthalate 94; 163; 298; 327
diaphragme de sécurité = safety diaphragm 276
diaphragme de protection = environmental seal 120
diazodinitrophenol 94
Diazol = diazodinitrophenol (german) 94
DIBA = diisobutyladipate 163
dibutylphthalate 95; 163; 298; 327
dibutylsebacate 163
dibutyltartrate 163
dichromate d’ammonium 14
Dichte = density 77
dicyanodiamide 63; 156; 231
diethyldiphenylurea = Centralit I 56; 158; 163; 298; 327
diethyleneglycol dinitrate 96; 163; 203; 327
diethyleneglycol dinitrate 163
diethyleneglycol dinitrate 96; 163; 219; 359
diethyleneglycol dinitrate 163
diisocyanate de toluyène 342
diluent 99
Dimazin = DMH = dimethylhydrazine 99
dimethyldiphenylurea = Centralit I 56; 158; 163; 298; 327
dimethyldiphenylurea 99; 327
dimethyldiphthalate 163
DINA = dioxoéthylinitramine dinitrate 109
Dinal = dinitronaphthalene 104
Dinamon = ammonium nitrate explosive (Italy)
Dinau = dinitroglycolure (french) 100
dinitrate de butylèneglycol 47
dinitrate de diethylèneglycol 96
dinitrate de dioxyéthyl dinitroxyamide 103
dinitrate de dioxyéthylinitramine 109
dinitrate d’éthanolamine 124
dinitrate d’éthylène diamine 125
dinitrate d’éthylnitropropanediol 225
dinitrate de glycéride 152
dinitrate de glycéride-dinitro phényl-éther 153
dinitrate de glycéride nitrolactate 153
dinitrate de glycol 229
dinitrate de méthylnitropropanediol = dinitrate de nitrométhylpropanediol 234
dinitrate de propylèneglycol 269
dinitrate de triéthyléneglycol 346
dinitrate de triméthyléneglycol 348
dinitrate de trinitrophénylglycérine-éther 153
dinitrate d’hexaméthalènetétramine 169
dinitrate d’isosorbitol 193
Dinitroéthylendiamin 126
dinitroaminophenol = picramic acid 255
dinitrobenzene → metadinitrobenzene 212
dinitrobenzofuroxane 101
Dinitrobenzol 212
Dinitrochlorhydrin 151
Dinitrochlorobenzene 102
dinitroresol 105
Dinitroéthanoloxamiddinitrate 103
Dinitrodiglykol 96
dinitrodiméthylxamide 103
dinitro-dinitrosobenzene → dinitrobenzofuroxane 101
dinitroéthoxyethylxamide dinitrate 103
dinitrodiméthylamine 104
dinitroéthyène diamine 125
Dinitroglycerin 152
Dinitroglycerin nitrolactat 153
Dinitroresol 105
dinitronaphthalene 104
dinitroorthocresol 105
dinitrophénylxéthylnitrate 106
Dinitrophénylglycérinaétherdinitrat 153
Dinitrophénylglykolaéthernitrat 106
dinitrophényldihydrine 106
dinitrosobenzene 107
dinitrotoluene 107; 163; 167; 327
Dinitryl 153
Dinol = diazodinitrophenol (german) 94
dioctylphthalate 163
dioxyethylnitramine dinitrate 109
DIPAM = diaminohexanitrodiphenyle
DIPEHN = dipentaerythritol hexanitrate 110
diphenylamine 111; 163; 298; 327
 Diphenylharnstoff 9
diphenylphthalate 163
diphenylurea; diphénylurée 9; 163
diphenylurethane 9; 163; 298; 327
dipicrylamine 173
dipicrylsulfide 174
dipicrylsulfone 175
dipicrylurea 112
dismantling of ammunition 77; 112
distance d’évolution de détonation =
detonation development distance 90
Di-(trinitroäthyl)-Harnstoff;
di-trinitroéthylurée 35
di-trinitroéthylnitramine 34
ditching dynamite 113
Dithekite = liquid explosive consisting
of nitric acid, nitrobenzene and
water (USA) 113; 204
Diver’s solution = high concentrated
solution of AN and NH₃ in water;
proposed as monergol
DMEDNA = dimethylethylene dinitra-
mime (USA)
DMNA = dimethylidinitramine (USA)
DMS = dimethylphthalate 163
DMSO = dimethylsulfoxide
DNAG= Dynamit Nobel AG, Troisdorf,
Germany
DNAP = dinitrodiazephenol 94
DNB = dinitrobenzene 212
DNBA = dinitrobenzaldehyde
DNCB = dinitrochlorobenzene 102
DNDMOxm = dinitrodimethyloxamidine 103
DNDMSA = dinitrodimethylsulfamide
DNDPHe = dinitrodiphenylamine
DNEIB = dinitroethylbenzene
DNEU = dinitroethyleurea
DNF = dinitrofurane
DNG = diglycerol dinitrate
DNMA = dinitromethylaniline

D.N.N. = dinitronaphthalene (british) 104
DNPA = 2,2-dinitropropyl acrylate
DNPh = dinitrophenol
DNPT = dinitrosopentamethylen
tetramine
DNR = dinitroresorcinol
DNT = dinitrotoluene 107
DNX = dinitroxylene
Donarit = powder form commercial
explosive (german) 113
donor 114
DOP = dioctylphthalate 163
DOS = dioctylsebacate 163
do’s and don’ts 114
double base propellants 9; 56; 97;
114; 158; 196; 200; 206; 216
douilles combustibles = combustible
cartridge cases 60
DOV = distilled of vitriol = H₂SO₄
96% (UK)
downline 80
DPA = diphenylamine 104
DPEHN = dipentaerythrol hexanitrate 110
DPhA = diphenylamine 104
DPP = diphenylphthalate 163
Drehgriffmaschine = twist knob
blasting machine 38
dreihbasiges Pulver = triple-base gun
powder
drop test → bomb drop test 39
Druck, spezifischer = specific energy 294
Druckexponent = pressure exponent
46; 293
Druckkochen = boiling under pres-
sure (→ nitrocellulose) 223
Druckluft-Ladeverfahren = pneumatic
placing 259
Druckluft-Sprengverfahren = Arm-
strong blasting process 22
Drucksprung → hydrodynamic theory
of detonation 80 ff.
Druckstoßwirkung = air blast 8
Drucktränksprengen = pulsed
infusion shotfiring 270
Druckwelle = shock wave; air blast 8;
83
DTA = differential thermal analysis
98
Düse = nozzle 239
Dunnit = ammonium picrate (USA) 14
Duobel = permitted explosive (USA) dutch test 114
Duxita = RDX phlegmatized with 3% castor oil (Italy)
dwell time 115
Dyno Boost 115
Dynacord = detonating fuse (german) 115
Dyneschoc 116
Dynatronic 116
dynamic vivacity 24
Dynamit-Colaoidwolle = gela-
tinizizing nitrocellulose for dynamites 224
Dynamite LVD = low velocity explo-
sive 116
Dynamite MVD = medium velocity explosive 116
Dynamite gomme = blasting gelatin (french) 37
Dynamites 116

E

E → E-process (RDX synthesis) 70
E → E-Wolfe = ester soluble nitrocotton (german) 224
EBW = exploding bridgewire detona-
tor (USA) 130
écran = barricade 29
Ecrasit; Ekrasit = picric acid; in France: = ammonium trinitrocre-
olate
EDA = ethylene diamine
EDADN; EDD = ethyldenediamine dinitrate 125
Ednafive = EDNA/Fivonite 50/50 126; 310
EDNA = ethylene dinitramine 126
Ednatol = Édnatol + 20% aluminium
Ednatol = pourable mixtue of EDNA and TNT 117; 126
EED = electro-explosive device 117
effet Neumann = shaped charge effect (french) 283
effet du souffle = air blast 8
EF poudre = blank cartridge powder (french)
EFI = Exploding Foil Imitiator 130
EGDN = ethyleneglycol dinitrate 229
Einbasige Pulver = nitrocellulose gun powder 287
Einschluß = confinement 64
Eisenacetylacetonat 193
Ekrasit = picric acid 256
EL-506 = plate shaped explosove ("Detasheet") (USA)
EL 387 A; B = slurry consisting of water, starch and aluminum
(Belgium)
EL-763 = permitted explosive (USA) elektrische Zünder → bridgewire
detonators 41
E.L.F. = extra low freezing (of nitro-
glycerine explosives)
EMMET= ethyltrimethylol methane trinitrate
Empfängerladung = acceptor charge 1
Empfindlichkeit = sensitivity 282
emulsion slurries 16; 17; 20; 117; 194; 238; 368
end burning velocity 118
endothermal 118
Energit → Wetter-Energit = permitted explosive (german) 370
energy, enthalpy of formation 118; 326 ff.
energy, specific → specific energy 294
Entzündungstemperatur = deflagration point 75
environmental seal 120
environmental testing → rocket test
stand 275
épreuve de chaleur → hot storage
test 179
épreuve de fracture = fragmentation
test 142
E-process → RDX 70
éprouvettes 120
éprouveur = circuit tester 58
equation de Bernoulli 293
equation de Charbonnier 46; 293
equilibrium constants 337
equation of state 120
Erla = epoxy compound (USA) 122
erosion 122
erosive burning 123
ErTeN = erythritol tetranitrate 123
essai au bloc de plomb = lead block test 197
Estane = polyester consisting of urethane, adipic acid, 1,4-butanediol and diphenylmethane diisocyanate (USA)
EtDP = ethyl 4,4-dinitropentanoate ethanolamine dinitrate 124
Ethriol trinitrate 123, 327
Ethyl -Centralit 56; 158; 327
eythldiphenylurea 10; 158; 298; 326
ethylene diamine dinitrate 125
ethylene dinitramine 117; 126
ethylene glycol dinitrate = nitroglycerol 229
ethylglycoldinitrate = propyleneglycol dinitrate 269
ethylhexoate de plomb 200
ethyl nitrate 127
ethylene urethane 127; 158; 298; 327
ethylpicrate = trinitrophenetol 128
ethyl-tetryl 128
EUROOYN 2000 129
European Committee for the Standardization of Test of Explosive Materials; now → International Study Group for the Standardization of the Methods of Testing Explosives 87; 199
European test fuze 51
E.V.O. = Eisenbahn-Verkehrsordnung (german) → RID 273
E-Wolle → nitrocellulose, estersoluble (german) 224
EWALIDW 129
exchanged salt pairs 14; 248
exothermal 129
explode 130
explosion heat → heat of explosion 161
Explosionstemperatur = explosion temperature 131
Explosionswärme, partielle = partial heat of explosion 162
explosion tardive (long feu) = hangfire 160
explosion temperature 131
explosive bol 132
explosive casting → casting of explosives 55
explosive D = ammonium picrate 15
explosive forming 131
explosive loading factor 132
explosive materials 132
explosive train 133
explosives 133
explosives equal sheathed 251
“Extra” = ammonium nitrate containing commercial explosives
Extragummidynamit = gelatinous commercial explosive (Norway)
extrudeuse à vis = screw extruder
exudation 139

F

F 8 = mixture of aluminum and barium nitrate (USA)
F (φ) = secondary explosive with high performance (Russian)
FA = furfuryl alcohol
FA/AN = mixture furfuryl alcohol/amine/hydrazine 46/47/7
face burning 140
Fackel = flare 142
factices = Mock explosives 218
fallhammer 140; 185
farine de guar = guar gum 158
Favier explosives = ammonium nitrate explosives (France; Belgium; now obsolete)
Federzugmaschine → blasting machines 37
fendage préliminaire = pre-splitting 265
fertilizer gerade ammonium nitrate; FGAN 16
Ferrocene (combustion moderating additive) 140
Feststoff-Raketen = solid propellant rockets 292
Feuergefährlichkeit = combustibility 59
Feuerwerksätze = pyrotechnical compositions 271
Feuerwerkzündschnüre = pyrotechnical fuses (→ also: quick-match) 271
FGAN = fertilizer gerade ammonium nitrate (USA) 16
fils du détonateur = leg wires 203
Filmeffektzünder = Bullet Hit
fin de cumbustion = end of burning 118
firedamp 141; 248
firing current 141
firing line 141
first fire 141

Fivolite = tetramethylolpentanol pentanitrate
Fivonite = tetramethylolpentanone tetranitrate 309
flamebeau = flare 142
flame shield 142
flare 142
flash over 87; 142
flash point 142
flegmatiser 255
FLOX = mixture of liquid oxygen and liquid fluorine
flüssig-Luft-Sprengstoffe = liquid oxygen explosives 204
flüssig-Treibstoff-Raketen = liquid propellant rockets 205
flüssiges Ammoniak = liquid ammonia 205
flüssige Luft = liquid air 204
flüssiges N2O4 205
flüssiger Sauerstoff = liquid oxygen 204
flüssiger Wasserstoff = liquid hydrogen 205
flüssiges Fluor = liquid fluorine 205
flüssige Sprengstoffe = liquid explosives 203
fly rock 142
FM = titanium tetrachloride (USA)
FNR = tetrafluoroethylene trifluoronsomethan copolymer
force = strength 24; 294; 300
Formfunktion → burning rate 24
Fp 02 = TNT (German) 339
Fp 60/40 = TNT/AN 60/40 (German)
fracture, éprouve de 142
fragmentation test 142
fragment velocity 143
Franhofer-Institut für Chemische Technologie, ICT 183
free flowing explosives 20; 143; 195
freezing of nitroglycerine 143
Frühzündung = premature firing 265
friction sensitivity 144
FTS = solid rocket propellant (German)
fuel 145
Füllpulver 02 = TNT (German) 339
fugasnost = lead block test (Russian) 197
fulmicotone = nitrocellulose (italy) 222
fulminate d’argent = silver fulminate 287
fulminate de mercure = mercury fulminate 211
fumes; fumées 145
fume volume 367
functioning time 147
Furaline I-III = fuel mixture consisting of furfuryl alcohol, xylidine and methanol
fuse; fuze; fusée 147
fusée pyrotechnique = pyrotechnical fuse 271
fusée retardatrice = delay fuze 76
Fuß-Vorgabe = toe 342
fuze head 148
FV = Fivonite = tetramethylolpentanone tetranitrate 309
FV/EDNA = Ednative = mixture of Fivonite and EDNA
FV/PETN = Pentative = mixture of Fivonite and PETN
FV/RDX = Cyclofive = mixture of Fivonite and RDX (USA)

G

galcit = solid rocket propellant consisting of KMnO₄ and asphalt pitch (now obsolete) (USA)
galerie d’essai = test gallery 249
galette = paste (for double base powders) 244
galvanomètre 58
GAP = glycide azide polymere 154
gap test → sympathetic detonation 87 ff.
Gasdruck = gas pressure 23; 45; 149
gas-erzeugende Ladungen = gas generators 3; 148
gas generators 3; 148
gas jet velocity 149
gasless delay compositions 65; 76
gas pressure 23; 45; 149
gas volume 318; 367
GC = gun cotton = nitrocellulose ca. 13 % N (UK) 222
GcTNB = glycol trinitrobutyrate
GDN = glycol dinitrate 229
Geberladung = donor charge 114
gelatin explosives; gelatins 150
Gelatine Donarit = gelatinous commercial explosive (Austria) 150
gelatinizer 49; 56; 298
Gelex = semigelatinous commercial explosive
generator machines → blasting machines 37
Geomit = powder form commercial explosive (Norway)
Geosit = gelatinous commercial explosive (german) 150
Geschützpulver = gun powder 158
Gesteinsprengstoffe = commercial rock explosives
gestreckte Ladung = column charge 59
gewerbliche Sprengstoffe = commercial explosives (german) 61
GGVE = german transport regulations 72; 273
Gheksogen = Hexogen = Cyclonite = RDX (russian) 68
Gießen von Sprengladungen = casting of explosives 55
Gießen von Treibladungen = casting of propellants 55
Globular-Pulver = ball powder 28
glossary → Preface
GLTN = dinitroglycerinnitrolactate 153
Glühbrücke → bridgewire detonators 41
Glycerindinitrat 152
glycerol 228
glycerol acetate dinitrate 151
glycerol chloride dinitrate 151
glycerol dinitrate 152
glycerol-dinitrophenylether dinitrate 153
glycerol nitrolactata dinitrate 153
glycerol-trinitrate 226
glycerol-trinitrophenylether dinitrate 154
glycide azide polymere 154
glycide nitrate 226
glycol 164; 230; 327
glycolurile dinitramine; tetramine 100
GND = pressure proof (seismic) explosive (german)
Goma pura = blasting gelatin (spanish)
Gomma A = blasting gelatin (Italy)
Gomme A etc. = blasting gelatin (french) 37
Grade A Nc = nitrocellulose 12.6–12.7 % N
Grade B Nc = nitrocellulose 13.35 % N
Grade C Nc = nitrocellulose blend of A and B
Grade D Nc = nitrocellulose 12.2 % N, also Grade E (USA)
grade strength 27; 300
Grain 155
Granatfüllung 88 = picric acid (german) 256
granulation 155
graphite 155; 164
Grenzstromstärke = no-fire current 238
grisou = fire damp 141; 248
Grisoudynamite chlorurée No. 1 etc. = permitted explosive (french)
Großbohrlochsprengverfahren = large hole blasting 195
group P 1 etc. = british safety classes for permitted explosives 251
Groupe d’Etude International pour la Normalisation des Essais d’Explosifs Secretary; Der. Per Anders Persson, Swedish Detonic Research Foundation, Box 32 058, S 126 11 Stockholm, Sweden 87; 199
Grubengas = firedamp 141; 248
G-Salz = nitroguanidine (german) 230
guanidine nitrate 63; 156; 199; 327
guanidine perchlorate 157
guanidine picrate 157
Guanite = nitroguanidine 230
Guar gum; Guarmehl 158; 327
Gudolpulver = gun powder consisting of nitrocellulose, nitroglycerine and Picrite (german)
guhr dynamite 116; 199
Gummidynamit = gelatinous commercial explosive (Norway)
GUNI = guanidine nitrate (german) 156
gun cotton 37; 222
gun powder 23; 158

H
H-6 = mixture RDX/TNT/aluminum/wax 45/30/20/5 (USA)
H-16 = 2-acetyl-4,6,8-trinitro-2,4,6,8-tetrazanonane-1,9-dioldiacetat
HADN = hexamethylenediamine dinitrate
härten; aushäurten = curing 67
Haftvermögen = case bonding 53
Halbsekundenzünder = half-second-step-delayed bridgewire detonators 41
Haleite, Halite = ethylenedinitramine (USA) 126
halogen fluoride 241
hangfire 160
Hansen test 160
Harnstoffnitrat = urea nitrate 364
Haufwerk = muckpile 219
HBX-1 = mixture of RDX, TNT and aluminum 160
HC = mixture of hexachloroethane and zinc (fume generator) (USA)
HE = high explosive (USA)
HEAP = armor piercing
HEAT = antitank; hollow charge
heat of combustion 161
heat of explosion 118; 161; 317
heat of formation → energy of formation 118; 326 ff.
heat sensitivity 165
HEATT = hollow charge with tracer
HEBD = base detonating
HEDA = delayed action
HEF = high energy fuel, e.g., boranes (USA)
HE/SH = squashhead (UK)
HEF-2 = propylpentaborane
HEF-3 = triethyldekaborane
HEF-5 = butyldekaborane
HEH = heavy projectile
HEI = brisant incendiary ammunition with tracer
HEIA = Immediate action (USA)
heineiyaku = trinitrophenetol (Japan) 128
Heizsatz = heating charge for gas generating units 148
heinelyaku = trinitrophenetol (Japan) HELC = long case (USA)
Hellhoffit = liquid mixtures of nitric acid and nitrocompounds
HeNBu = hexanitrobutane
HEPT = brisant ammunition with squashhead and tracer
Heptanitrophenylglycerin
Heptyl = 2,4,6-trinitrophenyl trinitromethyltrimethylnitramine trinitrate 167
hermetic seal 168
HES = shell (USA)
Hess, upsetting test according to 362
HETRO = cast-granulated mixtures of RDX, TNT and additives (swiss)
HEX = high energy explosive (USA) 168
Hex-24; –48 = mixtures of KClO₄, aluminum, RDX and asphalt 32/48/16/4 (USA)
Hexa = hexanitrodiphenylamine (german) 172
Hexal = RDX/aluminum (german) 168
hexamethylene diisocyanate 168
hexamethylenetetramine dinitrate 70; 169
hexamethylene triperoxide diamine 170
Hexanit; Hexamit = mixture of hexanitrodiphenylamine and TNT (german)
Hexanitrate de dipentaérythrite 110
hexanitrate de mannitol 209
hexanitroazobenzene 171
hexanitrobiphenyl 171
hexanitrocarbanilide 112
hexanitrodiapentaerythritol 110
hexanitrodiphenylamine 102; 172; 327
hexanitrodiethylaminoethyl nitrate 173
hexanitrodiethylglycerol mononitrate 173
hexanitrodiethyloxyamid 177
hexanitrodiphenyloxide 174
hexanitrodiphenylsulfide 174
hexanitrodiphenylsulfone 175
hexanitroethane 175
Hexanitrohexaazaisowurtzitane 176; 328
hexanitromannitrol 209
hexanitrooxanilide 177
hexanitrostilbene 55; 177
hexanitrosulfobenzide 175
Hexastit = RDX phlegated with 5% paraffine
Hexit = hexanitrodiphenylamine (german) 172
Hexogen = Cyclonite = RDX 37; 68; 133; 144; 167; 188; 199; 207; 244; 255; 258; 327; 342
Hexotol = mixtures RDX-TNT (swedish)
Hexotal = mixture of TNT, RDX and aluminum (german)
Hexyl = hexanitrodiphenylamine (german) 172
HiCal = high-energetic rocket fuel
HITP = High Ignition Temperature Propellants 54; 260
HMTA = hexamethylenetetramine
HMTD, HMTPDA = hexamethylene triperoxide diamine 170
HMX = Homocyclonite = Octogen 134; 207; 208; 239; 255; 329
HN = hydrazine nitrate 181
HNAB = hexanitroazobenzene 171
HNB = hexanitrosobenzene 345
HNBc 1 = hexanitrocarbanilide 112
HNDP, HNDPhA = hexanitrodiphenylamine 172
HNDPA = hexanitrodiphenyl 171
HNDPhA; HNDP = hexanitrodiphenylamine 172
HNDPhAEN = hexanitrodiphenylamineethylnitrate
HNDPhBzi = hexanitrodiphenylbenzyl
HNDPhGu = hexanitrodiphenylguanide
HNDPhSfi = hexanitrodiphenylsulfide 174
HNDPhSfo = hexanitrodiphenylsulfone 175
HNDPhU = hexanitrodiphenylurea 112
HNEt = hexanitroethane 175
HNG = hydrine-nitroglycerine
HNH = hexanitroheptane
HNIW = Hexanitrohexaazaisowurtzitan 176
HNO = hexanitrooxanilide 177
HNS = hexanitrostilbene 177
Hohlladung = hollow charge; shaped charge 283
Hohlraumsprengen = cushion blasting 67
Holland test → Dutch test 114
hollow charge = shaped charge 42; 62; 283
Holzkohle = charcoal 3
Homocyclonite = HMX = Octogen 134; 207; 208; 239; 255; 329
hot spots 178
hot storage tests 179
HOX = high oxygen explosive 34
Hoxonit = plastic explosive consisting of RDX, nitroglycerine and nitrocellulose (swiss)
H. P. 266 = powder form permitted explosive (USA)
HT = RDX and TNT (french)
HTA = RDX/TNT/aluminum 40/40/20 (USA)
HTA-3 = HMX/TNT/aluminum 49/29/22 (USA)
HTP = hydrogen peroxide (UK)
HTBP = hydroxol-terminated polybutadiene (USA) 62
H-U-detonators = highly unsensitive bridgewire detonators (german) 38; 180
Hugoniot’s equation; Hugoniot curve 85
hydratzines 1; 180; 292
hydrazine 3; 181; 205; 328
hydrazine nitrate 181; 328
hydrazine perchlorate 182
hydrazoic acid 23
hydrodynamic theory of detonation 80ff.
hydrogen peroxide 20
Hydrox blasting 148
HYDyne = UDMH/diethylene triamine 60/40 (USA)
hygrosopicity 182
Hyman = nitromethylglycolamide nitrate (USA)
Hypergols 77; 183; 205
I
IBEN = Incendiary bomb with explosive nose (USA)
ICBM = Intercontinental ballistic missile (USA)
ICT = Fraunhofer-Institut für Chemische Technologie, D-7507 Pfinztal-Berghausen 183
Idrolita = AD/RDX/paraffine/water 70/20/3/7 (Italy)
Ifzanites = slurries (russian)
Igdanites = ANFO (russian)
igniter 183
igniter cord/igniter cord connector 184
igniter safety mechanism 184
igniter train 133; 184
ignitibility 184
ignition system 184
illuminant composition 185
Imatrex = swedish trade name for Miedziankit 58
IMO = Intergovernmental Maritime Consultative Organization 72; 185
IME = Institute of Makers of Explosives 185
immobilization 185
impact sensitivity 44; 185; 268
important explosives 134
impulse 190
impulse spécifique 295
incendiary 190
incompatibility 61; 365
Industrial explosives → commercial explosives 61
inert 190
to inflame 190
inflammabilité = ignitibility 184
inflammer = to inflame 190
infusion blasting → water infusion blasting 270
Ingolin = concentrated hydrogen peroxide (german) 23
inhabited building 138
inhibited propellant 191; 305
Initialsprengstoffe = initiating explosives 135; 191
initiation 191
initiator 94; 191
injector nitration 227
injector transport → water driven
injector transport of nitroglycerine
 368
instantaneous detonators 41; 192
insulation 192
internal energy 333
internal enthalpy 335
International Study Group for the
 Standardization of the Methods of
Testing Explosives, cetary: Dr.
Per-Anders Persson. Swedish
Detonic Research Foundation, Box
32058, S 12611, Stockholm, Swe-
den 87; 199
inverse salt pair: ion exchanged (salt
pair) permitted explosives
ion propellants 192
IPN = Isopropyl nitrate (USA) 270
iron acetylacetonate 193; 328
I.S.L. = Deutsch-Französisches For-
schungsinstitut St. Louis 193
isobaric; isochoric 2; 319; 324
isolement; Isolierung = insulation 192
isopropyl nitrate 270
isosorbitol dinitrate 193

J

JATO = jet assisted take of charge
 (USA)
jet perforator = → hollow charge for
 oil and gas well stimulation
jet tapper 194
JP = jet propellant (USA)
JP-1; -2; -3; -4; -5; = rocket fuels;
 hydrocarbons (USA)
JPN = improved JP
JPT = double base propellant in tube
 elements for → Bazooka 31
JP-X = JP-4/UDMH 60/40 hypergo-
 lized fuel (USA)
Kulnite = ethylendiurethane (french)
jumping mortar test 301

K

K-1; -2 Splav = mixture of TNT and
DNB or dinitronaphthalene
 (russian)
K1F = chlorotrifluoroethylene poly-
 mer (USA)
KA-process (RDX-synthesis) 70
Kalilsalpeter = Kaliumnitrat 262
Kaliumbitartrat 221
Kaliumchlorat 262
Kaliumsulfat 221
Kaliumperchlorat 263
Kaltsalpeter = calcium nitrate 48
kalorimetrische Bombe = calorimetric
 bomb 161
Kammerminensprengung = coyote
 blasting 65
Kampfer = camphor 49
Kanaleffekt = channel effect 58
Kantenmörser = angle shot mortar
 251
Karben = carbene (polyacetylene)
 52
Karatto = black powder (Japan) 35
KA-Salz = RDX (Hexogen) by syn-
thesis according to Knöfler-Apel 70
Kast’s upsetting Test 362
Kcilil = trinitroxylene (russian) 359
KDNBF = potassiumdinitrobenzo-
 furoxane (USA)
Kel-F = chlorotrifluoroethylene poly-
 mer 9010 = RDX/Kel-F 90/10
Kelly 194
kerosine 328
Kerosole = metal dispersion in kero-
 sine (USA)
Keyneyaku = trinitrophenetol (Japan)
 128
Kibakujuaku = explosive for primers
 (Japan)
Kieselgu = guhr 116; 331
Klasse I; Klasse II; Klasse III = ger-
man safety classes for permitted
explosives 252
Klemmung = propellant area ratio
 269
knäppern = modcapping 220
Knallquecksiler = mercury fulminate
 211
Knallsilber = silver fulminate 287
Knauerit Special = plastic commerical
 explosive, high velocity type
 (Austria) 194
Kochsalz = rock salt 332
Kohlenstaub = coal dust 59
Kohlenstaubsicherheit = coal dust safety → permitted explosives 248
Kokoshokuyaku = black powder (Japan) 35
Kollergang = heavy roller mill for black powder mixing
Kolloidiumwolle = nitrocellulose 12–12.6% N (german) 222
Kolloksilin = nitrocellulose 11–12% N (russian) 222
Kondensatoranzündmaschinen = capacitor blasting machines 37
Kontur-Sprengen = smooth blasting 290
Koomooliativuyye = shaped charge (russian) 283
Koruskativs 65
Krater-Methode = crater method 301
Kresylit = trinitrocresol (german) 354
kritischer Durchmesser = critical diameter 66
krut = gun powder (swedish) 158
K-Salz = RDX (Hexogen) by synthesis according to Knoefler (german) 70
Kugelpulver = ball powder (german) 28
kugelsicher = bullet resistant 43
kumulative Zündung = cumulative priming 66
Kumullativuyye = cumulatively acting charge (hollow charge) (russian)
Kunkeln = press-molded perforated clinders of B-black powder (german)
kunststoffgebundene Sprengstoffe = plastic explosives 258
Kupferchromit 64

L

laboratory combustion chamber 60
Ladegeräte = buld mix delivery equipment 42
Ladedichte = loading density 206
Ladeschlauch = plastic hose as loading device for permitted explosives
Ladestock = tamping pole 308
Lager = magazine 44; 138; 209; 299
Lambrex = slurry (Austria) 194
Lambrit = ANFO blasting agent (Austria) 195
Langzeit-Teste = long time test; shelf life tests 114; 285
large hole blasting 195
LASL = Los Alamos, National Scientific Laboratory (USA)
Lawinit = slurry (Austria) 195
LDNR = lead dinitroresorcinate
LE = low explosive; propellant (UK)
lead acetyl salicylate 164; 196; 328
lead azide 23; 43, 144; 196; 328
lead block test 197; 301; 343
lead ethylhexoate 164; 200; 328
lead nitrate 201; 328
lead picrate 201
lead salicylate 164
lead stearate 164
lead stynphate 29; 43, 202; 328
lead sulfate 164; 174
lead trinitroresorcinate = lead stynphate 29; 43; 202; 328
leading lines 203
Lebensdauerteste = shelf life tests 114; 285
Lebhaftigkeitsfaktor = vivacity → burning rate 45
leg wires 203
Leitungsprüfer = circuit tester 58
Leit-Sprengschnur = trunkline 80
Leuchtsätze = illuminant compositions 185
Leuchtspur = tracer 342
L.F. = low freezing
LH2 = liquid hydrogen (USA)
Ligamita 1; 2; 3 = nitroglycerine base industrial explosives (Spain)
ligne de tir = firing line 141
ligne de cordeau détonant 80
linear burning 203
line-wave generator = linear detonation front generating charge
lined cavities = shaped charges 283
linters 224
liquid ammonia 205
liquid explosives 203
liquid fluorine 205
liquid hydrogen 205
liquid N2O4 205
liquid oxygen (LOX) 204
liquid oxygen explosives 204
Index

liquid propellant rockets 205
lithergoles = hybrids 180
lithium nitrate 205
lithium perchlorate 205
LJD = Lennard-Jones-Devonshire
 state equation 121
LN = lead nitrate 201
LN₂ = liquid nitrogen
loading density 42; 53; 206
long time tests 114; 285
low explosive = propellants 158
LOVA = low-vulnerability ammunition
 207
LOVA propellant 206
LOX = liquid oxygen 241 \(\rightarrow \) also liquid
 oxygen explosives 204
LOZ = liquid ozone
L-Splav = TNT with 5% trinitroxylene
 (russian)
Lp = liquid propellant 205
lueur à la bouche = muzzle flash 220
LVD = low velocity dynamite; low
 velocity detonation 116; 208
LX = octogen (HMX)-formulations
 208
Lyddite = picric acid 256
M
M-1; M-6; M-15 etc. are short names
 for american gun powders
M3 = kerosine hypergolized witz 17%
 UDMH (USA)
MABT = mixture of TNT, picric acid
 and dinitrophenol (Italy)
Macarite = mixture of TNT and lead
 nitrate (Belgium)
MAF-40: \(-X = \) mixed amine fuels
 (Hydine) (USA)
magazine 44; 138; 209; 299
magnesium carbonate 328
magnesium trinitroresorcinate; mag-
 nesium styphnate 202
MAN = methyamine nitrate 328
mannotl hexanitrate 209; 328
Manöverpulver \(\rightarrow \) porous powder 261
Mantelsprengstoffe = sheathed
 explosives 284
MAPO = methylaziridine phosphin-
 oxide 210
Marschsatz = sustainer charge in
 rocketry
mass explosion risk 210
mass flow 46
mass ratio 211
Massen-Durchsatz = mass flow 46
Massen-Explosionsfähigkeit;
 Massen-Explosionsfähigkeit =
 mass explosion risk 210
Massenverhältnis = mass ratio 211
MAT = mixture of TNT and picric acid
 (France; Italy)
Matagnite = Industrial explosive
 (Belgium)
match cord 272
Matsu = blasting gelatin (Japan) 37
maturer = curing 67
MBT = mixture of picric acid and
dinitrophenol (France; Italy)
MDF = mild detonating fuse (0.2–0.4
 gram PETN/m = 10–20 grain/ft)
 USA
MDN = mixture of picric acid and
dinitronaphthalene (France)
MeAN = MAN = methyamine nitrate
 328
mèches = safety fuses 276
MeDINA; MeEDNA = methylethy-
 lene-dinitramine
Mehlpulver = ungranulated black
 powder 35
Mehrlochpulver = multiperforated
 grain 158
Meiaku = Tetryl (Japan) 314
Mélinite D = picric acid (french)
 256
Mélinite/O ("ordinaire") (french) =
 picric acid with 0.3 \% trinitro cresol
Mélinite/P = picric acid with 12 \%
 paraffine (french)
MeN = methylNitrate 214
MeNENA = 1-nitroxytrimethylene-
 3-nitramine (USA)
Menkayaku = nitrocellulose (Japan)
 222
mercury fulminate 135; 144; 211
merlos = barricade 29
Mesa burning \(\rightarrow \) burning rate 45
mesurage de la poussée = thrust
determination 338
metadinitrobenzene 212
Metallbearbeitung durch Sprengstoffe = explosive forming 131
metatelnyi zariad = Treibladung (russian)
methane 141; 248
methoxytrinitrobenzene = trinitroanisol 349
Methyläthyldiphenylharnstoff = Centralit III (german) 57
methylamine nitrate 214, 328
methyldiphenylurea; Methylmethylphenylharnstoff = Akardit II 9; 163; 298; 326
methylene dinitrotetrazacyclooctane (precursor product for the Octogen (HMX) synthesis) 240
methyl ethyl diphenylurea = Centralit III (german) 57; 163; 298; 321
methyl mehacrylate (MMA) 164
methylamine nitrate 214
Methyl nitroglykol = propyleneglycol dinitrate 269
methylphenylurethane 215; 298
methyl picrate = trinitroanisol 349
methyltrimetholmethane trinitrate = Metriol trinitrate 216
methyl violet test 216
Metril trinitrate 164; 216; 328
MetrTN = Metriotritritrate 216
MF = mercury fulminate (USA) 211
MHF = mixed hydrazine fuel containing hydrazine nitrate (USA)
MHN = mannitol hexanitrate (USA) 209
Microballoons 217
Micrograin = solid fuel consisting of zinc powder and sulfur (USA)
Miedziankit = one site mixed chloride explosive (german) (now obsolete) 58
mild detonating fuse 218
military explosives 137
millisecond delay blasting 217
millisecond delay detonator 217
Millisekundenverzögerer = detonating cord MS connector 80
mineral jelly 164
minex = mixture of RDX, TNT, AN and aluminum powder (UK)
miniaturized detonating cord 218
Minimal-Zündimpuls = all fire 11
minol = mixture of AN, TNT and aluminum powder (UK)
Minoxex = mixed explosive consisting of AN, RDX, TNT and aluminum (UK)
Minurex = commercial explosive (french)
mise à feu 191
misfire 218
missile 218
M. J. = mineral jelly = vaseline (british) 164
MltON = maltose octanitate (USA)
MMeA = mononitromethylaniline (USA)
MMA = methyl methacrylate 164
MN = mononitrotoluene (France)
MNBA = mononitrobenzaldehyde (USA)
MNBAc = mononitrobenzoic acid (USA)
MNCrs = mononitroresol (USA)
MNDT = mixture consisting of AN, dinitronaphthalene and TNT (France; Italy)
MN = mononitromethane 233
M. N. N. = mononitronaphthalene
MnHN = mannose hexanitrate
MNO = dinitrodimethyloxamide 103
M. N. T. = mononitrotoluene
MntHN = mannitol hexanitrate 209
MNX = mononitroxylene
mock explosives 218
Mörser; ballistischer = ballistic mortar 26
Mörser; Kantenmörser; Bohrlochmörser = mortar; cannon 250
Momentzünder = instantaneous bridgewire detonator 41
Monergol 3; 99; 204; 219; 271
Monoäthanolamindinitrat 124
Monobel = permitted explosive (USA)
mononitrated d’hexanitrodéphényléglycérine 173
mortier ballistique 26
morteur fusée = rocket motor 275
motor 219; 275
moulage des propellants = pressing of propellants 266
moulage d’explosifs = pressing of explosives 266
mouton de choc = fallhammer 140
MOX = metal oxidizer explosives 219
MP = picric acid with 12% paraffin (France)
MP 14 = catalyst for decomposition of hydrogen peroxide (permanganates) (German)
MTN = Metrioltrinitrate 164; 216; 328
muckpile 219
mud cap 3; 43; 220
Mündungsfeuer = muzzle flash 220
Muenyaku = smokeless powder (Japan)
Multicord = detonating cord with 40 g/m PETN (German) 220
Multiprime 238
Munroe effect = hollow charge effect 220; 283
muzzle flash 220
MVD = medium velocity dynamite, e.g., 75/15/10 RDX/TNT plastizicer 116

N

NAC = nitroacetylcellulose (USA; Italy)
Nachdetonation = hang fire 160
nachflammen = post-combustion 262
Nafolti = tetranitronaphthalene (France)
NAGu = nitrominoguanidine (USA) 221; 328
Naphthit = trinitronaphthalene (German) 356
NATO advisory group for aeronautical research and development → AGARD 3
Natriumchlorat 291
Natriumnitra Natronsalpeter = sodium nitrate 291
Natriumperchlorat 292
NBSX = 1,7-dinitroxy 2,4,7-trinitro-2,4,6-triazahapteane
NBYA = di-trinitroethylyurea
Nc; NC = nitrocellulose (German) 222

N.C.N. = Nitrocarbonitate 36; 239
NDNT = AN/dinitronaphthalene/TNT 85/10/5 (French)
NENA = N-(2-nitroxy)-nitramine-ethane (USA)
NENO = dinitrodioxyethyl-oxamide dinitrate 105
NEO = diglycol dinitrate (French) 96
Neonite = surface smoothen nitrocellulose gun powder (UK)
NEPD = nitroethylpropanediol dinitrate
Neumann effect = hollow charge effect 283
neutral burning 221
Neuvalin = concentrated hydrogen peroxide
New Fortex = ammonium nitrate explosive with Tetryl (UK)
NG; N/G = nitroglycerine 226
NGc = nitroglycerine (USA) 229
Ngl = nitroglycerine (German) 226
nib-glycerine trinitrate; NIBTN = nitroisobutylicglycerine trinitrate 232
nicht-sprengkräftige detonierende Zündschur = mild detonating cord; miniaturized detonating cord 218
Nigotanyaku = RDX/TNT mixtures (Japan)
Nigu = nitroguanidine (German) 230
Nilite = powder form blasting agent (USA)
NIMPHE = nuclear isotope mono propellant hydrazine engine (temperature maintenance device for decomposition catalysts in monogol driven rockets)
NIP = nitroindene polymer (USA)
Niperit = PETN (German) 253
Nisalit = stoechiometric mixture of nitric acid and acetonitrile (German)
nitratre d’amidon 235
nitratre d’ammonium 15
nitratre de barium 29
nitratre de calcium 48
nitratre de dinitrophénoxyéthyle 106
nitratre d’éthyle 127
nitratre de glycide 228
nitratre de guanidine 156
nitrate de lithium 205
nitrate de méthylamine
nitrate de méthyle 214
nitrate de plomb 201
nitrate de polyvinyle 261
nitrate de potassium 262
nitrate de propyle 270
nitrate de sodium = nitrate de soude 291
nitrate de strontium 303
nitrate de sucre 236
nitrate de tétraméthylammonium 309
nitrate de triaminoguanidine 343
nitrate de triméthylamine 347
nitrate de trinitrophényl-nitramine-éthyle 357
nitrate de trinitrophényloxéthyle 356
nitrate d’hexanitrodiphénylglycéline 173
nitrate d’hydrazine 181
nitrate d’urée 364
nitre = salpetre 262
nitric acid esters 135
Nitroaminoguanidine 221; 328
Nitroyathan 225
Nitroäthylopropanoildinitrat 225
nitrocarbonitrater 222
nitrocellulose 135; 158; 164; 167; 188; 222; 328; 329
nitrocellulose propellants → single base propellants 287
nitrocompounds 134
Nitroäthanolaminodinitrat 109
nitrodiphenylamine 329
nitroethane 225
nitroethylpropanediol dinitrate 225
nitroform = trinitromethane 355
nitrogen 331
nitrogen dioxider 331
nitrogen oxide 331
nitrogen tetroxider 204
nitroglycerin 37; 116; 135; 164; 167; 188; 199; 204; 226; 242; 329
nitroglycerin powders → double base propellants 114; 158
nitroglycide 228
nitroglycol = Nitroglykol 17; 135; 164; 167; 188; 199; 204; 229; 329
nitroguanidine (picrit) 134; 164; 230; 242; 329
nitroguanidine powders 159
nitroguurisen = nitroglycerin (Japan) 226
Nitroharnstoff 237
Nitrozylhydrat 236
nitroisobutanol trinitrate = nitroisobutyrglycerol 232
nitrokletchatka = nitrocellulose (russian) 222
Nitrolit = trinitroanisol 349
Nitromannit = nitromannitol 209
nitromethane 199; 204; 233; 329
nitromethylpropanediol dinitrate 234
nitroparaffins 235
Nitropenta = PETN (german) 253
nitropentanone 309
Nitropentaglycerin = Metriol trinitrate 216
nitrostarch = Nitrostärke 235
nitro-sugar 235
Nitrotetraethyl = tetranitrophénylmethyl-nitramin
nitrotoluene 236
Nitrotriazolone 236, 329
nitrourea 237, 329
Nitrozucker 236
NM = nitromethane 233
Nobelit = emulsion explosive and blasting agent (german) 238
non-allumage, intensité de courant de = no-fire current 238
non-electric delay device 238
Nonel – non electric firing device (swedish) 238
Normalgasvolumen = Normalvolumen = volume of explosion gasses 367
Norm-Brennkammer = standard combustion chamber 60
Novit = mixture of hexanitrodiphenylamine, TNT and aluminum (swedish) nozzle 239
Np 5; Np 10 = PETN phlegmatized with 5 resp. 10% wax (german)
NQ = nitroguanidine 230
NS = nitrostarch 235
NSP = black powder – smokeless powder compound (german)
NSug = nitrosugar (USA) 235
NTNT = AN/TNT 80/20 (french)
NTO = Nitrotiazolone 236
NT = TNT/AN 30/70 (french)
N2N = AN/SN/TNT 50/30/20 (french)
NX = AN/trinitroxylene (french)

Oberflächenbehandlung = surface treatment; also → inhibited propellant; → restricted propellant 191; 273; 305
Obturate 239
Octogen = Homocyclonite = HMX 134; 144; 239; 255, 329
Octol = mixture HMX/TNT 77/23 241
Octyl = Bitetryl = N,N’-dinitro-N,N’-bis (2,4,6-trinitrophenyl)-ethylenediamine (UK)
ohmmer 58
Oktogen = Octogen (german) 239
ON 70/30 = N2O4/NO2 70/30 oxidator (german)
onayaku = mixture of picric acid and dinitronaphthalene (Japan)
onde de choc = shock wave 8; 80 ff.
onde de détonation = detonation wave 8, 80 ff.
ONERA = Office Nationale d’études et de Recherches, Paris
Optolene = liquid rocket fuel consisting of vinylthylether, aniline, tar, benzene and xylene (german)
oshokuyaku = picric acid, press molded (Japan)
ouvreuses explosives de percée = jetapper 194
Ox = carborane-fluorocarbon copolymer (USA)
oxidizer 145; 241
oxygen 331
oxygen balance 242
Olyliquit 204
Oxypikrinsäure = styphnic acid (german) 303
Oxytetryl = trinitromethylnitraminophenol
Ozo-benzene = benzene trizonide

P
P1 = trimethyleneglycol dinitrate 348
P2 = methylene dioxydimethanol dinitrate (USA)
P (salt) = piperazine dinitrate (USA)
PA = picric acid (french) 256
PAC = ANFO (german) 20
Palatinol = phthalic acid ester (german)
PAN = explosive consisting of PETN; pentaerythrol tetraacetate and AN
PANA = same mixture plus aluminum (Italy)
Panclastit = mixture of nitrobenzene and N2O4 30/70
Panzerfaust → Bazooka 31
paraffin 243; 329
parallel connection; also bus wire 47; 243
Parazol = dinitrochlorobenzene (USA)
partial heat of explosion 162
paste 244
Patrone = cartridge 52
Patronendichte = cartridge density 53
PBAN = polybutadiene acrylonitrile
PB-RDX = polystyrene bonded RDX, consisting of 90% RDX, 8.5% polystyrene and 1.5% dioctylphthalate
PBTC = carboxylterminated polybutadiene (USA)
PBU = phenylbenzylurethane (UK)
PBX = plastic bonded explosive 244; 258
PBX 9010, 9011, 9404-03; various compositions with 90% RDX and 94% MHX, grain sized 244
PCX = 3,5-dinitro-3,5-diazopiperidine nitrate (USA)
PDNA = propylenedinitramine
PE 1; 3A = plastizised RDX (USA)
PE-Wolle = low nitrogen percentage nitrocellulose (german)
PEG = polyethylene glycol 164
pellet powder 245
pellets 143; 245
Pelonit D = powder form commercial explosive (Austria) 245
Pendulum test → ballistic mortar 26
Penta = PETN (German) 253
Pentaerythritol 254
Pentaerythritol tetranitrate 37; 79; 135; 144; 164; 167; 188; 199; 246; 247; 253; 255; 329
Pentaerythritol trinitrate 164; 246
Pentastit = phlegmatized PETN 246
Pentol = mixture of PETN and TNT (German)
Pentolite = pourable mixture of TNT and PETN (USA) 247
Pentrit = PETN (German) 253
Pentro = mixture of PETN, TNT and paraffin 49/49/2 (Swiss)
Pentryl = trinitrophenylnitramine ethyltrinitrate 357
PEP-2; PEP-3; PIPE = mixtures of PETN and Gulf Crown Oil (USA)
Perchlorate d'ammonium 17
Perchlorate de barium 29
Perchlorate explosives 247
Perchlorate de guanidine 157
Perchlorate d'hydratine 182
Perchlorate de lithium 205
Perchlorate de potassium 263
Perchlorate de sodium 292
Perforation of oil and gas wells 247
Perle d'allumage = squib 43, 236
Perlit = picric acid (German) 256
Permissibles; permitted explosives 14; 75; 86; 88; 248; 370
Peroxides 31; 170; 252; 346; 371
Peroxide de benzoyle 31
Peroxide de tricycloacétone 346
Peroxide de zinc = zinc peroxide 371
Perspex = acrylic acid methylester polymer (same as Plexiglas; Lucite) (USA) 89
Perite = picric acid (Italy) 256
Pétardage = mud cap 3; 43; 220
PETN = pentaerythrol tetranitrate 37; 79; 135; 144; 164; 167; 188; 199; 246; 247; 253; 255; 329
PETRIN = pentaerythrol trinitrate (USA) 164; 253
Petroleum jelly 255; 329
PETS = pentaerythrol tetrastearate (USA)
PGTN = pentaglycerine trinitrate
pH test → Hansen test 160
PHE = plastic high explosive (UK)
Phlegmatization 255
Ph-Salz = ethylenediamine dinitrate (German) 125
Phthalate diamylique 94
Phthalate dibutylique 95
Picatinny Arsenal 21; 186; 198
Picric acid 255
Picramide = trinitroaniline 349
Picrate d'ammonium 19
Picrate d'éthyle 126
Picrate de guanidine 157
Picratol = pourable mixture of TNT and ammonium picrate 256
Picric acid 167, 199, 256, 329
Picrinate = picric acid (Spanish) 256
Picrite = nitroguanidine 230
Picrylchloride = trinitrochlorobenzene 353
Picryl sulfide = hexanitrodiphenyl-sulfide
Picryl sulfone = hexanitrodiphenyl-sulfone
Picurinsan = picric acid (Japan) 256
Piezo-quartz 24
Pikramid = trinitroaniline 349
Pinkrinsäure = picric acid 256
Pikrinsäuremethylester = trinitroani-sol 349
Pirosilinovyye porokha = single base nitrocellulose propellant (Russian)
Piroksilins N° 1 = nitrocellulose 12–13% N; N° 2 = > 13% N (Russian) 222
Plane charge (shaped charge) 283
Plane wave generators = charges generating plane detonation fronts
Plastic explosives 239; 258
Plastic igniter cord 258
Plastisol = solid rocket propellant consisting of APC or AN, PVC and plasticizers
Plate dent test 258
Plateau combustion 46; 62
Platzpatrone = blank cartridge
Plumbaton = lead nitrate/TNT 70/30 (USA)
PLX = Picatinny liquid explosive =
→ nitromethane or 95% NM and 5% ethylenediamine (USA)
PMA; PMMA = polymer acrylic methylester (Plexiglas Lucite, Perspex) 89
PN = poudre noir (french) = black powder 35
PNA = pentanitroaniline
PNDPhEtI = pentanitrodiphenylethanol
PNDPhEth = pentanitrodiphenylether
PNDPhSo = pentanitrodiphenylsulfon
pneumatic placing 259
PNL = D – 1 = phlegmatizing mixture consisting of 84% paraffin wax, 14% nitrocellulose (12% N) and 2% Lecithine (USA)
PNP = polynitropolyphenylene 259
point d’inflammation = flasch point 142
POL-Pulver = double base propellant fabricated without volatile solvents (german) 114
polyacetylene → carbene 52
polybutadiene acrylic acid; polybutadiene acrylonitrile → composite propellants 61
polybutadiene carboxyterminated 62; 329
polyethylene glycol 164
polyisobutylene 329
polymethacrylate 164
polynitropolyphenylene 259
polypropylene glycol 164; 260; 329
polysulfide 61
polytrop exponent 84
polyurethane 61; 260
polyvinyl nitrate 135; 164; 261; 329
porous AN-prills 17
porous powder 261
post-combustion 220; 262
post-detonation → hang fire 160
post-heating 11
potassium bitartrate 221
potassium chlorate 58; 242; 262
potassium chloride 331
potassium nitrate 35; 164; 242; 262; 329
potassium perchlorate 164; 263
potassium sulfate 164; 220
poudre = gun powder 158
poudre à base de la nitroglycérine = double base propellant 114
poudre à simple base = poudre B = single base nitrocellulose powder (french) = single base powder 261; 287
poudre composite = composite propellant 61
poudre d’aluminium = aluminum powder 11
poudre noir = black powder 35
poudre noir au nitrate de soude = B-black powder 31
poudre poreux = porous powder 261
poudre progressive = progressive burning propellant 267
poudre sans fumée 287
poudre sphérique = ball powder 28
poussée = thrust 338
poussière = coal dust 59; 248
powder (gun powder) 158
powder form explosives 264
PPG = polypropylene glycol (USA) 260; 329
pre-ignition 265
premature firing 265
prequalification test 265
pre-splitting 265
pressing of rocket propellant charges 266
press-molding of explosives 266
pression de gaz = gas pressure 149
pressure cartridge 266
pressure exponent 25; 46
prills 16; 266
Primacord = detonating fuse (USA) 79
Primadet = mild detonating fuse (USA) 218
primary blast 267
primary explosives 191; 267
primer 94; 267
primer charge 267
produits de détonation = fumes 145
progressive burning 158; 267
projectile forming (shaped) charge 283
projectile impact sensitivity 268
propanediol dinitrate 269
propellant 158; 268
propellant-actuated power device 269
propellant area ratio (“Klemmung”) 269; 293
propellant casting 55
propellant grain 46
propellant traité de surface → surface treatment 305
propergols 269
propulseur = rocket motor 275
propyleneglycol dinitrate 269
propynitr 270; 329
protection contre les courants vaga-
bonds = stray current protection 299
Protivotankovaya roochnaya zazhiga-
telnaya granata = Molotow cocktail (russian)
Prüfkapsel = test cap 309
PS = polysulfide 61
PTX-1 = Picatinny ternary explosive
 = RDX/Tetryl/TNT 30/50/20 (USA)
PTX-2 = RDX/PETN/TNT 44/28/28
 (USA)
PTX-3 = mixture of EDN, Tetryl and
 TNT (USA)
PTX-4 = mixture of EDA, PETN and
 TNT (USA)
PU = polyurethane 61
pulsed infusion shotfiring 270
Pulver, Schießpulver = gun powder
158
pulverförmige Sprengstoffe = powder
form explosives, mostly AN based
264
Pulverrohmasse = paste 262
PVN = polyvinyl nitrate 135; 164;
 261; 329
Pyrocore = detonating fuse for rocket
ignition
pyrogen 271
Pyronite = Tetryl; also: mixture of
 Tetryl and trinitrophenylmethylanil-
line 314
pyrophoric 271
Pyropowder = single base nitrocellu-
lose propellant (UK)
pyrotechnical compositions 28; 29;
 30; 43; 64; 205; 262; 263; 271;
 272; 371
pyrotechnical fuse 271
PYX = 2,6-bis-bis-(pikrylamino)-
3,5-dinitropyridine

Q
quality requirements for Industrial
and military explosives 135, 137
quantity-distance table 138; 271
quartz 149
QDX = SEX = 1-acetyloctahydro-
3,5,7-trinitro-1,3,5,7-tetrazocine
 (USA)
Quecksilberfulminat = mercury fulmi-
nate 211
quick-match; match cord; cambric
272
quickness 46

R
R-Salz = cyclotrimethylenetri nitro-
amine (german) 71
radicals, free radicals 324
Rakete = rocket 275
Raketenflugkörper = missile 218
Raketenmotor = rocket motor 275
Raketenprüfstand = rocket test stand
275
Raketentreibmittel = rocket propellant
114; 324
Raketentriebwerk = rocket motor 275
Ramjet = air breathing rocket system
rapport d’expansion = propellant
 area ratio 269
raté = misfire 218
RATO = rocket assisted take off
rauchloses; rauchschwaches
 Pulver = smokeless powder 287
Rayleigh line 85
RDX = Cyclonite; Hexogen 37; 62;
 63; 68; 116; 134; 144; 167; 188;
 199; 207; 255; 258; 327; 342
RDX class A-H = various grain sized
 qualities of Cyclonite (USA) 68
RDX type A = product nitrated by
 nitric acid 68
RDX type B = product fabricated by
 the acetic anhydride (Bachmann)
process; contains 3–12% → Octogen 68; 239
RDX Polar PE = plastizised RDX; containing 12% Gulf 300 process oil and lecithine 90/10 = RDX/KelF 90/10
reactivity test 365
recommended firing current 272
recommended test current 272
recul = setback 282
Règlement International concernant le transport des marchandises dangereuses 273
regressive burning 272
Reibempfindlichkeit = friction sensitivity 144
relais = booster 40
relation des masses = mass ratio 211
relative weight strengt 26; 37; 300; 369
relay 273
reliability 273
requirements on industrial and military explosives 135
résistance à l’eau = water resistance 368
résistant au balles = bullet resistant resonance = erosive burning 273
resserrement = propellant area ratio 269
restricted propellant 273
retard = delay 76
retard d’allumage = delayed inflammation; functioning time 76; 147
RF-208 = organic phosphorus compound for hypergolizing rocket fuels
RFG = rifle fine grain Powder (UK)
RFNA = red fuming nitric acid (UK)
RID = Règlement International concernant le transport des marchandises dangereuses 3; 72; 165; 185; 273
riffl e bullet impact test 275
RIPE = plastizided RDX with 15% Gulf Crown Oil (USA)
rocket 275
rocket motor 275
rocket propellants 61; 114; 324
rocket test stand 275
Röhrenpulver; Röhrchenpulver = tube shaped gun powder 158
Rohmasse; Pulverrohmasse = paste 244
roquette à propogol liquide = liquid propellant rocket 205
roquette à propogol solide = solid propellant rocket 292
Rossite = guanylnitrourea (USA)
rotational firing 276
Round Robin Test 276
RP-1 = kerosin type as fuel in liquid rocket motor systems
rubberlike propellant = polysulfide-, polyurethane- or Plastisolbonded → composite propellants
Rückstoß = setback 282
ru sseskii method = fibre length evaluation by pulp sedimentation 223
Russkii Koktel = russian cocktail = potassium chloride and nitrotoluene in glass containers; ignition by concentrated sulfuric acid
Russkii Splav = mixture of pricric acid and dinitronaphthalene
RX-05-AA = RDX/polystyrene/dioctylphthalate 90/8/2 (USA)
RX-09-AA = HMX/dinitropropylacrylate/ethylidinitropentanoate 93.7/5/0.6 (USA)
RX-04-AV = HMX/polyethylene 92/8 (USA)
RX-04-BY = HMX/FNR 86/14 (USA)
RZ-04-AT = HMX/carborane-fluorocarbon polymer 88/12 (USA)
RZ-04-Pl = HMX/Viton 80/20 (USA)

S
safe & arm 276
safety classes (of permitted explosives) 248
safety diaphragm 276
safety distance of buildings 138
safety fuse 271; 276
SAFEX INTERNATIONAL 277
Saint-Venant and Wantzel formula 149
Salpeter = salpetre; potassium nitrate 261
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salpetersäure</td>
<td>nitric acid</td>
</tr>
<tr>
<td>salt pair (ion exchanged)</td>
<td>permitted explosives 248</td>
</tr>
<tr>
<td>sand test</td>
<td>277</td>
</tr>
<tr>
<td>Sanshokitororuoru = TNT (Japan)</td>
<td>339</td>
</tr>
<tr>
<td>Sauerstoffträger = oxidizer</td>
<td>241</td>
</tr>
<tr>
<td>Sauerstoffwert; Sauerstoffbilanz</td>
<td>242</td>
</tr>
<tr>
<td>sautage à gran trou = large hole blasting</td>
<td>195</td>
</tr>
<tr>
<td>sautage par grands fourneaus de mines = coyote blasting</td>
<td>65</td>
</tr>
<tr>
<td>SBA = slurry blasting agent (USA)</td>
<td>scaled distance 278</td>
</tr>
<tr>
<td>Schießpulver = gun powder</td>
<td>168; 222</td>
</tr>
<tr>
<td>Screw extruder</td>
<td></td>
</tr>
<tr>
<td>Schneckenpresse = screw extruder</td>
<td>279</td>
</tr>
<tr>
<td>Schneiderit = mixture of AN and nitrocompounds, mostly dinitro-naphthalene (french)</td>
<td></td>
</tr>
<tr>
<td>Schneidladungen = cutting charges</td>
<td>67; 283</td>
</tr>
<tr>
<td>schonendes Sprengen = smooth blasting</td>
<td></td>
</tr>
<tr>
<td>Schub = Thrust 338</td>
<td></td>
</tr>
<tr>
<td>Schubmessung = thrust determina-</td>
<td>338</td>
</tr>
<tr>
<td>tion 338</td>
<td></td>
</tr>
<tr>
<td>Schuttdichte = bulk density</td>
<td>42</td>
</tr>
<tr>
<td>Schutzwall = barricade</td>
<td>29</td>
</tr>
<tr>
<td>Schwaden = fumes 141</td>
<td>248</td>
</tr>
<tr>
<td>Schwarzpulver = black powder</td>
<td>35</td>
</tr>
<tr>
<td>Schwarzpulverzündschnüre = safety fuses</td>
<td>276</td>
</tr>
<tr>
<td>Schwefel = sulfur 304</td>
<td>screw extruder 279</td>
</tr>
<tr>
<td>SD = double base propellant fabricated without solvents (french)</td>
<td>SDMH = symmetric dimethylhydrazine (USA)</td>
</tr>
<tr>
<td>SE = slurry explosive (USA)</td>
<td>289</td>
</tr>
<tr>
<td>secondary blasting 279</td>
<td></td>
</tr>
<tr>
<td>secondary explosives 279</td>
<td></td>
</tr>
<tr>
<td>Securit → Wetter-securit = permitted explosive (german)</td>
<td>370</td>
</tr>
</tbody>
</table>

Seismocord = detonating cord for seismic shots (german) 280
Seismic explosives; Seismic gelatins 279
Seismic shots 79; 279
Seismo-Gelit = gelatinous special gelatin for seismic use 280
Seismograph; Seismometer 280
Seisopak; Seisoplast = special explosives for seismic shots (german) 281
selective detonation 86
self forging fragment; SFF 284
Sekundärladung = base charge 31
Semigelatin dynamite 281
Semtex 281
sensibilité 309
sensibilité à l’impact = impact sensitivity 185
sensibilité à l’impact projectiles = projectile impact sensitivity 268
sensibilité au chauffage = heat sensitivity 165
sensibilité au choc de détonateur = cap sensitivity 49
sensibilité au frottement = friction sensitivity 144
sensitivity 144; 165; 268; 282
Serienschaltung = series electric blasting cap circuit 282
Serien-Parallel-Schaltung = series in parallel electric blasting cap circuit 282
setback 282
SFF = EFP 284
S.G.P. = denomination of permitted explosives in Belgium
S-H-process (RDX-synthesis) 68
shaped charge 42; 67; 283
sheathed explosives 284
shelf life (storage life) 114; 285
Shellite (UK) = Tridite (USA) = mixtures of picric acid and hexanitrodiphenylamide
Shimose = picric acid (Japan) 256
shock pass heat filter 89
shock wave 3; 80ff.; 285
Shoeiyaku = PETN (Japan) 253
Shotoyaku = An/TNT 50/50 (Japan)
Shouyaku-koshitsu = plastizised RDX
short delay blasting (→ also: millisecond delay blasting) 217
shot anchor 285
shot firer, blaster 36; 285
SH-Salz = RDX fabricated by decomposing nitration according to Schnurr-Henning 70
Sicherheitsabstands-Tabelle (USA) 138
Sicherheitszündschnüre = safety fuses 276
Silberacetylid 285
Silberazid 286
Silbercarbid 285
Silberfulminat 287
silver acetylide 285
silver azide 286
silver carbide 285
silvered vessel test 286
silver fulminate 287
single bases powders 287
SiNCO = gas generating propellant (german) 288
Sinoxid = non eroding primer composition (german) 288
SINTOX = lead free priming composition (german) 289
Sixolite = tetramethylolcyclohexanol pentanitrate 310
Sixonite = tetramethylolcyclohexanol-tetranitrate 310
skid test 289
slotted mortar (test gallery) 250
slurries 10; 17; 36; 49; 117; 158; 195; 204; 214; 289
slurry casting 55
small arms ammunition primers 290
SN = sodium nitrate 291
snake hole 290
Sodatol = sodium nitrate/TNT 50/50 291
sodium chlorate 291
sodium chloride; salt 248; 249; 332
sodium hydrogen carbonate 329
sodium nitrate 63; 241; 242; 291; 329
sodium perchlorate 292
soft grain powder (black powder) 35; 292
Sohlenbohrloch = snake hole 290
solid propellant rocket 292
soluble gun cotton = nitrocellulose 12.2 % 223
solventless processing for propellants 158
Sorguyl = tetranitroglycolurile (french) 100
soufre 304
spacing 293
Spätzündung = hangfire 160
Spaltzünder = spark detonator 294
Span = sorbitane monooleate (USA) spark detonators 294
special effects 294
specific energy 294; 301; 319
specific impulse 295
spezifischer Sprengstoffverbrauch = explosive loading factor 132
spinner = spin stabilized rocket
Splittertest = fragmentation test 142
Spränggrummi = blasting gelatin (Norway)
Sprengbereich = blast area 36
Sprengels explosives = chlorate explosives; mixed on site of use (other name: “Miedziankit”); now obsolete 296
Sprenggelatine = blasting gelatin 37
Sprengkapseln = blasting caps; detonators 37
Sprengkraft = strength 300
Sprengluft-Verfahren = liquid oxygen explosives 204
Sprengmeister = shot firer; blaster 36; 285
Sprengmittel = explosive materials 132
Sprenggel = nitroglycerine, nitroglycerol and mixtures thereof 226; 229
Sprengpulver = black powder for blastings 31; 35
Sprengriegel = explosive bolt 132
Sprengsalmeter = B-black powder 31
Sprengschlamm = slurry 10; 17; 36; 49; 117; 158; 195; 204; 214; 289
Sprengschnur 79
Sprengstoff-Attrappen = Mock Explosives 218
Sprengstoff-Ladegeräte = loading devices
Sprengstoff-Lager = magazine 209
Sprengstoff-Prüfstrecke = test gallery 249
Sprengzubehör = blasting accessories 36
Sprengzünder = blasting cap 37
springing 296
squib 43; 296
Stabilität; stabilité; stability 1; 114; 158; 215; 282; 297; 365; 366
stabilizer 5; 10; 56; 57; 104; 111; 127; 158; 215; 298
stable detonation 85
Stärkenitrat = nitrostarch 235
Stahlhülsenverfahren = steel sleeve test (heat sensitivity) 166
standard combustion chamber 60
Standardization of tests: International Study Group for the Standardization of the Methods of Testing Explosives Secretary: Dr. Per-Anders Persson, Swedish Detonic Research Foundation, Box 32058, S 12611 Stockholm, Sweden 87
Start-Rakete = booster 40
state equation 85; 120
Stauchprobe = upsetting test 362
Steinflug = fly rock 142
steel sleeve test 165
stemming 64; 299
Stickstofftetroxid = nitrogen tetroxide 204
Stirnabbrand = face burning 58; 140
Stoppine = quick-match; cambric 272
storage of explosives 138; 139; 299
Stoßgriffmaschinen = blasting machines wiht impact knob 37
Stoßtränkungssprengen = pulsed infusion shotfiring 270
Stoßwelle = shock wave 80
straight dynamites 27
strands 66
stray current protection 299
strength 27; 197; 294; 300
Streustromsicherheit = stray current protection 299
strontium nitrate 303
styphnic acid = trinitroresorcinol 303; 330
styphnyldichloride = dichloro-2,4,6-trinitrobenzene 419
sulfur 35; 242; 304
Supercord = detonating fuse with ca. 40 g/m PETN (german) 305
superconic propagation → shock wave; detonation 80ff.

T
T4 = RDX (Italy) 68
T 4 plastico = RDX plastizised with 17.3% diglycol dinitrate or with 11% petroleum (Italy)
T-Stoff = concentrated hydrogen peroxide (german)
TA = triacetine 164
Tacet = tetranitrodibenzole-trazapententrale 307
tableau des distances de sécurite: → table 13, page 138
TAGN = triminoguanidine nitrate 343
talc 331
Taliani test 308
tamping = stemming 299, 308
tamping pole 308
Tanyaku = mixtures of RDX, TNT and Tetryl (Japan)
TAT = 1,3,5,7-tetracetyl-1,3,5,7-octahydroazocine, precursor-product for the → Octogensynthesis 240
TATB = triaminotrinitrobenzene 344
TATNB = triazidotrinitrobenzene 345
TAX = acethylhexahydrodinitrotriazine (USA)
TDI = toluene diisocyanate 342
TEDFO = bis-(trinitroethyl)-difluorformal
TEGN = triethyleneglycolmnonitrate
TEGN = triethyleneglycoldinitrate 346
temperature coefficient → burning rate 45
température de décomposition; température d’inflammation = deflagration point 75
température d’explosion = explosion temperature 131
TEN = PETN (russian) 253
TeNA = tetrinitroaniline 310
TeNA = tetrinitroanisol
TeNAzxB = tetranitroazoxybenzene
TeNB = tetranitrobenzene
TeNBPh = tetranitrodiphenylamine
TeNBu = tetranitrobutane
TeNCB = tetranitrochlorobenzene
TeNCbl = tetranitrocarbanilide
TeNCbz = tetranitrocarbazol
TeNDCG = tetranitrodiglycerine
TeNDMBDNA = tetranitrodimethylbenzidinedinitramine
TeNDPhETa = tetranitrophenylethane
TeNDPhEtla = tetranitrodiphenylethanolamine
TeNHzB = tetranitrohydrazobenzene
TeNMA = tetranitromethylaniline
(Tetryl) 314
TeNm = tetranitromethane 311
TeNN = tetranitronaphthalene 312
TeN0x = tetranitrooxanilide
TeNPhMNA = tetranitrophosphorimethylnitramine
TeNT = tetranitrotoluene
TeNTMB = 3,5,5'-tetranitro-4,4'-tetramethyldiaminobiphenyl (USA)
TePhUR = tetraphenylurea (USA)
Territ = plastic explosive consisting of nitroglycerine, APC, DNT, TNT, SN and nitrocellulose (Sweden)
test cap 309
test préliminaire = prequalification
test 265
testing galleries 249
Tetralit = Tetryl (german) 31
Tetralita = Tetryl (italian, spanish) 314
tetramethylammonium nitrate 309
tetravinyltetranitramine = Octogen; HMX 134; 144; 207; 239; 255; 329
Tetryl 37; 134; 167; 188; 199; 314; 330
Tetrytol = mixture Tetryl/TNT 315
TFENA = trifluoroethylnitramine
TG = thermogravimetry 98
TG = Trotil-Gheksogen = TNT/RDX mixtures (russian)
théorie hydrodynamique de la détonation = thermohydrodynamic theory of detonation 80ff.
thermic differential analysis 98
thermische Sensibilität = heat sensitivity 165
thermites 315
thermodynamic calculation of decomposition reactions of industrial explosives, gun powders, rocket propellants, tables 315ff.
thermogravimetry 98
thermohydrodynamic theory of detonation 80ff.
Thional = pentanitrodiphenylsulfon (USA)
thrust 293; 338
tir à microretard = millisecond delay blasting 217
tir d’impregnation = pulsed infusion shotfiring 270
tir primaire = primary blast 267
tir sou pression d’eau = underwater
detonation 360
TLP = Treibladungspulver = gun propellant; the following suffix (e.g., TLP/A) indicates;
A-E = single base powder
A: nitrocellulose powder
D: DNT added
F-M = double base powders
F = nitrocellulose nitroglycerine
G = nitrocellulose-disglycol dinitrate
K = ball powder
N-P = triple base powders
V-W = porous powders (german)
TMENT = trimethylene trinitroamine
TNA trinitroaniline 349
TNAmPH = trinitroaminophenol
TNAZ = Trinitrozetidin 330; 350
TNd = trinitroanilide
TNAIs = trinitroanisole 349
TNB = trinitrobenzene 351
TNBA = trinitrobenzaldehyde
TNBaN = trinitrobenzoic acid 352
TNxN = trinitrobenzol nitrate
TNC = tetranitrocarbazol 311
TNCB = trinitrochlorobenzene 353
TNCs = trinitrocresol 354
TNDCB = trinitrodichlorobenzene
TNDMA = trinitrodimenthylaniline
TNDPha = trinitrophenylamine
TNEB = trinitroethylbenzene
TNEDV = trinitroethyldinitrovalerate
TNETB = 2,2,2-trinitroethyl-4,4,4,-trinitrobutyrate
TNG = trinitroglycerine 226
TNM = tetrinitromethane 311
TNMA = trinitromethylaniline
TNMeL = trinitromelamine
TNMeS = trinitromesitylene
TNM = trinitronaphthalene 356
TNPE = PETN (spanish) 253
TNO = tetrinitrooxanilide
TNPh = trinitrophenol = picric acid 256
TNPhBuNA = trinitrophenylbutylnitramine
TNPhDA = trinitrophenylendiamine
TNPhENA = trinitrophenylethyl-nitramine 128
TNPhIGI = trinitrophloroglucine
TNPhMNA = trinitrophenylmethyl-nitramine = Tetryl 314
TNPhMNApH = trinitrophenyl-methyl-nitraminophenol
TNPHt = trinitrophenetol 128
TNPy = trinitropyridine 358
TNPyOx = trinitropyridine-1-oxide 358
TNR = trinitroresorcin (styphnic acid) 303
TNRS = lead styphnate 202
TNSI = trinitrostilbene
TNT = trinitrotoluene 16; 27; 55; 62; 71; 116; 117; 134; 164; 167; 188; 217; 241; 256; 291; 330; 339; 342; 343
TNTAB = trinitrotolylmethyl-nitramine
TNTCIB = trinitrochlorobenzene 353
TNTMNA = trinitrotolylmethyl-nitramine
TNX = trinitroxylene 359
toe 342
TOFLOX = solution of ozonefluoride in liquid oxygen
Tolita = TNT (spanish) 339
Tolite = TNT (french)
Tolite/D = TNT, solidification point 80.6 °C = 177.1 °F
Tolite/M = the same, 78 °C = 172.4 °F
Tolite/O = 79 °C = 174.2 °F
Tolite/T = 80.1 °C = 176.2 °F (french)
totylene diisocyanate 135; 342
Tonka = aniline and dimethylaniline as liquid rocket fuel together with nitric acid as oxidator (german)
Torpex = mixture of RDX, TNT and aluminum 11; 70; 342
Totalit = AN with ca. 6% paraffin (swiss)
toxic fumes 8; 145
TPEON = tripentaerythroloctanitrate tracers 342
traitement des métaux par explosion 131
traitement de surface = surface treatment 305
transmission of detonation → detonation, sympathetic detonation; gap test 87; 148
transport regulations
→ ADR (road) 3
→ RID (rail) 273
→ IATA (air) 183
→ IMDG (shipping) 185
transport par injection d’eau 368
Tauzl test → lead block test 197
Treibstoff = propellant 268
triacetin 164
Triacetonperoxide; triacétoneperoxide 252; 346
Trialen = mixture of RDX, TNT and aluminum (german) 11; 70; 343
triaminoguanidine nitrate 6; 207; 330; 343
triaminotrinitrobenzene 330; 344
triazide cyanurique 68
triazidotrinisronobenzene 345
Tribride = 3-component rocket system, e.g., metal fuels suspended in liquid fuels and oxidators (USA)
Tricinat = salt of styphnic acid (german)
tricycloacetone peroxide 252; 346
Trierogol = same as Tribride
triethyleneglycol 347
triethyleneglycol dinitrate = Triglykol-dinitrat (german) 164, 346
Trilita = TNT (spanish) 339
trimethylamine nitrate 330; 347
trimethylene glycol dinitrate 348
trimethylene trinitrosamine 71
trimethylene trinitramine = RDX = Cyclonite 68
trimethylolethylmethane trinitrate 124
trimethylolethylmethane trinitrate 232
trimethylene methanol trinitrate 124
Trinap = trinitronaphthalene 356
trinitrate de butanetriol 48
trinitrate de glycérine 226
trinitrate de nitroisobutylglycérine 232
trinitrate de pentáerythrite 246
trinitrate de triméthyloléthylméthane 124
trinitrate de triméthylolméthyléthane 216
Trinitril = glyceroltrinitrophenylether dinitrate
trinitroaniline 199; 349
trinitroanisole 349
Trinitrozetidin 330; 350
trinitrobenzene 330; 351
trinitrobenzoic acid 352
trinitrochlorobenzene 102; 330; 353
trinitroresol 354
trinitroxybenzene 303
trinitroethanolcohol 35
trinitrometacresol 354
trinitrometaxyline 359
trinitromethane 355
trinitronaphthalene 356
trinitrophenetol 128
trinitrophenol; picric acid 167; 199; 256; 329
trinitrophenoxy-ethyl nitrate 356
trinitrophenylethylnitramine = ethyltryl 128
Trinitrophenylviarcerinetherdinitrat 153
Trinitrophenylglykolethernitrat 356
trinitrophenylmethylaniline = Tetryl 314
trinitrophenylethylmethyl ether = trinitroanisol 349
trinitrophenylmethyl nitramine = trinitroamisol 349
trinitrophenylmethylether = trinitroanisol 349
trinitrophenylmethylnitramine = Tetryl 37; 134; 144; 167; 188; 199; 242; 314; 330
trinitrophenylnitramino ethylnitrate 357
trinitropyridine 330; 358
trinitropyridine-N-oxide 330; 358
trinitroéresorcinate de plomb 202
trinitroresorcinol = styphnic acid 303; 330
trinitrosotrimethylenetriamine 77
trinitrotoluene = TNT 16; 27; 55; 62; 71; 116; 117; 134; 164; 167; 188; 217; 241; 256; 291; 330; 339; 342; 343
trinitroxylene 359
Trinol = trinitroanisol 349
Triogen = trimethylenetrinitrosamine (USA) 77
triple base propellants 158
Trisol = trinitroanisol 349
Tritonal = mixture of RDX, TNT and aluminum (german) 11; 359
Trixogen = mixture of RDX and TNT (german) 360
Trizin = trinitroresorcinol (german) 303
Trojel = slurry blasting agent
Trotyl = TNT (german) 339
trunkline (of detonating cord) 80
tuyère = nozzle 239

U

U = bridgewirde detonator U (unsensitive), (german) 41
UDMH = unsymmetrical dimethylhydrazine (USA) 99
Übertragung = sympathetic detonation 87; 142
ullage 360
ummantelte Sprengstoffe = sheathed explosives 284
unbarricated 360
unconfined detonation velocity 90; 360
undersonic propagation (= deflagration) 45; 75
underwater detonations 21; 360
underwater explosives → DBX; → Torpex 74; 342; 360
Unterwasserzünder = water resistant detonator 369
upsetting tests 42; 362
urea nitrate 199; 330; 346
urethane → stabilizer 298
US Bureau of Mines 364

V

vacuum test 61; 365
vaseline 255
velocite de combustion = burning rate 45
Veltex = mixture of HMX, nitrocellulose, nitroglycerine, nitrodi phenylamine and triacetine 365
Verbrennung = combustion 60
Verbrennungswärme = heat of combustion 161
Verbundtreibsätze = composite propellants 61
verdämmen = stemming 299
Vernichten von Explosivstoffen = destruction of explosive materials 77
Verpfuffungspunkt = deflagration point 75
Versager = misfire 218
Verstärkungsladung = booster 40
Versuchsstrecken = test galleries 249
Verträglichkeit = compatibility 61
Verzögerungszünder = delay fuze 76
vessel mortar test 301
Viatra = Inert stemming cartridge (swiss)
Vibrometer 366
Vieille Test 179; 366
Virial equation 120
viscosity of nitrocellulose 224
Visol; Visol-1; -4; -6 = vinylethylether and mixtures with isopropylalcohol and vinylbutylether; liquid rocket fuel (german)
Vistac N° 1 = low molecular weight polybutane (USA)
vitesse de combustion = burning rate 23; 45; 123
vitesse de détonation = detonation velocity 42; 74; 77; 90
vitesse moyenne de combustion = average burning rate 23
Viton A = perfluoropropylene-vinylidene fluoride copolymer
vivacity factor 46
VNP = polyvinyl nitrate (USA) 261
volume of explosiongases 367
volume strength 42; 319; 367
Vorgabe = burden 44
vorkesseln = springing 296
vorspalten = pre-splitting 265
VV = Vzryvchatoiye veschestvo = explosive (russian)

W

W I; W II; W III = permitted explosives belonging to the german safety classes I, II and III 370
warm storage tests; Warmlagertesten → hot storage tests 179
Wasacord = detonating fuse (german) 367
Wasserbesatz = water stemming 369
water driven injector transport of nitroglycerine 368
water 330; 331
water gels 10; 289; 368
water hammer; water jet 362
water infusion blasting 362
water resistance 368
water resistant detonator 369
water stemming 369
web 369
Weichkornpulver = soft grain black powder 35; 292
weight strength → relative weight strength 26; 37; 300; 369
Wetter = german prefix given to all trade name of permitted explosives 370
Wetter-Sprengstoffe = permitted explosives 248; 370
Wetter-Carbonit C; Wetter-Devinit A; Wetter-Energit B; Wetter-Roburit B; Wetter-Securit C; Wetter-Permit B = permitted explosives (german) 370
WFNA; WFN = white fuming nitric acid (UK)
WhC = white compound = 1.9-dicarboxy 2,4,6,8-tetranitrophenazin-N-oxide (USA)
wood dust 330
Wood's metal 75
W-Salz = RDX according Wolfram (german) 70

X
X-310 A = igniter for mild detonating fuse (USA)
X-Ray-Flash 370
X-Stoff = tetraniromethane (german) 311
Xilit = trinitroxyene (russian) 359
XTX = RDX coated with Sylgard, a silicon resin
Xyloidine = nitrostarch 235

Y
Yonkite = industrial explosive (Belgium)
Yuenyaku = black powder (Japan) 35

Z
Zazhigateinaya = Molotow-cocktail (russian)
Zeitzünder → bridgewire detonators 41
Zentralit → Centralite 56; 57
Zhirov = mixtures of tetryl with APC or potassium perchlorate (russian)
Zigarettenabbrand = face burning 140
zinc peroxide 289; 371
Z-Salz; Z-Stoff C; Z-Stoff N = permanganates for decomposition catalysis of hydrogen peroxide
Zuckernitrat 235
Zündabzweigung = downline
Zündanlage = ignition system 184
Zündblättche = amorces 19
Zünder = fuze 147
Zünder, elektrische → bridgewire detonators 41
Zünderdrähte = leg wires 203
Zündhütchen = amorce 19
Zündimpuls = electric pulse for bridgewire detonators 41
Zündkabel = firing line 141; 203
Zündkreis = circuit 58; 282
Zündkreisprüfer = circuit tester 58
Zündladung = primer charge 267
Zündmaschine = blasting machine 37
Zündpille = squib 296
Zündschalter = blasting switch 38
Zündschnur = safety fuse 271, 276
Zündschraube = fuze head 148
Zündsicherung = igniter safety mechanism 184
Zündstrom = firing current 141
Zündung = initiation 191
Zündverzug = functioning time 77; 147
Zündwilligkeit = ignitibility 184
Zustandsgleichung = equation of state 85; 120
zweibasige Pulver = double base propellants 114
Abel Test

In this test, which was proposed by Abel in 1875, the parameter determined is the time after which a moist potassium iodide starch paper turns violet or blue when exposed to gases evolved by one gram of the explosive at 180°F (82.2 °C).

In commercial nitroglycerine explosives, for example, this coloration only develops after 10 minutes or more. In a more sensitive variant of the method, Zinc iodide – starch paper is employed.

The Abel test is still used in quality control of commercial nitrocellulose, nitroglycerine and nitroglycol, but is currently no longer employed in stability testing of propellants.

Acceptor*)

Empfängerladung; charge réceptrice

A charge of explosives or blasting agent receiving an impulse from an exploding → Donor charge.

Acremite

This is the name given by the U.S. inventor Acre to his mixture of about 94% ammonium nitrate with 6% fuel oil. This mixture was at first prepared in a primitive manner by the users themselves to obtain a very cheap explosive for open pit mining under dry conditions. As → ANFO the material has widely displaced the conventional cartridged explosives.

Active Binders

Aktive Binder

In the realm of modern, nitric-ester-free → LOVA Gun Propellants, the widely used inert binders consume energy and to some extend have an undesirably high overall phlegmatizing effect on the explosive material. The high filler content of an explosive substance has a detrimental effect on the mechanical strength of this type of propellant.

An active binder would be a preferable alternative if it combined a high energy content with favorable mechanical properties, together with a thermal stability higher than that of → Nitrocellulose or of → Polyvinyl Nitrate while remaining relatively uncomplicated to process. At pre-
sent, the difficult task of developing such improved active binders has yielded only two usable compositions:

1. → Polynitropolyphenylene, a non-crystalline explosive material that withstands high temperatures. This polymer is a gelatinous type of binder and is combined with small amounts of softeners, inert binders and → Hexogen or → Octogen. By means of organic solvents, it is processed into the corresponding LOVA composition.

2. → Glycidyl Azide Polymer, a gas-producing glycerin derivative. The glycidyl azide polymer belongs to the group of reactive polymers (thermoset materials) and is processed together with a main energy conductor, small amounts of softener, inert binders, curing agents and where necessary, accelerating agents. The type of acceleration and curing agents is determined not only by the final matrix structure, but also by the heat processing time of the respective composition and especially by the processing temperature.

Actuator*)

Mechanical device operated by a solid propellant.

Adiabatic*)

Occurring without gain or loss of heat; a change of the properties, such as volume and pressure of the contents of an enclosure, without exchange of heat between the enclosure and its surroundings.

adiabatic flame temperature

As applied to interior ballistics calculation, the temperature which the gaseous products of combustion of the propellant would attain if maintained at constant volume and without loss of energy to the surrounding medium.

isobaric adiabatic flame temperature

Adiabatic flame temperature attained under constant pressure conditions.

isochoric adiabatic flame temperature

Adiabatic flame temperature attained under constant volume conditions.

T Text quoted from glossary.
adiabatic temperature

The temperature attained by a system undergoing a volume or pressure change in which no heat enters or leaves the system.

Adobe Charge

Auflegerladung; pétardage

Synonymous with → Mud Cap

ADNR

ADNR is the abbreviation for “Accord européen relatif au transport international des marchandises dangereuses par voie de Navigation interieure”; the R stands for Rhine. This convention governs the conveyance of dangerous goods on the Rhine.

ADR

Abbreviation for “Accord Européen Relatif au Transport des Marchandises Dangereuses par Route” (regulations for packing and transportation of dangerous objects and materials by road). These regulations are largely based on → RID (Règlement International Concernant le Transport des Marchandises Dangereuses), which are applicable to transportation by railroad.

Transportation by shipment is regulated by → IMO.

Aerozin

A liquid fuel for rocket engines, which is composed of 50% anhydrous hydrazine and 50% asym-dimethylhydrazine.

AGARD

Abbreviation for the NATO Advisory Group for Aeronautical Research and Development.

Airbag

Gasgenerator

The basic idea of the airbag as a passive restraint system in a motor vehicle was already patented for the first time in Germany in 1951.
However, it was not until the end of the sixties that development was begun on the two basic types which have been manufactured up to the present day (almost) exclusively in series production and have regularly been built into motor cars starting in 1975 and in almost every case from 1990 onwards.

In the first case the gas bag (airbag) is inflated with hot gas, and in the second case the gas bag is filled using what is known as a hybrid gas generator in which the gas is permanently stored in a pressure vessel and can flow out after the pyrotechnic ignition. Since there is no need for this gas to be generated pyrotechnically, it acts as cold gas (indeed in most cases this gas is re-heated pyrotechnically so that it does not cool down too much as it expands). Both basic types of gas generator for airbags, the pyrotechnic and the hybrid gas generator, are used for driver, passenger and side airbags and have the following diagrammatic construction (see opposite page).

For subject matter reasons, hybrid gas generators will be presented only briefly. In the hybrid system the pre-pressurised gases (air, nitrogen, argon) are stored in high-pressure containers fitted with a bursting membrane. Opening this membrane by pyrotechnic means allows the gas to flow out into the airbag. The cooling of the expanding working gas is compensated or even over-compensated, again pyrotechnically. Since the total amount of pyrotechnic mixture is small in quantitative terms, the prescribed threshold values of the toxic impurities contained in the working gas can be adhered to relatively easily.

This, in addition to the ideal temperature of the working gas, is the main advantage of hybrid gas generators. The disadvantage of this version is the large weight of the gas cylinder, which is subject to the Pressure Vessel Regulations, and the high noise level that occurs when the sealing disk opens, because initially the full gas pressure is present.

The unique feature of almost all pyrotechnical gas generators (specifically on the driver side) is the concentric assembly of three different chambers with different designs corresponding to their pressure conditions and functions. The innermost chamber with the highest pressure resistance contains the igniter unit consisting of a plug, electrical igniter matchhead and the igniter mixture. Depending on the generator construction, a pre-ignition unit may also be installed, whose task is to ignite the gas mixture without an electric current in the event of exposure to elevated external temperature – for example during a fire. During normal electrical ignition, the thin resistance wire of the igniter matchhead is heated to melting point and the ignition train started. As the ignition mixture burns away – usually a boron/potassium nitrate mixture – the resulting hot gases and particles flow through the peripheral holes and into the combustion chamber filled with the gas mixture, which is arranged concentrically around the igniter chamber.
Fig. 1. Sectional diagram of a pyrotechnical gas generator for airbags

1. Ignition chamber 7. Nozzle holes
2. Igniter unit 8. Filter chamber
3. Pre-ignition unit 9. Filter
4. Nozzle holes 10. Deflector plate
5. Gas mixture 11. Filter chamber apertures

Fig. 2. Sectional diagram of a hybrid gas generator for airbags

1. Hybrid generator housing
2. Igniter
3. Pyrotechnic mixture
4. High-pressure vessel
5. Sealing disk
6. Filter pack
7. Pressure measurement device
and is designed for an operating pressure of 100–180 bar. The gas mixture consists of compressed tablets which, after ignition, burn to form the working gas and slag. The combustion products leave the combustion chamber through the nozzle holes. The low pressure region of the filter compartment is arranged around the combustion chamber. The filter compartment is fitted with various steel filters and deflector plates. In the filter compartment the hot gases are cooled down and freed from liquid/solid slag. The resulting working gas flows through the filter compartment apertures towards the gas bag. The liquid slag constituents must be cooled down to solidification in the filter compartment so that they can also be filtered out there. It is clear that the nature of the gas mixture – formerly called the propellant or propellant mixture – is exceptionally important with regard to providing the gas (fume) cloud during burn-up. The basic task of a gas generator is, when necessary, to supply sufficient non-toxic gas within approx. 40 ms to inflate the airbag to the specification pressure. From the mid-seventies to the mid-nineties the vast majority of gas mixtures in pyrotechnic gas generators were based on sodium azide. Sodium azide reacts with oxidising agents that bond chemically to the resulting sodium as the nitrogen is liberated. Established oxidisers include the alkali and alkaline earth nitrates, metal oxides (e.g. CuO, Fe2O3), metal sulphides (e.g. MoS2) and sulphur. If necessary, slag forming agents (e.g. SiO2, aluminosilicates) are also added.

The consequence of advances in environmental awareness is that gas mixtures containing azide are to be replaced because of the toxicity of their sodium azide, and this in spite of lower reaction temperature, purer nitrogen yield and greater long-term stability. However, one factor against sodium azide is that the correct disposal of unused gas mixtures throughout the world, which arise on a scale of thousands of tons per year, has not yet been guaranteed.

With regard to azide-free gas mixtures, there have been numerous patents and initial applications since the early nineties. These new gas mixtures generate more gas per gram (gas yields from gas mixtures containing NaN3: 0.30–0.35 l/g) and thus enable smaller and to some extent a more lightweight construction of the gas generators.

They can be classified into three categories:
1. High-nitrogen organic compounds (C, H, O, N) are combined with inorganic oxidisers:
 The fuels are, for example, 5-aminotetrazole, azodicarbonamide, → Guanidine nitrate, → Nitroguanidine, dicyandiamide, → Triamino-guanidine nitrate and similar compounds, as well as salts of, for example, 5-nitrobarbituric acid, urea derivatives and also nitraines and similar compounds. The oxidisers are, for example, alkali or alkaline earth nitrates, → Ammonium, alkali or alkaline earth perchlorates and metal oxides.
Gas yield of these mixtures: 0.50–0.65 l/g.

2. Cellulose nitrate in combination (gelation) with nitrate esters of polyols (plus → Stabilisers and plasticizers), e.g. NC/NGL (→ Nitroglycerine) or NC/EDDN (→ Ethylenediamine dinitrate).

Because of the unfavourable oxygen balance, it is necessary to secondary oxidise (e.g. with Hopcalite) to avoid excess CO formation. Despite favourable raw materials costs, the unfavourable storage stability, see below, must be noted here.

Gas yield of the mixture: 0.8–0.9 g/l (not including the secondary oxidation).

3. High-oxygen, nitrogen-free organic compounds (C, H, O) are blended with inorganic oxidisers. The fuels used are, for example, tri or dicarboxylic acids (e.g. citric acid, tartaric acid, fumaric acid) or similar compounds. The oxidisers used are especially perchlorates and chlorates with additional assistance from metal oxides. This enables any formation of NOx to be excluded.

Gas yield of the mixture: 0.5–0.6 l/g.

The gas mixtures are usually manufactured by grinding and blending the raw materials, which after a pre-compacting step are pressed into pellets or disks on (rotary table) presses, after which they are weighed out. Gas mixtures containing Nitrocellulose are moulded after gelatinising in the usual way.

The fact that the transition from gas mixtures containing azide to ones free from azide is not simple is attributable to the following problems

(a) The considerably higher combustion temperatures impose higher demands on both the gas generator housing and on the airbag.
(b) The cooling curve of the combustion gases is steeper and must be taken into account.
(c) Condensation/filtration of the liquid/solid slag components is more difficult because of the temperature (fine dust problem).
(d) Gas mixtures containing nitrocellulose can cause difficulties in the long-term temperature test (400 hours at 107 °C, specification weight loss: < 3%) and during temperature cycling storage (→ exudation).
(e) The long-term stability of the various azide-free gas mixtures is not yet sufficiently known.
(f) Despite an equilibrated oxygen balance, there is a tendency during the combustion of organic substances for toxic gases to be formed as by-products, although these are limited as follows:
<table>
<thead>
<tr>
<th>Effluent Gas</th>
<th>Vehicle Level Limit</th>
<th>Driverside Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (Cl₂)</td>
<td>5 ppm</td>
<td>1.7 ppm</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>600 ppm</td>
<td>200 ppm</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>20,000 ppm</td>
<td>6,700 ppm</td>
</tr>
<tr>
<td>Phosgene (CoCl₂)</td>
<td>1 ppm</td>
<td>0.33 ppm</td>
</tr>
<tr>
<td>Nitric Oxide (NO)</td>
<td>50 ppm</td>
<td>16.7 ppm</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>20 ppm</td>
<td>60.7 ppm</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td>150 ppm</td>
<td>50 ppm</td>
</tr>
<tr>
<td>Hydrogen Chloride (HCl)</td>
<td>25 ppm</td>
<td>8.3 ppm</td>
</tr>
<tr>
<td>Sulphur Dioxide (SO₂)</td>
<td>50 ppm</td>
<td>16.7 ppm</td>
</tr>
<tr>
<td>Hydrogen Sulphide (H₂S)</td>
<td>50 ppm</td>
<td>16.7 ppm</td>
</tr>
<tr>
<td>Benzene (C₆H₆)</td>
<td>250 ppm</td>
<td>83.3 ppm</td>
</tr>
<tr>
<td>Hydrogen Cyanide (HCN)</td>
<td>25 ppm</td>
<td>8.3 ppm</td>
</tr>
<tr>
<td>Formaldehyde (HCHO)</td>
<td>10 ppm</td>
<td>3.3 ppm</td>
</tr>
</tbody>
</table>

In the case of the azide-free gas mixtures, there is currently no recognisable trend towards any particular fuel, since the size of the market entails a large range of variants with different requirements.

For example liquid gas generators are described in which carbon-free compounds are used and which can also be reacted to form working gases without any slag, e.g. systems consisting of hydrazine/hydrazine nitrate.

Air Blast*)

* Text quoted from glossary.

Air Blast*

* Text quoted from glossary.

Air Blast)

* Text quoted from glossary.

Air Blast

Druckwelle; onde de choc

The airborne shock wave or acoustic transient generated by an explosion → Detonation.

Airdek

A new presplitting system in open air coal mines promoted by ATLAS

Air Loaders

Blasgeräte; chargeurs pneumatiques

Air loaders serve to charge prilled → ANFO blasting agents into boreholes. If the free-running prills cannot be charged by pouring (horizontal boreholes or with a very small ascending or descending slope,
boreholes with a small diameter), they can be introduced with the aid of air loaders. This is done by loading the charge into a pressurized vessel and applying an air pressure of about 4 atm; a valve at the lowest point of the machine, which can be controlled from the borehole to be filled, leads to a long hose; when the valve is opened, a stream of air containing the explosive charge in suspension, is sent through it into the borehole. Other, portable machines work on the injector principle.

Akardite I
diphenylurea; Diphenylharnstoff; diphénylurée

\[\text{C}_13\text{H}_{12}\text{N}_2\text{O} \]

- colorless crystals
- empirical formula: \(\text{C}_{13}\text{H}_{12}\text{N}_2\text{O} \)
- energy of formation: \(-117.3 \text{ kcal/kg} - 490.6 \text{ kJ/kg}\)
- enthalpy of formation: \(-138.2 \text{ kcal/kg} - 578.2 \text{ kJ/kg}\)
- oxygen balance: \(-233.7\)
- nitrogen content: 13.21\%
- density: 1.276 g/cm\(^3\)

Akardite I serves as \(\rightarrow\) Stabilizer for gunpowders, in particular for \(\rightarrow\) Double Base Propellants.

Specifications

- melting point: at least 183 °C = 361°F
- moisture: not more than 0.2 %
- ashes: not more than 0.1 %
- chlorides: not more than 0.02 %
- pH value: at least 5.0
- acid, n/10 NaOH/100 g: not more than 2.0 cm\(^3\)

Akardite II
methyl diphenylurea; Methyldiphenylharnstoff; \(N\)-méthyl-\(N\)', \(N\)'diphénylurée

\[\text{C}_13\text{H}_{12}\text{N}_2\text{O} \]
colorless crystals
empirical formula: $C_{14}H_{14}N_2O$
molecular weight: 226.3
energy of formation: -90.5 kcal/kg $= -378.5$ kJ/kg
enthalpy of formation: -112.7 kcal/kg $= -471.5$ kJ/kg
oxygen balance: -240.4%
nitrogen content: 12.38%

Akardite II is an effective → Stabilizer for double base gunpowders

Specifications
same as for Akardite I, except
melting point: at least 170–172 °C $= 338–342^\circ$F

Akardite III

ethyldiphenylurea; Ethyldiphenylharnstoff; N-ethyl-N', N'-diphenylurée

\[
\begin{array}{c}
\text{C}_2\text{H}_5 \\
\text{O=\(C\)} \\
\text{C}_6\text{H}_5 \\
\text{C}_6\text{H}_5 \\
\text{N} \\
\end{array}
\]

colorless crystals
empirical formula: $C_{15}H_{16}N_2O$
molecular weight: 240.3
energy of formation: -128.5 kcal/kg $= -537.7$ kJ/kg
enthalpy of formation: -151.9 kcal/kg $= -635.5$ kJ/kg
oxygen balance: -246.3%
nitrogen content: 11.65%

Akardite III is an effective → Stabilizer for double base propellants. Both Akardite II and Akardite III are gelatinizers as well as → Stabilizers.

Specifications
same as for Akardite I, except
melting point: at least 89 °C $= 192^\circ$F

Alginates

Salts of alginic acid which are capable of binding 200–300 times their own volume of water. They are added as swelling agents to explosive mixtures in order to improve their resistance to moisture, and to → Slurries to increase viscosity.
All Fire*)

Minimal-Zündimpuls; ampèrage minime d’amorçage

Minimum ampèrage that must be applied to a bridgewire circuit to reliably ignite the surrounding material without regard to time of operation.

Aluminum Powder

Aluminiumpulver; poudre d’aluminium

Aluminum powder is frequently added to explosives and propellants to improve their efficiency. No gaseous products are formed (the reaction product aluminum oxide is solid), but since the heat of formation of the oxide is very high (396 kcal/mol = 1658 kJ/mol; 3883 kcal/kg = 16260 kJ/kg), the addition of aluminum results in a considerable gain in the heat of explosion, and a higher temperature is imparted to the fumes. It is believed that aluminum may not completely react in the primary detonation wave front, and the reaction proceeds to completion in the fume zone (“post-heating”). If the proportion of aluminum in the explosive formulation is extremely high, a gas impact effect results, since subsequent mixing of the unreacted parts of the fumes with atmospheric oxygen may produce a delayed second explosion.

Widely used mixtures of explosives with aluminum powder include → Ammonals, → DBX, → HBX-1, → Hexal, → Minex, → Minol, → Torpex, → Trialenes, → Tritonal and Hexotonal.

The performance effect produced by aluminum powder is frequently utilized in → Slurries, also in → Composite Propellants.

Important characteristics of aluminum powders are shape and grain size of the powder granules. Waxed and unwaxed qualities are marketed. Propellant formulations often prescribe systematically varied grain sizes for obtaining optimal densities.

Amatex

A pourable mixture of trinitrotoluene, ammonium nitrate and RDX

Amatols

Pourable mixtures of ammonium nitrate and trinitrotoluene of widely varying compositions (40:60, 50:50, 80:20). The composition 80:20 may be loaded e.g. into grenades using a screw press (extruder).

* Text quoted from glossary.
Ammonals

Compressible or pourable mixtures containing ammonium nitrate and aluminum powder; the pourable mixtures contain → TNT

Ammongelit 2; 3

Trade names of ammonium nitrate – nitroglycol-based gelatinous explosives distributed in Germany and exported by DYNAMIT NOBEL and WASAGCHEMIE.

<table>
<thead>
<tr>
<th>Ammongelit</th>
<th>Density g/cm³</th>
<th>Weight Strength %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.45</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>84</td>
</tr>
</tbody>
</table>

Ammonit 2

Trade name of a cartridged powder-form explosive containing ammonium nitrate distributed in Austria by DYNAMIT NOBEL WIEN.

density of cartridge: 1,1 g/cm³
weight strength: 79 %
detonation velocity 4000 m/s = 13100 ft/s
at cartridge density, confined

Ammonit 3

Trade name of a powder-form ammonium nitrate – aluminum-based capsensitive industrial explosive distributed in Germany and exported by WASAGCHEMIE. It is supplied in large diameter cartridges which are contained in two-layered plastic tubes and serves especially for avalanche blastings.

density of cartridge: 0.96 g/cm³
weight strength: 88 %

Ammonium Azide

Ammoniumazid; azoture d’ammonium

(NH₄)N₃
Ammonium azide is prepared by introducing a solution of ammonium chloride and sodium azide into dimethylformamide at 100 °C. The solvent is then drawn off in vacuum. Owing to its high vapor pressure, this compound has not yet found any practical application.

Vapor pressure:

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>29.2</td>
<td>84.6</td>
</tr>
<tr>
<td>7</td>
<td>49.4</td>
<td>121.0</td>
</tr>
<tr>
<td>13</td>
<td>59.2</td>
<td>138.6</td>
</tr>
<tr>
<td>27</td>
<td>69.4</td>
<td>157.0</td>
</tr>
<tr>
<td>54</td>
<td>80.1</td>
<td>176.2</td>
</tr>
<tr>
<td>80</td>
<td>86.7</td>
<td>188.1</td>
</tr>
<tr>
<td>135</td>
<td>95.2</td>
<td>203.4</td>
</tr>
<tr>
<td>260</td>
<td>107.7</td>
<td>225.9</td>
</tr>
<tr>
<td>530</td>
<td>120.4</td>
<td>248.7</td>
</tr>
<tr>
<td>1010</td>
<td>133.8</td>
<td>272.8</td>
</tr>
</tbody>
</table>

Ammonium Chloride

Ammoniumchlorid; chlorure d’ammonium

\[\text{NH}_4\text{Cl} \]

colorless crystals
molecular weight: 53.49
energy of formation: \(-1371.6 \text{ kcal/kg} = -5738.9 \text{ kJ/kg}\)
enthalpy of formation: \(-1404.9 \text{ kcal/kg} = -5878.1 \text{ kJ/kg}\)
oxygen balance: \(-44.9\%\)
nitrogen content: 26.19%
sublimation point: 335 °C = 635°F
Ammonium chloride serves as a partner component to alkali nitrates in the so-called inverse salt-pair (ion-exchanged) explosives (→ Permitted Explosives).

Specifications

- net content: at least 99.5%
- moisture: not more than 0.04%
- glow residue: not more than 0.5%
- Ca; Fe; SO₄; NO₃: not more than traces
- pH value: 4.6–4.9

Ammonium Dichromate

Ammoniumdichromat; dichromate d’ammonium

\[(\text{NH}_4)_2\text{Cr}_2\text{O}_7\]

- orange red crystals
- molecular weight: 252.1
- energy of formation: \(-1693.1\) kcal/kg = \(-7083.9\) kJ/kg
- enthalpy of formation: \(-1713.1\) kcal/kg = \(-7167.4\) kJ/kg
- oxygen balance: ± 0%
- nitrogen content: 11.11%
- density: 2.15 g/cm³

Ammonium dichromate decomposes on heating, but is not an explosive. It is a component of pyrotechnical charges, and is an effective additive which is introduced into ammonium nitrate-based propellants in order to catalyze the decomposition reaction.

Ammonium dinitramide

Ammoniumdinitramid; ADN

\[\text{NH}_4\left[\text{NO}_2\right]^{\text{\oplus}}\]

- empirical formula: \(\text{H}_4\text{N}_4\text{O}_4\)
- molecular weight: 124.06
- energy of formation: \(-259.96\) kcal/kg = \(-1086.6\) kJ/kg
- enthalpy of formation: \(-288.58\) kcal/kg = \(-1207.4\) kJ/kg
- oxygen balance: +25.8%
- nitrogen content: 45.1%
- volume of explosion gases: 1084 l/kg
Ammonium dinitramide is obtained by ammonolysis of dinitroamines, which are formed by the step-wise nitration of urethanes, β,β-iminodipropionitrile or nitramide. The last nitration step in each case requires the most powerful nitration reagents such as nitronium tetrafluoroborate or dinitrogen pentoxide. Other methods pass via the direct nitration of ammonia with dinitrogen pentoxide to a mixture of ADN and Ammonium Nitrate or the nitration of ammonium sulfamate with nitric acid to a mixture of ADN and ammonium hydrogensulfate. On the basis of its good Oxygen Balance and high Enthalpy of Formation, ADN appears to be attractive as a halogen-free oxidising agent for solid rocket propellants and is currently the subject of intensive studies.

Ammonium Nitrate

Ammoniumnitrat; nitrate d’ammonium; AN

\[\text{NH}_4\text{NO}_3 \]

colorless crystals
molecular weight: 80.0
energy of formation: \(-1058.3\) kcal/kg = \(-4428.0\) kJ/kg
enthalpy of formation: \(-1091.5\) kcal/kg = \(-4567.0\) kJ/kg
oxygen balance: +19.99%
nitrogen content: 34.98%
volume of explosion gases: 980 l/kg
heat of explosion
\((\text{H}_2\text{O liq.}): 593\) kcal/kg = 2479 kJ/kg
\((\text{H}_2\text{O gas}): 345\) kcal/kg = 1441 kJ/kg
melting point: 169.6 °C = 337.3°F
lead block test: 180 cm\(^3\)/10 g
deflagration point:
begins decomposition at melting point, complete at
\(210\) °C = 410°F
impact sensitivity: up to 5 kp m = 50 Nm no reaction
friction sensitivity:
up to 36 kp = 353 N pistil load no reaction
critical diameter of steel sleeve test: 1 mm
Ammonium nitrate is hygroscopic and readily soluble in water (the saturated solution contains about 65% \(\text{NH}_4\text{NO}_3 \)). Transitions from one crystal form to another take place at +125.2 °C = 257.4°F, +84.2 °C = 183.6°F, +32.3 °C = 90.1°F and -16.9 °C = +1.6°F. The product shows a great tendency to cake. The difficulties therefore involved are avoided by transformation into → Prills. Ammonium nitrate is marketed as dense prills and as porous prills. Both can be introduced in industrial explosives after milling except → ANFO blasting agents, which need unmilled porous prills.

Ammonium nitrate is the most important raw material in the manufacture of industrial explosives. It also serves as a totally gasifiable oxygen carrier in rocket propellants.

Specifications

- net content (e.g. by N-determination): at least 98.5%
- glow residue: not sandy, and not more than 0.3%
- chlorides, as \(\text{NH}_4\text{Cl} \): not more than 0.02%
- nitrites: none
- moisture: not more than 0.15%
- \(\text{Ca; Fe; Mg} \): not more than traces
- reaction: neutral
- Abel test at 82.2 °C = 180°F: at least 30 min.
- \(\text{pH} \): 5.9±0.2
- solubles in ether: not more than 0.05%
- unsolubles in water: not more than 0.01%
- acidity, as \(\text{HNO}_3 \): not more than 0.02%

Specifications for prills

- boric acid: 0.14±0.03%
- density of grain: at least 1.50 g/cm³
- bulk density: at least 0.8 g/cm³

Ammonium Nitrate Explosives

Ammonsalpeter-Sprengstoffe; explosifs au nitrate d’ammonium

Ammonium nitrate explosives are mixtures of ammonium nitrate with carbon carriers such as wood meal, oils or coal and sensitizers such as → Nitroglycerol or → TNT and → Dinitrotoluene. They also may contain → Aluminum Powder to improve the → Strength. Such mixtures
can be cap-sensitive. The non-cap-sensitive ones are classed as → Blasting agents.

Mixtures of porous ammonium nitrate prills with liquid hydrocarbons, loaded uncartridged by free pouring or by means of → Air Loaders are extensively used under the name ANFO blasting agents.

The resistance to moisture of powder-form ammonium nitrate explosives and blasting agents is low, but can be improved by addition of hydrophobic agents (e.g. calcium stearate). The densities of the powders are about 0.9–1.05 g/cm³.

Higher density and better water resistance are obtained using gelatinous ammonium nitrate explosives. They are based on ammonium nitrate and 20–40% gelatinized nitroglycerol or a nitroglycerine-nitroglycerol mixture. The German Ammongelites also contain low-melting TNT-dinitrotoluene mixtures. Ammonium nitrate gelatins have widely replaced the elder sodium nitrate-nitroglycerine gelignites. The density of the gelatinous explosives is about 1.5–1.6 g/cm³.

Water-containing ammonium nitrate mixtures with fuels are known as → Slurries and → Emulsion Slurries

Many permitted explosives are ammonium nitrate in powder form or gelatinous explosives with added inert salts such as rock salt or potassium chloride which reduce their explosion temperature.

Ammonium Perchlorate

Ammonium perchlorate; perchlorate d’ammonium; APC

\[\text{NH}_4\text{ClO}_4 \]

- colorless crystals
- molecular weight: 117.5
- energy of formation: \(-576.5\) kcal/kg = \(-2412.0\) kJ/kg
- enthalpy of formation: \(-601.7\) kcal/kg = \(-2517.4\) kJ/kg
- oxygen balance: +34.04%
- nitrogen content: 11.04%
- volume of explosion gases: 799 l/kg
- heat of explosion (H₂O liq.): 471 kcal/kg = 1972 kJ/kg
- density: 1.95 g/cm³
- melting point: decomposition on heating
- lead block test: 195 cm³/10 g
- deflagration point: 350 °C = 662°F
- impact sensitivity: 1.5 kp m = 15 N m

Ammonium perchlorate is prepared by neutralizing ammonia by perchloric acid. It is purified by crystallization.

Ammonium perchlorate is the most important oxygen carrier for → Composite Propellants. Unlike alkali metal perchlorates, it has the
advantage of being completely convertible to gaseous reaction products.

Specifications

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grade A</th>
<th>Grade B</th>
<th>Grade C</th>
</tr>
</thead>
<tbody>
<tr>
<td>net content: at least</td>
<td>99.0%</td>
<td>99.0%</td>
<td>98.8%</td>
</tr>
<tr>
<td>water-insolubles: not more than</td>
<td>0.03%</td>
<td>0.01%</td>
<td>0.25%</td>
</tr>
<tr>
<td>bromates, as NH₄BrO₃: not more than</td>
<td>0.002%</td>
<td>0.002%</td>
<td>0.002%</td>
</tr>
<tr>
<td>chlorides, as NH₄Cl: not more than</td>
<td>0.15%</td>
<td>0.10%</td>
<td>0.15%</td>
</tr>
<tr>
<td>chromates, as K₂CrO₄: not more than</td>
<td>0.015%</td>
<td>0.015%</td>
<td>0.015%</td>
</tr>
<tr>
<td>iron, as Fe: not more than</td>
<td>0.003%</td>
<td>0.003%</td>
<td>0.003%</td>
</tr>
<tr>
<td>residue from sulfuric acid fuming: not more than</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>moisture: not more than</td>
<td>0.08%</td>
<td>0.05%</td>
<td>0.08%</td>
</tr>
<tr>
<td>surface moisture: not more than</td>
<td>0.020%</td>
<td>0.015%</td>
<td>0.020%</td>
</tr>
<tr>
<td>ash, sulfated: not more than</td>
<td>0.25%</td>
<td>0.15%</td>
<td>0.45%</td>
</tr>
<tr>
<td>chlorate as NH₄ClO₃: not more than</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Na and K: not more than</td>
<td>0.08%</td>
<td>0.05%</td>
<td>0.08%</td>
</tr>
<tr>
<td>Ca₃(PO₄)₂: none</td>
<td>none</td>
<td>0.15-0.22%</td>
<td></td>
</tr>
<tr>
<td>pH:</td>
<td>4.3–5.3</td>
<td>4.3–5.3</td>
<td>5.5–6.5</td>
</tr>
</tbody>
</table>

Granulation classes

Class 1 – Through 420 and 297 micron sieve, retained on 74 micron sieve.
Class 2 – Through 297 micron sieve.
Class 3 – Through 149 micron sieve.
Class 4 – 50 to 70 % through 210 micron sieve.
Class 5 – Through 297 micron sieve, retained an 105 micron sieve.
Class 6 – 89 to 97 % through 297 micron sieve.
Class 7 – 45 to 65 % through 420 micron sieve.
Ammonium Picrate

ammonium-2,4,6-trinitrophenolate; Ammonpikrat; picrate d’ammonium; explosive D

![Chemical structure of Ammonium Picrate](image)

- empirical formula: C₆H₆N₄O₇
- molecular weight: 246.1
- energy of formation: −355.0 kcal/kg = −1485.2 kJ/kg
- enthalpy of formation: −375.4 kcal/kg = −1570.7 kJ/kg
- oxygen balance: −52.0%
- nitrogen content: 22.77%
- volume of explosion gases: 909 l/kg
- heat of explosion
 - (H₂O liq.): 686 kcal/kg = 2871 kJ/kg
 - (H₂O gas): 653 kcal/kg = 2732 kJ/kg
- density: 1.72 g/cm³
- melting point: 280 °C = 536°F (decomposition)
- lead block test: 280 cm³/10 g
- detonation velocity: 7150 m/s = 23500 ft/s at ρ = 1.6 g/cm³
- deflagration point: 320 °C = 608°F
- impact sensitivity: at 2 kp m = 19 N m no reaction

Ammonium picrate is soluble in water, alcohol and acetone, and is practically insoluble in ether. It is prepared by saturating an aqueous solution of picric acid with ammonia; a red form is formed first which passes into the stable yellow form in the presence of water vapor, on prolonged storage or by recrystallization from water. Ammonium picrate has been employed as an explosive in military charges.

Amorces

This term denotes very small priming plates utilized in children’s toys. They contain an impact-sensitive mixture of potassium chlorate and red phosphorus.

The French word “amorce” means all of initiating or inflaming devices.
Andex 1; 2

Trade names of → ANFO explosives marketed in Germany by MSW-CHEMIE, DYNAMIT NOBEL and WASAGCHEMIE in 25-kg carton packs or in containers of about 900 kg capacity. Andex 2 contains a small percentage of rock salt.

Andex 1:
- bulk density: 0.9 g/cm³
- weight strength: 75%

ANFO

An abbreviation for ammonium nitrate fuel oil, a blasting agent composed of ammonium nitrate and liquid hydrocarbons. The application technique of these mixtures has now become very much easier owing to the fact that the material, which has a strong tendency to agglomeration, is commercially produced as porous prills. These are granules solidified from the liquid melt, sufficiently porous to take up about 6% of the oil, which is the amount needed to produce oxygen balance. The nitrate, and the explosive produced from it retain their free flowing capacity.

The explosive must be utilized in the form of a continuous column, and must be ignited by a powerful primer. This means that it must be poured loose (not as cartridges) into the borehole, or else blown into it with on → Air Loader.

Its manufacture is very cheap, and may even take place on continuous mixers an wheels. The material has now almost completely replaced conventional explosives in cartridge form in open-pit mining and in potash mining.

- density: 0.9 g/cm³
- weight strength: 75%

“Heavy Anfo” is a 50/50-mixture of Anfo and → Emulsion Slurries – which as higher loading densities with poured Anfo alone.

APU*)

(Auxiliary Power Unit) – Propellant-powered device used to generate electric or fluid power.

* Text quoted from glossary.
Aquarium Test

The parameter which is measured in this test is the pressure of underwater explosion. Lead or copper membranes are employed, and the membrane deformation as a function of the performance of the explosive and of the distance from the explosion site is estimated. The measuring apparatus, consisting of piston and anvil, resembles the Kast brisance meter. An alternative technique is to measure the deformation of diaphragms or copper discs accommodated inside an air-containing vessel such as a can.

In addition to the mechanical method described there are also electro-mechanical measuring techniques in which the impact pressure is recorded by an oscillograph with the aid of a piezoquartz crystal.

The measurements can be carried out in natural waters. A basin, made of steel concrete and bulkhead steel, has a buffering floor made of to foamed polystyrene. Air is blown in along the bulkhead walls for damping purposes, so that an “air curtain” is formed.

→ Underwater Detonations.

Argon Flash

Argon-Blitz; éclair par détonation dans l’argon

The intensity of the light appearing during a detonation is caused, primarily by compression of the surrounding air.

If the air is replaced by a noble gas such as argon, the light intensity increases considerably. The duration of the flash is only as long as that of the explosion, i.e., of the order of a few μs.

The recently developed ultra-short flash lamps work on the principle of detonation of an explosive in an argon medium. They are particularly suited to the illumination of detonation processes, since the detonation moment of the lamp can be accurately adjusted to the course of the detonation of the test specimen.

The intensity of the method can be considerably increased and the explosion time considerably reduced if the detonation impact travelling from the explosive through the argon medium is made to turn back. This can be achieved by interposing a mass, which may be very small, such as an 0.2 mm-thick acetate foil, as an obstacle. The same effect can also be produced by using curved glass, such as a watch glass.

Armor Plate Impact Test

This is a test developed in the USA to study the behavior of a given explosive, employed as charge in a projectile, on impact against hard,
solid targets. The explosive is charged into the test projectile and is fired from a “gun” against a steel plate. The impact velocity which causes the charge to detonate is determined. The test description: → Susan Test.

Armstrong Blasting Process

This is an extraction method in the USA in coal mining. The highly Compressed (700–800 atm) air in the borehole is suddenly released by means of so-called blasting tubes equipped with bursting discs. The compressed air is generated underground by special compressors (→ also Gas Generators).

A similar method has received the name Airdox. The bursting elements in the blasting tubes have a different construction; the compressed air utilized in the method can be generated overground and distributed over a network of ducts.

ARRADCOM

US Army Armament Research and Development Command; Picatinny Arsenal Dover, New Jersey, USA

Center for research, development, approval and documentation on weapons and military materials.

Audibert Tube

Audibert-Rohr

This testing apparatus, which was first proposed by Audibert and Delmas, measures the tendency to → Deflagration of a permitted explosive. A cartridge containing the test sample is placed, with its front face open, in the tube and is packed tightly on all sides with coal dust. An incandescent spiral is placed in the cartridge opening; if the material is difficult to ignite (e.g. inverse salt-pair permissibles) the spiral is covered with a flammable igniter mixture. The tube is then closed by a perforated plate. The parameter measured is the minimum hole diameter at which the initiated deflagration arrives at the bottom of the cartridge.

In a modification of the method two cartridges placed coaxially one an top of the other are tested.
Aurol

T-Stoff, Ingolin

Concentrated (88–86%) hydrogen peroxide. It is employed in liquid fuel rocket engines as → Oxidizer or, after catalytic decomposition, as → Monergol. For its explosive properties, see Haeuseler, Explosivstoffe 1, pp. 6–68 (1953).

AUSTROGEL G1

AUSTROGEL G1 is a safe-to-handle, cap-sensitive gelatinous ammonium nitrate explosive. This successor explosive replacing → Gelatine Donarit 1 does not contain any nitro-aromatics harmful to health such as → Dinitrotoluene and → Trinitrotoluene, and is manufactured by the DYNAMIT NOBEL Wien Company.

Average Burning Rate*)

Mittlere Abbrandgeschwindigkeit; vitesse moyenne de combustion

The arithmetic mean (statistical average) burning rate of pyrotechnic or propellants at specific pressures and temperatures. Dimension – length/time or mass/time.

Azides

Azide; azotures

Azides are salts of hydrazoic acid (N₃H). Alkali metal azides are the most important intermediates in the production of → Lead Azide.

Sodium azide is formed by the reaction between sodium amide (NaNH₂) and nitrous oxide (N₂O). Sodium amide is prepared by introducing gaseous ammonia into molten sodium.

Ballistic Bomb

closed vessel, ballistische Bombe, bombe pour essais ballistiques (→ Burning Rate)

The ballistic bomb (pressure bomb, manometric bomb) is used to study the burn-up properties of a → Gunpowder or → Propellant charge powder. It consists of a pressure-resistant (dynamic loading up to about 1000 MPa (10000 bar) hollow steel body that can be bolted

* Text quoted from glossary.
Aurol

* T-Stoff, Ingolin

Concentrated (88–86%) hydrogen peroxide. It is employed in liquid fuel rocket engines as → Oxidizer or, after catalytic decomposition, as → Monergol. For its explosive properties, see Haeuseler, Explosivstoffe 1, pp. 6–68 (1953).

AUSTROGEL G1

AUSTROGEL G1 is a safe-to-handle, cap-sensitive gelatinous ammonium nitrate explosive. This successor explosive replacing → Gelatine Donarit 1 does not contain any nitro-aromatics harmful to health such as → Dinitrotoluene and → Trinitrotoluene, and is manufactured by the DYNAMIT NOBEL Wien Company.

Average Burning Rate*)

Mittlere Abbrandgeschwindigkeit; vitesse moyenne de combustion

The arithmetic mean (statistical average) burning rate of pyrotechnic or propellants at specific pressures and temperatures. Dimension – length/time or mass/time.

Azides

Azide; azotures

Azides are salts of hydrazoic acid (N$_3$H). Alkali metal azides are the most important intermediates in the production of → Lead Azide.

Sodium azide is formed by the reaction between sodium amide (NaNH$_2$) and nitrous oxide (N$_2$O). Sodium amide is prepared by introducing gaseous ammonia into molten sodium.

Ballistic Bomb

closed vessel, ballistische Bombe, bombe pour essais ballistiques (→ Burning Rate)

The ballistic bomb (pressure bomb, manometric bomb) is used to study the burn-up properties of a → Gunpowder or → Propellant charge powder. It consists of a pressure-resistant (dynamic loading up to about 1000 MPa (10000 bar) hollow steel body that can be bolted

* Text quoted from glossary.
together and has a hole to accommodate a piezoelectric pressure transducer. The pressure p in the bomb is measured as a function of time t.

As a rule, studies of powder in the pressure bomb are carried out in comparison with a powder of known ballistic performance. They are very useful both in the development of powders and in production monitoring.

If the dynamic liveliness $L (= 1/p_{\text{max}} * \text{dln}p/\text{df})$ is determined as a function of p/p_{max} from the primary measured signal, then for a defined powder geometry the parameters characterising its burn-up, the linear burning rate $\dot{e} (\rightarrow \text{Burning Rate})$ and the pressure exponent α can be determined. Pressure bomb shots of the same powder at different charge densities $\delta (= \text{mass } m_c \text{ of powder}/\text{volume } V_B \text{ of the pressure vessel})$ enable the specific covolume η of the combustion gases from the powder and the force f (powder force) of the powder to be determined in addition. From these, if the $\rightarrow \text{Heat of Explosion } Q_{\text{Ex}}$ of the powder is known, the value of the average adiabatic coefficient φ ($= 1 + f/Q_{\text{Ex}}$) of the combustion gases, which is of interest for the ballistic performance, can be derived.

Since the combustion gases of powders satisfy Abel’s equation of state to a good approximation, it is possible by using the auxiliary parameters (ρ_c) density of the powder

$\Delta : = m_c/(V_B * \rho_c)$ ‘normalised charge density’ (1)

$\chi : = (1 - \eta \rho_c) * \Delta/(1 - \Delta)$ ‘real gas correction term’ (2)

$\Phi : = f \rho_c \Delta/(1 - \Delta)$ ‘characteristic pressure’ (3)

to write the relationship between the pressure p in the manometric bomb and the burnt volume proportion z of the powder as

$z(p/p_{\text{max}}) = p/p_{\text{max}}/[1 + \chi(1 - p/p_{\text{max}})]$ (4)

and

$p(z) = \Phi * z / (1 + \chi z)$.

Accordingly, the maximum gas pressure achieved at the end of burn-up ($z = 1$) is calculated as

$p_{\text{max}} = \Phi / (1 + \chi)$.

The dynamic liveliness L is calculated from

$L = \frac{S(0)}{V(0)} * \varphi(z) * \frac{\dot{e}(p_{\text{ref}})}{p_{\text{ref}}} * \left[\frac{p}{p_{\text{ref}}} \right]^{\alpha - 1} * \frac{1 + \chi}{(1 + \chi z)^2}$ (7)

$S(0)/V(0)$ is the ratio of the initial surface area to the initial volume of the powder,

$\varphi(z)$ is the shape function of the powder, which takes account of the geometrical conditions (sphere, flake, cylinder, N-hole
powder) during the burn-up ($\varphi(z) = \text{current surface area} / \text{initial surface area}$)

$\dot{e}(p_{\text{ref}})$ is the linear burning rate at the reference gas pressure p_{ref}

p_{ref} is the reference gas pressure and

α is the pressure exponent, which for many powders is close to 1.

To evaluate Eq. (7), z should be replaced by p/p_{max} using Eq. (4).

Figure 3 shows the time profile of the pressure in the manometric bomb for a typical 7-hole powder. Initially the pressure is increasingly steep, since burn-up takes place more quickly the higher the pressure.

![Pressure-time graph](image1)

Fig. 3. Pressure-time graph $p = f(t)$

![Dynamic liveliness vs. p/p_{max}](image2)

Fig. 4. Dynamic liveliness as a function of p/p_{max}
and in addition the burning surface of the powder becomes greater as the burn-up progresses (progressive burn-up). Towards the end of the burn-up the pressure profile levels out rapidly because the burning surface area of the powder becomes drastically smaller as soon as approx. 88% of the powder has been burnt.

Figure 4, which shows the calculated profile of the dynamic liveliness as a function of \(p/p_{\text{max}} \), again reflects essentially the shape of the form function for \(p/p_{\text{max}} > 0.2 \) (see Fig. 5). On the other hand for small values of \(p/p_{\text{max}} \), the dependence on \(p^{a-1} \) resulting for \(a = 0.9 \) is dominant. The kink in the shapes of the form function and the dynamic liveliness at \(p/p_{\text{max}} = 0.87 \) (disintegration of the powder granules into slivers) is greatly rounded off in the measured curves, because not all of the granules burn up at exactly the same time and small differences in geometry always arise (manufacturing tolerances).

Ballistic Mortar

ballistischer Mörser, mortier ballistique

An instrument for comparative determinations of the performance of different explosives. A mortar, provided with a borehole, into which a snugly fitting solid steel projectile has been inserted, is suspended at the end of a 10 lt long pendulum rod. Ten grams of the explosive to be tested are detonated in the combustion chamber. The projectile is driven out of the mortar by the fumes, and the recoil of the mortar is a measure of the energy of the projectile; the magnitude determined is the deflection of the pendulum. This deflection, which is also known as
weight strength, is expressed as a percentage of the deflection produced by blasting gelatine, arbitrarily taken as 100. Also, relative values referring to the deflection produced by TNT are listed, especially for explosives of military interest.

This method, which is commonly employed in English-speaking countries, and which is suited for the experimental determination of the work performed by the explosive, has now been included in the list of standard tests recommended by the European Commission for the Standardization of Explosive Testing.

An older comparison scale is “grade strength”, which determines the particular explosive in standard “straight” dynamite mixtures (the mixtures contain ungelatinized nitroglycerine in different proportions, sodium nitrate and wood or vegetable meal (→ Dynamites) which gives a pendulum deflection equal to that given by the test material. The percentage of nitroglycerine contained in the comparative explosive is reported as grade strength.

The grade strength percentage is not a linear indicator of the performance of the explosive; the performance of a 30% dynamite is more than half of the performance of a 60% dynamite, because the fuel-oxidizer mixtures as well as nitroglycerine also contribute to the gas- and heat-generating explosive reaction.
For comparison of weight strength values with other performance tests and calculations → *Strength*.

Ball Powder

Kugelpulver, Globarpulver; poudre sphérique

Ball powder is a propellant with ball-shaped particles, produced by a special method developed by *Mathieson* (USA). A concentrated solution of nitrocellulose in a solvent which is immiscible with water (e.g., ethyl acetate) is suspended in water by careful stirring, so that floating spheres are formed. The solution is warmed at a temperature below the boiling point of the solvent, and the latter gradually evaporates and the floating spheres solidify.

Since the spherical shape is unfavorable from internal ballistical considerations (very degressive), follows, a thorough → *Surface Treatment*, the purpose of which is to sheathe the faster-burning core by a slower-burning shell.

BAM

Bundesanstalt für Materialforschung und -prüfung

D-12200 Berlin

Baratols

Pourable TNT mixtures with 10–20% barium nitrate.

Barium Chlorate

Bariumchlorat; chlorate de barium

\[
\text{Ba(ClO}_3\text{)}_2 \cdot \text{H}_2\text{O}
\]

colorless crystals
molecular weight: 322.3
energy of formation: \(-789.3 \text{ kcal/kg} = -3302.3 \text{ kJ/kg}\)
enthalpy of formation: \(-799.4 \text{ kcal/kg} = -3344.6 \text{ kJ/kg}\)
oxygen balance: +29.8%
density: 3.18 g/cm\(^3\)
melting point: 414 °C = 779°F
Barium chlorate and → *Barium Perchlorate* are used in pyrotechnical mixtures using green flames.

Barium Nitrate

Bariumnitrat; nitrate de barium: BN

\[
\text{Ba(NO}_3\text{)}_2
\]

- colorless crystals
- molecular weight: 261.4
- energy of formation: \(-898.2\text{ kcal/kg} = -3758.1\text{ kJ/kg}\)
- enthalpy of formation: \(-907.3\text{ kcal/kg} = -3796.1\text{ kJ/kg}\)
- oxygen balance: \(+30.6\%\)
- nitrogen content: \(10.72\%\)
- density: \(3.24\text{ g/cm}^3\)
- melting point: \(592\ ^\circ\text{C} = 1098\ ^\circ\text{F}\)

component in green flame pyrotechnicals and in ignition mixtures (with → *Lead Styphnate*).

Barium Perchlorate

Bariumperchlorat; perchlorate de barium

\[
\text{Ba(ClO}_4\text{)}_2 \cdot 3\text{H}_2\text{O}
\]

- colorless crystals
- molecular weight: 390.3
- oxygen balance: \(+32.8\%\)
- density: \(2.74\text{ g/cm}^3\)
- melting point: \(505\ ^\circ\text{C} = 941\ ^\circ\text{F}\)

An oxidizer in propellant formulations and for → *Pyrotechnical Compositions*.

Barricade

Schutzwall; merlon, écran

Barricades are grown-over earth embankments erected for the protection of buildings which may be endangered by an explosion. The overgrown height of the barricade must be at least one meter above the building to be protected. The required safety distances between explosive manufacture buildings or storage houses can be halved if the houses are barricaded.
Table 1. *Specifications*

<table>
<thead>
<tr>
<th></th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
<th>Class 4</th>
<th>Class 5</th>
<th>Class 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>net content by nitrogen analysis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at least</td>
<td>99.7%</td>
<td>99.0%</td>
<td>99.5%</td>
<td>99.5%</td>
<td>98.5%</td>
<td>99.5%</td>
</tr>
<tr>
<td>Sr: not more than</td>
<td>0.6%</td>
<td>–</td>
<td>0.6%</td>
<td>–</td>
<td>–</td>
<td>0.6%</td>
</tr>
<tr>
<td>Ca: not more than</td>
<td>0.05%</td>
<td>–</td>
<td>0.05%</td>
<td>–</td>
<td>–</td>
<td>0.05%</td>
</tr>
<tr>
<td>Al₂O₃ + Fe₂O₃: not more than</td>
<td>–</td>
<td>0.50%</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Na, as Na₂O: not more than</td>
<td></td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Chloride, as BaCl₂, not more than</td>
<td>0.0075%</td>
<td>0.0075%</td>
<td>0.0075%</td>
<td>0.0075%</td>
<td>–</td>
<td>0.0075%</td>
</tr>
<tr>
<td>grit: not more than</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
<td>–</td>
<td>0.05%</td>
</tr>
<tr>
<td>Fe and other metals</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>moisture: not more than</td>
<td>0.20%</td>
<td>0.10%</td>
<td>0.20%</td>
<td>0.20%</td>
<td>0.05%</td>
<td>0.10%</td>
</tr>
<tr>
<td>pH:</td>
<td>5.0–8.0</td>
<td>5.0–8.0</td>
<td>5.0–8.0</td>
<td>–</td>
<td>5.0–8.0</td>
<td>5.0–9.0</td>
</tr>
<tr>
<td>insoluble matter: not more than</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
Base-Bleed Propellants

Gas generating elements inserted in the bottom of projectiles. They consists of composite propellant formulations. The gas produced serves to fill up the vacuum behind the flying projectile. The range can be extended up to 30%.

Base Charge*)

*Sekundärladung; charge de base de détonateur

The main explosive charge in the base of a blasting cap, an electric blasting cap, or a non-electric delay cap.

Bazooka

A shaped-charge anti-tank weapon first used by the Americans in the Second World War; → Shaped Charges. Its operating method is identical with that of the “Panzerfaust” developed in Germany at that time.

B-Black Powder

*Sprengsalpeter; poudre noir au nitrate de soude

is a → Black Powder mixture which contains sodium nitrate instead of potassium nitrate. It is marketed and utilized in the form of compressed cylinder-shaped grains, 25 and 30 mm of diameter, with a central hole 5 mm in diameter.

Bengal Fireworks

→ Pyrotechnical Compositions.

Benzoyl Peroxide

*Benzoylperoxid; peroxyde de benzoyle

\[
\begin{array}{c}
\text{C} & \text{O} & \text{C} & \text{O} \\
\text{O} & \text{O}
\end{array}
\]

colorless crystals
empirical formula: \(\text{C}_{14}\text{H}_{10}\text{O}_{4} \)

* Text quoted from glossary.
molecular weight: 242.1
oxygen balance: –191.6%
melting and deflagration point: 107 °C = 225°F
impact sensitivity: 0.5 kp m = 5 N m
friction sensitivity: at 12 kp = 120 N pistil load
decomposition: at 24 kp = 240 N pistil load crackling
critical diameter of steel sleeve test: 10 mm

Benzoyl peroxide is sparingly soluble in water and alcohol, but soluble in ether, benzene and chloroform. It can be prepared by reaction of benzoyl chloride with sodium peroxide.

The explosion strength of the product is low, but its sensitivity relatively high.

The organic peroxides serve as catalysts for polymerization reactions. They must be wetted or phlegmatized (→ Phlegmatization) for transportation and handling.

Benzoyl peroxide can also be used as a bleaching agent for oils and fats.

Bergmann-Junk Test

A method, developed by Bergmann and Junk in 1904, for testing the chemical stability of nitrocellulose; it was also subsequently employed for testing single-base powders. The test tube, which contains the specimen being tested, and which is equipped with a cup attachment, is heated at 132 °C = 270.4°F for two hours (nitrocellulose) or five hours (single base powders). At the end of the heating period the sample is extracted with water, and the test tube filled to the 50-ml mark with the water in the cup. The solution is filtered, and the content of nitrous oxides is determined by the Schulze-Tiemann method on an aliquot of the filtrate.

The main disadvantage of the method is that nitrous compounds are only incompletely absorbed in water, especially since the atmospheric oxygen which has remained behind in the tube is expelled during heating or is displaced by the carbon dioxide evolved at the powder surface. Moreover, the results vary with the volume of the specimen employed, since differing volumes of water are required to fill the tube up to the mark in gelled and porous powders.

Hence suggested by Siebert suggested in 1942 the use of H₂O₂ rather than water as the absorption medium. He also suggested that the apparatus employed be redesigned, to avoid gas losses which occur when the cup attachment is taken off. In the new design, the cup is replaced by a large (over 50 ml) attachment resembling a fermentation tube, which need not be taken off during the extraction of the sample.
In this way quantitative determination of the liberated No, even in large amounts, becomes possible.

Siebert also suggested that the total acidity be determined by titration against N/100 NaOH, in the presence of Tashiro’s indicator. In this manner → Double Base Propellants can also be tested as well; the test is carried out at 115 °C, the duration of heating being 8 or 16 hours depending on the nitroglycerine content of the sample (or of similar products, e.g. → Diethyleneglycol Dinitrate).

Bichel Bomb

Bichel-Bombe; bombe Bichel

Used to study the composition and → Volume of Explosion Gases. It consists of a heavy steel case sealed by a screw cap. The construction withstands the dynamic shock of a detonating explosive sample. The gas developed can be vented by a valve in the screw cap for measurement of volume and for gas analysis.

The → Lead Block Test has been used for the same purpose: the block is sealed hermetically by a plug, and held in position by a steel construction. After detonation of the explosive sample in the block, the gas content has been vented by a special sealed drilling tool.

For the evaluation of the specific gas volume by computing → Thermo-dynamic Calculation of Decomposition Reactions.

BICT

Bundesinstitut für Chemisch-Technische Untersuchungen

German Federal institute for testing of and research on propellants and explosives for military purposes.

Since 01. 04. 97 the name of this institute has been changed "Wehrwissenschaftliches Institut für Werk-, Explosiv- und Betriebsstoffe (WIWEB)" (= Defence Scientific for Construction Materials, Explosives and Operating Materials).

Billet*)

Monolithic charge of solid propellant of any geometry; term usually applied to a formed propellant prior to final shaping (→ Grain).

* Text quoted from glossary.
Binder*)

Compositions that hold together a charge of finely divided particles and increase the mechanical strength of the resulting propellant grain when it is consolidated under pressure. Binders are usually resins, plastics, or asphaltics, used dry or in solution (→ Active Binders).

BITA

Abbreviation denotation for an aziridine curing agent in → Composite Propellants; it has the following structure:

![BITA structure]

empirical formula: C_{21}H_{27}O_{3}N_{3}
molecular weight: 369.24
density: 1.00 g/cm³

Bi-trinitroethylNitramine

Di (2,2,2-trinitroethyl)Nitramin; di-trinitroéthylNitramine; BTNENA, HOX = High Oxygen Explosive

![Bi-trinitroethylNitramine structure]

empirical formula: C_{4}H_{4}N_{8}O_{14}
molecular weight: 388.1
energy of formation: +2.8 kcal/kg = +11.9 kJ/kg
enthalpy of formation: −17.0 kcal/kg = −71.2 kJ/kg
oxygen balance: +16.5%
nitrogen content: 28.80%
volume of explosion gases: 693 l/kg
heat of explosion
(H₂O liq.): 1299 kcal/kg = 5436 kJ/kg
(H₂O gas): 1248 kcal/kg = 5222 kJ/kg

* Text quoted from glossary.
Bi-trinitroethylurea

Di (2,2,2-trinitroethyl)-Harnstoff; di-trinitroéthylure; BTNEU

\[
\begin{align*}
\text{empirical formula: } & C_5H_6N_8O_{13} \\
\text{molecular weight: } & 386.1 \\
\text{energy of formation: } & -178.5 \text{ kcal/kg} = -746.7 \text{ kJ/kg} \\
\text{enthalpy of formation: } & -199.2 \text{ kcal/kg} = -833.2 \text{ kJ/kg} \\
\text{oxygen balance: } & \pm 0\% \\
\text{nitrogen content: } & 29.02\% \\
\text{volume of explosion gases: } & 697 \text{ l/kg} \\
\text{heat of explosion } & \begin{cases}
(\text{H}_2\text{O liq.}): 1543 \text{ kcal/kg} = 6454 \text{ kJ/kg} \\
(\text{H}_2\text{O gas}): 1465 \text{ kcal/kg} = 6131 \text{ kJ/kg}
\end{cases} \\
\text{specific energy: } & 114 \text{ mt/kg} = 1119 \text{ kJ/kg}
\end{align*}
\]

are derivatives of trinitroethylalcohol, addition product of → Trinitromethane and formaldehyde.

Black Powder

Schwarzpulver; poudre noire

Black powder is a mechanical mixture of potassium nitrate, sulfur and charcoal, which is mostly pressed, granulated and classified into definite grain fractions. It faster deflagrates than it detonates; it is thus classified as a "low" explosive, compared to the detonating "high" explosives.

The standard composition is: 75 % potassium nitrate, 10 % sulfur and 15 % charcoal. There are also graded compositions containing 74, 70, 68 or 64 % potassium nitrate. Corresponding compositions based on sodium nitrate are known as → B-Black Powder.

The starting components are finely ground, mixed and compacted in rolling mills and then pressed into cakes in hydraulic presses. The cakes are then broken and grain-classified; the resulting granules are polished with the application of graphite.

When in granulated form, black powder can be freely poured into boreholes.

Black powder is sensitive to impact, friction, and sparks. It is suitable for controlled blastings in which the treatment of the stone must be
mild—e.g., in the manufacture of roofing slates, and in quarrying for paving stones.

It is employed in safety fuses, in pyrotechnics and in priming charges for smokeless powders. It is still the only suitable explosive for many purposes. It rapidly builds up pressure in relatively wear confinement. It does not detonate under normal conditions; the maximum rate of the explosion is about 500 m/s.

Blast Area*)

Sprengbereich (Absperrzone); chantier de tir

The area of a blast, including area immediately adjacent, within the influence of flying rock missiles.

Blaster*)

Sprengmeister; boutefeu

That qualified person in charge of, and responsible for, the loading and firing of a blast (same as shot firer).

Blasting Accessories*)

Sprengzubehör; accessoires pour sautage

Non-explosive devices and materials used in blasting, such as, but not limited to, cap crimpers, tamping bags, → Blasting Machines, Blasting Galvanometers, and cartridge punches.

Blasting Agents

The notion of a blasting agent was conceived in the USA. Contrary to high explosives, which may contain, say, nitroglycerine, and which are sensitive to blasting caps, the term “blasting agents” denotes relatively low-sensitive explosives, usually based on ammonium nitrate, which are insensitive to blasting caps and do not contain any high explosives such as nitroglycerine or TNT. In many countries (but not in Germany) the safety regulations governing the transport and storage of blasting agents are considerably less severe than those applicable to high explosives. N.C.N. is designated in the USA as an ammonium nitrate non-cap-sensitive explosive. The components are named by nitro: dinitrotoluene; by carbo: solid carbon carriers as fuel; by nitrate:

* Text quoted from glossary.
ammonium nitrate. Meanwhile, NCN as a shipping name has been removed by the US Department of Transportation and replaced by the shipping name “Blasting Agent”. A blasting agent has to be non-capsensitive (→ Cap Sensitivity). → ANFO explosives and most of → Slurries have to be classified as blasting agents.

Blasting Caps

Sprengkapseln; détonateurs

Blasting caps serve as initiators of explosive charges. They consist of a cylindrical copper or aluminum capsule containing a primary charge of an initiating explosive or a mixture of initiating explosives (e.g. lead azide with lead trinitroresorcinate); in order to achieve a higher brisance, they also contain a secondary charge of a highbrisance explosive (e.g. → Tetryl; → PETN; → Cyclonite).

A blasting cap can be ignited by the flame of a safety fuse or electrically. In the past, 10 standard types of blasting caps were marketed; these differed from each other by the quantity of the explosive in the charge and by their size. Currently, No. 8 blasting cap (0.3 g primary charge, 0.8 g secondary charge, 4–50 mm in length and 7.0 mm in external diameter) is, for all practical purposes, the main type of blasting cap on the market.

Blasting Galvanometer

→ *Circuit Tester.*

Blasting Gelatin

Sprenggelatine; dynamite-gomme

This product is one of the strongest commercial explosives. It consists of 92–94 % nitroglycerine, gelatinized with 6–8 % soluble guncotton.

Since such a high explosive strength is rarely required, blasting gelatin is scarcely ever used in practice.

Blasting gelatin is used as a comparitive explosive in determinations of relative weight strength (→ Ballistic Mortar).

Blasting Machines

Zündmaschinen; exploseurs

Blasting machines are used for electric firing of explosive charges by sending an electric pulse (indicated in mW·s/ohm) through the firing
circuit to the round of electric detonators connected in series. Except during the moment of actuation of the blasting machine, the entire electrical system is tensionless (unlike: → Blasting Switch).

In mines endangered by a potential firedamp explosion, the duration of the electric pulse must be limited to 4 ms with the aid of a triggering switch in the blasting machine, so that flying fragments cannot strike the firing circuit while the latter is still live, and then generate a short-circuit spark. Also, the housing must withstand an internal pressure of 10 atm, so that it cannot be destroyed by a burst due to intruded methane. These special conditions are only requested in blasting areas endangered by firedamp.

Two of blasting machines exist:

1) blasting machines with direct energy supply, equipped with a self-induction or a permanent magnet generator, which are made to rotate with the aid of a twist knob, impact knob or a spring extension, and

2) blasting machines with an indirect energy supply, in which the generated electrical energy is stored in a capacitor and, after the discharge voltage has been attained, the breakthrough pulse is sent to a blasting train (“CD Type”). A misfire due to incorrect handling is impossible.

Capacitor machines have now superseded direct-generation machines. In order to set off → Bridgewire Detonators, which are connected in parallel, the output of the machines must be particularly high, since more than 95% of the electric energy becomes lost in the blasting circuit. Special powerful machines are required to set off “HU”-(highly unsensitive) detonators for blastings carried out in high mountain areas and in other locations endangered by high-voltage induction; a very strong (3000 mW · s/ohm) priming pulse must be applied in such cases.

→ Bridgewire Detonators.

Blasting Mat*)

Sprengmatte; réseau de fils d’acier

A mat of woven steel wire, rope, scrap tires, or other suitable material or construction to cover blast holes for the purpose of preventing flying rock missiles.

* Text quoted from glossary.
Blasting Switch

Zündschalter, commande de tir, ignition switch

Device which actuates electric primers by using main voltage – in openpit and potash mining, for example. The switch can be located in a surface stand(shelter outside a mine) e.g. if the danger of gas outbursts exists.

Blastmeter

Blastmeters are simple devices which are used to determine the maximum pressure of a shock wave (→ p. 80) They consist of steel bodies into which holes of different diameters are drilled and covered with aluminum foil.

The smallest diameter is determined at which the foil covering is penetrated. The device can be calibrated by static pressure.

Bomb Drop Test

Serves to test the sensitivity of military explosives as bomb fillers. Bomb drops are made using bombs assembled in the conventional manner, as for service usage, but containing either inert or simulated fuzes. The target is usually reinforced concrete.

Boom Powder*)

A pyrotechnic ignition mixture designed to produce incandescent particles. A typical boom composition is:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Parts by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Oxide</td>
<td>50</td>
</tr>
<tr>
<td>Titanium (powdered)</td>
<td>32.5</td>
</tr>
<tr>
<td>Zirconium (powdered)</td>
<td>17.5</td>
</tr>
</tbody>
</table>

plus about 1 part of cellulose nitrate as a binder.

* Text quoted from glossary.
Booster

Verstärkungsladung, relais

A device to ensure → Initiation. A booster can be a cap-sensitive cartridge or press molded cylinder for the initiation of non-cap-sensitive charges, e.g. blasting agents or cast TNT. A booster is, in rocketry, a rocket device that accelerates the missile to attain the required speed after the start.

Booster Sensitivity Test

The booster sensitivity test procedure is a scaled-up modification of the Bruceton method (unconfined charge). The source of the shock consists of two Tetryl pellets, each 1.57 inches in diameter and 1.60 inches long, of approximately 100 g total weight. The initial shock is degraded through wax spacers of cast Acrawax B, 1–5/8 inches in diameter. The test charges are 1–5/8 inches diameter by 5 inches long. The value given is the thickness of wax in inches at the 50% detonation point. The weight of the Tetryl pellet noted is the minimum which will produce detonation with the spacer indicated.

Bootleg*)

Bohrlochpfeife; trou ayant fait canon

That part of a drilled blast hole that remains when the force of the explosion does not break the rock completely to the bottom of the hole (→ Large Hole Blasting).

Boss*)

Messanschlüsse; raccords de mesurage

Outlets provided in the generator case for hot gas flow, igniter, pressure measurement, and safety diaphragm.

Break*)

Spalt; fente

Cleft in the rock formation, especially in coal mines, which endangers blasting in fire damp areas; → Permitted Explosives.

* Text quoted from glossary.
Breech

Patronenkammer; chambre pour cartouche

Reloadable pressure vessel used to contain a propellant cartridge.

Bridgewire Detonator

Brückenähnder; amorce à pont

Bridgewire detonators are used in industrial detonation for the detonation of explosive charges. They contain an incandescent bridge made of thin resistance wire, which is made to glow by application of an electric pulse. An igniting pill is built around the wire by repeated immersion in a solution of a pyrotechnical material followed by drying. The igniting flash acts directly onto the detonating surface in the case of instantaneous detonators; in delayed-action detonators it is sent over a delay device onto the detonating surface of a blasting cap which has been pressed onto the detonating pill so as to produce a water-tight bond with it. Non-armed bridgewire detonators have an open casing, into which a blasting cap may be inserted.

The "U"-detonators which are now employed in mining in the Germany need a pulse of 16 mW·s/ohm; the earlier detonators required only 3 mW·s/ohm. Thus new detonators afford much better protection against stray currents. Locations exposed to electrostatic stray charges (thunderstorms) and which are therefore particularly dangerous, are equipped with low-sensitivity detonators, which require as much as 2500 mW·s/ohm for actuation and may therefore be considered safe ("HU"-detonators).

The delayed-action detonators may be set for a delay of half a second (half-second detonators) or for a delay of 2–34 ms (millisecond detonators). Blasting with the latter type of detonators results in a larger yield of blasted stone fragments; moreover, a smaller shock will be imparted to the ground around the explosion site.

In coal mining only copper casings rather than the conventional aluminium casings are permitted because of the danger of firedamp. Explosive charges equipped with bridgewire detonators are fired by wire-connected → **Blasting Machines** from a safe location. If several charges are to be exploded at the same time, the detonators are connected in series with the connecting wire. Parallel connection of the detonators is used only in special cases (extremely wet conditions with danger of shunting); special blasting machines must be employed for this purpose.

* Text quoted from glossary.
Brisance

Brisanz

The performance of an explosive cannot be expressed by means of a single characteristic parameter. Brisance is the destructive fragmentation effect of a charge on its immediate vicinity. The relevant parameters are the detonation rate and the loading density (compactness) of the explosive, as well as the gas yield and the heat of explosion. The higher the loading density of the explosive (molding or pressing density), the higher its performance concentration per unit volume; also, the faster the reaction rate, the stronger the impact effect of the detonation. Moreover, an increase in density is accompanied by an increase in the detonation rate of the explosive, while the shock wave pressure in the detonation front (→ Detonation) varies with the square of the detonation rate. Thus it is very important to have the loading density as high as possible.

This is particularly true for → Shaped Charges.

Kast introduced the concept of “brisance value”, which is the product of loading density, specific energy and detonation rate.

Brisance tests are upsetting tests according to Kast and Heß; the compression of a copper cylinder is determined by actuating a piston instrument; alternatively, a free-standing lead cylinder is compressed by the application of a definite cylindrical load of the explosive being tested: → Upsetting Tests.

Bulk Density*)

Schüttdichte; densité apparente

The mass per unit volume of a bulk material such as grain, cement, coal. Used in connection with packaging, storage or transportation.

Bulk Mix*)

Sprengstoffmischung für unpatronierte Anwendung; explosif en vrac

A mass of explosive material prepared for use in bulk form without packaging.

Bulk Mix Delivery Equipment; Misch-Lade-Fahrzeug; véhicule mélangeur-chargeur

Equipment (usually a motor vehicle with or without a mechanical delivery device) that transports explosives, blasting agents or ingre-

* Text quoted from glossary.
dients for explosive materials in bulk form for mixing and/or loading directly into blast holes.

Bulk Strength

Cartridge Strength: Volume Strength

The strength per unit volume of an explosive calculated from its → *Weight Strength* and → *Density*.

Bulldoze*)

Auflegeladung; pétardage

A mud covered or unconfined explosive charge fired in contact with a rock surface without the use of a bore hole. Synonymous with *Adobe Charge* and → *Mud Cap*.

Bullet Hit Squib

Filmeffektzünder; Squib

Bullet hit Squibs are used in motion pictures and television to simulate ballistic impact of fired projectiles.

What is referred to here are small, pyrotechnic, electrical devices with varying charges and containing several milligrams of a compound consisting of → *Lead Azide*, → *Lead Styphnate*, → *Diazodinitrophenol* and Tetrazole Derivatives.

The initiating explosive material must be specially treated and phlegmatised to avoid the undesired byproduct of smoke and flash. One method achieves this by using an admixture of alkaline earth sulfates or by means of micro-encapsulation of the explosive crystals.

These special electrical igniters are produced by the company J. Köhler Pyrotechnik in Schardenberg/Austria.

Bullet-resistant*)

Kugelsicher; résistant au balles

Magazine walls or doors of construction resistant to penetration of a bullet of 150-grain M2 ball ammunition having a nominal muzzle velocity of 2700 feet per second fired from a .30 caliber rifle from a distance of 100 feet perpendicular to the wall or door.

* Text quoted from glossary.
When a magazine ceiling or roof is required to be *Bullet-Resistant*, the ceiling or roof shall be constructed of materials comparable to the side walls or of other materials which will withstand penetration of the bullet above described when fired at an angle of 45 degrees from the perpendicular.

Tests to determine bullet resistance shall be conducted on test panels or empty magazines which shall resist penetration of 5 out of 5 shots placed independently of each other in an area at least 3 feet by 3 feet. If hardwood or softwood is used, the water content of the wood must not exceed 15%.

Bullet-sensitive Explosive Material*)

Beschussempfindlicher Sprengstoff; explosif sensible a l’impact de balles

Explosive material that can be detonated by 150-grain M2 ball ammunition having a nominal muzzle velocity of 2700 feet per second when the bullet is fired from a .30 caliber rifle at a distance of not more than 100 feet and the test material, at a temperature of 70 °C to 75°F, is placed against a backing material of 1/2-inch steel plate.

(→ *Impact Sensitivity.*)

Burden*)

Vorgabe; distance entre 1 a charge et la surface du massif

That dimension of a medium to be blasted measured from the bore-hole to the face at right angles to the spacing. It means also the total amount of material to be blasted by a given hole, usually measured in cubic yards or in tons.

**Bureau of Alcohol, Tobacco and Firearms (BATF)*)

A bureau of the (US-)Department of the Treasury having responsibility for the enactment and enforcement of regulations related to commerce in explosives under Part 181 of Title 26 of the Code of Federal Regulations.

* Text quoted from glossary.
Bureau of Explosives*)

A bureau of the Association of American Railroads which the U.S. Department of Transportation may consult to classify explosive material for the purposes of interstate transportation.

Bureau of Mines

→ U.S. Bureau of Mines.

Bureau of Mines Test

→ Impact Sensitivity.

Burning Rate

Abbrandgeschwindigkeit; velocity of combustion; vitesse de combustion

The linear burning rate of a propellant is the velocity with which a chemical reaction progresses as a result of thermal conduction and radiation (at right angles to the current surface of the propellant). It depends on the chemical composition, the pressure, temperature and physical state of the propellant (porosity; particle size distribution of the components; compression). The gas (fume) cloud that is formed flows in a direction opposite to the direction of burning.

The burning rate describes the velocity with which the volume of the burning propellant changes. It is proportional to the linear burning rate and in addition it depends on the specific shape of the propellant (size of the powder elements and conformation, e.g. flakes, spheres, tubes, multi-perforated tubes etc. extending to the most complicated shapes of rocket propellant charges).

In rocket engineering, “Burning rate” means specifically the stationary progress of burning rate in the rocket chamber.

The following relationship exists between the burning rate dz/dt and the linear burning rate \dot{e}:

$$\frac{dz}{dt} = \frac{S(0)}{V(0)} \times \varphi(z) \times \dot{e}$$

where \dot{e} is given by

* Text quoted from glossary.
\[\dot{e} = \dot{e}(p_{\text{ref}}) \times \left(\frac{p(z)}{p_{\text{ref}}} \right)^\alpha \]

- e means the ratio of the volume burnt to that originally present $[V(0) - V] / V(0)$
- $S(0)/V(0)$ means the ratio of the initial surface area to the initial volume of the powder
- $\varphi(z)$ means the shape function of the powder, which takes into account the geometrical conditions during burning rate (sphere, flake, cylinder, n-hole powder)
 \[\varphi(z) = \text{current surface area/initial surface area} \]
- $\dot{e}(p_{\text{ref}})$ means the linear burning velocity at the reference gas pressure p_{ref}
- p_{ref} is the reference gas pressure and α is the pressure exponent.

The equation for the burning rate rate dz/dt can also be written in the form

\[\frac{dz}{dt} = A \times \varphi(z) \times p^\alpha \]

and is then called Charbonnier’s Equation.

The parameter $A = (S(0) \times V(0)) \times \varphi(z) \times \dot{e}(p_{\text{ref}}) / p_{\text{ref}}$ α is called the “vivacity” or “quickness” factor”.

The pressure exponent α typically has a value close to 1 for propellant charge powder (burning rate at high pressure level). At low pressure ranges (rocket burning rate) it can be brought close to zero (“plateau burning rate”) or even less than zero (“mesa burning rate”) by suitable additives to the propellant.

When the geometry of the propellant is known, the linear burning rate and the pressure exponent of a propellant can be determined experimentally in a → ballistic bomb.

If the gases flow continuously out, as in the case of a rocket motor, the pressure remains almost constant throughout the combustion period. The linear burning rate and its variation with the temperature and pressure may be determined in a → Crawford Bomb. The temperature coefficient of the burning rate is the variation per degree of temperature increase at constant pressure. The dependence on pressure is characterized by the pressure exponent (see above).

For details on relevant theoretical and practical relationships see:

Other relevant keywords are: → Solid Propellant Rockets, → Specific Impulse, → Thermodynamic Calculation of Decomposition Reactions, → Thrust.
Bus Wire*)

Antenne für Parallelschaltung; antenne pour le couplage en parallèle

Two wires that form an extension of the lead line and connecting wire and common to all caps in parallel. In parallel firing, each of the two wires of each electric blasting cap is connected to a different bus wire. For series in parallel firing each side of the series is connected to a different bus wire (→ Parallel Connection).

Butanediol Dinitrate

1,3-Butylenglykoldinitrat; dinitrate de butyléneglycol

\[
\begin{align*}
\text{CH}_3 \\
\text{CH - O - NO}_2 \\
\text{CH}_2 \\
\text{CH}_2 - \text{O - NO}_2
\end{align*}
\]

colorless liquid
empirical formula: C₄N₈N₂O₆
molecular weight: 180.1
oxygen balance: –53.3 %
nitrogen content: 15.56 %
density: 1.32 g/cm³
lead block test: 370 cm³/10 g

Butanetriol dinitrate is insoluble in water, but is soluble in solvents for nitroglycerine; it is more volatile than nitroglycerine. Soluble guncotton is readily gelatinized. The nitrate is formed by reaction of butylene glycol with a nitric acid-sulfuric acid mixture as in the nitroglycerine synthesis, but the product is very easily destroyed by oxidation; the reaction mixture decomposes generating heat and nitrous gases. The product cannot be obtained under industrial conditions and has not found practical application for this reason.

* Text quoted from glossary.
Butanetriol Trinitrate

1,2,4-Butantriol trinitrat; trinitrate de butanetriol

\[
\begin{align*}
\text{CH}_2 - &\quad \text{O} - \text{NO}_2 \\
\text{CH}_2 & \\
\text{CH} - &\quad \text{O} - \text{NO}_2 \\
\text{CH}_2 - &\quad \text{O} - \text{NO}_2
\end{align*}
\]

pale yellow liquid
empirical formula: \(C_4H_7N_3O_9\)
molecular weight: 241.1
energy of formation: \(-379.2\) kcal/kg = \(-1586.4\) kJ/kg
enthalpy of formation: \(-402.5\) kcal/kg = \(-1683.9\) kJ/kg
oxygen balance: \(-16.6\)%
nitrogen content: \(17.43\)%
refractive index: \(n^\text{D}_0 = 1.4738\)
volume of explosion gases: 836 l/kg
heat of explosion
(H\(_2\)O liq.): 1439 kcal/kg = 6022 kJ/kg
(H\(_2\)O gas): 1327 kcal/kg = 5551 kJ/kg
density: 1.52 g/cm\(^3\) (20/4)
solidification point: \(-27\) °C = \(-17\) °F
impact sensitivity: 0.1 kp m = 1 N m

1,2,4-Butanetriol is nitrated with a mixture of nitric and sulfuric acids. The nitrated product is very stable. It is, like nitroglycerine, gelatinized by nitrocellulose.

Butanetriol trinitrate was used in the manufacture of tropic-proof double base powders. Isomers of butantriol trinitrate were also studied and utilized in practical work; these include methyl glycerol trinitrate and 1,2,3-butetriol trinitrate, which have similar properties.

Calcium Nitrate

Calcium nitrat; Kalksalpeter; nitrate de calcium

hydrated: \(\text{Ca(NO}_3)_2 \cdot 4\text{H}_2\text{O}\)
colorless crystals
anhydrous product: \(\text{Ca(NO}_3)_2\)
white powder

The following data refer to the anhydrous product:
molecular weight: 164.1
energy of formation: \(-1352.1\) kcal/kg = \(-5657.3\) kJ/kg
enthalpy of formation: \(-1366.6\) kcal/kg = \(-5717.7\) kJ/kg
Butanetriol Trinitrate

\[\text{CH}_2 - \text{O} - \text{NO}_2 \]

\[\text{CH}_2 \]

\[\text{CH} - \text{O} - \text{NO}_2 \]

\[\text{CH}_2 - \text{O} - \text{NO}_2 \]

pale yellow liquid

empirical formula: \(\text{C}_4\text{H}_7\text{N}_3\text{O}_9 \)
molecular weight: 241.1

energy of formation: \(-379.2 \text{ kcal/kg} = -1586.4 \text{ kJ/kg}\)

enthalpy of formation: \(-402.5 \text{ kcal/kg} = -1683.9 \text{ kJ/kg}\)

oxygen balance: \(-16.6\%\)

nitrogen content: 17.43\%

refractive index: \(n^0_{\text{D}} = 1.4738 \)

volume of explosion gases: 836 l/kg

heat of explosion

\(\text{(H}_2\text{O liq.)} \): 1439 kcal/kg = 6022 kJ/kg

\(\text{(H}_2\text{O gas)} \): 1327 kcal/kg = 5551 kJ/kg

density: 1.52 g/cm\(^3\) (20/4)

solidification point: \(-27^\circ\text{C} = -17^\circ\text{F}\)

impact sensitivity: 0.1 kp m = 1 N m

1,2,4-Butanetriol is nitrated with a mixture of nitric and sulfuric acids. The nitrated product is very stable. It is, like nitroglycerine, gelatinized by nitrocellulose.

Butanetriol trinitrate was used in the manufacture of tropic-proof double base powders. Isomers of butantriol trinitrate were also studied and utilized in practical work; these include methyl glycerol trinitrate and 1,2,3-butanetriol trinitrate, which have similar properties.

Calcium Nitrate

\[\text{Calciumnitrat; Kalksalpeter; nitrate de calcium} \]

hydrated: \(\text{Ca(NO}_3\text{)}_2 \cdot 4\text{H}_2\text{O} \)

colorless crystals

anhydrous product: \(\text{Ca(NO}_3\text{)}_2 \)

white powder

The following data refer to the anhydrous product:

molecular weight: 164.1

energy of formation: \(-1352.1 \text{ kcal/kg} = -5657.3 \text{ kJ/kg}\)

enthalpy of formation: \(-1366.6 \text{ kcal/kg} = -5717.7 \text{ kJ/kg}\)
Calcium nitrate can be used as a oxidizer component of → Slurries.

Camphor

Campher, Kampfer; camphre

\[
\begin{align*}
&\text{empirical formula: } C_{10}H_{16}O \\
&\text{molecular weight: } 152.3 \\
&\text{energy of formation: } -480 \text{ kcal/kg} = -2008 \text{ kJ/kg} \\
&\text{enthalpy of formation: } -513 \text{ kcal/kg} = -2146 \text{ kJ/kg} \\
&\text{oxygen balance: } -283.8\% \\
&\text{density: } 0.98-0.99 \text{ g/cm}^3 \\
&\text{melting point: } 177-178 \degree C = 351-353 \degree F \\
&\text{boiling point: } 209 \degree C = 408 \degree F
\end{align*}
\]

This compound is utilized in celluloid industry, and also as gelatinizer in nitrocellulose gunpowders.

Specifications

- net content: not less than 99% (analysis by titration with hydroxylamine)
- melting point: not less than 176 °C = 350 °F
- insolubles in alcohol and ether: not more than 0.1%
- chlorides: not more than traces

Cap Sensitivity

Sprengkapsel-Empfindlichkeit; sensibilité au choc détonateur

Tests are carried out to determine the reaction of an explosive to a detonating cap. The results are used to determine the classification of the explosive as a transport hazard. The U.S. Department of Transportation has placed → Blasting Agents into a hazard category subject to regulations similar to those applicable to the former NCN classification, i.e. much reduced in stringency. Explosives classified as blasting agents are those which can not be initiated by means of an explosive cap.
In Germany the following test for sensitivity to explosive caps has been developed:

The explosive is placed into a cardboard tube, 200 mm long, inside diameter of 80 mm, wall thickness between 1.3 and 1.4 mm. One end of the tube is sealed by a thin cardboard disk, which is glued into position. The density of the filling charge is determined by weighing (increase in weight after filling volume 1005 cm\(^3\)). The cap sensitivity can be influenced by the density of the charge. The test sample is placed upright onto a steel plate of 1 mm thickness, which is placed on a steel ring 50 mm in height, inside diameter of 100 mm, and wall thickness of 3.5 mm. A European test fuse (0.6 g PETN secondary charge) is inserted from the top throughout the full length of the tube, and initiated. No change in the condition of the plate or denting with or without fissure is classed as non-detonation. A circular hole indicates detonation.
Table 2. Cap test results.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Loading Density</th>
<th>Test Result: Detonation g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFO, porous prills</td>
<td>0.79–0.93</td>
<td>none</td>
</tr>
<tr>
<td>AN cryst. with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT and fuels</td>
<td>0.82–1.07</td>
<td>always +</td>
</tr>
<tr>
<td>AN cryst. with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT, DNT and fuels</td>
<td>0.82–1.07</td>
<td>always +</td>
</tr>
<tr>
<td>AN cryst. with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNT and fuels (NCNs)</td>
<td>0.75–1.10</td>
<td>always +</td>
</tr>
<tr>
<td>AN porous prills coated with DNT</td>
<td>0.82–0.84</td>
<td>none</td>
</tr>
<tr>
<td>AN cryst. with fuel</td>
<td>0.62–1.10</td>
<td>not at higher densities</td>
</tr>
<tr>
<td>AN cryst. with Al, earth alkaline nitrates, fuels and water (slurries)</td>
<td>1.13–1.26</td>
<td>+</td>
</tr>
</tbody>
</table>

AN = ammonium nitrate

The results are unchanged when explosives are tested at increased temperatures (30 °C). An exception to this are the AN prills coated with DNT.

DNT diffuses into the pores, the explosive becomes more homogeneous and therefore more sensitive. No change occurs when the European test fuse is replaced by a No. 8 detonator (0.75 g Tetryl).

A similar test has been developed in the USA (according the deformation of a lead block, using commercial caps with 0.4–0.45 g PETN). It is advisable to classify according to test results and not, as was the custom in the USA, by the classification of NCN according to the explosive composition. As indicated above, ANFO’s are not cap sensitive; mixtures of finely ground ammonium nitrate containing only 2% instead of 6% of oil or wax can, however, be cap sensitive.

Carbamite

Denomination frequently used in English for → Centralit I.

* NCN-explosives can be non-cap-sensitive at somewhat higher densities.
Carbene

Karben; Cuprene; Carbène

- empirical formula: C_{12}H_{10}
- molecular weight: 154.2
- oxygen balance: −300.9 %

Carbene or cuprene are technical names for polyacetylene. It is obtained as a cork-like substance, which is in a very fine state of dispersion, by polymerizing acetylene on copper catalysts.

The product is a suitable oxygen acceptor in → Liquid Oxygen Explosives. It has also been employed as an additive in fast-burning double base propellants.

Cardox

A physical explosion process which, like the Armstrong process and Airdox process, operates on the principle of a sudden release of compressed gas by means of a bursting disc. In the Cardox process, condensed CO₂ is brought to a high vapor pressure by means of a heating cartridge.

Cartridge

Patrone; cartouche

This term denotes any quantity of an explosive material or functional formulations thereof, which has been sheathed in order to improve handling, loading or dosing; for ammunition, “cartridge” most often means an assembly of an → Igniter, a → Propellant charge and a projectile, which may itself contain a high explosive charge with ignition mechanism. As applied to industrial explosives, the term “cartridge” denotes the amount of the explosive – which may vary between 50 g and several kg – enclosed in an envelope which is usually cylindrical-shaped, and is made of paper, cardboard or plastic.
Cartridge Density

Patronendichte; densité de cartouche

(→ *Loading Density*) In industrial explosives, the ratio between the weight of an explosive cartridge and its volume.

Some manufacturers indirectly give the cartridge density on the package by stating the number of standard 1 1/4×8” cartridges contained in a 50-pound case. The relationship is given in the following table:

<table>
<thead>
<tr>
<th>Density</th>
<th>Weight of 1 1/4×8” Cartridge (g/cm³)</th>
<th>Number of 1 1/4×8” Cartridges in 50-pound Case</th>
<th>Density</th>
<th>Weight of 1 1/4×8” Cartridge (g/cm³)</th>
<th>Number of 1 1/4 by 8” Cartridges in 50-pound Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.62</td>
<td>100</td>
<td>227</td>
<td>1.18</td>
<td>190</td>
<td>120</td>
</tr>
<tr>
<td>0.68</td>
<td>110</td>
<td>206</td>
<td>1.24</td>
<td>200</td>
<td>114</td>
</tr>
<tr>
<td>0.75</td>
<td>120</td>
<td>189</td>
<td>1.31</td>
<td>210</td>
<td>108</td>
</tr>
<tr>
<td>0.81</td>
<td>130</td>
<td>175</td>
<td>1.37</td>
<td>220</td>
<td>103</td>
</tr>
<tr>
<td>0.87</td>
<td>140</td>
<td>162</td>
<td>1.43</td>
<td>230</td>
<td>99</td>
</tr>
<tr>
<td>0.93</td>
<td>150</td>
<td>151</td>
<td>1.49</td>
<td>240</td>
<td>95</td>
</tr>
<tr>
<td>0.99</td>
<td>160</td>
<td>142</td>
<td>1.55</td>
<td>250</td>
<td>91</td>
</tr>
<tr>
<td>1.06</td>
<td>170</td>
<td>134</td>
<td>1.62</td>
<td>260</td>
<td>87</td>
</tr>
<tr>
<td>1.12</td>
<td>180</td>
<td>126</td>
<td>1.68</td>
<td>270</td>
<td>84</td>
</tr>
</tbody>
</table>

Cartridge Strength

Synonymous with → *Bulk Strength.*
Also → *Strength;* → *Weight Strength.*

Case*)

Brennkammer; chambre de combustion; also: Kiste; caisse

Pressure vessel designed to contain propellant charge before and during burning.
Also: a large shipping container for explosive materials.

Case Bonding

This expression denotes a modern processing technique in the field of rockets driven by solid propellants. The pourable → *Composite Pro-

* Text quoted from glossary.
pellant is cast directly into the combustion chamber, which has been pre-treated to produce a bonding and insulating layer and is allowed to harden (cure) in the chamber. Since temperature variations may be expected to produce major stresses, owing to the different values of thermal expansion coefficients, the success of the method depends to a large extent on the bonding forces acting between the bonding and insulating layer and the metal wall on the one hand, and the hardened propellant on the other, as well as on their elastomeric stress relaxation capability.

Caseless Ammunition

Hülsenlose Munition; munition sans douille

The requirement to improve portable firearms resulted in a reduction of the caliber (dimension 4–5 mm); and to reduce the ammunition weight led to the caseless ammunition project. Moreover, in the event of a crisis the problem of a worldwide shortage of nonferrous metals for cartridge cases will arise.

For a considerable time the caseless ammunition consisted of a compressed NC propellant body into which the bullet was inserted. However, this propellant tends to self-ignition even at relatively low temperatures (ca. 170 °C). Thus a “cook-off” may result, i.e. a premature ignition in a hot cartridge chamber which may occur with all automatic guns. In addition, with caseless ammunition the heat which is otherwise transferred to the cartridge case remains in the cartridge chamber. Therefore, in order to avoid the “cook-off”; HITPs (High Ignition Temperature Propellant) have been developed worldwide. DNAG used such a propellant for the first time with caseless cartridges for a newly developed gun (G 11) from Messrs. Heckler & Koch. The essential innovations with regard to previous developments are the use of a high-temperature-resistant, non-crystalline explosive as binding material, a special granular shape for the main energy component and the possibility to adjust the interior ballistics by porosity and stability of the propellant body. Further new developments are the combustible primer and the booster.

Fig. 8. Sectional view of the caseless cartridge body (Calibre 4.73 mm) for the G 11 weapon system.
Casting of Explosives

Giessen von Sprengladungen; coulée de charge de projectiles

Since the brisance of an explosive largely depends on its loading density, the highest possible loading densities are employed, in particular for military explosives. This density is attained by casting or pressing. The pressing operation requires a technical device. A cast charge is easier to fit into shells, mines and bombs, which have rather complex-shaped internal profiles.

Since \(\text{TNT} \) is pourable at 80 °C (176°F), it is highly important in military technology. Since a considerable contraction takes place when the liquid explosive solidifies, good care must be taken during casting to ensure free access to all parts of the cast which have not yet solidified, in order to ensure proper replenishment of liquid material. Formerly, this was done by simple manual poking, but many automatic devices have been developed which do not involve any manual labor and which yield cavity-free casts.

Pure TNT tends to form very long, needle-shaped friable crystals, with a loose texture which does not correspond to the maximum density. Cast TNT charges must be fine-crystalline, mechanically firm and dense, with numerous crystallization nuclei; i.e., solid TNT must be finely dispersed in the cast. According to BOFORS, the texture of the cast can be improved by the addition of \(\text{Hexanitrostilbene} \).

Casting of Propellants

Giessen von Triebsätzen; coulée de propergols

Casting processes are needed especially in rocketry for the shaping of large propellant grains. Unlike in the casting of explosives, processes which cause shrinking and yield friable crystals cannot be applied.

There are two solutions to this problem:

a) hardening of polycondensates (e.g. polyurethanes or epoxys) with mechanically incorporated oxidizers, e.g. ammonium perchlorate (\(\rightarrow \text{Composite Propellants} \)); the hardened plastic material acts as fuel for the oxidizer;

b) converting of pourable nitrocellulose granules by treatment with liquid nitrate esters (e.g. with nitroglycerine). The granules can be poured dispersed in the liquid (“slurry casting”), or filled in the rocket motor shell and gelled in situ with the added nitrate ester.

CDB Propellants

\(\rightarrow \text{Composite Propellants} \).
Centralite I

diethyldiphenylurea, symm. Diäthyldiphenylharnstoff; diéthylidiphénylurée; Ethyl Centralite; Carbamite

![Chemical Structure](image)

colorless crystals
empirical formula: C₁₇H₂₀N₂O
molecular weight: 268.4
energy of formation: −68.2 kcal/kg = −285.6 kJ/kg
enthalpy of formation: −93.5 kcal/kg = −391.5 kJ/kg
oxygen balance: −256.4%
nitrogen content: 10.44%
density: 1.112 g/cm³
melting point: 71.5–72 °C = 161–162°F
boiling point: 326–330 °C = 618–625°F

Centralite I, II and III are used as → Stabilizers in gunpowders, especially in nitroglycerine powders (→ Double Base Propellants). It is insoluble in water, but soluble in organic solvents.

Centralites are not only stabilizers, but gelatinizers as well. The latter property is taken advantage of in solvent-free manufacture of double base propellants.

Specifications

- solidification point: not less than 71 °C = 160°F
- molten material: bright clear pale liquid
- ashes: not more than 0.1 %
- volatiles: not more than 0.1 %
- acetone solution: clear, no residue
- secondary and tertiary amines: not more than 0.1 %
- chlorides as HCl: not more than 0.001 %
- reaction: neutral
- acidity: not more than 0.04 %
Centralite II

dimethyldiphenylurea; Dimethyldiphenylharnstoff; diméthylidiphénylurée

colorless crystals
empirical formula: C₁₅H₁₆N₂O
molecular weight: 240.3
energy of formation: −37.3 kcal/kg = −156 kJ/kg
enthalpy of formation: −60.8 kcal/kg = −254 kJ/kg
oxygen balance: −246.3%
nitrogen content: 11.66%
melting point: 121–121.5 °C = 250–251°F
boiling point: 350 °C = 662°F

Specifications
same as for Centralite I, except
solidification point: not less than 119 °C = 246°F

Centralite III

methylethyldiphenylurea; Methyléthyldiphenylharnstoff; méthyléthyldiphénylurée

colorless crystals
empirical formula: C₁₆H₁₈N₂O
molecular weight: 254.3
energy of formation: −94.7 kcal/kg = −396.1 kJ/kg
enthalpy of formation: −119.1 kcal/kg = −498.5 kJ/kg
oxygen balance: −251.7%
melting point: 57–58 °C = 135–138°F

Specifications
same as for Centralite I, except
solidification point: 57 °C = 135°F
Channel Effect

Kanaleffekt

Interruption in the detonation of an explosive column because of the compaction of the cartridges which have not yet exploded due to the gas shock wave front in the borehole. This happens very often if the borehole cross-section is large as compared to that of the cartridges.

Chlorate Explosives

Chloratsprengstoffe; explosifs chloratés

Explosive mixtures of alkali metal chlorates with carbon-rich organic compounds such as wood dust, petroleum, oils, fats and nitro derivatives of benzene and toluene; they may also contain nitrate esters.

Their strength is lower than that of ammonium nitrate explosives in powder form. Chlorate explosives must not be stored together with ammonium nitrate explosives, since ammonium chlorate, which is formed when these two substances are brought into contact, decomposes and explodes.

“Miedziankit” is the name of absorbent potassium chlorate particles, which are impregnated with a liquid fuel just before use, and then acquire explosive properties. Following the development of → ANFO, this explosive is no longer of interest.

Cigarette-Burning*)

Stirnabbrand; combustion en cigarette

→ *Face Burning*

Circuit Tester (Ohmmeter)

Zündkreisprüfer; éprouveur; blasting galvanometer

Instrument for electrical testing of misconnected circuits. The current intensity used in the testing must be well below the minimum detonation intensity of the electric primer; the circuit tester is accordingly equipped with resistances at both poles. Only officially approved testers should be employed. The testers are of two kinds: conduction testers which show, by means of a visual indicator, whether or not current is flowing in the circuit, and ohmmeters which measure the resistance of the priming circuit.

* Text quoted from glossary.
Class A, Class B and Class C Explosives*)

Classification defined by the U.S. Department of Transportation:

Class A Explosives:
Explosives, which possess detonating or otherwise maximum hazard; such as, but not limited to, dynamite, nitroglycerine, lead azide, blasting caps and detonating primers.

Class B Explosives:
Explosives, which possess flammable hazard; such as, but not limited to, propellant explosives, photographic flash powders, and some special fireworks.

Class C Explosives:
Explosives, which contain class A or class B explosives, or both, as components but in restricted quantities.

Coal Dust

Kohlenstaub; poussièrè
Mixtures of coal dust with air are explosive and their detonation by blasting must be prevented (→ Permitted Explosives).

Column Charge*)

Gestreckte Ladung; file de cartouches
A charge of explosives in a blast hole in the form of a long continuous unbroken column.

Combustibility*)

Feuergfährlichkeit; danger d'inflammation
Capability of burning. Flammable. The relative combustibility of materials in storage is defined as: hazardous – materials that by themselves or in combination with their packaging, are easily ignited and will contribute to the intensity and rapid spread of a fire; moderate – materials and their packaging both of which will contribute fuel to a fire; noncombustible – materials and their packaging that will neither ignite nor support combustion.

* Text quoted from glossary.
Combustible Cartridge Cases

Verbrennbare Kartuschhülsen; douilles combustibles

The propellant charge used for the shot from a weapon is introduced into cases or bags ("cartouche bags"); for metallic cartouche cases, the projectile is combined with the propellant charge and the propellant Charge igniter to form a "cartridge".

Now, combustible cartridge cases serve the purpose of making the case material contribute to the ballistic performance and to render unnecessary the removal of inert material from the weapon after the shot. Such case material has to be adapted to the combustion process of the powder. It consists of high-energy material, e.g. nitrocellulose, a structure-reinforcing additive, e.g. kraft-paper pulp, binders of plastic material, and further additives, e.g. stabilizers such as contained in the powder itself. The cases are made by filtration from a pulp, pressing, molding and drying.

Caseless ammunition is also available for infantry weapons; as the ejector mechanism can be dispensed with, it is possible to raise the number of shots in machine guns.

→ “Caseless Ammunition”

Combustion

Verbrennung; brûlage

Any oxidation reaction, including those produced by introduction of atmospheric oxygen; many explosives are capable of burning without detonation if unconfined. Moreover, the oxidation reaction taking place in propellants without introduction of oxygen is also designated as combustion: it is preferable to denote this process as burning (→ Burning Rate; → Deflagration).

Combustion Chamber

Brennkammer; chambre de combustion; case

In rocket technology, the chamber in which the reaction of the propellants takes place.

In solid fuel rockets, the propellant container also serves as the combustion chamber; in liquid fuel rockets it is the chamber in which the injected liquid components of the propellant are made to react with one another. The combustion chamber must withstand the pre-determined working pressure and the temperatures developing at the chamber walls. In liquid fuel rockets the chamber wall is externally cooled in most cases; in solid fuel rockets, in which internal charges
bonded to the chamber walls are often employed, the required protection is afforded by the propellant itself. These conditions determine the choice of a suitable chamber material. Since the weight of the combustion chamber has a decisive effect on the range of the rocket, the walls should be as thin as possible. The use of thermally insulating and reinforced (e.g., with fiberglass) inserts made of plastic materials has already proved successful.

Standard combustion chambers and laboratory combustion chambers*) have been developed for testing the behavior of solid rocket fuels and for the determination of their characteristic properties.

Commercial Explosives*)

Gewerbliche Sprengstoffe; explosifs pour usage industriel

Explosives designed, produced, and used for commercial or industrial applications other than military.

Commercial Waterproof Primers

Trade name of a → *Pentolite* priming charge used for the initiation under wet conditions.

Compatibility*)

Verträglichkeit; compatibilité

Ability of materials to be stored intimately without chemical reaction occurring.

Incompatibility may result in a loss of effectiveness or may be very hazardous. For example, → *Chlorate Explosives* and → *Ammonium Nitrate Explosives* are not compatible (formation of self-decomposing ammonium chlorate). For compatibility testing → *Vacuum Test*.

Composite Propellants

Verbundtreibsätze; poudres composites

Composite propellants are solid rocket fuels, consisting of oxygendo-nating inorganic salts and a binder made of plastic.

The high-polymeric binders in use today include polysulfides (PS), polybutadieneacrylic acid (PBAA), polybutadiene-acrylonitrile (PBAN),

** Text quoted from glossary.
polyurethane (PU) and carboxyl- and hydroxyl-terminated polybutadiene (CTPB and HTPB).

Nitrates and perchlorates, → Ammonium Perchlorate in particular, are used as oxidizers.

These propellants can be manufactured by casting or by pressing. The grain fineness of the salt employed affects the combustion properties to a significant extent. The mechanical (preferably rubber-elastic) properties of the plastic binders must satisfy special requirements.

CDB Propellants are combinations of composites with → Double Base Propellants, which achieve "plateaus" (→ Burning Rate) otherwise difficult to attain.

For details about composite propellants see:
Dadieu, Damm, Schmidt: Raketentreibstoffe, Springer, Wien 1968

Compositions A; A-2; A-3

Pressed charges made of phlegmatized → Cyclonite (RDX) differing from each other only by the various kinds of wax they contain.

\[
\text{detonation velocity, confined: } 8100 \text{ m/s } = 26600 \text{ ft/s at } \rho = 1.71 \text{ g/cm}^3
\]

Compositions B; B-2

Hexolite; Hexotol

Castable mixtures of Cyclonite (RDX) and TNT in the proportion of 60:40; some of them contain wax as an additive. They are used as fillings for bombs, mines and → Hollow (Shaped) Charges.

\[
\text{density: about } 1.65 \text{ g/cm}^3^{*} \\
\text{detonation velocity, confined: } 7800 \text{ m/s } = 25600 \text{ ft/s at } \rho = 1.65 \text{ g/cm}^3
\]

Composition C; C-2; C-3; C-4

Military plastic explosives, consisting of → Cyclonite (RDX) and a plasticizer, which itself may or may not be explosive. The respective formulations are:

\[
\text{Can be raised to } >1.7 \text{ g/cm}^3 \text{ by application of special casting techniques.}
\]
Table 4.

<table>
<thead>
<tr>
<th>Composition</th>
<th>RDX %</th>
<th>Plasticizer %</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>88.3</td>
<td>11.7</td>
<td>non-explosive</td>
</tr>
<tr>
<td>C-2</td>
<td>80.0</td>
<td>20.0</td>
<td>explosive</td>
</tr>
<tr>
<td>C-3</td>
<td>78</td>
<td>22.0</td>
<td>explosive</td>
</tr>
<tr>
<td>C-4</td>
<td>90</td>
<td>10.0</td>
<td>polyisobutylene</td>
</tr>
</tbody>
</table>

(selected grain fractions)

(→ also Plastic Explosives)

Composition I; II

Eutectic mixtures of ammonium nitrate, sodium nitrate, dicyandiamide and guanidine nitrate.

Table 5.

<table>
<thead>
<tr>
<th>Composition</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium nitrate</td>
<td>65.5</td>
<td>60</td>
</tr>
<tr>
<td>sodium nitrate</td>
<td>10.0</td>
<td>24</td>
</tr>
<tr>
<td>dicyanodiamide</td>
<td>14.5</td>
<td>8</td>
</tr>
<tr>
<td>guanidine nitrate</td>
<td>10.0</td>
<td>8</td>
</tr>
</tbody>
</table>

Confined Detonation Velocity*)

Detonationsgeschwindigkeit unter Einschluss; vitesse de détonation sous confinement

The detonation velocity of an explosive or blasting agent in a container such as a borehole in contrast to detonating in the open (→ Detonation Velocity).

* Text quoted from glossary.
Confinement

Einschluss

Confinement is understood to mean an inert material of some strength and having a given wall thickness, situated in the immediate vicinity of an explosive. Priming or heating the explosive materials produces different results, according to whether they are located in a stronger or a weaker confinement. If confined by thick steel, almost any explosive will explode or detonate on being heated; on the other hand, they burn on contact with an open flame if unconfined (→ Combustion; → Mass Explosion Risk), except → Initiating Explosives.

The destructive (fragmentation) effect of an explosion becomes stronger if the explosive is confined (stemmed) in an enclosure such as a borehole. In the absence of natural confinement, the explosive charge is often embedded in an inert material such as clay. See also → Mud Cap and → Stemming.

Contained Detonating Fuze*)

Sprengschnur mit Schutzmantel; cordeau détonant gainé

Mild detonating fuze completely contained within a shock-absorbing sheath to prevent damage to the surroundings when the fuze is detonated.

Contour Blasting

Profilsprengen; saulage en profil

The purpose of controlled blasting is to produce an excavation contour, while leaving behind an intact, fissure-free formation (“prenotching”, “pre-splitting off”, “notching”, “contour blasting”). This is done by the application of diminished-strength explosive charges, using numerous boreholes driven exactly in parallel (vacant boreholes; firing in a cavity; charge diameters small as compared to the total diameter of the borehole; fissurefree roof firing in salt mines). For further details see: Rune Gustavson: Swedish Blasting Technique. SPI, Gothenburg, Sweden (1972)

Copper chromite

Kupferchromit; chromite de cuivre

\[(\text{CuO})_x(\text{Cr}_2\text{O}_3)_y \]

*) Text quoted from glossary.
dark brown to black powder

Copper chromite is the reaction product of copper oxide and chromium oxide. It is an important catalyst for the burning of rocket propellants and pyrotechnical compositions.

Specifications

sieve analysis:
through mesh width 0.07 mm: at least 98 %
through mesh width 0.04 mm: at least 90 %
net content
CuO: at least 79 %
not more than 85 %
Cr₂O₃: at least 13 %
not more than 19 %
Fe₂O₃: not more than 0.35 %
water-soluble matter: not more than 0.5 %

Cordite

Designation for double base (nitroglycerine-nitrocellulose) gun propellants in the United Kingdom.

Coruscatives

This is the name given by the American worker Zwicky to pairs of materials (other than the well-known thermites, → delay compositions) which react with each other without formation of gas.

The exothermal nature of certain components may be surprisingly high; the mixture Ti:Sb:Pb = 48:23:29 is primed at 570 °C (1060°F), and the reaction temperature attains 1000 °C (1830°F). Other combinations include magnesium-silicon, magnesium-tellurium, magnesium-tin and magnesium-phosphorus.

Coyote Blasting

Kammerminensprengungen; sautage par grands fourneaux de mines

In coyote blasting, which is practiced in open-pit mining and in stone quarries, tunnels are driven into the mined face and chambers are drilled which can accommodate large quantities (up to several tons) of explosives. The chambers – usually several chambers at once – are charged, stemmed and detonated. They must be primed with the aid of a → Detonating Cord.
Coyote blasting has now been almost completely displaced by → *Large Hole Blasting*, because the spaces accommodating the explosive can be produced more rationally in this way.

Crawford Bomb

A bomb used to determine the → *Burning Rate* of solid rocket propellants. The propellant grains are in the form of thin rods (“strands”) which may have been cut or extruded and protected against surface burning by mantle insulation. The strand is placed in a bomb and electrically initiated at one end, after which its combustion rate is recorded with the aid of wire probes. Using compressed nitrogen, the pressure at which the combustion take place is adjusted in the bomb; standard values are 20, 40, 70, 100, 130, 180, 250 bar at a temperature between –40 °C and 60 °C.

Crimping*)

Anwürgen; sertir

The act of securing a blasting cap to a section of safety fuse by compressing the metal shell of the cap against the fuse by means of a cap crimper.

Critical Diameter

Kritischer Durchmesser; diamètre critique

The critical diameter is the minimum diameter of an explosive charge at which detonation can still take place. It is strongly texture-dependent, and is larger in cast than in pressed charges. Finely dispersed gas inclusions considerably reduce the critical diameter. In the case of very insensitive materials – ammonium nitrate, for example – the critical diameter may be very large.

Cumulative Priming

Kumulative Zündung

Counter-current priming, in which the explosive charge is simultaneously primed at two or more places, so that the detonation waves travel to meet one another, and their effect becomes additive.

*) Text quoted from glossary.
Curing*)

Härten; aushärten; maturer

Polymerization of prepolymer or monomer component of mixed propellants to increase mechanical strength.

Cushion Blasting*)

Hohlraumsprengen; fir avec chambres d’expansion

A method of blasting in which an air space is left between the explosive charge and the stemming, or in which the blast hole is purposely drilled larger than the diameter of the explosive cartridge to be loaded; → Contour Blasting.

Cut Off

Abschlagen einer Sprengladung; de capitation

Separation of a part of a borehole charge by the blast effect of another shot in electrical delay firing circuits. Cut off can also occur to the whole burden of the borehole charge by previous shots; → Permitted Explosives.

Cutting Charges

Schneidladungen; charge creuse pour découpage

Cutting charges serve to cut through iron plates, cables, bridge trusses etc. They are constructed on the principle of → Shaped Charges, but are not rotationally symmetrical; their shape is that of long channels (grooves).

The cutting depth of these charges depends to a considerable extent on the thickness and lining material of the angular or semi-circular groove; in addition, the optimum distance from the target must be determined in advance.

As in rotationally symmetrical hollow charges, a jet of highly accelerated gases and metal fragments is produced.

* Text quoted from glossary.
Cyanuric Triazide

Cyanurtriazid; triazide cyanurique

\[
\begin{array}{c}
N_3 \\
N_3 \\
N_3
\end{array}
\]

colorless crystals
empirical formula: \(C_3N_{12}\)
molecular weight: 204.1
energy of formation: +1090.3 kcal/kg = +4561.9 kJ/kg
enthalpy of formation: +1072.9 kcal/kg = +4489.2 kJ/kg
oxygen balance: \(-47\%\)
nitrogen content: 82.36\% N
melting point (under decomposition): 94 °C = 201°F
lead block test: 415 cm\(^3\)/10 g
detonation velocity, unconfined: 5500 m/s at \(\rho = 1.02\) g/cm\(^3\)
deflagration point (explosion): 200–205 °C = 390–400°F
friction sensitivity: 0.01 kp = 0.1 N pistil load

This compound is prepared by slowly introducing powdered cyanogen chloride into an aqueous solution of sodium azide with efficient cooling.

Cyanuric triazide is an effective initiating explosive. It is not employed in practice owing to its high vapor pressure.

Cyclonitrate

\[
\begin{array}{c}
\text{O}_2\text{N} \\
\text{H}_2\text{C} \\
\text{N} \\
\text{C} \\
\text{N} \\
\text{O}_2\text{N}
\end{array}
\]

colorless crystals
empirical formula: \(C_3H_6N_6O_6\)
molecular weight: 222.1
energy of formation: +96.0 kcal/kg = +401.8 kJ/kg
enthalpy of formation: +72.0 kcal/kg = +301.4 kJ/kg
oxygen balance: \(-21.6\%\)
nitrogen content: 37.84\%
volume of explosion gases: 903 l/kg
heat of explosion calculated*)
(H₂O liq.): 1350 kcal/kg = 5647 kJ/kg
(H₂O gas): 1266 kcal/kg = 5297 kJ/kg
heat of detonation**)
(H₂O liq.): 1510 kcal/kg = 6322 kJ/kg
specific energy:
140 mt/kg = 1375 kJ/kg
density: 1.82 g/cm³
melting point: 204 °C = 399°F
heat of fusion: 38.4 kcal/kg = 161 kJ/kg

vapor pressure:

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00054</td>
<td>110</td>
<td>230</td>
</tr>
<tr>
<td>0.0014</td>
<td>121</td>
<td>250</td>
</tr>
<tr>
<td>0.0034</td>
<td>131</td>
<td>268</td>
</tr>
<tr>
<td>0.0053</td>
<td>138.5</td>
<td>281</td>
</tr>
</tbody>
</table>

lead block test: 480 cm³/10 g
detonation velocity, confined:
8750 m/s = 28700 ft/s at ρ = 1.76 g/cm³
impact sensitivity: 0.75 kp m = 7.5 N m
friction sensitivity: 12 kp = 120 N pistil load
critical diameter of steel sleeve test: 8 mm

Cyclonite is soluble in acetone, insoluble in water and sparingly soluble in ether and ethanol. Cyclohexanone, nitrobenzene and glycol are solvents at elevated temperatures.

Cyclonite is currently probably the most important high-brisance explosive; its brisant power is high owing to its high density and high detonation velocity. It is relatively insensitive (as compared to, say → PETN, which is an explosive of a similar strength); it is very stable. Its performance properties are only slightly inferior to those of the homologous → Octogen (HMX).

The “classical” method of production (Henning, 1898) is the nitration of hexamethylene tetramine (C₆H₁₂N₄) to “Hexogen” (C₃H₆O₆N₆) using concentrated nitric acid; the concentrated reaction mixture is poured into iced water, and the product precipitates out. The structural formula shows that three methylene groups must be destroyed or split off by

* computed by “ICT-Thermodynamic-Code”.
** value quoted from Brigitta M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore.
oxidation. As soon as this problem and the attendant dangers had been mastered, industrial-scale production became possible, and during the Second World War Cyclonite was manufactured in large quantities on both sides, using several mutually independent chemical methods.

S-H process (inventor: Schnurr): continuous nitration of hexamethylenetetramine using highly concentrated nitric acid, accompanied by a decomposition reaction under liberation of nitrous gases, without destruction of the Cyclonite formed. The reaction mixture is then filtered to separate the product from the waste acid, followed by stabilization of the product by boiling under pressure and, if required, recrystallization.

K process (inventor: Knöffler): an increased yield is obtained by the addition of ammonium nitrate to the nitration mixture of hexamethylene tetramine and nitric acid, followed by warming. The formaldehyde as a by-product forms more hexamethylenetetramine with the added ammonium nitrate and is converted by the nitric acid into Cyclonite.

KA process (inventors: Knöffler and Apel; in USA: Bachmann): hexamethylenetetramine dinitrate is reacted with ammonium nitrate and a small amount of nitric acid in an acetic anhydride medium. Cyclonite is formed in a similar manner as in the E process. The waste acetic acid thus formed is concentrated, subjected to the so-called ketene process, recycled, and the regenerated acetic anhydride is re-used.

E process (inventor: Eble): paraformaldehyde and ammonium nitrate are reacted in an acetic anhydride medium with formation of Cyclonite (precursor of KA process).

W process (inventor: Wolfram): potassium amidosulfonate and formaldehyde are reacted to give potassium methyleneamidosulfonate (CH$_2$ = N-SO$_3$K), which is then nitrated to Cyclonite by a nitric acid-sulfuric acid mixture.

Phlegmatized and pressed Cyclonite is used as a highly brisant material for the manufacture of → Booster and → Hollow Charges. Non-phlegmatized Cyclonite in combination with TNT is also used as a pourable mixture for hollow charges and brisant explosive charges (→ Compositions B); mixtures of Cyclonite with aluminum powder are used as torpedo charges (Hexotonal, Torpex, Trialen). Cyclonite may also be used as an additive in the manufacture of smokeless powders.

In manufacturing explosive charges which are required to have a certain mechanical strength or rubber-elastic toughness, Cyclonite is incorporated into curable plastic materials such as polyurethanes, polybutadiene or polysulfide and is poured into molds (→ Plastic Explosives).
Specifications

- Melting point: at least 200 °C = 392°F for products prepared by the acetic anhydride method, at least 190 °C = 374°F
- Acidity, as HNO₃: not more than 0.05%
- Acetone-insolubles: not more than 0.025%
- Ashes: not more than 0.03%
- Sandy matter: none

Cyclotol

The name given to RDX – TNT mixtures with compositions varying between 50:50 and 75:25 (→ Compositions B).

Cyclotrimethylene Trinitrosamine

trinitrosotrimethylenetriamine; Cyclotrimethylentrinitosamin; cyclotrimethylène trinitrosamine

\[
\begin{align*}
\text{H}_2 & \\
\text{O} & \cdots \text{N} & \cdots \text{N} & \cdots \text{NO} \\
\text{H}_2 & \text{C} & \cdots \text{N} & \cdots \text{CH}_2 \\
& & & \text{NO}
\end{align*}
\]

- Pale yellow crystals
- Empirical formula: C₃H₆N₆O₃
- Molecular weight: 174.1
- Energy of formation: +417.9 kcal/kg = +1748.4 kJ/kg
- Enthalpy of formation: +392.4 kcal/kg = +1641.7 kJ/kg
- Oxygen balance: −55.1%
- Nitrogen content: 48.28%
- Volume of explosion gases: 996 l/kg
- Heat of explosion
 - (H₂O liq.): 1081 kcal/kg = 4525 kJ/kg
 - (H₂O gas): 1051 kcal/kg = 4397 kJ/kg
- Density: 1.508 g/cm³
- Melting point: 102 °C = 216°F
- Heat of fusion: 5.2 kcal/kg = 22 kJ/kg
- Detonation velocity, confined:
 - 7300 m/s = 24,000 ft/s at ρ = 1.49 g/cm³

Cyclotrimethylene trinitrosamine is soluble in acetone, alcohol chloroform and benzene, and is sparingly soluble in water.
This nitroso compound, which is related to Cyclonite, is prepared by treating hexamethylenetetramine with alkali metal nitrites in a dilute acid solution.

Since concentrated acid is not required in the preparation, large-scale manufacture of the product, under the name of R-salt, was under active consideration at one time during the Second World War. However, even though easily prepared and powerful, the explosive has not yet been used in practice owing to its limited chemical and thermal stability.

Dangerous Goods Regulations

Gefahrgrutverordnungen

Dangerous Goods Regulations, Rail (GGVE)
Dangerous Goods Regulations, Road (GGVS)
Dangerous Goods Regulations, Sea (GGVSea)
Dangerous Goods Regulations, Inland Waterways (GGVBinsch)

The Dangerous Goods Regulations are internationally harmonised regulations (→ _ADR_, → _RID_, → _IMDG Code_, → _ADNR_, → _ICAO TI_) for the transport of dangerous goods. All substances and articles that have defined explosive properties are assigned to Class 1 “Explosives and Articles with Explosive Substance”. To classify into one of the 6 Risk Classes (sub-classes of Class 1), the hazardous property of the substance or article is studied, including in its dispatch packing. This examination takes place in accordance with the test methods described in the “Recommendations on the Transport of Dangerous Goods; Manual of Tests and Criteria, United Nations”. The → _BAM_ (Federal German Materials Testing Laboratory, → _BICT_ for the military area) is the competent authority in Germany for classifying explosives, detonators, propellants, pyrotechnical mixtures and articles.

The purpose of the sub-classes 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6 is to characterise the explosive properties of the substances and articles in Class 1 with regard to their activity and to some extent their sensitivity as well. The 13 Compatibility Groups A, B, C, D, E, F, G, H, J, K, L, N and S reflect mainly the specific type of explosives. The Classification Code, consisting of the Sub-Class and Compatibility Group (e.g. 1.1D for a mass-explodable detonating explosive or an article with such a substance), characterises goods in Class 1.

Classification into a sub-class and a compatibility group lead to particular rules specified in the Dangerous Goods Regulations for transporting these goods.
This nitroso compound, which is related to Cyclonite, is prepared by treating hexamethylenetetramine with alkali metal nitrates in a dilute acid solution.

Since concentrated acid is not required in the preparation, large-scale manufacture of the product, under the name of R-salt, was under active consideration at one time during the Second World War. However, even though easily prepared and powerful, the explosive has not yet been used in practice owing to its limited chemical and thermal stability.

Dangerous Goods Regulations

Gefahrgutverordnungen

Dangerous Goods Regulations, Rail (GGVE)
Dangerous Goods Regulations, Road (GGVS)
Dangerous Goods Regulations, Sea (GGVSea)
Dangerous Goods Regulations, Inland Waterways (GGVBinsch)

The Dangerous Goods Regulations are internationally harmonised regulations (→ _ADR_, → _RID_, → _IMDG Code_, → _ADNR_, → _ICAO Ti_) for the transport of dangerous goods. All substances and articles that have defined explosive properties are assigned to Class 1 “Explosives and Articles with Explosive Substance”. To classify into one of the 6 Risk Classes (sub-classes of Class 1), the hazardous property of the substance or article is studied, including in its dispatch packing. This examination takes place in accordance with the test methods described in the “Recommendations on the Transport of Dangerous Goods; Manual of Tests and Criteria, United Nations”. The → _BAM_ (Federal German Materials Testing Laboratory, → _BICT_ for the military area) is the competent authority in Germany for classifying explosives, detonators, propellants, pyrotechnical mixtures and articles.

The purpose of the sub-classes 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6 is to characterise the explosive properties of the substances and articles in Class 1 with regard to their activity and to some extent their sensitivity as well. The 13 Compatibility Groups A, B, C, D, E, F, G, H, J, K, L, N and S reflect mainly the specific type of explosives. The Classification Code, consisting of the Sub-Class and Compatibility Group (e.g. 1.1D for a mass-explodable detonating explosive or an article with such a substance), characterises goods in Class 1.

Classification into a sub-class and a compatibility group lead to particular rules specified in the Dangerous Goods Regulations for transporting these goods.
Fig. 9. Organisation of Dangerous Goods Transport.
Dautriche Method

A method for the determination of the detonation rate. The test sample of the explosive is accommodated in a column, which may or may not be enclosed in an iron tube; the length of the detonating column to be measured is marked out by means of two blasting caps, one at each end. A loop made of a detonating cord with a known detonation rate is connected to the caps and is passed over a lead sheet in its middle part. The cord is successively ignited at both ends, and the meeting point of the two detonation waves advancing towards each other makes a notch on the lead sheet. The distance between this meeting point and the geometric center of the cord is a measure of the reciprocal detonation rate to be determined:

\[D_x = D \times \frac{m}{2a} \]

where \(D_x \) is the detonation rate of the sample, \(D \) is the detonation rate of the detonator cord, \(m \) is the length of the distance to be measured, and \(a \) is the distance between the notch and the center of the cord length.

![Dautriche method diagram](image)

The method is easy to carry out and no special chronometer is required.

DBX

A cast explosive charge, containing RDX, ammonium nitrate, TNT and aluminum powder in the proportions 21:21:40:18
Deckmaster

Trade name for primer charges with special delay inserts consisting of a sensor on one end and an aluminum shell delay cap on the other. Delay times: 0–500 milliseconds in 25 ms intervals. The Deckmaster-unit has to be connected with detonating cord with no more than 30 grains per ft (→ Miniaturized Detonating Cord). For varied delay steps in the hole, only one downline detonating cord is needed.

Deflagration

Explosive materials often decompose at a rate much below the sonic velocity of the material without requiring any introduction of atmospheric oxygen. This type of reaction is known as deflagration. It is propagated by the liberated heat of reaction, and the direction of flow of the reaction products is opposite to that of decomposition propagation (unlike in → Detonation). The burning of a powder or of a rocket charge is a deflagration process (→ Burning Rate). The mode of reaction of an explosive material – deflagration or detonation – extent greatly depends on its mode of actuation (→ To Inflame, → Initiation).

For transitions from deflagration to detonation and vice versa see p. 85.

It is important to prevent any deflagration of permitted explosives. Since the deflagration of an explosive proceeds at a much slower rate than its detonation, it may ignite methane-air and coal dust-air mixtures. This must be prevented by using suitable compositions (→ Permitted Explosives) and application techniques.

Deflagration Point

Verpuffungspunkt; température de décomposition

The deflagration point is defined as the temperature at which a small sample of the explosive, placed in a test tube and externally heated, bursts into flame, decomposes rapidly or detonates violently.

A 0.5-g sample (a 0.01-g sample in the case of → Initiating Explosives) is placed in a test tube and immersed in a liquid metal (preferably Wood’s metal) bath at 100 °C (212°F), and the temperature is raised at the rate of 20 °C per minute until deflagration or decomposition takes place.

This method is identical with the official method laid down in RID. Nitrocellulose and nitrocellulose powder are tested in a stirred paraffin bath, heated at the rate of 5 °C per minute.
Delay*)

Verzögerung; retard

A pyrotechnic, mechanical, electronic, or explosive train component that introduces a controlled time delay in some element of the arming or functioning of a fuze mechanism.

delay, arming*)

The time or distance interval between the instant a device carrying the fuze is launched and the instant the fuze becomes armed.

delay compositions

Verzögerungssätze; compositions retardatrices

Delay compositions are mixtures of materials which, when pressed into delay tubes, react without evolution of gaseous products and thus ensure the minimum variation in the delay period. Examples of such mixtures are potassium permanganate with antimony; lead dioxide or minium with silicium; redox reactions with fluorides and other halides (→ also Coruscatives and → delay, gasless).

delay element*)

An explosive train component normally consisting of a primer, a delay column, and a relay detonator or transfer charge assembled in that order in a single housing to provide a controlled time interval.

delay function*)

The time or distance interval between the initiation of the fuze and the detonation.

delay fuze

Verzögerungszünder; fusée retardatrice

In the military, delay fuses are complete shell fuses which set off the explosive charge a definite time after impact.

delay, gasless*)

Verzögerung, gaslos; retard sans formation de gaz

Delay elements consisting of a pyrotechnic mixture that burns without production of gases.

delayed initiation; delayed inflammation

Zündverzug; Anzündverzug

* Text quoted from glossary.
In hypergolic pairs of rocket propellants (→ Hypergolic), a “delay” in inflammation is understood to mean the time which elapses from the moment of contact between the reaction partners up to the initiation; this delay is of the order of a few milliseconds, and must not exceed a certain limiting value; thus, e.g. the inflammation delay of the reagent pair furfuryl alcohol – nitric acid is about 20 milliseconds.

In the case of solid fuel rockets, the delay in inflammation, which is determined on a test stand, is understood to mean the time which elapsed between the moment of application of the initiation voltage to the electric inflammation element and the moment when about 10 % of the maximum pressure has been attained. Clearly, the magnitude of this parameter depends both on the nature of the firing charge employed and on the ease with which the solid propellant can be initiated. The permitted initiation delay will depend on the objective of the firing.

Density

Dichte; densité

Density is an important characteristic of explosives. Raising the density (e.g. by pressing or casting) improves → Brisance and Detonation Velocity (→ Detonation, Hydrodynamic Theory of Detonation). Low-density explosives, in contrast, produce a milder thrust effect (→ also Loading Density; → Cartridge Density).

DER 332

Abbreviation for an epoxy compound with the following structure:

![Empirical formula: C_{21}H_{24}O_4](image)

- empirical formula: C_{21}H_{24}O_4
- molecular weight: 340.19
- density: 1.15–1.17 g/cm^3

Destruction of Explosive Materials

Vernichten von Explosivstoffen; d`estruchon de matières explosives

Destruction of explosives includes destruction of explosive materials and their waste which present a danger of explosion, removal of explosive residues on machines, instruments, pipes etc., and handling objects with adhering explosives (for the evacuation and handling of
ammunition → *Dismantling of Explosive Objects, Especially Ammunition*. The destruction of explosives must be carried out under the supervision of an expert, who must be in charge of the entire operation.

The following techniques may be used in the destruction of explosive materials:

1. Combustion: this technique is applicable to most explosives apart from initiating explosives. However, this destruction technique, while important per se, can only be carried out by the manufacturer. Burning of explosives by the user can be dangerous.

2. The explosive is poured into a large volume of water and is mixed with it. This technique can be applied to materials which are soluble totally in water (black powder, ANFO).

3. Treatment with chemicals (acids, alkalis, boiling with water): lead azide is destroyed by treatment with nitric acid in the presence of sodium nitrite; lead trinitroresorcinate by treatment with nitric acid; mercury fulminate by prolonged treatment with boiling nitric acid.

4. Exploding the material: blasting operations must be carried out in a barricaded area licensed for the purpose, located at least 1000 ft away from any building which may be endangered by the explosion. A reinforced shelter is needed for protection of personnel; suitable protection from flying fragments (e.g. by walls; palisades) must be provided.

Destressing Blasting*)

Entspannungssprengung; sautage de détente

Destressing blasting serves to loosen up the rock mass in order to distribute high compressive loads more uniformly and to counteract the hazard of rockbursts. Rockbursts are particulary violent fracture processes, accompanied by considerable earth tremors. They mainly consist of a sudden thrust or ejection of the rock involved (coal; salts; massive rocks) and abrupt closure of the excavation. In coal seams,

* The article was made available by Dr. Bräuner, Bergbauverein Essen.

Publications:

the risk manifests itself by abnormally great amounts of debris when drilling small holes (so-called test drilling). Destressing blasting is performed by contained detonations.

Detonating Cord

detonating fuse; Primacord; Sprengschnur; cordeau détonant; Cordtex

Detonating cords consist of a → PETN core (about 12 g/m) with wound hemp or jute threads and a plastic coating around it. The cord is initiated by a cap and its detonation velocity is about 7000 m/s. Special fuses for the safe initiation of → Anfo contain 40 and 100 g/m PETN.

Detonating fuses serve to initiate blasting charges; the initiation is safe if the cord is coiled several times around the cartridge. To initiate several charges, branch cords are attached to a “main cord”. In Germany, priming by detonating cords is mandatory in → Large Hole Blasting and in → Coyote Blasting.

Detonating cords are also employed for seismic shots in the desert and at sea. They are also used for clearing blasts in oil and gas wells, which restore the flow from blocked boreholes; special cords with a wire reinforced sheath are used for this purpose.

For the use of detonating cords in the determination of the detonation rate of explosives → Dautriche Method.

Transfer fuses which have no priming effect are manufactured in the USA. Those containing only a fraction of one gram of PETN per meter and a lead sheathing are known as “mild detonating fuses”. Cords containing about 2 g of the explosive per meter inside a plastic-impregnated network are manufactured as “Primadet”.

Detonating Cord

detonating fuse; Primacord; Sprengschnur; cordeau détonant; Cordtex

Detonating cords consist of a → PETN core (about 12 g/m) with wound hemp or jute threads and a plastic coating around it. The cord is initiated by a cap and its detonation velocity is about 7000 m/s. Special fuses for the safe initiation of → Anfo contain 40 and 100 g/m PETN.

Detonating fuses serve to initiate blasting charges; the initiation is safe if the cord is coiled several times around the cartridge. To initiate several charges, branch cords are attached to a “main cord”. In Germany, priming by detonating cords is mandatory in → Large Hole Blasting and in → Coyote Blasting.

Detonating cords are also employed for seismic shots in the desert and at sea. They are also used for clearing blasts in oil and gas wells, which restore the flow from blocked boreholes; special cords with a wire reinforced sheath are used for this purpose.

For the use of detonating cords in the determination of the detonation rate of explosives → Dautriche Method.

Transfer fuses which have no priming effect are manufactured in the USA. Those containing only a fraction of one gram of PETN per meter and a lead sheathing are known as “mild detonating fuses”. Cords containing about 2 g of the explosive per meter inside a plastic-impregnated network are manufactured as “Primadet”.
Detonation

Detonating Cord Downline); Zündabzweigung

The section of detonating cord that extends within the blast hole from the ground surface down to the explosive charge.

Detonating Cord MS Connectors); Millisekunden-Verzögerer

Non-electric, short-interval (millisecond) delay devices for use in delaying blasts which are initiated by detonating cord.

Detonating Cord Trunirline); Leit-Sprengschnur; ligne de cordeau dëtonant

The line of detonating cord that is used to connect and initiate other lines of detonating cord.

Detonation

Detonation; détonation

Detonation is a chemical reaction given by an explosive substance in which produces a shock wave. High temperature and pressure gradients are generated in the wave front, so that the chemical reaction is initiated instantaneously. Detonation velocities lie in the approximate range of 1500 to 9000 m/s = 5000 to 30000 ft/s; slower explosive reactions, which are propagated by thermal conduction and radiation, are known as → Deflagration.

1. Shock Wave Theory

Shock waves are also generated in non-explosive media by a sudden change in pressure. The generation of a shock wave in air (as a non-

Fig. 11. Generation of a plane shock wave.

* Text quoted from glossary.
explosive gas) is illustrated by Fig. 11, which has been taken from *R. Becker:*).

Let a movable piston in a tube be suddenly accelerated from rest and then continue its motion at a constant rate (phase 1). The air in front of the piston must be compressed somewhat and warms up a little; the compression range is determined by the velocity of sound in the air.

The increase in pressure and the range of the increase after a short time are symbolized by the line drawn in front of the piston. Now let the piston accelerate again and continue its motion at the new, higher rate. The new compression is imparted to the medium, some of which is already in motion, as shown in phase 2 of Fig. 11; it is moving at a faster rate, the motion of the matter is superposed and, in addition, the sonic velocity has increased in the somewhat warmer medium. Phases 3, 4, etc. show that a steep pressure front is thus generated. A mathematical derivation of the relationships governing such a process would be beyond the scope of this book**).

The state variables will be denoted as follows:

Table 6.

<table>
<thead>
<tr>
<th>Undisturbed Medium</th>
<th>Medium in Shock Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure</td>
<td>p_0</td>
</tr>
<tr>
<td>temperature</td>
<td>T_0</td>
</tr>
<tr>
<td>density</td>
<td>ρ_0</td>
</tr>
<tr>
<td>specific volume ($v = 1/\rho$)</td>
<td>v_0</td>
</tr>
<tr>
<td>internal energy</td>
<td>e_0</td>
</tr>
<tr>
<td>sound velocity</td>
<td>c_0</td>
</tr>
</tbody>
</table>

If we limit our consideration to nearly ideal gases such as air, the following values for the rise in temperature, the speed of propagation of the shock wave D, and the rate of motion of matter behind the wave front W can be calculated as a function of the compression ratio p_1/p_0:

Table 7.

<table>
<thead>
<tr>
<th>p_1/p_0</th>
<th>T_1 °C</th>
<th>D m/s</th>
<th>W m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>63</td>
<td>452</td>
<td>175</td>
</tr>
<tr>
<td>5</td>
<td>209</td>
<td>698</td>
<td>452</td>
</tr>
<tr>
<td>8</td>
<td>345</td>
<td>875</td>
<td>627</td>
</tr>
<tr>
<td>10</td>
<td>432</td>
<td>978</td>
<td>725</td>
</tr>
<tr>
<td>20</td>
<td>853</td>
<td>1369</td>
<td>1095</td>
</tr>
</tbody>
</table>

and further increasing values.

** For a detailed presentation see the reference list on page 92.
It is seen from the Table that even if the extent of compression is relatively small, the propagation rate becomes distinctly higher than the velocity of sound (330 m/s); at higher compression ratios the resulting temperatures are so high that glow phenomena occur even in the absence of an energy-supplying reaction. If the medium is an explosive gas mixture rather than air, it is obvious that an explosive reaction will be instantly initiated in front of the shock wave.

Owing to the sudden pressure effect, all explosions produce a shock wave in the surrounding air; this compression shock is the principle of the long-distance effect of explosions. If the propagation of the shock wave is nearly spherical, the compression ratio \(\frac{p_1}{p_0} \) decreases rapidly, and so does the po velocity of matter \(W \); it becomes zero when the shock wave becomes an ordinary sound wave. If the explosion-generated shock wave is propagated in three-dimensional space, its effect decreases with the third power of the distance; this is the guideline adopted in the German accident prevention regulations, in which the safety distance (in meters) is calculated from the expression

\[
f \cdot \frac{3}{\sqrt{M}}
\]

where \(M \) is the maximum amount of explosives in kg which are present in the building at any time, whereas \(f \) is a factor which varies, according to the required degree of safety, from 1.5 (distance between two barricaded store houses) to 8 (distance from the non-dangerous part of the plant). The \(f \)-value stipulated by the regulations may be as high as 20 for residential areas in the vicinity of the plant.

The shock wave theory is easier to understand, if we consider a planar shock wave, such as the one shown in Fig. 11, on the assumption that the tube is indestructible (such shock wave tubes are utilized as research instruments in gas dynamics and in solid state physics; the shock sources are explosions or membranes bursting under pressure).

Comparative treatment of the behavior of the gas in the tube yields the following relationships.

From the law of conservation of mass:

\[
\rho_0 D = \rho_1 (D - W) \quad \text{or} \quad v_1 D = v_0 (D - W)
\]

(1)

From the law of conservation of momentum:

\[
p_1 - p_0 = \rho_0 D W \quad \text{or} \quad v_0 (p_1 - p_0) = DW
\]

(2)

From the law of conservation of energy:

\[
p_1 W = \rho_0 D (e_1 - e_2 + \frac{W^2}{2})
\]

(3)

Rearrangements yield the so-called Hugoniot equation:

\[
e_1 - e_0 = \frac{1}{2} \left(\rho_1 + \rho_0 \right) (v_0 - v_1)
\]

(4)
Equation (4) represents a curve in the \(p - v \) diagram, the **Hugoniot** curve.

The following expression is obtained for the velocity \(D \) of the shock wave and for the velocity of matter \(W \):

\[
D = v_0 \sqrt{\frac{p_1 - p_0}{v_0 - v_1}}
\]

(5)

and

\[
W = \sqrt{(p_1 - p_0)(v_0 - v_1)}
\]

(6)

These relationships are valid irrespective of the state of aggregation.

2. Detonation Wave Theory

If the medium is explosive, an explosive chemical reaction must be produced immediately in the wave front because of the drastic temperature and pressure conditions. The propagation of the shock wave is maintained by the energy of the reaction.

The equations developed above are still valid, but the meaning of the equation parameters are:

- \(p_1 \) – detonation pressure;
- \(\rho_1 \) – density of gaseous products in the front of the shock wave; this density is thus higher than the density of the explosive \(\rho_0 \);
- \(D \) – detonation rate;
- \(W \) – velocity of gaseous products (fumes).

Equation (1) remains unchanged.

Since \(p_0 \) is negligibly small as compared to the detonation pressure \(p_1 \), we can write equation (2) as

\[
p_1 = \rho_0 DW
\]

(2d)*

The detonation pressure in the wave front is proportional to the product of the density, the detonation rate, and the fume velocity, or – since the fume velocity is proportional to the detonation rate – to the square of the detonation rate. For a given explosive, the detonation velocity rises with increasing density. It is clearly seen from equation (2d) that the detonation pressure increases very considerably if the initial density of the explosive can be raised to its maximum value – e.g., by casting or pressing – or if the density of the explosive is

* Equations of the detonation wave theory are denoted by numbers corresponding to the respective equations of the shock wave theory, with a suffix “d” (for “detonation”).

The pressure maximum \(p_1 \) in the wave front is also called “Neumann spike” \(p_N \).
intrinsic high (TNT 1.64; RDX 1.82; Octogen 1.96). High density of the explosive is important if high → Brisance is needed, whereas the blasting performance (→ Strength) is less affected by it. The importance of the maximum possible compaction of explosives is demonstrated by the → Hollow Charge technique.

Conversely, the detonation pressure and detonation rate may be reduced by reducing \(\rho_0 \), i.e., by employing a more loosely textured explosive. This is done if the blasting has to act on softer rocks and if a milder thrust effect is required (see below: explanation of the concept of impedance).

The determination of the maximum detonation pressure \(p_1 \), in equation (2d) has been studied by X ray measurements. While the detonation velocity can be measured directly by electronic recorders or by the → Dautriche Method, there is no direct measurement possibility for the fume velocity \(W \), but it can be estimated by the flow off angle of the fumes behind the wave front; this angle can be taken from X ray flash photographs. The relation between \(D \) and \(W \) is

\[
W = \frac{D}{\gamma + 1}; \quad \gamma \text{ is denoted as the "polytrop exponent" in the modified state equation}
\]

\[
p = C \rho^\gamma; \quad C = \text{const.}^{*}
\]

The value of \(\gamma \) is about 3, so that equation (2d) can be written

\[
p_1 = \frac{\rho_0}{4} D^2
\]

Equation (2) above can be recalculated to

\[
p_1 - p_0 (v_0 - v^1) \rho_0^2 D^2
\]

represented in the pressure-volume diagram (Fig. 11) by a straight line with the slope \(- \rho_0^2 D^2\), known as the Rayleigh line. The Hugoniot equation (4), applied to the detonation process involving the chemical energy of reaction \(q \), becomes:

\[
e_1 - e_0 = \frac{1}{2} (p_1 + p_0) (v_0 + v_1) + q
\]

Equations (5) and (6) remain unchanged, but \(D \) now denotes the detonation rate, while \(W \) stands for fume velocity.

In a detonation process, the positions of the Hugoniot curve and the Rayleigh line on the \(pv \)-diagram are as shown in Fig. 12.

The dotted part of the Hugoniot curve shown in Fig. 12 does not describe real detonation states, because here the term under the square root in equation 5 becomes negative, and \(D \) contains the factor \(-1\). The curve now consists of two separate segments: the one situ-

ated in the higher pressure area represents detonation, while the one located in the lower pressure area represents Deflagration. The Rayleigh line is tangent to the Hugoniot curve at the Chapman-Jouguet (CJ) point*) (all state parameters assigned to the "CJ state" are indexed CJ). These parameters describe a "stable" detonation, i.e., a detonation which, unlike a shock wave, can pass through the medium in a stationary manner, that is, at constant intensity and constant velocity. The following equation is then also valid

\[D_{CJ} = W_{CJ} + C_{CJ} \]

(8d)
i.e., the detonation rate is the sum of fume velocity and sound velocity.

All the equations given above involve no assumption as to the Equation of state of the medium; they are thus valid irrespective of its state of aggregation. They yield no information as to the thickness of the reaction zone; as a matter of fact, the transitions from \(v_0 \) and \(p_0 \) to \(v_1 \) and \(p_1 \) are mathematically discontinuous. In reality, the thickness of the reaction zone is about 1 mm, and may be deduced from the effects of friction and thermal radiation, which were ignored in the treatment given above. The physical meaning of the imaginary part of the Hugoniot curve is that there is no continuous transition between detonation and deflagration. In practice, however, transition between

* Chapman and Jouguet are pioneers of the shock wave theory development; also Riemann, Hugoniot and Rayleigh.
these two phenomena may take place in either direction. Roth*) compared both these types of reactions on → Nitroglycerol. Table 8 is a comparison of the reaction performance of nitroglycerol ($\rho_0 = 1.5 \times 10^3$ kg/m3**) during detonation and deflagration respectively.

Table 8.

<table>
<thead>
<tr>
<th></th>
<th>Deflagration</th>
<th>Detonation</th>
</tr>
</thead>
<tbody>
<tr>
<td>propagation rate D, m/s</td>
<td>3×10^{-4}</td>
<td>7.3×10^3</td>
</tr>
<tr>
<td>mass reacted $m = \rho_0 D$, kg/m2s</td>
<td>4.5×10^{-1}</td>
<td>11×10^6</td>
</tr>
<tr>
<td>reaction energy q per kg</td>
<td>460 kcal</td>
<td>1600 kcal</td>
</tr>
<tr>
<td></td>
<td>$= 1.93 \times 10^{-3}$kJ</td>
<td>$= 6.7 \times 10^3$kJ</td>
</tr>
<tr>
<td>output, kcal/m2s</td>
<td>2.1×10^2</td>
<td>1.8×10^{10}</td>
</tr>
<tr>
<td>output ratio deflagration:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>detonation</td>
<td>about 1:</td>
<td>10^8</td>
</tr>
<tr>
<td>width b of reaction zone</td>
<td>1×10^{-2}m</td>
<td>1×10^{-3}m</td>
</tr>
<tr>
<td>energetic load of reaction zone</td>
<td>7.5×10^7</td>
<td>6.6×10^{16}</td>
</tr>
</tbody>
</table>

The value of 6.6×10^{16} kcal/m3h for the energetic load may be compared with the maximum value of “only” 10^9 kcal/m3 which can be attained in chemical reactor technology.

The physical treatment of the detonation process involves yet another magnitude known as “impedance”***); this is the product of the density and the detonation rate and represents the material throughput. It has the dimension of a resistance, and reflects the fact that the progress of the detonation through the explosive medium becomes the more difficult, with increasing density of the explosive (i.e., if the density of the explosive has been increased by casting or pressing).

3. Selective Detonation

Selectivity in the course of a detonation process, as described by Ahrens, is noted when processes with very different sensitivities, and thus also with very different induction periods, participate in the in-

** The unconventional dimension of kg/m3 is the result of our consistent application of the SI rather than the older CGS system of units. The fundamental SI units are meter, kilogram (mass), second, ampere, Kelvin (K) an Candela, while force, weight, pressure etc. are derived magnitudes. For conversion tables see the back flyleaf of this volume.

tensive chemical reaction (→ 2. Detonation Wave Theory) produced by the shock wave. If the intensity of the shock wave is very low owing to external conditions – explosion in an unconfined space, for example – the induction periods of less sensitive reactions may become infinite, i.e., the reaction may fail to take place.

This selectivity is important for ion-exchanged permitted explosives. The proportion of the nitroglycerine-nitroglycol mixture in these types of permitted explosives is chosen so that it would just produce a detonation as if it were dispersed in an inert salt bed. The decomposition reaction of the ion exchanged salt pairs NaNO₃ (or KNO₃) + NH₄Cl NaCl (or KCl) + N₂ + 2 H₂O + 1/2 O₂ is insensitive and only takes place if the detonation process is favored by confinement; otherwise, the mixture will behave as an inert salt. Thus, if the explosive is detonated while unconfined (e.g. in angle-shot mortar test or because the confinement was destroyed in the previous blast), the only reaction which takes place is that of the nitroglycerine-nitroglycol mixture which is fast and is limited by its relative proportion and is thus firedamp safe. If the explosive is detonated in an undamaged borehole, double decomposition will take place, and the explosive can develop its full strength.

4. Sympathetic Detonation

gap test; flash over; Übertragung; coefficient de self-excitation

These terms denote the initiation of an explosive charge without a priming device by the detonation of another charge in the neighborhood. The maximum distance between two cartridges in line is determined by flash-over tests, by which the detonation is transmitted. The transmission mechanism is complex: by shock wave, by hot reaction products, by flying metallic parts of the casing (if the donor charge is enclosed) and even by the → Hollow Charge effect.

It has been proposed by the European Committee for the Standardization of Tests of Explosive Materials*) that the transmission of industrial explosives be evaluated as follows. Two cartridges of the smallest commercially manufactured diameter are coaxially attached on a rod made of soft iron, wood or plastic material. The rod is freely suspended in a horizontal position, and the impact cartridge is set off by a No. 8 blasting cap. For the determination of the gap value the distance between the two cartridges is increased step by step, until misfire of the acceptor charge occurs. The completeness of the detonation in the receiving cartridge is verified with the aid of a lead sheet accommo-

*) Now established as: International Study Group for the Standardization of the Methods of Testing Explosives; Secretary: Dr. Per-A. Persson, Swedish Detonics Research Foundation, Box 32058, S 12611 Stockholm.
dated at the end of this cartridge perpendicular to its axis, or with the aid of a second receiver cartridge.

The resulting transmission distance is reported as the “coefficient of detonation transmission” (Koeffizient der Detonationsübertragung; coefficient de transmission de la detonation, C. T. D.) and should be the arithmetic mean of three positive and negative results obtained in successive trials.

In Germany, the ion-exchanged → Permitted Explosives are also gap tested in a coal-cement pipe; these are cylinders made of a bonded mixture of cement with coal dust in the ratios of 1:2 and 1:20 and provided with an axial bore.

In the studies so far reported, donor and receiver cartridges consisted of the same explosive. The transmission of a standard donor cartridge through varying thicknesses of a stopping medium can also be employed to determine the sensitivities of different explosives. Recent practice in the United States is to insert cards (playing cards, perspex sheets etc.) between the donor cartridge and the receiver cartridge. Tests of this kind are named gap tests. In a more sophisticated method, the gap medium (e.g. a plexiglas plate, see Fig. 13 below) stops flying particles and directs heat transmission completely (shock-pass heat-filter). The shock wave is the only energy transmission to the acceptor charge.

![Fig. 13. Gap test](image-url)
For a 5 cm long and 5 cm diameter Tetryl donor charge with a density of 1.51 g/cm³, the pressure p in the plexiglas as a function of the plexiglas length d according to M. Held*) is given by

$$p = 105 e^{0.0358d}$$

p in kbar, d in mm.

The result of the gap test is recorded as the minimum pressure at which the acceptor charge detonates.

F. Trimborn (Explosivstoffe vol. 15, pp. 169–175 (1967) described a simple method in which water is used as the heat blocking medium; the method can also be used to classify explosives which are hard to detonate and are insensitive to blasting caps.

The gap test explosive train is directed from bottom to top. The donor charge (cyclonite with 5% wax) is placed into a plexiglas tube and covered with water. The acceptor charge to be tested is introduced into the water column from above. The distance between the two charges can be easily varied.

A detonating cord, terminating on a lead plate, serves as evidence for detonation.

Some results: see Table 9.

5. Detonation Velocity

Detonationsgeschwindigkeit; vitesse de détonation

The detonation velocity is the rate of propagation of a detonation in an explosive; if the density of the explosive is at its maximum value, and if the explosive is charged into columns which are considerably wider than the critical diameter, the detonation velocity is a characteristic of each individual explosive and is not influenced by external factors. It decreases with decreasing density of packing in the column. It is measured by ionisation probes or fibre optical sensors.

The detonation velocities of confined and unconfined nitroglycerine and nitroglycol explosives have very different values; these values are known as upper and lower detonation velocities respectively. The velocity measured in a steel pipe confinement is not attained in a borehole. Special seismic explosives (e.g. → Geosit) detonate at the same high detonation rate as measured in the steel pipe, whether confined or not.

6. Detonation Development Distance

Anlaufstrecke; distance d'évolution de détonation

A term denoting the distance required for the full detonation rate to be attained. In initiating explosives, this distance is particularly short.

The detonation development distance, especially that of less sensitive explosives, is strongly affected by the consistency, density and the cross-section of the charge.
<table>
<thead>
<tr>
<th>Explosive</th>
<th>State</th>
<th>Density g/cm³</th>
<th>Detonations at Distance in Water</th>
<th>Initiating Pressure for Detonations kbar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 % mm</td>
<td>100 % mm</td>
</tr>
<tr>
<td>composition B</td>
<td>cast</td>
<td>1.68</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Cyclonite, 5% wax</td>
<td>pressed</td>
<td>1.63</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>PETN, 7% wax</td>
<td>pressed</td>
<td>1.60</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Pentolite 50/50</td>
<td>cast</td>
<td>1.65</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>picric acid</td>
<td>pressed</td>
<td>1.58</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Tetryl</td>
<td>pressed</td>
<td>1.53</td>
<td>–</td>
<td>23</td>
</tr>
<tr>
<td>TNT</td>
<td>pressed</td>
<td>1.53</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>TNT</td>
<td>cast</td>
<td>1.58</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>TNT</td>
<td>cast</td>
<td>1.61</td>
<td>5.4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pressure values comply well with those published in other literature.
References:

Hugoniot, H.: Journal de l’ecole polytechnique (Paris) 58, 1–125 (1889)
Roth, J. F.: Explosivstoffe, 23–31; 45–54 (1958)
Andrejev, K. K. and Beljajev, A. F.: Theorie der Explosivstoffe, Svenska National Kommittee for Mechanik, Stockholm 1964 (Translation into German)
Mader, Ch.: Numerical Modeling of Detonation, University of California Press, Berkeley 1979
LASL Shock Hugoniot Data. Editor: March, St. P., University of California Press, Berkeley, California 1980
Explosives Performance Data. Editor: Mader, Ch. L., Johnson, J. N., Crane, Sh. L., University of California Press, Berkeley, California 1982
Shock Wave Prof Data. Editor: Morris, Ch. E., University of California Press, Berkeley, Los Angeles, London 1982
Detonator*)

détonateur

In an explosive train, that component which, when detonated by the primer, in turn detonates a less sensitive but larger high explosive (usually the booster); or when containing its own primer initiates the detonation. The detonator can be activated by either an explosive impulse (primer) or a non-explosive impulse. When activated by a non-explosive impulse, the detonator contains its own primer. Detonators are generally classified as percussion, stab, electric, or flash, according to the method of initiation. Explosive charge placed in certain equipment and set to destroy the equipment under certain conditions (→ Initiator).

Diamyl Phthalate

Diamylphthalat; phthalate diamylique

![Empirical formula of Diamyl Phthalate](image)

colorless liquid
empirical formula: C₁₈H₂₆O₄
molecular weight: 306.4
energy of formation: −692.0 kcal/kg = −2895.2 kJ/kg
enthalpy of formation: −721.0 kcal/kg = −3016.5 kJ/kg
oxygen balance: −235.0%

Diamyl phthalate is used as an additive to gunpowders, both for the purpose of gelatinization and to effect → Surface Treatment.

Diazodinitrophenol

diazodinitrophénol; Dinol, Diazol; D.D.N.P.

![Empirical formula of Diazodinitrophenol](image)

red yellow amorphous powder
empirical formula: C₆H₂N₄O₅
molecular weight: 210.1

* Text quoted from glossary.
energy of formation: +236.4 kcal/kg = +988.9 kJ/kg
enthalpy of formation: +220.8 kcal/kg = +924.0 kJ/kg
oxygen balance: −60.9%
nitrogen content: 26.67%
density: 1.63 g/cm³
lead block test: 326 cm³/10 g
detonation velocity, confined: 6600 m/s = 21700 ft/s
at ρ = 1.5 g/cm³
deflagration point: 180 °C = 356°F
impact sensitivity: 0.15 kp m = 1.5 N m

The compound is sparingly soluble in water, soluble in methanol and ethanol, and readily soluble in acetone, nitroglycerine, nitrobenzene, aniline, pyridine, and acetic acid. It rapidly darkens in sunlight. It is of interest for Lead-free Priming Compositions.

It is prepared by diazotization of Picramic Acid with sodium nitrite in a hydrochloric acid solution with efficient cooling. The dark brown reaction product is purified by dissolution in hot acetone and reprecipitation with iced water.

In the USA, this diazo compound is used as an initiating explosive. It is more powerful than mercury fulminate and slightly less so than lead azide.

For more information on Diazophenols see: Lowe-Ma, Ch., Robin, A. N. and William, S. W.: Diazophenols – Their Structure and Explosive Properties, Naval Weapons Center, China Lake, CA 9355–6001; Rept.-Nr.: WC TP 6810 (1987)

Dibutyl Phthalate

Dibutylphthalat; phthalate dibutylique

\[\text{CO-O-} \text{C}_4\text{H}_9 \]

\[\text{CO-O-} \text{C}_4\text{H}_9 \]

colorless liquid
empirical formula: C₁₆H₂₂O₄
molecular weight: 278.4
energy of formation: −696 kcal/kg = −2913 kJ/kg
enthalpy of formation: −723 kcal/kg = −3027 kJ/kg
oxygen balance: −224.2%
density: 1.045 g/cm³
boiling point at 20 mm Hg: 205 °C = 401°F

Dibutyl phthalate is insoluble in water, but is readily soluble in common organic solvents. It is used as a gelatinizer and to effect Surface Treatment in gunpowder manufacture.
Specifications

net content: no less than 99% (analysis by saponification)
ashes: not more than 0.02%
density: 1.044–1.054 g/cm³
reaction in alcoholic solution: neutral to phenolphthaleine

Diethyleneglycol Dinitrate

Diglykoldinitrat; Dinitrodiglykol; dinitrate de diéthylène glycol

![Chemical Structure]
colorless oil
empirical formula: C₄H₈N₂O₇
molecular weight: 196.1
energy of formation: −506.7 kcal/kg = −2120.0 kJ/kg
enthalpy of formation: −532.3 kcal/kg = −2227.3 kJ/kg
oxygen balance: −40.8%
nitrogen content: 14.29%
volume of explosion gases: 991 l/kg
heat of explosion
(H₂O liq.): 1091 kcal/kg = 4566 kJ/kg
(H₂O gas): 990 kcal/kg = 4141 kJ/kg
specific energy: 120.2 mt/kg = 1178 kJ/kg
density: 1.38 g/cm³
refractive index: nD₂₅ = 1.4498
melting point: 2 °C = 35.6°F (stable modification)
−10.9 °C = +12.4°F (unstable modification)
vapor pressure:

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>millibar</td>
<td>°C</td>
</tr>
<tr>
<td>0.0048</td>
<td>20</td>
</tr>
<tr>
<td>0.17</td>
<td>60</td>
</tr>
</tbody>
</table>

lead block test: 410 cm³/10 g
detonation velocity, confined: 6600 m/s = 21 700 ft/s at ρ = 1.38 g/cm³
deflagration point: 190 °C = 374°F
impact sensitivity: 0.01 kpm = 0.1 Nm
This compound is miscible at ordinary temperatures with nitroglycerine, nitroglycol, ether, acetone, methanol, chloroform and benzene, and even with its precursor compound — the diglycol prior to nitration. It is not miscible with ethanol and is sparingly soluble in carbon tetrachloride. It has a low hygroscopicity and is sparingly soluble in water, but more soluble than nitroglycerin. Its vapors produce headaches, though these are not as strong as those produced by nitroglycol vapors.

Diethyleneglycol dinitrate, like nitroglycerine, is prepared by nitrating diethylene glycol with mixed acid in batches or continuously. The diglycol is produced by synthesis. Since the waste acid is unstable, special formulations of mixed acid must be employed, and the mixed acid must be denitrated at the end of the nitration stage.

Diglycol dinitrate was used extensively in the Second World War by the German side as one of the main components of → Double Base Propellants. The explosion heat of diglycol in powder form can be kept lower than the heats of the corresponding nitroglycerine powders; they represented the first step towards the so-called cold powders. Diglycol dinitrate and triglycol dinitrate are also employed as rocket propellants.

Specifications for diethyleneglycol as a nitration raw material

- clear, colorless liquid
- density (20/4): 1.1157–1.1165 g/cm³
- reaction: neutral
- boiling analysis: not below 241 °C = 466°F
- distillation at: 246.5 °C = 475.5°F
- the end: not above 250 °C = 482°F
- moisture: not more than 0.5%
- glow residue: not more than 0.02%
- acidity as H₂SO₄: 0.01%
- chlorides: traces only
- saponification number: not above 0.02%
- reducing substance: none
- (test with ammoniacal solution of AgNO₃):
- viscosity at 20 °C = 68°F: 35.7 cP

An additional specification was required in Germany:
- content of (mono-) ethyleneglycol: not more than 2%

determination: 4 cm³ diethyleneglycol and 4 cm³ NaOH solution (which contains 370 g NaOH per liter) are mixed
and cooled, and 2 cm3 of copper sulfate solution (which contains 200 g CuSO$_4$$\cdot$5H$_2$O per liter) is added and shaken. The color is compared with the color obtained by standard mixtures of pure diethylene glycol with 0.5, 1.5 and 2% ethylene glycol after the same reaction.

Differential Thermal Analysis

Thermoanalyse; analyse thermique différentielle

All methods in which the sample to be analyzed is gradually heated and its calorimetric behavior studied. The method includes thermogravimetry (TG) and differential thermal analysis (DTA).

In thermogravimetry, the sample is placed in an oven and heated the desired rate; the loss in weight of the sample is then recorded. Such changes in weight can be due, for example, to the evaporation of hygroscopic moisture, evolution of gases, or chemical decomposition reactions. The thermal balance can also be applied in this manner to the study of thermal stability of explosive materials.

Thermal balance can also be combined with differential thermal analysis. DTA registers small temperature differences, which appear during simultaneous heating of the sample and a standard. In this way all physical and chemical processes, which are accompanied by an additional absorption or evolution of heat by the substance, are recorded. Examples of such processes are changes taking place in the crystal lattice, melting, evaporation, chemical reactions, and decompositions. Thus, the application of DTA gives more selective information about the behavior of explosive materials as a function of the temperature than does the determination of the → Deflagration Point.

Diglycerol Tetranitrate

Tetranitrodiglycerol; Tetranitrodiglycerin; tetranitrate de diglycérine

\[
\begin{align*}
\text{CH}_2\text{O-NO}_2 & \quad \text{CH}_2\text{O-NO}_2 \\
\text{CH}_2\text{O-NO}_2 & \quad \text{CH}_2\text{O-NO}_2
\end{align*}
\]

yellow oil

empirical formula: C$_6$H$_{10}$N$_4$O$_{13}$
molecular weight: 346.2
oxygen balance: –18.5%
nitrogen content: 16.18%
density: 1.52 g/cm³
lead block test: 470 cm³/10 g
impact sensitivity: 0.15 kp m = 1.5 N m

Pure tetranitrodiglycerol is a very viscous oil, which is non-hygroscopic, insoluble in water, and readily soluble in alcohol and ether. It has a lower explosive power than nitroglycerine, is less sensitive to impact, and its gelatinizing effect on nitrocellulose is not as satisfactory.

Prolonged heating of glycerol yields diglycerol and a small amount of other polyglycerols. If such mixtures of glycerol and diglycerol are nitrated, mixtures of nitroglycerin and tetranitroglycerol are obtained; they have a lower solidification temperature than pure nitroglycerine. Tetranitrodiglycerol was used in the manufacture of non-freezing dynamites when sufficient quantities of glycol from largescale industrial syntheses were not available.

Diluent*)

An additive, usually inert, used to regulate the burning rate or temperature.

Dimethylhydrazine, unsymmetrical

Dimethylhydrazin; diméthylhydrazine; UDMH

\[
\begin{array}{c}
\text{CH}_3 \\
\text{H}_2\text{N}-\text{N} \\
\text{CH}_3
\end{array}
\]

- colorless liquid
- empirical formula: C₂H₈N₂
- molecular weight: 60.1
- energy of formation: +247 kcal/kg = +1035 kJ/kg
- enthalpy of formation: +198 kcal/kg = +828 kJ/kg

UDMH is used in liquid-fuel rockets both as fuel and as – Monergol by catalytic decomposition. Precision pulses in U.S. space technique are given by UDMH.

*) Text quoted from glossary.
Dingu and Sorguyl*)

dinitroglycolurile and tetranitroglycolurile; glycolurile dinitramine et glycolurile tétranitramine

The reaction between glyoxal O=CH–CH=O and urea H₂N–C=O–NH₂ yields glycolurile with the structural formula

![Structural formula of glycolurile](image)

The dinitration of the compound yields “Dingu”:

![Dingu structure](image)

colorless crystals
empirical formula: C₄H₄N₆O₆
molecular weight: 232.1
oxygen balance: −27.6%
nitrogen content: 36.21%
density: 1.94 g/cm³
detonation velocity, confined: 7580 m/s = 24900 ft/s
at ρ = 1.75 g/cm³
misfire at maximum density
deflagration point: 225–250 °C = 437–482°F
decomposition begins at 130 °C = 266°F
impact sensitivity: 0.5–0.6 kp m = 5–6 N m
friction sensitivity: 20–30 kp = 20–300 N pistil load

The product is easily decomposed by alkaline hydrolysis. It is stable in contact with neutral or acid water. It is insoluble in most solvents and in molten TNT; it is soluble in dimethylsulfoxide (DMSO).

Nitration with a HNO₃ – N₂O₅ mixture yields the tetranitramine “Sorguyl”:

![Sorguyl structure](image)

*Dingu and Sorguyl have been developed by SOCIÉTÉ NATIONALE DES POUDRES ET EXPOLOSIFS, Sorgues, France.
colorless crystals
empirical formula: \(\text{C}_4\text{H}_2\text{N}_8\text{O}_{10} \)
molecular weight: 322.1
oxygen balance: +5.0 %
nitrogen content: 34.79 %
density: 2.01 g/cm\(^3\)
detonation velocity, confined:
9150 m/s = 30 000 ft/s at \(\rho = 1.95 \text{ g/cm}^3 \)
deflagration point: 237 °C = 459°F
impact sensitivity: 0.15–0.2 kp m = 1.5–2 N m

The product is interesting because of its high density and also high
detonation velocity.

Sorguyl is not hygroscopic, but it decomposes easily by hydrolysis. It is
insoluble in hydrocarbons and chlorinated hydrocarbons, but soluble in
numerous solvents.

It decomposes when mixed with molten → TNT.

Dinitrobenzene

→ Metadinitrobenzene

4,6-Dinitrobenzofuroxan

4,6-*Dinitrobenzofuroxan*; 4,6-*dinitrobenzofurazan-1 oxide; *dinitro-dinitrobenzofuroxan*

![Chemical Structure](image)

yellow-gold needles
empirical formula: \(\text{C}_6\text{H}_2\text{N}_4\text{O}_6 \)
molecular weight: 226.1
oxygen balance: –49.5 %
nitrogen content: 24.78 %
melting point: 172 °C

Dinitrobenzofuroxan is practically insoluble in water, alcohol and benzene. It is readily soluble in aromatic hydrocarbons and boiling acetic acid.

The compound is obtained by means of direct nitrating of benzofurazan-1-oxide with concentrated nitric and sulfuric acid, or by heating
→ *Trinitrochlorobenzene (Picrylchloride)* with sodium azide in acetic acid in a water bath.
Dinitrobenzofuroxan has a somewhat more explosive power than Picric Acid, but due to its slightly acidic properties and its relatively high production cost it has yet to become widely-used.

Of particular interest are the potassium and barium salts, both of which are thermally very stable and low → Initiating Explosive materials. In the categories of impact and friction sensitivity, the potassium-dinitrobenzofuroxan (KDNBF) falls between → Mercury Fulminate and → Lead Azide. It has been used mainly in the USA in explosive-initiating compositions for both military and commercial applications since the early 1950s.

Dinitrochlorobenzene

1,2,4-Chlordinitrobenzol; dinitrochlorbenzène

![Chemical Structure](image)

- pale yellow crystals
- empirical formula: $C_6H_3N_2O_4Cl$
- molecular weight: 202.6
- energy of formation: $-13.8 \text{ kcal/kg} = -57.8 \text{ kJ/kg}$
- enthalpy of formation: $-28.6 \text{ kcal/kg} = -120 \text{ kJ/kg}$
- oxygen balance: -71.1%
- nitrogen content: 13.83%
- density: 1.697 g/cm^3
- boiling point: $315 \degree \text{C} = 599 \degree \text{F}$
- solidification point: $43 \degree \text{C} = 109 \degree \text{F}$ (isomere mixture)
- lead block test: $225 \text{ cm}^3/10 \text{ g}$
- deflagration point: evaporation without deflagration
- impact sensitivity: up to $5 \text{ kp m} = 50 \text{ N m}$ no reaction
- friction sensitivity: up to $36 \text{ kp} = 353 \text{ N pistil load}$ no reaction
- critical diameter of steel sleeve test: at 1 mm\ø no reaction

Dinitrochlorobenzene is insoluble in water, but is soluble in hot ethanol, ether and benzene.

It is prepared by nitration of chlorobenzene, which yields a mixture of the 2,4- and the 2,6-isomers, with melting points of $53.4 \degree \text{C} (127.5\degree \text{F})$ and $87–88 \degree \text{C} (190–192\degree \text{F})$ respectively.

Dinitrochlorobenzene is not an explosive. It serves as an intermediate in many syntheses (→ Hexanitrodiphenylamine; Trinitrochlorobenzene; Trinitroaniline; etc.).
Dinitrodimethyloxamide

Dinitrodimethyloxamid; dinitrodiméthyloxamide

- Colorless needles
- Empirical formula: C₄H₆N₄O₆
- Molecular weight: 206.1
- Energy of formation: −331.2 kcal/kg = −1385.8 kJ/kg
- Enthalpy of formation: −354.2 kcal/kg = −1482.0 kJ/kg
- Oxygen balance: −38.8%
- Nitrogen content: 27.19%
- Density: 1.523 g/cm³
- Lead block test: 360 cm³/10 g
- Detonation velocity, confined: 7100 m/s = 23,300 ft/s at ρ = 1.48 g/cm³
- Impact sensitivity: 0.6 kp m = 6 N m

The compound is insoluble in water, sparingly soluble in ether and chloroform and soluble in acetone. It is chemically stable.

It is prepared by nitration of dimethyloxamide with a sulfuric acid-nitric acid mixture.

Dinitrodiöxyethyloxamide Dinitrate

Dinitrodiöxyethyl-dinitro-oxamide dinitrate

- Colorless flakes
- Empirical formula: C₆H₈N₆O₁₂
- Molecular weight: 356.2
- Energy of formation: −355.5 kcal/kg = −1487.2 kJ/kg
- Enthalpy of formation: −377.1 kcal/kg = −1577.7 kJ/kg
- Oxygen balance: −18.0%
- Nitrogen content: 23.60%
- Melting point: 88 °C = 190°F

This compound is readily soluble in acetone and in hot alcohol, and is insoluble in cold water. It is prepared by nitration of diethanoloxamide, the latter being prepared by condensation of monoethanolamine with oxalic acid.
Dinitrodiphenylamine

Dinitrodiphenylamin; dinitrodiphénylamine

![Chemical structure of Dinitrodiphenylamine]

- red crystals
- empirical formula: C_{12}H_{9}N_{3}O_{4}
- molecular weight: 259.2
- energy of formation: +39.4 kcal/kg = +165 kJ/kg
- enthalpy of formation: +21.1 kcal/kg = +88.3 kJ/kg
- oxygen balance: −151.2%
- nitrogen content: 16.22%
- density: 1.42 g/cm³
- melting point
 - 2,4–isomer: 220 °C = 364°F
 - 2,6–isomer: 107 °C = 161°F

Dinitrodiphenylamine is formed in nitrocellulose propellants stabilized by diphenylamine (→ Stability).

Dinitroaphthalene

1,5-; 1,8-Dinitronaphthalin; dinitronaphthalène; Dinal

![Chemical structure of Dinitroaphthalene]

- grey yellow powder
- empirical formula: C_{10}H_{6}N_{2}O_{4}
- molecular weight: 218.2
- energy of formation:
 - 1,5–isomer: +49.7 kcal/kg = +208.1 kJ/kg
 - 1,8–isomer: +57.5 kcal/kg = +240.7 kJ/kg
- enthalpy of formation:
 - 1,5–isomer: +33.5 kcal/kg = +140.0 kJ/kg
 - 1,8–isomer: +41.25 kcal/kg = +172.6 kJ/kg
- oxygen balance: −139.4%
nitrogen content: 12.84%
volume of explosion gases: 488 l/kg
heat of explosion (H₂O liq.):
1,5–isomer: 725 kcal/kg = 3031 kJ/kg
1,8–isomer: 732 kcal/kg = 3064 kJ/kg
specific energy: 58 mt/kg = 569 kJ/kg
melting point: 1,5–isomer: 216 °C = 421°F
1,8–isomer: 170 °C = 338°F
deflagration point: 318 °C = 605°F

This material is prepared by a two-step nitration of naphthalene with nitric acid. The commercial product, which is a mixture of isomers, melts above 140 °C = 276°F. It is readily soluble in benzene, xylene, and acetone and is sparingly soluble in alcohol and ether. It has been used in French explosive mixtures (schneiderites) as fuel mixed with ammonium nitrate.

Dinitroorthocresol

Dinitro-o-kresol; dinitroorthocrésol

![Dinitroorthocresol](image)
yellow crystals
empirical formula: C₇H₆N₂O₅
molecular weight: 198.1
energy of formation: −221.8 kcal/kg = −928.1 kJ/kg
enthalpy of formation: −241.3 kcal/kg = −1009.4 kJ/kg
oxygen balance: −96.9%
nitrogen content: 14.51%
volume of explosion gases: 832 l/kg
heat of explosion (H₂O liq.): 724 kcal/kg = 3027 kJ/kg
specific energy: 70.5 mt/kg = 691 kJ/kg
melting point: 86 °C = 187°F
impact sensitivity: up to 5 kp m = 50 N m no reaction
friction sensitivity:
up to 36 kp = 353 N pistil load no reaction

o-Dinitrocresol is prepared by introducing o-nitropheny glyceryl ether into mixed acid at 25–30 °C = 77–85°F. It is insoluble in water and readily soluble in acetone; it is a poor gelatinizer of nitrocellulose.
Dinitrophenoxethylnitrate

Dinitropheklykoläthernitrat; nitrat de 2,4-dinitrophénoxyéthyle

![Chemical Structure](image)

- Pale yellow crystals
- Empirical formula: $\text{C}_8\text{H}_7\text{N}_3\text{O}_8$
- Molecular weight: 273.2
- Energy of formation: -236.8 kcal/kg = -990.6 kJ/kg
- Enthalpy of formation: -256.3 kcal/kg = -1072.2 kJ/kg
- Oxygen balance: -67.4%
- Nitrogen content: 15.38%
- Density: 1.60 g/cm3
- Solidification point: $64\,^\circ\text{C} = 147\,^\circ\text{F}$
- Lead block test: 280 cm3/10 g
- Detonation velocity, confined: 6800 m/s = 22300 ft/s at $\rho = 1.58$ g/cm3
- Deflagration point: over $300\,^\circ\text{C} = 570\,^\circ\text{F}$
- Impact sensitivity: 2 kp m = 20 N m

The compound is insoluble in water, but soluble in acetone and toluene. It is prepared by dissolving phenyl glycol ether in sulfuric acid and pouring the reaction mixture into mixed acid at 10–$20\,^\circ\text{C}$ (50–$68\,^\circ\text{F}$).

It is a nitrocellulose gelatinizer.

Dinitrophenylhydrazine

Dinitrophenylhydrazin

![Chemical Structure](image)

- Empirical formula: $\text{C}_6\text{H}_6\text{N}_4\text{O}_4$
- Molecular weight: 198.1
- Energy of formation: $+81.2$ kcal/kg = $+339.6$ kJ/kg
- Enthalpy of formation: $+60.3$ kcal/kg = $+252.1$ kJ/kg
- Oxygen balance: -88.8%
- Nitrogen content: 28.28%

According to the studies performed by the Bundesanstalt für Materialprüfung, Germany (BAM), this compound may explode when dry, but
in the presence of 20% water there is no longer any danger of explosion.

Dinitrosobenzene

Dinitrosobenzol; dinitrosobenzène

![Chemical structure of Dinitrosobenzene](image)

- **empirical formula:** C₆H₄N₂O₂
- **molecular weight:** 136.1
- **oxygen balance:** –141%
- **nitrogen content:** 20.58%
- **melting point:** decomposition
- **lead block test:** 138 cm³/10 g
- **deflagration point:** 178–180 °C = 352–355°F
- **impact sensitivity:** 1.5 kp m = 15 N m
- **friction sensitivity:** up to 36 kp = 353 N pistil load no reaction
- **critical diameter of steel sleeve test:** 2 mm

This substance is explosive despite its low oxygen content. It will explode in a 1-in steel pipe if actuated by a primer.

Dinitrotoluene

Dinitrotoluol; dinitrotoluène; DNT

![Chemical structure of Dinitrotoluene](image)

- **yellow needles**
- **empirical formula:** C₇H₆N₂O₄
- **molecular weight:** 182.1
- **energy of formation:**
 - 2,4-isomer: –70.0 kcal/kg = –292.8 kJ/kg
 - 2,6-isomer: –38.1 kcal/kg = 159.5 kJ/kg
- **enthalpy of formation:**
 - 2,4-isomer: –89.5 kcal/kg = –374.7 kJ/kg
2,6-isomer: $-57.6 \text{ kcal/kg} = -241.2 \text{ kJ/kg}$

oxygen balance: -114.4%

nitrogen content: 15.38%

volume of explosion gases: 807 l/kg

heat of explosion:

- **2,4-isomer**, (H$_2$O liq.): $763 \text{ kcal/kg} = 3192 \text{ kJ/kg}$
- (H$_2$O gas): $729 \text{ kcal/kg} = 3050 \text{ kJ/kg}$

- **2,6-isomer**, (H$_2$O liq.): $795 \text{ kcal/kg} = 3325 \text{ kJ/kg}$
- (H$_2$O gas): $761 \text{ kcal/kg} = 3183 \text{ kJ/kg}$

specific energy: $70 \text{ mt/kg} = 687 \text{ kJ/kg}$

density:

- **2,4-isomer** 1.521 g/cm^3
- **2,6-isomer** 1.538 g/cm^3

melting point, pure 2,4-isomer: $70.5 \degree \text{C} = 159\degree \text{F}$

natural isomer mixture: about $35 \degree \text{C} = 95\degree \text{F}$

vapor pressure of the 2,4-isomer:

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>millibar</td>
<td>°C</td>
</tr>
<tr>
<td>0.014</td>
<td>35</td>
</tr>
<tr>
<td>0.11</td>
<td>70</td>
</tr>
<tr>
<td>0.83</td>
<td>100</td>
</tr>
<tr>
<td>8.5</td>
<td>150</td>
</tr>
<tr>
<td>50.5</td>
<td>200</td>
</tr>
<tr>
<td>223</td>
<td>250</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

heat of fusion:

- **2,4-isomer**: $26.1 \text{ kcal/kg} = 109 \text{ kJ/kg}$
- **2,6-isomer**: $22.5 \text{ kcal/kg} = 94 \text{ kJ/kg}$

lead block test: $240 \text{ cm}^3/10 \text{ g}$

deflagration point: ignition at $360 \degree \text{C} = 680\degree \text{F}$

impact sensitivity: up to $5 \text{ kp m} = 50 \text{ N m no reaction}$

friction sensitivity:

- up to $36 \text{ kp} = 353 \text{ N pistil load no reaction}$

critical diameter steel sleeve fest: 1 mm

Dinitrotoluene is sparingly soluble in water, alcohol and ether, but readily soluble in acetone and benzene. It is formed as an intermediate in → TNT Synthesis.

The product, which is obtained as a low-melting mixture of six isomers, is an important component in the manufacture of both gelatinous and powdery commercial explosives; owing to its negative oxygen balance, it also serves as a carbon carrier. It is readily miscible with nitroglycerine and gelatinizes soluble guncotton.
A purer product, consisting mainly of the 2,4-isomer, is also employed as a component of gunpowder.

The MAK value (i.e., the maximum permitted concentration in the air at the workplace) is 1.5 mg/m³.

Specifications

- moisture: not more than 0.25%
- benzene insolubles: not more than 0.10%
- acidity as H₂SO₄: not more than 0.02%
- tetranitromethane: none
- solidification point, gunpowder grade: 68.0 ± 2.5 °C (154°F)
- for industrial explosives: as low as possible

Table 10. Data of the other DNT isomers.

<table>
<thead>
<tr>
<th>Dinitroto-</th>
<th>Density</th>
<th>Melting Point</th>
<th>Energy of Formation</th>
<th>Enthalpy of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>luene Isomer</td>
<td>g/cm³</td>
<td>°C</td>
<td>°F</td>
<td>kcal/kg</td>
</tr>
<tr>
<td>2,3-</td>
<td>1.2625</td>
<td>59.5</td>
<td>139</td>
<td>−1.1</td>
</tr>
<tr>
<td>2,5-</td>
<td>1.2820</td>
<td>50.5</td>
<td>123</td>
<td>−25.3</td>
</tr>
<tr>
<td>3,4-</td>
<td>1.2594</td>
<td>59.5</td>
<td>139</td>
<td>0</td>
</tr>
<tr>
<td>3,5-</td>
<td>1.2772</td>
<td>93</td>
<td>199.5</td>
<td>−37.3</td>
</tr>
</tbody>
</table>

Dioxyethylnitramine Dinitrate

Nitrodiathanolamindinitrat; dinitrate de dioxydthylnitramine; DINA

\[
\begin{align*}
\text{CH}_2\text{-CH}_2\text{-O-NO}_2 \\
N\text{-NO}_2 \\
\text{CH}_2\text{-CH}_2\text{-O-NO}_2
\end{align*}
\]

- colorless crystals
- empirical formula: C₄H₈N₄O₈
- molecular weight: 240.1
- energy of formation: −249.8 kcal/kg = −1045.1 kJ/kg
- enthalpy of formation: −274.4 kcal/kg = −1148.2 kJ/kg
- oxygen balance: −26.6%
- nitrogen content: 23.34%
- volume of explosion gases: 924 l/kg
- heat of explosion (H₂O liq.): 1304 kcal/kg = 5458 kJ/kg
- (H₂O gas): 1201 kcal/kg = 5025 kJ/kg
- specific energy: 133 mt/kg = 1306 kJ/kg
- density: 1.488 g/cm³
melting point: 51.3 °C 124.3 °F
detonation velocity, confined:
7580 m/s = 25 000 ft/s at ρ = 1.47 g/cm³
impact sensitivity: 0.6 kp m = 6 N m

This compound is prepared from diethanolamine and nitric acid with acetic anhydride as a dehydrating agent and in the presence of hydrochloric acid as a catalyst. The nitration product is stabilized by boiling in water, followed by dissolution in acetone and reprecipitation with water.

It is a satisfactory gelatinizer for nitrocellulose and is a powerful explosive, comparable to Cyclonite and PETN. Double base propellants based on DINA instead of nitroglycerine are named “Albanite”.

Dipentaerythritol Hexanitrate

Hexanitrodipentaerythrit; hexanitrate de dipentaérythrite; DIPEHN

\[
\begin{align*}
\text{O}_2\text{N} & \cdot \text{O} \cdot \text{H}_2\text{C} \cdot \text{CH}_2 \cdot \text{O} \cdot \text{NO}_2 \\
\text{O}_2\text{N} & \cdot \text{O} \cdot \text{H}_2\text{C} \cdot \text{C} \cdot \text{CH}_2 \cdot \text{O} \cdot \text{CH}_2 \cdot \text{C} \cdot \text{CH}_2 \cdot \text{O} \cdot \text{NO}_2 \\
\text{O}_2\text{N} & \cdot \text{O} \cdot \text{H}_2\text{C} \\
\end{align*}
\]

- colorless crystals
- empirical formula: C₁₀H₁₆N₆O₁₉
- molecular weight: 524.2
- energy of formation: −424.2 kcal/kg = −1771 kJ/kg
- enthalpy of formation: −446 kcal/kg = −1867 kJ/kg
- oxygen balance: −27.5%
- nitrogen content: 16.03%
- volume of explosion gases: 878 l/kg
- heat of explosion
 - (H₂O liq.): 1229 kcal/kg = 5143 kJ/kg
 - (H₂O gas): 1133 kcal/kg = 4740 kJ/kg
- specific energy: 125 mt/kg = 1223 kJ/kg
- density: 1.63 g/cm³
- melting point: 72 °C = 162°F
- detonation velocity, confined:
 - 7400 m/s = 24 300 ft/s at ρ = 1.6 g/cm³
- deflagration point: 200 °C = 392°F
- impact sensitivity: 0.4 kp m = 4 N m

The compound is soluble in acetone, but insoluble in water. When technical grade pentaerythritol is nitrated, a certain amount of dipentaerythritol hexanitrate is formed as a by-product.
Diphenylamine

Diphenylamin; *diphénylamine*

![Chemical structure of Diphenylamine]

- Colorless crystals
- Empirical formula: $C_{12}H_{11}N$
- Molecular weight: 169.2
- Energy of formation: $+204.6 \text{ kcal/kg} = +856.0 \text{ kJ/kg}$
- Enthalpy of formation: $+183.6 \text{ kcal/kg} = +768.2 \text{ kJ/kg}$
- Oxygen balance: -278.9%
- Nitrogen content: 8.28\%
- Density: 1.16 g/cm3
- Melting point: 54 °C = 129°F
- Boiling point: 302 °C = 576°F

Diphenylamine is sparingly soluble in water, but is readily soluble in alcohol and acids. It may be used as a reagent for nitric acid and nitrates. Its use as a → *Stabilizer* is particularly important.

Specifications

- Solidification point: 51.7–53 °C = 125–127.4°F
- Insolubles in benzene: not more than 0.02\%
- Moisture: not more than 0.2\%
- Solution in ether-alcohol: clear
- Ashes: not more than 0.05\%
- Aniline: not more than 0.1\%
- Acidity, as HCl: not more than 0.005\%
- Alkalinity, as NaOH: not more than 0.005\%

Diphenylurethane

Diphenylurethan; *diphénylurethane*

![Chemical structure of Diphenylurethane]

- Empirical formula: $C_{15}H_{15}NO_2$
- Molecular weight: 241.3
- Energy of formation: $-256.0 \text{ kcal/kg} = -1071.1 \text{ kJ/kg}$
- Enthalpy of formation: $-278.1 \text{ kcal/kg} = -1163.5 \text{ kJ/kg}$
- Oxygen balance: -235.4%
- Nitrogen content: 5.81\%

Diphenylurethane is used as a gunpowder stabilizer and gelatinizer.
Specifications

- Snow-white powder
- Solidification point: not less than 70 °C = 158°F
- Melt: clear, colorless
- Volatiles: not more than 0.1%
- Ashes: not more than 0.1%
- Insolubles in ether: none
- Chlorides, as NaCl: not more than 0.02%
- Reaction: neutral
- Acidity, n/10 NaOH/100 g: not more than 0.1 cm³

Dipicrylurea

Hexanitrocarbanilid; dipicrylurée

\[
\begin{align*}
\text{pale yellow crystals} \\
\text{Empirical formula: } & C_{13}H_6N_8O_{13} \\
\text{Molecular weight: } & 482.2 \\
\text{Oxygen balance: } & -53.2\% \\
\text{Nitrogen content: } & 23.24\% \\
\text{Melting point: } & 208–209 °C = 406–408°F \\
\text{Deflagration point: } & 345 °C = 655°F
\end{align*}
\]

Dipicrylurea is prepared by nitration of carbanilide in one or more stages.

Dismantling of Explosive Objects, Especially Ammunition.

A principal distinction must be made between two kinds of ammunition: ammunition of known origin, which has been properly stored and which has to be separated out for routine reasons (aging; replacement by other types of ammunition), and ammunition found lying around or acquired as booty. The latter kind of ammunition may well have been exposed to strong corrosive agents, and its delayed action fuses may no longer be controllable. Handling abandoned ammunition is one of the most dangerous tasks in explosive handling and must be left to top experts in this field (familiarity with the regulations concerning explosive substances is NOT enough); this includes the very first attempt to move the ammunition while still in situ. A detailed discussion of the
deactivation of abandoned ammunition is outside the scope of this book.

Explosive objects are classified according to the potential danger they present. The criteria of such a classification include the nature of the explosive object, whether or not they contain detonators or primers, and whether or not they present a → Mass Explosion Risk. Dangerous mechanical tasks, such as unscrewing the detonators or sawing them off, cutting, milling, or sawing, must in any case be performed under remote control.

Fusible explosives such as TNT and TNT mixtures may be melted out of their containers (grenades, bombs, mines) after removal of detonators and booster charges. The material thus obtained may be purified and re-used for non-military purposes.

Case bonded → Composite Propellants are unloaded from their casing by a remote controlled lathe or water gun; also → Case Bonding

Also → Destruction of Explosive Materials

Ditching Dynamite

A mixed dynamite, containing about 50% non-gelatinized nitroglycerine, used for ditch blasting. This explosive displays a particularly strong tendency to flash over. Usually only the first charge is initiated by the cap. The following charges for the excavation of the "ditch" are exploded by the effect of the first detonation (shock wave) (→ Detonation, Sympathetic Detonation).

Dithekite

A U.S. trade name for an explosive liquid mixture of nitric acid, nitrobenzene and water.

Donarit

Trade names of ammonium-nitrate based nitroglycerine-sensitized powder-form explosives distributed in the Germany and exported by WASAGCHEMIE.
<table>
<thead>
<tr>
<th>Donarit</th>
<th>Density</th>
<th>Weight Strength</th>
<th>Detonation, confined</th>
<th>Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/cm³</td>
<td>%</td>
<td>m/s</td>
<td>ft/s</td>
</tr>
<tr>
<td>1</td>
<td>0.95</td>
<td>83</td>
<td>4500</td>
<td>14800</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>82</td>
<td>4100</td>
<td>13500</td>
</tr>
</tbody>
</table>

**Donor*)

Geberladung; charge excitatrice

An exploding charge producing an impulse that impinges upon an explosive “Acceptor” charge.

**Do’s and Don’ts*)

A list of precautions (IME Safety Library Publication No. 4) printed by the Institute of Makers of Explosives pertaining to the transportation, storage, handling, and use of explosives and inserted in each case of explosive materials. (Also published in Blasters Handbook.)

Double Base Propellants

* nitroglycerine powders; POL-Pulver; poudres a base de la nitroglycérine*

This term denotes propellants containing two main components: nitrocellulose and nitroglycerine or other liquid nitrate esters. Double base powders are important solid rocket propellants.

Double base compositions can be manufactured without the application of organic solvents by heated rolling and pressing of → Paste.

Drop Test

→ Bomb Drop Test

Dutch Test

Holland Test

A method developed in 1927 by the Dutchman Thomas for the determination of the chemical stability of propellants. The parameter which
is determined in the method is the weight loss which takes place after 72-hours heating at 105 °C (221°F) (multibase propellants) or at 110 °C (230°F) (single-base propellants). This loss, after subtracting the loss occurring after the first 8 hours of heating, must not exceed 2%.

An advantage of this test is that not only nitrogen oxides, but also all the other decomposition products of the propellants – in particular CO₂ and N₂ – are determined by it. In order to work under reproducible experimental conditions, precision-stoppered tubes of an identical type, equipped with calibrated capillaries, are employed.

Since the heating temperature is rather high, especially so for multi-base powders, it was proposed by Siebert to determine the weight loss at a lower temperature and not to limit the duration of heating, but to continue it until some auto-catalytic or other evident decomposition becomes apparent. This test, which should be carried out at 90, 75 and 65 °C (149°F), may also be employed to indicate the loss of stability on storage (shelf life) of a propellant.

Dwell Time*)

In press loading powders into cavities, the interval of time that the powder is held at the full loading pressure.

Dyno Boost®

Dyno Boost® is the trade name of a booster charge made by the DYNAMIT NOBEL GmbH Company. The system, which consists of high-power explosive, can be detonated using a standard blasting cap.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1.6 g/ml</td>
</tr>
<tr>
<td>Weight</td>
<td>1.7 kg</td>
</tr>
<tr>
<td>Detonation velocity</td>
<td>7000 m/s</td>
</tr>
</tbody>
</table>

Dynacord®

Trade name of a detonating cord distributet in Germany and exportet by DYNAMIT NOBEL GmbH. It contains about 12 g PETN/m (∼ also Supercord)

* Text quoted from glossary.
Dynaschoc®

Dynaschoc® is the trade name of a non-electrical detonating system (see also → Nonel) made by the DYNAMIT NOBEL GmbH Company. In this system the detonation pulse is propagated at about 2000 m/s via a thin plastics tube whose internal surface is dusted with about 16 mg of explosive per m. The tube is not destroyed by this detonation pulse.

Dynatronic®

Dynatronic® is the trade name of a series of programmable detonators together with the associated programming and control devices made by the DYNAMIT NOBEL GmbH Company.

Dynamite LVD; MVD

Compositions for defined detonation velocities:

LVD (low-velocity dynamite):
- RDX 17.5%
- TNT 67.8%
- PETRIN 8.6%
- binder (Vistac and DOS) 4.1%
- acetylcellulose 2.0%

MVD (medium-velocity dynamite):
- RDX 75%
- TNT 15%
- starch 5%
- oil 4%
- Vistanex oil gel 1%

Dynamites

Dynamite was the first trade name introduced for a commercial explosive by Alfred Nobel; it was nitroglycerine absorbed in kieselguhr (Guhr dynamite). Bonding of nitroglycerine by gelatinization with nitrocellulose was discovered by Nobel at a later date.

At first, active absorbents such as a mixture of sodium nitrate with wood dust were employed instead of the inert kieselguhr. The result was the development of nitroglycerine-sensitized powdery explosives, which are still known as “dynamites” in English-speaking countries; → also Ditching Dynamite.
Variations in the concentration of gelatinized nitroglycerine (the concentrated product is known as blasting gelatine) by the addition of sodium nitrate and wood dust or cereal meal yielded gel dynamos, which are known as “gelignites” in English-speaking countries; in Germany, the old designation of “dynamite” has been retained. In the meantime, they have been placed by ammonium-nitrate-based → Am-mongelit. These products contain nitroglycol rather than nitroglycerine, with improvement in the safety of handling and transportation. Dynamites are no longer manufactured in Germany.

Ednatol

A cast explosive charge employed in the USA. It consists of a mixture of → Ethylenedinitramine and TNT in the ratio of 55:45.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casting density</td>
<td>1.62 g/cm³</td>
</tr>
<tr>
<td>Detonation velocity at casting density, confined</td>
<td>7300 m/s = 23900 ft/s</td>
</tr>
</tbody>
</table>

EED*)

Electro-explosive device

Any detonator or initiator initiated by an electric current.

One-Ampere/One-Watt Initiator = EED that will not fire when one ampere of current at one watt of power is supplied to a bridgewire for a specified time.

Emulsion Slurries

Emulsion slurries (→ Slurries) are based on a “water-in-oil emulsion” which is formed from a saturated nitrate solution and a mineral oil phase. Additions controlling the density (formation of gas bubbles or → Microballoons) are used to achieve a density that can be adjusted within a range between primer sensitivity (booster charge) and cap sensitivity.

The density is slightly higher when compared with water gels and results in higher performance; explosion temperature and detonation pressure are higher. There is a positive oxygen balance. Due to the fact that the mixture is substantially more intimate, there are differences in detonation kinetics compared to water gels. The blasting efficiency is higher, particularly in hard rock.

* Text quoted from glossary.
Variations in the concentration of gelatinized nitroglycerine (the concentrated product is known as blasting gelatine) by the addition of sodium nitrate and wood dust or cereal meal yielded gel dynamites, which are known as “gelignites” in English-speaking countries; in Germany, the old designation of “dynamite” has been retained. In the meantime, they have been placed by ammonium-nitrate-based Am-mongelit. These products contain nitroglycerol rather than nitroglycerine, with improvement in the safety of handling and transportation. Dynamites are no longer manufactured in Germany.

Ednatol

A cast explosive charge employed in the USA. It consists of a mixture of Ethylenidinitramine and TNT in the ratio of 55:45.

- casting density: 1.62 g/cm³
- detonation velocity at casting density, confined: 7300 m/s = 23 900 ft/s

EED*)

Electro-explosive device

Any detonator or initiator initiated by an electric current.

One-Ampere/One-Watt Initiator = EED that will not fire when one ampere of current at one watt of power is supplied to a bridgewire for a specified time.

Emulsion Slurries

Emulsion slurries (Slurries) are based on a “water-in-oil emulsion” which is formed from a saturated nitrate solution and a mineral oil phase. Additions controlling the density (formation of gas bubbles or Microballoons) are used to achieve a density that can be adjusted within a range between primer sensitivity (booster charge) and cap sensitivity.

The density is slightly higher when compared with water gels and results in higher performance; explosion temperature and detonation pressure are higher. There is a positive oxygen balance. Due to the fact that the mixture is substantially more intimate, there are differences in detonation kinetics compared to water gels. The blasting efficiency is higher, particularly in hard rock.

* Text quoted from glossary.
Emulsion slurries can be applied using mobile pumping and mixing devices (in large hole blasting), as well as in the form of cartridges of varying length and diameter. In cartridged form, the emulsion slurries are replacing the “classic” nitroglycerine-nitroglycol-based gelatinous explosives.

End of Burning

Brennschluß; fin de combustion

The moment at which emission of the gas jet by a rocket ends. In solid propellant rockets this moment corresponds to a complete burnout of the propellant; in liquid fuel and hybrid rockets, reignition can take place.

End Burning Velocity

Brennenschlußgeschwindigkeit; vitesse en fin de combustion

Velocity attained by a rocket at the moment at which combustion ceases. It is a function of the → *Gas Jet Velocity*, the → *Mass Ratio*, and the burning time.

Endothermal*)

Reaction that occurs with the absorption of heat (opposite of *exothermal*).

Energy of Formation; Enthalpy of Formation

Bildungsenergie, Bildungsenthalpie; chaleur de formation

These thermodynamic concepts denote the energy which is bound during the formation of a given compound from its constituent elements at constant volume (energy of formation) or at constant pressure (enthalpy of formation, which includes the mechanical work performed at the standard state**) (25 °C = 77°F and a pressure of 1 bar). The data are tabulated in accordance with thermodynamic convention: if the formation of a compound from its elements is

*) Text quoted from glossary.
accompanied by a release of energy, the energy of formation is considered to be negative.

The knowledge of the energies of formation of an explosive or an inflammable mixture on one hand, and of the energies of formation of the presumed reaction products on the other, makes it possible to calculate the → Heat of Explosion: → also Thermodynamic Calculation of Decomposition Reactions. The values for the most important components of explosives and propellants are given in Table 31, p. 326–330. An extensive collection of tabulated data for energies and enthalpies of formation, including source references, was published by the Fraunhofer-Institut für Chemische Technologie (ICT), Berghausen, 1972*). These values were incorporated into the ICT-Database of Thermochemical Values, containing data of more than 6000 substances, which is available from ICT.

References

Cook, M. A.: The Science of Industrial Explosives, Salt Lake City, Utah, 1974.

Volk, F., Bathelt, H. and Kuthe, A.: Thermochemische Daten von Raketentreib-
stoffer, Treibladungspulvern sowie deren Komponenten. Original print of the
Institut für Chemie der Treib- und Explosivstoffe, Berghausen 1972.
Cook, M. A.: The Science of Industrial Explosives, Salt Lake City, Utah, USA,
1974.
James, A. W.: Propellants and Explosives, Noyes Data Corporation, Park Ridge

Environmental Seal*)

Schutzmembran; diaphragme de protection

Diaphragm having very low moisture vapor transmission rate, used
over generator outlets to provide a hermetic seal.

Eprouvette

This is an instrument to determine of the performance of → Black
Powders. It is a small mortar, positioned vertically upwards; a known
amount (10 g) of the black powder sample is charged and set off with
the aid of a fuse passing through a priming hole; the mortar is closed
with a projectile guided upwards by two steel rods; the projectile gains
its maximum height and is then locked. The height of the locked
projectile is determined; it is a measure of the performance of the
black powder sample.

Equation of State

Zustandsgleichung, l’équation d’état

The internal ballistic pressure resulting from an explosion of a powder
propellant can reach up to 600 MPa and a temperature of up to
4000 K. Under such conditions of extreme pressure and temperature,
the calculation of thermodynamic data is possible only using a suitable
equation of state, whereby pressure P, temperature T, the density of
gasp and the specific number of moles n_s are associated.

For internal ballistics one ordinarily uses a truncated virial equation
which breaks off after the third term and is in the form:

$$P = n_s \cdot R \cdot T \cdot \rho \left(1 + n_s \cdot \rho \cdot B + n_s^2 \cdot \rho^2 \cdot C\right)$$

P: Pressure [Pa]

n_s: Specific number of moles [kmol/kg]

R: Gas constant (J/(kmol·K))

* Text quoted from glossary.
The temperature-dependent second and third virial coefficient describe the increasing two- and three-particle collisions between the gas molecules and their accompanying increase in gas density. The virial coefficients are calculated using a suitable intermolecular potential model (usually a 12-6 Lennard-Jones Potential) from rudimentary statistical thermodynamics.

The detonation pressure behind the \(\rightarrow \) Shock Wave of a liquid or solid explosive substance is between 2 GPa and 50 GPa whereby the temperature at the wave front can reach up to 5000 K.

Next to the \(\rightarrow \) Chapman-Jouget theory, during the last 50 years, the principal methods of calculating detonation pressure and the velocity of flat detonation waves have been the Becker-Kistiakowsky-Wilson (BKW), the Lennard-Jones-Devonshire (LJD) and the Jacobs-Cowperthwaite-Zwisler (JCZ) equations of state.

All of these methods employ model equations which do not quite satisfactorily yield the condition of the highly dense and heated detonation products. This is shown in particular in the semiempirical BKW equation of state, which in addition to five parameters for the calibrating of experimental measurements values, requires two separate sets of data for the calculations involving explosives of either an extremely high or slightly negative oxygen balance or a positive oxygen balance.

The LJD and the JCZ equations of state represent methods, which, when used in conjunction with an intermolecular potential rudiment, employ lattice models.

With lattice models it is assumed that the molecules in the fluid phase repose on the lattice points of three dimensional lattice, while entering into an exchange effect with the adjacent molecules.

Among the more recent and theoretically-based equations of state in detonation physics are the perturbation-theoretical methods. First used by R. Chirat and G. Pittion-Rossillion, these methods were considerably improved later by F. Ree.

The perturbation theory is one of the processes that in the last fifteen years has achieved the most significant advances in the area of statistical thermodynamics.

R. Chirat and G. Pittion-Rossillion employ a simplified Weeks-Chandler-Andersen (WCA) perturbation theory while F. Ree uses the Mansoori-Canfield-Rasaiah-Stell (MCRS) hardsphere variational theory. Both methods build on the \(\alpha \)-Exp-6 potential and yield the theoretical
Chapman-Jouget detonation velocities and pressures, which for a large number of explosives lie within the measurement accuracy of practically obtained values.

Despite the advances made over the last several decades in the field of detonation physics, there still exist many phenomena that quantitatively are not understood. Among these in particular are the unstationary, multidimensional detonation processes of gaseous, liquid or condensed bodies.

References:

R. Becker: Z. Phys. 4, 393 (1921)
M. Cowperthwaite and W. H. Zwisler: Proceedings of the Sixth International Symposium on Detonation, edited by D. J. Edwards, ACR-221 (Office of Naval Research, Department of the Navy), 162 (1976)
F. Volk and H. Bathelt: Propellants Explos. 1, 7 (1976)
H. Hornberg: Propellants Explos. 3, 97 (1978)

ERLA

Abbreviation for an epoxy compound for the formation of binders in → Composite Propellants.

Structural formula:

```
(H2C=O-C=CH2)2N-O-CH2-O-CH2
```

empirical formula: C15H19NO4
molecular weight: 277.16
density: 1.20–1.21 g/cm³

Erosion*)

Wearing away of a material due to high velocity gas and entrained particles.

*) Text quoted from glossary.
Erosive Burning

erosiver Abbrand; combustion érosive

Term used in solid fuel rocket technology to describe the anomalous increase in the burning rate. This increase is thought to originate from turbulent instead of laminar gas flow along the burning surface, which leads to a higher feed back of heat energy onto this surface, and thus a higher rate of burning. Mechanical erosion may also take place by gases rich in solid particles, e.g., Al₂O₃.

Resonance combustion is defined as the generation of pressure maxima in the combustion chamber and the consequent irregularity of the burning rate; these maxima originate from the interaction between the gas stream and the flame and become apparent as a kind of vibration.

Star-shaped grooves in case-bonded charges tend to equalize the pressure and suppress the tendency to resonate. Other relevant keywords are: → *Burning Rate*, → Solid Propellant Rockets.

Erythritol Tetranitrate

Tetranitroerythrit; tétranitrate d’érythrite

\[
\begin{align*}
\text{Erythritol Tetranitrate} & \\
\text{CH}_2\text{-O-NO}_2 & \\
\text{CH}\text{-O-NO}_2 & \\
\text{CH}\text{-O-NO}_2 & \\
\text{CH}_2\text{-O-NO}_2 & \\
\end{align*}
\]

- colorless crystals
- empirical formula: C₄H₆N₄O₁₂
- molecular weight: 302.1
- oxygen balance: +5.3 %
- nitrogen content: 18.55 %
- volume of explosion gases: 704 l/kg
- heat of explosion
 - (H₂O liq.): 1519 kcal/kg = 6356 kJ/kg
 - (H₂O gas): 1421 kcal/kg = 5943 kJ/kg
- specific energy: 111 mt/kg = 1091 kJ/kg
- density: 1.6 g/cm³
- melting point: 61.5 °C = 143°F
- deflagration point: 154–160 °C = 309–320°F violent explosion
- impact sensitivity: 0.2 kp m = 2 N m

Erythrol tetranitrate is insoluble in cold water, but is soluble in alcohol and ether. It is prepared by dissolving erythrol in concentrated nitric acid with efficient cooling, and precipitating the product by concentrated sulfuric acid. It crystallizes out of alcohol as colorless plates.
Erythritol tetranitrate serves as an effective cardial medicine (in a low percentage mixture with milk sugar).
The pure substance is extremely sensitive to shock and friction.

Ethanamine Dinitrate

Monoethanalamindinitrat; dinitrate d’éthanolamine

\[
\text{NH}_2\cdot\text{HNO}_3
\]
\[
\text{CH}_2\cdot\text{CH}_2\cdot\text{O} \cdot \text{NO}_2
\]
colorless crystals
empirical formula: C\(_2\)H\(_7\)N\(_3\)O\(_6\)
molecular weight: 169.1
oxygen balance: –14.2 %
nitrogen content: 24.85 %
volume of explosion gases: 927 l/kg
heat of explosion
(H\(_2\)O liq.): 1254 kcal/kg = 5247 kJ/kg
(H\(_2\)O gas): 1089 kcal/kg = 4557 kJ/kg
specific energy: 118.8 mt/kg = 1165 kJ/kg
density: 1.53 g/cm\(^3\)
melting point: 103 °C = 217°F
lead block test: 410 cm\(^3\)/10 g
deflagration point: 192 °C = 378°F

This compound is readily soluble in water, sparingly soluble in cold alcohol, and somewhat hygroscopic. It is prepared by dissolution of monoethanolamine in concentrated nitric acid and precipitation from alcohol or ether with cooling.

Ethriol Trinitrate

trimethyllolethylmethane trinitrate; trimethylolpropane trinitrate; trinitrate de trimethyloléthylméthane

\[
\text{CH}_2\cdot\text{O} \cdot \text{NO}_2
\]
\[
\text{C}_6\text{H}_5\cdot\text{C} \cdot \text{CH}_2\cdot\text{O} \cdot \text{NO}_2
\]
\[
\text{CH}_2\cdot\text{O} \cdot \text{NO}_2
\]
colorless crystals
empirical formula: C\(_6\)H\(_{11}\)N\(_3\)O\(_9\)
molecular weight: 269.4
energy of formation: –401 kcal/kg = –1678 kJ/kg
enthalpy of formation: –426 kcal/kg = –1783 kJ/kg
oxygen balance: –50.5 %
nitrogen content: 15.62 %
volume of explosion gases: 1009 l/kg
heat of explosion
(H₂O liq.): 1014 kcal/kg = 4244 kJ/kg
(H₂O gas): 936 kcal/kg = 3916 kJ/kg
density: 1.5 g/cm³
melting point: 51 °C = 124°F
lead block test: 415 cm³/10 g
detonation velocity, confined:
6440 m/s = 21100 ft/s at ρ = 1.48 g/cm³

This compound is prepared by nitrating trimethylolpropane (obtained by condensing formaldehyde with butyraldehyde in the presence of lime) with a mixture of nitric acid and sulfuric acid.

Ethylenediamine Dinitrate
dinitrate d’éthylène diamine: PH-Satz; EDD

\[
\begin{align*}
\text{CH}_2\cdot \text{NH}_2 \cdot \text{HNO}_3
\end{align*}
\]

colorless crystals
empirical formula: C₂H₁₀N₄O₆
molecular weight: 186.1
energy of formation: –807.4 kcal/kg = –3378.2 kJ/kg
enthalpy of formation: –839.2 kcal/kg = –3511.3 kJ/kg
oxygen balance: –25.8%
nitrogen content: 30.11%
volume of explosion gases: 1071 l/kg
heat of explosion
(H₂O liq.): 912 kcal/kg = 3814 kJ/kg
(H₂O gas): 739 kcal/kg = 3091 kJ/kg
density: 1.577 g/cm³
melting point: 188 °C = 370°F
volume of detonation gases: 945.5 l/kg
lead block test: 350 cm³/10 g
detonation velocity, confined:
6800 m/s = 22300 ft/s at ρ = 1.53 g/cm³
deflagration point: 370– 400 °C = 700–750°F
impact sensitivity: 1.0 kp m = 10 N m
friction sensitivity:
at 36 kp = 353 N pistil load no reaction
critical diameter of steel sleeve test: 2 mm

Ethylenediamine dinitrate is somewhat hygroscopic and is readily soluble in water. It is prepared by saturating an aqueous solution of ethylenediamine with nitric acid.
It forms an eutectic mixture (melting point 100 °C = 212°F) when mixed with an equal amount of ammonium nitrate.

Ethylenedinitramine

\[\text{C}_2\text{H}_2\text{N}_2\text{O}_4 \]

It possesses considerable brisance, combined with a high chemical stability and relatively low mechanical sensitivity.

Ethylenedinitramine is prepared by nitration of ethylene urea with mixed acid, to yield dinitroethylene-urea; the latter compound liberates carbon dioxide with form ethylenedinitramine.

Ethylene-urea is prepared by reacting ethylene diamine to ethyl carbonate under elevated pressure.

Pourable mixtures of ethylenedinitramine with TNT are known in the USA as Ednatol.
Ethyl Nitrate

Ethynitrat; nitrate d’élètre

\[C_2H_5—O—NO_2 \]

empirical formula: \(C_2H_5NO_3 \)
molecular weight: 91.0
energy of formation: \(-470.4 \text{ kcal/kg} = -1968 \text{ kJ/kg}\)
enthalpy of formation: \(-499.5 \text{ kcal/kg} = -2091 \text{ kJ/kg}\)
oxygen balance: \(-61.5\%\)
nitrogen content: \(15.24\%\)
volume of explosion gases: 1101 l/kg
heat of explosion (H₂O liq.): 993 kcal/kg = 4154 kJ/kg
density: 1.10 g/cm³ melting point: \(-102 ^\circ\text{C} = -152 ^\circ\text{F}\)
lead block test: 420 cm³/10 g
detonation velocity, confined:
5800 m/s = 19000 ft/s at \(\rho = 1.1 \text{ g/cm}^3 \)

This compound is a colorless, mobile liquid with a pleasant smell. It is practically insoluble in water, but is soluble in alcohol and in most organic solvents. Ethyl nitrate vapors readily form explosive mixtures with air even at room temperature; the lower explosion limit is at \(3.8\%\) ethyl nitrate.

Ethyl nitrate explodes when brought into contact with alkali metals.

Ethylphenylurethane

Ethylphenylurethan; éthylphényluréthane

\[\text{colorless liquid} \]

empirical formula: \(C_{11}H_{15}NO_2 \)
molecular weight: 193.2
energy of formation: \(-492.5 \text{ kcal/kg} = -2060.5 \text{ kJ/kg}\)
enthalpy of formation: \(-520.1 \text{ kcal/kg} = -2175.9 \text{ kJ/kg}\)
oxygen balance: \(-227.7\%\)
nitrogen content: \(7.25\%\)

Ethylphenylurethane is a gelatinizing → Stabilizer especially for → Double Base Propellants.

Specifications

clear, colorless liquid
density at \(20 ^\circ\text{C} = 68 ^\circ\text{F}:\) 1.042−1.044 g/cm³
refractive index n_D^0: 1.504–1.507
boiling analysis at 760 Torr: 252–255 °C = 485–491°F
acidity, as HCl: not more than 0.004%
reaction: neutral

Ethyl Picrate

2,4,6-trinitrophenetol; Ethylpikrat; picrate d’ethyle

![Chemical Structure of Ethyl Picrate](image)

pale yellow needles
empirical formula: C$_8$H$_7$N$_3$O$_7$
molecular weight: 257.2
energy of formation: -167.1 kcal/kg = -699 kJ/kg
enthalpy of formation: -186.7 kcal/kg = -781 kJ/kg
oxygen balance: -77.8

nitrogen content: 16.34%
volume of explosion gases: 859 l/kg
heat of explosion
(H$_2$O liq.): 840 kcal/kg = 3515 kJ/kg
(H$_2$O gas): 805 kcal/kg = 3369 kJ/kg
specific energy: 86 mt/kg = 847 kJ/kg
melting point: 78 °C = 172°F
detonation velocity, confined:
6500 m/s = 21300 ft/s at $\rho = 1.55$ g/cm3

The preparation of this compound resembles that of → *Trinitroanisol*.

Ethyltetryl

2,4,6-trinitrophenylethylNitramine; trinitrophényléthylNitramine

![Chemical Structure of Ethyltetryl](image)

green yellow crystals
empirical formula: C$_8$H$_7$N$_5$O$_8$
molecular weight: 301.2
energy of formation: $+5.4$ kcal/kg = $+22.5$ kJ/kg
enthalpy of formation: -14.3 kcal/kg = -59.8 kJ/kg
oxygen balance: –61.1 %
nitrogen content: 23.25 %
volume of explosion gases: 874 l/kg
heat of explosion
 \((H_2O \text{ liq.}): 970 \text{ kcal/kg} = 4058 \text{ kJ/kg}\)
 \((H_2O \text{ gas}): 939 \text{ kcal/kg} = 3930 \text{ kJ/kg}\)
specific energy: 109 mt/kg = 1069 kJ/kg
density: 1.63 g/cm\(^3\)
melting point: 95.8 °C = 204.4°F
heat of fusion: 18.7 kcal/kg = 78 kJ/kg
lead block test: 325 cm\(^3\)/10 g
impact sensitivity: 0.5 kp m = 5 N m
friction sensitivity:
 up to 36 kp = 353 N pistil load no reaction

The properties of this compound resemble those of Tetryl; it can be prepared from mono- or diethylaniline.

Since the melting point of ethyltetryl is lower than that of Tetryl, the former can be more readily employed in energy-rich pourable mixtures.

EURODYN 2000®

EURODYN 2000® is the trade name of a gelatinous rock explosive made by the DYNAMIT NOBEL GmbH Company. In contrast to the classical → Ammognelites, this explosive does not contain any nitroaromatics harmful to health, such as → Dinitrotoluene and Trinitrotoluene.

EWALID W

EWALID W is the trade name of a new rock explosive made by the WASAG CHEMIE Sythen GmbH Company. Its good water resistance enables it to be used even in wet shotholes.

Exothermal*)

Process characterized by the evolution of heat (opposite of endothermal).

* Text quoted from glossary.
Explode*)

Explodieren; exploser

To be changed in chemical or physical state, usually from a solid or liquid to a gas (as by chemical decomposition or sudden vaporization) so as to suddenly transform considerable energy into the kinetic form (→ Explosion).

Exploding Bridgewire*)

Detonator or initiator that is initiated by capacitor discharge that explodes (rather than merely heats) the bridgewire. Cannot be initiated by any normal shock or electrical energy.

Exploding BridgeWire Detonator (EBW)

An initiating device which utilizes the shock energy from the explosion of a fine metallic wire to directly initiate a secondary explosive train. Invented by Luis Alvarez for the Manhattan project in the early 1940’s, the basic EBW consists of a fine wire (typically gold, 0.038 mm in diameter, 1 mm long), next to a secondary explosive such as → PETN or → RDX. A large, fast current pulse (>200 amps in approximately 1 microsecond) through the wire causes it to rapidly vaporize generating a shock wave of about 15 kilobars. This intense shock wave is sufficient to directly initiate the low density explosive next to the exploding wire. The low density explosive is than used to initiate a higher density explosive output pellet which in turn can initiate main charge explosives.

Exploding Foil Initiator (EFI, Slapper)

Similar in some respects to an Exploding BridgeWire Detonator, the Exploding Foil Initiator uses a high electrical current to vaporize a foil and accelerate a dielectric flyer down a short barrel (typically about 0.2 mm long). The kinetic energy of the flyer is sufficient to initiate high density secondary explosives such as HNS directly. Invented in 1965 by John Stroud of the Lawrence Livermore National Laboratory.

* Text quoted from glossary.
Explosion*)

Chemical reaction or change of state effected in an exceedingly short period of time with the generation of a high temperature and generally a large quantity of gas. An explosion produces a shock wave in the surrounding medium. A detonation is a confined explosion, occurring e.g. in a closed chamber where volume is constant. An unconfined explosion is an explosion occurring in the open air where the (atmospheric) pressure is constant.

Explosion Heat

→ Heat of Explosion

Explosion Temperature

Explosionstemperatur; température d’explosion

Explosion temperature is the calculated temperature of the fumes of an explosive material which is supposed to have been detonated while confined in a shell assumed to be indestructible and impermeable to heat; the calculation is based on the → Heat of Explosion and on the decomposition reaction, with allowance for the dissociation equilibria and the relevant gas reaction (→ Thermodynamic Calculation of Decomposition Reactions). The real detonation temperature in the front of the shock wave of a detonating explosive can be estimated on the strength of the hydrodynamic shock wave theory, and is higher than the calculated explosion temperature.

Explosive Forming and Cladding

Metallbearbeitung durch Sprengstoffe; traitement des métaux par explosion

The applicability of explosive materials for metal forming have been studied with three different objectives in view: sheet forming and matrix forming of flat items by pressure impact; metal plating; surface hardening of manganese hard steel.

The application of the pressure shock of an explosive to form very large workpieces is primarily intended, to achieve the shaping of a workpiece without using presses, which are very expensive. The transmission of the pressure impact takes place under water. Preliminary

* Text quoted from glossary.
experiments gave encouraging results, but a large-scale industrial application has not yet been developed.

The development of explosive cladding is very much more advanced: the metal sheet to be cladded is exploded onto the base material, parallel to it or at a certain angle. In this way it is possible to effect cladding tasks which would be impossible to fulfil by manual welding, owing to the formation of brittle intermediate alloys between the plating material and the base material – as, for instance, in plating titanium onto a steel surface.

On the surface of manganese steel, the impact of the explosive layer onto the steel surface results in hardening; the only objective of this process is that it enables repair work to be carried out on railway tracks in remote regions, and there is no need to convey the defective parts over long distances. In densely populated areas, forming explosions are difficult to perform.

Explosive Bolt*)

Sprengriegel; verrou destructif

A bolt that is intended to be fractured by a contained or inserted explosive charge.

Explosive Loading Factor*)

Spezifischer Sprengstoffverbrauch; consommation specitique d’explosits

The amount of explosive used per unit of rock, usually expressed as pounds of explosives per cubic yard of rock or tons of rock per pound of explosives, or their reciprocals.

Explosive Materials*)

Sprengmittel; materiaux explosif (→ Table 11)

These include explosives, blasting agents and detonators. The term includes, but is not limited to, dynamite and other high explosives, slurries and water gels, blasting agents, black powder pellet powder, initiating explosives, detonators, safety fuses, squibs, detonating cord, igniter cord and igniters. A list of explosive materials determined to be within the coverage of “18 U.S.C. Chapter 40, Importation, Manufacture, Distribution and Storage of Explosive Materials” is issued at

* Text quoted from glossary.
least annually by the Director of the Bureau of Alcohol, Tobacco and Firearms of the Department of the Treasury.

The United States Department of Transportation classifications of explosive materials used in commercial blasting operations are not identical with the statutory definitions of the Organized Crime Control Act of 1970, Title 18 U.S.C., Section 841. To achieve uniformity in transportation, the definitions of the United States Department of Transportation in Title 49 Transportation CFR, Parts I-999 subdivide these materials into:

- Class A Explosives – Detonating, or otherwise maximum hazard.
- Class S Explosives – Flammable hazard.
- Class C Explosives – Minimum hazard.
- Oxidizing Material – A substance that yields oxygen readily to stimulate the combustion of organic matter (→ Oxidizer)

Explosive Train*)

A train of combustible and explosive elements arranged in order of decreasing sensitivity. The explosive train accomplishes the controlled augmentation of a small impulse into one of suitable energy to actuate main charge. A fuze explosive train may consist of a primer, a detonator, a delay, a relay, a lead and booster charge, one or more of which may be either omitted or combined. If the bursting charge is added to the foregoing train it becomes a bursting charge explosive train. A propelling charge explosive train might consist of a primer, igniter or igniting charge, usually black powder, and finally, any of the various types of propellants (→ Igniter Train).

Explosives

Explosivstoffe; explosifs

1. Definition

Explosives are solid or liquid**) substances, alone or mixed with one another, which are in a metastable state and are capable, for this

* Text quoted from glossary.

**) Of course, gases and gaseous mixtures can also be explosive. Explosive mixtures are often generated spontaneously (leaks in gas pipes, solvent tanks; firedamp in coal mining).
reason, of undergoing a rapid chemical reaction without the participation of external reactants such as atmospheric oxygen. The reaction can be initiated by mechanical means (impact, → Impact Sensitivity; friction, → Friction Sensitivity), by the action of heat (sparks, open flame, red-hot or white-hot objects), or by detonating shock (→ Blasting Cap with or without a → Booster charge). The resistance of the metastable state to heat is known as → Stability. The ease with which the chemical reaction can be initiated is known as → Sensitivity.

The reaction products are predominantly gaseous (→ Fumes). The propagation rate from the initiation site outwards through the explosive material may be much slower than the velocity of sound (→ Deflagration; → Gunpowder) or may be supersonic (→ Detonation). Explosives are solid, liquid, or gelatinous substances or mixtures of individual substances, which have been manufactured for blasting or propulsion purposes. For their effectiveness: → Strength; → Burning Rate; → Brisance.

Materials which are not intended to be used for blasting or shooting may also be explosive. They include, for example, organic peroxide catalysts, gas-liberating agents employed in the modern manufacture of plastic materials and plastic foams, certain kinds of insecticides etc. Table 11 gives an overview of explosive materials.

2. Important Explosives

Of the many explosive chemicals discussed in this book, the following are, at present, of industrial or military importance:

Nitro compounds:

→ TNT in various degrees of purity, as defined by the solidification point of the material; pure 2,4- and 2,6-isomers of dinitrotoluene (as propellant components) and low-melting isomer mixtures (for commercial explosives);

Aromatic nitramines:

→ Tetryl (trinitrophenylnitramine) for booster charges and secondary blasting cap charges;

Aliphatic nitramines:

→ Cyclonite (RDX) and → Octogen (HMX) as components for high-brisance compositions (→ Compositions B; → Hollow Charges); → Nitroguanidine as the main component in powders with low explosion heat and in rocket propellants.
Nitrate esters:

→ *Nitroglycerine*, which is still of primary importance in commercial explosives, smokeless powders and rocket propellants;
→ *Nitroglycol* in commercial explosives only;*)
→ *PETN* as a high-brisance component, which is phlegmatized and pressed for booster charges; it is also employed as a secondary charge of blasting caps and as a detonating cord charge;
→ *Diethylene glycol Dinitrate* for smokeless (cold) powders;
→ *Nitrocellulose*, which is the most important component of single-base and double-base powders and multibase rocket propellants. It is also used to gelatinize commercial explosives. Outside the explosives industry, it is also used in the manufacture of lacquers and varnishes;
→ *Polyvinyl Nitrate* in rocket compositions.

Initiating explosives:

→ *Mercury Fulminate*, and other fulminates, which are now used to a much smaller extent;
→ *Lead Azide*, alone and in mixtures with *Lead Trinitroresorcinate*, as primary charges in blasting caps; also for firedamp-proof cooper caps in coal mining, and in military primers of all kinds;
→ *Lead Styphnate* (*Lead Trinitroresorcinate*) mixtures, which may or may not contain → Tetrazene, for percussion caps.

Many nitro derivatives of benzene and naphthalene were of importance in the past, since toluene – the starting compound in the manufacture of TNT – could only be prepared by distillation of coal. Owing to the advances in petrochemistry, toluene is now available in practically unlimited amounts; the bulk of the toluene now produced is employed as the starting material for the preparation of toluene diisocyanate (TDI) used in the production of plastics.

3. Quality Requirements for Industrial and Military Explosives

The quality requirements for industrial explosives are quite different from those valid for military explosives. It follows that their compositions and the mode of their preparation must be different as well. Table 4 gives an overview.

* Nitroglycol-based gelatinous explosives being replaced by → *Emulsion slurries*.
Table 11. Explosive Materials and their Application

explosive matter

- explosives
 - high explosives
 - primary (initiating) explosives
 - secondary explosives
 - lead azide
 - lead stypnate
 - mercury fulminate
 - diazodinitrophenol
 - tetrazene
 - others
 - mixtures
 - military explosives
 - explosive compounds, e.g.:
 - TNT
 - RDX (Hexogen)
 - PETN (Nitropenta)
 - Tetryl, and others
 - mixtures, e.g.:
 - Composition B
 - Torpex
 - RDX-based plastics, and others
 - gun propellants
 - single base
 - double base
 - multiple- (picrite-) based prop.
 - black powder
 - propellants
 - pyrotechnics
 - flashes
 - flares
 - fume generators
 - optical and acoustic signals
 - fireworks
 - rocket propellants
 - double base
 - composites
 - liquid fuels and oxidizers

- industrial chemical products for non-explosive purpose
 - fertilizer grade ammonium nitrate chlorates as weed killers
 - gas generating ingredients for foam plastics
 - organic peroxides as polymerisation catalysts
 - nitroglycerine and PETN-solutions for pharmaceutical purposes
 - salts of nitrated organic acids for pest control chemicals
 - others
<table>
<thead>
<tr>
<th></th>
<th>Industrial Explosives</th>
<th>Military Explosives</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance</td>
<td>large gas volume and high heat of explosion = high strength</td>
<td>according to the purpose of the weapon: mines, bombs, mine projectiles, rocket war head charges: high gas impact</td>
</tr>
<tr>
<td></td>
<td>high detonation velocity not needed, except: special gelatins for seismic prospecting</td>
<td>high strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td>large gas volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high heat of explosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(high detonation velocity not needed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grenades:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high speed splinter formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high loading density</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high detonation velocity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>medium strength is sufficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shaped (hollow charge effect):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extremely high values for density and detonation velocity (HMX best component)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high strength + high brisance</td>
</tr>
<tr>
<td>sensitivity</td>
<td>safe in handling cap-sensitive (except: blasting agents and slurries)</td>
<td>as unsensitive as possible</td>
</tr>
<tr>
<td></td>
<td>safe flash over capacity in long columns</td>
<td>firing safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>impact safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ projectile impact safety</td>
</tr>
<tr>
<td>stability and behavior on storage</td>
<td>storage life about 6 months or longer neutral (e.g. no nitric acid as component)</td>
<td>storage life 10 years or longer neutral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no reaction with metals such as picrate formation</td>
</tr>
<tr>
<td>water resistance</td>
<td>when cartridges, should withstand 2 h in stagnant water (for seismic prospecting shots even longer)</td>
<td>completely waterproof, at least when loaded in the weapon</td>
</tr>
<tr>
<td>consistency</td>
<td>formable (gelatinous or powder form) to be able to introduce the cap</td>
<td>castable or pressible</td>
</tr>
<tr>
<td>thermal behavior</td>
<td>must not freeze above −25 °C (−13°F) and withstand about +60 °C (140°F) for several hours (e.g. in deep mining)</td>
<td>fully functional between −40 °C (−40°F) and 60 °C (140°F) or even higher for special purposes.</td>
</tr>
<tr>
<td>Magazin Charge up to Pounds</td>
<td>Distances Inhabited Buildings</td>
<td>Distances Passenger Railways</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Pounds</td>
<td>ft</td>
</tr>
<tr>
<td></td>
<td>Metric Tonns</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>580</td>
</tr>
<tr>
<td></td>
<td></td>
<td>635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>685</td>
</tr>
<tr>
<td></td>
<td></td>
<td>865</td>
</tr>
<tr>
<td></td>
<td></td>
<td>975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1695</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2275</td>
</tr>
</tbody>
</table>
The combustion behavior of propellants (→ Burning Rate), which is affected by the ignition and by the design of the grain configuration in the combustion chamber, must be exactly reproducible.

Primary explosives, when set off by a flame, must detonate immediately, and their detonation development distance must be as short as possible.

4. Acquisition, Handling, and Storage

Almost every country has its own laws and regulations governing the acquisition and utilization of explosives. These laws were passed in order to protect the public and to make the use of explosives for criminal purposes a heavily punishable offence. Generally speaking, buyers and users must prove their competence to the authorities and are obliged by law to keep a storage record. The manner of construction of the buildings serving as storerooms, the permissible stacking height, and the minimum distance between residential buildings and buildings in which explosives are stored (or produced) are in most cases officially specified. The following table, which is an extract from the Table of safe distances recommended by explosive makers (Blaster’s Handbook), will serve as an example.

In order to estimate the safe distance required for an amount M of the explosive, it may be assumed that this distance increases with the cube root of M; we thus have $f \cdot \sqrt[3]{M}$. This law is explained on p. 83 of this book; if M is given in kg, and the safe distance is to be obtained in meters, then f is about 16 for the distance to inhabited buildings, about 8 for the distance between dangerous and safe areas of the explosive-manufacturing plant, and about 1.5 for the distance between one storehouse and another.

Transport regulations for dangerous materials: → RID; → IATA; → IMO; → Mass Explosions Risk.

Exudation

Ausschwitz, *exsudation*

The separation of oily ingredients out of explosives during prolonged storage, especially at elevated temperatures. It may be caused by low melting eutectics of isomers or primary products of the explosive material or by added ingredients. Exudation may particularly be anticipated in TNT shell charges; accordingly, the chemical purity standards of the product (→ TNT, specifications) are particularly important.

In propellant charges, exudation occurs if the percentage of e.g., nitroglycerine, aromatic compounds, gelatinizers, or vaseline is high.
The propellant grains will agglomerate whereby ignition will suffer. The same disadvantage may be caused by crystalline separation of stabilizers. The ballistic performance can also be affected.

Prolonged storage, especially in wet climates, may cause exudation of gelatinous nitroglycerine explosives. Mostly, the exudated liquid consists of a watery ammonium nitrate solution; initiation sensitivity and performance may be affected. Highly dangerous is the exudation of unbonded nitroglycerine; it occurs when the gelatinization with nitrocellulose (blasting soluble nitrocellulose) was faulty or the nitrocellulose of bad quality.

Face Burning

“Cigarette-Burning”; Stirnabbrand; combustion en cigarette

In rocket technology, a design of the propellant charge which results in the combustion process being restricted to the cross-section of the combustion chamber. This type of combustion is produced by coating all other surfaces with a non-flammable layer. In such rockets long, combustion times (10 minutes or more) at a nearly constant thrust can be achieved.

Fallhammer

mouton de choc

Fallhammer instruments are used to determine the → Impact Sensitivity of explosives.

Ferrocene

Bis-cyclopentadienyl-Eisen; ferrocène

\[
\begin{align*}
\text{empirical formula: } & C_{10}H_{10}\text{Fe} \\
\text{molecular weight: } & 186.0 \\
\text{energy of formation: } & +214.9 \text{ kcal/kg} = +899.2 \text{ kJ/kg} \\
\text{enthalpy of formation: } & +199.0 \text{ kcal/kg} = +832.6 \text{ kJ/kg} \\
\text{oxygen balance: } & -223.6\%
\end{align*}
\]

Ferrocene is a combustion-modifying additive especially for → Composite Propellants.
The propellant grains will agglomerate whereby ignition will suffer. The same disadvantage may be caused by crystalline separation of stabilizers. The ballistic performance can also be affected.

Prolonged storage, especially in wet climates, may cause exudation of gelatinous nitroglycerine explosives. Mostly, the exudated liquid consists of a watery ammonium nitrate solution; initiation sensitivity and performance may be affected. Highly dangerous is the exudation of unbonded nitroglycerine; it occurs when the gelatinization with nitrocellulose (blasting soluble nitro cotton) was faulty or the nitro cotton of bad quality.

Face Burning

Cigarette-Burning; Stirnabbrand; combustion en cigarette

In rocket technology, a design of the propellant charge which results in the combustion process being restricted to the cross-section of the combustion chamber. This type of combustion is produced by coating all other surfaces with a non-flammable layer. In such rockets long, combustion times (10 minutes or more) at a nearly constant thrust can be achieved.

Fallhammer

mouton de choc

Fallhammer instruments are used to determine the → *Impact Sensitivity* of explosives.

Ferrocene

Bis-cyclopentadienyl-Eisen; ferrocène

![Ferrocene](image)

- empirical formula: \(\text{C}_{10}\text{H}_{10}\text{Fe}\)
- molecular weight: 186.0
- energy of formation: +214.9 kcal/kg = +899.2 kJ/kg
- enthalpy of formation: +199.0 kcal/kg = +832.6 kJ/kg
- oxygen balance: \(-223.6\%\)

Ferrocene is a combustion-modifying additive especially for → *Composite Propellants.*
Firedamp

Schlagwetter; grisou

Firedamp is an explosive mixture of marsh gas (methane, CH₄) with air. These mixtures are explosive at normal temperatures and pressures, and the explosion is propagated over large distances if the mixture contains 5–14 % methane. A methane-air mixture containing 8.5–9.5 % methane is prescribed for official tests of permissibles. The danger of explosion is greatest in this concentration range.

→ *Permitted Explosives.*

Firing Current*)

Zündstrom; courant de mise à feu

An electric current of recommended magnitude to sufficiently energize an electric blasting cap or a circuit of electric blasting caps.

Firing Line*)

Zündkabel; ligne de tir

The wire(s) connecting the electrical power source with the electric blasting cap circuit.

First Fire*)

Igniter composition used with pyrotechnic devices that is loaded in direct contact with main pyrotechnic charge. Pyrotechnic first fire composition compounded to produce high temperature. Composition must be readily ignitible, and be capable of igniting the underlying pyrotechnic charge.

Flame*)

Flamme; flamme

Chemical reaction or reaction product, partly or entirely gaseous, that yields heat and light. State of blazing combustion. Flame profile is temperature profile of any particular flame. Flame temperature is the calculated or determined temperature of the flame.

* Text quoted from glossary.
Flame Shield*)

Flammenschild; boinlier contre l’érosion

Thin metal shield adjacent to case insulation to prevent erosion of the insulation and to prevent objectionable insulation pyrolysis products from entering the gas stream.

Flare*)

Fackel; flambeau

A pyrotechnic device designed to produce a single source of intense light or radiation for relatively long durations for target or airfield illumination, signaling, or other purposes.

Flash Over

Übertragung; détonation par influence

→ Detonation, Sympathetic Detonation. “Flash over” means the transmission of detonation from a cartridge to another one in line. Explosives with extremely high flash over tendency can be initiated by the shock wave from one charged borehole to the next one, even at large distances (→ Ditching Dynamite).

Flash Point*)

Flammpunkt; point d’inflammation

The lowest temperature at which vapors above a volatile combustible substance ignite in air when exposed to flame.

Fly Rock*)

Steinflug; projections de roche

Rocks propelled from the blast area by the force of an explosion.

Fragmentation Test

Splittertest; epreuve de fracture

A USA standard test procedure for explosives of military interest. The weight of each empty projectile and the weight of water displaced by the explosive charge is determined, from which the density of the

* Text quoted from glossary.
charge is calculated. All 3-inch and 90-mm projectiles are initiated by M20 Booster pellets, and those used with 3-inch HE, M42AI, Lot KC-5 and 90-mm HE, I1I71, Lot WC-91 projectiles are controlled in weight and height as follows: 22.50 + 0.10 gm, and 0.480 to 0.485 inch.

The projectile assembled with fuze, actuated by a blasting cap, Special, Type II (Spec 49-20) and booster, is placed in boxes constructed of half-inch pine. The 90-mm projectiles are fragmented in boxes 21 × 10-1/2 × 10-1/2 inches and the 3-inch projectiles in boxes 15 × 9 × 9 inches external dimensions. The box with projectile is placed on about 4 feet of sand in a steel fragmentation tub, the detonator wires are connected, and the box is covered with approximately 4 feet more of sand. The projectile is fired and the sand runs onto a gyrating 4-mesh screen on which the fragments are recovered.

Fragment Velocity.

Charges 10-1/8 inches long and 2 inches in diameter, containing a booster cavity, filled by a 72-gm Tetryl pellet (1-3/8 inches diameter, 2 inches long, average density 1.594) are fired in a model projectile of Shelby seamless tubing, 2 inches ID, 3 inches OD, SAE 1020 steel, with a welded-on cold-rolled steel base. The projectile is fired in a chamber, connected to a corridor containing velocity stations, so (protected sites for high-speed measuring equipment) that a desired wedge of projectile casing fragments can be observed. The fragment velocities are determined by shadow photographs, using flash bulbs, and rotating drum cameras, each behind three slits. The drum cameras have a writing speed of 30 meters per second.

Free-flowing Explosives

Rieselfähige Sprengstoffe; explosifs pulvérulents

Non-cartridge commercial explosives which can be poured into boreholes, mostly ammonium nitrate explosives containing anticaking agents. When ammonium nitrate became commercially available as → *Prills* (porous pellets), → ANFO blasting agents could also be utilized in the free-flowing form; → also *Pellets*.

Freezing of Nitroglycerine – based Explosives

Gefrieren von Nitroglycerin-Sprengstoffen; congélation d’explosifs à base de la nitroglycerine

Nitroglycerine may freeze at +10 °C (50°F). The frozen cartridges are unsafe to handle, because improvised thawing operations are risky. Freezing is prevented by adding nitroglycol to the nitroglycerine.
Friction Sensitivity

The sensitivity to friction can be determined by rubbing a small quantity of the explosive in an unglazed porcelain mortar. The sample being tested is compared with a standard specimen.

In the USA, the friction procedure is made by the friction pendulum test:

A 0.7-g sample of explosive, 5–100 mesh, is exposed to the action of a steel or fiber shoe swinging as a pendulum at the end of a long steel rod. The behavior of the sample is described qualitatively, i.e., the most energetic reaction is explosion, and in decreasing order: snaps, cracks, and unaffected.

An improved method, developed by the Bundesanstalt für Materialforschung und -prüfung (→ BAM)*), Germany, yields reproducible numerical values.

Procedure

The sample is placed on a roughened 25×25×5 mm porcelain plate, which is rigidly attached to the sliding carriage of the friction apparatus. A cylindrical porcelain peg, 10 mm in diameter and 15 mm in height, with a roughened spherical end (radius of curvature 10 mm), is placed on top of the sample; the rod is tightly clamped and may be loaded with different weights with the aid of a loading arm. The load on the peg may vary

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Pistil Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kp</td>
</tr>
<tr>
<td>A. Initiating explosives, small machine</td>
<td></td>
</tr>
<tr>
<td>lead azide</td>
<td>0.01</td>
</tr>
<tr>
<td>lead styphnate</td>
<td>0.15</td>
</tr>
<tr>
<td>mercury fulminate, gray</td>
<td>0.3</td>
</tr>
<tr>
<td>mercury fulminate, white</td>
<td>0.5</td>
</tr>
<tr>
<td>tetrazene</td>
<td>0.8</td>
</tr>
<tr>
<td>B. Secondary explosive materials, large machine</td>
<td></td>
</tr>
<tr>
<td>PETN (Nitropenta)</td>
<td>6</td>
</tr>
<tr>
<td>RDX (Cyclonite)</td>
<td>12</td>
</tr>
<tr>
<td>HMX (Octogen)</td>
<td>12</td>
</tr>
<tr>
<td>Tetryl</td>
<td>36</td>
</tr>
<tr>
<td>C. Industrial explosives, large machine</td>
<td></td>
</tr>
<tr>
<td>blasting gelatin</td>
<td>8</td>
</tr>
<tr>
<td>Gelignite, 60% nitroglycerine</td>
<td>12</td>
</tr>
<tr>
<td>Ammongelit, 38% nitroglycol</td>
<td>24</td>
</tr>
</tbody>
</table>

(Gelatins with a low content of nitroglycerine or nitroglycol, powder-form explosives, slurries and permitted explosives, ammonium nitrate; dinitrobenzene; nitroglycol; nitroglycerine, nitrocellulose up to 13.4% N, picric acid and TNT do not react up to a pistol load of 36 kp.)

between 0.01 and 1 kp in a small apparatus and between 0.5 and 36 kp in a large apparatus. The porcelain plate moves forward and back under the porcelain peg; the stroke length is 10 mm in each direction. The two ends of the peg will serve for two trials and the two friction surfaces of the plate will serve for three trials each.

\textbf{Friction sensitivity of explosive materials}

(Sensitiveness to explosive materials)

The magnitude reported is the smallest load on the peg under which deflagration, crackling, or explosion has been observed at least once in six consecutive tests. The quantity of the test sample is 10 mm3.

\textbf{Fuel}

\textit{Brennstoff; combustible}

Most explosives and pyrotechnical compositions are prepared by a mixture of \textit{Oxidizers} and fuels. Fuel means any substance capable of reacting with oxygen and oxygen carriers (oxidizers) with the evolution of heat. Hence, the concept of fuel here has a wider significance than that of fuel in everyday language; thus, for instance, ammonium chloride in ion-exchanged \textit{Permitted Explosives} can act as a fuel.

\textbf{Fumes}

\textit{Schwaden; fumées de tir}

The composition of the fumes produced by the detonation of an explosive can be found by calculation (\textit{Thermodynamic Calculation of Decomposition Reactions}) or by detonating a cartridge of the explosive in question in a closed vessel (\textit{Bichel Bomb}) followed by gas analysis of the fumes.

In the case of industrial explosives containing an excess of oxygen (\textit{Oxygen Balance}), it is conventionally assumed for the calculated values that only CO$_2$, but no CO, and also that only H$_2$O, N$_2$ and excess O$_2$ are contained in the fumes. In reality the reaction is much more complex, and the product may in fact include CO, NO, NO$_2$, CH$_4$ and many other substances, if the explosive contained sulfur and/or chlorine compounds.
It must always be assumed that explosive fumes and propellant fumes are to some extent toxic. Excess oxygen causes the formation of nitrogen oxides, deficiency carbon monoxide, both toxic. In the United States, the following classification of toxic fume components has been accepted: a 1–1/4 by 8” cartridge in its cartridge paper is detonated in a → Bichel Bomb, and the fume composition is gas analysed. In the following Table “toxic gases” means the sum CO + H₂S (NO and NO₂ are not considered!) in ft³/lb explosive:

A. Permitted explosives (as laid down by the Bureau of Mines, USA)

<table>
<thead>
<tr>
<th>Fume Class</th>
<th>Toxic Gases ft³/lb</th>
<th>Toxic Gases l/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>less than 1.25</td>
<td>78</td>
</tr>
<tr>
<td>B</td>
<td>1.25–2.50</td>
<td>78–156</td>
</tr>
<tr>
<td>C</td>
<td>2.50–3.75</td>
<td>156–234</td>
</tr>
</tbody>
</table>

B. Rock-blasting explosives (as laid down by the → IME: Institute of Makers of Explosives, USA)

<table>
<thead>
<tr>
<th>Fume Class</th>
<th>Toxic Gases ft³/lb</th>
<th>Toxic Gases l/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>less than 0.16</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.16–0.33</td>
<td>10–21</td>
</tr>
<tr>
<td>3</td>
<td>0.33–0.67</td>
<td>21–42</td>
</tr>
</tbody>
</table>

In the German Explosives Law, the test for health-impairing substances contained in blasting fumes was laid down as follows:

Active explosive charges with a shape suitable for application (cartridged or uncartridged), and with a mode of initiation suitable for application, have to be fired in the rock at a point of operation shaped like a chamber. The total charge quantity is between 5 and 15 kg of the explosive to be tested, in boreholes the diameter of which amounts to approx. 1.3 times the diameter of cartridged explosives if cartridged explosives are used for testing. If necessary, booster charges must be employed and their proportion in the fumes produced has to be considered in the calculation. The blasting fumes have to be collected in a room with a volume of between 40 and 100 m³ through a previously installed door which must automatically close as a result of the vibration of the detonation. At least 9 different sampling points of uniform distribution in the chamber, (one sample each) have to be taken to determine the carbon monoxide content and the content of
nitrous gases; the sampling must take place within a period of 1 to 9 minutes after the firing. Glass test tubes of 500 or 1000 ml capacity, provided with a faucet on either side, should be used for the sampling. Prior to the firing, 20 ml of 0.1 n potassium hydroxide should be filled in the test tube intended for the nitrous gas analysis. The residual air pressure present in each of the test tubes should be measured for the subsequent calculation. The carbon monoxide content should be determined by the Wösthoff conductivity method or by infrared absorption. The nitrous gas content should be determined approx. 24 hours after sampling, applying the method of photometrical evaluation of the color reaction according to Gries/v. Illosvay. Duplicate analyses should be made for every test tube. From the resulting 2×9 individual values, the mean should be determined. The mean values have to be stated in litres per kilogram of detonated explosive. In addition, the following test conditions have to be indicated: type and quality of the rock, number and diameter of boreholes, average length of borehole, total charge quantity, borehole spacings and burden, mode of ignition and stemming.

An explosive is considered harmless if the first test produces a maximum of 32 l carbon monoxide and a maximum of 4.0 l nitrous gases per kg of explosive. If the result for carbon monoxide exceeds 32, but not 40 l per kg of explosive or the result for nitrous gases is over 4.0 but not over 5.0 l per kg of explosive, the fume test must be repeated. The mean values for carbon monoxide and nitrous gases from the results of the first and the second test must not exceed 40 l of carbon monoxide per kg of explosive and 5.0 l of nitrous gases per kg of explosive.

Functioning Time*)

Anzündverzugszeit; retard d’allumage

Lapsed time between application of firing current to start of pressure rise.

Fuse*)

An igniting or explosive device in form of a cord, consisting of a flexible fabric tube and a core of low or high explosive. Used in blasting and demolition work, and in certain munitions. A fuse with a black powder or other low explosive core is called a safety fuse or blasting fuse. A fuse with a \rightarrow PETN or other high explosive core is called “detonating cord” or primacord.

*) Text quoted from glossary.
Fuze*)

Zünder, Anzünder; fusée

A device with explosive or pyrotechnic components designed to initiate a train of fire or detonation.

Fuze, delay. Any fuze incorporating a means of delaying its action. Delay fuzes are classified according to the length of time of the delay.

Fuze, long delay. A type of delay fuze in which the fuze action is delayed for a relatively long period of time, depending upon the type, from minutes to days.

Fuze, medium delay. A type of delay fuze in which the fuze action is delayed for a period of time between that of short delay and long delay fuzes, normally four to fifteen seconds.

Fuze Head*)

Zündschraube, Anzündschraube

A device for the ignition of a gun propellant. It consists of a percussion cap, containing a small amount of black powder booster in front, and a threaded armature part screwed into the base of the cartridge.

Gap Test

→ Detonation, Sympathetic Detonation; Flash Over.

Gas Generators*)

gaserzeugende Ladungen; charges génératrices de gaz

Pyrotechnic or propellant device in which propellant is burned to produce a sustained flow of gas at a given pressure on demand. Gas-generating units are employed in blasting operations conducted in mines without recourse to brisant explosives. The device consists of a non-detonating gas-generating material and a priming or a heating charge, which are confined together in a steel pipe. The heating charge evaporates the gas-generating substance such as liquid CO₂ (→ Cardox); another possibility is for the primer to initiate an exothermal chemical reaction (Chemecol process, Hydrox process). The gas-generating reaction may be the decomposition of nitrogen-rich compounds such as ammonium nitrate, or nitrate mixtures, or nitroguanidine in the presence of carbon carriers and sometimes in the

*T Text quoted from glossary. The spelling and notion “fuze” is common in the USA.
Fuze*)

Zünder, Anzünder; fusée

A device with explosive or pyrotechnic components designed to initiate a train of fire or detonation.

Fuze, delay. Any fuze incorporating a means of delaying its action. Delay fuzes are classified according to the length of time of the delay.

Fuze, long delay. A type of delay fuze in which the fuze action is delayed for a relatively long period of time, depending upon the type, from minutes to days.

Fuze, medium delay. A type of delay fuze in which the fuze action is delayed for a period of time between that of short delay and long delay fuzes, normally four to fifteen seconds.

Fuze Head*)

Zündschraube, Anzündschraube

A device for the ignition of a gun propellant. It consists of a percussion cap, containing a small amount of black powder booster in front, and a threaded armature part screwed into the base of the cartridge.

Gap Test

→ Detonation, Sympathetic Detonation; Flash Over.

Gas Generators*)

gaserzeugende Ladungen; charges génératrices de gaz

Pyrotechnic or propellant device in which propellant is burned to produce a sustained flow of gas at a given pressure on demand. Gas-generating units are employed in blasting operations conducted in mines without recourse to brisant explosives. The device consists of a non-detonating gas-generating material and a priming or a heating charge, which are confined together in a steel pipe. The heating charge evaporates the gas-generating substance such as liquid CO₂ (→ Cardox); another possibility is for the primer to initiate an exothermic chemical reaction (Chemecol process, Hydrox process). The gas-generating reaction may be the decomposition of nitrogen-rich compounds such as ammonium nitrate, or nitrate mixtures, or nitroguanidine in the presence of carbon carriers and sometimes in the

Text quoted from glossary. The spelling and notion “fuze” is common in the USA.
presence of catalysts. When a given pressure has been reached, a bursting disc releases the gases in the pipe. The sudden gas expansion taking place in the borehole has an effect similar to that of an explosion.

Gas Jet Velocity

Ausströmgeschwindigkeit; vélocité à jet de gaz

In rocket technology, the velocity of the combustion gases discharged from the combustion chamber and passing the nozzle into the atmosphere. The jet velocity and the mass flow serve to calculate the → _Thrust_. The jet velocity will increase with the pressure in the combustion chamber, i.e., with the expansion ratio under passage through the → _Nozzle_. The pressure in the combustion chamber should not be adjusted too high, otherwise the wall thickness of the chamber (i.e. its weight) will become too great (→ _Mass Ratio_).

In accordance with the _Saint-Venant_ and _Wantzel_ formula

\[a = \sqrt{\frac{k-1}{k} \frac{RT}{M} \left[1 - \left(\frac{P_0}{P_1}\right)^{\frac{k-1}{k}}\right]} \]

where:

- \(P_0\) is the gas pressure at the nozzle exit (atmospheric pressure);
- \(P_1\) is the pressure in the combustion chamber;
- \(k\) is the coefficient of specific heat;
- \(R\) is the ideal gas constant measured in absolute units;
- \(T\) is the flame temperature in Kelvin, and
- \(M\) is the mean molecular weight of the combustion gases.

The jet velocity is proportional to the square root of the combustion temperature and inversely proportional to the square root of the mean molecular weight of the combustion gases.

Other details can be deduced from the formula.

Other keywords in this connection: → _Propellant Area Ratio_ → _Solid Propellant Rockets_.

Gas Pressure

Gasdruck; pression de gaz

The pressure generated in the chamber of a weapon; its value depends to a large extent on the nature of the weapon and of the powder selected. Standard determinations of gas pressure are carried out with the aid of a crusher ("measuring egg") – a copper cylinder or a copper
pyramid – the compression of which is a measure of the gas pressure.

A complete gas pressure curve can only be plotted with the aid of piezo-quartz or other pressure recorder in conjunction with an oscillograph (→ Ballistic Bomb).

Gelatine Donarit 1; 2; 2 E; S

Trade names of gelatinous explosives containing ammonium nitrate distributed in Austria by DYNAMIT NOBEL WIEN.

<table>
<thead>
<tr>
<th>Gelatine Donarit</th>
<th>Density (g/cm³)</th>
<th>Weight Strength (%)</th>
<th>Detonation Velocity confined: m/s</th>
<th>Detonation Velocity confined: ft/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>85</td>
<td>6000</td>
<td>19700</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>87</td>
<td>6200</td>
<td>20300</td>
</tr>
<tr>
<td>2E</td>
<td>1.5</td>
<td>84</td>
<td>6000</td>
<td>19700</td>
</tr>
<tr>
<td>S</td>
<td>1.6</td>
<td>80</td>
<td>6500</td>
<td>21300</td>
</tr>
</tbody>
</table>

Gelatine Donarit 2E and S are explosives for special purposes.
2E for smooth blasting
S for seismic prospecting

Gelatins; Gelatinous Explosives; Gelignites

They are being replaced by cartridged
→ Emulsion Slurries.
→ Plastic Explosives, on the other hand, are dough-like mixtures of highly brisant crystalline explosives (e.g. RDX, → Cyclonite) with plasticizing agents, → Plastic Explosives.

Geosit 3

Trade name of a sensitized gelatinous special explosive distributed in Germany and exported by WASAGCHEMIE. It is used for seismic prospecting and mud capping.
The explosive can be supplied as a cartridge in sealable plastic tubes.

<table>
<thead>
<tr>
<th>Density of Cartridge:</th>
<th>1.6 g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Strength:</td>
<td>81%</td>
</tr>
</tbody>
</table>
detonation velocity at cartridge density, unconfined:
\[6100 \text{ m/s} = 20\,000 \text{ ft/s} \]

GGVE
Gefahrgutverordnung, Eisenbahn
German transport regulation; \(\rightarrow \) RID

Glycerol Acetate Dinitrate
Acetyldinitroglycerin; acétate-dinitrate de glycérine
\[
\begin{align*}
\text{CH}_2\text{O}-\text{NO}_2 \\
\text{CH}-\text{O- CO- CH}_3 \\
\text{CH}_2\text{O}-\text{NO}_2
\end{align*}
\]
pale yellow oil
empirical formula: \(\text{C}_5\text{H}_8\text{N}_2\text{O}_8 \)
molecular weight: 224.1
oxygen balance: \(-42.86\%\)
nitrogen content: 12.50\%
density: 1.412 g/cm\(^3\)
lead block test: 200 cm\(^3\)/10 g
deflagration point: \(170–180^\circ\text{C} = 338–356^\circ\text{F}\)

This compound is insoluble in water, but is readily soluble in alcohol, ether, acetone, and concentrated HNO\(_3\).
It may be prepared by nitration of acetylglycerol with mixed acid containing a very large proportion of nitric acid.
Glycerol acetate dinitrate has been proposed as an additive to nitroglycerine in order to depress the solidification point of the latter. It has so far not been employed in practice.

Glycerol Chloride Dinitrate
Dinitrochlorhydrin; dinitrate-chlorure de glycérine
\[
\begin{align*}
\text{CH}_2\text{ONO}_2 & \quad \text{CH}_2\text{ONO}_2 \\
\text{CH}_\alpha\text{ONO}_2 & \quad \text{CHCl} \\
\text{CH}_\beta\text{Cl} & \quad \text{CH}_2\text{ONO}_2
\end{align*}
\]
pale yellow liquid
empirical formula: \(\text{C}_3\text{H}_5\text{N}_2\text{O}_6\text{Cl} \)
molecular weight: 200.5
oxygen balance: −15.9%
nitrogen content: 13.97%
density: 1.54 g/cm³
solidification point: +5 °C = 41°F
lead block test: 475 cm³/10 g
detonation velocity, confined:
6750 m/s = 22,100 ft/s at ρ = 1.54 g/cm³
deflagration point: 190 °C = 393°F
impact sensitivity: 0.7 kp m = 7 N m

Dinitrochlorohydrin is not hygroscopic and is practically insoluble in water. It is more volatile and less viscous than nitroglycerine.

Glycerol Dinitrate

Dinitroglycerin, Glycerindinitrat; dinitrate de glycérine

\[
\begin{array}{c}
\text{CH}_2\text{O}^\alpha\text{NO}_2 \\
\text{CH}_3\text{OH} \\
\text{CH}_2\text{O}^\beta\text{NO}_2
\end{array}
\]

pale yellow oil
empirical formula: C₃H₆N₂O₇
molecular weight: 182.1
oxygen balance: −17.6%
nitrogen content: 15.38%
density: 1.51 g/cm³
solidification point: −30 °C = −22°F
lead block test: 450 cm³/10 g
deflagration point: 170 °C = 338°F
impact sensitivity: 0.15 kp m = 1.5 N m

Glycerol dinitrate is a viscous liquid, but is more volatile and more soluble in water than nitroglycerine. It is hygroscopic and may be used as a gelatinizer of certain types of nitrocelluloses. It is more stable than glycerol trinitrate. Its vapors are toxic and cause headaches.

It is prepared by nitration of glycerol with nitric acid; such nitrations mostly yield mixtures of di- and trinitroglycerine.
Glycerol – 2,4-Dinitrophenyl Ether Dinitrate

Dinitrophenylglycerinätherdinitrat; dinitrate de glycérol-dinitrophénylether, Dinitryl

\[
\begin{align*}
\text{CH}_2\text{-O-NO}_2 \\
\text{CH}_2\cdot\text{O-NO}_2 \\
\text{NO}_2 \\
\text{NO}_2
\end{align*}
\]

pale yellow crystals
empirical formula: C₉H₈N₄O₁₁
molecular weight: 348.2
oxygen balance: −50.6%
nitrogen content: 16.09%
density: 1.60 g/cm³
melting point: 124 °C = 255°F
lead block test: 320 cm³/10 g
deflagration point: 205 °C = 400°F
impact sensitivity: 0.8 kp m = 8 N m

This compound is prepared by reacting glycerol nitrophenyl ether with a nitric acid – sulfuric acid mixture at 25 – 30 °C (~77 °F). It is insoluble in water, but is readily soluble in acetone. It is a poor gelatinizer of nitrocellulose.

Glycerol Nitrolactate Dinitrate

Dinitroglycerinnitrolactat; dinitrate-nitrolactate de glycérine

\[
\begin{align*}
\text{CH}_3 \\
\text{CH}-\text{O-NO}_2 \\
\text{C}-\text{O} \\
\text{CH}_2 \\
\text{CH}-\text{O-NO}_2 \\
\text{CH}_2\cdot\text{O-NO}_2
\end{align*}
\]

colorless liquid
empirical formula: C₆H₉N₃O₁₁
molecular weight: 299.2
oxygen balance: −29.7%
nitrogen content: 14.05%
density: 1.47 g/cm³
refractive index: n_D²⁵ = 1.464
deflagration point: 190 °C = 374°F

Dinitroglycerol nitrolactate is practically insoluble in water, readily soluble in alcohol and ether, and is a good gelatinizer of nitrocellulose. It is more resistant to heat and less sensitive to impact than nitroglycerine.
Glycerol Trinitrophenyl Ether Dinitrate

Trinitrophenylglycerinätherdinitrat; dinitrate de trinitrophenyl-glycérineéther

![Chemical structure of Glycerol Trinitrophenyl Ether Dinitrate](image)

yellowish, light-sensitive crystals

- **Empirical formula:** $C_9H_7N_5O_{13}$
- **Molecular weight:** 393.2
- **Oxygen balance:** -34.6%
- **Nitrogen content:** 17.81%
- **Solidification point:** $128.5\ ^\circ C = 263.3\ ^\circ F$
- **Lead block test:** $420\ \text{cm}^3/10\ \text{g}$
- **Deflagration point:** $200-205\ ^\circ C = 392-400\ ^\circ F$
- **Impact sensitivity:** 0.4 kp m = 4 N m

Glycerol trinitrophenyl ether dinitrate is insoluble in water, but is readily soluble in acetone; it does not gelatinize nitrocellulose.

It is prepared by nitration of phenyl glycerol ether with a nitric acid-sulfuric acid mixture.

Glycidyl Azide Polymer

Glycidylazidpolymer; GAP

![Chemical structure of Glycidyl Azide Polymer](image)

light-yellowish, viscous liquid

- **Empirical formula of structural unit:** $C_3H_5N_3O$
- **Molecular weight of structural unit:** 99.1
- **Mean molecular weight:** 2000
- **Energy of formation:** $+1535.2\ \text{kJ/kg} = +366.9\ \text{kcal/kg}$
- **Enthalpy of formation:** $+1422.9\ \text{kJ/kg} = +340.1\ \text{kcal/kg}$
- **Oxygen value:** -121.1%
- **Nitrogen content:** 42.40%
- **Specific energy:** 82.4 mt/kg = 808 kJ/kg
- **Explosion heat (H$_2$O liq.):** 3429 kJ/kg = 820 kcal/kg
- **Normal volume of gases:** 946 l/kg
- **Viscosity:** 4280 cP
- **Density:** 1.3 g/cm3
- **Deflagration temperature:** $216\ ^\circ C$
Glycidyl azide polymer is produced in a two-step process. First, epichlorhydrine in the presence of bortrifluoride, is polymerized into polyepichlorhydrine. Using dimethylformamide as a solvent, the polymer is then processed with sodium azide at high temperature. Nearly all the inorganic components as well as the solvent are removed, leaving the raw final product free of low molecular weight compounds.

Glycidyl azide polymer was originally developed in the USA as an Active Binder for Composite Propellants. Because this gas-producing component has been shown to have a low explosion temperature, it has been used in recent years as an active binder compound in LOVA gun propellant.

Grain*)

A single mass of solid propellant of the final geometric configuration as used in a gas generator or rocket motor.

Granulation*)

Size and shape of grains of pyrotechnic or propellant ingredients (→ Grist)

Graphite

C
atomic weight: 12.01

serves for surface smoothing of flake-grained Gunpowder and of Black Powder.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>moisture: not more than</td>
<td>0.5 %</td>
</tr>
<tr>
<td>reaction:</td>
<td>neutral</td>
</tr>
<tr>
<td>glow residue in natural graphite:</td>
<td>not more than</td>
</tr>
</tbody>
</table>

* Text quoted from glossary.
no scratching parts admitted
silicic acid: none

Grist*)

Particle size of pyrotechnic material (→ Granulation)

Guanidine Nitrate

Guanidinnitrat; nitrate de guanidine

\[
\begin{align*}
\text{HN} & \equiv \\
\text{C} & \equiv \\
\text{NH}_2 \cdot \text{HNO}_3
\end{align*}
\]

colorless crystals
empirical formula: CH$_6$N$_4$O$_3$
molecular weight: 122.1
energy of formation: −726.1 kcal/kg = −3038 kJ/kg
enthalpy of formation: −757.7 kcal/kg = −3170.1 kJ/kg
oxygen balance: −26.2%
nitrogen content: 45.89%
volume of explosion gases: 1083 l/kg
heat of explosion
(H$_2$O liq.): 587 kcal/kg = 2455 kJ/kg
(H$_2$O gas): 447 kcal/kg = 1871 kJ/kg
specific energy: 72.6 mt/kg = 712 kJ/kg
melting point: 215 °C = 419°F
heat of fusion: 48 kcal/kg = 203 kJ/kg
lead block test: 240 cm3/10 g
deflagration point: decomposition at 270 °C = 518°F
impact sensitivity: up to 5 kp m = 50 N m no reaction
friction sensitivity:
up to 36 kp = 353 N pistol load no reaction
critical diameter of steel sleeve test: 2.5 mm

Guanidine nitrate is soluble in alcohol and water. It is the precursor compound in the synthesis of → Nitroguanidine. It is prepared by fusing dicyanodiamide with ammonium nitrate.

Guanidine nitrate is employed in formulating fusible mixtures containing ammonium nitrate and other nitrates; such mixtures were extensively used during the war as substitutes for explosives, for which the raw materials were in short supply. However, a highbrisance explosive such as Hexogen or another explosive must usually be added.

* Text quoted from glossary.
to the mixtures. It was also proposed that guanidine nitrate be incorporated in Double Base Propellants.

Guanidine Perchlorate

Guanidinperorchlorat; perchlorate de guanidine

\[
\text{H}_2\text{N} = \text{C} \quad \text{O}_4\text{Cl} \\
\text{H}_2\text{N} \quad \text{Cl} \\
\]

empirical formula: \(\text{CH}_6\text{N}_3\text{O}_4\text{Cl} \)
molecular weight: 159.5
energy of formation: \(-440.1\) kcal/kg = \(-1841.4\) kJ/kg
enthalpy of formation: \(-466.1\) kcal/kg = \(-1950.0\) kJ/kg
oxygen balance: \(-5.0\) %
nitrogen content: \(26.35\) %
melting point: 240 °C = 464°F
lead block test: 400 cm³/10 g

This compound is prepared from guanidine hydrochloride and sodium perchlorate.

Guanidine Picrate

Guanidinipikrat; picrate de guanidine

\[
\text{H}_2\text{N} = \text{C} \quad \text{N}_2\text{O}_7 \\
\text{H}_2\text{N} \quad \text{OH} \\
\text{NO}_2 \\
\text{NO}_2 \\
\]

yellow crystals
empirical formula: \(\text{C}_7\text{H}_8\text{N}_6\text{O}_7 \)
molecular weight: 288.1
oxygen balance: \(-61.1\) %
nitrogen content: \(29.16\) %
melting point:
 decomposition at 318.5–319.5 °C = 605–606°F
deflagration point: 325 °C = 617°F

Guanidine picrate is sparingly soluble in water and alcohol. It is prepared by mixing solutions of guanidine nitrate and ammonium picrate.
Guar Gum

Guarmehl; farine de guar

Guar gum is the ground endosperm of the Indian pant Cyanopsis tetragonoloba. It is a polysaccharide with a mannose main chain and galactose side chains. The product gels with water in the cold. It is added to commercial powder explosives so as to protect them from influx of water in wet boreholes. Guar gum gelled with water produces a barrier layer, which prevents any further penetration of water (→ Water Resistance; → Slurries).

Gunpowder

propellant; Schiesspulver; poudre

The propellant which has exclusively been used for a long time in conventional military weapons is the smokeless (or, more accurately, low-smoke) powder. According to its composition, it can be classified as single-base powders (e.g., nitrocellulose powder), doublebase powders (e.g., nitroglycerine powder) and triple-base powders (e.g., nitrocellulose + nitroglycerine (or diglycol dinitrate) + nitroguanidine powders).

The main component of nitrocellulose powders is nitrocellulose, a mixture of guncotton (13.0–13.4% nitrogen) and soluble guncotton (11–13% nitrogen content). To manufacture the powder, the nitrocellulose mixture is gelatinized with the aid of solvents – mostly alcohol and ether. Additives – stabilizers in particular – can be incorporated at this stage. The plastic solvent-wet mass thus obtained is now shaped in extrusion presses to give strips or tubes and is cut to the desired length by a cutting machine. The residual solvents in the powder are removed by soaking the powder in water and drying. The dried powder is then polished in drums and is graphitized. A surface treatment is performed at the same time, using alcoholic solutions of Centralite, dibutyl phthalate, camphor, dinitrotoluene, or other phlegmatization agents.

To make nitroglycerine powder, nitrocellulose is suspended in water, the suspension is vigorously stirred, and nitroglycerine is slowly introduced into the suspension, when practically all of it is absorbed by the nitrocellulose. The bulk of the water (residual water content 25–35%) is then centrifuged off or squeezed out, and the powder paste is ground. It is then mixed by mechanical kneading with nitroglycerine-insoluble additives and is gelatinized on hot rollers, as a result of which the water evaporates, leaving behind a residual water content of about 1%.
This product, which is thermoplastic, can now be geometrically shaped as desired, in accordance with the type of the powder, using finishing rollers, cutting and punching machines, or hydraulic extrusion presses.

This solventless processing avoids variations in the characteristics of the products due to the presence of residual solvents. No prolonged drying operations are needed for ballistic stability of the gunpowder.

If the use of solvents is required in the production process of double and triple base propellants, the nitroglycerine can be introduced in the mixtures in the form of a “master mix”, a gelatinized mixture consisting of 85% nitroglycerine and 15% alcohol-wet nitrocellulose of the same type as the prescribed powder component.

Depending on their intended use, nitroglycerine powders have a nitroglycerine content between 25 and 50%.

In the USA and in the United Kingdom, a large amount of nitroglycerine and nitroguanidine powders are still produced with the aid of solvents. Acetone is added to nitroglycerine in order to facilitate the kneading and pressing operations, but must be subsequently removed by drying.

A number of liquid nitrate esters other than nitrocellulose have been recently used, including diglycol dinitrate, metriol trinitrate, and butaneetriol trinitrate, of which diglycol dinitrate has been the most extensively employed. Powders prepared with it or with triglycol dinitrate are lower in calories. This fact is relevant to the service life of the gunbarrels in which these powders are utilized. Such powders are known as “cold propellants”.

Further research for gunbarrel-saving propellants led to the development of nitroguanidine powders, in which → Nitroguanidine (picrite) is the third energy-containing component, beside nitroglycerine (or diglycol dinitrate or triglycol dinitrate) and nitrocellulose. Powders containing more than 40% nitroguanidine can be made only with the aid of solvents.

Another special processing method is used for the manufacture of → Ball Powder. Floating spheres of concentrated nitrocellulose solutions are cautiously suspended in warm water; the solvent evaporates gradually and the floating spheres solidify. Finally, an intensive surface treatment is needed to reach the desired ballistic behavior. The ballistic properties of a powder are affected not only by its chemical composition, but also by its shape. Thus, in conventional weapons, it ought to bring about progressive burning, or at least ensure that the surface area of the grain remains constant during combustion.
The following geometric forms of powder grains are manufactured:

- perforated long tubes
- perforated tubes, cut short
- multi perforated tubes
- flakes
- strips
- ball powder
- cubes
- rods, cut short
- rings

Finer-grained powders are used for portable firearms; tubular powder is mostly employed for guns; powders in the form of flakes and short tubes are employed for mortars, howitzers, and other high-angle firearms.

Finer-grained powders can be improved in their ballistic behavior by → *Surface Treatment*. Phlegmatizers are infiltrated in the outer layer of the powder grains; the burning rate in the weapon chamber begins slowly and turns progressive.

Hangfire*)

Spätzündung; explosion tardive

The detonation of an explosive charge at some non-determined time after its normally designed firing time. This can be a dangerous phenomenon.

Hansen Test

In this stability test, which was proposed by Hansen in 1925, 8 samples of the material to be tested are heated up to 110 °C (230°F). Every hour one of the, samples is taken out of the oven, extracted with CO₂-free water, and the pH of the filtrate determined. Since the decomposition of propellants based on nitrates is usually accompanied by the liberation of CO₂, which interferes with the potentiometric determination, the results obtained are unsatisfactory, and the test is now hardly ever used.

HBX, HBX-1 etc.

These are pourable mixtures of TNT, RDC and aluminum (→ *Torpex*) containing phlegmatizing additives.

* Text quoted from glossary.
The following geometric forms of powder grains are manufactured:

- perforated long tubes
- multi perforated tubes
- strips
- cubes
- rings
- perforated tubes, cut short
- flakes
- ball powder
- rods, cut short

Finer-grained powders are used for portable firearms; tubular powder is mostly employed for guns; powders in the form of flakes and short tubes are employed for mortars, howitzers, and other high-angle firearms.

Finer-grained powders can be improved in their ballistic behavior by → Surface Treatment. Phlegmatizers are infiltrated in the outer layer of the powder grains; the burning rate in the weapon chamber begins slowly and turns progressive.

Hangfire*)

Spätzündung; explosion tardive

The detonation of an explosive charge at some non-determined time after its normally designed firing time. This can be a dangerous phenomenon.

Hansen Test

In this stability test, which was proposed by Hansen in 1925, 8 samples of the material to be tested are heated up to 110 °C (230°F). Every hour one of the, samples is taken out of the oven, extracted with CO₂-free water, and the pH of the filtrate determined. Since the decomposition of propellants based on nitrates is usually accompanied by the liberation of CO₂, which interferes with the potentiometric determination, the results obtained are unsatisfactory, and the test is now hardly ever used.

HBX, HBX-1 etc.

These are pourable mixtures of TNT, RDC and aluminum (→ Torpex) containing phlegmatizing additives.

* Text quoted from glossary.
Heat of Combustion

Verbrennungswärme; chaleur de combustion

Unlike the heat of explosion, the heat of combustion represents the caloric equivalent of the total combustion energy of the given substance. It is determined in a calorimetric bomb under excess oxygen pressure. The heat of combustion is usually employed to find the heat of formation.

The heat of combustion depends only on the composition of the material and not on any other factor, such as loading density or other factors.

Heat of Explosion

Explosionswärme; chaleur d’explosion

The heat of explosion of an explosive material, an explosive mixture, gunpowder or propellant is the heat liberated during its explosive decomposition. Its magnitude depends on the thermo-dynamic state of the decomposition products; the data used in practical calculations usually have water (which is a product of the explosion) in the form of vapor as the reference compound.

The heat of explosion may be both theoretically calculated and experimentally determined. The calculated value is the difference between the energies of formation of the explosive components (or of the explosive itself if chemically homogeneous) and the energies of formation of the explosion products (for more details → Thermodynamic Calculation of Decomposition Reactions). The advantage of the calculation method is that the results are reproducible if based on the same energies of formation and if the calculations are all conducted by the same method; this is often done with the aid of a computer.

The values of heats of explosion can also be more simply calculated from the “partial heats of explosion” of the components of the propellant (see below).

The calculated values do not exactly agree with those obtained by experiment; if the explosion takes place in a bomb, the true compositions of the explosion products are different and, moreover, vary with the loading density. In accurate calculations these factors must be taken into account. In difficult cases (strongly oxygen-deficient compounds and side reactions, such as the formation of CH₄, NH₃, HCN, or HCl), the only way is to analyze the explosion products. For standard values of heats of formation at constant volume or constant pressure → Energy of Formation.

The experimental determination takes place in a calorimetric bomb. The bomb volume is usually 20 cm³, but can also be 300 cm³. The
sample quantity is usually so chosen as to obtain a loading density of 0.1 g/cm3. If a powder refuses to explode – as is often the case if the heat of explosion is smaller than 800 cal/g – a “hot” powder with a known heat of explosion is added, and the heat of explosion of the sample powder is calculated from that of the mixture and that of the hot powder.

The heat of detonation under “CJ conditions” (→ Detonation) can differ from the explosion value, because the chemical reaction can be influenced by the conditions in the wave front (e.g., by the loading density of the explosive)*).

Moreover, the detonation energy is related to H$_2$O in the gaseous state. The calorimetric values as well as the calculated values given for the individual explosives in this book are based on H$_2$O in the liquid state as a reaction product.

Partial Heat of Explosion

partielle Explosionswärme;
chaleur partielle d’explosion

A. Schmidt proposed a simplified way of estimating the probable heat of explosion of a propellant. In this method, a “partial heat of explosion” is assigned to each component of the powder. Materials with high negative oxygen balances (e.g., stabilizers and gelatinizers) are assigned negative values for the partial heat of explosion. The explosion heat of the propellant is calculated by the addition of the partial values weighted in proportion to the respective percentage of the individual components.

A number of such values have been tabulated. The value for trinitroglycerine is higher than its heat of explosion, since the excess oxygen reacts with the carbon of the other components.

Table 17. Values for the partial heat of explosion

<table>
<thead>
<tr>
<th>Component</th>
<th>Partial Heat of Explosion</th>
<th>kcal/kg</th>
<th>kJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akardite I</td>
<td>–2283</td>
<td>–9559</td>
<td></td>
</tr>
<tr>
<td>Akardite II</td>
<td>–2300</td>
<td>–9630</td>
<td></td>
</tr>
<tr>
<td>Akardite III</td>
<td>–2378</td>
<td>–9957</td>
<td></td>
</tr>
<tr>
<td>ammonium nitrate</td>
<td>+1450</td>
<td>+6071</td>
<td></td>
</tr>
<tr>
<td>barium nitrate</td>
<td>+1139</td>
<td>+4769</td>
<td></td>
</tr>
<tr>
<td>barium sulfate</td>
<td>+ 132</td>
<td>+ 553</td>
<td></td>
</tr>
<tr>
<td>butanetriol trinitrate (BTN)</td>
<td>+1400</td>
<td>+5862</td>
<td></td>
</tr>
<tr>
<td>camphor</td>
<td>–2673</td>
<td>–11192</td>
<td></td>
</tr>
<tr>
<td>Candelilla wax</td>
<td>–3000</td>
<td>–12561</td>
<td></td>
</tr>
<tr>
<td>carbon black</td>
<td>–3330</td>
<td>–13942</td>
<td></td>
</tr>
<tr>
<td>Centralite I</td>
<td>–2381</td>
<td>–9969</td>
<td></td>
</tr>
<tr>
<td>Centralite II</td>
<td>–2299</td>
<td>–9626</td>
<td></td>
</tr>
<tr>
<td>Centralite III</td>
<td>–2367</td>
<td>–9911</td>
<td></td>
</tr>
<tr>
<td>cupric salicylate</td>
<td>–1300</td>
<td>–5443</td>
<td></td>
</tr>
<tr>
<td>basic cupric salicylate</td>
<td>– 900</td>
<td>–3768</td>
<td></td>
</tr>
<tr>
<td>diamyl phthalate (DAP)</td>
<td>–2187</td>
<td>–9157</td>
<td></td>
</tr>
<tr>
<td>dibutyl phthalate (DBP)</td>
<td>–2071</td>
<td>–8671</td>
<td></td>
</tr>
<tr>
<td>dibutyl tartrate (DBT)</td>
<td>–1523</td>
<td>–6377</td>
<td></td>
</tr>
<tr>
<td>dibutyl sebacate (DBS)</td>
<td>–2395</td>
<td>–10028</td>
<td></td>
</tr>
<tr>
<td>diethylenglycol dinitrate (DGN, DEGN)</td>
<td>+1030</td>
<td>+4313</td>
<td></td>
</tr>
<tr>
<td>dihydroxyethyl nitrate dinitrate (DINA)</td>
<td>+1340</td>
<td>+5610</td>
<td></td>
</tr>
<tr>
<td>diethyl phthalate (DEP)</td>
<td>–1760</td>
<td>–7369</td>
<td></td>
</tr>
<tr>
<td>diethyl sebacate (DES)</td>
<td>–2260</td>
<td>–9463</td>
<td></td>
</tr>
<tr>
<td>diisobutyl adipate (DIBA)</td>
<td>–2068</td>
<td>–8658</td>
<td></td>
</tr>
<tr>
<td>dimethyl phthalate (DMP)</td>
<td>–1932</td>
<td>–8089</td>
<td></td>
</tr>
<tr>
<td>dinitrotoluene (DNT)</td>
<td>– 148</td>
<td>– 620</td>
<td></td>
</tr>
<tr>
<td>dioctyl phthalate (DOP)</td>
<td>–2372</td>
<td>–9931</td>
<td></td>
</tr>
<tr>
<td>diphenylamine (DPA)</td>
<td>–2684</td>
<td>–11238</td>
<td></td>
</tr>
<tr>
<td>diphenyl phthalate (DPP)</td>
<td>–2072</td>
<td>–8675</td>
<td></td>
</tr>
<tr>
<td>diphenylurea</td>
<td>–2227</td>
<td>–9324</td>
<td></td>
</tr>
<tr>
<td>diphenylurethane</td>
<td>–2739</td>
<td>–11468</td>
<td></td>
</tr>
<tr>
<td>ethyleneglycol dinitrate</td>
<td>+1757</td>
<td>+7357</td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td>Partial Heat of Explosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kcal/kg</td>
<td>kJ/kg</td>
<td></td>
</tr>
<tr>
<td>ethylphenylurethane</td>
<td>−1639</td>
<td>−6862</td>
<td></td>
</tr>
<tr>
<td>glycol</td>
<td>−889</td>
<td>−3722</td>
<td></td>
</tr>
<tr>
<td>graphite</td>
<td>−3370</td>
<td>−14110</td>
<td></td>
</tr>
<tr>
<td>lead acetylsalicylate</td>
<td>−857</td>
<td>−3588</td>
<td></td>
</tr>
<tr>
<td>lead ethylhexoate</td>
<td>−1200</td>
<td>−5024</td>
<td></td>
</tr>
<tr>
<td>lead salicylate</td>
<td>−752</td>
<td>−3149</td>
<td></td>
</tr>
<tr>
<td>lead stearate</td>
<td>−2000</td>
<td>−8374</td>
<td></td>
</tr>
<tr>
<td>lead sulfate</td>
<td>+150</td>
<td>+628</td>
<td></td>
</tr>
<tr>
<td>methyl methacrylate (MMA)</td>
<td>−1671</td>
<td>−6996</td>
<td></td>
</tr>
<tr>
<td>Metriol trinitrate (MTN)</td>
<td>+1189</td>
<td>−4978</td>
<td></td>
</tr>
<tr>
<td>mineral jelly</td>
<td>−3302</td>
<td>−13825</td>
<td></td>
</tr>
<tr>
<td>nitrocellulose, 13.3% N</td>
<td>+1053</td>
<td>+4409</td>
<td></td>
</tr>
<tr>
<td>nitrocellulose, 13.0% N</td>
<td>+1022</td>
<td>+4279</td>
<td></td>
</tr>
<tr>
<td>nitrocellulose, 12.5% N</td>
<td>+942</td>
<td>+3944</td>
<td></td>
</tr>
<tr>
<td>nitrocellulose, 12.0% N</td>
<td>+871</td>
<td>+3647</td>
<td></td>
</tr>
<tr>
<td>nitrocellulose, 11.5% N</td>
<td>+802</td>
<td>+3358</td>
<td></td>
</tr>
<tr>
<td>nitroglycerine (NG)</td>
<td>+1785</td>
<td>+7474</td>
<td></td>
</tr>
<tr>
<td>nitroguanidine (picrite)</td>
<td>+721</td>
<td>+3019</td>
<td></td>
</tr>
<tr>
<td>PETN</td>
<td>+1465</td>
<td>+6134</td>
<td></td>
</tr>
<tr>
<td>pentaerythrol trinitrate</td>
<td>+1233</td>
<td>+5163</td>
<td></td>
</tr>
<tr>
<td>polyethylene glycol (PEG)</td>
<td>−1593</td>
<td>−6670</td>
<td></td>
</tr>
<tr>
<td>poly methacrylate (PMA)</td>
<td>−1404</td>
<td>−5879</td>
<td></td>
</tr>
<tr>
<td>polyvinyl nitrate (PVN)</td>
<td>+910</td>
<td>+3810</td>
<td></td>
</tr>
<tr>
<td>potassium nitrate</td>
<td>+1434</td>
<td>+6004</td>
<td></td>
</tr>
<tr>
<td>potassium perchlorate</td>
<td>+1667</td>
<td>+6980</td>
<td></td>
</tr>
<tr>
<td>potassium sulfate</td>
<td>+300</td>
<td>+1256</td>
<td></td>
</tr>
<tr>
<td>TNT</td>
<td>+491</td>
<td>+2056</td>
<td></td>
</tr>
<tr>
<td>triacetin (TA)</td>
<td>−1284</td>
<td>−5376</td>
<td></td>
</tr>
<tr>
<td>triethyleneglycol dinitrate (TEGN)</td>
<td>+750</td>
<td>+3140</td>
<td></td>
</tr>
</tbody>
</table>

The values refer to water in the liquid state as a reaction product.
Heat Sensitivity

thermische Sensibilität; sensitiveness to Heat; sensibilité au chauffage

Heat sensitivity is determined by testing the flammability of explosives brought into contact with glowing objects, flame, sparks, the initiating flame of a black powder safety fuse, a red-hot iron rod, or a flame.

RID (Règlement International concernant le Transport des Marchandises Dangereuses) describes a method, in which a sample of about 500 g of the explosive, accommodated in a metal can of given dimensions, is exposed to a wood fire, and its behavior (combustion, intense decomposition or detonation) is observed.

In response to a suggestion made by Koenen (Bundesanstalt für Materialprüfung, Berlin, Germany), these tests, which are carried out with the purpose of evaluating the safety during transport, were improved as described below; the method is known as the "steel sleeve test" (Koenen test).

Koenen Test Procedure

The sample substance is introduced into a cylindrical steel sleeve (25 mm dia.×24 mm dia.×75 mm) up to a height of 60 mm, and the capsule is closed with a nozzle plate with a central hole of a given diameter. The diameter of the hole can vary between 1 and 20 mm; when the plate is not employed, the effect is equivalent to that of a 24-mm hole. The charged sleeve is placed inside a protective box and is simultaneously heated by four burners; the time elapsed up to incipient combustion and the duration of the combustion itself are measured with a stop watch. The plate perforation diameter is varied, and the limiting perforation diameter corresponding to an explosion caused by accumulation of pressure inside the steel sleeve is determined. Explosion is understood to mean fragmentation of the sleeve into three or more fragments or into a greater number of smaller fragments.
In this way, reproducible numerical data are obtained which allow classification of different explosives according to the explosion danger they represent.

The parameter which is reported is the largest diameter of the circular perforation in mm (limiting diameter) at which at least one explosion occurs in the course of three successive trials.

Fig. 15. Steel sleeve test (Koenen test)
Table 18. Results of steel sleeve test

<table>
<thead>
<tr>
<th>Explosive Material</th>
<th>Limiting Diameter</th>
<th>Time until Ignition</th>
<th>Time of Combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Homogeneous Explosives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitroglycerine</td>
<td>24</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>nitroglycol</td>
<td>24</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>nitrocellulose, 13.4% N</td>
<td>20</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>nitrocellulose, 12.0% N</td>
<td>16</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cyclonite</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>ammonium perchlorate</td>
<td>8</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>PETN</td>
<td>6</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Tetryl</td>
<td>6</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>TNT</td>
<td>5</td>
<td>52</td>
<td>29</td>
</tr>
<tr>
<td>picric acid</td>
<td>4</td>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>dinitrotoluene</td>
<td>1</td>
<td>49</td>
<td>21</td>
</tr>
<tr>
<td>ammonium nitrate</td>
<td>1</td>
<td>43</td>
<td>29</td>
</tr>
<tr>
<td>B. Industrial Explosives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blasting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gelatin</td>
<td>24</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>guhr-dynamite</td>
<td>24</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Gelignite</td>
<td>20</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>ammonium nitrate gelatin</td>
<td>14</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>ammonium-nitrate-based powder-form explosives</td>
<td>1.5–2.5</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>nitrocarbonitrate</td>
<td>2</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>ANFO blasting agents</td>
<td>1.5</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>gelatinous permitted explosives</td>
<td>14</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>ion-exchanged powder-form permits</td>
<td>1</td>
<td>35</td>
<td>5</td>
</tr>
</tbody>
</table>

Heptryl

\[\text{N-}(2,4,6\text{ Trinitrophenyl-N-nitramino)}-\text{trimethylolmethane Trinitrate;} \]

\[\text{Trinitrate de trinitrophényl-nitramino-triméthylolméthane} \]

\[\text{yellow crystals} \]
\[\text{empirical formula: } C_{10}H_8N_8O_{17} \]
\[\text{molecular weight: 512.24} \]
\[\text{energy of formation: } -96.8 \text{ kcal/kg} = -405.0 \text{ kJ/kg} \]
oxygen balance: –21.9 %
nitrogen content: 21.9 %
volume of explosion gases: 787 l/kg
specific energy: 128.6 mt/kg = 1261 kJ/kg
melting point (decomp.): 154 °C = 309°F
deflagration point: 180 °C = 356°F
heat of combustion: 2265.9 kcal/kg

Heptryl is comparable in power and sensitivity to PETN. It can be prepared by nitrating 2,4-dinitroanilinotrimethylolmethane with mixed nitric-sulfuric acid and purified by reprecipitation from acetone.

Hermetic Seal*)

Hermetische Versiegelung; diaphragme hermétique

Seal impervious to air and fluids.

HEX

Abbreviation for high energy explosive. The HEX series comprises modifications of → Torpex.

Hexal

Mixture of RDX, aluminum powder and added wax as phlegmatizer. It is used, press-molded, as a filling of anti-aircraft gunshells. Owing to the aluminum component, both an incendiary and explosive effect are obtained.

Hexamethylene Diisocyanate

Hexamethylene diisocyanate; diisocyanate d’hexaméthylène

\[\text{O=C=N–(CH}_2\text{)}_6\text{N=C=O} \]

colorless liquid
empirical formula: \(\text{C}_8\text{H}_{12}\text{N}_2\text{O}_2 \)
molecular weight: 168.2
energy of formation: \(-468 \text{ kcal/kg} = -1961 \text{ kJ/kg} \)
enthalpy of formation: \(-496 \text{ kcal/kg} = 2078 \text{ kJ/kg} \)
oxygen balance: \(-205.4 \% \)
nitrogen content: 16.66 %

* Text quoted from glossary.
The compound acts as a hydroxy curing agent in the formation of polyurethane binders of → Composite Propellants; → also Casting of Propellants.

Hexamethylenetetramine Dinitrate

*Hexametylene*tenramindinitrat;
dinitrate d’hexaméthylène tétramine

colorless crystals
empirical formula: C₆H₁₄N₆O₆
molecular weight: 266.2
energy of formation: −309.9 kcal/kg = −1296.6 kJ/kg
enthalpy of formation:
−338.8 kcal/kg = −1417.7 kJ/kg
oxygen balance: −78.3%
nitrogen content: 31.57%
volume of explosion gases: 1081 l/kg
heat of explosion
(H₂O liq.): 631 kcal/kg = 2642 kJ/kg
(H₂O gas): 582 kcal/kg = 2434 kJ/kg
specific energy: 76.4 mt/kg = 749 kJ/kg
melting point (decomposition): 158 °C = 316°F
lead block test: 220 cm³/10 g
impact sensitivity: 1.5 kpm = 15 Nm
friction sensitivity: at 24 kp = 240 N pistil load reaction

This salt is soluble in water, but is insoluble in alcohol, ether, chloroform, and acetone.

Hexamethylenetetramine dinitrate can be prepared from hexamethylenetetramine and nitric acid of medium concentration; it is an important precursor of RDX (→ Cyclonite) manufactured by the Sachmann method.
Hexamethylenetriperoxide Diamine

Hexamethylentriperoxiddiamin; hexaméthylèneetriperoxyde diamine; HMTD

\[
\text{CH}_2\text{-O-O-CH}_2\\ \\
\text{N}\text{-CH}_2\text{-O-O-CH}_2\text{-N}\\ \\
\text{CH}_2\text{-O-O-CH}_2
\]

colorless crystals
empirical formula: C₆H₁₂N₂O₆
molecular weight: 208.1
energy of formation: \(-384.3\) kcal/kg = \(-1608\) kJ/kg
enthalpy of formation:
\(-413.7\) kcal/kg = \(-1731\) kJ/kg
oxygen balance: \(-92.2\)%
nitrogen content: 13.46%
volume of explosion gases: 1075 l/kg
heat of explosion
\((\text{H}_2\text{O liq.}): 825\) kcal/kg = 3450 kJ/kg
\((\text{H}_2\text{O gas}): 762\) kcal/kg = 3188 kJ/kg
specific energy: 87.3 mt/kg = 856 kJ/kg
density: 1.57 g/cm³
lead block test: 330 cm³/10 g
detonation velocity: 4500 m/s = 15000 ft/s
deflagration point: 200 °C = 390 °F
beginning of decomposition: 150 °C = 300 °F
impact sensitivity: 0.06 kp m = 0.6 N m
friction sensitivity: at 0.01 kp = 0.1 N pistil load reaction

This peroxide is practically insoluble in water and in common organic solvents. It is prepared from hexamethylenetetramine and hydrogen peroxide in the presence of citric acid, with efficient cooling.

It is an effective initiating explosive; nevertheless, it cannot be employed in practice owing to its poor storage properties. The thermal stability is low.

Weight loss (%):

<table>
<thead>
<tr>
<th>hours</th>
<th>60 °C</th>
<th>75 °C</th>
<th>100 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140 °F</td>
<td>167 °F</td>
<td>212 °F</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.25</td>
<td>3.25</td>
</tr>
<tr>
<td>8</td>
<td>0.35</td>
<td>0.60</td>
<td>29.6</td>
</tr>
<tr>
<td>24</td>
<td>0.5</td>
<td>1.3</td>
<td>68.0</td>
</tr>
<tr>
<td>48</td>
<td>0.5</td>
<td>2.25; smell</td>
<td>decomp.</td>
</tr>
</tbody>
</table>
Hexanitroazobenzene

Hexanitroazobenzol; hexanitroazobenzène

![Chemical structure of hexanitroazobenzene](image)

orange red crystals
empirical formula: $\text{C}_{12}\text{H}_4\text{N}_8\text{O}_{12}$
molecular weight: 452.2
oxygen balance: -49.7%
nitrogen content: 24.78%
melting point: 221 °C = 430 °F

This compound can be prepared from dinitrochlorobenzene and hydrazine. The tetranitrohydrazobenzene, which is obtained as an intermediate product, is treated with mixed acid, yielding hexanitroazobenzene by simultaneous oxidation and nitration. It is a more powerful explosive than hexanitrodiphenylamine.

2,4,6,2',4',6'-Hexanitrobiphenyl

Hexanitrobiphenyl; hexanitrobiphényle

![Chemical structure of 2,4,6,2',4',6'-Hexanitrobiphenyl](image)

pale yellow crystals
empirical formula: $\text{C}_{12}\text{H}_4\text{N}_6\text{O}_{12}$
molecular weight: 424.2
oxygen balance: -52.8%
nitrogen content: 19.81%
density: 1.6 g/cm3
melting point: 263 °C = 505 °F
lead block test: 344 cm3/10 g
deflagration point: 320 °C = 610 °F

Hexanitrobiphenyl is insoluble in water, but is soluble in alcohol, benzene, and toluene. It is a rather heat-intensive explosive.
2,4,6,2',4',6'-Hexanitrodiphenylamine
dipicrylamine; Hexanitrodiphenylamin; hexanitrodiphenylamine; Hexyl; hexite; HNDPhA: HNDP

![Chemical Structure](image)
yellow crystals
empirical formula: C₁₂H₅N₇O₁₂
molecular weight: 439.2
energy of formation: +38.7 kcal/kg = +162 kJ/kg
enthalpy of formation: +22.5 kcal/kg = +94.3 kJ/kg
oxxygen balance: –52.8%
nitrogen content: 22.33%
volume of explosion gases: 791 l/kg
heat of explosion
(H₂O liq.): 974 kcal/kg = 4075 kJ/kg
(H₂O gas): 957 kcal/kg = 4004 kJ/kg
specific energy: 112 mt/kg = 1098 kJ/kg
density: 1.64 g/cm³
melting point: 240–241 °C = 464–466 °F
(decomposition)
lead block test: 325 cm³/10 g
detonation velocity, confined:
7200 m/s = 23600 ft/s at ρ = 1.60 g/cm³
deflagration point: 250 °C = 480 °F
impact sensitivity: 0.75 kp m = 7.5 N m
friction sensitivity: up to 36 kp = 353 N
pistil load no reaction
critical diameter of steel sleeve test: 5 mm

This explosive is toxic (the dust attacks the skin and mucous membranes) and light-sensitive. It is insoluble in water and most organic solvents. It forms sensitive acid salts.

It is prepared by nitration of asym-dinitrodiphenylamine with concentrated nitric acid. asym-Dinitrodiphenylamine is formed by condensation of dinitrochlorobenzene with aniline.

Its stability and brisance, as well as its sensitivity, are somewhat higher than those of picric acid.

Hexanitrodiphenylamine has been employed in underwater explosives in the form of pourable mixtures with TNT and aluminum powder. Since hexanitrodiphenylamine is toxic and is strongly colored, such mixtures are replaced by better ones (→ Torpex; → HBX).
By itself hexanitrodiphenylamine is an explosive with a relatively low sensitivity to heat. The compound has been used as a precipitant for potassium.

Specifications

melting point: not less than 230 °C = 446 °F
insolubles in 1:3 pyridine-acetone mixture: not more than 0.1%

Hexanitrodiphenylaminoethyl Nitrate

Hexanitrodiphenylaminoäthylnitrat; nitrate d’hexanitrodiphenyleaminoéthyle

pale yellow platelets
empirical formula: C₁₄H₈N₈O₁₅
molecular weight: 528.3
oxygen balance: −51.5%
nitrogen content: 21.21%
melting point: 184 °C = 363 °F
deflagration point: 390–400 °C = 735–750 °F

Hexanitrodiphenylglycerol Mononitrate

Heptanitrophenylglycerin; mononitrate d’hexanitrodiphényleglycérine

crystalline
empirical formula: C₁₅H₉N₇O₁₇
molecular weight: 559.3
oxygen balance: −50.1%
nitrogen content: 17.22%
melting point: 160–175 °C = 320–347 °F
lead block test: 355 cm³/10 g
impact sensitivity: 2.3 kp m = 23 N m

This compound is soluble in glacial acetic acid, sparingly soluble in alcohol, and insoluble in water. It is prepared by dissolving glyceryl diphenyl ether in nitric acid and pouring the resulting solution into mixed acid.

2,4,6,2',4',6'-Hexanitrodiphenyl oxide

Hexanitrodiphenyloxid; hexanitrodiphenyl oxide

![Chemical structure](image)

- yellow crystals
- empirical formula: C₁₂H₄N₆O₁₃
- molecular weight: 440.2
- oxygen balance: −47.3%
- nitrogen content: 19.09%
- density: 1.70 g/cm³
- melting point: 269 °C = 516 °F
- lead block test: 373 cm³/10 g
- detonation velocity, confined: 7180 m/s = 23 600 ft/s at ρ = 1.65 g/cm³
- impact sensitivity: 0.8 kp m = 8 N m

Hexanitrodiphenyl oxide is soluble in water, but is sparingly soluble in alcohol and ether. It is a very stable compound, which is less sensitive to impact, but is a more powerful explosive than picric acid. It is prepared by nitrating dinitro-, trinitro-, tetranitro- and pentanitro-substituted diphenyl ether with mixed acid.

2,4,6,2',4',6'-Hexanitrodiphenylsulfide

Hexanitrodiphenylsulfid; Picrylsulfid; hexanitrodiphenylsulfide

![Chemical structure](image)

- reddish-yellow granular powder
- empirical formula: C₁₂H₄N₆O₁₂
- molecular weight: 456.2
- oxygen balance: −56.1%
nitrogen content: 18.42 %
density: 1.65 g/cm³
melting point: 234 °C = 453 °F
lead block test: 320 cm³/10 g
detonation velocity, confined:
\[7000 \text{ m/s} = 23000 \text{ ft/s} \] at \[\rho = 1.61 \text{ g/cm}^3 \]
deflagration point: 305–320 °C = 580–610 °F
impact sensitivity: 0.5 kp m = 6 N m

This explosive is not toxic, and its technological blasting performance resembles that of hexanitrodiphenylamine. It is sparingly soluble in alcohol and ether, but is readily soluble in glacial acetic acid and acetone.

It is prepared by reacting trinitrochlorobenzene with sodium thiosulfate in alkaline solution. It is relatively heat-insensitive.

\textbf{2,4,6,2',4',6'-Hexanitrodiphenylsulfone}

\emph{Hexanitrosulfobenzid; hexanitrodiphenylsulfone}

\begin{center}
\includegraphics[width=0.5\textwidth]{hexanitroethane.png}
\end{center}
pale yellow crystals
empirical formula: C\(_{12}\)H\(_4\)N\(_6\)O\(_{14}\)S
molecular weight: 488.2
oxygen balance: −45.8 %
nitrogen content: 17.22 %
melting point: 307 °C = 585 °F

Hexanitrodiphenylsulfone is soluble in acetone, but only sparingly soluble in benzene and toluene. Its stability is satisfactory. It is prepared by oxidation of hexanitrodiphenylsulfide.

\textbf{Hexanitroethane}

\emph{Hexanitroäthan; hexanitroéthane; HNE}

\begin{center}
\includegraphics[width=0.5\textwidth]{hexanitroethane.png}
\end{center}
colorless powder
empirical formula: C\(_2\)N\(_6\)O\(_{12}\)
molecular weight: 300.1
energy of formation: +101.8 kcal/kg = +425.9 kJ/kg
enthalpy of formation: +63.3 kcal/kg = +264.9 kJ/kg
oxygen balance: +42.7 %
nitrogen content: 28.01 %
volume of explosion gases: 734 l/kg
heat of explosion: 689 kcal/kg = 2884 kJ/kg
specific energy: 80.5 mt/kg = 789 kJ/kg
density: 1.85 g/cm³
melting point: 147 °C = 297 °F
vapor pressure:

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>0.8</td>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>1.1</td>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>1.5</td>
<td>50</td>
<td>122</td>
</tr>
<tr>
<td>2.2</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>5.0</td>
<td>70</td>
<td>158</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>28</td>
<td>85</td>
<td>185</td>
</tr>
</tbody>
</table>

transformation point: 17 °C = 63 °F
lead block test: 245 cm³/10 g
detonation velocity, confined:
4950 m/s = 16240 ft/s at ρ = 0.91 g/cm³
deflagration point: 175 °C = 347 °F
friction sensitivity: at 24 kp = 240 N pistil load reaction

Hexanitrohexaazaisowurtzitane

Hexanitrohexaazaisowurtzitan; HNIW; CL20

2,4,6,8,10,12-(hexanitro-hexaaza)-tetracyclododecane

empirical formula: C₆H₆N₁₂O₁₂
molecular weight: 438.19
energy of formation: +240.3 kcal/kg = +1005.3 kJ/kg
enthalpy of formation: +220.0 kcal/kg = +920.5 kJ/kg
oxygen balance: -10.95 %
nitrogen content: 38.3 %
heat of explosion
(H₂O liq.): 1509 kcal/kg = 6314 kJ/kg
(H₂O gas): 1454 kcal/kg = 6084 kJ/kg
specific energy: 134.9 mt/kg = 1323 kJ/kg
density: 2.04 g/cm³
melting point.: > 195 °C (decomposition)
impact sensitivity: 0.4 kp m = 4 Nm
friction sensibility: 4.9 kp = 48 N

Hexanitrohexaaazaisowurtzitane is obtained by condensing glyoxal with benzylamine to yield hexabenzyhexaaazaisowurtzitane. Next the benzyl groups are replaced under reducing conditions by easily removable substituents such as acetyl or silyl groups. Nitration to form hexanitrohexaaazaisowurtzitane takes place in the final reaction step. Hexanitrohexaaazaisowurtzitane exists in various crystal modifications, only the ε-modification being of interest because of its high density and detonation velocity of more than 9000 m/s.

Being one of the most energy-rich organic explosives, CL 20 is attractive for many energetic systems.

Hexanitrooxanilide

Hexanitrodiphenyloxamid; HNO

This compound is prepared by nitration of oxanilide. It is of interest as being relatively stable at high temperatures. The decomposition reaction above 304 °C is endothermic.

Hexanitrostilbene

Hexanitrostilben; hexanitrostilbène
yellow crystals
empirical formula: C₁₄H₆N₆O₁₂
molecular weight: 450.1
energy of formation: +57.3 kcal/kg = +239.8 kJ/kg
enthalpy of formation: +41.5 kcal/kg = +173.8 kJ/kg
oxygen balance: −67.6%
nitrogen content: 18.67%
volume of explosion gases: 766 l/kg
heat of explosion
(H₂O liq.): 977 kcal/kg = 4088 kJ/kg
(H₂O gas): 958 kcal/kg = 4008 kJ/kg
density: 1.74 g/cm³
melting point: 318 °C = 604 °F (decomposition)
lead block test: 301 cm³/10 g
impact sensitivity: 0.5 kp m = 5 N m
friction sensitivity:
over 24 kp = 240 N pistol load crackling

Hexanitrostilbene is manufactured by BOFORS AB according to FP 2007049 (Swedish priority) as an additive to cast TNT, to improve the fine crystalline structure.

Hexogen

→ Cyclonite

HMX

Homocyclonite, the U.S. name for → Octogen.

Hollow Charge

→ Shaped Charge.

Hot Spots

This term denotes the increase of the detonation sensibility of explosives by finely dispersed air bubbles. The loss in sensitivity to detonation of gelatinous nitroglycerine explosives by long storage has been known since the time of Alfred Nobel; it is due to the loss or coagulation of the air bubbles that may have been left in the explosive by the manufacturing process. This effect can be explained by the adiabatic compression and heating of the air inclusions as the detona-
tion wave is passing (→ Detonation, wave theory) and is termed "hot spots". This effect was used to make the recently developed cap sensitive → Emulsion Slurries. Conservation and independence from pressure of the air inclusions can be achieved by so-called → Micro-balloons.

Hot Storage Tests

Warmlagerteste; épreuves de chaleur

These tests are applied in to accelerate the decomposition of an explosive material, which is usually very slow at normal temperatures, able to evaluate the stability and the expected service life of the material from the identity and the amount of the decomposition products. Various procedures, applicable at different temperatures, may be employed for this purpose.

1. Methods in which the escaping nitrous gases can be recognized visually or by noting the color change of a strip of dyed filter paper. The former methods include the qualitative tests at 132, 100, 75, and 65.5 °C (270, 212, 167, and 150 °F). These tests include the U.S. supervision test, the methyl violet test, the Abel test, and the Vieille test.

2. Methods involving quantitative determination of the gases evolved. Here we distinguish between tests for the determination of acidic products (nitrous gases) only, such as the Bergmann-Junk test and methods which determine all the decomposition products, including manometric methods and weight loss methods.

3. Methods which give information on the extent of decomposition of the explosive material (and thus also on its stability), based on the identity and the amount of the decomposition products of the stabilizer formed during the storage. These include polarographic, thin-layer chromatographic and spectrophotometric methods.

4. Methods providing information on the stability of the explosive based on the heat of decomposition evolved during storage (silvered vessel test).

5. Methods in which stability can be estimated from the physical degradation of a nitrocellulose gel (viscometric measurements).

The tests actually employed vary with the kind of explosive tested (explosives, single-base, double-base or triple-base powders, or solid propellants) and the temporal and thermal exposure to be expected (railway transportation or many years' storage under varying climatic conditions). In the case of propellants about to be transported by train, only short-time testing is required. However, to obtain an estimate of the expected service life is required, the so-called long-time tests must
be performed at 75 °C (167 °F) and below. The duration of such a storage is up to 24 months, depending on the propellant type. Short-time tests – the Bergmann-Junk test, the Dutch test, the methyl violet test, the Vieille test and, very rarely, the Abel test – are mostly employed in routine control of propellants of known composition, i.e., propellants whose expected service life may be assumed to be known. In selecting the test to be applied, the composition of the propellant and the kind and amounts of the resulting decomposition products must also be considered.

Contrary to the common propellants, which contain nitrates, the so-called composite propellants cannot be tested in the conventional manner owing to the relatively high chemical stability of the incorporated oxidants, e.g., ammonium perchlorate. In such cases the stability criterion of the propellants is the condition of the binder and its chemical and physical change.

HU-Zünder

HU-detonators have a high safety against static electricity, stray currents and energy from lightning discharge. They are safe against 4 A and 1100 mJ/ohm. All-fire current is 25 A, all-fire energy 2500 mJ/ohm. They are manufactured by DYNAMIT NOBEL, Troisdorf, Germany, as instantaneous detonators and with 20 ms and 30 ms short period delay, 18 delays each, and 24 delays of 250 ms long period delay.

HU-Zündmaschinen: the corresponding blasting machines are produced by WASAGCHEMIE Sythen, Haltern, Germany.

Hybrids

lithergoles

Hybrids is the name given in rocket technology to systems in which a solid fuel in the form of a case-bonded charge with a central perforation is reacted with a liquid oxidant. Hybrids with solid oxidant and liquid fuel also exist. Hybrids can be thrust-controlled during combustion and can even be re-ignited if hypergolic components are incorporated in the formulation of the fuel charge.
Hydrazine

\[
\begin{align*}
\text{H}_2\text{N}-\text{N}-\text{H} \\
\text{H} & \\
\end{align*}
\]

colorless liquid
empirical formula: \(\text{H}_2\text{N}_2 \)
molecular weight: 32.05
energy of formation: +433.1 kcal/kg = +1812 kJ/kg
enthalpy of formation: +377.5 kcal/kg = +1580 kJ/kg
oxygen balance: –99.9%
nitrogen content: 87.41%
density: 1.004 g/cm\(^3\)

Hydrazine and alkylhydrazines are important propellants in rocket engines, especially for flight control rockets which are actuated only for short periods of time during space travel. In the presence of special catalysts, hydrazine can be made to decompose within milliseconds; → also Dimethylhydrazine.

Hydrazine Nitrate

\[
\begin{align*}
\text{NH}_2 & \\
\text{NH}_2 \cdot \text{HNO}_3 & \\
\end{align*}
\]

colorless crystals
empirical formula: \(\text{H}_5\text{N}_3\text{O}_3 \)
molecular weight: 95.1
energy of formation: –586.4 kcal/kg = –2453 kJ/kg
enthalpy of formation: –620.7 kcal/kg = –2597 kJ/kg
oxygen balance: –8.6%
nitrogen content: 44.20%
volume of explosion gases: 1001 l/kg
heat of explosion
\((\text{H}_2\text{O liq.}): 1154 \text{ kcal/kg} = 4827 \text{ kJ/kg} \)
\((\text{H}_2\text{O gas}): 893 \text{ kcal/kg} = 3735 \text{ kJ/kg} \)
specific energy: 108 mt/kg = 1059 kJ/kg
density: 1.64 g/cm\(^3\)
melting point:
stable modification: 70.7 °C = 159.3 °F
unstable modification: 62.1 °C = 143.8 °F
lead block test: 408 cm\(^3\)/10 g
detonation velocity, confined:
8690 m/s 28500 ft/s at \(\rho = 1.60 \text{ g/cm}^3 \)
decomposition temperature: 229 °C = 444 °F
Hydrazine nitrate is readily soluble in water.
The high detonation velocity of the salt is interesting. Mixtures with → Octogen (HMX), pressed to high density, reach more than 9000 m/s (29 500 ft/s).

Hydrazine Perchlorate

perchlorate d’hydrazine

\[
\text{NH}_2
\]
\[
\text{NH}_2 \cdot \text{HClO}_4
\]

colorless crystals
empirical formula: \(\text{H}_5\text{N}_2\text{O}_4\text{Cl} \)
molecular weight: 132.5
energy of formation: \(-291\) kcal/kg = \(-1216\) kJ/kg
enthalpy of formation: \(-318\) kcal/kg = \(-1331\) kJ/kg
oxygen balance: +24.1 %
nitrogen content: 21.14 %
volume of explosion gases: 838 l/kg
heat of explosion
 - (\(\text{H}_2\text{O liq.}\)): 882 kcal/kg = 3690 kJ/kg
 - (\(\text{H}_2\text{O gas}\)): 725 kcal/kg = 3033 kJ/kg
density: 1.83 g/cm\(^3\)
melting point: 144 °C = 291 °F
lead block test: 362 cm\(^3\)/10 g
deflagration point: 272 °C = 522 °F
impact sensitivity: 0.2 kp m = 2 N m
friction sensitivity: at 1 kp = 10 N pistil load no reaction
critical diameter of steel sleeve test: 20 mm

The product is thus very sensitive.

Hygroscopicity*)

Hygroskopizität; hygroscopicité

Tendency of a substance to absorb moisture from its surroundings; specifically, absorption of water vapor from atmosphere.

* Text quoted from glossary.
Hypergolic

Two-phase propellant system capable of spontaneous ignition on contact.

IATA

Abbreviation for “International Air Transport Association”. IATA contains texts of international conventions and regulations for packing and transportation of dangerous objects and materials by air.

ICAO TI

Means “International Civil Aviation Organisation Technical Instructions for the Safe Transport of Dangerous Goods by Air” and contains the conditions under which it is permissible to transport dangerous goods by commercial aircraft.

ICT

Fraunhofer-Institut für Chemische Technologie
D-76327 Pfinztal-Berghausen
(Formerly: Fraunhofer Institut für Treib- und Explosivstoffe)
German research institute for propellants and explosives and organizer of international meetings at Karlsruhe, Germany.

Ifzanites

The Russian trade name for slurry explosives; → Slurries.

Igdanites

The Russian trade name for → ANFO explosives.

Igniter*）

Anzünder, allumeur

A pyrotechnic and/or propellant device used to initiate burning of propellant.

* Text quoted from glossary.
Hypergolic

Two-phase propellant system capable of spontaneous ignition on contact.

IATA

Abbreviation for “International Air Transport Association”. IATA contains texts of international conventions and regulations for packing and transportation of dangerous objects and materials by air.

ICAO TI

Means “International Civil Aviation Organisation Technical Instructions for the Safe Transport of Dangerous Goods by Air” and contains the conditions under which it is permissible to transport dangerous goods by commercial aircraft.

ICT

Fraunhofer-Institut für Chemische Technologie
D-76327 Pfinztal-Berghausen
(Formerly: Fraunhofer Institut für Treib- und Explosivstoffe)

German research institute for propellants and explosives and organizer of international meetings at Karlsruhe, Germany.

Ifzanites

The Russian trade name for slurry explosives; → Slurries.

Igdanites

The Russian trade name for → ANFO explosives.

Igniter*)

Anzünder, allumeur

A pyrotechnic and/or propellant device used to initiate burning of propellant.

* Text quoted from glossary.
Igniter Cord
Anzündlitze; corde d’allumage
An igniter cord is a safety fuse which burns at a fast rate (6–30 s/m) and with an open flame. The cord can be lit by an open flame or with by a conventional safety fuse (guide fuse) a connector. Its function is to ignite the cords in the desired sequence.

Igniter Cord Connector
Anzündlitzenverbinder
Igniter cord connectors ensure a safe transmission of the sparking combustion of the igniter cord into the gunpowder core of a connected safety fuse.

Igniter Safety Mechanism*)
Zündsicherung; dispositif de securite d’allumage
Device for interrupting (safing) or aligning (arming) an initiation train of an explosive device, i.e., a rocket motor or gas generator.

Igniter Train*)
Anzünd-Kette; chaine d’allinmage (d’amorcage)
Step-by-step arrangement of charges in pyrotechnic or propellant by which the initial fire from the primer is transmitted and intensified until it reaches and sets off the main charge. Also called burning train or explosive train.

Ignitibility*)
Zündwilligkeit; inflammabilité
Statement of ease with which burning of substance may be initiated.

Ignition System*)
Zündanlage; système d’allumage
Arrangement of components used to initiate combustion of propellant charge of gas generator (→ Igniter Train).

* Text quoted from glossary.
Illuminant Composition*)

Leuchtsatz; composition lumineuse

A mixture of materials used in the candle of a pyrotechnic device to produce a high intensity light as its principal function. Materials used include a fuel (-reducing agent), an oxidizing agent, at a binder plus a color intensifier and waterproofing agent. The mixture is loaded under pressure in an container to form the illuminant charge.

IMDG Code

Is the abbreviation for “International Maritime Dangerous Goods Code”. It contains all of the regulations for the transport of dangerous goods by ocean-going ships, inter alia about their classification, packaging and stowing.

IMO

Abbreviation for International Maritime Organization, London, with the International Maritime Dangerous Goods (IMDG Code) contains texts of international conventions on classification, compatibility, packing, storage, etc. during transportation by sea; explosives and primers belong to class 1 of the code.

IME: Institute of Makers of Explosives*)

A non-profit trade association representing leading U.S. producers of commercial explosive materials and dedicated to safety in the manufacture, transportation, storage, and use of explosive materials.

Immobilization*)

Festlegung; immobilisation

Method of fixing propellant grain in definite position relative to generator case.

Impact Sensitivity

Schlagempfindlichkeit; sensitiveness to impact, sensibilité à l’impact

The sensitiveness to impact of solid, liquid, or gelatinous explosives is tested by the fallhammer method. The samples of the explosives are

* Text quoted from glossary.
subjected to the action of falling weights of different sizes. The parameter to be determined is the height of fall at which a sufficient amount of impact energy is transmitted to the sample for it to decompose or to explode.

The US standard procedures are:

(a) Impact sensitivity test for solids: a sample (approximately 0.02 g) of explosive is subjected to the action of a falling weight, usually 2 kg. A 20-milligram sample of explosive is always used in the Bureau of Mines (BM) apparatus when testing solid explosives. The weight of the sample used in the Picatinny Arsenal (PA) apparatus is indicated in each case. The impact test value is the minimum height at which at least one of 10 trials results in explosion. In the BM apparatus, the explosive is held between two flat, parallel hardened steel surfaces; in the PA apparatus it is placed in the depression of a small steel die-cup, capped by a thin brass cover, in the center of which a slotted-vented-cylindrical steel plug is placed, with the slotted side downwards. In the BM apparatus, the impact impulse is transmitted to the sample by the upper flat surface; in the PA, by the vented plug. The main differences between the two tests are that the PA test involves greater confinement, distributes the translational impulse over a smaller area (due to the inclined sides of the die-cup cavity), and involves a frictional component (against the inclined sides).

The test value obtained with the PA apparatus depends greatly on the sample density. This value indicates the hazard to be expected on subjecting the particular sample to an impact blow, but is of value in assessing a material’s inherent sensitivity only if the apparent density (charge weight) is recorded along with the impact test value. The samples are screened between 50 and 100 mesh, U.S. where single-component explosives are involved, and through 50 mesh for mixtures.

(b) Impact sensitivity test for liquids: the PA Impact Test for liquids is run in the same way as for solids. The die-cup is filled, and the top of the liquid meniscus is adjusted to coincide with the plane of the top rim of the die-cup. To date, this visual observation has been found adequate to assure that the liquid does not wet the die-cup rim after the brass cup has been set in place. Thus far, the reproducibility of data obtained in this way indicates that variations in sample size obtained are not significant.

In the case of the BM apparatus, the procedure that was described for solids is used with the following variations:

1. The weight of explosives tested is 0.007 g.
2. A disc of desiccated filter paper (Whatman No. 1) 9.5 mm φ is laid on each drop, on the anvil, and then the plunger is lowered onto the sample absorbed in the filter paper.
The fallhammer method was modified by the German Bundesanstalt für Materialprüfung (BAM), so as to obtain better reproducible data*). The sample is placed in a confinement device, which consists of two coaxial cylinders placed one on top of the other and guided by a ring. The cylinders have a diameter of $10^{\pm 0.003} - 0.005$ mm and a height of $10^{\pm 0.006} - 0.010$ mm, while the ring has a external diameter of 16 mm, a bore of 10 mm, and a height of 13 mm; all parts, cylinders and rings, must have the same hardness**). Cylinders and rings are renewed for each falling test procedure. If the sample is a powder or a paste, the upper cylinder is slightly pressed into the charged confinement device as far as it will go without flattening the sample. If liquids are tested, the distance between the cylinders is 1 mm. The charged device is put on the anvil of the fallhammer apparatus, and the falling weight, guided by two steel rods, is unlocked. For sensitive explosives such as primary explosives, a small fallhammer is used for insensitive explosives a large hammer. The small hammer involves the use of fall weight of up to 1000 g, while the fall weights utilized with the large hammer are 1, 5 and 10 kg. The fall heights are 10–50 cm for the 1-kg weight, 15–50 cm for the 5-kg weight and 35–50 cm for the 10-kg weight.

** The ground and hardened cylinders and rings are standard parts for ball bearings; they are available on the market.
Table 19. Impact sensitivities given as the product of fall weight and fall height (kp m). In the following Table the kp m values are listed at which at least one of six tested samples explodes.

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Fall Weight kp</th>
<th>Fall Height m</th>
<th>Fall Energy kp m</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Homogeneous explosives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitroglycerin</td>
<td>0.1</td>
<td>1</td>
<td>0.2</td>
<td>0.02</td>
</tr>
<tr>
<td>Tetrazene</td>
<td>1</td>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>mercury fulminate</td>
<td>1</td>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>PETN</td>
<td>1</td>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Tetryl</td>
<td>1</td>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>nitrocellulose 13.4% N</td>
<td>1</td>
<td>10</td>
<td>0.3</td>
<td>0.33</td>
</tr>
<tr>
<td>nitrocellulose 12.2% N</td>
<td>1</td>
<td>10</td>
<td>0.4</td>
<td>0.44</td>
</tr>
<tr>
<td>lead azide</td>
<td>5</td>
<td>50</td>
<td>0.15</td>
<td>0.75</td>
</tr>
<tr>
<td>Cyclonite (RDX)</td>
<td>5</td>
<td>50</td>
<td>0.15</td>
<td>0.75</td>
</tr>
<tr>
<td>picric acid</td>
<td>5</td>
<td>50</td>
<td>0.15</td>
<td>0.75</td>
</tr>
<tr>
<td>TNT</td>
<td>5</td>
<td>50</td>
<td>0.30</td>
<td>1.5</td>
</tr>
<tr>
<td>lead styphnate</td>
<td>5</td>
<td>50</td>
<td>0.30</td>
<td>1.5</td>
</tr>
<tr>
<td>ammonium perchlorate</td>
<td>5</td>
<td>50</td>
<td>0.50</td>
<td>2.525</td>
</tr>
<tr>
<td>dinitrobenzene</td>
<td>10</td>
<td>100</td>
<td>0.60</td>
<td>5</td>
</tr>
<tr>
<td>B. Industrial explosives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guhr dynamite</td>
<td>1</td>
<td>10</td>
<td>0.10</td>
<td>0.1</td>
</tr>
<tr>
<td>Gelignite</td>
<td>1</td>
<td>10</td>
<td>0.10</td>
<td>0.1</td>
</tr>
<tr>
<td>seismic gelatins</td>
<td>1</td>
<td>10</td>
<td>0.10</td>
<td>0.1</td>
</tr>
<tr>
<td>blasting gelatin</td>
<td>1</td>
<td>10</td>
<td>0.20</td>
<td>0.2</td>
</tr>
<tr>
<td>ammonium nitrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitroglycerin gelatin</td>
<td>1</td>
<td>10</td>
<td>0.20</td>
<td>0.2</td>
</tr>
<tr>
<td>gelatinous permitted explosives</td>
<td>1</td>
<td>10</td>
<td>0.30</td>
<td>0.3</td>
</tr>
<tr>
<td>nitroglycerine sensitized powders and permitted explosives</td>
<td>5</td>
<td>50</td>
<td>0.20</td>
<td>1.0</td>
</tr>
<tr>
<td>powder-form explosives without nitroglycerine</td>
<td>5</td>
<td>50</td>
<td>0.40</td>
<td>2.0</td>
</tr>
</tbody>
</table>

For explosives of high critical diameter, Eld, D. and Johansson, C. H. described an impact testing method*) by shooting the explosive sample (unconfined; filled in bakelite tubes 30 mm Ø; 30 mm length and covered with paper or plastic foil) with brass cylinders (15 mm Ø; 15 mm length) at an angle of 90º.

15 mm length; 19 g) and varying their velocity. They are accelerated in a gun by means of compressed air or gunpowders. The front of them is plane, the back concave for better flight stability. A pendulum bearing a shock acceptance plate, hanging at about one yard from the shooting line, and the observation of the appearance of light and of smell are used to determine reaction of the explosive sample.

Results:

Table 20. Low → *Critical Diameter* (<40 mm)

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Projectile Velocity m/s</th>
<th>Pendulum °</th>
<th>Smell</th>
<th>Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNAMITE 1.34 g/cm³</td>
<td>186</td>
<td>15</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>143</td>
<td>16</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>15</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>19</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>19</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>15</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>12</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>17</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>limit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Test Explosive 0.84 g/cm³</td>
<td>377</td>
<td>17</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>60% PETN/40% NaCl</td>
<td>316</td>
<td>19</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>15</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>222</td>
<td>12</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>195</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>14</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>limit:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 21. High critical diameter (<132>40 mm)

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Projectile Velocity m/s</th>
<th>Pendulum °</th>
<th>Smell</th>
<th>Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFO 0.91 g/cm³ (94% ammonium nitrate; 6% liquid hydrocarbon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>3</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>765</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>675</td>
<td>3</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>435</td>
<td>0</td>
<td>+</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>limit:</td>
<td>390</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

For impact sensitivity of confined explosive charges thrown against a steel target → Susan Test.

Impulse*)

Product of thrust in pounds by time in seconds (also → Specific Impulse).

Incendiary*)

Designates a highly exothermic composition or material that is primarily used to start fires.

Inert*)

Descriptive of condition of device that contains no explosive, pyrotechnic, or chemical agent.

To Inflame

anzünden; inflammer; allumer

The mode of ignition affects the manner in which an explosive reacts, detonating (→ Detonation) or deflagrating (→ Deflagration). The effect

* Text quoted from glossary.
of flame ignition differs from that of a brisant initiation produced by a blasting cap or by a booster. The non-brisant ignition is termed inflammation.

The sensitivity of explosives to inflammation varies widely. Black powder can be exploded by a spark from a spark-producing tool; smokeless powders are exploded by the brief flame jet produced by striking a percussion cap. On the other hand, the combustion of an ion-exchanged → Permitted Explosive, ignited by a gas flame, is extinguished as soon as the flame source is removed.

→ Initiating Explosives always detonate when inflamed.

Inhibited Propellant*)

Oberflächenbehandelter Treibstoff; propellant traité de surface

A propellant grain in which a portion of the surface area has been treated to control the burning.

Initiating Explosives

primary explosives; Initialsprengstoffe; explosifs d’amorçage; explosifs primaires

Primary explosives can detonate by the action of a relatively weak mechanical shock or by a spark; if used in the form of blasting caps, they initiate the main explosive. They are also filled in percussion caps mixed with friction agents and other components.

An initiating explosive must be highly brisant and must have a high triggering velocity. The most important primary explosives are mercury fulminate, lead azide, lead trinitroresorcinate, silver azide, diazodinitrophenol, tetrazene, and the heavy metal salts of 5-nitrotetrazole. Which is used as an additive in primers. Initiating charges must be transported only if they are already pressed into capsules; the latter are usually made of aluminum, and sometimes of copper, while plastic capsules are used for special purposes (→ Blasting Caps; → Bridge-wire Detonators; → Bullet Hit Squib).

Initiation

Initiation means to set of explosive charges. The decomposition of an explosive can undergo → Deflagration (subsonic propagation rate) or

* Text quoted from glossary.
→ Detonation (supersonic propagation rate), depending on the manner and intensity of the ignition and on amount of → Confinement.

Non-brisant, i.e. flame ignition, is known as “inflammation”. Brisant initiators include blasting caps, electric detonators, → Primers and → Detonating Cords. The initiating shock can be intensified by interposition of → Boosters, when the charge is insensitive.

Im rocketry, initiation means the functioning of the first element in an → Igniter Train.

Initiator*)

A device used as a primary stimulus component in all explosive or pyrotechnic devices, such as detonator primer or squib, which, on receipt of proper mechanical or electrical impulse, produces burning or detonating action. Generally contains a small quantity of sensitive explosive (→ Squib; → Detonator; → Primer; → Bullet Hit Squib).

Instantaneous, Detonator*)

Momentzünder; détonateur instantané

A detonator that has a firing time essentially of zero seconds as compared to delay detonators with firing times of from several milliseconds to several seconds.

Insulation*)

Isolierung; isolement

Thermal barrier designed to prevent excessive heat transfer from hot combustion products to case of rocket.

Ion Propellants

Ionentreibstoffe

In vacuo, i.e., under space travel conditions, ions, which are atomic carriers of electric charges, can be accelerated by electric fields and bunched to give a single beam. The discharge velocity thus attained is of a higher order than that of gaseous products from chemical reactions. For this reason, very high values of specific impulse can be produced.

*) Text quoted from glossary.
The preferable ion propellant is cesium owing to its high molecular weight and to the fact that it is easily ionized.

Iron Acetylacetonate

Eisenacetylacetonat; acétylacetonate de fer

\[
\begin{array}{c}
\text{Fe} \\
\text{CH}_3
\end{array}
\]

- empirical formula: C\textsubscript{15}H\textsubscript{21}O\textsubscript{6}Fe
- molecular weight: 353.2
- energy of formation: \(-836\) kcal/kg = \(-3498\) kJ/kg
- enthalpy of formation: \(-859\) kcal/kg = \(-3593\) kJ/kg
- oxygen balance: +163.1%
- density: 1.34 g/cm3

Iron(III) acetylacetonate is a combustion-modifying additive which is used, in particular, in → Composite Propellants.

ISL

Institut Franco-Allemand de Recherches de St. Louis, Deutsch-Französisches Forschungsinstitut St. Louis, France

German-French research institute especially for ballistics and detonation physics.

Isosorbital Dinitrate

Isosorbitidinitrat; dinitrate d'isosorbitol;

- white microcrystals
- empirical formula: C\textsubscript{6}H\textsubscript{8}N\textsubscript{2}O\textsubscript{8}
- molecular weight: 236.1
- oxygen balance: \(-54.2\) %
- nitrogen content: 11.87%
- melting point: 70 °C = 158 °F (decomposition)
- lead block test: 311 cm3/10 g
detonation velocity, confined:
5300 m/s at \(\rho = 1.08 \text{ g/cm}^3 \)
deflagration point: 173 °C = 343 °F
impact sensitivity: 1.5 kp m = 15 N m
friction sensitivity: over 16 kp = 160 N
pistil load crackling

Isosorbitol dinitrate serves as an effective cardial medicine (in low percentage mixture with milk sugar; it is more effective than \(\rightarrow \text{PETN} \)).
The pure substance is a strong explosive.

Jet Tappers

Abstichladungen; ouvreuses explosives de percée

Jet tappers are used in tapping Siemens-Martin (open hearth) furnaces. They are hollow charges, which are insulated from heat by earthenware jackets; when detonated, the tapping channel is produced. Other lance-shaped charges are used to break up blast furnace hangups.

Kelly*)

A hollow bar attached to the top of the drill column in rotary drilling; also called grief joint, kelly joint, kelly stem, or kelly bar.

KNAUERIT SPECIAL

KNAUERIT SPECIAL is the trade name of a high-power plastic explosive based on \(\rightarrow \text{PETN} \), manufactured by the DYNAMIT NOBEL VIENNA Company.

Lambrex

Trade name of a cartridged slurry blasting agent distributed in Austria by DYNAMIT NOBEL WIEN:

* Text quoted from glossary.
detonation velocity, confined: 5300 m/s at ρ = 1.08 g/cm³
deflagration point: 173 °C = 343 °F
impact sensitivity: 1.5 kp m = 15 N m
friction sensitivity: over 16 kp = 160 N
pistil load crackling

Isosorbitol dinitrate serves as an effective cardial medicine (in low percentage mixture with milk sugar; it is more effective than \(\rightarrow \text{PETN} \)).

The pure substance is a strong explosive.

Jet Tappers

Abstichladungen; ouvreuses explosives de percée

Jet tappers are used in tapping Siemens-Martin (open hearth) furnaces. They are hollow charges, which are insulated from heat by earthenware jackets; when detonated, the tapping channel is produced. Other lance-shaped charges are used to break up blast furnace hangups.

Kelly*)

A hollow bar attached to the top of the drill column in rotary drilling; also called grief joint, kelly joint, kelly stem, or kelly bar.

KNAUERIT SPECIAL

KNAUERIT SPECIAL is the trade name of a high-power plastic explosive based on \(\rightarrow \text{PETN} \), manufactured by the DYNAMIT NOBEL VIENNA Company.

Lambrex

Trade name of a cartridge slurry blasting agent distributed in Austria by DYNAMIT NOBEL WIEN:

* Text quoted from glossary.
Cartridge Data

<table>
<thead>
<tr>
<th>Cartridge</th>
<th>Density of Cartridge g/cm³</th>
<th>Weight Strength %</th>
<th>Detonation Velocity; confined m/s</th>
<th>Detonation Velocity; confined ft/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambrex 1</td>
<td>1.2</td>
<td>80</td>
<td>5600</td>
<td>18400</td>
</tr>
<tr>
<td>Lambrex 2</td>
<td>1.2</td>
<td>80</td>
<td>5200</td>
<td>17100</td>
</tr>
<tr>
<td>Lambrex 2 contour</td>
<td>1.05</td>
<td>–</td>
<td>4200</td>
<td>13800</td>
</tr>
</tbody>
</table>

Lambrit

Trade name of an ANFO blasting agent distributed in Austria by DYNAMIT NOBEL WIEN.

- Pouring density: 0.8 g/cm³
- Weight strength: 75%
- Detonation velocity, confined: 3000 m/s = 9800 ft/s at $\rho = 0.8$ g/cm³

Large Hole Blasting

Großbohrloch-Sprengverfahren; sautage à grand trou

In large-scale blasting processes in open pit mining and quarrying, rows of nearly vertical boreholes are drilled parallel to the quarry face; the diameter of each borehole is 3–8 in. (in Germany more often 3–4 in.), while the borehole length is over 10 m. The holes are filled with explosive and stemmed. → *Free-flowing Explosives* or pumped slurries can be applied.

Lawinit 2

Trade name of a slurry blasting agent for loosening avalanches, distributed in Austria by DYNAMIT NOBEL VIENNA GmbH.

- Cartridge density: 1.05 g/cm³
- Detonation velocity (unconfined): 4600 m/s
Lead Acetylsalicylate

Bleiacetylsalicylat; acétylsalicylate de plomb

![Chemical Structure](image)

- Colorless, fine crystals
- Empirical formula: C_{18}H_{14}O_{8}Pb·H_{2}O
- Molecular weight: 583.5
- Energy of formation: -810 kcal/kg = -3391 kJ/kg
- Enthalpy of formation: -823 kcal/kg = -3444 kJ/kg
- Oxygen balance: -98.7%

Lead acetylsalicylate is a combustion-modifying additive, especially so in rocket propellants based on double base powder; \rightarrow *Double Base Propellants.*

Lead Azide

Bleiazid; azoture de plomb

\[\text{Pb}(\text{N}_3)_2 \]

- Colorless crystals; microcrystalline granules, if dextrinated
- Molecular weight: 291.3
- Energy of formation: $+397.5$ cal/kg = $+1663.3$ kJ/kg
- Enthalpy of formation: $+391.4$ cal/kg = $+1637.7$ kJ/kg
- Oxygen balance: -5.5%
- Nitrogen content: 28.85%
- Volume of explosion gases: 231 l/kg
- Explosion heat: 391 kcal/kg = 1638 kJ/kg
- Density: 4.8 g/cm3
- Lead block test: 110 cm3/10 g
- Detonation velocity, confined:
 - 4500 m/s = 14800 ft/s at $\rho = 3.8$ g/cm3
 - 5300 m/s = 17400 ft/s at $\rho = 4.6$ g/cm3
- Deflagration point: 320–360 °C = 600–680 °F
- Impact sensitivity:
 - Pure product: 0.25–0.4 kp m = 2.5–4 N m
 - Dextrinated: 0.3–0.65 kp m = 3–6.5 N m
- Friction sensitivity:
 - At 0.01–1 kp = 0.1–1 N pistil load explosion
Lead azide is insoluble in water, is resistant to heat and moisture, and is not too hygroscopic. It is prepared by reacting aqueous solutions of sodium azide and lead nitrate with each other. During the preparation, the formation of large crystals must be avoided, since the breakup of the crystalline needles may produce an explosion. Accordingly, technical grade product is mostly manufactured which contains 92–96% \(\text{Pb(N}_3\text{)}_2 \), and is precipitated in the presence of dextrin, polyvinyl alcohol, or other substances which interfere with crystal growth. Lead azide is employed as an initiating explosive in blasting caps. When used as a primary charge, it is effective in smaller quantities than mercury fulminate, has a higher triggering rate, and, unlike mercury fulminate, cannot be dead-pressed by even relatively low pressures. In order to improve its flammability, an easily flammable additive, such as lead trinitroresorcinate, is added. Lead azide is decomposed by atmospheric CO\(_2\), with evolution of hydrazoic acid.

Lead azide detonators for use in coal mining have copper capsules; for all other blastings, aluminum caps are used.

Specifications

- net content (by determination as \(\text{PbCrO}_4 \)): not less than 91.5%
- moisture: not more than 0.3%
- mechanical impurities: none
- water solubles: not more than 1%
- lead content: at least 68%
- copper: none
- reaction: neutral, no acid
- bulk density: at least 1.1 g/cm\(^3\)
- deflagration point: not below 300 °C = 572 °F

Lead Block Test

Bleiblockausbauchung; essai au bloc de plomb, coefficient d’utilisation pratique, c. u. p.

The Trauzl lead block test is a comparative method for the determination of the → *Strength* of an explosive. Ten grams of the test sample, wrapped in tinfoil, are introduced into the central borehole (125 mm deep, 25 mm in diameter) of a massive soft lead cylinder, 200 mm in diameter and 200 mm long. A copper blasting cap No. 8 with an electric primer is introduced into the center of the explosive charge, and the remaining free space is filled with quartz sand of standard grain size. After the explosion, the volume of the resulting bulge is determined by filling it with water. A volume of 61 cm\(^3\), which is the original volume of the cavity, is deducted from the result thus obtained.
In France the lead block performance value is given by the coefficient d'utilisation pratique (c. u. p.): if \(m_x \) is the mass of the tested explosive, which gives exactly the same excavation as 15 g of picric acid, the ratio

\[
\frac{15}{m_x} \cdot 100 = \% \text{ c. u. p.}
\]

is the coefficient d'utilisation pratique. Also, 10 g of picric acid can be applied as a standard comparison explosive. For the relationship with other testing procedures → *Strength*.

Another modification of the lead block test is recommended by BAM (Bundesanstalt für Materialprüfung, Germany). The test sample is prepared as follows: a special instrument wraps the sample in tinfoil and molds it into a cylinder of 11 ml capacity (24.5 mm in diameter, 25 mm in height, with a coaxial cavity 7 mm in diameter and 20 mm long for the blasting cap), whereby the resulting density should be only slightly higher than the pour (bulk) density. Liquids are filled into thin-walled cylindrical glass ampoules or, in special cases, directly into the cavity of the lead block.

The initiation is effected with an electric copper blasting cap No. 8 containing 0.4 g of high pressed (380 kp/cm\(^2\)) and 0.2 g of low pressed → PETN as the secondary charge and 0.3 g of lead azide as the initiating charge.

The empty space above the test sample is filled with dried, screened quartz sand (grain size 0.5 mm), as in the original method.

The volume of the excavation is determined by filling it with water; after 61 ml have been deducted from the result, the net bulge corresponding to the weight of the compressed sample is obtained. In accordance

Fig. 17. Lead block test
Table 22. Lead block excavation values.

A. Homogeneous Explosives

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Test Value cm³/10 g</th>
<th>Explosive</th>
<th>Test Value cm³/10 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitroglycerol</td>
<td>610</td>
<td>picric acid</td>
<td>315</td>
</tr>
<tr>
<td>methyl nitrate</td>
<td>600</td>
<td>trinitroaniline</td>
<td>311</td>
</tr>
<tr>
<td>nitroglycerine</td>
<td>530</td>
<td>TNT</td>
<td>300</td>
</tr>
<tr>
<td>PETN</td>
<td>520</td>
<td>urea nitrate</td>
<td>272</td>
</tr>
<tr>
<td>RDX</td>
<td>483</td>
<td>dinitrophenol</td>
<td>243</td>
</tr>
<tr>
<td>nitromethane</td>
<td>458</td>
<td>dinitrobenzene</td>
<td>242</td>
</tr>
<tr>
<td>ethyl nitrate</td>
<td>422</td>
<td>DNT</td>
<td>240</td>
</tr>
<tr>
<td>Tetryl</td>
<td>410</td>
<td>guanidine nitrate</td>
<td>240</td>
</tr>
<tr>
<td>nitrocellulose 13.4% N</td>
<td>373</td>
<td>ammonium perchlorate</td>
<td>194</td>
</tr>
<tr>
<td>ethylenediamine dinitrate</td>
<td>350</td>
<td>ammonium nitrate</td>
<td>178</td>
</tr>
</tbody>
</table>

B. Industrial Explosives

<table>
<thead>
<tr>
<th>Explosive</th>
<th>Density g/cm³</th>
<th>Test Value cm³/10 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>blasting gelatin</td>
<td>1.55</td>
<td>600</td>
</tr>
<tr>
<td>guhr dynamite</td>
<td>1.35</td>
<td>412</td>
</tr>
<tr>
<td>Gelignite 65% nitroglycerine</td>
<td>1.53</td>
<td>430</td>
</tr>
<tr>
<td>ammonium-nitrate-based gelatin</td>
<td>1.47</td>
<td>430</td>
</tr>
<tr>
<td>40% nitroglycerine powder-form ammonium-nitrate-based explosives</td>
<td>1.0</td>
<td>370</td>
</tr>
<tr>
<td>ANFO</td>
<td>0.9</td>
<td>316</td>
</tr>
<tr>
<td>gelatinous permitted explosive ion-exchanged permitted explosive</td>
<td>1.69</td>
<td>130</td>
</tr>
</tbody>
</table>

with the international convention, this magnitude is recalculated to a 10-g sample.

The European Commission for the Standardization of Testing of Explosive Materials*) recalculated the results for a 10-ml test sample, using a calibration curve established by Kurbalinga and Kondrikov, as modified by Ahrens; the reported value refers to the mixture of PETN

with potassium chloride which gives the same result as the test sample under identical experimental conditions.

Since this regulation is still recent, the values given in the following table, as well as the values given under the appropriate headings of the individual explosive materials, are still based on the older method, in which a 10-g sample is employed. Other conventional methods for the determination of the explosive strength are the ballistic mortar test and the sand test.

For further details, including descriptions of other tests, → Strength.

Lead Dioxide

Bleidioxid; dioxyde de plomb

\[O_2 = \text{PbO}_2 \]

- dark brown powder
- empirical formula: \(\text{PbO}_2 \)
- molecular weight: 239.2
- energy of formation: \(-274.7\, \text{kcal/kg} = -1149.4\, \text{kJ/kg}\)
- enthalpy of formation: \(-277.2\, \text{kcal/kg} = -1159.8\, \text{kJ/kg}\)
- oxygen balance: +6.7%
- density: 9.38 g/cm³

Lead dioxide serves as an oxidizer in primer compositions.

Lead Ethylhexoate

Bleiäthylhexoat: éthylhexoate de plomb

\[
\left[\text{CH}_3\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH} = \text{C} = \text{O} \right]_2 \text{Pb}
\]

- technical product: brownish, nearly amorphous
- empirical formula: \(\text{C}_{16}\text{H}_{30}\text{O}_4\text{Pb} \)
- molecular weight: 493.6
- energy of formation: \(-703\, \text{kcal/kg} = -2940\, \text{kJ/kg}\)
- enthalpy of formation: \(-724\, \text{kcal/kg} = -3027\, \text{kJ/kg}\)
- oxygen balance: \(-142.6\%\)

Lead ethylhexoate is a combustion-modifying additive, especially in → *Double Base Propellants* for rockets.
Lead-free Priming Compositions

Air contamination with health-impairing pollutants gave rise to the demand for sport ammunition free from lead, barium and mercury.

→ SINTOX Primer Composition.

Lead Nitrate

Bleinitrat; nitrate de plomb

\[
Pb(NO_3)_2
\]

colorless crystals
molecular weight: 331.2
energy of formation: \(-318.9\) kcal/kg = \(-1334.4\) kJ/kg
enthalpy of formation: \(-326.1\) kcal/kg = \(-1364.3\) kJ/kg
oxygen balance: +24.2%
nitrogen content: 8.46%
density: 4.53 g/cm\(^3\)
beginning of decomposition: 200 °C = 390 °F

Lead nitrate is employed as an oxidizer in initiating mixtures in which a particularly high density is required.

Lead Picrate

Bleipikrat; picrate de plomb

\[
\begin{align*}
\text{yellow crystals} \\
\text{empirical formula: } C_{12}H_4N_6O_{14}Pb \\
molecular weight: 663.3 \\
oxygen balance: \(-31.4\)% \\
nitrogen content: 12.7\%
\end{align*}
\]

Lead picrate is insoluble in water, ether, chloroform, benzene and toluene, and sparingly soluble in acetone and alcohol. It is prepared by precipitation with a solution of lead nitrate in a solution of sodium picrate and picric acid.

It can be used as an active component in initiating mixtures, e.g. for electrical squibs in bridgewire detonators. It is more powerful and more sensitive than → Lead Styphnate reaction.
The unintentional formation of picrates by reaction of picric acid with the surrounding metals must be strictly avoided.

Lead Styphnate

lead trinitroresorcinate; Bleitrizinat; trinitroresorcinate de plomb

![Chemical Structure](image)

- orange-yellow to dark brown crystals
- empirical formula: $C_6H_3N_3O_9Pb$
- molecular weight: 468.3
- energy of formation: $-417.6 \text{ kcal/kg} = -1747.2 \text{ kJ/kg}$
- enthalpy of formation: $-427.1 \text{ kcal/kg} = -1786.9 \text{ kJ/kg}$
- oxygen balance: -18.8%
- nitrogen content: 8.97\%
- density: 3.0 g/cm3
- lead block test: 130 cm3/10 g
- detonation velocity, confined: $5200 \text{ m/s} = 17000 \text{ ft/s}$ at $\rho = 2.9 \text{ g/cm}^3$
- heat of explosion: 347 kcal/kg = 1453 kJ/kg
- deflagration point: 275–280 °C = 527–535 °F
- impact sensitivity: 0.25–0.5 kp m = 2.5–5 N m

Lead trinitroresorcinol is practically insoluble in water (0.04%), and is sparingly soluble in acetone and ethanol; it is insoluble in ether, chloroform, benzene and toluene. It is prepared by precipitation with a solution of lead nitrate from a solution of magnesium trinitroresorcinol, while maintaining certain concentration relationships and working in a given temperature and pH range, with stirring, in a reaction vessel which can be heated or cooled. The magnesium trinitroresorcinol solution required for the precipitation of lead trinitroresorcinol is obtained as a brown-to-black solution in a dissolving vessel by reacting an aqueous suspension of trinitroresorcinol with magnesium oxide powder while stirring.

Lead trinitroresorcinol is mostly employed as an initiating explosive in the form of a mixture with lead azide forming the detonator charge; it is particularly suited for this purpose, since it has a high ignition sensitivity, and its hygroscopicity is low. It is also employed as the main component of “sinoxide” charges in non-eroding percussion caps; these charges also contain the usual additives and a low percentage of tetrazene.
In the absence of any admixtures, lead trinitroresorcinate readily acquires an electrostatic charge, easily causing explosion.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>net content: not less than</td>
<td>98%</td>
</tr>
<tr>
<td>moisture: not more than</td>
<td>0.15%</td>
</tr>
<tr>
<td>lead content (determination as PbCrO₄):</td>
<td>43.2–44.3%</td>
</tr>
<tr>
<td>heavy metals other than lead:</td>
<td>not more than 0.05%</td>
</tr>
<tr>
<td>Ca + Mg: not more than</td>
<td>0.5%</td>
</tr>
<tr>
<td>Na: not more than</td>
<td>0.07%</td>
</tr>
<tr>
<td>pH</td>
<td>5–7</td>
</tr>
<tr>
<td>nitrogen content: at least</td>
<td>8.8%</td>
</tr>
<tr>
<td>bulk density:</td>
<td>1.3–1.5 g/cm³</td>
</tr>
<tr>
<td>deflagration point: not below</td>
<td>270 °C = 518 °F</td>
</tr>
</tbody>
</table>

Leading Lines

Leading Wires; Zündkabel; ligne de fir

The wire(s) connecting the electrical power source with electric blasting cap circuit.

Leg Wires

Zünderdrähte; fils du défonaleur

The two single wires or one duplex wire extending out from an electric blasting cap.

Linear Burning Rate

Lineare Brenngeschwindigkeit; velocité de combustion linéaire

Distance normal to any burning surface of pyrotechnic or propellant burned through in unit time; → **Burning Rate**.

Liquid Explosives

flüssige Sprengstoffe; explosifs liquides

Numerous explosive materials are liquid. This applies primarily to several nitric acid esters such as → **Nitroglycerin**, → **Nitroglycol**, → **Diethyleneglycol Dinitrate**, → **Triethylene glycol Dinitrate**, → **Butanetriol Tri-***

T Text quoted from glossary.
Nitrate and many more. Most of them are so highly sensitive to impact that they are converted to the less sensitive solid state, e.g., by gelatinization with nitrocellulose; as is well known, such processes formed the subject of the pioneering patents of Alfred Nobel. It was shown by Roth that the impact sensitivity of explosive liquids is considerably enhanced if they contain air bubbles. Nitrocellulose gelatinization increases the minimum explosion-producing impact energy in fallhammer tests performed on nitroglycerine from 0.02 to 0.2 kpm.

→ Nitromethane is considerably less sensitive. The volatility of the compound is high, and the handling of the constituent explosion-producing liquids is complicated. Nevertheless, nitromethane was used in the USA for preliminary studies to the big nuclear explosions (“pregondola” etc.). It has also been used in stimulation explosions carried out in gas wells and oil wells. PLX (“Picatinny Liquid Explosive”) consists of 95% nitromethane and 5% ethylenediamine.

It has been proposed that liquid oxidizers (highly concentrated nitric acid, nitrogen tetroxide, tetranitromethane) be incorporated into the explosive mixture only on the actuation site or in the weapon itself so as to produce an approximately equalized oxygen balance and thus attain a higher degree of transport safety. Well known liquid explosives include “Panklastites” (nitrogen tetroxide with nitrobenzene, benzene, toluene, or gasoline) and “Hellhoffites” (concentrated nitric acid with dinitrobenzene or dinitrochlorobenzene). The mixture, under the name “Boloron”, was still a recommended procedure in Austria after the Second World War. Similar explosives are known as → Dithekite. The explosive strength of these mixtures is very high. However, since the components are corrosive, their handling is very unpleasant; when mixed together, the product becomes highly sensitive. For all these reasons they are no longer employed in practice.

For mud-like ammonium nitrate explosives → Slurries and → Emulsion Slurries.

Liquid Oxygen Explosives

Flüssig-Luft-Sprengstoffe; Oxyliquit; explosifs à l’oxygène liquide

Liquid oxygen explosives are made by impregnating cartridges made of combustible absorbent materials such as wood dust, cork meal, peat dust, → Carbene, etc., with liquid oxygen. They must be exploded immediately after the impregnation and loading, which are carried out in situ. They are energy-rich and cheap, but their manner of utilization does not permit rational working, such as detonating a large number of charges in one priming circuit. They are, accordingly, hardly ever employed in practice.
Liquid Propellants

Flüssige Treibstoffe; propergols liquides; (Monergol; Hypergolic)

Combinations of pairs of liquids which react with each other (fuels and oxidizers in the most general sense of the word) which release energy in the form of hot gaseous reaction products; the → *Gas Jet Velocity* builds up the → *Thrust*. The caloric yield and the possible magnitude of the specific impulse may be higher than in one-component systems – i.e., higher than those of Monergols, homogeneous propellants, and composite propellants.

Examples of fuels are alcohol, hydrocarbons, aniline, hydrazine, dimethylhydrazine, liquid hydrogen, liquid ammonia.

Examples of oxidizers are liquid oxygen, nitric acid, concentrated H₂O₂, N₂O₄, liquid fluorine, nitrogen trifluoride, chlorine trifluoride.

Certain pairs of the reacting liquids are → *Hypergolic*.

The liquid-propellant technique was developed for rocketry, but it is also considered today for small caliber cannons (e.g. 30 mm ⌀).

Lithium Nitrate

Lithiumnitrat; nitrate de lithium

\[\text{LiNO}_3 \]

- molecular weight: 68.95
- oxygen balance: +58.1
- nitrogen content: 20.32%
- density: 2.38 g/cm³
- melting point: 256 °C = 493 °F

Lithium nitrate is soluble in water and is highly hygroscopic. Its only use is as a flame-coloring oxidizer in pyrotechnical formulations.

Lithium Perchlorate

Lithiumperchlorat; perchlorate de lithium

\[\text{LiClO}_4 \]

- colorless crystals
- molecular weight: 106.4
- oxygen balance: +60.2%
- density: 2.43 g/cm³
- melting point: 239.0 °C = 462 °F
- decomposition point: 380 °C = 716 °F
Lithium perchlorate is soluble in water and alcohol and is very hygroscopic. The hydrated salt melts at 95 °C (203 °F).

Lithium perchlorate is prepared by saturating perchloric acid with lithium hydroxide or lithium carbonate.

Loading Density

Ladedichte; densité de chargement

The ratio between the weight of the explosive and the explosion volume, i.e., the space, in which the explosive is detonated. In a similar manner, the loading density of a powder is the ratio between the maximum weight of the powder and the space into which it is loaded.

Loading density is a very important parameter, both in propellant powders (owing to the necessity of ensuring the strongest possible propellant effect in the loaded chamber, whose shape and size are mostly limited by the design of the weapon) and in brisant explosives (→ *Brisance*).

It is often essential to attain the maximum possible loading density (especially in shaped charges). This is done by casting and pressing methods, such as Vacuum, sedimentation, and mold-casting processes.

LOVA Gun-Propellant*)

LOVA-Treibladungspulver; LOVA-poudre

Since 1970, in addition to the various well-known → *Gun Powders*, LOVA gun propellants have been developed and used in the production of propellants. The acronym LOVA stands for (LOw Vulnerability Ammunition) which has come to represent a type of gun propellant.

This name expresses the unique characteristics of this type of munitions and those of gun propellants. That is, under external influences from the bullet casing, a hollow charge or fire, or a possible reaction, can at most, lead to combustion, but not to → *Deflagration* or → *Detonation*. Nevertheless, the ballistic capability of traditional gun powders must be equaled and surpassed.

To meet this challenge, one can used as an energy carrier standard → *Explosives* imbedded in a matrix of → *Active* or inert *Binders* so that

*) This article was made available by Dr. J. Knobloch, WNC-Nitrochemie in Aschau, Germany.
the energy carrier loses its explosive properties while allowing for a regulated combustion.

The most widely-used energy carries are → Hexogen and → Octogen and to an extent → Triaminoguanidine Nitrate. Depending on the desired purpose, → Nitroguanidine, Guanidinnitrate and → Ammonium Perchlorate can also be used.

As a binder system polymers are utilized. If the binders contain energy or gas-producing molecular groups (-NO₂, -N₃), one classifies the binders as → Active Binders (e.g. polynitrophenylene, glycidyl azide polymer, polyvinyl nitrate and nitrocellulose). If these substances are not present, then the binders are classified as inert binders.

Depending on available processing methods, binder types such as thermoset material, thermoplast or gelatinizers can be used. They can then be formed and cured by chemical or physical means.

For thermoset materials, reactive polymers such as polyesters or polybutadiene derivatives combined with curing agents (e.g. isocyanates) are utilized. For thermoplasts one uses long-chained, partially branched polyether (Movital) or polymeric flouridated hydrocarbons (Fluorel). An example of a gelatin binder type is celluloseacetobutyrat (CAB), which is normally used in combination with nitrocellulose.

The production of LOVA powders is dependant on the chosen binder type. When thermoset materials are used, the system of energy carrier/binders/curing agents is kneaded together. The same is true when gelatines are used, however in this case, gelatinizing solvents (usually alcohol and ether) are added.

Thermoplasts, after being combined with energy carriers, are processed on hot rollers into a plastic material. The subsequent shaping is achieved by means of hydraulic mold presses and cutting machines. Depending on the binder type, the resulting powder kernels are cured (thermoset material), cooled (thermoplast), or dried by the removal of solvents (gelatin).

The possible forms of LOVA powders correspond to those of traditional → Gunpowder and are adapted according to the desired ballistic characteristics.

LOVA

An abbreviation for low-vulnerability ammunition. This term is descriptive of the trend towards choosing substances for both explosive and propellant charges which are as intensive as possible even if losses in effectivity have to be accepted. The development of → Shaped Charges has made it possible to hit stored ammunition with simple tactical weapons even behind armoured walls.
The sensitivity of high-brisance explosives, e.g. Cyclonite, can be reduced by embedding them in rubberlike plastics (Plastic Explosives).

Low-sensitivity propellants, too, are based on plastic compounded nitramines. Another example of an insensitive explosive and propellant is Nitroguanidine.

LVD

→ Dynamite LVD.

LX

Press-moldable formulations of Octogen (HMX) and additives of solid and of puttylike consistency (USA).

Detonation velocities (confined) and formulations*):

<table>
<thead>
<tr>
<th>LX</th>
<th>Synonym</th>
<th>HMX</th>
<th>Additive</th>
<th>Detonation Velocity, confined at (\rho =)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-04--1</td>
<td>PBHV-85/15</td>
<td>85</td>
<td>Viton A</td>
<td>8460</td>
</tr>
<tr>
<td>-07--2</td>
<td>RX-04-BA</td>
<td>90</td>
<td>Viton A</td>
<td>8640</td>
</tr>
<tr>
<td>-09--0</td>
<td>RX-09-CB</td>
<td>93</td>
<td>“DNPA”</td>
<td>8810</td>
</tr>
<tr>
<td>-10--0</td>
<td>RX-05-DE</td>
<td>95</td>
<td>Viton A</td>
<td>8820</td>
</tr>
<tr>
<td>-11--0</td>
<td>RX-04-P1</td>
<td>80</td>
<td>Viton A</td>
<td>8320</td>
</tr>
<tr>
<td>-14--0</td>
<td></td>
<td>95</td>
<td>Estane</td>
<td>8837</td>
</tr>
</tbody>
</table>

The liquid and puttylike formulations are:

<table>
<thead>
<tr>
<th>State</th>
<th>Density g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX-01</td>
<td>1.23</td>
</tr>
<tr>
<td>LX-02</td>
<td>1.44</td>
</tr>
<tr>
<td>LX-03</td>
<td>1.42</td>
</tr>
<tr>
<td>LX-13</td>
<td>1.53</td>
</tr>
</tbody>
</table>

* Data quoted from the publication UCRL-51319 of the U.S. Department of Commerce: Properties of Chemical Explosives and Explosive Stimulants, edited and compiled by Brigitta M. Dobratz, University of California (1974).
Magazine*)

Sprengstofflager; dépôt

Any building or structure approved for the storage of explosive materials.

Magazine Keeper; Lagerverwalter; agent du dépôt

A person responsible for the safe storage of explosive materials, including the proper maintenance of explosive materials, storage magazines and areas.

Magazine, Surface; Übertage-Lager; dépôt superficiel

A specially designed structure for the storage of explosive materials aboveground.

Magazine, Underground; Untertage-Lager; dépôt souterrain

A specially designed structure for the storage of explosive materials underground.

Mannitol Hexanitrate

nitromannitol; Nitromannit; hexanitrate de mannitol; Hexanitromannit; MHN

\[
\begin{align*}
\text{CH}_2\text{O} \cdot \text{NO}_2 \\
\text{CH} \cdot \text{O} \cdot \text{NO}_2 \\
\text{CH}_2\text{O} \cdot \text{NO}_2
\end{align*}
\]

Colorless needles

Empirical formula: \(\text{C}_6\text{H}_8\text{N}_6\text{O}_{18} \)

Molecular weight: 452.2

Energy of formation: \(-336.2\ \text{kcal/kg} = -1406.8\ \text{kJ/kg}\

Enthalpy of formation: \(-357.2\ \text{kcal/kg} = -1494.4\ \text{kJ/kg}\

Oxygen balance: +7.1\%

Nitrogen content: 18.59\%

Volume of explosion gases: 694 l/kg

Heat of explosion (\(\text{H}_2\text{O} \) gas): 1399 kcal/kg = 5855 kJ/kg

Specific energy: 110 mt/kg = 1078 kJ/kg

Density: 1.604 g/cm³

* Text quoted from glossary.
melting point: 112 °C = 234 °F
lead block test: 510 cm³/10 g
detonation velocity, confined:
 8260 m/s = 27 100 ft/s at ρ = 1.73 g/cm³
deflagration point: 185 °C = 365 °F
impact sensitivity: 0.08 kp m = 0.8 N m

Nitromannitol is insoluble in water, but is soluble in acetone, ether and hot alcohol; it is difficult to stabilize.

It is prepared by dissolving mannitol in cold concentrated nitric acid and precipitating it with cold concentrated sulfuric acid. The crude product is washed with a dilute bicarbonate solution and with water, and is then recrystallized from hot alcohol.

In the USA nitromannitol was used as a filling for → Blasting Caps.

MAPO

Abbreviation for methylaziridine phosphine oxide, a binder component in → Composite Propellants.

\[
\begin{array}{c}
\text{H}_3\text{C} - \text{C} - \\
\text{H}_2\text{N}_3\text{P} = \text{O}
\end{array}
\]

empirical formula: C₉H₁₈N₃OP
molecular weight: 215.14
density: 1.08 g/cm³
boiling point at 0.004 bar: 120 °C = 248 °F

Mass Explosion Risk

Massen-Explosionsfähigkeit, Massen-Explosionsgefährlichkeit; danger d’explosion en masse

A term describing the behavior of explosive materials and items (chiefly ammunition) in bulk. The question to be answered is whether a local explosion or fire will or will not detonate the entire bulk of the explosive (a truckload, or even a shipload of explosives). A number of tests have been laid down, in which first a parcel, then a case, and finally a caseload – in the form in which it is to be dispatched – are primed or inflamed in the manner in which this is to be done in actual service. When testing a caseload, the cases are arranged in predetermined locations, covered by inert cases of identical construction, and ignited.

Mass explosion risk does not depend solely on the properties of the explosive material, but also on the stacking height (in extreme cases,
an entire shipload), on the nature of the confinement (e.g., buildings, lightly or heavy built, or trucks), and on the mode of packing and packing arrangements.

Mass Ratio

Massenverhältnis; relation des masses

In rocket technology, the ratio between the initial mass of the rocket and its final mass, after the propellant has burnt out. The relation between the end-velocity of a rocket projectile (theoretical value, without considering friction by the atmosphere) and the mass ratio is described by the equation

$$v_b = I_s \cdot g \cdot \ln \left(\frac{1}{1 - \frac{M_e}{M_i}} \right)$$

v_b: velocity of projectile at the end of burning,
I_s: specific impulse,
g: gravitation constant,
M_e: mass of the rocket projectile after propellant has burnt out,
M_i: mass of charged missile at beginning of burning.

Other keywords in this connection: → Rocket Motor; → Solid Propellant Rocket; → Specific Impulse.

Mercury Fulminate

Knallquecksilber; fulminate de mercure

Hg=(ONC)$_2$

colorless crystals
empirical formula: C$_2$N$_2$O$_2$Hg
molecular weight: 284.6
energy of formation: +229 kcal/kg = +958 kJ/kg
enthalpy of formation: +225 kcal/kg = +941 kJ/kg
oxygen balance: –11.2%
nitrogen content: 9.84%
heat of explosion: 415 kcal/kg = 1735 kJ/kg
density: 4.42 g/cm3
deflagration point: 165 °C = 330 °F
impact sensitivity: 0.1–0.2 kp m = 1–2 N m

Mercury fulminate is toxic and is practically insoluble in water. When dry, it is highly sensitive to shock, impact, and friction, and is easily detonated by sparks and flames. It can be phlegmatized by the
addition of oils, fats, or paraffin, and also by press-molding under very high pressure.

Mercury fulminate is prepared by dissolving mercury in nitric acid, after which the solution is poured into 95% ethanol. After a short time, vigorous gas evolution takes place and crystals are formed. When the reaction is complete, the crystals are filtered by suction and washed until neutral. The mercury fulminate product is obtained as small, brown to grey pyramid-shaped crystals; the color is caused by the presence of colloidal mercury.

If small amounts of copper and hydrochloric acid are added to the reaction mixture, a white product is obtained. Mercury fulminate is stored under water. It is dried at 40 °C (104 °F) shortly before use. Owing to its excellent priming power, its high brisance, and to the fact that it can easily be detonated, mercury fulminate was the initial explosive most frequently used prior to the appearance of lead azide. It is used in compressed form in the manufacture of blasting caps and percussion caps. The material, the shells, and the caps are made of copper.

Specifications

- net content (by reaction with thiosulfate and iodometric titration): not less than 98%
- chlorides, oxalates: none
- reaction: neutral

Mesa Burning

Mesa-Abbrand

→ Burning Rate.

Metadinitrobenzene

m-Dinitrobenzol; métadinitrobenzéne

\[
\text{NO}_2
\]
\[
\text{NO}_2
\]
pale yellow needles
empirical formula: C₆H₄N₂O₄
molecular weight: 168.1
energy of formation: \(-21.1 \text{ kcal/kg} = \text{−88.1 kJ/kg}\)
enthalpy of formation: \(-38.7 \text{ kcal/kg} = \text{−161.8 kJ/kg}\)
oxygen balance: \(-95.2\%\)
nitrogen content: 16.67 %
volume of explosion gases: 907 l/kg
heat of explosion
(\(\text{H}_2\text{O liq.}\)): 637 kcal/kg = 2666 kJ/kg
(\(\text{H}_2\text{O gas}\)): 633 kcal/kg = 2646 kJ/kg
specific energy: 79.7 mt/kg = 781 kJ/kg
density: 1.5 g/cm\(^3\)
solidification point: 89.6 °C = 193.3 °F
vapor pressure:

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>90</td>
<td>194</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>302</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>392</td>
</tr>
<tr>
<td>266</td>
<td>250</td>
<td>482</td>
</tr>
<tr>
<td>914</td>
<td>290</td>
<td>554</td>
</tr>
</tbody>
</table>

lead block test: 242 cm\(^3\)/10 g
detonation velocity, confined:
\(6100 \text{ m/s} = 20000 \text{ ft/s at } \rho = 1.47 \text{ g/cm}^3\)
deflagration point:
- evaporation at 291 °C = 556 °F;
- no deflagration
impact sensitivity: 4 kp m = 39 N m
friction sensitivity:
- up to 36 kp = 353 N pistil load no reaction
- critical
diameter of steel sleeve test: 1 mm

Dinitrobenzene is sparingly soluble in water. It is prepared by direct nitration of benzene or nitrobenzene. It is an insensitive explosive. For purposes of official transport regulations, the sensitivity and the reactivity of dinitrobenzene are just on the limit between high-explosive and the non-dangerous zone.

Dinitrobenzene is toxic and produces cyanosis.

The maximum permissible concentration of this compound in the air at the workplace is 1 mg/m\(^3\). The compound is of no interest as an explosive, since toluene – from which \(\text{TNT}\) is produced – is available in any desired amount.
Methylamine Nitrate

Methylamininitrat; nitrate de méthylamine; MAN

\[
\text{CH}_3\text{-NH}_2\cdot\text{HNO}_3
\]

colorless crystals
empirical formula: \(\text{CH}_6\text{N}_2\text{O}_3\)
molecular weight: 94.1
energy of formation: \(-862 \text{ kcal/kg} = -3604 \text{ kJ/kg}\)
enthalpy of formation: \(-896 \text{ kcal/kg} = -3748 \text{ kJ/kg}\)
oxygen balance: \(-34\%\)
nitrogen content: 29.77\%
volume of explosion gases: 1191 l/kg
heat of explosion
\((\text{H}_2\text{O liq.}): 821 \text{ kcal/kg} = 3437 \text{ kJ/kg}\)
\((\text{H}_2\text{O gas}): 645 \text{ kcal/kg} = 2698 \text{ kJ/kg}\)
specific energy: 95.3 mt/kg = 934 kJ/kg
density: 1.422 g/cm\(^3\)
melting point: 111 °C = 232 °F
lead block test: 325 cm\(^3\)/10 g

Methylamine nitrate is considerably more hygroscopic than ammonium nitrate. Its sensitivity to impact is very low. It can be employed as a flux component in castable ammonium nitrate mixtures, but requires incorporation of brisant components. Methylamine nitrate is also employed as a component in → Slurries.

Methyl Nitrate

Methylnitrat; nitrate de méthyle

\[
\text{CH}_3\text{-O-NO}_2
\]

colorless volatile liquid
empirical formula: \(\text{CH}_3\text{NO}_3\)
molecular weight: 77.0
energy of formation: \(-456.7 \text{ kcal/kg} = -1911 \text{ kJ/kg}\)
enthalpy of formation:
\(-483.6 \text{ kcal/kg} = -2023.6 \text{ kJ/kg}\)
oxygen balance: \(-10.4\%\)
nitrogen content: 18.19\%
volume of explosion gases: 873 l/kg
heat of explosion
\((\text{H}_2\text{O liq.}): 1613 \text{ kcal/kg} = 6748 \text{ kJ/kg}\)
\((\text{H}_2\text{O gas}): 1446 \text{ kcal/kg} = 6051 \text{ kJ/kg}\)
specific energy: 123 mt/kg = 1210 kJ/kg
density: 1.217 g/cm³
boiling point: 65 °C = 149 °F
lead block test: 610 cm³

detonation velocity, confined:
 6300 m/s = 20700 ft/s at ρ = 1.217 g/cm³
deflagration: evaporation, no deflagration
impact sensitivity: 0.02 kp m = 0.2 N m
friction sensitivity:
 up to 36 kp = 353 pistil load no reaction
critical diameter of steel sleeve test: 18 mm

Methyl nitrate is a highly volatile liquid, and its brisance is about equal
to that of nitroglycerine. Its vapors are both flammable and explosive
and produce headaches. Methyl nitrate dissolves nitrocellulose, yielding
a gel, from which it rapidly evaporates.

It can be prepared by introducing methyl alcohol into a nitrating
mixture at a low temperature or by distilling methanol with medium-
concentrated nitric acid.

Methylphenylurethane

Methylphenylurethan; méthylphénylurethane

![Methylphenylurethane](image)

colorless liquid
empirical formula: C₁₀H₁₃O₂N
molecular weight: 179.2
boiling point: 250 °C = 482 °F
refractive index nD⁰: 1.51558
energy of formation: –538.5 kcal/kg = 2253 kJ/kg
enthalpy of formation:
 –564.7 kcal/kg = –2363 kJ/kg
oxygen balance: –218.7%
nitrogen content: 7.82%

Methylphenylurethane is a gelatinizing → *Stabilizer* especially for
→ *Double Base Propellants*.

Specifications

density (20/4): 1.071–1.090 g/cm³
boiling analysis: 248–255 °C
 = 478–491 °F
reaction: neutral
Methyl Violet Test

In this test, which was developed in the USA about 50 years ago from another test known as the German test (testing for visible nitrous gases at 135 °C / 275 °F), visual inspection of the nitrous gases is replaced by testing with a strip of paper, impregnated with methyl violet. This test is performed at 134.5 °C (274.1 °F) for nitrocellulose and single-base powders and at 120 °C (248 °F) for multi-base propellants. At the end of the test the violet dye changes color to blue-green and then to salmon-pink. For singlebase powder, this color change should not take place after less than 30 minutes and for a multibase powder after less than 60 minutes. Only highly unstable powders can be detected by this test, therefore the latter is now rarely used.

Metriol Trinitrate

methtyltrimethylolmethane trinitrate; Metrioltrinitrat;
Nitropentaglycerin; trinitrate de triméthylolméthylméthane

\[
\begin{align*}
\text{CH}_2\text{-O}\cdot\text{NO}_2 \\
\text{CH}_3\text{-C}\cdot\text{CH}_2\text{-O}\cdot\text{NO}_2 \\
\text{CH}_2\text{-O}\cdot\text{NO}_2
\end{align*}
\]

pale-colored, oily substance
empirical formula: C₉H₉N₃O₉
molecular weight: 255.1
energy of formation: \(-373.8 \text{ kcal/kg} = -1564.1 \text{ kJ/kg}\)
erthalpy of formation:
\(-398.2 \text{ kcal/kg} = -1666.1 \text{ kJ/kg}\)
oxygen balance: \(-34.5\%\)
nitrogen content: 16.47%
volume of explosion gases: 966 l/kg
heat of explosion
\(\text{(H}_2\text{O liq.): } 1182 \text{ kcal/kg} = 4945 \text{ kJ/kg}\)
\(\text{(H}_2\text{O gas): } 1087 \text{ kcal/kg} = 4549 \text{ kJ/kg}\)
specific energy: 124 mt/kg = 1215 kJ/kg
density: 1.460 g/cm³
solidification point: \(-15 \degree\text{C} = +5 \degree\text{F}\)
lead block test: 400 cm³/10 g
deflagration point: 182 °C = 360 °F
impact sensitivity: 0.02 kp m = 0.2 N m

The oil is practically insoluble in water and is very stable chemically. When mixed with nitrocellulose, it can be gelatinized on rollers only to a moderate extent and only at an elevated temperature. The volatility of the trinitrate is low.
Metriol trinitrate can be prepared by nitration of methyltrimethylolmethane (Metriol) with mixed acid. Metriol is prepared by condensation of propanal with formaldehyde in a manner similar to that employed in the synthesis of pentaerythrol.

During the Second World War, mixtures of metriol trinitrate with triglycol dinitrate (a good gelatinizer of nitrocellulose) were processed together with nitrocellulose to produce tropic-proof propellants. They were also distinguished by high physical properties for employment in rocket motors.

Microballoons

Microspheres

Microballoons are bubbles with an average diameter of 40 µm (range 10–100 µm). They were originally used as a filler to control the density of plastic products. They are available as glass or bakelite material.

Microballoons have proved an excellent means to produce a fine gas bubble distribution in low-sensitivity explosives, particularly in emulsion slurries. Finely distributed gas bubbles considerably increase the sensitivity to detonation (“hot spots”). In the form of microballoons, gas distribution stabilises; gas distributions without enclosure may experience a loss in effectiveness as a result of coagulation into coarse bubbles, or by escape.

Millisecond Delay Blasting

Millisekunden-Sprengen; tir à microretard

The explosive charges are successively initiated at time intervals as short as 20–100 milliseconds with the aid of millisecond detonators (→ Bridgewire Detonators).

Experience shows that rock fragmentation is better with this technique, and a smaller amount of explosive is required to produce the same blasting effect since there is better mutual support of the charges.

Minex

A cast explosive charge used in the USA consisting of RDX, TNT, ammonium nitrate, and aluminum powder.
Miniaturized Detonating Cord

Mild detonating fuse; nicht-sprengkräftige detonierende Zündschnur; cordeau détonant miniaturé

Detonating cord with a core load of 5 or less grains of explosive per foot (≤ 0.1 g/m).

Minol

A pourable mixture of TNT, ammonium nitrate, and aluminum powder (40:40:20).

- casting density: 1.70 g/cm3
- detonation velocity at casting density, confined: 6000 m/s = 19700 ft/s

Misfire

Versager; raté

An explosive material charge that fails to detonate after an attempt at initiation.

Missile

Raketenflugkörper; roquette

The integral functional unit consisting of initiator and igniter devices, rocket engine, guiding equipment, and useful payload. → *Rocket Motor.*

Missiles are, in principle, guided rocket projectiles.

Mock Explosives

Sprengstoff-Attrappen; factices

Mocks are nonexplosive simulants for high explosives. They duplicate the properties for test purposes without hazard. The required properties to copy need different mocks, e.g., for physical properties, for density, or for thermal behavior.

* Text quoted from glossary.
** For more details see Dobratz, B. M., Properties of Chemical Explosives and Explosive Simulants, UCRL-51319, Rev. 1, University of California.
Monergol

In rocket technology the name for liquid and homogeneous propellants, which require no other reaction partner for the formation of gaseous reaction products. Gas formation can be due to catalytic decomposition (on concentrated H$_2$O$_2$ or anhydrous hydrazine) or to an intramolecular reaction, e.g., by decomposition of propylnitrate generating N$_2$, CO, CO$_2$, NO, etc., → *Liquid Propellants*.

Motor*)

Motor; moteur

Generic term for solid propellant gas generator or rocket.

MOX

Abbreviation for metal oxidizer explosives (USA). Compositions:

Table 23.

<table>
<thead>
<tr>
<th>MOX</th>
<th>1</th>
<th>2B</th>
<th>3B</th>
<th>4B</th>
<th>6B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>ammonium perchlorate</td>
<td>35</td>
<td>35</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>aluminum (fine grain)</td>
<td>26.2</td>
<td>52.4</td>
<td>47</td>
<td>47</td>
<td>49.2</td>
</tr>
<tr>
<td>magnesium (fine grain)</td>
<td>26.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tetryl</td>
<td>9.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RDX</td>
<td>–</td>
<td>5.8</td>
<td>29.1</td>
<td>29.1</td>
<td>28.7</td>
</tr>
<tr>
<td>TNT</td>
<td>–</td>
<td>3.9</td>
<td>2.0</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>potassium nitrate</td>
<td>–</td>
<td>–</td>
<td>18</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>barium nitrate</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>18</td>
<td>–</td>
</tr>
<tr>
<td>copper oxide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>19.7</td>
</tr>
<tr>
<td>wax</td>
<td>–</td>
<td>–</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>calcium stearate</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>graphite</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Muckpile*)

Haufwerk; déblai

The pile of broken burden resulting from a blast.

* Text quoted from glossary.
Mud Cap

Auflegerladung; pétardage

Mud caps are explosive charges which have a strong destructive effect even when not placed in a confining borehole. They are used for the demolition of boulders and concrete structures. (Synonymous with Adobe Charge and Bulldoze).

A highly brisant explosive is required for this purpose. Mud caps are usually covered with mud in order to enhance their brisance. It is often desirable to use charges of definite shape (→ Shaped Charges; → Cutting Charges).

Multicord 40 and Multicord 100

Trade names of → Detonating Cords containing 40 g and 100 g PETN/m, distributed in Germany and exported by WASAGCHEMIE. It is covered with red colored plastic. It serves for the initiation of ANFO blasting agents and for Smooth Blasting.

Munroe Effect

The effect of shaped charges is known in the USA as the Munroe effect after Munroe, who described it in 1888. The terms “cavity effect” and “lined cavity effect” are also employed (→ Shaped Charges).

Muzzle Flash

Mündungsfeuer; lueur à 1a bouche

Muzzle flash is the appearance of a flame at the muzzle of a barrel or a tube during the shot. The flash is a secondary effect which takes place when the still flammable explosion gases (CO, H₂) become mixed with air on emerging from the barrel.

The reasons for the appearance of the flash are not yet fully clear; it is also unclear why the flash can be suppressed by introducing certain additives to the powder (probably catalytic termination of chain reactions). It is certain that muzzle flash is promoted by the high temperature of the combustion gases, the high gas pressure and the high velocity of the gas emerging from the muzzle.

In a given weapon, fast-burning powders have a lower tendency to flash than slow-burning powders. Weapons with a high ballistic performance (high projectile velocity and high gas pressure) give a larger flash, which is more difficult to suppress than that given by firearms with a lower performance.
In general, alkali metal salts damp muzzle flash better than alkaline earth salts. It is also fairly certain that the flash-damping effect in the alkali metal group increases from lithium to cesium. In the First World War, bags filled with sodium chloride placed in front of the propellant charge, was used as a muzzle flash damper.

Subsequently, potassium salts, in particular the sulfate, nitrate and bitartrate, proved to be more effective. Other muzzle flash dampers, used with varying degrees of success, are oxalates, phosphates, and bicarbonates.

MVD
→ Dynamite MVD.

Neutral Burning*)

Burning of propellant grain in which reacting surface area remains approximately constant during combustion (→ Burning Rate, Progressive Burning and Regressive Burning).

Nitroaminoguanidine

Nitraminoguanidin, N'-Nitro-N-aminoguanidine, 1-Amino-3-nitroguanidine, NaGu

\[
\text{HN} = \text{C} \quad \text{NH} - \text{NH}_2 \\
\quad \text{NH} - \text{NO}_2
\]

empirical formula: \(\text{CH}_5\text{N}_5\text{O}_2\)
molecular weight: 119.09
energy of formation: +74.2 kcal/kg = +310.2 kJ/kg
enthalpy of formation: +44.3 kcal/kg = +185.5 kJ/kg
oxygen balance: −33.6%
nitrogen content: 58.2%
heat of explosion
\(\text{H}_2\text{O liq.): 895.2 kcal/kg = 3746 kJ/kg}\)
\(\text{H}_2\text{O gas): 816.9 kcal/kg = 3418 kJ/kg}\)
specific energy: 114.5 mt/kg = 1124 kJ/kg
density: 1.71 g/cm³
deflagration point: 188 °C
impact sensitivity: 0.3 kpm = 3 Nm

* Text quoted from glossary.
In general, alkali metal salts damp muzzle flash better than alkaline earth salts. It is also fairly certain that the flash-damping effect in the alkali metal group increases from lithium to cesium. In the First World War, bags filled with sodium chloride placed in front of the propellant charge, was used as a muzzle flash damper.

Subsequently, potassium salts, in particular the sulfate, nitrate and bitartrate, proved to be more effective. Other muzzle flash dampers, used with varying degrees of success, are oxalates, phosphates, and bicarbonates.

MVD

→ Dynamite MVD.

Neutral Burning*)

Burning of propellant grain in which reacting surface area remains approximately constant during combustion (→ *Burning Rate, Progressive Burning* and *Regressive Burning*).

Nitroaminoguanidine

Nitraminoguanidin, N’-Nitro-N-aminoguanidine, 1-Amino-3-nitroguanidine, NaGu

\[
\text{HN} = \overset{\text{NH – NH}_2}{\text{C}} \overset{\text{NH – NO}_2}{\text{N}}
\]

empirical formula: \(\text{CH}_5\text{N}_5\text{O}_2 \)
molecular weight: 119,09
energy of formation: +74.2 kcal/kg = +310.2 kJ/kg
enthalpy of formation: +44.3 kcal/kg = +185.5 kJ/kg
oxygen balance: −33,6%
nitrogen content: 58,2%
heat of explosion
 (\(\text{H}_2\text{O} \text{ liq.} \)): 895.2 kcal/kg = 3746 kJ/kg
 (\(\text{H}_2\text{O} \text{ gas} \)): 816.9 kcal/kg = 3418 kJ/kg
specific energy: 114.5 mt/kg = 1124 kJ/kg
density: 1,71 g/cm\(^3\)
deflagration point: 188 °C
impact sensitivity: 0,3 kpm = 3 Nm

* Text quoted from glossary.
friction sensibility: 25 kp = 240 N
critical diameter of steel sleeve test: 12 mm

Nitroaminoguanidine is obtained by reacting \(\textit{nitroguanidine} \) with hydrazine in aqueous solution. Nitroaminoguanidine has gained a certain attractiveness as a reduced carbon monoxide propellant because of its ready ignitability and its burn-up properties.

Nitrocarbonitrate

\(N.C.N. \)

Nitrocarbonitrates are relatively low-sensitive explosives, usually based on ammonium nitrate, which do not contain any high explosives such as nitroglycerine or TNT. The components are named by \(\textit{nitro} \): dinitrotoluene; by \(\textit{carbo} \): solid carbon carriers as fuel; by \(\textit{nitrate} \): ammonium nitrate.

NCN as a classification for dangerous goods has been removed by the US Department of Transportation and replaced by “Blasting Agent” as a shipping name (→ \textit{Blasting Agents}).

Nitrocellulose

\(\textit{Nitrocellulose}; \textit{nitrocellulose}; \textit{NC} \)

[Diagram]

white fibers

empirical formula of the structural unit: \(C_{12}H_{14}N_6O_{22} \)
nitrogen content referring to the unattainable* nitration grade = 14.14 %
nitrogen content, practical maximum value: ca. 13.4 %
molecular weight of the structure unit:
\[324.2 + \% N/14.14 \times 270 \]

* Nitrogen content >13.5 % may be reached in the laboratory by use of acid mixtures with anhydrous phosphoric acid as a component.
energy of formation and enthalpy of formation in relation to the nitrogen content:

<table>
<thead>
<tr>
<th>% N</th>
<th>Energy of Formation</th>
<th>Enthalpy of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kcal/kg</td>
<td>kJ/kg</td>
</tr>
<tr>
<td></td>
<td>kcal/kg</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>13.3</td>
<td>-556.1</td>
<td>-2327</td>
</tr>
<tr>
<td>13.0</td>
<td>-574.6</td>
<td>-2404</td>
</tr>
<tr>
<td>12.5</td>
<td>-605.6</td>
<td>-2534</td>
</tr>
<tr>
<td>12.0</td>
<td>-636.5</td>
<td>-2663</td>
</tr>
<tr>
<td>11.5</td>
<td>-667.4</td>
<td>-2793</td>
</tr>
<tr>
<td>11.0</td>
<td>-698.4</td>
<td>-2922</td>
</tr>
</tbody>
</table>

the following data refer to 13.3% N:
oxygen balance: –28.7 %
volume of explosion gases: 871 l/kg
heat of explosion
(H₂O liq.): 1031 kcal/kg = 4312 kJ/kg
(H₂O gas): 954 kcal/kg = 3991 kJ/kg
density: 1.67 g/cm³ (maximum value attainable by pressing: 1.3 g/cm³)
lead block test: 370 cm³/10 g
impact sensitivity: 0.3 kp m = 3 N m
friction sensitivity:
up to 36 kp = 353 N pistil load no reaction
critical diameter of steel sleeve test: 20 mm

Nitrocellulose is the commonly employed designation for nitrate esters of cellulose (cellulose nitrates). Nitrocellulose is prepared by the action of a nitrating mixture (a mixture of nitric and sulfuric acids) on well-cleaned cotton linters or on high-quality cellulose prepared from wood pulp. The concentration and composition of the nitrating mixture determine the resulting degree of esterification, which is measured by determining the nitrogen content of the product.

The crude nitration product is first centrifuged to remove the bulk of the acid, after which it is stabilized by preliminary and final boiling operations. The spent acid is adjusted by addition of concentrated nitric acid and anhydrous sulfuric acid and recycled for further nitration operations. The original form and appearance of the cellulose remains unchanged during the nitration. Subsequent boiling of the nitrocellulose under pressure finally yields a product with the desired viscosity level. The nitrated fibers are cut to a definite fiber length in hollanders or refiners. Apart from the numerous types of lacquer nitrocelluloses, which include ester- and alcohol-soluble products with a nitrogen
content of 10.3–12.3% at all viscosity levels used in technology, standard nitrocellulose types are manufactured and blended to the desired nitrogen content. Blasting soluble nitrocotton (dynamite nitrocotton; 12.2–12.3% N) is held at a high viscosity to maintain good gelatinizing properties.

All nitrocelluloses are soluble in acetone. The viscosity of the solutions is very variable. (For its adjustment by pressure boiling see above.)

Nitrocellulose is transported in tightly closed drums or in pasteboard drums lined with plastic bags inside, which contain at least 25% of a moisturizing agent (water, alcohol, isopropanol, butanol, etc.).

Specifications

The specified nitrogen content, solubility in alcohol, ether-alcohol mixtures and esters, as well as viscosity, etc., all vary in various types of nitrocellulose. The nitrogen content should not vary more than +0.2% from the specified value. The following specifications are valid for all types:

Bergmann-Junk-Test at 132 °C (270 °F):
- not more than 2.5 cm³/g NO
- ashes: not more than 0.4%
- insolubles in acetone: not more than 0.4%
- alkali, as CaCO₃: not more than 0.05%
- sulfate, as H₂SO₄: not more than 0.05%
- HgCl₂: none

Nitrocellulose for gelatinous explosives must gelatinize nitroglycerine completely within 5 minutes at 60 °C (140 °F).

Linters (cotton fibers) as raw material

Properties

(C₆H₁₀O₅)ₙ
white fibers
molecular weight of structure unity: 162.14

Specifications

α-cellulose content
(insoluble in 17.5% NaOH):
- at least 96%

fat; resin (solubles in CH₂Cl₂):
- not more than 0.2%

moisture: not more than 7.0%

ash content: not more than 0.4%

appearance:
- homogenous, white or pale yellow,
- free of impurities (knots; rests of capsules)
Nitroethane

Nitroethan; nitroéthane

\[\text{CH}_3\text{-CH}_2\text{-NO}_2 \]

colorless liquid
empirical formula: \(\text{C}_2\text{H}_5\text{NO}_2 \)
molecular weight: 75.07
energy of formation: \(-426.7 \text{ kcal/kg} = -1785.3 \text{ kJ/kg} \)
enthalpy of formation:
\(-458.3 \text{ kcal/kg} = -1917.4 \text{ kJ/kg} \)
oxygen balance: \(-95.9\% \)
nitrogen content: 18.66\%
heat of explosion
\((\text{H}_2\text{O liq.}): 403 \text{ kcal/kg} = 1686 \text{ kJ/kg} \)
\((\text{H}_2\text{O gas}): 384 \text{ kcal/kg} = 1608 \text{ kJ/kg} \)
specific energy: 75.3 mt/kg = 738 kJ/kg
density: 1.053 g/cm\(^3\)
boiling point: 114 °C = 237 °F

Nitroparaffins are produced by vapor phase nitration with nitric acid vapor. Nitroethane is also prepared in this way. The individual reaction products (nitromethane, nitroethane, nitropropane) must then be separated by distillation.

All these products can be reacted with formaldehyde; polyhydric nitroalcohols are obtained, which can be esterified with nitric acid.

Nitroethylpropanediol Dinitrate

Nitroethylpropanedioldinitrat; dinitrate d’éthyl-nitropropanadiol

\[
\begin{align*}
\text{CH}_2\text{-O-NO}_2 \\
\text{H}_5\text{C}_2\text{-C-NO}_2 \\
\text{CH}_2\text{-O-NO}_2
\end{align*}
\]

empirical formula: \(\text{C}_9\text{H}_9\text{N}_3\text{O}_8 \)
molecular weight: 239.2
oxygen balance: \(-43.5\% \)
nitrogen content: 17.57\%
volume of explosion gases: 1032 l/kg
heat of explosion (\(\text{H}_2\text{O liq.}\)): 1037 kcal/kg = 4340 kJ/kg
specific energy: 122 mt/kg = 1193 kJ/kg

The product is prepared by condensing → Nitroethane with formaldehyde and by nitration of the resulting nitromethylpropanediol.
Nitroglycerine

glycerol trinitrate; Nitroglycerin; nitroglycérine;
trinitrate de glycérine; NG; Ngl.

\[\text{CH}_3\text{O-NO}_2 \]
\[\text{CH-O-NO}_2 \]
\[\text{CH}_2\text{O-NO}_2 \]

yellow oil

empirical formula: \(\text{C}_3\text{H}_5\text{N}_3\text{O}_9 \)
molecular weight: 227.1

energy of formation: \(-368.0 \text{ kcal/kg} = -1539.8 \text{ kJ/kg} \)
enthalpy of formation:
\(-390.2 \text{ kcal/kg} = -1632.4 \text{ kJ/kg} \)
oxygen balance: +3.5\%
nitrogen content: 18.50\%
volume of explosion gases: 716 l/kg
heat of explosion
(H\(_2\)O liq.): 1594 kcal/kg = 6671 kJ/kg
(H\(_2\)O gas): 1485 kcal/kg = 6214 kJ/kg
specific energy: 106.6 mt/kg = 1045 kJ/kg
density: 1.591 g/cm\(^3\)
solidification point:
+13.2 °C = 55.8 °F (stable modification)
+2.2 °C = 35.6 °F (unstable modification)
specific heat: 0.32 kcal/kg = 1.3 kJ/kg

vapor pressure:

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature °C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00033</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>0.0097</td>
<td>50</td>
<td>122</td>
</tr>
<tr>
<td>0.13</td>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>0.31</td>
<td>90</td>
<td>194</td>
</tr>
</tbody>
</table>

lead block test: 520 cm\(^3\)/10 g
detonation velocity, confined:
7600 m/s = 25000 ft/s at \(\rho = 1.59 \text{ g/cm}^3 \)
impact sensitivity: 0.02 kp m = 0.2 N m
friction sensitivity:
up to 36 kp = 353 N pistil load no reaction
critical diameter of steel sleeve test: 24 mm

Nitroglycerine is almost insoluble in water, but is soluble in most organic solvents; it is sparingly soluble in carbon disulfide. It readily dissolves a large number of aromatic nitro compounds and forms gels
with soluble guncotton. Its volatility is negligible, but is still sufficient to cause headaches.

The acid-free product is very stable, but exceedingly sensitive to impact. The transportation of nitroglycerine and similar nitrate esters is permitted only in the form of solutions in non-explosive solvents or as mixtures with fine-powdered inert materials containing not more than 5% nitroglycerine. To avoid dangers, internal transport within the factories is made by water injection (→ Water-driven Injector Transport). Transport of pure nitroglycerine and similar products outside factory premises is difficult; in the U.S., special vessels have been developed in which the oil is bubble-free covered with water without air bubbles which raise the impact sensitivity considerably. The nitroglycerine produced is ideally processed immediately to the products (e.g., explosives; double base powders).

Nitroglycerine is prepared by running highly concentrated, almost anhydrous, and nearly chemically pure glycerin (dynamite glycerin) into a highly concentrated mixture of nitric and sulfuric acids, with constantly efficient cooling and stirring. At the end of the reaction the nitroglycerine acid mixture is given to a separator, where the nitroglycerine separates by gravity. Following washing processes with water and an alkaline soda solution remove the diluted residual acid.

Since nitroglycerine is dangerous to handle, its industrial production by continuous method has always been of the highest interest, since it is always desirable to have the smallest possible quantity of the product in any particular manufacturing stage. Accordingly, several competing methods (Schmidt, Meissner, Biazzi, KONTINITRO), have been developed, each method being characterized by a different approach to the problem of safety. The most recent procedures involve the reaction of glycerin and acid in injectors (Nitroglycerine AB).

Nitroglycerine is one of the most important and most frequently used components of explosive materials; together with nitroglycol, it is the major component of gelatinous industrial explosives. In combination with nitrocellulose and stabilizers, it is the principal component of powders and solid rocket propellants.

Specifications

1. Nitroglycerine as a component of explosives
 Nitrogen content: not less than 18.35%
 Abel test at (82.2 °C) 180 °F: not less than 10 min

2. Nitroglycerine as a component of propellants
 nitrogen content: not less than 18.40%
 moisture: not more than 0.5%
 alkalinity, as Na₂CO₃: not more than 0.002%
 acidity, as HNO₃: not more than 0.002%
3. Glycerol as a raw material

- Smell: not offensively pungent
- Color: clear, as pale as possible
- Reaction to litmus: neutral
- Inorganic impurities: none
- Reducing matter (ammoniacal AgNO₃ test): traces only
- Fatty acids: traces only
- Ash content: max. 0.03%
- Water content: max. 0.50%
- Net content (oxidation value): min. 98.8%
- Density, d²⁰: 1.259–1.261 g/cm³
- Refractive index nD²⁰: 1.4707–1.4735
- Acidity: not more than 0.3 ml n/10 NaOH/100 ml
- Alkalinity: not more than 0.3 ml n/10 HCl/100 ml

Nitroglycerine Propellants

→ Double Base Propellants and → Gunpowder.

Nitroglycide

glycide nitrate; Nitroglycid; nitrate de glycide

\[
\text{CH}_2\text{-O-NO}_2
\]

Water-white liquid

- Empirical formula: C₃H₅NO₄
- Molecular weight: 119.1
- Oxygen balance: −60.5 %
- Nitrogen content: 11.76 %
- Density: 1.332 g/cm³
- Lead block test: 310 cm³/10 g
- Deflagration point: 195–200 °C = 383–390 °F
- Impact sensitivity: 0.2 kp m = 2 N m

Nitroglycide is soluble in alcohol, ether, acetone, and water; it is highly volatile.

This nitrate ester of glycide is prepared from dinitroglycerine by splitting off one HNO₃ molecule with concentrated alkali. It is the anhydride of glyceriN mononitrate.
Nitroglycol

ethyleneglycol dinitrate; Nitroglykol; dinitrate de glycol; EGDN

\[
\begin{align*}
&\text{C}_2\text{H}_4\text{O}^+\text{NO}_2^-
\end{align*}
\]

\[
\begin{align*}
&\text{C}_2\text{H}_4\text{O}^+\text{NO}_2^-
\end{align*}
\]

colorless, oily liquid
empirical formula: C\(_2\)H\(_4\)N\(_2\)O\(_6\)
molecular weight: 152.1
energy of formation: \(-358.2\) kcal/kg = \(-1498.7\) kJ/kg
enthalpy of formation: \(-381.6\) kcal/kg = \(-1596.4\) kJ/kg
oxygen balance: \(\pm 0\) %
nitrogen content: 18.42 %
volume of explosion gases: 737 l/kg
heat of explosion
\(\text{(H}_2\text{O liq.): 1742\ kcal/kg = 7289\ kJ/kg}\)
\(\text{(H}_2\text{O gas): 1612\ kcal/kg = 6743\ kJ/kg}\)
specific energy: 121 mt/kg = 1190 kJ/kg
density: 1.48 g/cm\(^3\)
solidification point: \(-20^\circ\text{C} = -4^\circ\text{F}\)

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>0.05</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>0.35</td>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>1.7</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>7.8</td>
<td>80</td>
<td>176</td>
</tr>
<tr>
<td>29</td>
<td>100</td>
<td>212</td>
</tr>
</tbody>
</table>

lead block test: 620 cm\(^3\)/10 g
detonation velocity, confined:
\(7300 \text{ m/s} = 24 000 \text{ ft/s at } \rho = 1.48 \text{ g/cm}^3\)
deflagration point: \(217^\circ\text{C} = 423^\circ\text{F}\)
impact sensitivity: 0.02 kp m = 0.2 N m
friction sensitivity:
at 36 kp = 353 N pistil load no reaction
critical diameter of steel sleeve test: 24 mm

Nitroglycol is not hygroscopic, is sparingly soluble in water and readily soluble in common organic solvents; its properties and performance characteristics are practically the same as those of nitroglycerine; it is 150 times more volatile and about four times more soluble in water; it
is less viscous and gelatinizes nitrocellulose more rapidly than nitroglycerine.

Glycol can be nitrated in the same vessels as glycerin – in batches or continuously. The same applies to its separation and washing, which are in fact easier since nitroglycol is less viscous.

Nitroglycol is utilized in mixtures with nitroglycerine, since it markedly depresses the freezing temperature of the latter compound. Ammon-gelits contain only nitroglycol alone as the main explosive component, and therefore only freeze in winter below \(-20 \, ^\circ C\) \((-4 \, ^\circ F)\).

The vapor pressure of nitroglycol is markedly higher than that of nitroglycerine; for this reason nitroglycol cannot be used in propellant formulations.

Like all nitrate esters, nitroglycol strongly affects blood circulation; its maximum permitted concentration at the workplace is 1.5 mg/m\(^3\).

Specifications

- nitrogen content: not below 18.30 %
- Abel test: not under 15 min
- alkali (Na\(_2\)CO\(_3\)): for use in industrial explosives no limit

Specifications for glycol (raw material)

- net content (determination by oxidation with dichromate): at least 98 %
- density (20/4): 1.1130 – 1.1134 g/cm\(^3\)

- content of diglycol and triglycol (residue of vacuum distillation):
 - not more than 2.5 %
 - moisture: not more than 0.5 %
 - glow residue: not more than 0.02 %
 - chlorides: none
 - reaction: neutral

- reducing components (test with NH\(_3\)–AgNO\(_3\)): none
- test nitration: no red fumes,
- yield: at least 230 %

Nitroguanidine; Picrite

Nitroguanidin; nitroguanidine; Nigu; NQ

\[
\begin{align*}
\text{NH}_2 & : \\
\text{NH} = & : \\
\text{NH}_2 \cdot \text{NO}_2 & : \\
\end{align*}
\]

white, fiber-like crystals

empirical formula: CH\(_4\)N\(_4\)O\(_2\)
molecular weight: 104.1
energy of formation: $-184.9 \text{ kcal/kg} = -773.4 \text{ kJ/kg}$
enthalpy of formation: $-213.3 \text{ kcal/kg} = -893.0 \text{ kJ/kg}$
oxygen balance: -30.7%
nitrogen content: 53.83\%
volume of explosion gases: 1042 l/kg
heat of explosion
 $(\text{H}_2\text{O liq.}): 734 \text{ kcal/kg} = 3071 \text{ kJ/kg}$
 $(\text{H}_2\text{O gas}): 653 \text{ kcal/kg} = 2730 \text{ kJ/kg}$
specific energy: 95 mt/kg = 932 kJ/kg
density: 1.71 g/cm3
melting point: 232 °C = 450 °F (decomposition)
specific heat: 0.078 kcal/kg = 0.33 kJ/kg
lead block test: 305 cm3/10 g
deflagration point:
 at melting point decomposition;
 no deflagration
impact sensitivity:
 up to 5 kp m = 49 N m no reaction
friction sensitivity:
 up to 36 kp = 353 N pistil load no reaction
critical diameter of steel sleeve test:
 at 1 mmϕ no reaction

Nitroguanidine is soluble in hot water, practically insoluble in cold water, very sparingly soluble in alcohol, insoluble in ether, and readily soluble in alkali. It is not very sensitive to shock or impact. It has excellent chemical stability.

Guanidine nitrate, which has been prepared from dicyanodiamide and ammonium nitrate, is dehydrated under formation of nitroguanidine, when treated with concentrated sulfuric acid. Nitroguanidine can be incorporated into nitrocellulose powder, nitroglycerine powder, or diglycol dinitrate powder; it is not dissolved in the powder gel, but is embedded in it as a fine dispersion. These “cold” (calorie-poor) powders erode gunbarrels to a much lesser extent than do the conventional “hot” powders.

Nitroguanidine has the advantage of quenching muzzle flash, but smoke formation is somewhat more intensive.

Nitroguanidine is also of interest as an insensitive high explosive (→ LOVA); its energy is low, but density and detonation velocity are high.
Specifications

white, free flowing, crystalline powder

Type 1
grain size: 4.3–6.0 H
net content: not less than 98%
acidity as H$_2$SO$_4$: not more than 0.60%

Type 2
grain size: not more than 3.3 H
net content: not less than 99%
acidity as H$_2$SO$_4$: not more than 0.06%

Both types
ash content: not more than 0.30 %
acid content, as H$_2$SO$_4$: not more than 0.06 %
volatile matter: not more than 0.25 %
sulfates: not more than 0.20 %
water insolubles: not more than 0.20 %
pH: 4.5–7.0

Nitroisobutylglycerol Trinitrate

nib-glycerin trinitrate; Nitroisobutylglycerin trinitrat trimethylolnitromethane trinitrate; trinitrate de nitroisobintylglycérine; NIBTN

\[
\begin{align*}
\text{CH}_2\text{O-NO}_2 \\
\text{NO}_2\text{-C-CH}_2\text{O-NO}_2 \\
\text{CH}_2\text{O-NO}_2
\end{align*}
\]

yellow viscous oil
empirical formula: C$_4$N$_6$N$_4$O$_{11}$
molecular weight: 286.1
energy of formation: -169.1 kcal/kg = -707.5 kJ/kg
enthalpy of formation:
-190.8 kcal/kg = -797.5 kJ/kg
oxygen balance: ±0 %
nitrogen content: 19.58 %
volume of explosion gases: 705 l/kg
heat of explosion
(H$_2$O liq.): 1831 kcal/kg = 7661 kJ/kg
(H$_2$O gas): 1727 kcal/kg = 7226 kJ/kg
specific energy: 125 mt/kg = 1225 kJ/kg
density: 1.68 g/cm3
solidification point: $-35 ^\circ C = -31 ^\circ F$
lead block test: 540 cm3/10 g
detonation velocity, confined:
7600 m/s = 24 900 ft/s at $\rho =$ 1.68 g/cm3
deflagration point: 185 °C = 365 °F
impact sensitivity: 0.2 kp m = 2 N m

The compound is less volatile than nitroglycerine, practically insoluble in water and petroleum ether, soluble in alcohol, acetone, ether, benzene, and chloroform, and is a good gelatinizer of guncotton. Its explosive strength is close to that of nitroglycerine.

It is prepared by condensation of formaldehyde with nitromethane and by nitration of the nitroisobutylglycerine product under the same conditions as nitroglycerine. The nitration and stabilization procedures are very difficult because of decomposition reactions.

While being of interest to the explosives industry, since it has an ideal oxygen balance, its stabilization in practice has proven to be impossible.

Nitromethane

Nitromethan; nitrométhane; NM

CH$_3$NO$_2$

colorless liquid
molecular weight: 61.0
energy of formation: -413.7 kcal/kg = -1731 kJ/kg
enthalpy of formation: -442.8 kcal/kg = -1852.8 kJ/kg
oxygen balance: -39.3%
nitrogen content: 22.96 %
volume of explosion gases: 1059 l/kg
heat of explosion
 (H$_2$O liq.): 1152 kcal/kg = 4821 kJ/kg
 (H$_2$O gas): 1028 kcal/kg = 4299 kJ/kg
specific energy: 127 mt/kg = 1245 kJ/kg
density: 1.1385 g/cm3
solidification point: -29 °C = -20 °F
boiling point: 101.2 °C = 214.2 °F
heat of vaporization: 151 kcal/kg = 631 kJ/kg
Nitromethylpropanediol Dinitrate

Nitromethylene is sparingly soluble in water. The compound is of industrial interest as a solvent rather than as an explosive. Its technical synthesis involves nitration of methane with nitric acid above 400 °C (750 °F) in the vapor phase.

It was used in the USA for underground model explosions ("Pre-Gondola"), in preparation for the → Nuclear Charge technique. Nitromethane was also employed in stimulation blasting in oil and gas wells. PLX (Picatinny Liquid Explosive) is a mixture of nitromethane with 5% ethylenediamine and is used to clean up mine fields.

Nitromethylene is of interest both as a monergolic and as a liquid fuel for rockets.

Nitromethylpropanediol Dinitrate

methylnitropropanediol dinitrate; Nitromethylpropanidioldinitrat; dinitrate de nitromethylpropanediol

![Chemical structure of Nitromethylpropanediol Dinitrate](image)

- **empirical formula**: C₇H₇N₃O₈
- **molecular weight**: 225.1
- **oxygen balance**: −24.9%
- **nitrogen content**: 18.67%
- **volume of explosion gases**: 890 l/kg
- **heat of explosion**: 234
(H₂O liq.): 1266 kcal/kg = 5295 kJ/kg
(H₂O gas): 1163 kcal/kg = 4866 kJ/kg
specific energy: 126.5 mt/kg = 1240 kJ/kg

The product is prepared by condensation of → Nitroethane with formaldehyde and subsequent nitration of nitromethylpropanediol.

Nitroparaffins

are aliphatic hydrocarbons with NO₂-groups attached directly to carbon atoms. They are mainly obtained by nitration in a gaseous state; → Nitromethane; → Nitroethane; → Trinitromethane; → Tetrinitromethane.

Nitroparaffins can be reacted with formaldehyde to obtain nitroalcohols, which can be further esterified with nitric acid (→ e.g. Nitroisobutylglycerol Trinitrate).

Nitrostarch

Nitrostärke; nitrate d’amidon

\[\text{[C}_6\text{H}_7\text{O}_2(\text{ONO}_2)_3]_n \]

pale yellow powder
empirical formula of the structural unit: C₆H₇N₃O₉
oxygen balance at 12.2% N: −35%
density: 1.6 g/cm³
maximum value attainable by pressing: 1.1 g/cm³
lead block test: 356 cm³/10 g
deflagration point: 183 °C = 361 °F
impact sensitivity: 1.1 kp m = 11 Nm

Nitrostarch is insoluble in water and ether, but is soluble in ether alcohol mixtures and in acetone.

Nitrostarch, with various nitrogen contents (12–13.3 %), is prepared by nitration of starch with nitric acid or nitrating mixtures. The resulting crude product is washed in cold water and is then dried at 35–40 °C (95–100 °F).

Nitrostarch resembles nitrocellulose in several respects, but, owing to its poor stability, difficulty in preparation and hygroscopicity, it is not used anywhere outside the USA. "Headache-free industrial explosives are based on nitrostarch."
Nitro-Sugar

Nitrozucker, Zuckernitrat; nitrate de sucre

Nitro-sugar in its pure form is too unstable to be utilized in practice; however, during the First World War, a liquid explosive named “Nitrohydren” was prepared by nitration of solutions of cane sugar in glycerol and was then further processed into explosives and gunpowders. However, these mixtures are much more difficult to stabilize than nitroglycerine alone and are no longer of interest, since glycerin is freely available.

Nitrotoluene

Nitrotoluol; nitrotoluène

Nitrotoluene is of importance as an intermediate or precursor for in the manufacture of TNT. There are three isomers, of which only the ortho- and para-isomers can yield pure 2,4,6-trinitrotoluene. “Mononitration” of toluene yields mostly the orthocompound, as well as 4% of the meta-, and about 33% of the para-compound.

It is often advantageous to separate the isomers from each other (by distillation or by freezing out) in the mononitro stage.

3-Nitro-1,2,4-triazole-5-one

Oxynitrotiazole, NTO, ONTA

Nitro-Sugar
energy of formation: $-164.69 \text{ kcal/kg} = -689.10 \text{ kJ/kg}$
enthalpy of formation: $-185.14 \text{ kcal/kg} = -774.60 \text{ kJ/kg}$
oxygen balance: -24.6%
nitrogen content: 43.07%
volume of detonation gases: 855 l/kg
heat of explosion
 $(\text{H}_2\text{O liq.}): 752.4 \text{ kcal/kg} = 3148 \text{ kJ/kg}$
 $(\text{H}_2\text{O gas}): 715.4 \text{ kcal/kg} = 2993 \text{ kJ/kg}$
specific energy: $96.4 \text{ mt/kg} = 945.4 \text{ kJ/kg}$
density: 1.91 g/cm^3
detonation velocity:
 unconfined $7860 \text{ m/s at } \rho = 1.80 \text{ g/cm}^3$
 confined $7940 \text{ m/s at } \rho = 1.77 \text{ g/cm}^3$
deflagration point: $> 270 \degree \text{C} = > 540 \degree \text{F}$
impact sensitivity: $\geq 120 \text{ kp m} = \geq 1200 \text{ N m}$
friction sensitivity: at $36 \text{ kp} = 353 \text{ N piston load no reaction}$

NTO is synthesised in a two step process by reacting semicarbazide HCl with formic acid to obtain 1,2,4 triazole-5-one and followed by nitration to NTO.

NTO is used as a component in IHE (insensitive high explosives)

Nitrourea

Nitroharnstoff; nitro-urée

\[
\begin{array}{c}
\text{O} = \text{C} \\
\text{N} \text{H}_2 - \text{NO}_2
\end{array}
\]

colorless crystals
empirical formula: $\text{CH}_3\text{N}_3\text{O}_3$
molecular weight: 105.1
energy of formation: $-617.2 \text{ kcal/kg} = -2582.4 \text{ kJ/kg}$
enthalpy of formation: $-642.5 \text{ kcal/kg} = -2688.4 \text{ kJ/kg}$
oxygen balance: -7.6%
nitrogen content: 39.98%
volume of explosion gases: 853 l/kg
heat of explosion (H$_2$O liq.): $895 \text{ kcal/kg} = 3745 \text{ kJ/kg}$
specific energy: $93.0 \text{ mt/kg} = 912 \text{ kJ/kg}$
melting point: $159 \degree \text{C} = 318 \degree \text{F} \text{ (decomposition)}$
beginning of decomposition: $80 \degree \text{C} = 176 \degree \text{F}$

Nitrourea is soluble in benzene, ether, and chloroform; it is decomposed by water.

It is synthesized by dehydration of urea nitrate with sulfuric acid.
Nobelit®

Registered trademark for water-in-oil emulsion explosives manufactured and distributed by DYNAMIT NOBEL, Troisdorf, Germany. Outstanding features of this non-Ngl explosives generation are complete water-resistance, safe handling, long shelf life, drastic reduction of toxic fumes and excellent performance marked by high detonating velocities of up to 6000 m/sec. (19000 ft/sec.). Nobelit® series 100, 200 and 300 are available as pumpable and packaged blasting agents and in cap-sensitive cartridges from 25 mm diameter and upward.

No-Fire Current*)

Grenz-Stromstärke; intensité de courant de non-allumage

Maximum current that can be continuously applied to bridgewire circuit without igniting prime material (Note: Continued applications of this current may degrade prime and “dud” the unit).

Non-electric Delay Device*)

Detonationsverzögerer; detonateur avec retard

A detonator with an integral delay element used in conjunction with, and capable of being initiated by, a detonating impulse.

Nonel

Trade name of a new “non electric device” for the firing of explosive charges. The basic unit consists, of detonating cords of a plastic hose (3 mm \varnothing), the inner wall of which is coated with a thin layer of explosive instead of electrical wires. A shock wave initiated by a special initiator passes through the tube with a speed of approx. 200 m/s (6700 ft/s). The spectator observes this shock wave process as a flash in the hose. The plastic tube is not destroyed by the shock.

In order to initiate a charge, the Nonel line must be combined with a conventional detonator. Branching is possible.

The device is distributed by NITRO NOBEL, Sweden; and DYNO, Norway. Its applications are of interest in electrically endangered areas (e.g., by thunderstorms and stray currents).

* Text quoted from glossary.
Nozzle

Düse; tuyère

The function of the nozzle in rockets is to produce fast flow-through of the gas (\(\rightarrow \) *Gas Jet Velocity*) by constricting the cross-section. The gas jet flows in the nozzle throat at the speed.

Obturate\(^*)

Verschluss; dispositif de clôture

To stop or close an opening so as to prevent escape of gas or vapor, to seal as in delay elements.

Octogen

cyclootetramethylene tetranitramine; Homocyclonit; cyclohexane tetraoxide; Octogène; HMX

\[
\begin{align*}
\text{NO}_2 \\
\text{H}_2\text{C}-\text{N}-\text{CH}_2 \\
\text{O}_2\text{N}-\text{N} \bigg| \text{N}-\text{NO}_2 \\
\text{H}_2\text{C}-\text{N}-\text{CH}_2 \\
\text{NO}_2
\end{align*}
\]

colorless crystals
empirical formula: \(\text{C}_4\text{H}_8\text{N}_8\text{O}_8 \)
molecular weight: 296.2
energy of formation: \(+84.5 \text{ kcal/kg} = +353.6 \text{ kJ/kg}\)
enthalpy of formation: \(+60.5 \text{ kcal/kg} = +253.3 \text{ kJ/kg}\)
oxygen balance: \(-21.6\%\)
nitrogen content: 37.83\%
volume of explosion gases: 902 l/kg
heat of explosion
\[
\begin{align*}
(\text{H}_2\text{O gas}): & \ 1255 \text{ kcal/kg} = 5249 \text{ kJ/kg} \\
(\text{H}_2\text{O liq.}): & \ 1338 \text{ kcal/kg} = 5599 \text{ kJ/kg}
\end{align*}
\]
calculated**
heat of detonation
\[
\begin{align*}
(\text{H}_2\text{O liq.}): & \ 1480 \text{ kcal/kg} = 6197 \text{ kJ/kg experimental***}
\end{align*}
\]
specific energy: 139 mt/kg = 1367 kJ/kg
density:
\[
\begin{align*}
\alpha\text{-modification:} & \ 1.87 \text{ g/cm}^3 \\
\beta\text{-modification:} & \ 1.96 \text{ g/cm}^3
\end{align*}
\]

* Text quoted from glossary.

** computed by the "ICT-Thermodynamic-Code".

*** value quoted from *Brigitta M. Debratz*, Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore.
Nozzle

Düse; tuyère

The function of the nozzle in rockets is to produce fast flow-through of the gas (→ *Gas Jet Velocity*) by constricting the cross-section. The gas jet flows in the nozzle throat at the speed.

Obturate*)

Verschluss; dispositif de clôture

To stop or close an opening so as to prevent escape of gas or vapor, to seal as in delay elements.

Octogen

cyclotetramethylene tetranitramine; Homocyclonit; cyclotétraméthylène tétranitramine; Octogéne; HMX

\[
\begin{array}{c}
\text{NO}_2 \\
\text{H}_2\text{C}-\text{N}-\text{CH}_2 \\
\text{O}_2\text{N}-\text{N} \quad \text{N}-\text{NO}_2 \\
\text{H}_2\text{C}-\text{N}-\text{CH}_2 \\
\text{NO}_2
\end{array}
\]

colorless crystals

empirical formula: C₄H₈N₈O₈
molecular weight: 296.2
energy of formation: +84.5 kcal/kg = +353.6 kJ/kg
enthalpy of formation: +60.5 kcal/kg = +253.3 kJ/kg
oxygen balance: −21.6%
nitrogen content: 37.83%
volume of explosion gases: 902 l/kg
heat of explosion
\[
\left\{ \begin{array}{l}
\text{(H}_2\text{O gas): 1255 kcal/kg = 5249 kJ/kg} \\
\text{(H}_2\text{O liq.): 1338 kcal/kg = 5599 kJ/kg} \end{array} \right. \text{ calculated**)}
\]
heat of detonation
(H₂O liq.): 1480 kcal/kg = 6197 kJ/kg experimental***)
specific energy: 139 mt/kg = 1367 kJ/kg
density:
α-modification: 1.87 g/cm³
β-modification: 1.96 g/cm³

* Text quoted from glossary.
** computed by the “ICT-Thermodynamic-Code”.
*** value quoted from Brigitta M. Debratz, Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore.
Octogen appears in four modifications, of which only the \(\beta \)-modification displays a particularly high density and hence also a particularly fast detonation rate.

It is practically insoluble in water. Its solubilities in other solvents resemble those of \(\rightarrow \) Cyclonite.

The compound is formed as a by-product from the manufacture of Cyclonite by the Bachmann process (from hexamethylenetetramine, ammonium nitrate, nitric acid, and acetic anhydride). It is obtained as the sole product, when 1,5-methylene-3,7-dinitro-1,3,5,7-tetrazacyclooctane is treated with acetic anhydride, ammonium nitrate, and nitric acid.

The above starting material is formed when acetic anhydride is made to react on hexamethylenetetramine dinitrate.

In high-power charges, especially in hollow charges, Octogen performs better than Cyclonite.
Specifications

net content of β-modification:
grade A, not less than 93%
grade B, not less than 98%
melting point: not less than 270 °C = 518 °F
acetone-insolubles:
not more than 0.05%
ashes: not more than 0.03%
acidity, as CH₃COOH:
not more than 0.02%

Octol

A mixture of Octogen (NMX) and TNT 70/30 and 75/25. Performance values:

<table>
<thead>
<tr>
<th></th>
<th>70/30</th>
<th>75/25</th>
</tr>
</thead>
<tbody>
<tr>
<td>detonation velocity, confined:</td>
<td>8377</td>
<td>8643</td>
</tr>
<tr>
<td>at ρ = 1.80</td>
<td>1.80</td>
<td>1.81</td>
</tr>
<tr>
<td>volume of explosion gases:</td>
<td>827</td>
<td>825</td>
</tr>
<tr>
<td>heat of explosion (H₂O liq.):</td>
<td>1112</td>
<td>1147</td>
</tr>
<tr>
<td></td>
<td>4651</td>
<td>4789</td>
</tr>
</tbody>
</table>

Oxidizer

Sauerstoffträger; comburant

All explosive materials contain oxygen, which is needed for the explosive reaction to take place. The oxygen can be introduced by chemical reactions (nitration) or by mechanical incorporation of materials containing bound oxygen. The most important solid-state oxidizers are nitrates, especially → Ammonium Nitrate and → Sodium Nitrate for explosives; → Potassium Nitrate for → Black Powder and ion exchanged → Permitted Explosives; potassium chlorate for → Chlorate Explosives and for pyrotechnical compositions; → Ammonium Perchlorate (APC) for → Composite Propellants.

Important liquid oxidizers for liquid fuel rocket motors include liquid oxygen (LOX), highly concentrated nitric acid, liquid N₂O₄, liquid fluorine, and halogen fluorides. See also → Oxygen Balance.
Oxygen Balance

Sauerstoffwert; bilan d’oxygène

The amount of oxygen, expressed in weight percent, liberated as a result of complete conversion of the explosive material to CO₂, H₂O, SO₂, Al₂O₃, etc. (“positive” oxygen balance). If the amount of oxygen bound in the explosive is insufficient for the complete oxidation reaction (“negative” oxygen balance), the deficient amount of the oxygen needed to complete the reaction is reported with a negative sign. This negative oxygen balance can be calculated in exactly the same manner for non-explosive fuels.

Examples:

- TNT (C₇H₅N₃O₆) – 74%
- Nitroglycerine (C₃H₅N₃O₉) + 3.5%
- Ammonium nitrate (NH₄NO₃) + 20%

The most favorable composition for an explosive can be easily calculated from the oxygen values of its components. Commercial explosives must have an oxygen balance close to zero in order to minimize the amount of toxic gases, particularly carbon monoxide, and nitrous gases, which are evolved in the fumes.

Table 24. Oxygen balance of explosives and explosive components.

<table>
<thead>
<tr>
<th>Material</th>
<th>Available O₂, %</th>
<th>Material</th>
<th>Available O₂, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>– 89.0</td>
<td>Ammonium chloride</td>
<td>– 44.9</td>
</tr>
<tr>
<td>Ammonium nitrate</td>
<td>+ 20.0</td>
<td>Ammonium perchlorate</td>
<td></td>
</tr>
<tr>
<td>Ammonium picrate</td>
<td>– 52.0</td>
<td>Barium nitrate</td>
<td>+ 30.6</td>
</tr>
<tr>
<td>Dinitrobenzene</td>
<td>– 95.3</td>
<td>Dinitrotoluene</td>
<td>– 114.4</td>
</tr>
<tr>
<td>Wood meal, purified</td>
<td>– 137.0</td>
<td>Potassium chlorate</td>
<td>+ 39.2</td>
</tr>
<tr>
<td>Potassium nitrate</td>
<td>+ 39.6</td>
<td>Carbon</td>
<td>– 266.7</td>
</tr>
<tr>
<td>Sodium chlorate</td>
<td>+ 45.0</td>
<td>Sodium nitrate</td>
<td>+ 47.0</td>
</tr>
<tr>
<td>Nitroglycerine</td>
<td>+ 3.5</td>
<td>Nitroguanidine</td>
<td>– 30.8</td>
</tr>
<tr>
<td>Nitrocellulose (guncotton)</td>
<td>– 28.6</td>
<td>Nitrocellulose</td>
<td>– 38.7</td>
</tr>
<tr>
<td>Picric acid</td>
<td>– 45.4</td>
<td>Sulfur</td>
<td>– 100.0</td>
</tr>
<tr>
<td>Tetryl</td>
<td>– 47.4</td>
<td>Trinitroresorcinol</td>
<td>– 35.9</td>
</tr>
<tr>
<td>TNT</td>
<td>– 74.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further data are found under the respective compounds described in this book; also, → *Thermodynamic Calculation of Decomposition Reactions.*
Paraffin

\[\text{CH}_3-(\text{CH}_2)_x-\text{CH}_3 \]

Paraffin serves to impregnate explosive cartridges against moisture. The technical product may contain ceresin, wax, or fat.

Specifications

- **solidification point:** not below 50–55 °C (122–131 °F)
- **inflammation point:** not below 200 °C (392 °F)
- **volatile matter:** not more than 1%
- **glow residue:** none
- **insolubles in toluene:** not more than 0.03%
- **solution in ether, CS\(_2\), ligroin:** clear, without residue
- **acidity, as CH\(_3\)COOH:** not more than 0.005%
- **alkalinity; test with concentrated sulfuric acid:** none, no alteration, no darkening of the acid
- **saponification index:** zero
- **iodine index:** low to zero
- **adhesion test:** negative

Parallel Connection

Parallelschaltung; branchement en parallèle

In multiple blastings with electric priming, \(\rightarrow \) Bridgewire Detonators are usually connected in series to the priming line. If the boreholes are very wet, and there is a real danger of voltage loss, the charges are connected in parallel. Since only a very small fraction of the electric energy employed is then actuated in the primer bridges (the bulk of the energy is dissipated in the lead wires), parallel connections require special high-energy-supplying blasting machines.
Paste

Pulverrohmasse; galette

A nitrocellulose-nitroglycerine mixture for the solvent-free manufacture of → *Double Base Propellants*. It is obtained by introducing nitroglycerine (or diglycol dinitrate or similar nitrate esters) into a stirred nitrocellulose suspension in water. The mixture is then centrifuged or filtered off; it contains about 35% water; its appearance resembles that of moist nitrocellulose. The paste, containing materials such as stabilizers and gelatinizers, is manufactured to the double base powder by hot rolling and pressing without application of solvents.

PBX

Abbreviation for plastic-bonded explosives: also → *LX*.

Pressed explosives:

- **PBX-9010:** 90% RDX, 10% Kel F*)
- **PBX-9011:** 90% HMX, 10% Estane
- **PBX-9404-03:** 94% HMX, 3% NC, 3% chloroethylphosphate
- **PBX-9205:** 92% RDX, 6% polystyrene, 2% ethylhexylphthalate
- **PBX-9501:** 95% HMX, 2.5% dinitropropyl acrylate-furmarate, 2.5% estane
- **PBXN-1:** 68% RDX, 20% Al, 12% nylon
- **PBXN-2:** 95% HMX, 5% nylon
- **PBXN-3:** 86% HMX, 14% nylon
- **PBXN-4:** 94% DATNB, 6% nylon
- **PBXN-5:** 95% HMX, 5% Viton A
- **PBXN-6:** 95% RDX, 5% Viton A

Extruded explosive:

- **PBXN-201:** 83% RDX, 12% Viton A, 5% Teflon

Cast explosives:

- **PBXN-101:** 82% HMX, 18% Laminac
- **PBXN-102:** 59% HMX, 23% Al, 18% Laminac

Injection molded explosive:

- **PBXC-303:** 80% PETN, 20% Sylgard 183*)

PE

Abbreviation for “plastic explosives”. They consist of high brisance explosives such as RDX or PETN, plasticized with vaseline or other

*) Kel F: chlorotrifluoropolyethylene; Sylgard: silicone resin.
plasticizers. Depending on the additives they contain, the plastic explosives are denoted as PE-1, PE-2 or PE-3 (→ also Plastic Explosives and PBX).

Pellet Powder

Black powder pressed into cylindrical pellets 2 inches in length and 1 1/4 to 2 inches in diameter.

In the United Kingdom, pellet powder is the term used for rounded black powder for hunting ammunition.

Pellets

Explosives in the form of round-shaped granules, e.g., of TNT, used for filling the residual vacant spaces in boreholes.

Pelonit D

Trade name of a cartridge powder form explosive containing aluminium powder, distributed in Austria by DYNAMIT NOBEL WIEN.

- density of cartridge: 1.0 g/cm³
- weight strength: 80 %
- detonation velocity at cartridge density, confined: 3500 m/s = 11 500 ft/s
Pentaerythritol Trinitrate

Pentaerythrinitrat; trinitrate de pentaérythrite; PETRIN

![Chemical structure of Pentaerythritol Trinitrate](image)

- **Empirical formula:** C₅H₉N₃O₁₀
- **Molecular weight:** 271.1
- **Energy of formation:** −470.2 kcal/kg = −1967 kJ/kg
- **Enthalpy of formation:** −494.2 kcal/kg = −2069 kJ/kg
- **Oxygen balance:** −26.5%
- **Nitrogen content:** 15.5%
- **Density:** 1.54 g/cm³
- **Volume of explosion gases:** 902 l/kg
- **Heat of explosion**
 - (H₂O liq.): 1250 kcal/kg = 5230 kJ/kg
 - (H₂O gas): 1142 kcal/kg = 4777 kJ/kg
- **Specific energy:** 125 mt/kg = 1227 kJ/kg

The compound is prepared by cautious partial nitration of pentaerythritol.

The free hydroxyl group can react with an acid, e.g., acrylic acid; the polymer PETRIN acrylate serves as a binder with its own active oxygen in composite propellant formulations, e.g. composition NM:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETRIN acrylate</td>
<td>34.3%</td>
</tr>
<tr>
<td>→ Triethylene glycol Dinitrate</td>
<td>11.8%</td>
</tr>
<tr>
<td>glycol diacrylate</td>
<td>2.9%</td>
</tr>
<tr>
<td>→ Ammonium Perchlorate, APC</td>
<td>51.0%</td>
</tr>
<tr>
<td>hydroquinone</td>
<td>0.015%</td>
</tr>
</tbody>
</table>

The percentage of APC can be lower than in formulations with fuel binders.

Pentastit

Name for → *PETN* phlegmatized with 7% wax.

- **Detonation velocity, confined:** 7720 m/s = 23700 ft/s at \(\rho = 1.59 \text{ g/cm}^3 \)
- **Deflagration point:** 192–194 °C = 378 – 390 °F
- **Impact sensitivity:** 3 kp m = 29 N m
- **Friction sensitivity:** crackling at 24 kp = 240 N
- **Pistol load:**
- **Critical diameter of steel sleeve test:** begins to explode at 4 mm \(\varnothing \)
Pentolite

Pourable mixtures of → TNT and PETN, used for shaped charges and for cast boosters (for initiation of insensitive explosives, such as ANFO). A 50:50 mixture has a density of 1.65 g/cm³; the detonation rate is 7400 m/s = 24300 ft/s.

Perchlorate Explosives

Perchlorat-Sprengstoffe; explosifs perchlorates

In these explosives, the main oxidizer is sodium, potassium, or ammonium perchlorate; the combustible components consist of organic nitro compounds, hydrocarbons, waxes, and other carbon carriers. Nowadays, these explosives are uneconomical and are no longer industrially produced.

A mixture of 75% KClO₄ and 25% asphalt pitch, melted together under the name of Galcit, was used as a rocket propellant and was thus a precursor of the modern → Composite Propellants, in which ammonium perchlorate, in the capacity of the oxidizer, is embedded in a plastic material and acts like an oxidizer.

Percussion Cap

Anzündhütchen; amorce

Percussion caps serve as primers for propellant charges. In mechanical percussion caps, a friction-sensitive or impact-sensitive priming charge (containing, e.g., mercury fulminate with chlorates or lead trinitroresorcinlate with Tetrazene) is ignited by the mechanical action of a firing pin.

Percussion Primer = Percussion-actuated initiator.

Perforation of Oil Wells

Perforation von Erdölbohrlöchern; perforation des trous de sondage

In petroleum technology, shaped charges fired from special firing mechanisms (jet perforators) are lowered into the borehole down to the level of the oil horizon. Their purpose is to perforate the pipework and the cement work at the bottom of the borehole, so as to enable the oil to enter it.
Permissibles; Permitted Explosives

Wettersprengstoffe; explosifs antigrisouteux

1. Definition

Shotfiring in coal mines constitutes a risk in the presence of firedamp and coal dust. Permitted explosives are special compositions which produce short-lived detonation flames and do not ignite methane-air or coal-dust-air mixtures.

The methane oxidation

\[
\text{CH}_4 + 2\text{O}_2 = \text{CO}_2 + 2\text{H}_2\text{O}
\]

needs an “induction period”*) before the reaction proceeds. If the time required for ignition by the detonation flames is shorter than the induction period, then ignition of firedamp will not occur. Thus, the composition of permitted explosives must ensure that any secondary reactions with a rather long duration, which follow the primary reaction in the detonation front, are suppressed and that slow → Deflagration reactions are avoided (→ Audibert Tube).

Such explosives are known as “permissibles” in the USA, as “permitted explosives” in the United Kingdom, as “Wettersprengstoffe” in Germany, as “explosifs antigrisouteux” in France, and as “explosifs S.G.P.” (sécurité grisou poussières) in Belgium.

Safety measures to avoid ignition of firedamp uses salt (NaCl) which is included in the usual compositions of commercial explosives. It lowers the → Explosion Temperature and shortens the detonation flame. Higher safety grades are achieved in ionexchange explosives in which the ammonium and sodium (or potassium) ions are exchanged; instead of

\[
\text{NH}_4\text{NO}_3 + \text{(inert) NaCl} = \text{N}_2 + 2\text{H}_2\text{O} + 1/2\text{O}_2 + \text{(inert) NaCl}
\]

the lifetime of the reaction is:

\[
\text{NH}_4\text{Cl} + \text{NaNO}_3 \text{ (or KNO}_3) = \text{N}_2 + 2\text{H}_2\text{O} + 1/2\text{O}_2 + \text{NaCl} \text{ (or kcl)}.
\]

Thus, a flame-extinguishing smoke of very fine salt particles is produced by the decomposition reaction itself. Combinations of salt-pair reactions and “classic” detonation reactions quenched by adding salt are possible.

Permitted explosives with a higher grade of safety are powder explosives. They contain a minimum percentage of nitroglycerine-nitroglycol to ensure reliable initiation and transmission of detonation and to exclude slow deflagration reactions. The mechanism of salt-pair

*) Contrary to the delayed ignition, the oxidation of hydrogen with the salt-pair aid of an ignition source, \(2\text{H}_2 + \text{O}_2 = 2\text{H}_2\text{O}\), is instantaneous.
detonation in confined and unconfined conditions is explained in → Detonation, Selective Detonation.

2. Testing galleries

Versuchsstrecken, Sprengstoffprüfstrecken; galeries d'essai.

All coal-mining countries have issued detailed regulations for the testing, approval, and use of explosives which are safe in firedamp. The main instrument for these tests is the testing gallery.

![Testing gallery with borehole cannon](image)

Fig. 18. Testing gallery with borehole cannon.

A test gallery consists of a steel cylinder which initiates of an underground roadway; the cross sectional area is about 2 m² (5 ft²); one end is closed by a shield of about 30 cm (1 ft) against which the cannon is placed. The other end of the chamber which has a volume of ca. 10 m³ (18 ft³ length) is closed by means of a paper screen. The remaining part of the tube length (10 m; 32 ft) behind the paper screen is left open to the atmosphere. (The gallery tube can be constructed in closed form if the noise of the test shots can be diminished.) After charging and positioning the cannon, the closed chamber is filled with a methane-air mixture (containing, e.g., 9.5% CH₄ to give the most dangerous composition), and the charge is fired. Whether or not ignition of the gas occurs is observed from a safe position.

Amongst the known types of mortars is the borehole cannon, as shown in Fig. 18. A steel cylinder about 1.5 m (5 ft) long and about 35 cm (1–1/8 ft) in diameter has in it a borehole of 55 mm (2–11/64 in.) diameter and 1.20 m (47 in.) length. The explosive to be tested is placed in the borehole, unstemmed or stemmed by a clay plug, and the detonator is introduced last in the hole (direct initiation). If the detonator is inserted first, followed by the train of cartridges, initiation is “inverse”. The required test conditions can be severe; ignition of the gas mixture is more probable to occur using unstemmed charges and inverse initiation than with stemmed charges and direct initiation. The different mortars are designed to simulate different underground conditions. The borehole cannon in the testing gallery illustrates the action...
of a single shot in the roadway of gassy mines. The British break test and the slotted mortar in Poland imitate the exposure of a charge and, consequently, the more extended contact between the firing charge and the firedamp atmosphere where breaks in the strata intersect a shothole:

Two steel plates are held at a given distance by means of a closing angle and a plug. The lower plate has a groove for the cartridge train. The plate arrangement is covered with a polythene sheet laid upon two steel side walls; the gas-tight room is filled with the methane-air mixture after charging. The break test conditions are varied; permitted explosives which meet the most stringent test conditions belong to the British safety class P4.

The slotted mortar allows similar test procedures.

The slot does not extend over the whole length of the borehole and does not begin at the mouth of the hole.

A specially dangerous condition can arise when several shots are fired in one round by means of electric delay detonators. A preceding shot may then break the coal of another hole or even cut off the whole burden of the charge in question so that it is partly or completely exposed. This condition is simulated in the angle-mortar test.
A steel cylinder of 230 mm (9 in.) diameter and 2 m (~1/2 ft) in length with a right-angled groove is positioned in the gas chamber of a testing gallery against an impact steel plate at given distances and different impact angles, as shown in Fig. 21. Trains of several cartridges or of the full length of 2 m are placed in the groove of the angle and fired into the methane-air mixture.

3. Safety classes

The different mortar set-ups and other test arrangements can be varied to give a higher or lower probability of ignition; consequently, different safety grades for the explosives have been defined.

In France, there are three categories: explosifs roche, couche, and couche améliorés. They satisfy different requirements according to the borehole cannon test: short or long cannon, direct or inverse initiation, different thicknesses of stemming by means of steel plates.

In the United Kingdom, 5 groups are listed: group P1, the “classic” permitted explosives diluted with rock salt which must pass the least severe cannon test, direct initiation and stemmed; group P2, the now abandoned → Sheathed Explosives; group P3, the successor of Eq. S. (equivalent to sheathed) explosives; group P4, the class of highest safety, which meets the most severe break test conditions; and group P5, safe in cut-off conditions.
In Germany there are three classes: class I, the classic permissibles; class II, which are safe in the anglemortar test in position A, with charges of 40 cm in length in the groove; class III, the class of highest safety, which must give no ignition in the angle-mortar test in position B and with the groove filled over its full length with the explosive charge (2 m, 6–1/2 ft).

As an example for possible authorised applications a diagram of the use of the German permitted explosives is given in Table 25.

Table 25. Areas of use and associated authorized application of German permitted explosives

<table>
<thead>
<tr>
<th>Working Areas</th>
<th>CH₄ in the Mine Air</th>
<th>Type of Explosive</th>
<th>Safety Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working in stone without coal (except upcasts)</td>
<td>0–0.5</td>
<td>non permitted explosives for rock blasting</td>
<td>–</td>
</tr>
<tr>
<td>Working in stone with coal seams up to 0.2 m thickness (except upcasts)</td>
<td>0–0.5</td>
<td>permitted explosives</td>
<td>Class I</td>
</tr>
<tr>
<td></td>
<td>0.5–1.0</td>
<td>permitted explosives</td>
<td>Class I</td>
</tr>
<tr>
<td>Working in stone with coal bands of more than 0.2 m thickness gate-end roads (except upcasts)</td>
<td>0–0.3</td>
<td>permitted explosives</td>
<td>Class I</td>
</tr>
<tr>
<td></td>
<td>0.3–0.5</td>
<td>permitted explosives</td>
<td>Class II</td>
</tr>
<tr>
<td></td>
<td>0.5–1.0</td>
<td>permitted explosives</td>
<td>Class III</td>
</tr>
<tr>
<td>Rises and dips, gate roads, coal faces and adjacent rock in areas near coal faces, upcasts</td>
<td>less than 1.0</td>
<td>permitted explosives</td>
<td>Class III</td>
</tr>
</tbody>
</table>

Peroxides

Organic peroxides may be explosive. They are usually not manufactured for blasting purposes, but rather as catalysts for polymerization reactions. They are utilized in a safely phlegmatized condition. They will not be discussed in this book, except for two substances displaying properties of primary explosives: → Tricycloacetone Peroxide and → Hexamethylenetriperoxide Diamine.
PETN

pentaerythritol tetranitrate; Nitropenta; tétranitrate de pentaerythrite; Pertitrit; corpent

\[
\begin{align*}
\text{O}_2\text{N} - \text{O} & \cdot \text{H}_2\text{C} \quad \text{CH}_2 \cdot \text{O} - \text{NO}_2 \\
\text{O}_2\text{N} - \text{O} & \cdot \text{H}_2\text{C} \quad \text{CH}_2 \cdot \text{O} - \text{NO}_2
\end{align*}
\]

colorless crystals
empirical formula: \(\text{C}_5\text{H}_8\text{N}_4\text{O}_{12}\)
molecular weight: 316.1
energy of formation: \(-385.0\ \text{kcal/kg} = -1610.7\ \text{kJ/kg}\)
enthalpy of formation: \(-407.4\ \text{kcal/kg} = -1704.7\ \text{kJ/kg}\)
oxygen balance: \(-10.1\%\)
nitrogen content: 17.72%
volume of explosion gases: 780 l/kg

heat of explosion
\((\text{H}_2\text{O gas})\): \(1398\ \text{kcal/kg} = 5850\ \text{kJ/kg}\) \(\text{calculated}\)
\((\text{H}_2\text{O liq.})\): \(1507\ \text{kcal/kg} = 6306\ \text{kJ/kg}\)

heat of detonation
\((\text{H}_2\text{O liq.})\): \(1510\ \text{kcal/kg} = 6322\ \text{kJ/kg\ experimental}\)
specific energy: 123 mt/kg = 1205 kJ/kg
density: 1.76 g/cm\(^3\)
melting point: 141.3 °C = 286.3 °F
heat of fusion: 36.4 kcal/kg = 152 kJ/kg
specific heat: 0.26 kcal/kg = 1.09 kJ/kg
vapor pressure:

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0011</td>
<td>97.0</td>
<td>207</td>
</tr>
<tr>
<td>0.0042</td>
<td>110.6</td>
<td>231</td>
</tr>
<tr>
<td>0.015</td>
<td>121.0</td>
<td>250</td>
</tr>
<tr>
<td>0.050</td>
<td>131.6</td>
<td>267</td>
</tr>
<tr>
<td>0.094</td>
<td>138.8</td>
<td>282 (near melting point)</td>
</tr>
</tbody>
</table>

lead block test: 523 cm\(^3\)/10 g
detonation velocity, confined:
\(8400\ \text{m/s} = 27600\ \text{ft/s} \text{ at } \rho = 1.7\ \text{g/cm}^3\)
deflagration point: 202 °C = 396 F
impact sensitivity: 0.3 kp m = 3 N m

* computed by the “ICT-Thermodynamic-Code”.
** value quoted from Brigitta M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore.
friction sensitivity: 6 kp = 60 N piston load
critical diameter of steel sleeve test: 6 mm

PETN is very stable, insoluble in water, sparingly soluble in alcohol,
ether, and benzene, and soluble in acetone and methyl acetate.

It is prepared by introducing pentaerythrol into concentrated nitric acid
with efficient stirring and cooling.

The bulk of the tetranitrate thus formed crystallizes out of the acid. The
solution is diluted to about 70% HNO₃ in order to precipitate the
remainder of the product. The washed crude product is purified by
reprecipitation from acetone.

PETN is one of the most powerful and most brisant explosives, its
\(\rightarrow \text{Stability} \) is satisfactory, and its \(\rightarrow \text{Sensitivity} \) is not extreme. It is used
in high-efficiency blasting-cap fillings and detonation cords. If phleg-
matized with a small amount of wax and pressed, it may be used to
produce boosters and fillings for smaller caliber projectiles. PETN can
also be incorporated into gelatinous, industrial explosives (e.g., for
seismic prospecting).

Specifications

- melting point: not below 140 °C (284 °F)
- nitrogen content: not below 17.5%
- Bergmann-Junk test at 132 °C (267 °F): not above 2 ml NO/g
- deflagration point: not below 190 °C (374 °F)
- acetone-insoluble matter: not more than 0.1%
- acidity, as HNO₃: not more than 0.003%
- alkalinity, as Na₂CO₃: not more than 0.003%
- \(\rightarrow \text{Vacuum Test at 120 °C (248 °F):} \) not more than 5 cm³

Pentaerythrol (raw material):
- \(\text{C(CH₂OH)₄} \)
- molecular weight: 136.15
- melting point: 260.5 °C (501 °F)

Specifications

- melting point: not below 230 °C (446 °F)
- moisture: not more than 0.5%
- chlorides: none
- not more than 0.5%
- reaction: neutral
- reducing matter (AgNO₃-NH₃-test): not more than traces
Petroleum Jelly

Vaseline

This substance is used as a gunpowder stabilizer. It is believed that the stabilizing effect is due to the presence of unsaturated hydrocarbons, which are capable of binding any decomposition products formed.

Phlegmatization

The impact sensitivity and friction sensitivity of highly sensitive crystalline explosives (e.g., Cyclonite and PETN) can be altered to a considerable extent by the addition of small amounts of a phlegmatizer, particularly wax. The added wax also serves as a desirable lubricant and as a binder. RDX, PETN, and Octogen cannot be compacted by pressing, unless they contain phlegmatization additives.

Wax can also be added to pourable mixtures if they contain aluminum powder (Torpex).

Picramic Acid

\[\text{Dinitroaminophenol; acide picramique} \]

\[
\text{empirical formula: } C_6H_5N_3O_5 \\
\text{molecular weight: } 199.1 \\
\text{energy of formation: } -279 \text{ kcal/kg} = -1167 \text{ kJ/kg} \\
\text{enthalpy of formation: } -298 \text{ kcal/kg} = -1248 \text{ kJ/kg} \\
\text{oxygen balance: } -76.3\% \\
\text{nitrogen content: } 21.11\% \\
\text{volume of explosion gases: } 847 \text{ l/kg} \\
\text{heat of explosion (H}_2\text{O liq.): } 639 \text{ kcal/kg} = 2674 \text{ kJ/kg} \\
\text{specific energy: } 68.2 \text{ mt/kg} = 669 \text{ kJ/kg} \\
\text{melting point: } 169.9 \degree \text{C} = 337.8 \degree \text{F} \\
\text{lead block test: } 166 \text{ cm}^3/10 \text{ g} \\
\text{deflagration point: } 240 \degree \text{C} = 464 \degree \text{F} \\
\text{impact sensitivity: } 3.5 \text{ pm m} = 34 \text{ N m} \\
\text{friction sensitivity: } \text{up to } 36 \text{ kp} = 353 \text{ N} \\
\text{pistil load no reaction} \\
\text{critical diameter of steel sleeve test: } 2.5 \text{ mm} \]
Diazotization of picramic acid yields → *Diazodinitrophenol* (DDNP). Lead picramate and DDNP are → *Initiating Explosives*.

Picratol

A 52:48 mixture of ammonium picrate and TNT was used as a bomb filling in the Second World War.

- casting density: 1.62 g/cm³
- detonation velocity, at casting density, confined: 22600 ft/s

Picric Acid

2,4,6-trinitrophenol; Pikrinsäure; acide picrique; mélinite; Ekrasit; lyddite; shimose; Granatfüllung 88

![Picric Acid molecular structure](image)

- yellow crystals; (colorant)
- empirical formula: C₆H₃N₃O₇
- molecular weight: 229.1
- energy of formation: −242.5 kcal/kg = −1014.5 kJ/kg
- enthalpy of formation: −259.3 kcal/kg = −1084.8 kJ/kg
- oxygen balance: −45.4%
- nitrogen content: 18.34%
- volume of explosion gases: 826 l/kg
- heat of explosion:
 - (H₂O liq.): 822 kcal/kg = 3437 kJ/kg
 - (H₂O gas): 801 kcal/kg = 3350 kJ/kg
- specific energy: 101 mt/kg = 995 kJ/kg
- density: 1.767 g/cm³
- solidification point: 122.5 °C = 252.5 °F
- heat of fusion: 18.2 kcal/kg = 76.2 kJ/kg
- specific heat: 0.254 kcal/kg = 1.065 kJ/kg
- vapor pressure:

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>122</td>
<td>252</td>
</tr>
<tr>
<td>2.7</td>
<td>195</td>
<td>383</td>
</tr>
<tr>
<td>67</td>
<td>255</td>
<td>491</td>
</tr>
</tbody>
</table>
Picric acid is toxic, soluble in hot water, and readily soluble in alcohol, ether, benzene, and acetone.

The explosive power of picric acid is somewhat superior to that of TNT, both as regards the strength and the detonation velocity. Picric acid is prepared by dissolving phenol in sulfuric acid and subsequent nitration of the resulting phenoldisulfonic acid with nitric acid or by further nitration of dinitrophenol (prepared from dinitrochlorobenzene). The crude product is purified by washing in water.

Picric acid was used as a grenade and mine filling. It needs a high pouring temperature, which is undesirable. However, the solidification point can be depressed by the addition of nitronaphthalene, dinitrobenzene or trinitrocresol.

A drawback of picric acid is its tendency to form impact-sensitive metal salts (picrates) when in direct contact with shell walls, etc.; → TNT.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solidification point</td>
<td>Not less than 120 °C = 248 °F</td>
</tr>
<tr>
<td>Moisture content</td>
<td>Not more than 0.1%</td>
</tr>
<tr>
<td>Benzene-insolubles</td>
<td>Not more than 0.15%</td>
</tr>
<tr>
<td>Ash content</td>
<td>Not more than 0.1%</td>
</tr>
<tr>
<td>Acidity, as H₂SO₄</td>
<td>Not more than 0.1%</td>
</tr>
<tr>
<td>Lead content, as Pb</td>
<td>Not more than 0.0004%</td>
</tr>
<tr>
<td>Iron content, as Fe</td>
<td>Not more than 0.005%</td>
</tr>
<tr>
<td>Dinitrophenol</td>
<td>Not more than traces only</td>
</tr>
<tr>
<td>Insolubles in water</td>
<td>Not more than 0.15%</td>
</tr>
</tbody>
</table>

Picrite

Another name for → Nitroguanidine.
Plastic Explosives

kunststoffgebundene Sprengstoff-Mischungen; explosif-liant plastique

High-brisance crystalline explosives, such as RDX or octogen, can be embedded in curable or polyadditive plastics such as polysulfides, polybutadiene, acrylic acid, polyurethane, etc. The mixture is then cured into the desired shape. Other components such as aluminum powder can also be incorporated. The products obtained can be of any desired size, and specified mechanical properties can be imparted to them, including rubber-like elasticity (→ LX and → PBX). They can also be shaped into foils.

“Plastic” also means mixtures of → RDX with vaseline or gelatinized liquid nitro compounds of plastiline-like consistency. These explosives are easy to use by non-experts.

Also propellant charges for rockets and guns have also been developed by compounding solid explosives such as nitramines (e.g. → Cyclonite) with plastics. Plastic explosives and plastic propellants are of interest, if low thermal and impact sensitivity is needed (→ “LOVA”; → Armor Plate Impact Test; → Friction Sensitivity; → Heat Sensitivity; → Impact Sensitivity; → Projectile Impact Sensitivity; → Susan Test).

Plastic Igniter Cord

Plastic Igniter Cord is a fuse burning with an intense flame progressively along the length, which is used for igniting safety fuses. Plastic Igniter Cord is available with fast and slow burning speeds and different after burning carcase strengths, distributed in the United Kingdom and overseas by ICI – Nobel’s Explosives Co Ltd.

<table>
<thead>
<tr>
<th>Type</th>
<th>Color</th>
<th>Burning Speed</th>
<th>Carcase Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igniter Wick</td>
<td>Blue</td>
<td>148 sec/m</td>
<td>None – No support wire</td>
</tr>
<tr>
<td>Slow</td>
<td>Green</td>
<td>33 sec/m</td>
<td>High – Iron Support Wire</td>
</tr>
<tr>
<td>Slow</td>
<td>Yellow</td>
<td>33 sec/m</td>
<td>None – No Support Wire</td>
</tr>
<tr>
<td>Slow</td>
<td>Blue</td>
<td>49 sec/m</td>
<td>Low – Aluminium Support Wire</td>
</tr>
<tr>
<td>Fast</td>
<td>Brown</td>
<td>3.3 sec/m</td>
<td>None – No Support Wire</td>
</tr>
</tbody>
</table>

Plate Dent Text

is a brisance comparison test used in the USA for military explosives. There are two methods:
Method A – The charge is contained in a copper tube, having an internal diameter of 3/4-inch and a 1/16-inch wall. This loaded tube is placed vertically on a square piece of cold-rolled steel plate, 5/8-inch thick; 4-inch and 3-1/4-inch square plate gave the same results. The steel plate is in a horizontal position and rests in turn on a short length of heavy steel tubing 1-1/2 inches ID and 3 inches OD. The charge rests on the center of the plate, and the centers of the charge, plate, and supporting tube are in the same line. A 20g charge of the explosive under test is boostered by a 5g pellet of tetryl, in turn initiated by a No. 8 detonator.

Method 13 – A 1-5/8-inch diameter, 5-inch long uncased charge is fired on a 1-3/4-inch thick, 5-square inch cold-rolled steel plate, with one or more similar plates as backing. The charge is initiated with a No. 8 detonator and two 1-5/8-inch diameter, 30-g Tetryl boosters.

Plate dent test value, or relative brisance =

\[
\frac{\text{Sample Dent Depth}}{\text{Dent Depth for TNT at } 1.61 \text{ g/cm}^3} \times 100.
\]

Plateau Combustion

Plateau-Abbrand

→ Burning Rate.

Pneumatic Placing*)

Druckluft-Ladeverfahren; chargement pneumatique

The loading of explosives or blasting agents into a borehole using compressed air as the loading force.

POL-Pulver

→ Double Base Propellants

Polynitropolyphenylene

Polynitropolyphenylen; Polynitropolyphényle; PNP

\[
\begin{array}{c}
\text{NO}_2 \\
\text{O}_2\text{N} \\
\text{NO}_2
\end{array}
\]

\[\text{n}\]

* Text quoted from glossary.
Polynitropolyphenylene is obtained from the reaction of a solution of 1,3-dichloro-2,4,6-trinitrobenzene in nitrobenzene at 150°–180 °C with copper powder (Ullmann reaction).

The raw product obtained in this manner is first separated from copper chloride and then cleaned in several stages from solvent residues and low molecular weight elements. The resulting compound is a non-crystalline explosive of extremely high thermal resistance. In the field of → LOVA technology, it is used as an → Active Binder in high ignition temperature propellants.

Polypropylene Glycol

Polypropylyenglykol; polypropylene glycol; PPG

\[\text{HO}-[(\text{CH}_2)_{3}\text{-O-}]_{34}\text{H} \]

viscous liquid

empirical formula: \(\text{C}_{10}\text{H}_{20.2}\text{O}_{3.4} \)

molecular weight: 1992

energy of formation: \(-853 \text{ kcal/kg} = -3571 \text{ kJ/kg}\)

enthalpy of formation: \(-888 \text{ kcal/kg} = -3718 \text{ kJ/kg}\)

oxygen balance: \(-218.4\%\)

density (20/4): 1.003 \text{ g/cm}^3

PPG serves as a prepolymer, which with diisocyanates as curing agents to form polyurethanes used as a binder in → Composite Propellants
Polyvinyl Nitrate

Polyvinylnitrat; nitrate de polyvinyle; PVN

\[
\begin{array}{c}
\text{CH}_2\cdot\text{CH} \\
\text{O} \cdot \text{NO}_2 \\
\end{array}
\]

yellowish-white powder
empirical formula of the structure unit: C\(_2\)H\(_3\)NO\(_3\)
molecular weight of the structure unit: 89.05
average molecular weight: 200000
energy of formation: \(-252.1\) kcal/kg = \(-1054.8\) kJ/kg
enthalpy of formation: \(-275.4\) kcal/kg = \(-1152.1\) kJ/kg
oxygen balance: \(-44.9\%\)
nitrogen content: depends on nitration grade
volume of explosion gases: 958 l/kg
heat of explosion
(H\(_2\)O liq.): 1143 kcal/kg = 4781 kJ/kg
(H\(_2\)O gas): 1073 kcal/kg = 4490 kJ/kg
specific energy: 129 mt/kg = 1269 kJ/kg
density: 1.6 g/cm\(^3\)
softening point: 30–40 °C = 86–104 °F
detonation velocity:
7000 m/s = 23000 ft/s at \(\rho = 1.5\) g/cm\(^3\)
deflagration point: 175 °C = 350 °F
impact sensitivity: 1.0 kp.m = 10 Nm
friction sensitivity: at 20 kp = 196 N
pistil load reaction
critical diameter of steel sleeve test: 8 mm

Polyvinyl nitrate is prepared by esterification of polyvinyl alcohol (PVA) using nitric acid or a nitrating mixture. Depending on the degree of saponification of polyvinyl alcohol, which is prepared from polyvinyl acetate, the products have varying nitrogen contents and rheological properties, depending on the manufacturing conditions manufacture and the degree of polymerization. PVN is a thermoplastic, macromolecular substance, with a softening zone which varies between 30 and 45 °C = 86 and 113 °F, depending on the molecular weight of the starting polyvinyl alcohol.

Porous Powder

Poröses Pulver; poudre poreux

Special powders for exercise ammunition with a large internal surface area and thus, a fast burning rate. The porosity is produced by adding a soluble salt to the powder being manufactured; the salt is then leached out again at a later stage.
Post Combustion

Nachflammen;
Combustion of flammable fumes of a deflagrated or detonated explosive with a negative oxygen balance (→ also Muzzle Flash).

Post-Detonation
→ Hangfire.

Potassium Chlorate
Kaliumchlorat; chlorate de potassium

\[\text{KClO}_3 \]

- colorless crystals
- molecular weight: 122.6
- oxygen balance: +39.2%
- density: 2.34 g/cm³
- melting point: 370 °C = 700 °F

Potassium chlorate is sparingly soluble in cold water, readily soluble in hot water, and insoluble in alcohol.

It is the principal component of → Chlorate Explosives and is an important component of primer formulations and pyrotechnical compositions, in particular matchheads.

Potassium Nitrate
Saltpetre; Kaliumnitrat; nitrate de potasse

\[\text{KNO}_3 \]

- colorless crystals
- molecular weight: 101.1
- energy of formation: $-1157 \text{ kcal/kg} = -4841 \text{ kJ/kg}$
- enthalpy of formation: $-1169 \text{ kcal/kg} = -4891 \text{ kJ/kg}$
- oxygen balance: +39.6%
- nitrogen content: 13.86%
- density: 2.10 g/cm³
- melting point: 314 °C = 597 °F

Potassium nitrate is readily soluble in water, sparingly soluble in alcohol, and insoluble in ether.

It is used as a component in pyrotechnical compositions, in industrial explosives, and in black power.
Specifications

<table>
<thead>
<tr>
<th></th>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>net content (e.g., by N-determination) at least</td>
<td>99.5%</td>
<td>99.5%</td>
<td>99.5%</td>
</tr>
<tr>
<td>moisture:</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>water-insoluble:</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>grit:</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>acidity:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>alkalinity:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>chlorides as KCl:</td>
<td>0.07%</td>
<td>0.07%</td>
<td>0.07%</td>
</tr>
<tr>
<td>chlorates and perchlorates, as K-salt:</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Al₂O₃ + Fe₂O₃:</td>
<td>0.5%</td>
<td>0.5%</td>
<td>–</td>
</tr>
<tr>
<td>CaO + MgO:</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Na as Na₂O:</td>
<td>0.25%</td>
<td>0.25%</td>
<td>–</td>
</tr>
<tr>
<td>nitrogen content:</td>
<td>13.77%</td>
<td>13.77%</td>
<td>13.77%</td>
</tr>
</tbody>
</table>

Potassium Perchlorate

Kaliumperchlorat; perchlorate de potassium

\[
\text{KClO}_4
\]

- colorless crystals
- molecular weight: 138.6
- oxygen balance: +46.2%
- density: 2.52 g/cm³
- melting point: 610 °C = 1130 °F
 (decomposition begins at 400 °C = 750 °F)

Potassium perchlorate is insoluble in alcohol but soluble in water. It is prepared by reacting a soluble potassium salt with sodium perchlorate or perchloric acid. It is employed in pyrotechnics.

Specifications

- colorless odorless crystals
- net content (KCl determination
after reduction): not below 99%
mooture: not more than 0.5%
insolubles in water: not more than 0.1%
solution in hot water: clear
chlorides as KCl: not more than 0.1%
bromate as KBrO₃: not more than 0.1%
chlorate as KClO₃: not more than 0.1%
NH₄-, Na-, Mg- and Ca-salts: none
heavy metals none
pH 6.5 ± 0.5

Poudre B

French gunpowder. A single base nitrocellulose propellant stabilized by 1.5–2% diphenylamine. The suffix (e.g., Poudre B Ba) denotes:

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Shape of Powder Grain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>short rods (bâtonnet)</td>
</tr>
<tr>
<td>Bd</td>
<td>bands</td>
</tr>
<tr>
<td>Cd</td>
<td>long rods (corde)</td>
</tr>
<tr>
<td>Di</td>
<td>disks</td>
</tr>
<tr>
<td>FP</td>
<td>flakes (paillette; obsolete denomination)</td>
</tr>
<tr>
<td>Pa</td>
<td>flakes (paillette)</td>
</tr>
<tr>
<td>Se</td>
<td>flattened balls (sphere écrasée)</td>
</tr>
<tr>
<td>SP</td>
<td>balls (sphère)</td>
</tr>
<tr>
<td>7 T</td>
<td>tubes with 7 holes</td>
</tr>
<tr>
<td>19 T</td>
<td>tubes with 19 holes</td>
</tr>
<tr>
<td>Tf</td>
<td>slotted tubes (tube fendu)</td>
</tr>
<tr>
<td>Tu</td>
<td>tubes (tubulaire)</td>
</tr>
</tbody>
</table>

Powder Form Explosives

Pulverförmige Sprengstoffe; explosifs pulverulents

Industrial explosives must be easy to shape, i.e., must have a gelatinous or powdery consistency in order to introduce the detonator or electric cap. Powder-form explosives are mostly based on ammonium nitrate and fuel components (e.g., aluminum).
The powders can be sensitized by the addition of nitroglycerine in small percentages. Non-cap sensitive powders (→ Blasting Agents) need a booster charge for safe initiation.

Certain types of powder-form explosives contain moisture repelling additives such as stearates; in paraffinated cartridges they can be applied even under wet conditions. Non-cartridged powder form explosives must be free-flowing (→ ANFO).

Ion exchanged → Permitted Explosives are based on so-called salt pairs (sodium nitrate ammonium chloride or potassium nitrate – ammonium chloride) and are thus also in powder form.

Pre-ignition*)

Vorzeitige Selbstentzündung; allumage spontané

Spontaneous and premature ignition.

Premature Firing*)

Frühzündung; départ prématuré

The detonation of an explosive charge or the ignition of an electric blasting cap before the planned time. This can be a hazardous occurrence and is usually accidental.

Prequalification Test*)

Vorprüfung; test préliminaire

Brief test program conducted on an item or system to determine if it will meet only the most rigorous specified requirements.

Pre-splitting (Pre-shearing)*)

Vorspalten; tendage préliminaire

A → Contour Blasting method in which cracks for the final contour are created by firing a single row of holes prior to the blasting of the rest of the holes for the blast pattern.

* Text quoted from glossary.
Pressing of Rocket Propellant Charges

Pressen von Treibsätzen; moulage des propellants de roquette par pression

Rocket compositions of both double base and composite type are shaped into the desired form (e.g., star-shaped configurations) on extrusion or screw-type presses through a die or by casting and curing.

Press-Molding of Explosives

Pressen von Sprengstoffen; moinlage d’explosifs par pression

The purpose of compression by hydraulic presses is similar to that of casting, i.e. to attain a high loading density (→ Brisance) while at the same time imparting the desired shape to the charge.

Certain explosives (TNT, Tetryl, etc.) can be compacted by compression in the absence of any additives; sensitive explosives such as PETN (Nitropenta), RDX (Cyclonite), or HMX (Octogen) have to be phlegmatized by the incorporation of wax. The wax reduces the impact sensitivity and, at the same time, acts as a binder.

Plastic binder materials: → LX and → PBX.

Pressure Cartridge*)

Druckgas-Patrone; cartouche génératrice de gaz

Pyrotechnic device in which propellant combination is used to produce pressurized gas for short duration.

Prills

denote the ammonium nitrate pellets obtained by cooling free falling droplets of the molten salt in so called prill towers. By special processing, they can be porous and are capable of absorbing a certain percentage of liquid hydrocarbons (→ ANFO). The ready made ANFO-explosive is also marketed under the name “Prills”.

* Text quoted from glossary.
Primary Blast*)

Hauptsprengung; tir primaire

A blast that loosens the rock of ore from its original or natural location in the ground. A secondary blast may be used to reduce the rocks from the primary blast to smaller size for ease of handling.

Primary Explosive*)

Initialsprengstoff; explosif d’amorcage

A sensitive explosive which nearly always detonates by simple ignition from such means as spark, flame, impact and other primary heat sources of appropriate magnitude (→ Initiating Explosives).

Primer*)

A primary initiating device to produce a hot flame. A primary stimulus sensitive component generally used to generate a brisant output for initiating detonating compositions. Infrequently used to initiate deflagrating compositions (→ Squib; → Detonator; → Initiator).

Primer Charge

Zündladung; charge d’amorçage

Secondary component in an → Ignition Train, which is ignited by an initiator, starts pressurization of a generator, and ignites the booster charge.

For the firing of industrial explosives, primers are prepared by inserting a blasting cap or an electric detonator in hole of a cartridge of a cap-sensitive explosive.

In military ammunition primers are charges used to initiate the main explosive charge of a weapon containing built in detonators.

Progressive Burning Powder

Progressiv-Pulver; poudre progressive

Gunpowder which burns at a progressively increasing rate, owing to the appropriate choice of the geometry of the powder grain and sometimes owing to a suitable grain surface coating. Examples are perforated powders (7-hole powder, 19-hole-powder, etc.).

* Text quoted from glossary.
Projectile Impact Sensitivity

Beschußempfindlichkeit; sensibilité à l’impact de projectiles

→ also Armor Plate Impact Test and → Impact Sensitivity.

The projectile impact sensitivity is the reaction of an explosive charge if hit by infantry projectiles. Impact safety is given if the charge does not fully explode at impact. The projectile impact sensitivity does not only depend on the type of explosive itself, but also on the nature of its confinement (metallic, plastic, thin-walled, or thick-walled). A single bullet impact by an ordinary or a hard steel cored projectile, or a machine gun burst, will create different reactions.

A test has been developed in Sweden: cylinders made of copper, brass, and aluminum (15 mm φ) are brought to accurately adjusted and measured impact velocities (→ Impact Sensitivity).

Propellant*)

Treibstoff; produit propulsif; → Gunpowder

Explosive material with low rate of combustion. May be either solid or liquid. Will burn smoothly at uniform rate after ignition without depending on interaction with atmosphere. Single base propellant consists primarily of matrix of nitrocellulose. Double base propellant contains nitrocellulose and nitroglycerine. Composite propellant contains oxidizing agent in matrix of binder.

Propellant Types:

a) Composite Finely divided oxidizers dispersed in fuel matrix.
 (1) Ammonium nitrate oxidizer
 (2) Ammonium perchlorate oxidizer
 (3) Nitramine (RDX or HMX) oxidizer

b) Double-Base Homogeneous colloidal propellant consisting of nitrocellulose dissolved in plasticizer comprised of nitroglycerine and inert materials

c) Plastisol Composite or double-base propellant in which polymer is dissolved in plasticizer

d) Composite Double base propellant containing dispersed phase of finely ground oxidizer and (usually) powdered fuel additive

e) Single-Base Colloid of nitrocellulose and inert plasticizers

* Text quoted from glossary.
Propellant Area Ratio

Klemmung; resserrement

In rocket technology, the ratio between the burning surface of the propellant and the smallest cross-section of the nozzle. It determines the resultant pressure in the combustion chamber of the rocket (other relevant keywords: → Burning Rate, → Gas Jet Velocity, → Rocket, → Solid Propellant Rocket, → Specific Impulse, → Thrust).

Propellant-actuated Power Devices*)

Any tool or special mechanized device or gas generator system which is actuated by a propellant or which releases and directs work through a propellant charge.

Propergols

In rocket technology, a collective term for all chemical propellants.

Propyleneglycol Dinitrate

methylnitroglycol; Propyleneglykoldinitrat; dinitrate de propylèneglycol propanediol dinitrate

\[
\begin{align*}
\text{CH}_2 & \quad \text{CH} \rightarrow \text{O} \rightarrow \text{NO}_2 \\
\text{CH}_3 & \quad \text{CH} \rightarrow \text{O} \rightarrow \text{NO}_2
\end{align*}
\]

- colorless liquid
- empirical formula: C₃H₆N₂O₆
- molecular weight: 166.1
- oxygen balance: –28.9%
- nitrogen content: 16.87%
- density (20 °C): 1.368 g/cm³
- lead block test: 540 cm³/10 g

Propyleneglycol dinitrate is readily soluble in organic solvents, but is practically insoluble in water. It is obtained by nitration of propyleneglycol with mixed acid.

* Text quoted from glossary.
Propyl Nitrate

Propyl nitrate; nitrate de propyle

\[\text{CH}_3\text{-CH}_2\text{-CH}_2\text{ONO}_2 \quad \text{and} \quad \text{H}_3\text{C}\text{-CH}_2\text{-}\text{ONO}_2 \]

n-propyl nitrate

isopropyl nitrate

colorless liquid

empirical formula: C₃H₇NO₃

molecular weight: 105.1

energy of formation:

n:
\(-456.8 \text{ kcal/kg} = -1911 \text{ kJ/kg} \)

iso:
\(-491.6 \text{ kcal/kg} = -2057 \text{ kJ/kg} \)

enthalpy of formation:

n:
\(-487.8 \text{ kcal/kg} = -2041 \text{ kJ/kg} \)

iso:
\(-522.6 \text{ kcal/kg} = -2184 \text{ kJ/kg} \)

oxygen balance: 99.0%

nitrogen content: 13.33%

heat of explosion (H₂O liq.):

n:
782 kcal/kg = 3272 kJ/kg

iso:
747 kcal/kg = 3126 kJ/kg

density:

n:
1.058 g/cm³ (20 °C)

iso:
1.032 g/cm³ (20 °C)

impact sensitivity: up to 5 kpm = 49 Nm no reaction

n-Propyl nitrate serves as a → Monergol in liquid propellant rockets.

Pulsed Infusion Shotfiring

Stoßtränkungssprengen; Drucktränksprengen; tir d'imprégnation

This blasting technique combines the effect of an explosive charge in coal mine blasting with the effect of water pressure. The borehole is loaded with the explosive charge, after which water is pressed into the borehole with the aid of the so-called water infusion pipe, and the charge is ignited while maintaining the water pressure. The pressure shock in the water causes the coal to disintegrate into large lumps.
In addition, the water fog, which is produced at the same time, causes the dust to settle to the ground.

Pyrogen*\)

Ignition system, which in itself, is a gas generator consisting of case, initiator, grain and sonic discharge nozzle.

Pyrophoric*\)

Materials that will ignite spontaneously.

Pyrotechnical Compositions

Feuerwerksätze; compositions pyrotechniques

Oxidizer – fuel mixtures, which give off bright or colored light (Bengal fireworks), evolve heat (thermites), produce fogs (also colored fogs), or give acoustic effects (howling, whistling, and banging).

Special black powder granules for pyrotechnics → *Black Powder*. The additives employed for colored light are:

- barium salts or boric acid for green;
- strontium salts for red;
- cupric oxide for blue;
- sodium salts for yellow.

Pyrotechnical Fuses

Feuerwerkszündschnüre; fusées pyrotechniques

Pyrotechnical fuses are ~ Safety’ Fuses, which are specially adapted for pyrotechnical purposes by their diameter and their rigidity. They are cut into small (4~6 cm) segments.

Quantity – Distance Table*\)

Sicherheitsabstands-Tabelle; tableau des distances des sécurité

A Table listing minimum recommended distances from explosive materials stores of various weights to some predetermined location, p. 138.

* Text quoted from glossary.
Quick-Match

match cord; cambric; Stoppine

Quick-match serves to transfer ignition to pyrotechnic sets. It consists of between 2 and 16 spun cotton threads, which have been impregnated with black powder and dried. This impregnation is carried out by using an alcohol-water saturated black powder sludge, and the threads are drawn through this mixture and gauged by drawing them through an extruder die. The impregnation mass contains resin and gum arabic as binders. After the match cords have dried, they are cut into size; if they are to be used for larger fireworks, they receive an additional cover of paraffin-treated paper, and both ends are then tied. For additional safety, two Quickmatches are inserted into the paper sleeve.

Burning time is preset at between 30 to 100 s/m. A Quick match contained in paper tubes, is preset to a maximum of 40 m/s to avoid failure to ignition.

RDX

→ Cyclonite

Recommended Firing Current*)

Soll-Zündimpulse; ampèrage recommande our le mise à feu

Current that must be applied to bridgewire circuit to cause operation of device within specified time.

Recommended Test Current*)

Maximum current that can be applied to bridgewire circuit for extended period of time without degrading prime material.

Regressive Burning*)

Degressiver Abbrand; brûlage regressè

Condition in which mass flow produced by propellant grain decreases as web is consumed, due to decreasing area, decreasing burn rate, or both (→ *Progressive Burning Powder*).

* Text quoted from glossary.
Quick-Match

match cord; cambric; Stoppine

Quick-match serves to transfer ignition to pyrotechnic sets. It consists of between 2 and 16 spun cotton threads, which have been impregnated with black powder and dried. This impregnation is carried out by using an alcohol-water saturated black powder sludge, and the threads are drawn through this mixture and gauged by drawing them through an extruder die. The impregnation mass contains resin and gum arabic as binders. After the match cords have dried, they are cut into size; if they are to be used for larger fireworks, they receive an additional cover of paraffin-treated paper, and both ends are then tied. For additional safety, two Quickmatches are inserted into the paper sleeve.

Burning time is preset at between 30 to 100 s/m. A Quick match contained in paper tubes, is preset to a maximum of 40 m/s to avoid failure to ignition.

RDX

→ Cyclonite

Recommended Firing Current*)

Soll-Zündimpulse; ampèrage recommande our le mise à feu

Current that must be applied to bridgewire circuit to cause operation of device within specified time.

Recommended Test Current*)

Maximum current that can be applied to bridgewire circuit for extended period of time without degrading prime material.

Regressive Burning*)

Degressiver Abbrand; brûlage regressive

Condition in which mass flow produced by propellant grain decreases as web is consumed, due to decreasing area, decreasing burn rate, or both (→ *Progressive Burning Powder*).

* Text quoted from glossary.
Relay*)

An explosive train component that requires the required explosive energy to reliably initiate the next element in the train. Specifically applied to small charges that are initiated by a delay element, and in turn, cause the functioning of a detonator.

Reliability*)

Zuverlässigkeit

Statistical evaluation of probability of device performing its design function.

Resonance

→ Erosive Burning.

Restricted Propellant*)

Propellant grain having portion of its surface area treated to control burning.

Restrictor:

Material applied to selected areas of propellant charge to prevent burning in these areas.

RID

Abbreviation for “Règlement Concernant le Transport International Ferroviaires des Marchandises Dangereuses”. It contains the official regulations governing the haulage, admission, and packing for international railway traffic. → ADR are the corresponding regulations governing international motor traffic.

Table 26 shows the examination procedure as exemplified for the powder-form ammonium nitrate explosive Donarit 1 manufactured, in Germany.

* Text quoted from glossary.
Table 26. RID Test results of Donarit 1

<table>
<thead>
<tr>
<th>Composition Components in %</th>
<th>External Appearance and Texture</th>
<th>Storage at 75 °C (167 °F) (closed weighting bottles)</th>
<th>Behavior on being heated in Wood’s metal bath</th>
<th>Behavior when lit by a match</th>
<th>Behavior when thrown into a red-hot steel bowl</th>
<th>Behavior when heated inside a steel sheet box in a wood fire</th>
<th>Behavior when heated confined in a steel sleeve with escape diameter of:</th>
<th>Sensitivity under Fallhammer</th>
<th>Sensitivity under Fallhammer falling from a height of cm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium nitrate 80%</td>
<td>light-yellow fine-grained powder</td>
<td>weight loss after 2 days 0.2%; no nitrous gases</td>
<td>At 180 °C (365 °F) evolution of brown vapors; at 212 °C (414 °F) and 320 °C (608 °F) decomposition not accompanied by burning</td>
<td>ignition failed 5 times</td>
<td>ignition failed 5 times</td>
<td>catches fire and burns with a steady flame for 12/14/10 s</td>
<td>catches fire after 64–78 s; end of burning after 390–500 s; strongly hissing flame; the box bulges on all sides</td>
<td>2.0 mmØ: no explosion; t₁ = 16 s t₂ = 20 s 2.5 mmØ: no explosion</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>TNT 12%</td>
<td>nitroglycerine 6%</td>
<td>weight loss after 2 days 0.2%; no nitrous gases</td>
<td>At 180 °C (365 °F) evolution of brown vapors; at 212 °C (414 °F) and 320 °C (608 °F) decomposition not accompanied by burning</td>
<td>ignition failed 5 times</td>
<td>ignition failed 5 times</td>
<td>catches fire and burns with a steady flame for 12/14/10 s</td>
<td>catches fire after 64–78 s; end of burning after 390–500 s; strongly hissing flame; the box bulges on all sides</td>
<td>2.0 mmØ: no explosion; t₁ = 16 s t₂ = 20 s 2.5 mmØ: no explosion</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>wood meal 2%</td>
<td></td>
<td>weight loss after 2 days 0.2%; no nitrous gases</td>
<td>At 180 °C (365 °F) evolution of brown vapors; at 212 °C (414 °F) and 320 °C (608 °F) decomposition not accompanied by burning</td>
<td>ignition failed 5 times</td>
<td>ignition failed 5 times</td>
<td>catches fire and burns with a steady flame for 12/14/10 s</td>
<td>catches fire after 64–78 s; end of burning after 390–500 s; strongly hissing flame; the box bulges on all sides</td>
<td>2.0 mmØ: no explosion; t₁ = 16 s t₂ = 20 s 2.5 mmØ: no explosion</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>
Rifle Bullet Impact Test

Beschussprobe

is a USA standard test procedure for explosives of military interest. Approximately 0.5 pound of explosive is loaded in the same manner as it is loaded for actual use: that is, cast, pressed, or liquid in a 3-inch pipe nipple (2-inch inside diameter, 1/16-inch wall) closed on each end by a cap. The loaded item, in the standard test, contains a small air space which can, if desired, be filled by inserting a way plug. The loaded item is subjected to the impact of caliber 30 bullet fired perpendicularly to the long axis of the pipe nipple from a distance of 90 feet.

Rocket*\(^*\)

Rakete; roquette

Pressure vessel containing propellant, which, on being ignited, produces hot gases, which, in turn, are expelled through nozzle or nozzles to produce thrust.

Rocket Motor

Raketentriebwerk; moteur fusée; propulseur

The propulsion assembly of a rocket or → *Missile*. The driving force can be produced by burning liquid fuels in liquid oxidizers (liquid oxygen, nitric acid, or other oxidants such as liquid fluorine), by burning of solid propellants (→ *Solid Propellant Rockets*), by burning solid fuels in liquid oxidizers (→ *Hybrids*), or by catalytic decomposition of endothermal compounds (→ *Hydrazine*; → *Aerozin*; → *Aurol*).

Rocket Test Stand

Raketen-Prüfstand; banc d’essai

The test stand serves to determine the thrusts and pressures which develop during the combustion process (→ *Thrust Determination*). Since we are interested in the combustion behavior at different temperatures, the test stands are mostly equipped with warm and cold chambers for conditioning prior to testing. The design of some stands makes it possible to determine other thrust components (e.g., the side component in inclined nozzles) and torques.

* Text quoted from glossary.
Test stands may be designed for the engine to be tested in a vertical or in a horizontal position. Modern test stands are also equipped for environmental testing (e.g., temperature changes, vibration, impact, and drop tests).

Rotational Firing

Delay blasting system used so that the detonating explosives will successfully displace the burden into the void created by previously detonated explosives in holes, which fired at an earlier delay period.

Round Robin Test

Ringversuch

Round Robin tests are testing procedures, developed by the joint effort of several institutes in different countries, with the purpose of obtaining comparable results. Such international tests are particularly useful if they are recognized as binding acceptance tests in the sales of munition from one country to another.

SAFE & ARM

Device for interrupting (safing) or aligning (arming) an initiation train of an explosive device, i.e., bomb or warhead.

Safety Diaphragm

Berstscheibe; diaphragme de sécurité

Diaphragm, usually metal, that will rupture in the event that excessive gas generator chamber pressure develops.

Safety Fuses

Schwarzpulverzüindschnüre; mèches de sureté

Safety fuses are black powder cords with an external yarn winding adjusted to a definite combustion rate – usually 120 s/m. The purpose is to initiate to explosive charge by igniting the blasting cap of the primer. The fuse must be freshly cut in the plane perpendicular to its axis, and the plane of the cut must reach the ignition level of the cap.

* Text quoted from glossary.
Test stands may be designed for the engine to be tested in a vertical or in a horizontal position.

Modern test stands are also equipped for environmental testing (e.g., temperature changes, vibration, impact, and drop tests).

Rotational Firing*)

Delay blasting system used so that the detonating explosives will successfully displace the burden into the void created by previously detonated explosives in holes, which fired at an earlier delay period.

Round Robin Test

Ringversuch

Round Robin tests are testing procedures, developed by the joint effort of several institutes in different countries, with the purpose of obtaining comparable results. Such international tests are particularly useful if they are recognized as binding acceptance tests in the sales of munition from one country to another.

SAFE & ARM*)

Device for interrupting (safing) or aligning (arming) an initiation train of an explosive device, i.e., bomb or warhead.

Safety Diaphragm*)

Berschtscheibe; diaphragme de securité

Diaphragm, usually metal, that will rupture in the event that excessive gas generator chamber pressure develops.

Safety Fuses

Schwarzpulverzündschnüre; mâches de sureté

Safety fuses are black powder cords with an external yarn winding adjusted to a definite combustion rate – usually 120 s/m. The purpose is to initiate to explosive charge by igniting the blasting cap of the primer. The fuse must be freshly cut in the plane perpendicular to its axis, and the plane of the cut must reach the ignition level of the cap.

* Text quoted from glossary.
The length of the fuse will depend on the safety period required. The structure of the fuse comprises (proceeding from the fuse interior outwards) a black powder core with one or two marking threads, the color of which indicates the identity of the manufacturer, two or three layers of yarn wound around it (jute, cotton, or some other yarn), a bitumen impregnation, and a plastic coating.

The black powder contains 65–74% potassium nitrate, and its grain size is 0.25–0.75 mm. A 1-meter length of fuse contains about 4–5 g of powder.

A special type of safety fuse is employed in Switzerland. The core is a pyrotechnical composition in meal form, which is sheathed in paper strips and has a large number of textile threads around it.

SAFEX INTERNATIONAL

SAFEX INTERNATIONAL, a non-profit making organisation for producers of explosives and pyrotechnics, was founded in 1954. The aim of SAFEX is to encourage the exchange of experience in the explosive industry. The information gained from accidents and incidents leads to a better understanding and can help members avoid similar events.

SAFEX INTERNATIONAL has more than 80 members in 40 countries from all over the world (2001). The organisation is strictly non-political; all information is for SAFEX members only. Every member is obliged to notify the secretary of any accident or incident within the plant. The secretary then sends out this information to all members; any further clarification can be requested from the secretary, who will in turn contact the member concerned.

Every third year a Congress is organised for the presentation of papers on common themes by the members. Admission is for SAFEX members only. The next congress will be in 2002.

Sand Test

A performance test of an explosive, used in the USA. A known amount of the explosive is exploded in sand consisting of a single grain size (sieve) fraction; the magnitude determined is the amount of sand which passes a finer-meshed sieve following the fragmentation. The test descriptions follow:

(a) Sand test for solids.
A 0.4-g sample of explosive, pressed at 3000 psi into a No. 6 cap, is initiated by lead azide or mercury fulminate (or, if necessary, by lead azide and tetryl) in a sand test bomb containing 200 g of “on 30 mesh” Ottawa sand. The amount of azide of Tetryl that must be used to
ensure that the sample crushes the maximum net weight of sand, is
designated as its sensitivity to initiation, and the net weight of sand
-crushed, finer than 30 mesh, is termed the sand test value. The net
weight of sand crushed is obtained by subtracting from the total the
amount crushed by the initiator when shot alone.

(b) Sand test for liquids.
The sand test for liquids is made in accordance with the procedure
given for solids except that the following procedure for loading the test
samples is substituted:

Cut the closed end of a No. 6 blasting cap and load one end of the
cylinder with 0.20 g of lead azide and 0.25 g of tetryl, using a pressure
of 3000 psi to consolidate each charge. With a pin, prick the powder
train at one end of a piece of miner’s black powder fuse, 8 or 9 inches
long. Crimp a loaded cylinder to the pricked end, taking care that the
end of the fuse is held firmly against the charge in the cap. Crimp near
the mouth of the cap to avoid squeezing the charge. Transfer of
0.400 g of the test explosive to an aluminum cap, taking precautions
with liquid explosives to insert the sample so that as little as possible
adheres to the side walls of the cap; when a solid material is being
tested, use material fine enough to pass through a No. 100 U.S.
Standard Sieve. The caps used should have the following dimensions:
length 2.00 inches, internal diameter 0.248 inch, wall thickness
0.025 inch. Press solid explosives, after insertion into the aluminum
cap, by means of hand pressure to an apparent density of approx-
imately 1.2 g per cubic centimeter. This is done by exerting hand
pressure on a wooden plunger until the plunger has entered the cap to
a depth of 3.93 centimeters. The dimensions of the interior of the cap
are: height 5.00 cm, area of cross section 0.312 square centimeters.
Insert the cylinder containing the fuse and explosive charge to Tetryl
and lead azide into the aluminum cap containing the test explosive for
the determination of sand crushed.

Scaled Distance*)

* Text quoted from glossary.
Screw Extruder

Schneckenpresse; extrudeuse à vis

These shaping machines, which are commonly employed in the plastics industry, were introduced at an early stage of the manufacture of explosives and gunpowders.

Many cartridging machines for gelatinous explosives utilize double screws as conveyors, but pressures are not allowed to build up to significant values.

Screw extruders were also used for filling ammunition with powder-for explosives, since these can be compacted by the application of pressure.

Continuously charged, continuos operation horizontal screw extruders are employed, in particular, to impart the desired profile to → *Double Base Propellants* (e.g., shaping of tubes or special profiles for rocket propellants).

Secondary Blasting*)

Knäppern, pétardage de blocs

Blasting to reduce the size of boulders resulting from a primary blast (→ *Mud Cap*).

Secondary Explosives

Sekundär-Sprengstoffe; explosifs secondaires

Explosives in which the detonation is initiated by the detonation impact of an initial (primary) explosive. Accordingly, this definition includes all explosives used to obtain blasting effects.

Insensitive materials such as → *Ammonium Nitrate* or → *Ammonium Perchlorate* are classified as tertiary explosives.

Seismic Explosives

Seismische Sprengstoffe; explosifs sismiques

Seismic explosives produce the pressure impact during seismic measurements, which are carried out in prospecting for geological deposits, particularly oil horizons. Such explosives must detonate even under high hydrostatic pressures.

*) Text quoted from glossary.
For practical reasons, the shape of the cartridges must differ from the conventional: cartridges which can be coupled, canisters for effecting explosions in coastal areas, and canned blasting agents, which resist the water pressure in the boreholes even for several days (“sleeper charges”).

Seismocord

Trade name of detonating cord for use in seismic prospecting. Manufactured by DYNAMIT NOBEL, Troisdorf, Germany. The following types are available:

- Seismocord 12g/m or 56 grains/ft
- Seismocord 20 20g/m or 94 grains/ft
- Seismocord 40 40g/m or 188 grains/ft
- Seismocord 80 80 g/m or 378 grains/ft
- Seismocord 100 100 g/m or 470 grains/ft

Detonation velocities are between 6200 and 6800 m/s. All Seismocord types are also available as Seismocord HV with detonation velocities from 8000 to 8300 m/s.

Seismo-Gelit

Trade name of a sensitized gelatinous special explosive, distributed in Germany and exported by DYNAMIT NOBEL. It is used for seismic prospecting. The explosive can be supplied in sort plastic cartridges and in rigid plastic tubes threaded for coupling.

- density of cartridge: 1.6 g/cm³
- weight strength: 90 %
- detonation velocity at cartridge density, unconfined: 6000 m/s = 19700 ft/s

Seismograph*)

An instrument, useful in blasting operations, which records ground vibration. Particle velocity, displacement, or acceleration are generally measured and recorded in three mutually perpendicular directions.

* Text quoted from glossary.
Seismometer, Falling Pin

An instrument used to indicate relative intensity of ground vibration. It consists of a level glass plate on which a series of 1/4" diameter steel pins (6” to 15” lengths) stand upright inside of metal tubes. The use of the falling pin seismometer is based on the theory that the length of the pin toppled depends upon the amount of ground vibration present.

Seismopak

Trade name of explosives in layflat charges used in seismic prospecting for surface shooting in combination with Dynacord. Both products are manufactured and distributed by DYNAMIT NOBEL, Troisdorf, Germany.

Seismoplast 1

Trade name of a plastic, water-resistant cap-sensitive explosive used for seismic exploration under extreme conditions such as pressures up to 500 bar and temperatures as low as −40 °C. Manufactured and distributed by DYNAMIT NOBEL, Troisdorf, Germany.

- density: 1.54 g/cm³
- weight strength: 75%
- detonation velocity, unconfined: 7250 m/sec (23800 ft/sec).

Semigelatin Dynamites

Semigelatin dynamites are so named because of their consistency. These so-called semigelatins contain ammonium nitrate and wood meal as their main Components, and also 10–14% of a weakly gelatinized nitroglycerine.

Semtex

Trade name of a plastic explosive (→ Plastic Explosives) from the Czechoslovakian firm Synthesia, Pardubice-Semtin.

Semtex consists of → Pentaerythritol Tetrinitrate and styrene-butadiene copolymer as a plasticizer.

- detonation rate: 5000 m/s
Sensitivity

Empfindlichkeit; sensibilité

The sensitivity of an explosive to heat, mechanical stress, shock, impact, friction impact and detonation impact (initiability) determine its handling safety and its application potential.

All explosives are, intrinsically, sensitive to impact and shock. The introduction of additives – oil, paraffin etc. – may diminish the sensitivity to mechanical stress.

Testing methods ensuring uniform evaluation were developed accordingly. Some of them are included in the Railroad Traffic Regulations (→ RID), since certain sensitivity limits are clearly specified by law for the transportation of explosives within individual countries, as well as for international traffic. For details: → Friction Sensitivity; → Impact Sensitivity → Heat Sensitivity.

For the behavior or explosives at elevated temperatures, → Stability.

Series Electric Blasting Cap Circuit

Zündkreis in Serienschaltung; circuit de détonateurs, électrique couplés en série.

An electric blasting cap circuit that provides for one continuous path for the current through all caps in the circuit.

Series in Parallel Electric Blasting Cap Circuit

Zündkreis in Serien-Parallel-Schaltung; circuit combiné parallèle et en série

A combination of series and parallel where several series of caps are placed in parallel.

Also → Parallel Connection.

Setback*)

Rückstoß; recul

The relative rearward movement of component parts in a projectile, missile, or fuze undergoing forward acceleration during launching.

* Text quoted from glossary.
set forward

Relative forward movement of component parts which occurs in a projectile, missile, or bomb in flight when impact occurs. The effect due to inertia and is opposite in direction to setback.

Shaped Charges

Hollow Charges; Hohlladung; charge creuse

(→ also *Munroe Effect*)

A shaped charge is an explosive charge with a hollow space facing the target.

A rotationally symmetric shaped charge is an explosive charge with an axis of symmetry which acts preferentially in the direction of the rotational axis. Shaped charges lined in a rotationally symmetric manner can pierce steel sheets eight times as thick as the diameter of the charge.

Liners for shaped charges are made of inert material, usually a metal. The lining acts as an energy carrier, since the energy of the explosive charge is concentrated on a small cross-section of the target.

The detonation of the explosive charge causes the lining material to collapse and to converge in the axis of symmetry of the charge. During this process the colliding metal mass separates into a large mass portion moving slowly and a smaller mass portion moving forward at very high speed. Only the fast moving portion with its high kinetic energy produces the perforation effect in the target: It forms a jet of very small diameter and correspondingly high density of energy. The slow moving portion is left as a conglomerated molten slug after detonation.

The main parameters to characterise a lined shaped charge are the detonation velocity, the density of the explosive, the geometry of the detonation wave, the shape of the lining, the lining material and its wall thickness.

Cutting charge

A plane-symmetrical shaped charge (cutting charge) is an explosive charge with a hollow space, which acts longitudinally in the plane of symmetry (“roof-shaped” charges).

Plane charge

In a plane charge the opening angle of the conical liner is larger than 100°. When the explosive is detonated, the lining no longer converges into a jet in the axis of symmetry, so that no jet or slug can be formed out of the collapse point; rather, the lining is turned inside out. The
resulting sting is much thicker and much shorter with a weaker perforating power, but a larger perforation diameter than that made by a shaped charge.

Projectile-forming charge; self-forging fragment; EFP (explosively formed projectile)

In a projectile-forming charge, the geometry of the lining is such that all its elements have approximately the same velocity. The strength of the material is chosen so that it can easily absorb the residual differences in the velocities. In this way a projectile with a greater kinetic energy is obtained, which consist, roughly speaking, of the entire mass of the lining, and which can also be employed against distant targets.

The shaped-charge effect was first described in 1883. Shortly before the Second World War, *Thomanek* found that the piercing power of the shaped charge could be significantly increased by lining the hollow space.

The first theoretical treatment of the subject was by *Trinks* in 1943/44 in a report submitted by the Research Department of the German Army Weapons Command.

The first non-classified study on the subject was that by *Birkhoff Mac Dougall, Pugh* and *Taylor*: Explosives with Lined Cavities, J. Appl. Physics. Vol. 19, p. 563 (1948).

For the first non-classified study concerning an interpretation of jet extension and the attendant increase in the duration of the effect, see *Pugh, Eichelberger* and *Rostoker*: Theory of Jet Formation by Charges with Lined Conical Cavities. J. Appl. Physics, Vol. 23, pp. 532–536 (1952).

Sheathed Explosives

ummantelte Sprengstoffe; explosifs gainés

Permitted explosives which are enveloped in a special cooling “sheath”; they are now obsolete.

High-safety explosives, such as sheathed explosives, whose structure is nevertheless homogeneous, are known as “explosives equivalent to sheathed” (Eq. S.); → *Permissibles.*
Shelf Life*)

Lebensdauer; durée de vie

The length of time of storage during which an explosive material, generator, rocket motor, or component retains adequate performance characteristics under specified environmental conditions.

Shock Wave*)

Stoßwelle; onde de choc

Shot Anchor*)

A device that anchors explosive charges in the borehole so that the charge will not be blown out by the detonation of other charges.

Shot Firer*)

Sprengmeister; boutefeu

That qualified person in charge of and responsible for the loading and firing of a blast (same as a → *Blaster*).

Shunt*)

A short-circuiting device provided on the free ends of the leg wires of electric blasting caps to protect them from accidental initiation by extraneous electricity.

Silver Acetylide

silver carbide; Silberkarbid; Acetylsilber; acétyleur dargent

\[\text{C}_2\text{Ag}_2 \]

- molecular weight: 239.8
- oxygen balance: -26.7%
- deflagration point: 200 °C = 392 °F

* Text quoted from glossary.
Silver carbide is very sensitive to impact. It is prepared by bubbling acetylene through a slightly acidic or neutral silver nitrate solution.

Silver Azide

Silberazid; azoture dargent

\[\text{AgN}_3 \]

- molecular weight: 149.9
- nitrogen content: 28.03 %
- volume of detonation gases: 224 l/kg
- density: 5.1 g/cm³
- melting point: 251 °C = 484 °F
- lead block test: 115 cm³/10 g
- deflagration point: 273 °C = 523 °F

Silver azide is sensitive to light, insoluble in water, and soluble in ammonia, from which it can be recrystallized. It is prepared from sodium azide and solutions of silver salts (depending on the working conditions) as a cheesy, amorphous precipitate.

It gives a very satisfactory initiating effect which is superior to that of lead azide. Nevertheless, its practical use is limited, because of its high sensitivity to friction, and because its particular texture makes the dosing difficult.

Silvered Vessel Test

In this testing procedure to propellant sample (about 50 g) is heated in a insulating Dewar vessel, and the rise in temperature produced by the heat of decomposition of the powder is determined. The powder sample is heated to 80 °C (176 °F); the time is determined in which the powder reaches 82 °C (180 °F) by its own heat development on decomposition.

Frey’s variant of the silvered vessel test has been in use in the Germany In its variant, different amounts of heat are supplied to the electric heating elements mounted inside the Dewar flask, and the temperature differences between the interior of the Dewar vessel and the furnace are measured by thermocouples. A calibration curve is plotted from the values thus obtained, and the heat of decomposition of the propellant is read off the curve. In this way, the decomposition temperature at a constant storage temperature can be determined as a function of the storage time, and the heat of decomposition of the propellants can thus be compared with each other. If the measurements are performed at different storage temperatures, the tempera-
ture coefficient of the decomposition rate can be calculated. (→ also Differential Thermal Analysis.)

Silver Fulminate

Knallsilber; fulminate dargent

\[
\text{CNOAg}
\]

- white, crystalline powder
- molecular weight: 149.9
- oxygen balance: –10.7%
- nitrogen content: 9.34%

Silver fulminate is prepared by the reaction employed in the preparation of → *Mercury Fulminate*, i.e., by reacting a solution of silver in nitric acid with alcohol. Like mercury fulminate, it is also toxic.

Silver fulminate is much more sensitive than mercury fulminate. Since its detonation development distance is very short, its initiation effect is superior to that of mercury fulminate, but the compound is too sensitive to be used commercially.

An altogether different product, known as *Berthollet’s* detonating silver (which is not a fulminate), is obtained when a solution of freshly precipitated silver oxide in ammonia is allowed to evaporate. Its probable formula is Ag₃N. It is highly sensitive and explodes even during the evaporation of the ammoniacal solution.

Single Base Powders

Nitrocellulose-Pulver; poudre à simple base

Such powders mainly consist of nitrocellulose and stabilizers as well as other additives such as dinitrotoluene in some formulations. Nitrocellulose is gelatinized with the aid of solvents, mostly etheralcohol mixtures, and additives are incorporated and gelatinized by prolonged kneading. The mixture is shaped into tubes, perforated tubes, flakes, etc., by extrusion and cutting, and the solvents are removed by evaporation, displacement by warm water, vacuum drying, etc., and the material is surface-treated. The purpose of the surface treatment is to let phlegmatization agents diffuse into the material, thus retarding the combustion rate in the surface layers and to attain a progressive burning rate (→ Progressive Burning Powders).
SINCO® Ignition booster and gas mixture for motor vehicle safety

SINCO® was developed by the Dynamit Nobel GmbH Company as an environmentally compatible and particularly stable class of substances for rapid gas evolution. It involves a pyrotechnic gas mixture based on nitrogen-rich fuels and oxygen carriers as reactants. A solid combustion residue consisting essentially of alkali carbonates, nontoxic gas products consisting of nitrogen, water vapour, carbon dioxide and oxygen together with heat are liberated during the reaction between fuels and the oxygen carriers.

The gas mixtures themselves are free from heavy metals and have high toxicological compatibility. In the acute oral toxicity test carried out according to the EU Directive, the LD$_{50}$ value was greater than 2500 mg/kg.

In addition the pyrotechnic mixtures are characterised by high thermal stability. This is also necessary in order to guarantee a constant reaction characteristic over a long period of time and even after thermal stressing.

Stable reaction of the mixtures is possible only with tamping. This property reduces the potential risk that may occur in the event of improper handling or possible misuse.

Because of its properties, SINCO® is suitable for personal protection in passive safety systems in motor vehicles. In addition to the use of SINCO® in pressure elements for seat-belt tensioners or lock tensioners, the gas mixture is also suitable for driver and passenger gas generators. In this case the mixture also performs the function of a booster charge in the igniter elements of the gas generators in addition to the main task of gas evolution.

The proportion of solids formed, which can be controlled via the composition of the mixture, promotes the process of tablet ignition in the gas generator combustion chamber.

SINOXID Primer Composition

SINOXID is the trademark used for the traditional primer compositions of DYNAMIT NOBEL AG. The formulation was developed by Rathsburg and Herz and patented as tetracenetricinate primer composition in 1928.

The term SINOXID is made up of “sine” and “oxide” and means “without rust”. It underlines the fact that this composition is not susceptible to corrosion as against mercury fulminate – potassium chlorate mixtures. SINOXID compositions consist of the following components:
Lead tricinate, → tetracene, → Barium Nitrate, lead dioxide, antimony trisulfide and calcium silicide. These components meet all requirements currently applied in ammunition technology. SINOXID compositions feature very good chemical stability and storage life, they are abrasion-, erosion- and corrosion-free and ignite propellants with precision.

SINTOX Primer Composition

SINTOX is the international registered trademark for newly developed primer compositions of DYNAMIT NOBEL AG. They are required if the ambient air in closed firing ranges must not be polluted with combustion products containing lead, antimony or barium.

→ Diazodinitrophenol or the newly developed strontium diazodinitroresorcinate are used as initial explosives. Special types of → Zinc Peroxide are used as oxidizers. Additionally, the primer compositions may contain substances like titanium. → Tetracene may also be required as a sensitizer.

For the primer composition, the residual content of lead, barium or antimony compounds is smaller than 0.01%. Zinc is emitted as non-toxic zinc oxide.

In terms of corrosion and erosion, SINTOX primer compositions behave like → SINOXID Primer Compositions. There is no adverse effect on hit accuracy.

Skid Test

This test is intend to simulate a bare explosive charge accidentally hitting a rigid surface at an oblique angle during handling. An uncased hemispherical charge, 254 mm in diameter, is dropped in free fall onto a rigid target. In a second version, the charge swings down in a harness on the end of a cable and strikes the target at a predetermined angle*).

Slurries

Sprengschlämm; bouillies

Slurries consist of saturated aqueous solutions of ammonium nitrate (saturated ammonium nitrate solution at 20 °C = 68 °F contains about 65% NH₄NO₃) and other nitrates, which also contain additional

amounts of undissolved nitrates in suspension and fuels which take up the excess oxygen of the nitrate; the structure of the nitrate solution can be significantly effected by added thickeners (e.g., → Guar Gum) and cross linking agents (e.g., borax). The most important fuel is aluminum powder; Water soluble fuels such as glycol can also be employed; the nitrates may also include nitrates of organic amines, e.g. → Methylamine Nitrate (MAN).

Slurries may contain sensitizing additives (e.g. TNT; PETN, etc.); sensitization can also be achieved by introducing finely dispersed air bubbles, e.g. by introducing air-filled → Microballoons (in this form the bubbles will not be compressed by static pressure). Sensitized slurries can be cap-sensitive and may detonate even when the diameter of the bore-hole is small; → Emulsion Slurries. Sensitized explosive slurries in the form of cartridges can be utilized in boreholes of conventional and large diameters. In addition, explosive slurries may be pumped into large boreholes.

Addition of rock salt, which reduces the detonation temperature (→ Permissibles), may impart a certain degree of safety against fire-damp to the slurry explosives.

Slurrit

Trade name for slurry blasting agents distributed in Norway be DYNO; → Slurries Slurrit 5 is cartridge in large-hole dimensions. Slurrit 110 and 310 are mixed on site and pumped into the borehole by special trucks. Non cap sensitive, best initiation by cast booster.

| density: 1.25 g/cm³ |

Small Arms Ammunition Primers

Anzündhütchen; amorces

Small percussion-sensitive explosive charges, encased in a cap and used to ignite propellant powder (→ Percussion Cap).

Snakehole

Sohlenbohrloch; trou de fond

A borehole drilled in a slightly downward direction from the horizontal into the floor of a quarry. Also, a hole driven under a boulder.

* Text quoted from glossary.
Sodatol

Pourable 50:50 mixture of sodium nitrate with→TNT

Sodium Chlorate

Natriumchlorat; chlorate de sodium

\[\text{NaClO}_3 \]

- Molecular weight: 106.4
- Oxygen balance: +45.1%
- Density: 2.48 g/cm³
- Melting point: 248 °C = 478 °F

Sodium chlorate, though containing more oxygen than potassium chlorate, has the disadvantage of being more hygroscopic. Like all other chlorates, it must not be used in contact with ammonium salts and ammonium nitrate explosives.

Its practical significance in explosives is very limited.

Sodium Nitrate

Natronsalpeter; Natriumnitrat; nitrate de soidum; SN

\[\text{NaNO}_3 \]

- Colorless crystals
- Molecular weight: 85.0
- Energy of formation: $-1301 \text{ kcal/kg} - 5443 \text{ kJ/kg}$
- Enthalpy of formation: $-1315 \text{ kcal/kg} - 5503 \text{ kJ/kg}$
- Oxygen balance: +47.1%
- Nitrogen content: 16.48%
- Density: 2.265 g/cm³
- Melting point: 317 °C = 603 °F

The salt is hygroscopic, readily soluble in water, less so in ethanol, methanol, and glycerin. It is used in industrial explosives and in 8-black blasting powder as an oxidizer.

Specifications

- Net content (by nitrogen determination in Lunges nitrometer): not below 98.5%
- Moisture: not more than 0.2%
- Insolubles in water: not more than 0.05%
- \(\text{NH}_4\text{-, Fe-, Al-, Ca-, Mg- and K-salts} \): none
- \(\text{NaCl} \): not more than 0.02%
- \(\text{Na}_2\text{SO}_4 \): not more than 0.2%
- Reaction: neutral
- Abel test 80 °C (176 °F): not under 30 min
Sodium Perchlorate

Natriumperchlorat; perchlorate de sodium

\[\text{NaClO}_4 \]

- colorless crystals
- molecular weight: 122.4
- oxygen balance: +52.3 %
- density: 2.5 g/cm³
- melting point: 482 °C = 900 °F (anhydrous product)

Sodium perchlorate is hygroscopic and is readily soluble in water and alcohol.

Soil Grain Powder

Weichkornpulver poudre à grain souple

Type of → *Black Powder* for firework manufacture. Soft grain powder is not compacted in hydraulic presses.

Solid Propellant Rockets

Feststoff-Raketen; roquettes à propergol solide

Unlike liquid fuel rockets, these rockets operate on homogeneous solid propellants. Following ignition, the propellant charge burns, and it is not possible to interrupt or to control the combustion process (for certain possibilities in this respect → *Hybrids*). The course and the rate of the combustion process may be modified by suitable shaping of the charge (front of cigarette burner, internal burner, all-side burner, and charges with special configurations), by varying its composition and grain size, and by incorporating special accelerating or retarding additives. The propellant charge must be carefully examined for cracks, since in their presence the combustion will not proceed uniformly. If case-bonded charges are employed, adequate cohesion between the wall of the combustion chamber and the propellant charge (→ *Case Bonding*) must be ensured.

The advantages of solid rockets are the short time needed for the actuation, long storage life, and a simple design.

The burning process in the rocket motor is influenced by:

- the thermodynamic performance values of the propellant (→ *Thermodynamic Calculation of Decomposition Reactions*), the burning characteristics of the propellant grain (→ *Burning Rate*), depending on its shape, and by the pressure influence on the burning rate. The pressure exponent can be zero in the case of modern propellants ("Pla-
teau”, “Mesa”, \(\rightarrow\) Burning Rate). The pressure function of the burning rate cannot be described by a universal equation, but within smaller pressure ranges the equation of Saint-Robert or Vieille equation is applicable:

\[
r = a \, p^a
\]

(1)

\(r\): rate of burning normal to the burning surface

\(p\): pressure

\(a\): pressure exponent

\(a\): constant

(\(\rightarrow\) also Burning Rate, Charbonnier equation.) At any time during the reaction, equilibrium must exist between the gas produced

\[
r \cdot f_T \cdot \rho
\]

(2)

\(f_T\): burning surface

\(\rho\): density of propellant

and the gas discharged through the nozzle

\[
p \cdot f_m \cdot C_D
\]

(3)

\(f_m\): nozzle cross section

\(C_D\): mass flow coefficient

The ratio \(f_m/f_T = \) nozzle cross section to the burning surface at any time is called \(\rightarrow\) Propellant Area Ratio (“Klemmung”) \(K\); the equations (2) and (3) are considered to be equal: equation (1) can be rearranged to

\[
p = \frac{a}{C_D} \rho K \frac{1}{1-a}
\]

(4)

Equation (4) allows plotting of the gas pressure-time diagram, if \(a\), \(C_D\) and \(a\) are known and the course of the propellant area ratio \(K\) with the burning time can be assumed. Modification of the pressure-time diagram may be caused by the pressure falling off along the propellant grain (Bernoulli’s equation), by \(\rightarrow\) Erosive Burning, by the igniter system, and by irregular combustion of the remaining propellant. The thrust-time diagram (\(\rightarrow\) Thrust, Thrust Determination) can be derived from the pressure-time diagram obtained from equation (4).

Spacing*)

Bohrlochabstand; distance entre trous

The distance between boreholes measured parallel to the free face toward which rock is expected to move.

*) Text quoted from glossary.
Spark Detonators

Spaltzünder; amorce électrique à l’étincelle

Spark detonators, like bridgewire detonators, were employed in the past to produce electric initiation of explosive charges. The priming charge itself, containing current conducting additives, served as a current conductor through the priming pill itself. Relatively high voltages were required to produce the ignition, so that such devices were safe from stray currents.

Spark detonators have now been substituted by → Bridgewire Detonators. If there is danger of stray currents, low-sensitivity primer types are employed, which can be actuated only by a strong current pulse.

Special Effects

These are special arrangements for the simulation of dangerous events in the military, western, and science fiction scene in motion pictures and television programmes.

Frequently, specially designed fireworks are used for creating these effects, e.g. tiny detonators (→ Bullet Hit Squib) for the simulation of bullet impacts.*

Specific Energy

spezifische Energie; force

The specific energy of an explosive is defined as its working performance per kg, calculated theoretically from the general equation of state for gases:

\[f = pV = nRT \]

where \(p \) is the pressure, \(V \) is the volume, \(n \) is the number of moles of the explosion gases per kg (*also Volume of Explosive Gases*), \(R \) is the ideal gas constant, and \(T \) is the absolute temperature of the explosion.

If we put the volume equal to unity, i.e., if the loading density is unity, the specific energy becomes

\[f = p \]

i.e., is equal to the pressure which would be exerted by the compressed explosion gases in their confinement, if the latter were indestructible. This is why the term “specific pressure” is also frequently used, and why the magnitude \(f \) is often quoted in atmospheres.

Clark, Frank F., Special Effects in Motion Pictures, Society of Motion Picture and Television Engineers, Inc., 862 Scarsdale Avenue, Scarsdale, N.Y. 10583, Second Printing 1979.
Nevertheless, strictly speaking, \(f \) is an energy value and for this reason is reported in meter-tons per kg. The value of \(t \) will have this dimension if \(R \) is taken as \(0.8479 \cdot 10^{-3} \text{ mt} \cdot \text{K} \cdot \text{mol} \).

In accordance with recent standardisation regulations, the energy data are also reported in joules. For more details on the calculation → Thermodynamic Calculation of Decomposition Reactions; also → Strength.

Specific Impulse

spezifischer Impuls; impulse spécifique

The specific impulse of a propellant or a pair of reacting liquids in rocket motors is the most important characteristic of the performance. It is the → Thrust \(\times \) time (i.e., the impulse) per unit weight of propellant:

\[
I_s = \frac{F \cdot t}{W}
\]

\(I_s \) specific impulse
\(F \): thrust
\(T \): time
\(W \): weight of propellant

It is measured in kilopond-seconds (or Newton-seconds) per kilogram of propellant*. It can be evaluated by the equation

\[
I_s = \sqrt{2J(H_c-H_e)} \quad \text{N s/kg}
\]

\(J \): mechanical heat equivalent
\(H_c \): enthalpy of the reaction products
Unit:
\(\text{in the rocket} \quad \text{kcal/kg} \)
\(\text{chamber} \)
\(\text{at chamber pressure and chamber temperature} \)
\(H_e \): enthalpy of the reaction products at the nozzle
\(\text{kcal/kg} \)
\(\text{exit} \).

The equation can be solved with the aid of computers, considering various equilibrium reactions; → Thermodynamic Calculation of Decomposition Reactions.

The relation of the specific impulse to the temperature of the reaction gas in the rocket chamber is

\[
I_s = k_1 \sqrt{T_c \cdot N} = k_2 \sqrt{\frac{T_c}{M}}
\]

* Since the numerical values of kp and kg are the same, the apparent dimension of the specific impulse is simply the second. For this reason, all impulse data can be directly compared with each other, even if other unit systems are employed.
T_c: flame temperature in the chamber

N: number of moles per weight unit

M: average molecular weight of the flame gases

k_1, k_2: constants

The value for the specific impulse is high if the reaction heat is high and produces a high flame temperature, and if the average molecular weight of the reaction products is low. Data concerning specific impulses are only comparable if they refer to the same working pressure in the combustion chamber; a frequently employed standard value is 1000 lbs/sq. in. approx. 70 bar in test chambers.

Sprengel Explosives

Explosives which are compounded only at the site of utilization by mixing (impregnating) a solid oxidizer (chlorates) with a liquid fuel, as is done today in certain mines with → ANFO blasting agents. It is interesting to note that this suggestion was made as early as 1873. Sprengel explosives were used only for a short period of time. Since it was practically impossible for each individual mixing operation to achieve the accuracy of the composition and the intimate intermixing of components which are required to obtain a satisfactory blasting effect. The Miedziankit method (90% potassium chlorate, 10% petroleum) was the variant most extensively used at that time.

Springing*)

Vorkesseln; agrandissement par explosion

The practice of enlarging the bottom of a blast hole by the use of a relatively small charge of explosive material. Typically used in order that a larger charge of explosive material can be loaded in a subsequent blast in the same borehole.

Squib*)

Anzünder; allumeur (électrique)

Used in a general sense to mean any of the various small size pyrotechnic or explosive devices. Specifically, a small explosive device,

* Text quoted from glossary.
similar in appearance to a detonator, but loaded with low explosive, so that its output is primarily heat (flash). Usually electrically initiated and provided to initiate the action of pyrotechnic devices and rocket propellants. An electric squib is a tube containing a flammable material and a small charge of powder compressed around a fine resistance wire connected to electrical leads or terminal (→ Initiator, → Bullet Hit Squib).

Stability

Schaft; stabilité

A distinction must be made between chemical and physical stability. While physical stability is important, particularly in the evaluation of solid propellants, the chemical stability is of prime importance in the estimation of the course of decomposition of nitrate esters. The nitrate esters which are processed for use as propellants – unlike nitro compounds, which are relatively stable under these conditions – undergo a steady decomposition, which is due to imperfect purification of the starting materials and to the effect of other parameters such as temperature and air humidity. The rate of this decomposition is autocatalyzed by the acidic decomposition products and may in certain cases produce spontaneous ignition. In order to reduce the decomposition rate as much as possible, suitable stabilizers are added to the powders, which are capable of accepting the acid cleavage products with formation of the corresponding nitro compounds (→ Stabilizers). The stability is controlled by means of several tests (→ Hot Storage Tests).

A distinction must be made between tests of short duration, in which the possible decomposition reactions are accelerated by a considerable rise in temperature, and the so-called service-life tests or surveillance tests, which take place over several months and may sometimes take more than a year. Short-duration tests alone do not suffice for a reliable estimate of the stability, at least where imperfectly known products are concerned.

An estimation of the probable → Shelf Life of aged propellants can be made by chromatography*). If e.g. diphenylamine is used as a stabilizer, the transformation into the nitro derivatives up to hexanitrodiphenylamine can be analysed; if this stage is reached, decomposition of the powder occurs.

Stabilizers

Stabilisatoren; stabilisateurs

Stabilizers are generally defined as compounds which, when added in small amounts to other chemical compounds or mixtures, impart stability to the latter.

In propellant chemistry, especially so in the case of nitrocellulose-containing powders, the stabilizers employed are compounds which, owing to their chemical structure, prevent the acid-catalyzed decomposition of nitrocellulose, nitroglycerine, and similar nitrate esters.

They exert their stabilizing effect by binding the decomposition products, such as the free acid and nitrous gases; the stabilizers themselves are converted into relatively stable compounds at the same time. Neither stabilizers nor their secondary products should give a chemical reaction (saponification) with nitroglycerine or nitrocellulose. Compounds used as stabilizers are mostly substitution products of urea and diphenylamine. Readily oxidizable compounds – higher alcohols, camphor, unsaturated hydrocarbons (vaselines) – may also be employed. For such compounds to be effective, their homogeneous incorporation into the powder must be easy, they must not be too volatile, and must not be leached out by water. Many stabilizers also display plasticizing (gelatinizing) properties; accordingly, they have both a stabilizing effect and – in the manufacture of powders – a gelatinizing (softening) effect.

Pure stabilizers include:
- diphenylamine
- Akardite I (asym-diphenylurea)

Stabilizers with a gelatinizing effect include:
- Centralite I (sym-diethylidiphenylurea)
- Centralite II (sym-dimethyldiphenylurea)
- Centralite III (methylethylidiphenylurea)
- Akardite II (methyldiphenylurea)
- Akardite III (ethyldiphenylurea)

Substituted urethanes:
- ethyl- and methylphenylurethanes
- diphenylurethane

Pure gelatinizers, without a stabilizing effect, include:
- dibutyl phthalate
- diamyl phthalate
- camphor

For formulas and properties see appropriate keywords.
Stemming

Besatz; bourrage

In mining, “stemming” refers to the inert material used to plug up a borehole into which the explosive charge has been loaded. The “classical” stemming materials are mud or clay noodles. Stemming brings about more economical utilization of the explosive charge, provided the explosive columns employed are short and the detonation is effected at the mouth of the borehole. Stemming is mandatory if there is any danger of firedamp. The strongest stemming is not necessarily the best; if the stemming is too strong, deflagration may take place. In coal mining water stemming cartridges proved to be the best; they are plastic tubes filled with water or water gel and closed at both ends, which are easily inserted into the borehole, do not stem too strongly, and make a significant contribution to the settling of dust and fumes. → also Confinement.

Storage*)

Lagerung; magasinage

The safe keeping of explosive materials, usually in specially designed structures called Magazines.

Stray Current Protection

Streustromsicherheit; protection contre les courants vagabonds

The increasingly large consumption of electric current has resulted in intensified stray currents. The stray current safety of an electric primer is the maximum current intensity at which the glowing wire just fails to attain the ignition temperature of the charge in the primer. To improve protection against stray currents, the “A” bridgewire detonators, which were formerly used in Germany have now been replaced by the less sensitive “U” detonators (→ Bridgewire Detonators).

*) Text quoted from glossary.
Strength

Arbeitsvermögen; force

Also → *Bulk Strength, Weight Strength.*

The performance potential of an explosive cannot be described by a single parameter. It is determined by the amount of gas liberated per unit weight, the energy evolved in the process (→ *Heat of Explosion*), and by the propagation rate of the explosive (detonation velocity → *Detonation*). If an explosive is to be detonated in a borehole, the relevant parameter is its “strength”; here the criterion of the performance is not so much a high detonation rate as a high gas yield and a high heat of explosion. If, on the other hand, a strong disintegration effect in the nearest vicinity of the detonation is required, the most important parameters are the detonation rate and the density (→ *Brisance*).

A number of conventional tests and calculation methods exist for determining the comparative performance of different explosives. The determinations of the detonation rate and density require no conventions, since they are both specific physical parameter.

Lead block test and ballistic mortar test

Practical tests for comparative strength determination are the lead block test and the declination of a ballistic mortar. In both cases relatively small amounts of the explosive (of the order of 10 g) are initiated by a blasting cap. In the lead block test, the magnitude measured is the volume of the pear-shaped bulge made in the block borehole by the sample introduced into it; in the ballistic mortar test, the magnitude which is measured is the deflection angle; this angle is taken as a measure of the recoil force of a heavy steel weight suspended as a pendulum bob, after the exploding cartridge has fired a steel projectile out of a hole made in the bob. The performance of the explosive being tested is reported as the percentage of that of → *Blasting Gelatin*, which is conventionally taken as 100% (For further details → *Ballistic Mortar*). In both cases the explosive is enclosed in a confined space, so that, for all practical purposes, the parameter measured is the work of decomposition of an explosive in a borehole. The disadvantage of both methods is that the quantity of the sample used in the test (exactly or approximately 10 g) is quite small, and for this reason accurate comparative data can be obtained only with more sensitive explosives; less sensitive materials require a longer detonation development distance (→ *Detonation*), within which a considerable proportion of the 10-g sample does not fully react. Practical methods for determining the performance of explosives requiring much larger samples (up to 500 g) include the following.
Jumping mortar test

Two halves with finely ground surfaces fitting exactly onto one another form a mortar with a borehole. One of the halves is embedded in the ground at a 45° angle, while the other half is projected like a shot, when the explosive charge is detonated in the hole; the distance to which it has been thrown is then determined. A disadvantage of the method is that when high-brisance explosives are tested, the surfaces must be reground after each shot. The method gives excellent results with weaker → Permitted Explosives.

Vessel mortar test

This test is also based on the determination of the range distance of a heavy projectile. The explosive is suspended in a thick-walled vessel, and an accurately fitting cap of the vessels is projected. This apparatus is stronger, and the weight of the charge may be made as large as 500 g.

Large lead block test

The device consists of a lead block with linear dimensions three times as large as normal. The block has been used to obtain information about slurries; the method is too expensive for practical work, since more than one ton of lead must be cast for each shot.

The crater method

This method is based on the comparison of the sizes (volumes) of the funnels produced in the ground by underground explosions. It is used for explosives with a large critical diameter only if no other method is available, since it is inaccurate and the scatter is large.

→ Aquarium Test

The sample is exploded under water (in a natural water reservoir or in a man-made pool), and the pressure of the resulting impact wave is measured with the aid of lead or copper membranes.

→ Specific Energy

For calculations of performance parameters of explosives → Thermo-dynamic Calculation of Decomposition Reactions. As far as the strength of propellants and explosives is concerned, the most relevant thermodynamically calculable parameter is the → Specific Energy. This is the amount of energy which is released when the gases in the body of the explosive (assumed to be compressed in their initial state) are allowed to expand at the explosion temperature while performing
useful work. In order to illustrate the working performance obtainable from explosive materials, this magnitude is conventionally reported in meter-tons per kilogram; in this book, it is also given in joules (J).

The calculated values of the specific energy agree well with the performance data obtained by conventional tests. This is particularly true of the tests in which larger samples are employed, but the apparatus required for such tests is nor always available, and the tests themselves are relatively expensive.

The following empirical formula relating the specific energy to the relative weight strength is valid in most cases:

weight strength (%) = 0.0746×spec. energy (in mt/kg)
The relationship between the size of the lead block excavation and the specific energy is not linear. The true relationship may be seen in Fig. 22 (representation of experimental results).

The relationship between weight strength and the coefficient d’utilisation pratique (c.u.p) used in France (→ Lead Block Test) can be given by the empirical formula weight strength (%) = 0.645×(%) c.u.p. and (%) c.u.p. = 1.55×(%) weight strength.

Strontium Nitrate

Strontium nitrat; nitrate de strontium

\[\text{Sr(NO}_3\text{)}_2 \]

colorless crystals
molecular weight: 211.7
oxygen balance: +37.8%
nitrogen content: 13.23%

Strontium nitrate is used in pyrotechnics as a flame-coloring oxidizer for red-colored fireworks.

Styphnic Acid

trinitroresorcinol; 2,4,6-trinitro-1,3-dihydroxybenzene; Trinitroresorcin; trinitrorésorcinol; acide styphnique; Trizin; TNR

![Styphnic Acid molecule](image)

yellow-brown to red-brown crystals
empirical formula: C₆H₃N₃O₈
molecular weight: 245.1
energy of formation: −493.1 kcal/kg = −2063.1 kJ/kg
enthalpy of formation: −510.0 kcal/kg = −2133.8 kJ/kg
oxygen balance: −35.9%
nitrogen content: 17.15%
volume of explosion gases: 814 l/kg
heat of explosion
(H₂O liq.): 706 kcal/kg = 2952 kJ/kg
(H₂O gas): 679 kcal/kg = 2843 kJ/kg
specific energy: 89 mt/kg = 874 kJ/kg
density: 1.83 g/cm³
melting point: 176 °C = 349 °F
lead block test: 284 cm³/10 g
deflagration point: 223 °C = 433 °F
impact sensitivity: 0.75 kp m = 7.4 N m
friction sensitivity: at 36 kg = 353 N
pistil load no reaction

critical diameter of steel sleeve test: 14 mm

Trinitroresorcinol is prepared by dissolving resorcinol in concentrated sulfuric acid and nitrating the resulting solution with concentrated nitric acid. It is a relatively weak explosive. Its lead salt (→ Lead Styphnate) is used as an initiating explosive.

Substainer Charge

Component (optional) of ignition system (train) that maintains operating pressure until thermal equilibrium is obtained.

Sulfur

Schwefel; soufre

S

atomic weight: 32.07
melting point: 113 °C = 235 °F
boiling point: 445 °C = 833 °F
density: 2.07 g/cm³

Sulfur is used with charcoal as a fuel component in → Black Powder. Sublimated sulfur is not completely soluble in carbon sulfide and contains traces of sulfuric acid; the use of sublimated sulfur for black powder production is therefore not permitted.

Table 27. Specification

<table>
<thead>
<tr>
<th></th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>CS₂-insolubles:</td>
<td>0.5%</td>
</tr>
<tr>
<td>not more than net content:</td>
<td>99.5%</td>
</tr>
<tr>
<td>moisture:</td>
<td>0.20%</td>
</tr>
<tr>
<td>not more than ashes:</td>
<td>0.10%</td>
</tr>
<tr>
<td>acidity, as H₂SO₄:</td>
<td>0.01%</td>
</tr>
<tr>
<td>not more than sulfate, as Na₂SO₄:</td>
<td>–</td>
</tr>
<tr>
<td>chloride, as NaCl:</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

* Text quoted from glossary.
Supercord 40 and Supercord 100

Trade names of → *Detonating Cords* containing 40 and 100 g PETN/m distributed in Germany and exported by DYNAMIT NOBEL. It is covered with red-colored plastic. It is used for the initiations of ANFO blasting agents and for → *Contour Blasting*.

Surface Treatment

Oberflächenbehandlung; traitement de surface

When gunpowder burns in the chamber of a weapon, the internal-ballistic energy of the powder charge is best exploited if the gas pressure is kept constant almost up to the emergence of the projectile from the barrel, despite the fact that the gas volume keeps growing larger during that period, owing to the movement of the projectile. It follows that gas evolution from the powder charge should be slow at first, while towards the end of the combustion process, it must be quicker ("progressive burning"). This is achieved mainly by imparting a suitable shape to the powder granule (in a seven-hole powder, the surface area increases during combustion, and the combustion is therefore progressive); progressive combustion is also enhanced to a considerable extent by surface treatment, i.e., by allowing phlegmatizing, combustion-retarding substances (such as Centralit, dibutyl phthalate, camphor, dinitrotoluene, etc.) to soak into the powder. A careful surface treatment is an excellent way of keeping the maximum pressure peak of the combustion curve low.

Susan Test*)

The Susan Sensitivity Test is a projectile impact test. The explosive to be tested is loaded into a projectile shown in Fig. 23 and thrown against a steel target. The reaction on impact is recorded by measuring the shock wave pressure by a gauge 10 ft (3.1 m) away. The percentage of the reaction (0 = no reaction; 40 = fast burning reactions; 70 = fully reacted TNT; 100 = detonation) is plotted against the projectile velocity (0 to 1600 ft/s = 488 m/s). → *Plastic Explosives* with rubberlike binders give better results than cast RDX/TNT mixtures.

Information, results, and figure obtained from Brigitta M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, publication UCEL-51319, University of California, Livermore.
Fig. 23. The Susan projectile.

Fig. 24. Test results.

Sympathetic Propagation

→ *Detonation, Sympathetic Detonation*
Tacot

tetranitrodibenzo-1,3a,4,6a-tetrazapentalene;
tétranitrodibenzo-tétraza-pentaléne

![Chemical structure of Tacot]

- Orange red crystals
- Empirical formula: C_{12}H_4N_8O_8
- Molecular weight: 388.1
- Oxygen balance: -74.2%
- Nitrogen content: 28.87%
- Melting point (under decomposition): $378 °C = 712 °F$
- Density: 1.85 g/cm^3
- Heat of detonation, experimental (H₂O liq.)*: $980 \text{ kcal/kg} = 4103 \text{ kJ/kg}$
- Detonation velocity, confined: $7250 \text{ m/s} = 23800 \text{ ft/s}$ at $\rho = 1.64 \text{ g/cm}^3$
- Impact sensitivity: $7 \text{ kp m} = 69 \text{ N m}$

(Quoted from the prospectus leaflet of DU PONT.)

The compound is prepared by direct nitration of dibenzotetrazapentalene in sulfuric acid solution.

Tacot is insoluble in water and in most organic solvents; its solubility in acetone is only 0.01%. It is soluble in 95% nitric acid, and is sparingly soluble in nitrobenzene and dimethylformamide. It does not react with steel or with nonferrous metals.

The explosive is of interest because of its exceptionally high stability to high temperatures; it remains serviceable:

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>after 10 minutes</td>
<td>660 °F = 350 °C</td>
</tr>
<tr>
<td>after 4 hours</td>
<td>620 °F = 325 °C</td>
</tr>
<tr>
<td>after 10 hours</td>
<td>600 °F = 315 °C</td>
</tr>
<tr>
<td>after 2 weeks</td>
<td>540 °F = 280 °C</td>
</tr>
<tr>
<td>after 4 weeks</td>
<td>530 °F = 275 °C</td>
</tr>
</tbody>
</table>

* Value quoted from *Brigitta M. Dobratz*, Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore.
Taliani Test

An improved version of the manometric test developed by Obermüller in 1904. The method was considerably modified, first by Goujan and, very recently, by Brissaud. In all modifications of the method, the test tube containing the sample preheated to the desired temperature is evacuated, and the increase in pressure produced by the gaseous decomposition products is measured with a mercury manometer. The test is usually terminated when the pressure has attained 100 mm Hg. The test temperature are:

- for nitrocellulose: 135 °C = 275 °F
- for propellants: 110 °C = 230 °F

The sample must be thoroughly dried before the test; the result would otherwise also include all other components which increase the pressure on being heated, such as water and organic solvents. Since the result is also affected by the nitroglycerine content of the propellant sample, the test can only be used in order to compare propellants of the same kind with one another. This, in addition to the high testing temperature, makes the applicability of the Taliani test for propellants questionable. Another disadvantage is the necessity for thorough drying, since in the course of the drying operation the test sample is altered in an undesirable manner, and the experimental stability data may show better values than its true stability. The latter disadvantage does not apply to nitrocellulose testing.

Tamping

Verdämmen; bourrage

Synonymous with → Stemming

Tamping Pole

Ladestock; bourroir

A wooden or plastic pole used to compact explosive charges for stemming.
No. 8 Test Cap

Prüfkapsel; detonateur d'épreuve

Defined by the Institute of Makers of Explosives (USA):

A No. 8 test blasting cap is one containing 2 grams of a mixture of 80% mercury fulminate and 20% potassium chlorate, or a cap of equivalent strength.

In comparison: the European test cap: 0.6 g PETN; the commercial No. 8 cap: 0.75 Tetryl (German).

Test Galleries

Versuchsstrecken; Sprengstoffprüfstrecken; galeries d'essai

→ Permissibles.

Tetramethylammonium Nitrate

Tetramethylammoniumnitrat; nitrate de tétraméthylammonium

\[(\text{CH}_3)_4\text{N NO}_3\]

colorless crystals

empirical formula: \(\text{C}_4\text{H}_{12}\text{N}_2\text{O}_3\)
molecular weight: 136.2
energy of formation: \(-562.3\) kcal/kg = \(-2352.7\) kJ/kg
enthalpy of formation: \(-599.3\) kcal/kg = \(-2507.3\) kJ/kg
oxygen balance: \(-129.2\)%
nitrogen content: 20.57%

During the Second World War, this compound was utilized as a fuel component in fusible ammonium nitrate mixtures. It can be homogeneously incorporated into the melt.

Tetramethylolcyclopentanone Tetranitrate

Nitropentanon; tétranitrate de tétraméthylolcyclopentanone; Fivonite

\[\text{O}_2\text{N}^-\cdot\text{H}_2\text{C}^-\cdot\text{HC}^-\cdot\text{CH}^-\cdot\text{CH}_2^-\cdot\text{O}^-\cdot\text{NO}_2\]
\[\text{O}_2\text{N}^-\cdot\text{H}_2\text{C}^-\cdot\text{HC}^-\cdot\text{CH}^-\cdot\text{CH}_2^-\cdot\text{O}^-\cdot\text{NO}_2\]

colorless crystals

empirical formula: \(\text{C}_9\text{H}_{12}\text{N}_4\text{O}_{13}\)
molecular weight: 384.2
energy of formation: \(-398.2\) kcal/kg = \(-1666\) kJ/kg
enthalpy of formation: \(-420.6\) kcal/kg = \(-1760\) kJ/kg
oxygen balance: \(-45.8\)%
nitrogen content: 14.59%
2,3,4,6-Tetranitroaniline

Density: 1.59 g/cm³
Melting point: 74 °C = 165 °F
Lead block test: 387 cm³/10 g
Detonation velocity, confined: 7040 m/s = 23100 ft/s at ρ = 1.55 g/cm³

Condensation of formaldehyde with cyclopentanone yields a compound with four –CH₂OH groups, which can be nitrated to the tetranitrate. Analogous derivatives of hexanone, hexanol, and pentanol can be prepared in the same manner, but in the case of pentanol and hexanone the fifth hydroxyl group also becomes esterified:

tetramethyloctyclohexanol pentanitrate “Sixolite”;
tetramethyloctyclohexanone tetranitrate “Sixonite”;
tetramethyloctyclohexanone pentanitrate “Fivolite”.

Table 28. Thermochemical data

<table>
<thead>
<tr>
<th>Compound</th>
<th>Empirical Formula</th>
<th>Molecular Weight</th>
<th>Oxygen Balance</th>
<th>Energy of Formation</th>
<th>Enthalpy of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>kcal/kg</td>
<td>kJ/kg</td>
</tr>
<tr>
<td>Sixolite</td>
<td>C₁₀H₁₅N₅O₁₅</td>
<td>445.3</td>
<td>-44.9</td>
<td>-334</td>
<td>-1397</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-357</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1494</td>
</tr>
<tr>
<td>Sixonite</td>
<td>C₁₀H₁₄N₄O₁₃</td>
<td>398.2</td>
<td>-56.3</td>
<td>-402</td>
<td>-1682</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1778</td>
</tr>
<tr>
<td>Fivolite</td>
<td>C₉H₁₃N₅O₁₅</td>
<td>431.2</td>
<td>-35.3</td>
<td>-325</td>
<td>-1360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-348</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1456</td>
</tr>
</tbody>
</table>

2,3,4,6-Tetranitroaniline

Tetranitroanilin; tétranitroaniline; TNA

![Structure of 2,3,4,6-Tetranitroaniline](image)

Pale yellow crystals
Empirical formula: C₆H₃N₅O₈
Molecular weight: 273.1
Energy of formation: -25.5 kcal/kg = -107 kJ/kg
Enthalpy of formation: -42.8 kcal/kg = -179 kJ/kg
Oxygen balance: -32.2%
Nitrogen content: 25.65%
Volume of explosion gases: 813 l/kg
Heat of explosion
 (H₂O liq.): 1046 kcal/kg = 4378 kJ/kg
 (H₂O gas): 1023 kcal/kg = 4280 kJ/kg
specific energy: 123 mt/kg = 1204 kJ/kg
density: 1.867 g/cm³
melting point: 216 °C = 421 °F (decomposition)
deflagration point: 220–230 °C = 428–446 °F
impact sensitivity: 0.6 kp m = 6 N m

Tetranitroaniline is soluble in water, hot glacial acetic acid, and hot acetone, and is sparingly soluble in alcohol, benzene, ligroin and chloroform.

It is prepared by nitration of 3-nitroaniline or aniline with a H₂SO₄ HNO₃ mixture; the yield is moderate.

Tetranitrocarbazole

tétranitrocarbazol; TNC

\[
\begin{align*}
O_2N & \quad \text{yellow crystals} \\
\text{gross formula: } & C_{12}H_{5}N_{5}O_{8} \\
\text{molecular weight: } & 347.2 \\
\text{energy of formation: } & +28.3 \text{ kcal/kg} = +118.5 \text{ kJ/kg} \\
\text{enthalpy of formation: } & +13.0 \text{ kcal/kg} = +54.4 \text{ kJ/kg} \\
\text{oxygen balance: } & -85.2\% \\
\text{nitrogen content: } & 20.17\% \\
\text{melting point: } & 296 °C = 565 °F \\
\text{heat of explosion (H₂O liq.): } & 821 \text{ kcal/kg} = 3433 \text{ kJ/kg}
\end{align*}
\]

Tetranitrocarbazole is insoluble in water, ether, alcohol, and carbon tetrachloride, and is readily soluble in benzene. It is not hygroscopic.

It is prepared by the nitration of carbazole; preparation begins with sulfuric acid treatment until the compound becomes fully soluble in water, after which the sulfonic acid derivative is directly converted to the nitro compound by adding mixed acid without previous isolation.

Tetranitromethane

Tetranitromethan; tétranitrométhane; TNM

\[
\begin{align*}
O_2N & \quad \text{colorless liquid with a pungent smell} \\
\text{empirical formula: } & \text{CN}_4\text{O}_8 \\
\text{molecular weight: } & 196.0
\end{align*}
\]
energy of formation: +65.0 kcal/kg = +272.1 kJ/kg
enthalpy of formation: +46.9 kcal/kg = +196.4 kJ/kg
oxygen balance: +49.0%
nitrogen content: 28.59%
volume of explosion gases: 685 l/kg
heat of explosion*): 526 kcal/kg = 2200 kJ/kg
specific energy: 69.1 mt/kg = 677 kJ/kg
density: 1.6377 g/cm³
solidification point: 13.75 °C = 56.75 °F
boiling point: 126 °C = 259 °F vapor pressure

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>millibar</td>
<td>°C</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>57</td>
<td>50</td>
</tr>
<tr>
<td>420</td>
<td>100</td>
</tr>
<tr>
<td>1010</td>
<td>126</td>
</tr>
</tbody>
</table>

detonation velocity, confined:
6360 m/s = 20900 ft/s at ρ = 1.637 g/cm³

Tetranitromethane is insoluble in water, but soluble in alcohol and ether. The volatile compound strongly attacks the lungs. The oxygen-rich derivative is not truly explosive by itself, but forms highly brisant mixtures with hydrocarbons such as toluene.

Tetranitromethane is formed as a by-product during nitration of aromatic hydrocarbons with concentrated acids at high temperatures, following opening of the ring. It can also be prepared by reacting acetylene with nitric acid in the presence of mercury nitrate as a catalyst. According to a more recent method, tetranitromethane is prepared by introducing a slow stream of ketene into cooled 100% nitric acid. When the reaction mixture is poured into ice water, tetranitromethane separates out.

Tetranitronaphthalene

Tetranitronaphthalin; tétranitronaphthalène; TNN
yellow crystals
empirical formula: \(\text{C}_{10}\text{H}_4\text{N}_4\text{O}_8 \)
molecular weight: 308.2
energy of formation: +23.7 kcal/kg = +99.2 kJ/kg
enthalpy of formation: +8.4 kcal/kg = +35.3 kJ/kg
oxygen balance: –72.7%
nitrogen balance: 18.18%
melting point:
 softening of the isomer mixture
 begins at 190 °C = 374 °F

Tetranitronaphthalene is a mixture of isomers, which is obtained by continued nitration of dinitronaphthalenes.
The tetrasubstituted compound can only be attained with difficulty. The crude product is impure and has an irregular appearance. It can be purified with glacial acetic acid.

Tetracene

\(\text{tetrazolyl guanyltetrazene hydrate; Tetrazen; tétrazéne}^* \)

![Structural formula of Tetracene](image)

feathery, colorless to pale yellow crystals
empirical formula: \(\text{C}_2\text{H}_8\text{N}_{10}\text{O} \)
molecular weight: 188.2
energy of formation: +270.2 kcal/kg = +1130 kJ/kg
enthalpy of formation: +240.2 kcal/kg = +1005 kJ/kg
oxygen balance: –59.5%
nitrogen content: 74.43%
density: 1.7 g/cm³
lead block test: 155 cm³/10 g
deflagration point: ca. 140 °C = 294 °F
impact sensitivity: 0.1 kp m = 1 N m

Tetrazene is classified as an initiating explosive, but its own initiation effect is weak.

It is practically insoluble in water, alcohol, ether, benzene, and carbon tetrachloride. It is prepared by the reaction between aminoguanidine salts and sodium nitrite.

* The structural formula found in the earlier literature: HN-C(=NH)-NH-NH-N=N-C(=NH)-NH-NH-NO was corrected in 1954 by Patinkin (Chem. Zentr. 1955, p. 8377).
Tetrazene is an effective primer which decomposes without leaving any residue behind. It is introduced as an additive to erosion-free primers based on lead trinitroresorcinate in order to enhance the response. Its sensitivity to impact and to friction are about equal to those of mercury fulminate.

Specifications

- **moisture**: not more than 0.3%
- **reaction, water extract to universal indicator paper**: no acid indication
- **mechanical impurities**: none
- **pouring density; about**: 0.3 g/cm³
- **deflagration point**: not below 138 °C = 280 °F

Tetryl

- *trinitro-2,4,6-phenylmethylnitramine; Tetryl; tétryl; Tetranitromethylanilin; pyronite; tetralita*

![Tetryl molecule](image)

- **pale yellow crystals**
- **empirical formula**: C₇H₅N₅O₈
- **molecular weight**: 287.1
- **energy of formation**: +35.3 kcal/kg = +147.6 kJ/kg
- **enthalpy of formation**: +16.7 kcal/kg = +69.7 kJ/kg
- **oxygen balance**: –47.4%
- **nitrogen content**: 24.39%
- **volume of explosion gases**: 861 l/kg
- **heat of explosion**
 - (H₂O gas): 996 kcal/kg = 4166 kJ/kg (calculated*)
 - (H₂O liq.): {1021 kcal/kg = 4271 kJ/kg experimental**}
- **specific energy**: 123 mt/kg = 1208 kJ/kg
- **density**: 1.73 g/cm³
- **melting point**: 129.5 °C = 265 °F
- **heat of fusion**: 19.1 kcal/kg = 80 kJ/kg
- **lead block test**: 410 cm³/10 g

* computed by the “ICT-Thermodynamic-Code”.

** value quoted from Brigitta M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore.
detonation velocity, confined:
7570 m/s = 24,800 ft/s at $\rho = 1.71$ g/cm3
deflagration point: 185 °C = 365 °F
impact sensitivity: 0.3 kp m = 3 N m
friction sensitivity: 36 kp = 353 N
pistol load reaction
critical diameter of steel sleeve test: 6 mm

Tetryl is poisonous; it is practically insoluble in water, sparingly soluble in alcohol, ether, and benzene, and is more readily soluble in acetone.

It is obtained by dissolving mono- and dimethylaniline in sulfuric acid and pouring the solution into nitric acid, with cooling.

Tetryl is a highly brisant, very powerful explosive, with a satisfactory initiating power which is used in the manufacture of primary and secondary charges for blasting caps. Owing to its relatively high melting point, it is employed pressed rather than cast.

Specifications

- melting point: not less than 128.5 °C = 270 °F
- volatiles, incl. moisture: not more than 0.10%
- benzene insolubles, not more than 0.07%
- ash content, not more than 0.03%
- acidity, as HNO$_3$, not more than 0.005%
- alkalinity none

Tetrytol

A pourable mixture of 70% Tetryl and 30% TNT.

Thermite

An incendiary composition consisting of 2.75 parts of black iron oxide (ferrosoferric oxide) and 1.0 part of granular aluminum.

Thermodynamic Calculation of Decomposition Reactions

Important characteristics of explosives and propellants may be calculated from the chemical formula and the → Energy of Formation (enthalpy in the case of rocket propellants) of the explosive propellant components under consideration. The chemical formula of mixtures
may be obtained by the percentual addition of the atomic numbers of the components given in Table 29 below, for example:

composition:
- 8% nitroglycerine
- 30% nitroglycol
- 1.5% nitrocellulose
- 53.5% ammonium nitrate
- 2% DNT
- 5% wood dust;

The number of atoms of C, H, O and N per kilogram are calculated from Table 31.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitroglycerine</td>
<td>1.057</td>
<td>1.762</td>
<td>3.170</td>
<td>1.057</td>
</tr>
<tr>
<td>nitroglycol</td>
<td>3.945</td>
<td>7.890</td>
<td>11.835</td>
<td>3.945</td>
</tr>
<tr>
<td>nitrocellulose</td>
<td>0.332</td>
<td>0.420</td>
<td>0.545</td>
<td>0.134</td>
</tr>
<tr>
<td>ammonium nitrate</td>
<td>–</td>
<td>26.73</td>
<td>20.052</td>
<td>13.37</td>
</tr>
<tr>
<td>dinitrotoluene</td>
<td>0.769</td>
<td>0.659</td>
<td>0.439</td>
<td>0.220</td>
</tr>
<tr>
<td>wood meal</td>
<td>2.085</td>
<td>3.02</td>
<td>1.35</td>
<td>–</td>
</tr>
</tbody>
</table>

As a result, the formula for one kilogram of the explosive can be written:

\[C_{8.19}H_{40.48}O_{37.39}N_{18.73} \]

The same calculation has to be made for gun and rocket propellants as the first step.

In decomposition processes (detonation in the case of high explosives or burning processes in the case of gunpowders and rocket propellants), the kilogram \(C_aH_bO_cN_d \) is converted into one kilogram

\[n_1 \text{CO}_2 + n_2 \text{H}_2\text{O} + n_3 \text{N}_2 + n_4 \text{CO} + n_5 \text{H}_2 + n_6 \text{NO} \]

In the case of industrial explosive with a positive → Oxygen Balance, the occurrence of free oxygen \(\text{O}_2 \), and in the case of explosive with a very negative oxygen balance, e.g., TNT, the occurrence of elementary
carbon C have to be considered. If alkali metal salts such as NaNO\textsubscript{3} are included, the carbonates of these are taken as reaction products, e.g., Na\textsubscript{2}CO\textsubscript{3}. The alkaline earth components, e.g., CaNO\textsubscript{3} are assumed to form the oxides, e.g., CaO; chlorine will be converted into HCl; sulfur into SO\textsubscript{2}.

Exact calculations on burning processes in rocket motors must include dissociation phenomena; this is done on computer facilities (at leading national institutes*), and the relevant industrial laboratories in this field are nowadays equipped with computers and programs. The following explanations are based on simplifying assumptions.

The explosion of an industrial explosive is considered as an isochoric process, i.e. theoretically it is assumed that the explosion occurs confined in undestroyable adiabatic environment. Most formulations have a positive oxygen balance; conventionally it is assumed, that only CO\textsubscript{2}, H\textsubscript{2}O, N\textsubscript{2} and surplus O\textsubscript{2} are formed. The reaction equation of the example above is then

\[C_{8.19}H_{40.48}O_{37.39}N_{18.73} = 8.19 \text{CO}_2 + \frac{40.48}{2} \text{H}_2\text{O} + \frac{18.73}{2} \text{N}_2 + \frac{1}{2} \left(37.39 - 2 \times 8.19 - \frac{40.48}{2}\right)\text{O}_2 = 8.19 \text{CO}_2 + 20.24 \text{H}_2\text{O} + 9.37 \text{N}_2 + 0.39 \text{O}_2 \]

The real composition of the explosion gases is slightly different; CO and traces of NO are also formed.

1.1 Heat of explosion.

Table 31 also lists the enthalpies and energies of formation of the explosives and their components.

In the case of isochoric explosion, the value for the energy of formation referring to constant volume has to be employed. The heat of explosion is the difference of the energies between formation of the explosive components and the reaction products, given in

* The data for the heat of explosion, the volume of explosion gases and specific energy given in this book for the individual explosives have been calculated with the aid of the “ICT-Code” in the Fraunhofer Institut für CHEMISCHE TECHNOLOGIE, D-76318 Pfinztal, including consideration of the dissociation phenomena. Therefore, the values have been changed in comparison to the figures listed in the first edition of this book (computed without dissociation).
Table 32. Energy of formation of the example composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Energy of Formation kcal/kg</th>
<th>Thereof:</th>
<th>%</th>
<th>=</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitroglycerine</td>
<td>– 368.0</td>
<td>8</td>
<td>8</td>
<td>29.44</td>
</tr>
<tr>
<td>nitroglycol</td>
<td>– 358.2</td>
<td>30</td>
<td>30</td>
<td>107.46</td>
</tr>
<tr>
<td>nitrocellulose (12.5% N)</td>
<td>– 605.6</td>
<td>1.5</td>
<td>1.5</td>
<td>9.08</td>
</tr>
<tr>
<td>ammonium nitrate</td>
<td>–1058</td>
<td>53.5</td>
<td>53.5</td>
<td>566.03</td>
</tr>
<tr>
<td>DNT</td>
<td>– 70</td>
<td>2</td>
<td>2</td>
<td>1.40</td>
</tr>
<tr>
<td>wood dust</td>
<td>–1090</td>
<td>5</td>
<td>5</td>
<td>54.5</td>
</tr>
</tbody>
</table>

Energy of formation of the reaction products:

<table>
<thead>
<tr>
<th>Component</th>
<th>Energy of Formation kcal/mol</th>
<th>Mole Number</th>
<th>Portion of Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>–94.05</td>
<td>8.19</td>
<td>– 770.27</td>
</tr>
<tr>
<td>H₂O (vapor)*</td>
<td>–57.50</td>
<td>20.24</td>
<td>–1163.80</td>
</tr>
</tbody>
</table>

The heat of explosion is obtained by the difference $-767.91 - (-1934.1) = +1934.1 - 767.91 = 1167$ say 1167 kcal/kg or 4886 kJ/kg (H₂O gas).

1.2 Volume of explosion gases.

The number of mole of the gaseous reaction products are multiplied by 22.4 l, the volume of 1 mole ideal gas at 0 °C (32 °F) and 1 atmosphere. The number of moles in of the example composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>8.19</td>
</tr>
<tr>
<td>H₂O</td>
<td>20.24</td>
</tr>
<tr>
<td>N₂</td>
<td>9.37</td>
</tr>
<tr>
<td>O₂</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Sum: $38.19 \times 22.4 = 855$ l/kg *Volume of Explosion Gases.*

* Conventionally, the computed figure for the heat of explosion for industrial explosives is given based on H₂O vapor as the reaction product. The values for the individual explosive chemicals (now calculated by the “ICT-Code” are based on H₂O liquid. They are directly comparable with results obtained by calorimetric measurements.
1.3 Explosion temperature.

The heat of explosion raises the reaction products to the explosion temperature. Table 35 gives the internal energies of the reaction products in relation to the temperature. The best way to calculate of the explosion temperature is to assume two temperature values and to sum up the internal energies for the reaction product multiplied by their corresponding mole number. Two calorific values are obtained, of which one may be slightly higher than the calculated heat of explosion and the other slightly lower. The explosion temperature is found by interpolation between these two values.

For the example composition at: 3600 K and 3700 K. Table 35 gives for

<table>
<thead>
<tr>
<th></th>
<th>3600 K Mole Number</th>
<th>Product kcal</th>
<th>3700 K Mole Number</th>
<th>Product kcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>38.76</td>
<td>8.19</td>
<td>317.4</td>
<td>40.10</td>
</tr>
<tr>
<td></td>
<td>3700</td>
<td>8.19</td>
<td>328.4</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>30.50</td>
<td>20.24</td>
<td>617.3</td>
<td>31.63</td>
</tr>
<tr>
<td></td>
<td>3700</td>
<td>20.24</td>
<td>640.2</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>20.74</td>
<td>9.37</td>
<td>194.3</td>
<td>21.45</td>
</tr>
<tr>
<td></td>
<td>3700</td>
<td>9.37</td>
<td>201.0</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>22.37</td>
<td>0.39</td>
<td>8.7</td>
<td>23.15</td>
</tr>
<tr>
<td></td>
<td>3700</td>
<td>0.39</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.19</td>
<td></td>
<td>1138</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1178</td>
</tr>
</tbody>
</table>

The interpolated temperature value for 1167 kcal/kg is 3670 K.

For industrial nitroglycerine-ammonium nitrate explosives, the following estimated temperature values can be recommended:

<table>
<thead>
<tr>
<th>Heat of Explosion kcal/kg</th>
<th>900</th>
<th>950</th>
<th>1000</th>
<th>1050</th>
<th>1100</th>
<th>1150</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Found</td>
<td>2900</td>
<td>3000</td>
<td>3100</td>
<td>3300</td>
<td>3400</td>
<td>3500</td>
<td>3700</td>
</tr>
<tr>
<td>Lower value K</td>
<td>2900</td>
<td>3000</td>
<td>3100</td>
<td>3300</td>
<td>3400</td>
<td>3500</td>
<td>3700</td>
</tr>
<tr>
<td>Upper Value K</td>
<td>3000</td>
<td>3100</td>
<td>3200</td>
<td>3400</td>
<td>3500</td>
<td>3600</td>
<td>3800</td>
</tr>
</tbody>
</table>

1.4 Specific energy.

The concept of specific energy can be explained as follows. When we imagine the reaction of an explosive to proceed without volume expansion and without heat evolution, it is possible to calculate a theoretical thermodynamic value of the pressure, which is different from the shock wave pressure (\(\rightarrow \text{Detonation} \)); if this pressure is now multiplied
by the volume of the explosive, we obtain an energy value, the “specific energy”, which is the best theoretically calculable parameter for the comparison of the → Strengths of explosives. This value for explosives is conventionally given in meter-tons per kg.

The specific energy results from the equation

\[f = nRT_{\text{ex}}. \]

- \(f \): specific energy
- \(n \): number of gaseous moles
- \(T_{\text{ex}} \): detonation temperature in degrees Kelvin
- \(R \): universal gas constant (for ideal gases).

If \(f \) is wanted in meter-ton units, \(R^* \) has the value \(8.478 \times 10^{-4} \).

The values for the considered example composition are

\[n = 38.19 \]
\[T_{\text{ex}} = 3670 \text{ K} \]
\[f = 38.19 \times 8.478 \times 10^{-4} \times 3670 = 118.8 \text{ mt/kg}. \]

For the significance of specific energy as a performance value, → Strength.

1.5 Energy level.

Because higher loading densities involve higher energy concentration, the concept “energy level” was created; it means the specific energy per unit volume instead of unit weight. The energy level is

\[l = \rho \cdot f \]

- \(l \): energy level \text{ mt/l}
- \(\rho \): density in \text{ g/cm}^3
- \(f \): specific energy \text{ mt/kg}.

Since the example composition will have a gelatinous consistency, \(\rho \) may be assumed as 1.5 \text{ g/cm}^3. The energy level is then

\[l = 1.5 \times 118.8 = 178.2 \text{ mt/l}. \]

1.6 Oxygen balance.

→ oxygen balance

2. Explosive and Propellant Composition with a Negative Oxygen Balance

Calculation of gunpowders.

The decomposition reactions of both detonation and powder combustion are assumed to be isochoric, i.e., the volume is considered to be constant, as above for the explosion of industrial explosives.

* For the values of \(R \) in different dimensions, see the conversion tables on the back fly leaf.
The first step is also the sum formula
\[\text{C}_a\text{H}_b\text{O}_c\text{N}_d \]
as described above, but now
\[c < 2a + \frac{1}{2} b \]
The mol numbers \(n_1, n_2, \) etc. cannot be directly assumed as in case the of positive balanced compositions. More different reaction products must be considered, e.g.,
\[\text{C}_a\text{H}_b\text{O}_c\text{N}_d = n_1\text{CO}_2 + n_2\text{H}_2\text{O} + n_3\text{N}_2 + n_4\text{CO} + n_5\text{H}_2 + n_6\text{NO}; \]
CH\(_4\) and elementary carbon may also be formed; if the initial composition contains Cl-, Na-, Ca-, K-, and S-atoms (e.g., in black powder), the formation of HCl, Na\(_2\)O, Na\(_2\)CO\(_3\), K\(_2\)O, K\(_2\)CO\(_3\), CaO, SO\(_2\) must be included. Further, the occurrence of dissociated atoms and radicals must be assumed.

The mole numbers \(n_1, n_2, \) etc., must meet a set of conditions: first, the stoichiometric relations
\[a = n_1 + 2 n_5 \]
(carbon containing moles)
\[h = 2 n_2 + 2 n_5 \]
(hydrogen containing moles)
\[c = 2 n_1 + n_2 + n_4 + n_6 \]
(oxygen containing moles)
\[d = 2 n_3 + n_6 \]
(nitrogen containing moles);

second, the mutual equilibrium reactions of the decomposition products: the water gas reaction
\[\text{H}_2\text{O} + \text{CO} = \text{CO}_2 + \text{H}_2; \]
the equilibrium is influenced by temperature and is described by the equation
\[K_1 = \frac{[\text{CO}][\text{H}_2\text{O}]}{[\text{H}_2][\text{CO}_2]} \]
(5)
\(K_1 \): equilibrium constant
\([\text{CO}_2], [\text{H}_2], [\text{H}_2\text{O}] \) and \([\text{CO}]\): the partial pressures of the four gases.

The total mole number \(n \) is not altered by the water gas reaction; \(K_1 \), is therefore independent of the total pressure \(p \), but depends on the temperature (\(\rightarrow \) Table 37). Equation (5) can be written as
\[K_1 = \frac{n_2 \cdot n_4}{n_1 \cdot n_5} \]
(5a)
The reaction for NO formation must also be considered

\[\frac{1}{2} \text{N}_2 + \text{CO}_2 = \text{CO} + \text{NO} \]

with the equilibrium equation

\[
K_2 = \frac{[\text{CO}] \cdot [\text{NO}]}{[\text{N}_2]^{1/2} \cdot [\text{CO}_2]} = \frac{p}{n} \frac{n_4 \cdot p_n}{n_6} \text{ or } \frac{p}{n^{1/2}} \frac{n_3^{1/2}}{n_1} \]

or

\[
K_2 = \sqrt{\frac{p}{n}} \frac{n_4 \cdot n_6}{n_3 \cdot n_1} \quad (6)
\]

\(K_2 \): equilibrium constant,
\(p \): total pressure; \(p ln - n_1 \), etc., the partial pressures
\(n \): total number of moles

Because NO formation involves an alteration of \(n \), the equilibrium constant \(K_2 \) depends not only on the temperature, but also on the total pressure \(p \).

For the calculation of the six unknown mol numbers \(n_1 \ldots n_6 \), there are six equations. Alteration of the mole numbers cause alteration of the values for the reaction heat, the reaction temperature, the reaction pressure, and hence the constants \(K_1 \) and \(K_2 \). Calculations without the aid of a computer must assume various reaction temperatures to solve the equation system, until the values for the reaction heat as a difference of the energies of formation and the internal energy of the reaction products are the same (as shown above for the detonation of industrial explosives). This is a long trial and error calculation; therefore the use of computer programs is much more convenient.

For low caloric propellants and for highly negative balanced explosives, such as TNT, the formation of element carbon must be assumed (Boudouard equilibrium):

\[
\text{CO}_2 + \text{C} = 2 \text{ CO}
\]

with the equilibrium equation

\[
K_3 = \frac{[\text{CO}]^2}{[\text{CO}_2]} \quad (7)
\]

Explosion fumes with a dark color indicate the formation of carbon. The calculation becomes more complicated, if dissociation processes are taken into consideration (high caloric gunpowders; rocket propellants).

In the computer operation, the unknown mole numbers are varied by stepwise “iteration” calculations, until all equation conditions are satisfied. The following results are obtained.

- heat of explosion
- temperature of explosion
average molecular weight of the gaseous explosion products
total mole number
specific energy (force)
composition of the explosion gases
specific heat ratio c_p/c_v
covolume
e tc.

The basis data for internal ballistic calculations are thus obtained (also → Ballistic Bomb; → Burning Rate). As an example for the calculation of a double base gunpowder*):

composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrocellulose (13.25% N)</td>
<td>57.23 %</td>
</tr>
<tr>
<td>Nitroglycerine</td>
<td>40.04 %</td>
</tr>
<tr>
<td>Potassium nitrate</td>
<td>1.49 %</td>
</tr>
<tr>
<td>Centralite I</td>
<td>0.74 %</td>
</tr>
<tr>
<td>Ethanol (solvent rest)</td>
<td>0.50 %</td>
</tr>
</tbody>
</table>

Enthalpy of formation of the composition: $-2149.6 \text{ kJ/kg} = -513.8 \text{ kcal/kg}$

The results (loading density assumed: 210 kg/m3)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum formula for 1 kg powder</td>
<td>$C_{18.14}H_{24.88}O_{37.41}N_{10.91}K_{0.015}$</td>
</tr>
<tr>
<td>Temperature of explosion</td>
<td>3841 K</td>
</tr>
<tr>
<td>Pressure</td>
<td>305.9 MPa = 3059 bar</td>
</tr>
<tr>
<td>Average molecular weight of gases</td>
<td>27.28 g/mol</td>
</tr>
<tr>
<td>Total mole number</td>
<td>36.66 mol/kg</td>
</tr>
<tr>
<td>Specific energy (force)</td>
<td>$1.17 \times 10^6 \text{ Nm/kg} = 1170 \text{ kJ/kg}$</td>
</tr>
<tr>
<td>Kappa $\kappa = c_p/c_v$</td>
<td>1.210</td>
</tr>
<tr>
<td>Covolume</td>
<td>$9.37 \times 10^{-4} \text{ m}^3/\text{kg}$</td>
</tr>
</tbody>
</table>

The composition of the reaction products (mol %):

- 28.63% H$_2$O
- 28.39% CO
- 21.07% CO$_2$
- 4.13% H$_2$
- 14.63% N$_2$
- 0.21% O$_2$
- 0.48% NO

* Calculated by the ICT-Fortran programm.
2. Rocket Propellants

Raketentreibstoffe; propellants de roquette

The calculation of the performance data of rocket propellants is carried out in the same manner as shown above for gunpowders, but the burning process in the rocket chamber proceeds at constant pressure instead of constant volume. For the evaluation of the heat of reaction, the difference of the enthalpies of formation instead of the energies must now be used; for the internal heat capacities, the corresponding enthalpy values are listed in Table 36 below (instead of the energy values in Table 35); they are based on the average specific heats c_p at constant pressure instead of the c_v values. The first step is to calculate the reaction temperature T_c and the composition of the reaction gases (mole numbers n_1, etc.). The second step is to evaluate the same for the gas state at the nozzle exit (transition from the chamber pressure p_c to the nozzle exit pressure p_e e.g., the atmospheric pressure). The basic assumption is, that this transition is “isentropic”, i.e., that the entropy values of the state under chamber pressure and at the exit are the same. This means that the thermodynamic transition gives the maximum possible output of kinetic energy (acceleration of the rocket mass).

The calculation method begins with the assumption of the temperature of the exit gases, e.g., $T_e = 500$ K. The transition from the thermodynamical state in the chamber into the state at the nozzle exit is assumed to be instantaneous, i.e. the composition of the gases remains unchanged (“frozen” equilibria). The entropy of the exit gases at the assumed temperature T_e is assumed to be the same as the entropy of the gases in the chamber (known by calculation); the assumed value T_a is raised until both entropy values are equal. Since both states are known, the corresponding enthalpy values can be calculated. Their difference is the source of the kinetic energy of the rocket (half the mass \times square root of the velocity); the → *Specific Impulse* (mass \times velocity) can be calculated according to the following equation (the same as shown on p. 295):

\[
I_s = \sqrt{2J \left(H_c - H_e \right)} \quad \text{Newton seconds per kilogramm}
\]

or

\[
I_{sfroz} = 92.507 \sqrt{H_c - H_e}
\]

J: mechanical heat equivalent
unit:

$I_{\text{s froz}}$: specific impulse for frozen equilibrium \(\text{Ns/kg} \)

H_c: enthalpy of the burnt gases in the chamber \(\text{kcal/kg} \)

H_e: enthalpy of the gases at the nozzle exit \(\text{kcal/kg} \)

T_c: gas temperature in the chamber \(\text{K} \)

T_e: gas temperature at the nozzle exit with frozen equilibrium \(\text{K} \)

The computer program also allows calculations for shifting (not frozen) equilibria by stepwise iteration operations.

The following parameters can also be calculated with computer facilities:
- chamber temperature (adiabatic flame temperature);
- temperature of exit gas with frozen equilibrium;
- composition of exit gas with shifting equilibrium;
- temperature of the burnt gases in the chamber and at the nozzle exit;
- average molecular weight, of the burnt gases in the chamber and at the nozzle exit;
- total mole number of the burnt gases in the chamber and at the nozzle exit;
- specific impulse at frozen and with shifting equilibrium;
- ratio of specific heats c_p/c_v.

An example for the calculation of a double bases rocket propellant:

Composition:
- nitrocellulose 52.15\% (13.25\% N)
- nitroglycerine 43.54\%
- diethylphthalate 3.29\%
- Centralit I 1.02\%

Sum formula for 1 kg propellant: $C_{19.25} H_{25.96} O_{36.99} N_{10.76}$

Chamber pressure: 7.0 MPa (1015 p.s.i.)

Results of the computer calculation*):
- temperature in the rocket chamber: 3075 K
- temperature at the nozzle exit: 1392 K (frozen equilibrium)
- temperature at the nozzle exit: 1491 K (equilibrium flow)
- average molecular weight: 26.33 g/mol
- total mole number: 37.98 mol/kg
- kappa ($\kappa = c_p/c_v$): 1.216
- specific impulse for frozen equilibrium: 2397 Ns/kg
- specific impulse for shifting equilibrium: 2436 Ns/kg

* Calculated by the “ICT-Thermodynamic-Code”
Table 31. Enthalpy and energy of formation of explosive and propellant components and their number of atoms per kg. Reference Temperature: 298.15 K = 25 °C = 77 °F; reference state of carbon: as graphite.

(1): primary explosive (7): stabilizer (13): thickener
(3): tertiary explosive (9): burning moderator (15): anti acid
(4): propellant component (10): polymer binder (16): component of permitted explosives
(5): oxidizer (11): prepolymer (17): slurry component
(6): fuel (12): hardener

<table>
<thead>
<tr>
<th>Component</th>
<th>Empirical Formula</th>
<th>Enthalpy of Formation kcal/kg</th>
<th>Enthalpy of Formation kJ/kg</th>
<th>Energy of Formation kcal/kg</th>
<th>Energy of Formation kJ/kg</th>
<th>Number of Atoms per kilogram</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkadit I</td>
<td>C₁₀H₁₂ON₂</td>
<td>−138.2</td>
<td>−578</td>
<td>−117.3</td>
<td>−490</td>
<td>61.25</td>
<td>56.54</td>
</tr>
<tr>
<td>Arkadit II</td>
<td>C₁₁H₁₄ON₂</td>
<td>−112.7</td>
<td>−472</td>
<td>−90.5</td>
<td>−379</td>
<td>61.86</td>
<td>61.86</td>
</tr>
<tr>
<td>Arkadit III</td>
<td>C₁₁H₁₆ON₂</td>
<td>−151.9</td>
<td>−636</td>
<td>−128.5</td>
<td>−538</td>
<td>62.42</td>
<td>66.58</td>
</tr>
<tr>
<td>aluminum</td>
<td>Al</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>ammonium chloride</td>
<td>H₄NCl</td>
<td>−1405</td>
<td>−5878</td>
<td>−1372</td>
<td>−5739</td>
<td>74.77</td>
<td>−</td>
</tr>
<tr>
<td>ammonium dinitramide</td>
<td>H₄N₂O₄</td>
<td>−288.58</td>
<td>−1207</td>
<td>−259.96</td>
<td>−1086.6</td>
<td>32.24</td>
<td>32.24</td>
</tr>
<tr>
<td>ammonium nitrate</td>
<td>H₄O₃N₂</td>
<td>−1092</td>
<td>−4567</td>
<td>−1058</td>
<td>−4428</td>
<td>49.97</td>
<td>37.48</td>
</tr>
<tr>
<td>ammonium oxalate·H₂O</td>
<td>C₂H₂·O₂N₂</td>
<td>−2397</td>
<td>−10031</td>
<td>−2362</td>
<td>−9883</td>
<td>14.07</td>
<td>70.36</td>
</tr>
<tr>
<td>ammonium perchlorate</td>
<td>H₂O₃NCl</td>
<td>−602</td>
<td>−2517</td>
<td>−577</td>
<td>−2412</td>
<td>34.04</td>
<td>34.04</td>
</tr>
<tr>
<td>barium nitrate</td>
<td>O₃N₂Ba</td>
<td>−907.3</td>
<td>−3796</td>
<td>−898.2</td>
<td>−3758</td>
<td>22.96</td>
<td>−</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>CO₃Ca</td>
<td>−2882</td>
<td>−12059</td>
<td>−2873</td>
<td>−12022</td>
<td>10.00</td>
<td>−</td>
</tr>
</tbody>
</table>

Thermodynamic Calculation of Decomposition Reactions
<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>ΔH (kJ/mol)</th>
<th>ΔS (J/mol·K)</th>
<th>ΔG (kJ/mol)</th>
<th>T (K)</th>
<th>molar mass (g/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium nitrate O₆N₂Ca</td>
<td></td>
<td>-1367</td>
<td>-5718</td>
<td>-1352</td>
<td>-5657</td>
<td>36.56 12.19 Ca:</td>
</tr>
<tr>
<td>Calcium stearate C₃₆H₇₀O₄Ca</td>
<td></td>
<td>-1092</td>
<td>-4567</td>
<td>-1055</td>
<td>-4416</td>
<td>59.30 115.31 Ca:</td>
</tr>
<tr>
<td>Camphor</td>
<td>C₁₀H₁₆O</td>
<td>-513</td>
<td>2146</td>
<td>-480</td>
<td>2008</td>
<td>65.69 105.10 6.57</td>
</tr>
<tr>
<td>Centralite I C₁₅H₁₆ON₂</td>
<td></td>
<td>-93.5</td>
<td>391.5</td>
<td>-68.2</td>
<td>285.6</td>
<td>63.34 74.52 3.73 7.45</td>
</tr>
<tr>
<td>Centralite II C₁₅H₁₆ON₂</td>
<td></td>
<td>-60.8</td>
<td>254</td>
<td>-37.3</td>
<td>156</td>
<td>62.42 66.58 4.16 8.32</td>
</tr>
<tr>
<td>Centralite III C₁₅H₁₈ON₂</td>
<td></td>
<td>-119.1</td>
<td>499</td>
<td>-94.7</td>
<td>396</td>
<td>62.90 70.76 3.93 7.86</td>
</tr>
<tr>
<td>Coal (pit coal dust)</td>
<td></td>
<td>-16</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>72.08 49.90 5.24</td>
</tr>
<tr>
<td>Cyclonite (RDX) C₃H₆O₆N₆</td>
<td></td>
<td>+72</td>
<td>301.4</td>
<td>+96.0</td>
<td>+401.8</td>
<td>13.50 27.01 27.01 17.01</td>
</tr>
<tr>
<td>Diamyl phthalate C₁₈H₂₆O₄</td>
<td></td>
<td>-721</td>
<td>-3017</td>
<td>-692</td>
<td>-2895</td>
<td>58.75 84.85 13.06</td>
</tr>
<tr>
<td>Dibutyl phthalate C₁₈H₂₂O₄</td>
<td></td>
<td>-723</td>
<td>-3027</td>
<td>-696</td>
<td>-1913</td>
<td>57.47 79.02 14.37</td>
</tr>
<tr>
<td>Diethylene glycol</td>
<td></td>
<td>-532</td>
<td>-2227</td>
<td>-507</td>
<td>-2120</td>
<td>20.40 40.79 35.69 10.20</td>
</tr>
<tr>
<td>Dimethylhydrazine C₂H₈N₂</td>
<td></td>
<td>+198</td>
<td>+828</td>
<td>+247</td>
<td>+1035</td>
<td>33.28 133.11 33.28</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene C₇H₈O₄N₂</td>
<td></td>
<td>-89.5</td>
<td>-374.5</td>
<td>-70.0</td>
<td>-292.8</td>
<td>38.43 32.94 21.96 10.98</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene C₆H₇NO₂</td>
<td></td>
<td>-57.7</td>
<td>-241.2</td>
<td>-38.1</td>
<td>-159.5</td>
<td>30.28 50.46 10.09 30.28</td>
</tr>
<tr>
<td>Diphenylamine C₁₂H₁₁N</td>
<td></td>
<td>+183.6</td>
<td>+768.2</td>
<td>+204.6</td>
<td>+856.0</td>
<td>70.92 65.01 5.91</td>
</tr>
<tr>
<td>Diphenylurethane C₁₅H₁₅O₂N</td>
<td></td>
<td>-278.1</td>
<td>-1164</td>
<td>-256.0</td>
<td>-1071</td>
<td>62.16 62.16 8.29 4.14</td>
</tr>
<tr>
<td>Ethriol trinitrate C₅H₆O₃N₃</td>
<td></td>
<td>-426</td>
<td>-1783</td>
<td>-401</td>
<td>-1678</td>
<td>22.30 40.88 33.44 11.15</td>
</tr>
<tr>
<td>Ethylenediamine C₂H₉O₄N₄</td>
<td></td>
<td>-839.2</td>
<td>-3511</td>
<td>-807.4</td>
<td>-3378</td>
<td>10.75 53.73 32.24 21.49</td>
</tr>
<tr>
<td>Ferrocene C₁₅H₁₀Fe</td>
<td></td>
<td>+199</td>
<td>+833</td>
<td>+215</td>
<td>+899</td>
<td>53.76 53.76 53.76 5.38</td>
</tr>
<tr>
<td>Glycidyl azide polymer C₃H₈ON₃</td>
<td></td>
<td>+340.1</td>
<td>+1423</td>
<td>+366.9</td>
<td>+1535</td>
<td>30.28 50.46 10.09 30.28</td>
</tr>
<tr>
<td>Glycol C₃H₆O₂</td>
<td></td>
<td>-1752</td>
<td>-7336</td>
<td>-1714</td>
<td>-7177</td>
<td>32.22 96.66 32.22</td>
</tr>
<tr>
<td>Guanidine nitrate CH₆O₃N₄</td>
<td></td>
<td>-758</td>
<td>-3170</td>
<td>-726.1</td>
<td>-3038</td>
<td>8.19 49.14 24.57 32.76</td>
</tr>
<tr>
<td>Guar gum C₁₇H₃₂O₁₂N₇</td>
<td></td>
<td>-1671</td>
<td>-7000</td>
<td>-1648</td>
<td>-6900</td>
<td>37.26 55.89 31.05</td>
</tr>
<tr>
<td>Hexanitrodiphenylamine C₁₉H₁₈O₁₂N₇</td>
<td></td>
<td>+22.5</td>
<td>+94.3</td>
<td>+38.7</td>
<td>+162</td>
<td>27.32 11.38 27.32 15.94</td>
</tr>
</tbody>
</table>

Thermodynamic Calculation of Decomposition Reactions
Table 31. (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Empirical Formula</th>
<th>Enthalpy of Formation kJ/kg</th>
<th>Enthalpy of Formation kcal/kg</th>
<th>Energy of Formation kJ/kg</th>
<th>Energy of Formation kcal/kg</th>
<th>Number of Atoms per kilogram</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexanitrohexaaza-isowurtzitane (CL20)</td>
<td>C6H6N12O12</td>
<td>+ 299.0</td>
<td>+ 920.5</td>
<td>+ 240.3</td>
<td>+ 1005.3</td>
<td>13.69</td>
<td>13.69</td>
</tr>
<tr>
<td>hydrazine</td>
<td>H4N2</td>
<td>+ 377.5</td>
<td>+ 1580</td>
<td>+ 433.1</td>
<td>+ 1812</td>
<td>–</td>
<td>124.80</td>
</tr>
<tr>
<td>hydrazine nitrate</td>
<td>H6O3N3</td>
<td>– 620.7</td>
<td>– 2597</td>
<td>– 586.4</td>
<td>– 2453</td>
<td>–</td>
<td>52.60</td>
</tr>
<tr>
<td>kerosene</td>
<td>– 540</td>
<td>– 2260</td>
<td>– 500</td>
<td>– 2100</td>
<td>71.90</td>
<td>135.42</td>
<td>–</td>
</tr>
<tr>
<td>lead azide</td>
<td>N6Pb</td>
<td>+ 391.4</td>
<td>+ 1638</td>
<td>+ 397.5</td>
<td>+ 1663</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>lead ethylhexoate</td>
<td>C16H30O4Pb</td>
<td>– 724</td>
<td>– 3027</td>
<td>– 703</td>
<td>– 2940</td>
<td>32.41</td>
<td>60.78</td>
</tr>
<tr>
<td>lead nitrate</td>
<td>O6N2Pb</td>
<td>– 326.1</td>
<td>– 1364</td>
<td>– 318.9</td>
<td>– 1334</td>
<td>–</td>
<td>18.11</td>
</tr>
<tr>
<td>magnesium carbonate</td>
<td>O2CMg</td>
<td>– 3106</td>
<td>– 12994</td>
<td>– 3095</td>
<td>– 12950</td>
<td>11.86</td>
<td>–</td>
</tr>
<tr>
<td>mannitol hexanitrate</td>
<td>C6H6O14N6</td>
<td>– 357.2</td>
<td>– 1494</td>
<td>– 336.2</td>
<td>– 1407</td>
<td>13.27</td>
<td>17.70</td>
</tr>
<tr>
<td>nitrate (MAN)</td>
<td>metriol trinitrate</td>
<td>C5H5O2N3</td>
<td>– 398.2</td>
<td>– 1666</td>
<td>– 373.8</td>
<td>– 1564</td>
<td>19.60</td>
</tr>
<tr>
<td>Nitroaminoguanidine</td>
<td>C1H1N5O2</td>
<td>+ 44.3</td>
<td>+ 185.5</td>
<td>+ 74.2</td>
<td>+ 310.2</td>
<td>8.40</td>
<td>41.99</td>
</tr>
<tr>
<td>nitrocellulose, 13.0 % N</td>
<td>– 596.1</td>
<td>– 2494</td>
<td>– 574.6</td>
<td>– 2404</td>
<td>21.55</td>
<td>26.64</td>
<td>36.52</td>
</tr>
<tr>
<td>nitrocellulose, 12.5 % N</td>
<td>– 627.2</td>
<td>– 2624</td>
<td>– 605.6</td>
<td>– 2534</td>
<td>22.15</td>
<td>27.98</td>
<td>36.30</td>
</tr>
<tr>
<td>Compound</td>
<td>%N</td>
<td>% N2</td>
<td>% O</td>
<td>% H</td>
<td>% C</td>
<td>% N2O</td>
<td>% CO2</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Nitrocellulose, 12.0%N</td>
<td>-658.4</td>
<td>-2755</td>
<td>-636.5</td>
<td>-2663</td>
<td>22.74</td>
<td>29.33</td>
<td>36.08</td>
</tr>
<tr>
<td>Nitrocellulose, 11.5%N</td>
<td>-689.6</td>
<td>-2885</td>
<td>-667.4</td>
<td>-2793</td>
<td>23.33</td>
<td>30.68</td>
<td>35.86</td>
</tr>
<tr>
<td>Nitrocellulose, 11.0%N</td>
<td>-720.7</td>
<td>-3015</td>
<td>-698.4</td>
<td>-2922</td>
<td>23.94</td>
<td>32.17</td>
<td>35.65</td>
</tr>
<tr>
<td>Nitrodiphenylamine C_{12}H_{10}O_{2}N_{2}</td>
<td>+88.13</td>
<td>+369</td>
<td>+107.5</td>
<td>+450</td>
<td>56.01</td>
<td>46.68</td>
<td>9.34</td>
</tr>
<tr>
<td>Nitroglycerine C_{3}H_{5}O_{3}N_{3}</td>
<td>-392.0</td>
<td>-1633</td>
<td>-369.7</td>
<td>-1540</td>
<td>13.21</td>
<td>22.02</td>
<td>39.62</td>
</tr>
<tr>
<td>Nitroglycerol C_{2}H_{4}O_{6}N_{2}</td>
<td>-381.6</td>
<td>-1596</td>
<td>-358.6</td>
<td>-1499</td>
<td>13.15</td>
<td>26.30</td>
<td>39.45</td>
</tr>
<tr>
<td>Nitroglycol C_{2}H_{4}O_{6}N_{2}</td>
<td>-213.3</td>
<td>-893.0</td>
<td>-184.9</td>
<td>-773</td>
<td>9.61</td>
<td>38.42</td>
<td>19.21</td>
</tr>
<tr>
<td>Nitromethane CH_{3}O_{2}N</td>
<td>-442.8</td>
<td>-1853</td>
<td>-413.7</td>
<td>-1731</td>
<td>16.39</td>
<td>49.17</td>
<td>32.70</td>
</tr>
<tr>
<td>Nitrotetrazolone (NTO) C_{2}H_{5}O_{8}N_{4}</td>
<td>-158.14</td>
<td>-746.60</td>
<td>-164.60</td>
<td>-689.10</td>
<td>15.37</td>
<td>15.37</td>
<td>23.06</td>
</tr>
<tr>
<td>Nitrourea CH_{3}O_{2}N_{3}</td>
<td>-642.5</td>
<td>-2688</td>
<td>-617.2</td>
<td>-2582</td>
<td>9.52</td>
<td>28.55</td>
<td>28.55</td>
</tr>
<tr>
<td>Octogen (HMX) C_{4}H_{6}O_{6}N_{4}</td>
<td>+60.5</td>
<td>+253.3</td>
<td>+84.5</td>
<td>+353.6</td>
<td>13.50</td>
<td>27.01</td>
<td>27.01</td>
</tr>
<tr>
<td>Paraffin (solid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETN (Nitropenta) C_{5}H_{5}O_{2}N_{4}</td>
<td>-407.4</td>
<td>-1705</td>
<td>-385.0</td>
<td>-1611</td>
<td>15.81</td>
<td>25.30</td>
<td>37.95</td>
</tr>
<tr>
<td>Petroleum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picric acid C_{6}H_{3}O_{7}N_{3}</td>
<td>-259.3</td>
<td>-1085</td>
<td>-242.4</td>
<td>-1015</td>
<td>26.20</td>
<td>13.10</td>
<td>30.55</td>
</tr>
<tr>
<td>Polybutadiene, carboxy terminated</td>
<td>(C_{2}H_{4}){100}C{2}H_{2}O_{4}</td>
<td>-140</td>
<td>-586</td>
<td>-107</td>
<td>-448</td>
<td>73.10</td>
<td>109.65</td>
</tr>
<tr>
<td>Polyisobutylene (CH_{2})_{n}</td>
<td>-374</td>
<td>-1570</td>
<td>-331</td>
<td>-1386</td>
<td>71.29</td>
<td>142.58</td>
<td>-</td>
</tr>
<tr>
<td>Polypropylene glycol (C_{3}H_{5}O){n}H{2}O</td>
<td>-888.1</td>
<td>-3718</td>
<td>-852.9</td>
<td>-3571</td>
<td>51.19</td>
<td>103.37</td>
<td>17.56</td>
</tr>
<tr>
<td>Polyvinyl nitrate (C_{2}H_{5}O_{3}N)_{n}</td>
<td>-275.4</td>
<td>-1152</td>
<td>-252.1</td>
<td>-1055</td>
<td>22.46</td>
<td>33.68</td>
<td>33.68</td>
</tr>
<tr>
<td>Potassium nitrate O_{3}NK</td>
<td>-1169</td>
<td>-4891</td>
<td>-1157</td>
<td>-4841</td>
<td>-29.67</td>
<td>9.89</td>
<td></td>
</tr>
<tr>
<td>N-propyl nitrate C_{3}H_{7}O_{3}N</td>
<td>-487.8</td>
<td>-2041</td>
<td>-436.8</td>
<td>-1911</td>
<td>28.55</td>
<td>66.63</td>
<td>28.55</td>
</tr>
<tr>
<td>Sodium hydrogen carbonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na:</td>
</tr>
</tbody>
</table>

Thermodynamic Calculation of Decomposition Reactions
<table>
<thead>
<tr>
<th>Component</th>
<th>Empirical Formula</th>
<th>Energy of Formation (kcal/kg)</th>
<th>Energy of Formation (kJ/kg)</th>
<th>Number of Atoms per kilogram</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium nitrate</td>
<td>O₃NNa</td>
<td>-1315</td>
<td>-5506</td>
<td>-1301</td>
<td>Na. 11.76 (5); (16)</td>
</tr>
<tr>
<td>tetrinitromethane</td>
<td>CN₄O₈</td>
<td>+ 46.9</td>
<td>+ 196.4</td>
<td>+ 65.0</td>
<td>40.81</td>
</tr>
<tr>
<td>Tetryl</td>
<td>C₇H₅O₈N₅</td>
<td>+ 16.7</td>
<td>+ 67.9</td>
<td>+ 35.3</td>
<td>17.40</td>
</tr>
<tr>
<td>TNT (trinitrotoluene)</td>
<td>C₇H₅O₈N₃</td>
<td>- 70.6</td>
<td>- 295.3</td>
<td>- 52.4</td>
<td>22.01</td>
</tr>
<tr>
<td>toluene</td>
<td>C₇H₅O₂N₂</td>
<td>- 179.7</td>
<td>- 752</td>
<td>- 162.7</td>
<td>34.47</td>
</tr>
<tr>
<td>diisocyanate (TDI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>triaminoguanidine nitrate</td>
<td>CH₉N₇O₃</td>
<td>- 68.8</td>
<td>- 287.9</td>
<td>- 35.2</td>
<td>53.86</td>
</tr>
<tr>
<td>triaminotrinobenzene</td>
<td>C₉H₉N₄O₄</td>
<td>- 129.4</td>
<td>- 541.3</td>
<td>- 108.7</td>
<td>32.07</td>
</tr>
<tr>
<td>trimethylamine nitrate</td>
<td>C₃H₁₀O₂N₂</td>
<td>- 673.1</td>
<td>- 2816</td>
<td>- 636.7</td>
<td>24.57</td>
</tr>
<tr>
<td>1,3,3-trinitroazetidine (TNAZ)</td>
<td>C₃H₄N₄O₆</td>
<td>+ 45.29</td>
<td>+ 189.50</td>
<td>+ 66.84</td>
<td>20.82</td>
</tr>
<tr>
<td>trinitrobenzene</td>
<td>C₅H₃O₅N₃</td>
<td>- 48.8</td>
<td>- 204</td>
<td>- 32.1</td>
<td>14.08</td>
</tr>
<tr>
<td>trinitrobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trinitrochlorobenzene</td>
<td>C₆H₆O₆N₃Cl</td>
<td>+ 25.9</td>
<td>+ 108</td>
<td>+ 40.4</td>
<td>8.08</td>
</tr>
<tr>
<td>1,3,3-trinitroazetidine (TNAZ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trinitropyridine</td>
<td>C₅H₆O₅N₄</td>
<td>+ 88.0</td>
<td>+ 368.5</td>
<td>+ 104.6</td>
<td>9.34</td>
</tr>
<tr>
<td>trinitropyridine-1-oxide</td>
<td>C₅H₆O₇N₄</td>
<td>+ 102.5</td>
<td>+ 428.9</td>
<td>+ 119.2</td>
<td>8.69</td>
</tr>
<tr>
<td>trinitroresorcinol</td>
<td>C₆H₅O₆N₃</td>
<td>- 510.0</td>
<td>- 2134</td>
<td>- 493.1</td>
<td>12.24</td>
</tr>
<tr>
<td>(styrophilic acid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>urea</td>
<td>CH₄N₂O₂</td>
<td>-1326</td>
<td>-5548</td>
<td>-1291</td>
<td>16.65</td>
</tr>
<tr>
<td>urea nitrate</td>
<td>CH₃O₃N₃</td>
<td>-1093</td>
<td>-4573</td>
<td>-1064</td>
<td>8.12</td>
</tr>
<tr>
<td>water</td>
<td>H₂O</td>
<td>-3792</td>
<td>-15880</td>
<td>-3743</td>
<td>111.01</td>
</tr>
<tr>
<td>wood dust</td>
<td></td>
<td>-1116</td>
<td>-4672</td>
<td>-1090</td>
<td>41.7</td>
</tr>
</tbody>
</table>
Table 32. Enthalpy and energy of formation of gaseous reaction products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Formula</th>
<th>Molecular Weight</th>
<th>Enthalpy of Formation kcal/mol</th>
<th>Enthalpy of Formation kJ/mol</th>
<th>Energy of Formation kcal/mol</th>
<th>Energy of Formation kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon monoxide</td>
<td>CO</td>
<td>28.01</td>
<td>-26.42</td>
<td>-110.6</td>
<td>-26.72</td>
<td>-111.9</td>
</tr>
<tr>
<td>carbon dioxide</td>
<td>CO</td>
<td>44.01</td>
<td>-94.05</td>
<td>-393.8</td>
<td>-94.05</td>
<td>-393.8</td>
</tr>
<tr>
<td>water (vapor)</td>
<td>H₂O</td>
<td>18.02</td>
<td>-57.80</td>
<td>-242.0</td>
<td>-57.50</td>
<td>-240.8</td>
</tr>
<tr>
<td>water (liquid)</td>
<td></td>
<td>-68.32</td>
<td>-286.1</td>
<td>-1119</td>
<td>-67.43</td>
<td>-282.3</td>
</tr>
<tr>
<td>nitrogen monoxide</td>
<td>NO</td>
<td>30.01</td>
<td>+21.57</td>
<td>+90.3</td>
<td>+21.57</td>
<td>+90.3</td>
</tr>
<tr>
<td>nitrogen dioxide (gas)</td>
<td>NO₂</td>
<td>46.01</td>
<td>+ 7.93</td>
<td>+33.2</td>
<td>+ 8.23</td>
<td>+34.5</td>
</tr>
<tr>
<td>nitrogen</td>
<td>N₂</td>
<td>28.02</td>
<td>± 0</td>
<td>± 0</td>
<td>± 0</td>
<td>± 0</td>
</tr>
<tr>
<td>oxygen</td>
<td>O₂</td>
<td>32.00</td>
<td>± 0</td>
<td>± 0</td>
<td>± 0</td>
<td>± 0</td>
</tr>
<tr>
<td>hydrogen chloride</td>
<td>HCl</td>
<td>36.47</td>
<td>-22.06</td>
<td>-92.4</td>
<td>-22.06</td>
<td>-92.4</td>
</tr>
</tbody>
</table>

Table 33. Moles per kilogram of inert Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
<th>mol/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminum oxide</td>
<td>Al₂O₃</td>
<td>9.808</td>
</tr>
<tr>
<td>barium sulfate</td>
<td>BaSO₄</td>
<td>4.284</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>CaCO₃</td>
<td>9.991</td>
</tr>
<tr>
<td>guhr (silicic acid)</td>
<td>SO₂</td>
<td>16.65</td>
</tr>
<tr>
<td>iron oxide</td>
<td>FeO₃</td>
<td>6.262</td>
</tr>
<tr>
<td>magnesium sulfate</td>
<td>MgSO₄</td>
<td>11.858</td>
</tr>
<tr>
<td>potassium chloride</td>
<td>KCl</td>
<td>13.413</td>
</tr>
<tr>
<td>sodium chloride</td>
<td>NaCl</td>
<td>17.11</td>
</tr>
<tr>
<td>talc</td>
<td>Mg₃(SiO₁₀)(OH)₂</td>
<td>2.636 (21 atoms)</td>
</tr>
<tr>
<td>water (slurry component)</td>
<td>H₂O</td>
<td>55.509</td>
</tr>
</tbody>
</table>

Heat of evaporation of H₂O:
555.5 kcal/kg = 2325.9 kJ/kg = 10.01 kcal/mol = 41.91 kJ/mol
<table>
<thead>
<tr>
<th>Product mol</th>
<th>Formula</th>
<th>Molecular Weight</th>
<th>Energy of Formation</th>
<th>Molar Heat of Fusion</th>
<th>Number of Atoms in Molecule</th>
<th>Molar Heat of Sublimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium chloride</td>
<td>NaCl</td>
<td>58.44</td>
<td>– 97.98</td>
<td>2</td>
<td>6.73</td>
<td>50.3</td>
</tr>
<tr>
<td>potassium chloride</td>
<td>KCl</td>
<td>74.56</td>
<td>–104.03</td>
<td>2</td>
<td>6.28</td>
<td>48.1</td>
</tr>
<tr>
<td>magnesium chloride</td>
<td>MgCl₂</td>
<td>95.23</td>
<td>–152.68</td>
<td>3</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>sodium carbonate</td>
<td>Na₂CO₃</td>
<td>105.99</td>
<td>–269.4</td>
<td>6</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>potassium carbonate</td>
<td>K₂CO₃</td>
<td>138.21</td>
<td>–274.0</td>
<td>6</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>CaCO₃</td>
<td>100.09</td>
<td>–287.6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>magnesium carbonate</td>
<td>MgCO₃</td>
<td>84.33</td>
<td>–261.0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>barium carbonate</td>
<td>BaCO₃</td>
<td>197.37</td>
<td>–289.8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lead carbonate</td>
<td>PbCO₃</td>
<td>267.22</td>
<td>–166.2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminum oxide</td>
<td>Al₂O₃</td>
<td>101.96</td>
<td>–399.6</td>
<td>5</td>
<td>28.3</td>
<td>115.7 (at 2480 K)</td>
</tr>
<tr>
<td>iron oxide</td>
<td>Fe₂O₃</td>
<td>159.70</td>
<td>–196.1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lead</td>
<td>Pb</td>
<td>207.21</td>
<td>± 0</td>
<td>1</td>
<td>1.21</td>
<td>46.34</td>
</tr>
<tr>
<td>mercury</td>
<td>Hg</td>
<td>200.61</td>
<td>± 0</td>
<td>1</td>
<td>–</td>
<td>14.0</td>
</tr>
<tr>
<td>Temperature K</td>
<td>CO kcal/mol</td>
<td>CO₂ kJ/mol</td>
<td>H₂O kcal/mol</td>
<td>H₂ kcal/mol</td>
<td>O₂ kcal/mol</td>
<td>N₂ kcal/mol</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1000</td>
<td>3.65</td>
<td>15.28</td>
<td>6.34</td>
<td>26.55</td>
<td>3.41</td>
<td>14.28</td>
</tr>
<tr>
<td>1100</td>
<td>10.64</td>
<td>33.71</td>
<td>14.51</td>
<td>60.75</td>
<td>7.31</td>
<td>30.61</td>
</tr>
<tr>
<td>1200</td>
<td>18.55</td>
<td>52.96</td>
<td>20.56</td>
<td>86.08</td>
<td>13.47</td>
<td>56.39</td>
</tr>
<tr>
<td>1300</td>
<td>26.47</td>
<td>73.07</td>
<td>26.57</td>
<td>112.80</td>
<td>16.34</td>
<td>74.37</td>
</tr>
<tr>
<td>1400</td>
<td>34.39</td>
<td>93.18</td>
<td>32.61</td>
<td>139.56</td>
<td>17.25</td>
<td>93.79</td>
</tr>
<tr>
<td>1500</td>
<td>42.32</td>
<td>113.29</td>
<td>38.63</td>
<td>166.34</td>
<td>18.16</td>
<td>114.21</td>
</tr>
<tr>
<td>1600</td>
<td>50.25</td>
<td>133.40</td>
<td>44.65</td>
<td>193.10</td>
<td>19.07</td>
<td>134.51</td>
</tr>
<tr>
<td>1700</td>
<td>58.18</td>
<td>153.51</td>
<td>50.67</td>
<td>220.85</td>
<td>19.98</td>
<td>154.82</td>
</tr>
<tr>
<td>1800</td>
<td>66.11</td>
<td>173.62</td>
<td>56.69</td>
<td>248.60</td>
<td>20.89</td>
<td>175.13</td>
</tr>
<tr>
<td>1900</td>
<td>74.04</td>
<td>193.73</td>
<td>62.71</td>
<td>276.35</td>
<td>21.79</td>
<td>195.44</td>
</tr>
<tr>
<td>2000</td>
<td>81.97</td>
<td>213.84</td>
<td>68.73</td>
<td>304.10</td>
<td>22.69</td>
<td>215.75</td>
</tr>
<tr>
<td>2100</td>
<td>89.90</td>
<td>233.95</td>
<td>74.75</td>
<td>331.85</td>
<td>23.59</td>
<td>236.06</td>
</tr>
<tr>
<td>2200</td>
<td>97.83</td>
<td>254.06</td>
<td>80.77</td>
<td>359.60</td>
<td>24.49</td>
<td>256.37</td>
</tr>
<tr>
<td>2300</td>
<td>105.76</td>
<td>274.17</td>
<td>86.79</td>
<td>387.35</td>
<td>25.39</td>
<td>276.68</td>
</tr>
<tr>
<td>2400</td>
<td>113.69</td>
<td>294.28</td>
<td>92.81</td>
<td>415.10</td>
<td>26.29</td>
<td>297.00</td>
</tr>
<tr>
<td>2500</td>
<td>121.61</td>
<td>314.39</td>
<td>98.83</td>
<td>442.85</td>
<td>27.19</td>
<td>317.31</td>
</tr>
<tr>
<td>2600</td>
<td>129.54</td>
<td>334.50</td>
<td>104.85</td>
<td>470.60</td>
<td>28.09</td>
<td>337.62</td>
</tr>
<tr>
<td>2700</td>
<td>137.47</td>
<td>354.61</td>
<td>110.87</td>
<td>498.35</td>
<td>28.99</td>
<td>357.94</td>
</tr>
<tr>
<td>2800</td>
<td>145.40</td>
<td>374.72</td>
<td>116.89</td>
<td>526.10</td>
<td>29.89</td>
<td>378.25</td>
</tr>
<tr>
<td>2900</td>
<td>153.33</td>
<td>394.83</td>
<td>122.91</td>
<td>553.85</td>
<td>30.79</td>
<td>398.56</td>
</tr>
<tr>
<td>3000</td>
<td>161.26</td>
<td>414.94</td>
<td>128.93</td>
<td>581.60</td>
<td>31.69</td>
<td>418.88</td>
</tr>
<tr>
<td>3100</td>
<td>169.19</td>
<td>435.05</td>
<td>134.95</td>
<td>609.35</td>
<td>32.59</td>
<td>439.20</td>
</tr>
<tr>
<td>3200</td>
<td>177.12</td>
<td>455.16</td>
<td>140.97</td>
<td>637.10</td>
<td>33.49</td>
<td>459.51</td>
</tr>
<tr>
<td>3300</td>
<td>185.05</td>
<td>475.27</td>
<td>146.99</td>
<td>664.85</td>
<td>34.39</td>
<td>479.83</td>
</tr>
<tr>
<td>3400</td>
<td>192.98</td>
<td>495.38</td>
<td>152.01</td>
<td>692.60</td>
<td>35.29</td>
<td>490.14</td>
</tr>
<tr>
<td>3500</td>
<td>200.91</td>
<td>515.49</td>
<td>157.03</td>
<td>720.35</td>
<td>36.19</td>
<td>510.46</td>
</tr>
<tr>
<td>3600</td>
<td>208.84</td>
<td>535.60</td>
<td>162.05</td>
<td>748.10</td>
<td>37.09</td>
<td>530.77</td>
</tr>
<tr>
<td>Temperature K</td>
<td>CO (kcal/mol)</td>
<td>CO₂ (kcal/mol)</td>
<td>H₂O (kJ/mol)</td>
<td>H₂ (kJ/mol)</td>
<td>O₂ (kcal/mol)</td>
<td>N₂ (kJ/mol)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3700</td>
<td>21.67</td>
<td>90.73</td>
<td>40.10</td>
<td>167.89</td>
<td>31.63</td>
<td>132.43</td>
</tr>
<tr>
<td>3800</td>
<td>22.38</td>
<td>93.71</td>
<td>41.44</td>
<td>173.50</td>
<td>32.76</td>
<td>137.16</td>
</tr>
<tr>
<td>3900</td>
<td>23.08</td>
<td>96.64</td>
<td>42.78</td>
<td>179.11</td>
<td>33.89</td>
<td>141.89</td>
</tr>
<tr>
<td>4000</td>
<td>23.79</td>
<td>99.61</td>
<td>44.13</td>
<td>184.77</td>
<td>35.03</td>
<td>146.67</td>
</tr>
<tr>
<td>4100</td>
<td>24.50</td>
<td>102.58</td>
<td>45.47</td>
<td>190.38</td>
<td>36.17</td>
<td>151.44</td>
</tr>
<tr>
<td>4200</td>
<td>25.20</td>
<td>105.51</td>
<td>46.82</td>
<td>196.03</td>
<td>37.32</td>
<td>156.25</td>
</tr>
<tr>
<td>4300</td>
<td>25.91</td>
<td>108.49</td>
<td>48.17</td>
<td>201.68</td>
<td>38.46</td>
<td>161.03</td>
</tr>
<tr>
<td>4400</td>
<td>26.62</td>
<td>111.46</td>
<td>49.52</td>
<td>207.34</td>
<td>39.61</td>
<td>165.84</td>
</tr>
<tr>
<td>4500</td>
<td>27.33</td>
<td>114.43</td>
<td>50.88</td>
<td>213.03</td>
<td>40.76</td>
<td>170.66</td>
</tr>
<tr>
<td>4600</td>
<td>28.04</td>
<td>117.40</td>
<td>52.23</td>
<td>218.68</td>
<td>41.91</td>
<td>175.47</td>
</tr>
<tr>
<td>4700</td>
<td>28.75</td>
<td>120.38</td>
<td>53.59</td>
<td>224.38</td>
<td>43.07</td>
<td>180.33</td>
</tr>
<tr>
<td>4800</td>
<td>29.46</td>
<td>123.35</td>
<td>54.95</td>
<td>230.07</td>
<td>44.22</td>
<td>185.14</td>
</tr>
<tr>
<td>4900</td>
<td>30.17</td>
<td>126.32</td>
<td>56.31</td>
<td>235.76</td>
<td>45.38</td>
<td>190.00</td>
</tr>
<tr>
<td>5000</td>
<td>30.88</td>
<td>129.29</td>
<td>57.67</td>
<td>241.46</td>
<td>46.54</td>
<td>194.86</td>
</tr>
<tr>
<td>5100</td>
<td>31.60</td>
<td>132.31</td>
<td>59.03</td>
<td>247.15</td>
<td>47.70</td>
<td>199.71</td>
</tr>
<tr>
<td>5200</td>
<td>32.31</td>
<td>135.28</td>
<td>60.39</td>
<td>252.85</td>
<td>48.86</td>
<td>204.57</td>
</tr>
<tr>
<td>5300</td>
<td>33.02</td>
<td>138.25</td>
<td>61.76</td>
<td>258.59</td>
<td>50.02</td>
<td>209.43</td>
</tr>
</tbody>
</table>

* If carbon separation occurs.
Table 36. Molar internal enthalpies of reaction products $\bar{c}_v (T-T_0)$; $T_0 = 25 ^\circ C = 300 K$.

<table>
<thead>
<tr>
<th>Temperature K</th>
<th>CO kcal/mol</th>
<th>CO$_2$ kcal/mol</th>
<th>H$_2$O kcal/mol</th>
<th>H$_2$ kcal/mol</th>
<th>O$_2$ kcal/mol</th>
<th>N$_2$ kcal/mol</th>
<th>NO kcal/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>4.99</td>
<td>20.89</td>
<td>7.68</td>
<td>32.16</td>
<td>5.98</td>
<td>25.04</td>
<td>4.75</td>
</tr>
<tr>
<td>900</td>
<td>6.60</td>
<td>27.63</td>
<td>10.33</td>
<td>43.25</td>
<td>8.00</td>
<td>33.49</td>
<td>6.21</td>
</tr>
<tr>
<td>1100</td>
<td>8.24</td>
<td>34.50</td>
<td>13.04</td>
<td>54.59</td>
<td>10.12</td>
<td>42.37</td>
<td>7.71</td>
</tr>
<tr>
<td>1200</td>
<td>9.08</td>
<td>38.01</td>
<td>14.43</td>
<td>60.41</td>
<td>11.22</td>
<td>46.98</td>
<td>8.47</td>
</tr>
<tr>
<td>1300</td>
<td>9.92</td>
<td>41.53</td>
<td>15.84</td>
<td>66.32</td>
<td>12.34</td>
<td>51.67</td>
<td>9.25</td>
</tr>
<tr>
<td>1400</td>
<td>10.78</td>
<td>45.14</td>
<td>17.25</td>
<td>72.23</td>
<td>13.48</td>
<td>56.44</td>
<td>10.04</td>
</tr>
<tr>
<td>1500</td>
<td>11.62</td>
<td>48.66</td>
<td>18.70</td>
<td>78.30</td>
<td>14.45</td>
<td>60.50</td>
<td>11.06</td>
</tr>
<tr>
<td>1600</td>
<td>12.47</td>
<td>52.21</td>
<td>20.07</td>
<td>84.03</td>
<td>15.56</td>
<td>65.15</td>
<td>11.77</td>
</tr>
<tr>
<td>1700</td>
<td>13.32</td>
<td>55.77</td>
<td>21.46</td>
<td>89.86</td>
<td>16.71</td>
<td>69.96</td>
<td>12.50</td>
</tr>
<tr>
<td>1800</td>
<td>14.16</td>
<td>59.29</td>
<td>22.85</td>
<td>95.67</td>
<td>17.87</td>
<td>74.82</td>
<td>13.26</td>
</tr>
<tr>
<td>1900</td>
<td>15.03</td>
<td>62.93</td>
<td>24.28</td>
<td>101.66</td>
<td>19.06</td>
<td>79.80</td>
<td>14.04</td>
</tr>
<tr>
<td>2000</td>
<td>15.81</td>
<td>66.20</td>
<td>25.73</td>
<td>107.73</td>
<td>20.29</td>
<td>84.91</td>
<td>14.84</td>
</tr>
<tr>
<td>2100</td>
<td>16.77</td>
<td>70.22</td>
<td>27.19</td>
<td>113.84</td>
<td>21.51</td>
<td>90.06</td>
<td>15.66</td>
</tr>
<tr>
<td>2200</td>
<td>17.65</td>
<td>73.90</td>
<td>28.66</td>
<td>120.00</td>
<td>22.79</td>
<td>95.42</td>
<td>16.49</td>
</tr>
<tr>
<td>2300</td>
<td>18.54</td>
<td>77.63</td>
<td>30.16</td>
<td>126.28</td>
<td>24.01</td>
<td>100.53</td>
<td>17.33</td>
</tr>
<tr>
<td>2400</td>
<td>19.42</td>
<td>81.31</td>
<td>31.62</td>
<td>132.39</td>
<td>25.28</td>
<td>105.85</td>
<td>18.19</td>
</tr>
<tr>
<td>2500</td>
<td>20.30</td>
<td>85.00</td>
<td>33.11</td>
<td>138.63</td>
<td>26.54</td>
<td>111.12</td>
<td>19.04</td>
</tr>
<tr>
<td>2600</td>
<td>21.19</td>
<td>88.72</td>
<td>34.61</td>
<td>144.91</td>
<td>27.83</td>
<td>116.52</td>
<td>19.91</td>
</tr>
<tr>
<td>2700</td>
<td>22.09</td>
<td>92.49</td>
<td>36.12</td>
<td>151.23</td>
<td>29.12</td>
<td>121.93</td>
<td>20.78</td>
</tr>
<tr>
<td>2800</td>
<td>22.98</td>
<td>96.22</td>
<td>37.63</td>
<td>157.56</td>
<td>30.42</td>
<td>127.37</td>
<td>21.67</td>
</tr>
<tr>
<td>2900</td>
<td>23.88</td>
<td>99.99</td>
<td>39.15</td>
<td>163.92</td>
<td>31.73</td>
<td>132.85</td>
<td>22.55</td>
</tr>
<tr>
<td>3000</td>
<td>24.78</td>
<td>103.75</td>
<td>40.68</td>
<td>170.33</td>
<td>33.04</td>
<td>138.34</td>
<td>23.48</td>
</tr>
<tr>
<td>3100</td>
<td>25.68</td>
<td>107.52</td>
<td>42.21</td>
<td>176.73</td>
<td>34.36</td>
<td>143.87</td>
<td>24.34</td>
</tr>
<tr>
<td>Temperature K</td>
<td>CO</td>
<td>CO₂</td>
<td>H₂O</td>
<td>H₂</td>
<td>O₂</td>
<td>N₂</td>
<td>NO</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>3200</td>
<td>26.57</td>
<td>111.25</td>
<td>43.73</td>
<td>183.10</td>
<td>35.67</td>
<td>149.35</td>
<td>25.21</td>
</tr>
<tr>
<td>3300</td>
<td>27.47</td>
<td>115.02</td>
<td>45.26</td>
<td>189.50</td>
<td>37.00</td>
<td>154.92</td>
<td>26.14</td>
</tr>
<tr>
<td>3400</td>
<td>28.37</td>
<td>118.79</td>
<td>46.80</td>
<td>195.95</td>
<td>38.33</td>
<td>160.49</td>
<td>27.05</td>
</tr>
<tr>
<td>3500</td>
<td>29.28</td>
<td>122.60</td>
<td>48.34</td>
<td>202.40</td>
<td>39.66</td>
<td>166.06</td>
<td>27.96</td>
</tr>
<tr>
<td>3600</td>
<td>30.18</td>
<td>126.36</td>
<td>49.88</td>
<td>208.85</td>
<td>40.99</td>
<td>171.63</td>
<td>28.88</td>
</tr>
<tr>
<td>3700</td>
<td>31.09</td>
<td>130.17</td>
<td>51.43</td>
<td>215.34</td>
<td>42.33</td>
<td>177.24</td>
<td>29.79</td>
</tr>
<tr>
<td>3800</td>
<td>32.00</td>
<td>133.98</td>
<td>52.97</td>
<td>221.79</td>
<td>43.67</td>
<td>182.85</td>
<td>30.71</td>
</tr>
<tr>
<td>3900</td>
<td>32.89</td>
<td>137.71</td>
<td>54.51</td>
<td>228.23</td>
<td>45.01</td>
<td>188.46</td>
<td>31.69</td>
</tr>
<tr>
<td>4000</td>
<td>33.80</td>
<td>141.52</td>
<td>56.06</td>
<td>234.72</td>
<td>46.35</td>
<td>194.07</td>
<td>32.55</td>
</tr>
<tr>
<td>4100</td>
<td>34.71</td>
<td>145.33</td>
<td>57.61</td>
<td>241.21</td>
<td>47.70</td>
<td>199.72</td>
<td>33.48</td>
</tr>
<tr>
<td>4200</td>
<td>35.62</td>
<td>149.14</td>
<td>59.17</td>
<td>247.74</td>
<td>49.05</td>
<td>205.37</td>
<td>34.41</td>
</tr>
<tr>
<td>4300</td>
<td>36.53</td>
<td>152.95</td>
<td>60.72</td>
<td>254.23</td>
<td>50.40</td>
<td>211.02</td>
<td>35.34</td>
</tr>
<tr>
<td>4400</td>
<td>37.44</td>
<td>156.76</td>
<td>62.28</td>
<td>260.77</td>
<td>51.76</td>
<td>216.72</td>
<td>36.27</td>
</tr>
<tr>
<td>4500</td>
<td>38.35</td>
<td>160.57</td>
<td>63.84</td>
<td>267.30</td>
<td>53.11</td>
<td>222.37</td>
<td>37.20</td>
</tr>
<tr>
<td>4600</td>
<td>39.26</td>
<td>164.38</td>
<td>65.40</td>
<td>273.83</td>
<td>54.47</td>
<td>228.07</td>
<td>38.13</td>
</tr>
<tr>
<td>4700</td>
<td>40.17</td>
<td>168.19</td>
<td>66.96</td>
<td>280.36</td>
<td>55.84</td>
<td>233.80</td>
<td>39.07</td>
</tr>
<tr>
<td>4800</td>
<td>41.08</td>
<td>172.00</td>
<td>68.51</td>
<td>286.85</td>
<td>57.18</td>
<td>239.41</td>
<td>40.00</td>
</tr>
<tr>
<td>4900</td>
<td>41.99</td>
<td>175.81</td>
<td>70.07</td>
<td>293.38</td>
<td>58.54</td>
<td>245.11</td>
<td>40.93</td>
</tr>
<tr>
<td>5000</td>
<td>42.90</td>
<td>179.62</td>
<td>71.64</td>
<td>299.96</td>
<td>59.90</td>
<td>250.80</td>
<td>41.87</td>
</tr>
</tbody>
</table>

Values for carbon C can be taken from table 35.
Table 37. Equilibrium constants.

<table>
<thead>
<tr>
<th>Temperature K</th>
<th>K_1*</th>
<th>K_2</th>
<th>K_3^{**}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$[\text{CO}] \cdot [\text{H}_2\text{O}] / [\text{CO}_2] \cdot [\text{H}_3]$</td>
<td>$[\text{CO}] \cdot [\text{NO}] / [\text{N}_2]^{1/2} \cdot [\text{CO}_2]$</td>
<td>$[\text{CO}]^2 / [\text{CO}_2]$</td>
</tr>
<tr>
<td>1000</td>
<td>0.6929</td>
<td>1.791×10^{-16}</td>
<td>2.216×10^{-3}</td>
</tr>
<tr>
<td>1200</td>
<td>1.3632</td>
<td>2.784×10^{-13}</td>
<td>5.513×10^{-2}</td>
</tr>
<tr>
<td>1400</td>
<td>2.1548</td>
<td>5.238×10^{-11}</td>
<td>5.346×10^{-1}</td>
</tr>
<tr>
<td>1500</td>
<td>2.5667</td>
<td>4.240×10^{-10}</td>
<td>1.317</td>
</tr>
<tr>
<td>1600</td>
<td>2.9802</td>
<td>2.638×10^{-9}</td>
<td>2.885</td>
</tr>
<tr>
<td>1700</td>
<td>3.3835</td>
<td>1.321×10^{-8}</td>
<td>5.744</td>
</tr>
<tr>
<td>1800</td>
<td>3.7803</td>
<td>5.520×10^{-8}</td>
<td>10.56</td>
</tr>
<tr>
<td>1900</td>
<td>4.1615</td>
<td>1.982×10^{-7}</td>
<td>18.15</td>
</tr>
<tr>
<td>2000</td>
<td>4.5270</td>
<td>6.254×10^{-7}</td>
<td>29.48</td>
</tr>
<tr>
<td>2100</td>
<td>4.8760</td>
<td>1.767×10^{-6}</td>
<td>45.61</td>
</tr>
<tr>
<td>2200</td>
<td>5.2046</td>
<td>4.536×10^{-6}</td>
<td>67.67</td>
</tr>
<tr>
<td>2300</td>
<td>5.5154</td>
<td>1.072×10^{-5}</td>
<td>96.83</td>
</tr>
<tr>
<td>2400</td>
<td>5.8070</td>
<td>2.356×10^{-5}</td>
<td>134.2</td>
</tr>
<tr>
<td>2500</td>
<td>6.0851</td>
<td>4.858×10^{-5}</td>
<td>181.0</td>
</tr>
<tr>
<td>2600</td>
<td>6.3413</td>
<td>9.467×10^{-5}</td>
<td>238.1</td>
</tr>
<tr>
<td>2700</td>
<td>6.5819</td>
<td>1.755×10^{-4}</td>
<td>306.5</td>
</tr>
<tr>
<td>2800</td>
<td>6.8075</td>
<td>3.110×10^{-4}</td>
<td>387.0</td>
</tr>
<tr>
<td>2900</td>
<td>7.0147</td>
<td>5.295×10^{-4}</td>
<td>480.2</td>
</tr>
<tr>
<td>3000</td>
<td>7.2127</td>
<td>8.696×10^{-4}</td>
<td>586.8</td>
</tr>
<tr>
<td>3100</td>
<td>7.3932</td>
<td>1.383×10^{-4}</td>
<td>706.9</td>
</tr>
<tr>
<td>3200</td>
<td>7.5607</td>
<td>2.134×10^{-4}</td>
<td>841.0</td>
</tr>
<tr>
<td>3300</td>
<td>7.7143</td>
<td>3.207×10^{-4}</td>
<td>989.1</td>
</tr>
<tr>
<td>3400</td>
<td>7.8607</td>
<td>4.704×10^{-4}</td>
<td>1151</td>
</tr>
<tr>
<td>3500</td>
<td>7.9910</td>
<td>6.746×10^{-4}</td>
<td>1327</td>
</tr>
<tr>
<td>3600</td>
<td>8.1144</td>
<td>9.480×10^{-4}</td>
<td>1517</td>
</tr>
<tr>
<td>3700</td>
<td>8.2266</td>
<td>1.307×10^{-3}</td>
<td>1720</td>
</tr>
<tr>
<td>3800</td>
<td>8.3310</td>
<td>1.772×10^{-3}</td>
<td>1936</td>
</tr>
<tr>
<td>3900</td>
<td>8.4258</td>
<td>2.364×10^{-3}</td>
<td>2164</td>
</tr>
<tr>
<td>4000</td>
<td>8.5124</td>
<td>3.108×10^{-3}</td>
<td>2406</td>
</tr>
<tr>
<td>4100</td>
<td>8.5926</td>
<td>4.030×10^{-3}</td>
<td>2656</td>
</tr>
<tr>
<td>4200</td>
<td>8.6634</td>
<td>5.160×10^{-3}</td>
<td>2919</td>
</tr>
<tr>
<td>4300</td>
<td>8.7296</td>
<td>6.530×10^{-3}</td>
<td>3191</td>
</tr>
<tr>
<td>4400</td>
<td>8.7900</td>
<td>8.173×10^{-3}</td>
<td>3474</td>
</tr>
<tr>
<td>4500</td>
<td>8.8442</td>
<td>1.013×10^{-2}</td>
<td>3765</td>
</tr>
<tr>
<td>4600</td>
<td>8.8888</td>
<td>1.243×10^{-2}</td>
<td>4064</td>
</tr>
<tr>
<td>4700</td>
<td>8.9304</td>
<td>1.511×10^{-2}</td>
<td>4370</td>
</tr>
<tr>
<td>4800</td>
<td>8.9698</td>
<td>1.823×10^{-2}</td>
<td>4684</td>
</tr>
<tr>
<td>4900</td>
<td>9.0001</td>
<td>2.181×10^{-2}</td>
<td>5003</td>
</tr>
<tr>
<td>5000</td>
<td>9.0312</td>
<td>2.591×10^{-2}</td>
<td>5329</td>
</tr>
<tr>
<td>5100</td>
<td>9.0524</td>
<td>3.056×10^{-2}</td>
<td>5659</td>
</tr>
<tr>
<td>5200</td>
<td>9.0736</td>
<td>3.581×10^{-2}</td>
<td>5993</td>
</tr>
<tr>
<td>5300</td>
<td>9.0872</td>
<td>4.171×10^{-2}</td>
<td>6331</td>
</tr>
</tbody>
</table>

** Applies only in the presence of elementary carbon.
For more detailed calculations (e.g. if the presence of free carbon must be assumed), the reader is referred to M. A. Cook: The Science of High Explosives, Chapman & Hall, London 1958 and, by the same author: The Science of Industrial Explosives, copyright 1974 by IR-ECO CHEMICALS, Salt Lake City, USA. They contain basic data on heat capacities and equilibria constants concerned, as well as computing programs for hand and machine calculations.

The data for the Tables above have been taken from this book. The data for enthalpies and energies of formation are taken from H. Batthelt, F. Volk, M. Weindel, ICT-Database of Thermochemical Values, Sixth update (2001), FRAUNHOFER-INSTITUT FÜR CHEMISCHE TECHNOLOGIE, D-76318 Pfinztal-Berghausen.

Thrust

Schub; poussée

In rocket technology, the recoil force produced by rearward gas discharge. It is expressed in tons, kiloponds, or newtons, and is one of the most important characteristic rocket parameters. The initial weight of a rocket must remain within a certain relation to the thrust. The launching thrust chosen is usually higher than the cruising thrust; this can be achieved by the use of → Boosters.

Thrust Determination

Schubmessung; mesurage de la poussée

The determination of the thrust of a rocket motor involves recording the time diagram of the force (tons, kp, or newtons) during combustion. The force is allowed to act on a support, with a pick-up element thrust cell interposed between them. The measurement is carried out by the aid of a strain gauge element (variation of resistance with pressure) or of a piezo-quartz element, and the results are recorded on an oscillograph connected in a compensation circuit. Modern measuring and computation techniques yield the total thrust time (impulse) immediately.

The same technique is applied for the determination of the pressure in the combustion chamber. The pressure cell must be attached to the previously prepared measuring points on the combustion chamber.

→ Solid Propellant Rockets and → Specific Impulse.
TNT

2,4,6-trinitrotoluene; Trinitrotoluol; trinitrotoluene; Trotyl; tolite

\[
\begin{align*}
\text{empirical formula: } & \text{C}_7\text{H}_5\text{N}_3\text{O}_6 \\
\text{molecular weight: } & 227.1 \\
\text{energy of formation: } & -52.4 \text{ kcal/kg} = -219.0 \text{ kJ/kg} \\
\text{enthalpy of formation: } & -70.6 \text{ kcal/kg} = -295.3 \text{ kJ/kg} \\
\text{oxygen balance: } & -73.9\% \\
\text{nitrogen content: } & 18.50\% \\
\text{volume of explosion gases: } & 825 \text{ l/kg} \\
\text{heat of explosion: } & \\
\text{(H}_2\text{O gas): } & 871 \text{ kcal/kg} = 3646 \text{ kJ/kg} \quad \text{(calculated*)} \\
\text{(H}_2\text{O liq.): } & 900 \text{ kcal/kg} = 3766 \text{ kJ/kg} \\
\text{heat of detonation: } & 1090 \text{ kcal/kg} = 4564 \text{ kJ/kg} \quad \text{(experimental;**)} \\
\text{specific energy: } & 92.6 \text{ mt/kg} = 908 \text{ kJ/kg} \\
\text{density, crystals: } & 1.654 \text{ g/cm}^3 \\
\text{density, molten: } & 1.47 \text{ g/cm}^3 \\
\text{solidification point: } & 80.8 \degree \text{C} = 177.4 \degree \text{F} \\
\text{heat of fusion: } & 23.1 \text{ kcal/kg} = 96.6 \text{ kJ/kg} \\
\text{specific heat at } 20 \degree \text{C} = 68 \degree \text{F: } \\
\quad & 0.331 \text{ kcal/kg} = 1.38 \text{ kJ/kg} \\
\text{vapor pressure: } & \\
\begin{align*}
\text{Pressure} & \quad \text{Temperature} \\
\text{millibar} & \quad ^\circ \text{C} & \quad ^\circ \text{F} \\
0.057 & 81 & 178 \quad \text{(melting point)} \\
0.14 & 100 & 212 \\
4 & 150 & 302 \\
14 & 200 & 392 \\
86.5 & 250 & 482 \quad \text{(beginning decomposition)} \\
\end{align*}
\]

lead block test: 300 cm\(^3\)/10 g
detonation velocity, confined:

* computed by the “ICT-Thermodynamic-Code”.
** value quoted from Brigitta M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore.
6900 m/s = 22600 ft/s at $\rho = 1.60$ g/cm3
deflagration point: $300 \, ^\circ C = 570 \, ^\circ F$
impact sensitivity: $1.5 \, kp \, m = 15 \, N \, m$
friction sensitivity: up to $36 \, kp = 353 \, N$
pistil load no reaction
critical diameter of steel sleeve test: $5 \, mm$

TNT is almost insoluble in water, sparingly soluble in alcohol, and soluble in benzene, toluene and acetone.

It is produced by nitration of toluene with mixed nitric and sulfuric acid in several steps. The trinitration step needs high concentrated mixed acids with free SO$_3$. There are batchwise and continuous nitration methods. TNT for military use must be free from any isomer other than the 2,4,6 (the specifications). This can be done by recrystallization in organic solvents (alcohol; benzene) or in 62% nitric acid. The non-symmetrical isomers can be destroyed by washing with an aqueous sodium sulfite solution; this processing, however, brings about large quantities of red colored waste waters.

The purity grade of the product is determined by its solidification point. The minimum value for military purposes is $80.2 \, ^\circ C = 176.4 \, ^\circ F$; the value for the pure 2,4,6-isomer is $80.8 \, ^\circ C = 177.4 \, ^\circ F$; owing to the nitric acid recrystallization procedure, products with solidification points 80.6 and $80.7 \, ^\circ C (177.1$ and $177.3 \, ^\circ F)$ are currently available.

TNT is by far the most important explosive for blasting charges of all weapons. It is very stable, neutral, and does not attack metals; it can be charged by casting as well by pressing; it is insensitive and needs no phlegmatizers. It can be applied pure and mixed with ammonium nitrate (\rightarrow Amatols), aluminum powder (\rightarrow Tritonal), with RDX (\rightarrow Cyclonite and \rightarrow Composition B), and combinations (\rightarrow Torpex, \rightarrow HBX, \rightarrow Trialenes). Furthermore, TNT is an important component of industrial explosives.

Cast charges of TNT are insensitive to blasting caps and need a booster for safe initiation. Pressed TNT is cap-sensitive.

Specifications

<table>
<thead>
<tr>
<th>Appearance:</th>
<th>pale yellow flakes or crystals</th>
</tr>
</thead>
<tbody>
<tr>
<td>solidification point, depending on quality requirement:</td>
<td>not less than $80.6 , ^\circ C = 177.1 , ^\circ F$</td>
</tr>
<tr>
<td>(the point for TNT as a component in industrial explosives can be lower)</td>
<td>$80.4 , ^\circ C = 176.7 , ^\circ F$</td>
</tr>
<tr>
<td>volatiles: not more than</td>
<td>$80.2 , ^\circ C = 176.4 , ^\circ F$</td>
</tr>
<tr>
<td>tetranitromethane:</td>
<td>none</td>
</tr>
</tbody>
</table>
acidity as H_2SO_4:
not more than 0.005%

alkalinity as Na_2CO_3:
not more than 0.001%

benzene – insolubles:
not more than 0.05%

ash content: not more than 0.01%

Other specification characteristics may also be included in the list, e.g. referring to the behavior or pressed specimens at $70 \, ^\circ\text{C} = 158 \, ^\circ\text{F}$ ($\rightarrow \text{Exudation}$).

Toluene as raw material
empirical formula: C_7H_8
molecular weight: 92.1
boiling point: 110.60 °C = 231.1 °F
density (20/4): 0.8659 g/cm3
refractive index n_D^20: 1.4947

Specifications
boiling alysis: 109–111 °C
reaction: neutral
test with concentrated H_2SO_4: does not turn brown
thiophene: not more than 0.005%
unsaturated hydrocarbons (Br$_2$-consumption): not more than 0.25%

Table 38. Data of the non-symmetrical TNT Isomers

<table>
<thead>
<tr>
<th>TNT Isomer</th>
<th>Melting Point</th>
<th>Heat of Fusion</th>
<th>Beginning of Decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°F</td>
<td>kcal/kg</td>
</tr>
<tr>
<td>2,3,4-</td>
<td>112</td>
<td>234</td>
<td>25.8</td>
</tr>
<tr>
<td>2,3,5-</td>
<td>97</td>
<td>207</td>
<td>20.3</td>
</tr>
<tr>
<td>2,3,6-</td>
<td>108</td>
<td>226</td>
<td>24.9</td>
</tr>
<tr>
<td>2,4,5-</td>
<td>104</td>
<td>219</td>
<td>26.3</td>
</tr>
<tr>
<td>3,4,5-</td>
<td>132</td>
<td>270</td>
<td>21.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNT Isomer</th>
<th>Energy of Formation kcal/kg</th>
<th>Enthalpy of Formation kJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,4-</td>
<td>+34.2</td>
<td>+143</td>
</tr>
<tr>
<td>2,3,5-</td>
<td>– 5.9</td>
<td>– 25</td>
</tr>
<tr>
<td>2,3,6-</td>
<td>+ 0.7</td>
<td>+ 3</td>
</tr>
<tr>
<td>2,4,5-</td>
<td>+ 2.0</td>
<td>+ 8</td>
</tr>
<tr>
<td>3,4,5-</td>
<td>+13.0</td>
<td>+ 54</td>
</tr>
</tbody>
</table>
2.4-Toluene Diisocyanate

Text quoted from glossary.

TDI acts as a hydroxy curing agent in the formation of polyurethane binders of → Composite Propellants; → also Casting of Propellants.

Torpex

Castable mixtures of RDX (Cyclonite), TNT, and aluminum powder, e.g. a 41:41:18 mixture. It contains 1% added wax. Other phlegmatized mixtures of similar compositions are → DBX and → HBX.

density: 1.81 g/cm³
detonation velocity, confined:
7600 m/s = 24900 ft/s at ρ = 1.81 g/cm³

Tracers

Leuchtspur; compositions lumineuses

Tracers are slowly burning pyrotechnical compositions, used in tracer bullets, signalling cartridges, tracer rockets, and light-track shells. The colored flame is due to the presence of added salts such as sodium, barium, strontium, and copper salts. The signalling formulations also

* Text quoted from glossary.
comprise smoke generators, including colored smoke generators and staining formulations which mark ground and water surfaces with organic dyes.

Transmission of Detonation

→ *Detonation; Sympathetic Detonation*

Transport Regulations

Transportvorschriften; règlements de transport

→ *ADR (Road); RID (Rail); IATA (Air); IMO (Shipping).*

Trauzl Test

(→ Lead Block Test)

Trauzl, an officer in the pioneer corps of the Austrian army, proposed the lead block method for the determination of the strength of explosive materials. The first international standardization of his method was enacted in 1904.

Trialenes

Mixtures of TNT, Cyclonite, and aluminum powder in the following proportions: 80:10:10, 70:15:15, 60:20:20, 50:10:40, and 50:25:25. They were used as fillings for bombs and torpedo warheads in the Second World War.

Triaminoguanidine Nitrate

Triaminoguanidinnitrat; nitrate de triaminoguanidine; TAGN

\[
\text{H}_2\text{N}-\text{N}=\text{C} \quad \text{NH}-\text{NH}_2 \cdot \text{HNO}_3
\]

colorless crystals

empirical formula: CH\textsubscript{9}N\textsubscript{7}O\textsubscript{3}
molecular weight: 167.1
energy of formation: $-35.2 \text{ kcal/kg} = -147.2 \text{ kJ/kg}$
enthalpy of formation:
$-68.8 \text{ kcal/kg} = -287.9 \text{ kJ/kg}$

oxygen balance: -33.5%
nitrogen content: 58.68\%
volume of explosion gases: 1163 l/kg
heat of explosion
(H₂O liq.) 950 kcal/kg = 3974 kJ/kg
(H₂O gas): 835 kcal/kg = 3492 kJ/kg
density: 1.5 g/cm³
melting point: 216 °C = 420 °F (decomposition)
lead block test: 350 cm³/10 g
detonation velocity, confined:
5300 m/s at ρ = 0.95 g/cm³
deflagration point: 227 °C = 440 °F
impact sensitivity:
0.4 kp m = 4 N m
friction sensitivity: over 12 kp = 120 N
pistil load crackling

This compound is prepared by reacting and mole of guanidine dinitrate with 3 moles of hydrazine hydrate at 100 °C = 212 °F for four hours. The reaction is accompanied by the liberation of ammonia.

The product is distinguished by high contents of hydrogen and nitrogen.

1,3,5-Triamino-2,4,6-trinitrobenzene
Triaminotrinitrobenzol; triaminotrinitrobenzène TATB

O₂N

NH₂

NO₂

H₂N

NH₂

NO₂

bright yellow crystals
empirical formula: C₆H₆N₆O₆
molecular weight: 258.1
energy of formation:
−108.7 kcal/kg = −455.0 kJ/kg
enthalpy of formation:
−129.4 kcal/kg = 541.3 kJ/kg
oxygen balance: −55.8 %
nitrogen content: 32.6 %
heat of explosion (H₂O liq.):
732 kcal/kg = 3062 kJ/kg
density: 1.93 g/cm³
melting point: 350 °C = 600 °F (decomp.)
lead block test: 175 cm³/10 g
detonation velocity, confined:
7350 m/s at ρ = 1.80 g/cm³
deflagration point: 384 °C
impact sensitivity: 5 kp m = 50 N m
friction sensitivity: at 35 kp = 353 N
pistil load no reaction

TATB is obtained by nitration of trichlorobenzene and conversion of the trinitrotrichlorobenzene to TATB.

It resists heat up to 300 °C (570 °F) and is very insensitive to friction and impact; the → Critical Diameter is high. Therefore the lead block test value listed above may be too low in comparison with its other performance data.

Direct contact with some heavy metals (e.g. copper) must be avoided.

1,3,5-Triazido-2,4,6-trinitrobenzene

Triazidotrinitrobenzol; triazidotrinitrobenzene; TATNB

![Chemical Structure](image)
green-yellow crystals
empirical formula: C₆N₁₂O₆
molecular weight: 336.2
oxygen balance: −28.6 %
nitrogen content: 50.0 %
volume of explosion gases: 755 l/kg
specific energy: 170 mt/kg = 1666 kJ/kg
density: 1.805 g/cm³
melting point: 131 °C = 268 °F (decomp.)
lead block test: 470 cm³/10 g
impact sensitivity: 0.5 kp m = 5 N m

The product can be obtained by treating 2,4,6-trichloro- 1,3,5-trinitrobenzene with an alkali metal azide in alcoholic solution. It is a lead-free → initiating and powerful explosive and does not produce toxic fumes (→ Lead-free Priming Compositions). The product undergoes a slow conversion into hexanitrosobenzene,

\[
\begin{align*}
\text{N}_3 \text{NO}_2 & \rightarrow \text{N}_2 + \text{NO} \\
\end{align*}
\]

thus losing its initiating power. This reaction reaches

- at 20 °C = 68 °F after 3 years: 2.7 %
- at 35 °C = 95 °F after 1 year: 9.5 %
- at 50 °C = 122 °F after 10 days: 2.6 %
- at 50 °C = 122 °F after 6 years: 50 %

TATNB can be “dead pressed”, like mercury fulminate.
Tricycloacetone Peroxide
Acetonperoxid; peroxyde de tricycloacétone

- Colorless crystals
- Empirical formula: C$_9$H$_{18}$O$_6$
- Molecular weight: 222.1
- Oxygen balance: -151.3%
- Melting point: 91°C = 196°F
- Lead block test: 250 cm3/10 g
- Impact sensitivity: 0.03 kp m = 0.3 N m
- Friction sensitivity: reaction at 0.01 kp = 0.1 N

This compound is formed from acetone in sulfuric acid solution when acted upon by 45% hydrogen peroxide. It displays the properties of primary explosives. It is not used in practice because of its tendency to sublimation.

Triethyleneglycol Dinitrate
triglycol dinitrate; Triglykoldinitrat; dinitrate de triéthylenglycol; TEGN

- Pale yellow liquid
- Empirical formula: C$_6$H$_{12}$N$_2$O$_8$
- Molecular weight: 240.1
- Energy of formation: -598.9 kcal/kg = -2505.8 kJ/kg
- Enthalpy of formation: -626.0 kcal/kg = -2619.2 kJ/kg
- Oxygen balance: -66.7%
- Nitrogen content: 11.67%
- Volume of explosion gases: 1065 l/kg
- Heat of explosion
 - (H_2O liq.): 793 kcal/kg = 3317 k/kg
- Specific energy:
91.7 mt/kg = 899 kJ/kg
density: 1.335 g/cm³
lead block test: 320 cm³/10 g
deflagration point: 195 °C = 383 °F
impact sensitivity: 1.3 kp m = 12.7 N m

Triglycol dinitrate is less volatile than → Diethyleneglycol Dinitrate. It gelatinizes nitrocellulose just as well as diglycol dinitrate, i.e., better than nitroglycerine.

Its chemical stability is better than that of nitroglycerine or nitrocellulose, and at least as good as that of diglycol dinitrate.

Triglycol dinitrate is prepared by nitration of triglycol with mixed acid. The solubility of triglycol dinitrate in the waste acid is very high (~9%). It is less volatile than → Diethyleneglycol Dinitrate. It is particularly suited for the production of low caloric → Double Base Propellants.

Triethyleneglycol (raw material)

- empirical formula: C₆H₁₄O₄
- molecular weight: 150.2
- boiling point: 287.4 °C = 549 °F
- refractive index nD²⁰: 1.4559
- density 20/4: 1.233 g/cm³
- viscosity at 20 °C = 68 °F: 47.8 cP

Specifications

- density 20/4: 1.1230—1.1234 g/cm³
- boiling analysis,
 - start: not below 280 °C = 536 °F
 - 90% distilled: not over 295 °C = 563 °F
- moisture: not more than 0.5%
- chlorides: not more than traces
- acid, as H₂SO₄: not more than 0.02%
- saponification value, as Na₂O: not more than 0.05%
- reducing matter (AgNO₃-NH₃-test): none

Trimethylamine Nitrate

Trimethylamininitrat; nitrate de triméthylamine

\[
\begin{align*}
\text{H}_3\text{C}^- \cdot \text{N} \cdot \text{HNO}_3 \\
\text{H}_3\text{C}^- \cdot \text{N} \cdot \text{HNO}_3
\end{align*}
\]
This salt, as well as other methylamine nitrates, has been proposed as a component of castable charges and of → Slurries.

Trimethyleneglycol Dinitrate

Trimethylenglykoldinitrat; dinitrate de triméthleneglycol

\[
\begin{align*}
\text{CH}_2\text{-O-NO}_2 \\
\text{CH}_3 \\
\text{CH}_2\text{-O-NO}_2
\end{align*}
\]

colorless oil
empirical formula: C\(_3\)H\(_5\)N\(_2\)O\(_6\)
molecular weight: 166.1
oxygen balance: −28.9 %
nitrogen content: 16.87 %
density: 1.393 g/cm\(^3\)
lead block test: 540 cm\(^3\)/10 g
deflagration point: 225 °C = 437 °F
(decomposition begins at 185 °C = 365 °F)
impact sensitivity: up to 2 kp m = 20 N m
no reaction

Trimethyleneglycol dinitrate is less volatile than nitroglycerol, but more so than nitroglycol. Its solubilities in various solvents are similar to those of nitroglycerin. Like nitroglycerine, it forms satisfactory gels with nitrocelluloses. It causes headaches. Trimethyleneglycol dinitrate is prepared by nitration of trimethylene glycol with nitric acid or mixed acid at 0–10 °C (32–50 °F). It is less impact-sensitive than nitroglycerine and is much more stable to store. Trimethyleneglycol dinitrate should be regarded as a precursor of nitroglycol. It is now not longer used.
Trinitroaniline

Picramid: TNA

![Chemical structure of Trinitroaniline](image)

- orange red crystals
- empirical formula: C₆H₄N₄O₆
- molecular weight: 228.1
- energy of formation: $-69.8 \text{kcal/kg} = -292.2 \text{kJ/kg}$
- enthalpy of formation: $-88.0 \text{kcal/kg} = -368.1 \text{kJ/kg}$
- oxygen balance: -56.1%
- nitrogen content: 24.56\%
- volume of explosion gases: 838 l/kg
- heat of explosion
 - (H₂O liq.): 858 kcal/kg = 3589 kJ/kg
 - (H₂O gas): 834 kcal/kg = 3488 kJ/kg
- density: 1.762 g/cm³
- melting point: 188 °C = 370 °F
- lead block test: 310 cm³/10 g
- detonation velocity, confined:
 - 7300 m/s at $\rho = 1.72$ g/cm³
- deflagration point: 346 °C = 654 °F
- impact sensitivity: 1.5 kp m = 15 N m
- friction sensitivity: at 36 kp = 353 N
- pistil load no reaction
- critical diameter of steel sleeve test: 3.5 mm

Trinitroaniline is prepared by reacting trinitrochlorobenzene with ammonia or by nitration of 4-nitroaniline.

Trinitroanisole

methyl picate: 2,4,6-trinitrophenylmethylether; Pikrinsäuremethylläther Methoxitrinitrobenzol

![Chemical structure of Trinitroanisole](image)

- pale yellow crystals
- empirical formula: C₇H₅N₃O₇
- molecular weight: 243.1
- energy of formation: $-131.0 \text{kcal/kg} = -548.2 \text{kJ/kg}$
- enthalpy of formation: $-150.6 \text{kcal/kg} = -630.1 \text{kJ/kg}$
oxygen balance: –62.5 %
nitrogen content: 17.29 %
volume of explosion gases: 844 l/kg
heat of explosion
(H₂O liq.): 903 kcal/kg = 3777 kJ/kg
(H₂O gas): 874 kcal/kg = 3656 kJ/kg
specific energy: 99.1 mt/kg = 972 kJ/kg
density, crystals: 1.61 g/cm³
density, molten: 1.408 g/cm³
heat of fusion: 19.3 kcal/kg = 80.8 kJ/kg
melting point: 68 °C = 155 °F
lead block test: 295 g/cm³
detonation velocity, confined:
6800 m/s = 22300 ft/s at ρ = 1.57 g/cm³
deflagration point: 285 °C = 545 °F
impact sensitivity: 2.0 kp m = 20 N m
friction sensitivity: at 36 kp = 353 N
pistil load no reaction
critical diameter of steel sleeve test: 12 mm

Trinitroanisole is insoluble in water, but is soluble in hot alcohol and ether. It is toxic.

It is prepared by treating dinitrochlorobenzene with methyl alcohol and alkali and nitration of the dinitroanisole thus obtained. Recrystallization from methanol yields the pure, pale yellow product.

It is one of the least sensitive and shock-safest explosives. Its effect is intermediate between that of TNT and picric acid. It has found use as a bomb filling component. It produces skin eczemas and is not safe physiologically. Owing to this and its very low melting point, the compound is only of limited practical importance.

1,3,3-Trinitroazetidine

Trinitroazetidin, TNAZ

\[
\text{NO}_2 \\
\text{N} \quad \text{CH}_2 \\
\text{H}_2\text{C} \quad \text{C} \quad \text{NO}_2 \\
\text{NO}_2
\]

empirical formula: C₃H₄N₄O₆
molecular weight: 192.09
energy of formation: +66.84 kcal/kg = +279.77 kJ/kg
enthalpy of formation: +45.29 kcal/kg = +189.50 kJ/kg
oxygen balance: –16.66 %
nitrogen content: 29.2 %
Several synthetic routes for trinitroazetidine have been described, e.g. from epichlorohydrin and tert. butylamine to give 1-tert.-butylazetidine and subsequent stepwise nitration to yield TNAZ.

Trinitroazetidine’s performance data as an explosive lies between → Hexogen and → Octogen, but it is considerably less sensitive and therefore attractive for → LOVA (Low Vulnerability Ammunition) applications.

1,3,5-Trinitrobenzene

Trinitrobenzol; trinitrobenzène; TNB

![Chemical structure of 1,3,5-trinitrobenzene](image)

- Pale green-yellow crystals
- Empirical formula: C₆H₃N₃O₆
- Molecular weight: 213.1
- Energy of formation: −32.1 kcal/kg = −134.5 kJ/kg
- Enthalpy of formation: −48.8 kcal/kg = −204.2 kJ/kg
- Oxygen balance: −56.3%
- Nitrogen content: 19.72%
- Volume of explosion gases: 805 l/kg
- Heat of explosion
 - (H₂O liq.): 947 kcal/kg = 3964 kJ/kg
 - (H₂O gas): 926 kcal/kg = 3876 kJ/kg
- Specific energy: 107 mt/kg = 1050 kJ/kg
- Density: 1.76 g/cm³
- Solidification point: 123.2 °C = 253.7 °F
- Heat of fusion: 16.0 kcal/kg = 67.2 kJ/kg
- Vapor pressure:

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>122</td>
<td>252</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>302</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>392</td>
</tr>
<tr>
<td>133</td>
<td>270</td>
<td>518</td>
</tr>
</tbody>
</table>

Heat of explosion

(H₂O liq.): 1516 kcal/kg = 6343 kJ/kg
(H₂O gas): 1440 kcal/kg = 6024 kJ/kg

Specific energy: 138.5 mt/kg = 1358 kJ/kg

Density: 1.84 g/cm³

Melting point: 101 °C
lead block test: 325 cm3/10 g
detonation velocity, confined:
7300 m/s = 23900 ft/s at $\rho = 1.71$ g/cm3
impact sensitivity: 0.75 kp m = 7.4 N m
friction sensitivity: up to 36 kp m = 353 N
pistol load no reaction

Trinitrobenzene is insoluble in water, sparingly soluble in hot alcohol, and is readily soluble in acetone, ether, and benzene.

Trinitrobenzene is formed by decarboxylation of trinitrobenzoic acid. It can also be prepared from trinitrochlorobenzene by reduction with copper in alcohol. Further nitration of dinitrobenzene also yields trinitrobenzene, but the reaction must be carried out under very severe conditions (high SO$_3$-concentration in the mixed acid, high nitration temperature), and the yields are low.

All the above syntheses are difficult and uneconomical. For this reason, no practical application has been found, despite the fact that its strength and detonation velocity are superior to those of TNT, and that it is very stable.

Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>solidification point</td>
<td>not below 121 °C = 250 °F</td>
</tr>
<tr>
<td>moisture, volatile matter</td>
<td>not more than 0.1%</td>
</tr>
<tr>
<td>glow residue</td>
<td>not more than 0.2%</td>
</tr>
<tr>
<td>insoluble in benzene</td>
<td>not more than 0.2%</td>
</tr>
<tr>
<td>HNO$_3$:</td>
<td>not more than traces</td>
</tr>
<tr>
<td>sulfate, as N$_2$SO$_4$:</td>
<td>not more than 0.02%</td>
</tr>
<tr>
<td>acid, as H$_2$SO$_4$:</td>
<td>not more than 0.005%</td>
</tr>
<tr>
<td>alkali:</td>
<td>none</td>
</tr>
<tr>
<td>Abel test 80 °C = 176 °F</td>
<td>not under 30 min</td>
</tr>
</tbody>
</table>

Trinitrobenzoic Acid

Trinitrobenzosäure; acide trinitrobenzoique

![Chemical Structure](image)

yellow needles
empirical formula: C$_7$H$_3$N$_3$O$_8$
molecular weight: 257.1
energy of formation: -358.4 kcal/kg = -1500 kJ/kg
enthalpy of formation: $-374.6 \text{ kcal/kg} = -1567 \text{ kJ/kg}$
oxygen balance: -46.7%
nitrogen content: 16.35%
volume of explosion gases: 809 l/kg

heat of explosion

$(\text{H}_2\text{O liq.}): 719 \text{ kcal/kg} = 3008 \text{ kJ/kg}$
$(\text{H}_2\text{O gas}): 700 \text{ kcal/kg} = 2929 \text{ kJ/kg}$
specific energy: $88.8 \text{ mt/kg} = 871 \text{ kJ/kg}$
lead block test: $283 \text{ cm}^3/10 \text{ g}$
impact sensitivity: $1 \text{ kp m} = 10 \text{ N m}$
friction sensitivity: at $36 \text{ kp} = 353 \text{ N}$
pistil load no reaction
critical diameter of steel sleeve test: 2 mm

Trinitrobenzoic acid is sparingly soluble in water, and soluble in alcohol and ether. It is prepared by oxidation of TNT with nitric acid, or with a solution of KClO₃ in nitric acid, or with a chromic acid mixture.

The crude product is purified by dissolving it in a dilute sodium carbonate solution and reprecipitating with sulfuric acid. If trinitrobenzoic acid is exposed to water vapor for a long period of time, → Trinitrobenzene is formed as a result of the liberation of CO₂.

Trinitrochlorobenzene

picryl chloride; Trinitrochlorbenzol; trinitrochlorobenzene; chlorure de picryle

C₆H₂N₃O₆Cl

pale yellow needles
empirical formula: C₆H₂N₃O₆Cl
molecular weight: 247.6
energy of formation: $+40.4 \text{ kcal/kg} = +169 \text{ kJ/kg}$
enthalpy of formation: $+25.9 \text{ kcal/kg} = 108.2 \text{ kJ/kg}$
oxygen balance: -45.3%
nitrogen content: 16.98%
density: 1.797 g/cm^3
solidification point: $83 \degree\text{ C} = 181 \degree\text{ F}$
heat of fusion: $17.5 \text{ kcal/kg} = 73.3 \text{ kJ/kg}$
vapor pressure:
Pressure Temperature

<table>
<thead>
<tr>
<th>Pressure (millibar)</th>
<th>Temperature (°C)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>83</td>
<td>181</td>
</tr>
<tr>
<td>0.2</td>
<td>100</td>
<td>212</td>
</tr>
<tr>
<td>2.0</td>
<td>150</td>
<td>302</td>
</tr>
<tr>
<td>12.5</td>
<td>200</td>
<td>392</td>
</tr>
<tr>
<td>100</td>
<td>270</td>
<td>518</td>
</tr>
</tbody>
</table>

lead block test: 315 cm³/10 g
detonation velocity, confined:
 7200 m/s = 23600 ft/s at ρ = 1.74 g/cm³
deflagration point: 395–400 °C = 743–750 °F
impact sensitivity: 1.6 kp m = 16 N m
friction sensitivity: up to 36 kp = 353 N
pistil load no reaction

Trinitrochlorobenzene is sparingly soluble in alcohol and benzene, somewhat more soluble in ether, and insoluble in water.

It is prepared by nitration of dinitrochlorobenzene. Manufacture is difficult, and highly concentrated acid must be employed.

Trinitrochlorobenzene is just as insensitive as TNT, its brisance is somewhat higher, and its density and heat stability are excellent.

2,4,6-Trinitrocresol

Trinitrometakresol; trinitrométacrésol

\[
\begin{array}{c}
\text{O}_2\text{N} \\
\text{OH} \\
\text{NO}_2 \\
\text{CH}_3 \\
\text{NO}_2
\end{array}
\]

yellow needles
empirical formula: C₇H₅N₃O₇
molecular weight: 243.1
energy of formation: −229.7 kcal/kg = −961.2 kJ/kg
enthalpy of formation: −248.0 kcal/kg = −1038 kJ/kg
oxygen balance: −62.5 %
nitrogen content: 17.95 %
volume of explosion gases: 844 l/kg
heat of explosion
 (H₂O liq.): 805 kcal/kg = 3370 kJ/kg
 (H₂O gas): 776 kcal/kg = 3248 kJ/kg
specific energy: 87.8 mt/kg = 861 kJ/kg
density: 1.68 g/cm³
melting point: 107 °C = 225 °F
heat of fusion: 25.5 kcal/kg = 107 kJ/kg
lead block test: 285 cm³/10 g
detonation velocity, confined:
 6850 m/s = 22500 ft/s at ρ = 1.62 g/cm³
deflagration point: 210 °C = 410 °F
impact sensitivity: 1.2 kp m = 12 N m
friction sensitivity: up to 36 kp = 353 N
 pistil load no reaction

Trinitroresol is readily soluble in alcohol, ether, and acetone, and is sparingly soluble in water.

It is prepared by nitration of m-cresoldisulfonic acid. During the First World War, 60:40 mixtures of trinitroresol and picric acid were used (under the name of Kresylith) as grenade fillings, since they melt at a temperature as low as 85 °C (185 °F).

Trinitromethane

Nitroform

\[\text{HC} \text{NO}_2 \]

oil with a pungent smell
empirical formula: CHN₃O₆
molecular weight: 151.0
oxygen balance: +37.1 %
nitrogen content: 27.83 %
density: 1.59 g/cm³
melting point: 22 °C = 72 °F
boiling point at 23 millibar pressure: 48 °C = 118 °F

Nitroform is obtained when acetylene is introduced into nitric acid; it may also be prepared from tetranitromethane.

Nitroform cannot be used on its own either as an oxidant or as an explosive. It is possible, however, to add nitroform to formaldehyde and to prepare explosives from the resulting trinitroethanol product (→ Bi-trinitroethylamine and Bi-trinitroethylurea).
Trinitronaphthalene

Trinitronaphthalin; trinitronaphthalène; Naphtit; Trinal

\[
s \begin{align*}
\text{NO}_2 & \quad \text{O}_2 \text{N} & \quad \text{NO}_2 \\
\text{NO}_2 & \quad \text{O}_2 \text{N} & \quad \text{NO}_2 \\
\end{align*}
\]

brownish crystals
empirical formula: C\(_{10}\)H\(_5\)N\(_3\)O\(_6\)
molecular weight: 263.2
oxygen balance: –100.3 \%
nitrogen content: 15.97 \%
volume of explosion gases: 723 l/kg
heat of explosion
 \[(\text{H}_2\text{O liq.}): 842 \text{ kcal/kg} = 3521 \text{ kJ/kg}\]
 \[(\text{H}_2\text{O gas}): 819 \text{ kcal/kg} = 3425 \text{ kJ/kg}\]
specific energy: 76 mt/kg = 746 kJ/kg
melting point: 115 °C = 239 °F (beginning softening of the isomer mixture)
detonation velocity: 6000 m/s = 19700 ft/s
deflagration point: 350 °C = 660 °F
impact sensitivity: 2 kp m = 19 N m

Trinitronaphthalene is soluble in glacial acetic acid, and is sparingly soluble in alcohol and ether. It is prepared by dissolving mononitronaphthalene in concentrated sulfuric acid and adding mixed acid. The product thus obtained – a mixture of \(\alpha\)-(1,3,5-), \(\beta\)-(1,3,8), and \(\gamma\)-(1,4,5)-isomers – melts above 115 °C (239 °F).

Trinitronaphthalene is difficult to detonate. It was used, in mixture with other compounds, as grenade filling, especially in France and Belgium. It is of no technological interest at resent.

Trinitrophenoxethyl nitrate

Trinitrophenylglykolethernitrat; nitrate de trinitrophénoxyle

\[
\begin{align*}
\text{NO}_2 & \quad \text{O}_2 \text{N} & \quad \text{O\cdotCH}_2 & \quad \text{CH}_2\cdot\text{O\cdotNO}_2 \\
\end{align*}
\]

yellowish-white crystals
empirical formula: C\(_8\)H\(_6\)N\(_4\)O\(_{10}\)
molecular weight: 318.2
energy of formation: \(-189.8\) kcal/kg = \(-794.0\) kJ/kg
enthalpy of formation: $-208.4 \text{kcal/kg} = -871.9 \text{kJ/kg}$
oxygen balance: -45.3%
nitrogen content: 17.61%
volume of explosion gases: 878l/kg
heat of explosion
 (H$_2$O liq.): $935 \text{kcal/kg} = 3911 \text{kJ/kg}$
 (H$_2$O gas): $906 \text{kcal/kg} = 3792 \text{kJ/kg}$
specific energy: $115 \text{mt/kg} = 1131 \text{kJ/kg}$
density: 1.68g/cm^3
melting point: $104.5 °C = 219.6 °F$
lead block test: $350 \text{cm}^3/10 \text{g}$
detonation velocity, confined:
 $7600 \text{ m/s} = 25000 \text{ft/s}$ at $\rho = 1.65 \text{g/cm}^3$
deflagration point: $> 300 °C = > 570 °F$
impact sensitivity: $0.8 \text{ kp m} = 7.9 \text{ N m}$

The compound is insoluble in water, but soluble in acetone and toluene. It is very stable and gelatinizes cellulose on heating.

It is prepared by nitration of the corresponding dinitro compound.

2,4,6-TrinitrophenylNitraminoethyl Nitrate

Trinitrophenylethanolintramininitrat; nitrate de trinitrophenyl nitramineéthyl; Pentryl

![Chemical Structure](Image)

yellowish crystals
empirical formula: C$_8$H$_6$N$_6$O$_{11}$
molecular weight: 362.2
oxygen balance: -35.4%
nitrogen content: 23.19%
density: 1.75g/cm^3
melting point: $128 °C = 262 °F$
lead block test: $450 \text{cm}^3/10 \text{g}$
deflagration point: $235 °C = 455 °F$
impact sensitivity: $0.4 \text{ kp m} = 4 \text{ N m}$

The compound is soluble in water, sparingly soluble in common organic solvents, but is soluble in nitroglycerine. Its stability is satisfactory, but one of the five NO$_2$-groups in the molecule is a nitrate rather than a nitro group, so that the compound cannot be as stable as e.g., TNT.
It is prepared by nitration of dinitrophenylaminoethanol, which is in turn formed by condensation of dinitrochlorobenzene with monoethanolamine.

Trinitropyridine

Trinitropyridin, Trinitropyridine, 2,4,6-Trinitropyridine, TNPy

\[
\begin{align*}
\text{yellow needles} \\
\text{empirical formula: } C_5H_2N_4O_6 \\
\text{molecular weight: } 214.1 \\
\text{energy of formation: } +437.9 \text{ kJ/kg } = +104.6 \text{ kcal/kg} \\
\text{enthalpy of formation: } +368.5 \text{ kJ/kg } = +88.0 \text{ kcal/kg} \\
\text{oxygen value: } -37.4\% \\
\text{nitrogen content: } 26.17\% \\
\text{specific energy: } 129 \text{ mt/kg } = 1260 \text{ kJ/kg} \\
\text{explosion heat (H}_2\text{O liq.): } 4418 \text{ kJ/kg } = 1056 \text{ kcal/kg} \\
\text{normal volume of gases: } 818 \text{ l/kg} \\
\text{fusion point: } 162 \degree \text{C (sublimation)} \\
\text{density: } 1.77 \text{ g/cm}^3 \\
\text{detonation rate: } 7470 \text{ m/s at } \rho = 1.66 \text{ g/cm}^3 \\
\text{impact sensitivity: } 4.5-6.5 \text{ N m } = 0.46-0.66 \text{ kp m} \\
\text{sensitivity of friction: at } 353 \text{ N } = 36 \text{ kp pin load, no reaction}
\end{align*}
\]

Trinitropyridine is obtained by means of reduction of \(\rightarrow\) Trinitropyridine-N-oxide with sodium nitrite in a solution of sulfuric acid.

Although this compound is a potent explosive, it has yet to gain widespread use.

Trinitropyridine-N-oxide

Trinitropyridin-N-oxid, Trinitropyridine-N-oxide, 2,4,6-Trinitropyridin-1-oxide, TNPyOX

\[
\begin{align*}
\text{yellow crystals} \\
\text{empirical formula: } C_5H_2N_4O_7 \\
\text{molecular weight: } 230.1
\end{align*}
\]
Trinitropyridine-N-oxide is produced through a cyclical reaction of potassium salt of 2,2-dinitroethanol in diluted phosphoric acid.

The product serves as the basis material for the production of → Trinitropyridine, which is not obtainable by means of direct nitration.

2,4,6-Trinitroxyylene

Trinitroxylool; trinitrométaxylène; TNX

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{NO}_2 \\
\text{NO}_2 & \quad \text{CH}_3
\end{align*}
\]

pale yellowish needles
empirical formula: C₈H₇N₃O₆
molecular weight: 241.2
energy of formation: –82.1 kcal/kg = –343.4 kJ/kg
enthalpy of formation: –101.7 kcal/kg = –425.6 kJ/kg
oxygen balance: –89.57 %
nitrogen content: 17.42 %
volume of explosion gases: 843 l/kg
heat of explosion
 \(\text{(H}_2\text{O liq.)}: 845 \text{ kcal/kg} = 3533 \text{ kJ/kg} \)
 \(\text{(H}_2\text{O gas)}: 810 \text{ kcal/kg} = 3391 \text{ kJ/kg} \)
specific energy: 83.5 mt/kg = 819 kJ/kg
melting point: 182 °C = 360 °F

Separation of the xylene isomers is not easy, and nitration to the trinitrate stage is technically difficult.

Tritonal

A castable mixture of 20–40 % aluminum and 80–20 % TNT.
Trixogen

A pourable mixture of RDX with TNT.

Trunkline

→ Detonating Cord

Ullage*)

Empty volume provided for thermal expansion of propellant in liquid propellant tank.

Unbarricaded*)

The absence of a natural or artificial barricade around explosive storage areas or facilities.

Unconfined Detonation Velocity*)

Detonationsgeschwindigkeit ohne Einschluss; veloce de detonation sans enserrement

The detonation velocity of an explosive material without confinement; for example, a charge fired in the open.

Underwater Detonations**)

Unterwasserdetonationen; détonations sous l’eau

Destructive effects of underwater detonations, differ in their distant and proximity effects. The first effect is caused by the action of the pressure shock wave, the latter mainly by the thrust produced by the expanding gas bubble.

Basically the process can be subdivided into three distinct stages:

1. Detonation

The detonation of an explosive charge is triggered off by the fuse. The explosive matter undergoes an extremely rapid deterioration, and the

* Text quoted from glossary.
** Extract of a lecture held by W. E. Nolle at the annual meeting of the Fraunhofer Institut at Karlsruhe, 1978.
Trixogen

A pourable mixture of RDX with TNT.

Trunkline

→ Detonating Cord

Ullage*)

Empty volume provided for thermal expansion of propellant in liquid propellant tank.

Unbarricaded*)

The absence of a natural or artifical barricade around explosive stor-age areas or facilities.

Unconfined Detonation Velocity*)

Detonationsgeschwindigkeit ohne Einschluss; velocite de detonation sans enserrernent

The detonation velocity of an explosive material without confinement; for example, a charge fired in the open.

Underwater Detonations**)

Unterwasserdetonationen; détonations sous l’eau

Destructive effects of underwater detonations, differ in their distant and proximity effects. The first effect is caused by the action of the pressure shock wave, the latter mainly by the thrust produced by the expanding gas bubble.

Basically the process can be subdivided into three distinct stages:

1. Detonation

The detonation of an explosive charge is triggered off by the fuse. The explosive matter undergoes an extremely rapid deterioration, and the

*) Text quoted from glossary.

**) Extract of a lecture held by W. E. Nolle at the annual meeting of the Fraunhofer Institut at Karlsruhe, 1978.
heat developed during this process creates a large amount of gas. This first enters into the cavity previously occupied by the solid explosive and is therefore under a high degree of pressure. This hot compressed gas constitutes the whole of the performance potential.

2. **Shock wave**

The adjacent layer of water is compressed under the influence of this high pressure, which in turn transfers that pressure onto the next layer, and this transfers the pressure onto the next one, and so forth in a chain reaction.

The velocity of propagation increases with pressure, thus creating a steeply ascending pressure front, which imparts the nature of a shock wave to the pressure wave. At the onset, the velocity of propagation exceeds that of the speed of sound, but deteriorates with increasing distance, i.e. to approximately 1450 m/s.

The maximum pressure achieved is directly proportional to the cube root of the charge weight, and inversely proportional to the distance, resulting in the following approximate formula:

\[P_{\text{max}} = C \frac{L^{1/3}}{e} \]

p: pressure in bar
L: loading weight in kg
e: distance in m
c: empirical factor; \(\approx 500 \)

3. **Gas bubble**

As stated previously, the gas formed by the underwater explosion first enters the small cavity previously occupied by the explosive, thus creating a gas bubble under a high degree of pressure. The water surrounding the bubble gives away, and the gas bubble expands. This causes the water mass to move radially at great velocity away from the point of explosion. This movement is known as the “thrust”.

The maximum amount of kinetic energy imparted to the water during an explosion is called the thrust energy.

The increase of expansion of the gas bubble causes a decrease in pressure on the enclosed gases, which slows down expansion to the point where all of the kinetic energy is expended. This causes lowering of pressure in the gas bubble contents, influenced by the static water pressure, and the water mass engulfs it again. The gases are compressed again up to a second minimum, at which point another pressure wave is formed (secondary pressure wave). Oscillation of the gas bubble can be repeated several times, causing a third, and, under favorable conditions, further minima. The gas bubble is propelled
upwards towards the surface of the water. The difference in pressure between the top and the bottom layer of the bubble causes the bottom layer to move at greater speed, thus forcing it upwards into the bubble. It is possible for both surfaces to meet. Within a limited area the water receives an upward thrust, creating the so-called waterhammer (water jet).

From the observations it becomes clear that the most effective underwater explosives are those which can produce a high-pressure gas bubble for the formation of the thrust.

Mixtures containing a high percentage of aluminum powder have proved to be most effective (→ Aluminum Powder; → Torpex; → Trialenes; → Tritonal).

References:

Upsetting Tests
Stauchung; écrasement du crusher

Upsetting tests are used to determinate the → Brisance of the explosives. An unconfined cartridge (envelopped in paper or in metal sheet) acts upon a copper or lead crusher; the loss of height of the crusher is a measure for the brisant performance of the tested explosive (→ Brisance).

The test according to Kast is shown in Fig. 25; the cartridge shock acts by means of a guided pestle onto a copper crusher of 7 mm Ø and 10.5 mm height.

The simplified test according to Hess is shown in Fig. 26 (see opposite page):
A lead cylinder, 60 mm (2.36 in.) high, 40 mm (1.57 in.) Ø, protected by two, 6 mm-thick steel disks, is upset by a 100-g (3.53 oz.) cartridge of the same diameter, 40 mm. The cylinder is pressed down into a mushroom shape; in the case of sensitized special gelatins for seismic use, the cylinder can be destroyed completely.
Fig. 25. Upsetting test according to Kast.

Fig. 26. Upsetting test according to Hess.
Urea Nitrate

Harnstoffnitrat; nitrate d’urée

\[
\begin{align*}
\text{NH}_2 & \\
\text{O} = \text{C} & \\
\text{NH}_2 \cdot \text{HNO}_3
\end{align*}
\]

colorless crystals
empirical formula: \(\text{CH}_5\text{N}_3\text{O}_4 \)
molecular weight: 123.1
energy of formation: \(-1064\text{ kcal/kg} = -4452\text{ kJ/kg}\)
enthalpy of formation: \(-1093\text{ kcal/kg} = -4573\text{ kJ/kg}\)
oxxygen balance: \(-6.5\%\)
nitrogen content: 34.14\%
volume of explosion gases: 910 l/kg
heat of explosion
\((\text{H}_2\text{O liq.}): 767\text{ kcal/kg} = 3211\text{ kJ/kg}\)
\((\text{H}_2\text{O gas}): 587\text{ kcal/kg} = 2455\text{ kJ/kg}\)
specific energy: 77 mt/kg = 755 kJ/kg
density: 1.59 g/cm\(^3\)
melting point: 140 °C = 284 °F (decomposition)
lead block test: 270 cm\(^3\)/10 g
deflagration point: 186 °C = 367 °F
impact sensitivity: up to 5 kp m = 49 N m no reaction
friction sensitivity: up to 36 kp = 353 N
pistil load no reaction
critical diameter of steel sleeve test:
at 1 mm \(\varnothing \) no destruction of steel sleeve

Urea nitrate is readily soluble in hot water and sparingly soluble in ethanol. Its thermal stability is satisfactory. The compound is prepared from urea and nitric acid. The salt is strongly acidic. Chemical stability is poor.

U.S. Bureau of Mines*)

A bureau of the Department of the Interior active in promoting safety in coal mines and in carrying out broad programs in mining and related fields.

U-Zünder

U-detonators are manufactured by DYNAMIT NOBEL, Troisdorf, Germany, for use in standard situations and where high safety against

*) Text quoted from glossary.
electrostatic discharges is required. They are safe against 0.45 A and 8 mJ/ohm. All-fire current is 1.5 A, all-fire energy 16 mJ/ohm. U-detonators are available as instantaneous detonators and with 20 ms and 30 ms short period delay, 18 delays each, and 24 delays of 250 ms long period delay.

U-Zündmaschinen: the corresponding blasting machines are produced by WASAGCHEMIE Sythen, Germany or Schaffler & Co., Wien, Austria.

Vacuum Test

This test, which was developed in the USA and has been adopted by several countries, and is a modification of the → Taliani Test, in which the gaseous products of the reaction are determined volumetrically rather than by manometry. The test, which is carried out at 100 °C (212 °F) for single base propellants and at 90 °C (194 °F) for multi-base propellants, is terminated after 40 hours, unlike the Taliani Test, which is interrupted after a given pressure or a given volume has been attained.

The vacuum test is used for compatibility testing and applied as a so-called reactivity test. The compatibility between the explosive and the contact material (adhesive, varnish, etc.) is tested by determining the gases liberated by the explosive alone, by the contact material alone, and by the two together. The measure of compatibility (reactivity) is the difference between the sum of the gas volume liberated by each component separately and the gas volume obtained after storing the explosive and the contact material together. If this difference is between 3 and 5 ml, the compatibility is considered „uncertain“; above 5 ml, the two materials are incompatible.

Veltex No. 448

US explosive mixture:

- HMX (octogen) 70%
- nitrocellulose (13.15% N) 15%
- nitroglycerine 10.7%
- 2-nitrodiphenylamine 1.3%
- triacetin 3.0%
electrostatic discharges is required. They are safe against 0.45 A and 8 mJ/ohm. All-fire current is 1.5 A, all-fire energy 16 mJ/ohm. U-detonators are available as instantaneous detonators and with 20 ms and 30 ms short period delay, 18 delays each, and 24 delays of 250 ms long period delay.

U-Zündmaschinen: the corresponding blasting machines are produced by WASAGCHEMIE Sythen, Germany or Schaffler & Co., Wien, Austria.

Vacuum Test

This test, which was developed in the USA and has been adopted by several countries, and is a modification of the → Taliani Test, in which the gaseous products of the reaction are determined volumetrically rather than by manometry. The test, which is carried out at 100 °C (212 °F) for single base propellants and at 90 °C (194 °F) for multi-base propellants, is terminated after 40 hours, unlike the Taliani Test, which is interrupted after a given pressure or a given volume has been attained.

The vacuum test is used for compatibility testing and applied as a so-called reactivity test. The compatibility between the explosive and the contact material (adhesive, varnish, etc.) is tested by determining the gases liberated by the explosive alone, by the contact material alone, and by the two together. The measure of compatibility (reactivity) is the difference between the sum of the gas volume liberated by each component separately and the gas volume obtained after storing the explosive and the contact material together. If this difference is between 3 and 5 ml, the compatibility is considered „uncertain“; above 5 ml, the two materials are incompatible.

Veltex No. 448

US explosive mixture:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMX (octogen)</td>
<td>70%</td>
</tr>
<tr>
<td>nitrocellulose (13.15% N)</td>
<td>15%</td>
</tr>
<tr>
<td>nitroglycerine</td>
<td>10.7%</td>
</tr>
<tr>
<td>2-nitrodiphenylamine</td>
<td>1.3%</td>
</tr>
<tr>
<td>triacetin</td>
<td>3.0%</td>
</tr>
</tbody>
</table>
Versuchsstrecke

Berggewerkschaftliche Versuchsstrecke

D-44239 Dortmund-Derne

German institute for research and testing of equipment and materials for use in gassy coal mines (including Permitted Explosives, Bridgewire Detonators and Blasting Machines).

Vibrometer

Erschütterungs-Messgerät

Vibrometers are instruments to measure the intensity of shock waves caused by blasting operations. The magnitude of the shock depends on the kind of rocks, underground conditions and distance to the people and buildings to be protected. The regular control of ground shocks caused by blasting is therefore, in the interest of companies active in this field to safeguard friendly relations with the neighborhood. Vibrometer records, can also be important in forensic defense against claims in densely populated areas.

The following vibrometers are developed, produced and distributed by WASAG-CHERIE Sythen, Haltern, Federal Republic of Germany:

Vibrometer ZEB/SM 3 and ZEBI/SM 6 DIN 45669
Indication of the maximum values in alphanumeric display. Registration of the complete recording with the aid of an UV (ultraviolet) recorder.

Vibrometer ZEB/SM 3 DS and ZEBI/SM 6 DS DIN 45669
Indication of the maximum values and frequencies on the screen. Registration of the complete recording with the aid of a four-color plotter, also in graphic form.

Vibrometer ZEBI/SM 6 C DIN 45669
Latest processor technology with hard and floppy disk storage possibilities. Display on a screen and registration of the complete recording on a four-color plotter, both also in graphic form.

Vieille Test

This method for the stability testing of propellants was proposed by Vieille in 1896. The sample is heated at 110 °C (230 °F) in the presence of a strip of litmus paper, and is then exposed to air at room temperature overnight, after which the cycle is repeated. This treatment is continued until the litmus paper turns red within one hour. The overall duration of the heating operations thus performed is a measure of the stability.
The advantage of the method is that when the propellant is periodically exposed to the atmosphere, it can reabsorb moisture, which means that the decomposition takes place under realistic conditions. The test is now much less frequently applied ever since a powder manufactured with pentanol as a solvent, which had been tested by this method, had decomposed on board of two warships, which were sunk by the resulting explosion (1911). The Vieille test is now used only in France and in Belgium.

Volume of Explosion Gases

fume volume; Normalgasvolumen; volume des produits d’explosion

The volume of the gases (fumes) formed by the explosive reaction, in liters per kg of explosive material, as calculated from the chemical composition of the explosive. The calculation of the number of gas moles of the decomposition products takes the equilibria (e.g. water gas equilibrium and Boudourd equilibrium) at the explosion temperature and during cooling to 1500 K into account. Below 1500 K the equilibria are considered as “frozen”.

Conventionally, the volume of explosion gases refers to 0 °C and 1.013 bar. Water is considered to be gaseous.

The volume can be determined experimentally by test explosion in the → Bichel Bomb.

Volume Strength

Same as *Cartridge Strength* or → *Bulk Strength*. Also → *Weight Strength* and → *Strength*.

Wasacord

Trade name of a detonating cord distributed Germany and exported by WASAGCHEMIE. It contains about 12 g PETN/m (→ also *Multicord*).

Wasamon F; W

Trade name of powder form blasting agents distributed by WASAGCHEMIE in Germany. Both can be applied in large-diameter boreholes, Wasamon F also as a free flowing, uncartridged material.

- density: 1.05 g/cm³
- weight strength: 70 %
Water-driven Injector Transport

Emulsionsförderung; transport par injection d’eau

The liquid nitrate esters – nitroglycerine and nitroglycol – are highly sensitive to impact; handling of these substances in the factory in free unbound condition is dangerous. They are conveyed in the form of emulsions: the explosive oil is sucked up by means of a compressed-water-driven injector, and the emulsion sent through conduit pipes for processing (mixing houses). It is then separated from the carrier water and, if required, is dried by passing through a salt filter.

Water-gel Explosives

Slurries; Sprengschlamm; bouillies

→ Slurries and → Emulsion Slurries.

Water Resistance

Wasserfestigkeit; résistance a l’eau

In the USA the following method is employed for testing the water resistance of commercial explosives:

Sixteen regularly spaced holes (about 6 mm Φ) are cut in the cartridge paper (30 mm in diameter, 200 mm long) of the explosive to be tested, and the flaps on the front faces are sealed with tallow. The cartridges thus prepared are placed in a flat, porcelain-coated dish covered with a thin layer of sand, and water at 17–25 °C (63–77 °F) is poured over the sand layer up to a height of about 25 mm. The cartridges are left under water for a certain period of time, are then taken out, the seal is cut off at one end, and the cartridge is tested for detonation and transmission with the aid of a No. 6 blasting cap. The criterion for the water resistance of the explosive is the time of exposure to water, after which it still retains its capacity to detonate the cartridge in three trials, without leaving any non-detonated residual explosive behind.

There is no generally accepted quality classification. Nevertheless, water resistance of an explosive is considered to be satisfactory, acceptable, or poor if the cartridge can still be detonated after 24, 8, or 2 hours respectively.

In Germany, the following method for testing the water resistance of powder-form permissibles has been laid down at the Test Station at Dortmund-Derne.

A train of four cartridges is fixed in a file on a wooden board; the first of the four cartridges is equipped with a detonator No. 8. Five longitudinal, 2 cm long notches, uniformly distributed over the circumference,
are cut into each cartridge. The train is immersed for 5 hours in water, in a horizontal position, 20 cm under the water surface, after which they are detonated. The train must detonate in its entirety.

The water resistance of partly water – soluble, powder-form explosives (e.g. ammonium nitrate explosives or blasting agents) can be improved by the addition of hydrophobic or gelling agents. If e.g. → Guar Gum is added, the water entering immediately forms a gel which blocks the penetration of more water.

Water-resistant Detonator

Unterwasserzünder; détonateur pour tir sous l’eau

Such detonators differ from conventional detonators in being watertight; water cannot penetrate into the detonator even under increased water pressure (→ **Bridgewire Detonator**).

Water Stemming

Wasserbesatz, bourrage à l’eau

Water stemming of explosive-blasted boreholes consists of waterfilled cartridges made of plastic material, which give some protection against firedamp and coal dust explosions.

Web

In a solid propellant grain, the minimum distance which can burn through as measured perpendicular to the burning surface (→ **Burning Rate**).

Weight Strength*)

The strength of an explosive material per unit of weight expressed as a percentage of the weight of a recognized explosive standard. → Strength.

* Text quoted from glossary.
Wetter

Prefix given to all permitted explosives in Austria and in the Germany. The following list gives an overview of all German permitted explosives:

<table>
<thead>
<tr>
<th>Wetter</th>
<th>Manufacturer</th>
<th>Density g/cm³</th>
<th>Safety Class</th>
<th>Cartridge mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit B</td>
<td>DYNAMIT NOBEL</td>
<td>1.2</td>
<td>I</td>
<td>30 and 40</td>
</tr>
<tr>
<td>Westfalit C</td>
<td>WASAGCHEMIE</td>
<td>1.17</td>
<td>I</td>
<td>30</td>
</tr>
<tr>
<td>Westfalit D</td>
<td>WASAGCHEMIE</td>
<td>1.17</td>
<td>I</td>
<td>40</td>
</tr>
<tr>
<td>Energit B</td>
<td>DYNAMIT NOBEL</td>
<td>1.17</td>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td>Roburit B</td>
<td>WASAGCHEMIE</td>
<td>1.2</td>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td>Carbonit C</td>
<td>DYNAMIT NOBEL</td>
<td>1.18</td>
<td>III</td>
<td>30</td>
</tr>
<tr>
<td>Securit C</td>
<td>WASAGCHEMIE</td>
<td>1.18</td>
<td>III</td>
<td>30</td>
</tr>
<tr>
<td>Devinit A*</td>
<td>WASAGCHEMIE</td>
<td>1.25</td>
<td>III</td>
<td>30</td>
</tr>
</tbody>
</table>

The powder form explosives are cartridged and inserted in plastic hoses as a loading device.

All class II and class III explosives belong to the group of ion exchanged explosives; for test conditions and applicability restrictions → Permitted Explosives.

Wetter-Dynacord

Trade name of a detonating cord manufactured by DYNAMIT NOBEL, Troisdorf, Germany, with high safety against ignition of methane/air mixtures.

X-Ray Flash

By using special X-ray tubes and very fast high-voltage circuitry, it is possible to generate and trigger ultrashort X-ray flashes down to the millimicrosecond range.

*serves also used for smooth blasting metal plating shot, see → Smooth Blasting, → Explosive Forming.
These X-ray flashes are an important means of short-time photography because they enable fast occurring phenomena to be recorded by means of X-ray photographs.

In practice, this possibility of short-time radioscopy of test specimens is made use of for shaped charges (→ Shaped Charges). Thus, it is possible, during a desired time of detonation, to make a photographic record, in the form of single X-ray photographs, of the penetration and streaming behaviour of the sting into a target.

Zinc Peroxide

Zinkperoxid; peroxyde de zinc

\[n \text{ZnO}_2 \cdot \text{Zn(OH)}_2, \quad n \geq 3 \]

- light yellow amorphous powder
- oxygen value: 12.3–14.0%
- bulk density: 0.98–1.70 g/cm³
- Fp.: decomposition upwards of 200 °C

Zinc peroxide is not hygroscopic and insoluble in water and organic solvents. The compound results from reaction of an ammoniacal zinc sulfate solution with 30% hydrogen peroxide at 80°–95 °C. The bulk density and oxygen value can be varied over a relatively wide range if certain temperature and concentration conditions are maintained.

Zinc peroxide is used in pyrotechnic mixtures and primer compositions whose reaction products should not contain any corrosive and hazardous components (→ SINTOX Primer Compositions).
Literature

Books*)

1. Manuals:

Escales, R.: Die Schießbaumwolle, Veit, Leipzig 1905
Escales, R.: Nitroglycerin und Dynamit, Veit, Leipzig 1908
Escales, R.: Ammonsalpetersprengstoffe, Veit, Leipzig 1909
Escales, R.: Chloratsprengstoffe, Veit, Leipzig 1910
Brunswig, H.: Schlagwettersichere Sprengstoffe, W. de Gruyter, Leipzig 1910
Escales, R.: Nitrosprengstoffe, Veit, Leipzig 1915
Kast, H.: Spreng- und Zündstoffe, Vieweg, Braunschweig 1921
Brunswig, H.: Explosivstoffe, W. de Gruyter, Leipzig 1923
Stettbacher, A.: Spreng- und Schießstoffe, Rascher, Zürich 1948
Naoum, Ph. und Berthmann, A.: Explosivstoffe, Hanser, München 1954
McAdam, R. und Westwater, R.: Mining Explosives, Oliver & Boyd, London 1958
Kreuter, Th.: Spreng- und Zündmittel, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1962

*) The sequence of listing was made according to the year of publication. The titles published prior to 1970 are historical interest only, they are out of print and only available in a few libraries.
Literature

Newhouser, C. R.: Introduction to Explosives, The National Bomb Data Center, Gaithersburg, USA 1973
Cook, M. A.: The Science of Industrial Explosives, IRECO Chemicals, Salt Lake City, Utah, USA, 1974
Nitration – Recent Laboratory and Industrial Developments, Hrsg.: Albright, F.L., Carr, R. V.C., Schmitt, R. J., American Chemical Society (ACS), Washington, DC, USA, 1996 (ACS Symposium Series Vol. 608)

2. Application Technique:
Peithner-Jenne: Handbuch des Sprengwesens, ÖGB, Wien 1951
Lathan, W.: Bohr- und Schießarbeiten, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1960
Wahle M. und Begrich, K.: Der Sprengmeister, Heymanns, Köln 1969
Saint-Arroman, Ch.: Pratique des Explosifs, Eyrolles, Paris 1977
Blasters Handbook, Du Pont de Nemours, Wilmington 1980; laufende Neuauflagen
Manual Bickford, Etbls. Davey Bickford, Rouen
Blasting Practice, ICI, Nobel Division, Stevenston, England
Jahrbuch der Wehrtechnik, 1–21, Bernard & Graefe Verlag, Koblenz 1966–1992
Introduction to the Technology of Explosives, Editors: Cooper, P. W., Kurowski, S. R., VCH, Weinheim, Germany, 1996

3. Monographs:

Naoum, Ph.: Nitroglycerin und Nitroglycerinsprengstoffe, Springer, Berlin 1924
Fabel, K.: Nitrocellulose, Enke, Stuttgart 1950
Miles, F. D.: Cellulose Nitrate, Oliver & Boyd, London 1955
Nauckhoff, S. und Bergström, O.: Nitroglycerin och Dynamit, Nitroglycerin A. B. Gyttorp 1959
Field, P.: Dust Explosions, Elsevier, Amsterdam 1982
Quinchon, J. und Tranchant, J.: Nitrocelluloses, the Materials and their Applications in Propellants, Explosives and other Industries, Ellis Horwood Ltd., Chichester 1989
Toxicity and Metabolism of Explosives, Editor: Yinon, J., CRC Press c/o Wolfe Publishing Ltd., London 1990

4. Propellants
Brunswig, H.: Das rauchlose Pulver, W. de Gruyter, Berlin und Leipzig 1926
Muraour, J.: Poudres et Explosifs, Vendome 1947
Tavernier, P., Boisson, J. und Crampel, B.: Propergols Hauteur Energétiques, Agardograph Nr. 141, 1970 (AGARD Publication)
Köhler, H. W.: Feststoff-Raketenantriebe, 2 Bände, Girardet Essen 1971/72
Schumcker, P. H.: Hybrid-Raketenantriebe, Goldmann, München 1972
James, R.: Propellants and Explosives, Noyes Data Corporation, Park Ridge, New Jersey 1974
Davenas, A. u. a.: Technologie des propergols solides, Série SNPE, Masson, Paris 1988
Quinchon, J. et al.: Les poudres, propergols et explosifs, Technique et Documentation, Paris:
Tome 2: Les nitrocelluloses et autres matières de base des poudres et propergols, 1984
Tome 3: Les poudres pour armes, 1986
Tome 4: Les propergols, 1991
Challenges in Propellants and Combustion – 100 Years after Nobel, Editor: Kuo, K.K. et al., Begell House, Inc., New York, USA, 1997
5. Pyrotechnics:

Shimizu, T.: Feuerwerk (vom physikalischen Standpunkt aus), Hower Verlag, Hamburg 1978
Clark, F.P.: Special Effects in Motion Pictures, Society of Motion Puc- ture and Television Engineers, Inc., 862 Scarsdale Avenue, Scarsdale, New York 10583, Second Printing 1979
Shimizu, T.: Fireworks, the Art, Science and Technique, Maruzen, Tokio 1981
Philipp, Ch.: A Bibliography of Firework Books, Works on Recreative Fireworks from the 16th to 20th Century, St. Pauls Biographies, Win- chester, Hampshire 1985

6. Theories of Detonation and Combustion:

Jouquet, E.: Mecanique des Explosifs, Doin et Fils, Paris 1917
Andrejev, K. K.: Thermische Zersetzung und Verbrennungsvorgänge bei Explosivstoffen (Translation), Barth, Mannheim 1964
Mader, Ch.: Numerical Modeling of Detonations, University of California Press, Berkeley 1979
Combustion of Boron-Based Solid Propellants and Solid Fuels, Editor: Kuo, K. K., CRC Press Inc., London 1993
S. S. Batsanov: Effects of Explosions on Materials – Modification and

7. Military Explosives and Ammunition; Ballistics:
Hänert: Geschütz und Schuß, Springer, Berlin 1940
Kutterer, E.K.: Ballistik, Vieweg & Sohn, Braunschwein 1942
Gallwitz, U.: Die Geschützladung, Heereswaffenamt, Berlin 1944
Hofmann, Fr.: Praktische Sprengstoff- und Munitionskunde, Wehr und Wissen, Darmstadt 1961
Untersuchung von Rüstungsaltlasten, Editor: Spyra, W., Lohs, K.H.,
Explosivstofffabriken in Deutschland, Editor: Trimborn, F., Verlag Locher, Köln, 1995

8. Analytical and Testing Methods:

Analytical Methods for Powders and Explosives, Bofors A.B., Göteborg 1960
Modern Methods and Applications in Analysis of Explosives, Editors: Yinon, J., Zitrin, Sh., Wiley, Chichester, UK, 1996

9. Encyclopedias and Tables:

Schmidt, A.: Thermochemische Tabellen für die Explosivchemie, Z. ges. Schieß- und Sprengstoffwesen 29 (1934), S. 259 u. 296
Selected Values of Chemical Thermodynamics Properties, NBS Technical Note 270, 1968
Pyrotechnics, Vol. 16
LASL Phermex Vol., Vol. 1–3, Editor: Mader, Ch. L., University of California Press, Berkeley, California 1980
LASL Shock Hugoniot Data, Editor: Marsh, St. P., University of California Press, Berkeley, California 1980
Los Alamos Explosives Performance Data, Editor: Mader, Ch. L., Johnson, J. N. und Crane, Sh. L., University of California Press, Berkeley, California 1982
Los Alamos Shock Wave Profile Data, Editor: Morris, Ch. E., University of California Press, Berkeley, Los Angeles, London 1982
Encyclopedia of Explosives and Related Items. PATR 2700, Editor:
Nitrocellulose, Vol. 17
Pyrotechnik, Vol. 19
Raketentreibstoffe, Vol. 20
Sprengstoffe, Vol. 21
Explosives and Propellants, Vol. 9
Pyrotechnics, Vol. 19
Explosives, Vol. A10
Propellants, Vol. 22A
Pyrotechnics, Vol. 22A
Explosives and Propellants Vol. 10
ICT-Database of Thermochemical Values Version 2001, 6. Update, Frauenhofer Institut für Chemische Technologie (ICT), Pfinztal

10. Govermental Regulations, Acts and Comments

Code maritime international des marchandises dangereuses Organisa-
“RID”, Reglement International concernant le Transport des Marchan-
dises dangereuses par Chemins de Fer, Annexe 1 de la Convention Internationale Concernant le Transport des Marchandises par Che-
mins de Fer, 1970
UVV-Unfallverhütungs-Vorschrift (accident preventing prescription). German Safety Regulations, edited in Jedermann-Verlag, Heidelberg and VCH-Verlagsgesellschaft, Weinheim
Sprengstoffgesetz (German Explosive Law) published with all belonging appendices by Apel and Keusgen, Carl Heymanns Verlag, Köln 1978–1990

Periodicals

AIAA-Journal, AIAA, New York
Bohren, Sprengen, Räumen, Erwin Barth Verlag, Neustadt/Weinstraße
Bundesarbeitsblatt: Beilage Arbeitsschutz, Stuttgart
Combustion, Explosion and Shock Waves, Faraday Press, New York (cover to cover translation of Fizika Goreniya Vzryva)
Explosifs, Edition Commerciales Industrielles, Brüssel
Explosivstoffe, Erwin Barth Verlag, Neustadt/Weinstraße (until 1974)
Explosives Engineer, Wilmington, Delaware (until 1961)
Glückauf, Verlag Glückauf, Essen
Gefährliche Ladung, K.O. Storck Verlag, Hamburg
Industrie der Steine und Erden, herausgegeben von der Steinbruchsberufsgenossenschaft, Verlag Gebr. Janecke, Hannover
Interavia, Luftfahrt-Raumfahrt-Elektronik, Interavia S.A. Genf
International Defense Review, Interavia S.A., Genf, Schweiz
Internationale Wehrrevue, Interavia S.A., Genf, Schweiz (until Mai 1988)
Journal of Ballistics, Douglas Documentation Systems, Philadelphia
Journal of Energetic Materials, Dowden, Brodman & Devine, Stroudsburg, PE
The Journal of Explosives Engineering, International Society of Explosives Engineers, Cleveland
Journal of Industrial Explosives, Japan, Tokio
Journal of Propulsion and Power, AIAA, New York
Journal of Spacecraft and Rockets, AIAA, New York
Mémorial de l’Artillerie Française, l’Imprimerie Nationale, Paris
Mémorial des Poudres, l’Imprimerie Nationale, Paris (until 1965)
Mining and Minerals Engineering (formerly: Mine and Quarry Engineering) London
Mining Engineer, London
Mining, Engineering, New York
Missiles and Rockets, Washington (until 1966)
Nobelhefte, Sprengtechnischer Dienst der Dynamit Nobel AG, Dortmund
Oxidation and Combustion Reviews, Elsevier Publ. Comp., Amsterdam (until 1973)
Propellants, Explosives, Pyrotechnics, VCH-Verlagsges., Weinheim
Raumfahrtforschung, Deutsche Ges. f. Luft- und Raumfahrt, Ottobrunn
Sprengstoffe, Pyrotechnik, VEB Sprengstoffwerk Schönebeck/Elbe
Sprengtechnik, GEFAS (Gesellschaft f. angewandte Sprengtechnik), Effretikon, Schweiz
Tätigkeitsberichte der Bundesanstalt für Materialprüfung, BAM, Selbstverlag, Berlin
U.S. Bureau of Mines, PB-Reports, Washington
Wehrtechnik, Verlag Wehr und Wissen, Koblenz-Bonn
Wehrwissenschaftliche Rundschau, Verlag Mittler & Sohn, Frankfurt
Zeitschrift für das gesamte Schieß- und Sprengstoffwesen, Verlag August Schrimpff, München (until 1944)

1970 Wirkungsfaktoren explosionsfähiger Stoffe und deren Dämpfung
1971 Lebensdauer von Raketenreibtsätzen, Treib- und Sprengladungen
1972 Probleme und Methoden der Umweltsimulation
1973 Sichere Technologie: Entstehung und Wirkung explosionsfähiger Systeme
1974 Verbrennungsvorgänge bei Treib- und Brennstoffen
1975 Pyrotechnik: Grundlagen, Technologie und Anwendung
1976 Sprengstoffe: Grundlagen, Technologie und Anwendung
1977 Analysenmethoden für Treib- und Explosivstoffe
1978 Moderne Technologie von Treib- und Explosivstoffen
1979 Verbrennungs- und Detonationsvorgänge
1980 Meß- und Prüfmethoden für Treib- und Sprengstoffe
1981 Chemische und Mechanische Technologie von Treib- und Explosivstoffen
1982 Verwendung von Kunststoffen für Treib- und Explosivstoffe
1983 Gütesicherung und Überwachung von Treib- und Sprengmitteln
1984 Technologie von Treib- und Sprengmitteln
1985 Pyrotechnics: Basic Principles, Technology, Application
1986 Analysis of Propellants and Explosives: Chemical and Physical Methods
1988 Combustion and Detonation Phenomena
1989 Environmental Testing in the 90’s
1990 Technology of Polymer Compounds and Energetic Materials
1991 Combustion and Reaction Kinetics
1992 Waste Management of Energetic Materials and Polymers
1993 Energetic Materials – Insensitivity and Environmental Awareness
1994 Energetic Materials – Analysis, Characterization and Test Techniques
1995 Pyrotechnics: Basic Principles, Technology, Application
1996 Energetic Materials – Technology, Manufacturing and Processing
1997 Combustion and Detonation
1998 Energetic Materials – Production, Processing and Characterization
2000 Energetic Materials – Analysis, Diagnostics and Testing
2001 Energetic Materials – Ignition, Combustion and Detonation

Further International Conferences (with Proceedings)

2. Symposium (International) on Detonation, every 4th year, Organizer: Office of Naval Research and others, 1951–2001 (12th)
8. International Pyrotechnics Seminar, Organizer: IPS (The International Pyrotechnics Society, USA), every year, 1968–2000 (27th)
VARIABLE

Reference: Constants.

VARIANCE

In statistics the variance of a set of data is the square of the standard deviation of the data:

\[\text{Variance} = \sigma^2 \]

Reference: Standard Deviation.

VARIATION

There are two kinds of variation discussed in this text. One is direct variation, which is also called direct proportion, and the other is inverse variation, which is also called inverse proportion. Both of these terms are explained in the entry Proportion.

Reference: Proportion.

VECTOR

In this entry we discuss only two-dimensional vectors. Vectors are quantities that have both magnitude and direction. Examples of vectors are force, velocity, and acceleration. Speed is not a vector, because it has magnitude, but not direction. Suppose Ken is using a garden roller on the lawn and he is pulling with a force of 200 newtons. We have stated the magnitude of the force, but not the direction. We may add that Ken is pulling at an angle of 30° to the horizontal. Both the magnitude and the direction are needed to describe a vector quantity.

In this entry, a line segment represents a vector, and the length of the line segment represents the magnitude or size of the vector and the direction of the line segment is
the direction of the vector. Ken is pulling the garden roller with a force of 200 newtons at an angle of 30° with the lawn. This vector can be represented by a line segment which is drawn at an angle of 30° with the horizontal (see figure a). An arrow on the line indicates the direction in which the force acts. Figure a is a scale drawing of the vector where 200 newtons is represented by the length of the line segment.

![Diagram](image)

There are different ways of writing vectors. Suppose a vector is represented on the grid in figure b by a line segment \(\overrightarrow{AB} \). In writing by hand, it is difficult to express vectors by thick letters as when using heavy type, and this notation will not be used in this text. Writing the vector \(\overrightarrow{AB} \) means that its direction is from \(A \) to \(B \). The vector \(\overrightarrow{BA} \) is the negative of \(\overrightarrow{AB} \), and its direction is from \(B \) to \(A \).

Vectors are also expressed as 2 by 1 matrices, in a similar way to translations. The vector \(\overrightarrow{AB} \) can be expressed as \(\overrightarrow{AB} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \), and the vector \(\overrightarrow{BA} = \begin{pmatrix} -4 \\ -3 \end{pmatrix} \). (For this positive and negative convention see the entry Translations.) When vectors are expressed as 2 by 1 matrices they are called column vectors, and can be added and subtracted in the following way.

Example 1. If \(\mathbf{a} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \) and \(\mathbf{b} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \), work out (a) \(\mathbf{a} + \mathbf{b} \), (b) \(\mathbf{a} - \mathbf{b} \), and (c) \(2\mathbf{a} + 3\mathbf{b} \)

Solution. For (a), write

\[
\mathbf{a} + \mathbf{b} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 + 4 \\ 1 + (-3) \end{pmatrix} \rightarrow \begin{pmatrix} 2 \\ -2 \end{pmatrix}
\]

Adding the numbers in the column vectors

Adding integers
For (b), write
\[
\begin{align*}
\mathbf{a} - \mathbf{b} &= \begin{pmatrix} -2 \\ 1 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \end{pmatrix} \\
&= \begin{pmatrix} -2 - 4 \\ 1 - (-3) \end{pmatrix} \quad \text{Subtracting the numbers in the column vectors} \\
&= \begin{pmatrix} -6 \\ 4 \end{pmatrix} \quad \text{Subtracting integers}
\end{align*}
\]

For (c), write
\[
\begin{align*}
2\mathbf{a} + 3\mathbf{b} &= 2 \times \begin{pmatrix} -2 \\ 1 \end{pmatrix} + 3 \times \begin{pmatrix} 4 \\ -3 \end{pmatrix} \\
&= \begin{pmatrix} -4 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ -9 \end{pmatrix} \quad \text{Multiplying the first vector by 2 and the second by 3} \\
&= \begin{pmatrix} 8 \\ -7 \end{pmatrix} \quad \text{Adding the two vectors}
\end{align*}
\]

The magnitude, or size, of a vector is the length of the line segment that represents the vector. It is found using the theorem of Pythagoras.

Example 2. Find the magnitude of the vector \(\mathbf{a} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \).

\[
\text{(c)}
\]

Solution. The vector is drawn in figure (c). Write
\[
\begin{align*}
\mathbf{a}^2 &= 4^2 + (-3)^2 \quad \text{Pythagoras’ Theorem} \\
\mathbf{a}^2 &= 16 + 9 \quad \text{Squaring the numbers} \\
\mathbf{a}^2 &= 25 \\
\mathbf{a} &= \sqrt{25} \quad \text{Taking square roots} \\
\mathbf{a} &= 5
\end{align*}
\]

The magnitude of the vector is 5.

Vectors can also be added using a vector triangle, as explained in the following example.
Example 3. Pat loves swimming and decides to swim across a stream that flows uniformly at a speed of 2 km/h. In still water, Pat can swim at 3 km/h. Her plan is to swim directly across the stream at right angles to the bank, but the water pulls her downstream. What is her resultant speed, and in what direction does she cross the river?

Solution. Let the velocity of the stream be \(\mathbf{S} \) and the velocity of Pat be \(\mathbf{P} \). These two vectors are added using a vector triangle in the following way. Draw the vector \(\mathbf{P} \) (see figure d). Draw the vector \(\mathbf{S} \) starting at the point where \(\mathbf{P} \) ends. Then complete the triangle of vectors with the resultant vector \(\mathbf{R} \) as the hypotenuse. Draw an arrow on the vector \(\mathbf{R} \) in the direction from where \(\mathbf{P} \) starts to where \(\mathbf{S} \) ends, as shown in the figure. Write

\[
\begin{align*}
R^2 &= 3^2 + 2^2 \\
&= 9 + 4 \\
&= 13 \\
R &= 3.61 \quad \text{(to 2 dp)} \\
\tan \theta &= \frac{3}{2} \\
\theta &= \tan^{-1}\left(\frac{3}{2}\right) \\
&= 56.3^\circ \quad \text{Using the calculator}
\end{align*}
\]

Pat’s resultant speed is 3.61 km/h at an angle of 56.3° with the bank.

References: Components of a Vector, Line Segment, Pythagoras’ Theorem, Translation, Trigonometry.

VECTOR TRIANGLE

References: Components of a Vector, Vector.
VELOCITY

Velocity is defined to be the rate at which the displacement of an object is changing as time changes. The basic unit of velocity, as of speed, is meters per second. Another common unit is kilometers per hour. If an object is traveling at a constant speed of \(v \) meters/second for \(t \) seconds and covers \(d \) meters, then the formulas connecting these quantities are

\[
distance = \text{speed} \times \text{time}, \quad \text{speed} = \frac{\text{distance}}{\text{time}}, \quad \text{time} = \frac{\text{distance}}{\text{speed}}
\]

Example. Amanda runs the 100 meters in 12.9 seconds. Find her speed in meters/second and in kilometers/hour, assuming she runs at a constant speed throughout.

Solution. Write

\[
\text{Speed} = \frac{\text{distance}}{\text{time}} = \frac{100}{12.9} \quad \text{Substituting distance} = 100, \text{time} = 12.9
\]

\[
= 7.75 \quad \text{(to 2 dp)}
\]

Amanda’s speed is 7.75 meters/second. Now write

\[
\text{Speed} = 7.75 \times 3.6 \quad 1 \text{ meter/second} = 3.6 \text{ kilometers/hour}
\]

\[
= 27.9
\]

Amanda’s speed is 27.9 kilometers/hour.

Reference: Displacement.

VELOCITY–TIME GRAPHS

Reference: Acceleration.

VERTEX

Reference: Edge.

VERTICAL

Reference: Horizontal.
VERTICAL LINE TEST

Reference: Correspondence.

VERTICAL PLANE

Reference: Inclined Plane.

VERTICALLY OPPOSITE ANGLES

When two straight lines intersect at a vertex there are two pairs of congruent angles. Angles at the vertex that are opposite each other are called vertically opposite angles, and are equal in size. In this geometry theorem, "vertically" has no reference to the word vertical, but is derived from the word vertex (see figure a):

\[\text{Angle } a = \text{angle } b \quad \text{and} \quad \text{Angle } c = \text{angle } d \]

Example. Figure b shows an open pair of scissors. If angle \(x = 47^\circ \), find the size of angle \(y \).

Solution. Write

\[y = 47^\circ \quad \text{Vertically opposite angles are equal} \]

Reference: Geometry Theorems.
The volume of a solid shape is a measure of the three-dimensional space it occupies. It is measured in cubic units, which is written as units3. We can find the volume of a solid shape, say a cuboid, by counting the number of cubes that its three-dimensional space occupies. The volume of a cuboid measuring 3 cm by 2 cm by 3 cm can be found by counting the number of cubic centimeters (abbreviated cm3) it occupies. There are three layers of cubes, and in each layer there are six cubes, so the volume of the cuboid is $6 + 6 + 6 = 18$ cm3.

Alternatively, the volume of the cuboid can be found using the formula (see the figure)

$$
\text{Volume} = \text{length} \times \text{width} \times \text{height}
$$

$$
= 3 \times 2 \times 3
$$

Substituting length = 3, width = 2, and height = 3

$$
= 18 \text{ cm}^3
$$

For examples of finding the volumes of well-known solids see the respective entries. The units commonly used for volume are

- Cubic millimeter, mm3
- Cubic centimeter, cm3
- Cubic meter, m3

The relationships between these units are

$$
1000 \text{ mm}^3 = 1 \text{ cm}^3
$$

$$
1,000,000 \text{ cm}^3 = 1 \text{ m}^3
$$

When we are finding the volume of liquid that a vessel holds we say we are finding the capacity of the vessel.

References: Capacity, Cube, Cuboid, Metric Units.
X-AXIS

Reference: Cartesian Coordinates.

X COORDINATE

Reference: Cartesian Coordinates.
$Y = MX + C$

References: Cartesian Coordinates, Gradient-Intercept Form, Graphs.

YARD

Reference: Imperial System of Units.
ZENO’S PARADOX

Reference: Paradox.