Introduction

The author is not responsible for any abuse of this information. It is intended for educational use only. You may be quite shocked at how vulnerable you are! As an afterthought I added a section on database access due to a number of requests.

The majority of successful attacks on computer systems via the Internet can be traced to exploitation of security flaws in software and operating systems. These few software vulnerabilities account for the majority of successful attacks, simply because attackers are opportunistic – taking the easiest and most convenient route. They exploit the best-known flaws with the most effective and widely available attack tools. Most software, including operating systems and applications, comes with installation scripts or installation programs. The goal of these installation programs is to get the systems installed as quickly as possible, with the most useful functions enabled, with the least amount of work being performed by the administrator. To accomplish this goal, the scripts typically install more components than most users need. The vendor philosophy is that it is better to enable functions that are not needed, than to make the user install additional functions when they are needed. This approach, although convenient for the user, creates many of the most dangerous security vulnerabilities because users do not actively maintain and patch software components they don’t use. Furthermore, many users fail to realize what is actually installed, leaving dangerous samples on a system simply because users do not know they are there. Those unpatched services provide paths for attackers to take over computers.

For operating systems, default installations nearly always include extraneous services and corresponding open ports. Attackers break into systems via these ports. In most cases the fewer ports you have open, the fewer avenues an attacker can use to compromise your network. For applications, default installations usually include unneeded sample programs or scripts. One of the most serious vulnerabilities with web servers is sample scripts; attackers use these scripts to compromise the system or gain information about it. In most cases, the system administrator whose system is compromised did not realize that the sample scripts were installed. Sample scripts are a problem because they usually do not go through the same quality control process as other software. In fact they are shockingly poorly written in many cases. Error checking is often forgotten and the sample scripts offer a fertile ground for buffer overflow attacks.

The simplest means to gain access to a system is by simple file and printer sharing. This is used to allow others on say, a home local area network share files, printers, and internet connections. If the computer having file and printer sharing enabled, this in fact allows these resources to be shared, and on offer, to the entire internet! This is largely due to the fact that Netbios was originally intended for use on local area networks (LAN’s), where trusted sharing of resources made sense for many reasons. It was never intended to ‘go global’.

First, search using a Netbios scanner, for a system with sharing enabled. A program such as Netbrute, by Raw Logic Software, is ideal. These programs can help the would-be hacker, as well as the network administrator. Run the scan over a subnet at a time, for example an IP address range from 80.1.1.1 to 80.1.1.254. Choose a system which has, preferably, it’s whole hard disk
shared (You’d be amazed at some peoples stupidity!!!), this shows up as a result such as `\80.5.7.2\C` or similar. Simply copy & paste this link into the address bar of Windows Explorer, and hit enter! This is a screenshot of Netbrute in operation:

![Netbrute Scanner by Raw Logic Software](image)

For more comprehensive information, use a utility such as Languard Network Scanner. This returns a wealth of information such as domain names, login names, and more. Here is a shot of this in use:
Need I say more? If you find a system where the root directory of C: is shared, then on Windows 9.X systems, you’ll be able to access the whole of the hard drive. On Windows NT/2000 systems, you will have only access as according to NTFS file access permissions. Here is a screenshot of Windows Explorer pointed at the root directory:
You can even map it to a network drive (use tools > map network drive), it’s as easy as that!

For best results, I recommend choosing systems with ‘better than modem’ connections. If you don’t know where to start, try your own IP address. To get this, do the following:

- For Windows 9.X, go to start > Run and type ‘Winipcfg’ to get your IP address.

- For Windows NT/2000, got to start > programs > accessories > commend prompt, and type ‘ipconfig’.

This will return your IP address. If you are using a dialup connection, you will need to connect first. For ‘always on’ cable connection, omit this step. Then run your scan over the subnet; e.g. if your IP address is 164.99.34.212 then try a scan from 164.99.34.1 to 164.99.34.254. This should be enough to get you started. Have fun…

IP Scanning

This simple scan simply pings a range of IP addresses to find which machines are alive. Note that more sophisticated scanners will use other protocols (such as an SNMP sweep) to do the same thing. This is a very simple technique which requires little explanation. It is however, useful for the domain name to be returned also.
Port Scanning

This section introduces many of the techniques used to determine what ports (or similar protocol abstraction) of a host are listening for connections. These ports represent potential communication channels. Mapping their existence facilitates the exchange of information with the host, and thus it is quite useful for anyone wishing to explore their networked environment, including hackers. Despite what you have heard from the media, the Internet is NOT exclusively reliant on TCP port 80, used by hypertext transfer protocol (HTTP). Anyone who relies exclusively on the WWW for information gathering is likely to gain the same level of proficiency as your average casual surfer. This section is also meant to serve as an introduction to the art of port scanning, in which a host system can be persuaded to yield up its secrets. To accomplish this, you need to obtain a port scanner. There are many available both for free or for a small fee. It should have all these features:

- **Dynamic delay time calculations:** Some scanners require that you supply a delay time between sending packets. Well how should I know what to use? You can always ping them, but that is a pain, and plus the response time of many hosts changes dramatically when they are being flooded with requests. For root users, the primary technique for finding an initial delay is to time the internal “ping” function. For non-root users, it times an attempted connect() to a closed port on the target. It can also pick a reasonable default value. Again, people who want to specify a delay themselves can do so with -w (wait), but you shouldn’t have to.

- **Retransmission:** Some scanners just send out all the query packets, and collect the responses. But this can lead to false positives or negatives in the case where packets are dropped. This is especially important for “negative” style scans like UDP and FIN, where what you are looking for is a port that does NOT respond.

- **Parallel port scanning:** Some scanners simply scan ports linearly, one at a time, until they do all 65535. This actually works for TCP on a very fast local network, but the speed of this is not...
at all acceptable on a wide area network like the Internet. It is best to use non-blocking i/o and parallel scanning in all TCP and UDP modes. Flexible port specification: You don’t always want to scan all 65535 ports! Also, the scanners which only allow you to scan ports 1 - N often fall short of my need. The scanner should allow you to specify an arbitrary number of ports and ranges for scanning. For example, ‘21-25,80-113’ is often useful if you are only probing the most frequently running services.

- Flexible target specification: You may often want to scan more then one host, and you certainly don’t want to list every single host on a large network! It is useful to scan, say a subnet at once, e.g. 131.111.11.0 – 131.111.11.254.
- Detection of down hosts: Some scanners allow you to scan large networks, but they waste a huge amount of time scanning 65535 ports of a dead host! Annoying! You are advised to choose a scanner which allows timeout intervals to be adjusted.
- Detection of your IP address: For some reason, a lot of scanners ask you to type in your IP address as one of the parameters. You don’t want to have to ‘ifconfig’ and figure out your current IP address every time you connect. Of course, this is better then the scanners I’ve seen which require recompilation every time you change your address! If you are using a cable ‘always on’ connection, you may find that the IP address remains constant, as in my own case.

There are actually 65536 ports in all; however by convention services with which we are most familiar tend to use the lower numbers. Here are a few:

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>21</td>
</tr>
<tr>
<td>Telnet</td>
<td>23</td>
</tr>
<tr>
<td>SMTP</td>
<td>25</td>
</tr>
<tr>
<td>HTTP</td>
<td>80</td>
</tr>
<tr>
<td>POP3</td>
<td>110</td>
</tr>
</tbody>
</table>

Although the services can be configured to use other ports, this is very unusual. Ports above 1024 tend to be used by the operating system. Essentially a port scanner sends packets of data on each port in turn, and listens for replies to determine what services are running. A detailed list is available at the end of the document. This is an example of a simple port scanner in use:
Network Topology Views
This may be useful on occasion. It provides a graphical view of the resources on your network. For example, it may show which systems are behind a firewall, and which routers are on-line.
A ‘network viewer’.

Packet Sniffing
A packet sniffer or protocol analyser is a wire-tap device that plugs into computer networks and eavesdrops on the network traffic. Like a telephone wiretap allows one to listen in on other people’s conversations, a “sniffing” program lets someone listen in on computer conversations. However, computer conversations consist of apparently random binary data. Therefore, network wiretap programs also come with a feature known as “protocol analysis”, which allow them to “decode” the computer traffic and make sense of it. Sniffing also has one advantage over telephone wiretaps: many networks use “shared media”. This means that you don’t need to break into a wiring closet to install your wiretap, you can do it from almost any network connection to eavesdrop on your neighbours. This is called a “promiscuous mode” sniffer. However, this “shared” technology is moving quickly toward “switched” technology where this will no longer be possible, which means you will have to actually tap into the wire.

There is no single point on the Internet where it is possible to ‘see’ all of the traffic. The connectivity of the Internet looks similar a fisherman’s net. Traffic flows through a mesh, and no single point will see it all! The Internet was built to withstand a nuclear attack—and to survive any “single point of failure”. This likewise prevents any single point of packet sniffing. Consider this situation: you have two machines in your own office talking to each other, and both are on the Internet. They take a direct route of communication, and the traffic never goes across the outside public portion of the Internet. Any communication anywhere in the net follows a similar “least-cost-path” principle.

Ethernet was built around a “shared” principle: all machines on a local network share the same wire. This implies that all machines are able to “see” all the traffic on the same wire. Therefore,
Ethernet hardware is built with a “filter” that ignores all traffic that doesn’t belong to it. It does this by ignoring all frames whose MAC address doesn’t match their own. A wiretap program effectively turns off this filter, putting the Ethernet hardware into “promiscuous mode”. Thus, Mark can see all the traffic between Alice and Bob, as long as they are on the same Ethernet wire.

Since many machines may share a single Ethernet wire, each must have an individual identifier. This doesn’t happen with dial-up modems, because it is assumed that any data you send to the modem is destined for the other side of the phone line. But when you send data out onto an Ethernet wire, you have to be clear which machine you intend to send the data to. Sure, in many cases today there are only two machines talking to each other, but you have to remember that Ethernet was designed for thousands of machines to share the same wire. This is accomplished by putting a unique 12-digit hex number in every piece of Ethernet hardware. To really understand why this is so important, you might want to review the information in section 5.4 below. Ethernet was designed to carry other traffic than just TCP/IP, and TCP/IP was designed to run over other wires (such as dial-up lines, which use no Ethernet). For example, many home users install “NetBEUI” for File and Print Sharing because it is unrelated to TCP/IP, and therefore hackers from across the Internet can’t get at their hard-drives.

Raw transmission and reception on Ethernet is governed by the Ethernet equipment. You just can’t send data raw over the wire, you must first do something to it that Ethernet understands. In much the same way, you can’t stick a letter in a mailbox, you must first wrap it in an envelope with an address and stamp.

Following a is a brief explanation how this works:

Alice has IP address: 10.0.0.23
Bob has IP address: 192.168.100.54

In order to talk to Bob, Alice needs to create an IP packet of the form 10.0.0.23-->192.168.100.54. As the packet traverses the Internet, it will be passed from router-to-router. Therefore, Alice must first hand off the packet to the first router. Each router along the way will examine the destination IP address (192.168.100.54) and decide the correct path it should take.

All Alice knows about is the local connection to the first router, and Bob’s eventual IP address. Alice knows nothing about the structure of the Internet and the route that packet will take. Alice must talk to the router in order to send the packet. She uses the Ethernet to do so. An Ethernet frame looks like the following:

What this means is that the TCP/IP stack in Alice’s machine might create a packet that is 100 bytes long (let’s say 20 bytes for the IP info, 20 bytes for the TCP info, and 60 bytes of data). The TCP/IP stack then sends it to the Ethernet module, which puts 14 bytes on the front for the destination MAC address, source MAC address, and the ethertype 0x0800 to indicate that the other end’s TCP/IP stack should process the frame. It also attaches 4-bytes on the end with a checksum/CRC (a validator to check whether the frame gets corrupted as it goes across the wire). The adapter then sends the bits out onto the wire. All hardware adapters on the wire see the frame, including the ROUTER’s adapter, the packet sniffer, and any other machines. Proper adapters, however, have a hardware chip that compares the frame’s “destination MAC” with its own MAC address. If they don’t match, then it discards the frame. This is done at the hardware level, so the machine the adapter is attached to is completely unaware of this process.

When the ROUTER Ethernet adapter sees this frame, it reads it off the wire and removes the leading 14-bytes and the trailing 4-bytes. It looks at the 0x0800 ethertype and decides to send it to the TCP/IP stack for processing (which will presumably forward it to the next router in the chain toward the destination). In the above scenario, only the ROUTER machine is supposed to see the Ethernet frame, and all other machines are supposed to ignore it. The wiretap, however, breaks the rules and copies the frame off the network, too.
To see your own Ethernet address, do the following:

Win9x: Run the program “winipcfg.exe”. It will tell you.

WinNT/2000: Run the program “ipconfig /all” from the command-line. It will show the MAC address for your adapters. This is an example result:

Windows NT IP Configuration
Host Name : sample.robertgraham.com
DNS Servers : 192.0.2.254
Node Type : Hybrid
NetBIOS Scope ID :
IP Routing Enabled. : Yes
WINS Proxy Enabled. . . . : No
NetBIOS Resolution Uses DNS : No
Ethernet adapter SC12001:

Description : DEC DC21140 PCI Fast Ethernet Adapter
Physical Address : 00-40-05-A5-4F-9D
DHCP Enabled. : No
IP Address. : 192.0.2.160
Subnet Mask : 255.255.255.0
Default Gateway : 192.0.2.1
Primary WINS Server . . . : 192.0.2.253

Linux
Run the program “ifconfig”. Here is a sample result:
eth0 Link encap:Ethernet HWaddr 08:00:17:0A:36:3E
inet addr:192.0.2.161 Bcast:192.0.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1137249 errors:0 dropped:0 overruns:0
TX packets:994976 errors:0 dropped:0 overruns:0

Interrupt:5 Base address:0x300
Solaris: Use the “arp” or “netstat -p” command, it will often list the local interface among the ARP entries.
This is the standard “hex dump” representation of a network packet, before being decoded. A hex dump has three columns: the offset of each line, the hexadecimal data, and the ASCII equivalent.

This packet contains a 14-byte Ethernet header, a 20-byte IP header, a 20-byte TCP header, an HTTP header ending in two line-feeds (0D 0A 0D 0A) and then the data. The reason both hex and ASCII are shown is that sometimes one is easier to read than the other. For example, at the top of the packet, the ASCII looks useless, but the hex is readable, from which you can tell, for example, that my MAC address is 00-00-BA-5E-BA-11. Each packet contains a 14-byte Ethernet header, a 20-byte IP header, a 20-byte TCP header, an HTTP header ending in two line-feeds (0D 0A 0D 0A) and then the data.

I need to explain the word ‘hexadecimal’. The word “decimal” has the root “dec”, meaning “10”. This means that there are 10 digits in this numbering system:

0 1 2 3 4 5 6 7 8 9

The word “hexadecimal” has the roots “hex” meaning 6 and “dec” meaning 10; add them together and you get 16. This means that there are sixteen digits in this numbering system: 0 1 2 3 4 5 6 7 8 9 A B C D E F

The is useful because all data is stored by a computer as “bits” (binary-digits, meaning two digits: 0 1), but all bits are grouped into 8-bit units known as “bytes” or “octets”, which in theory have 256 digits. Bits are two small to view data, because all we would see is a stream like 00101010101000010101011011011101110110100, which is unreadable. Similarly, using 256 digits would be impossible: who can memorize that many different digits? Hexadecimal breaks a “byte” down into a 4-bit “nibble”, which has 16-combinations (256 = 16 x 16). This allows us to represent each bytes as two hexadecimal digits. Hexadecimal allows technical people to visualize...
the underlying binary data. This is an explanation of the hexadecimal numbering system:

\[
\begin{align*}
0000 &= 0 \\
0001 &= 1 \\
0010 &= 2 \\
0011 &= 3 \\
0100 &= 4 \\
0101 &= 5 \\
0110 &= 6 \\
0111 &= 7 \\
1000 &= 8 \\
1001 &= 9 \\
1010 &= A \\
1011 &= B \\
1100 &= C \\
1101 &= D \\
1110 &= E \\
1111 &= F
\end{align*}
\]

In other words, when you encounter the hexadecimal digit “B”, you should immediately visualize the bit pattern “1011” in your head. It is much like memorizing multiplication tables as a kid, memorizing this table will serve much the same purpose. Hexadecimal is often preceded by a special character(s). For example, when you see the number “12”, is this “twelve” (decimal) or “eighteen” (hexadecimal)? If it is hex, it is often written as either “0x12”, “x12”, or “$12”. The former is the preferred version, since that is how many programming languages represent it. Naturally, this isn’t needed for hex dumps because the fact we are showing hex is pretty much assumed. Computers represent everything as numbers. This means the text you are reading right now is represented as numbers within the computer. ASCII is one such representation. In ASCII, the letter ‘A’ is represented by the number 65, or in hex, 0x41. The letter ‘B’ is represented by the number 66/0x42. And the process continues for all characters, numbers, punctuation, and so forth. If you look at the normal (English) keyboard you will count 32 punctuation characters, 10 decimal digits, 26 letters, and 26 more letters when you take into account UPPER/lower case. This comes to 94 different characters. In binary, you need 7-bits to represent that number of combinations. This maps nicely onto the standard 8-bit bytes used in computers, with room left over. In hex dumps, note that the ASCII columns contains lots of periods. A byte has 256 combinations, but we can only view 94 of them. Any character that is not one of these 94 visible characters is shown as a period.

Anyhow, if you want to try packet sniffing, I hope I have now provided the information you need to get started. You can download a packet sniffer free from the web as either shareware or freeware. Give it a go! By now, you must be feeling that there is a good chance that your boss may well have been snooping on your use of the corporate LAN and/or the internet all along! Is there no such thing as privacy at work nowadays? If you have a score to settle, the next section is for you…

Statistical Databases

This may seem rather a departure from the ‘domestic’ hacking scene. But on reflection of some queries I have recently received relating to corporate databases, particularly relating to salary and employment details, I decided to give this topic a mention.

Have you ever wanted to somehow, obtain from your employer’s database, details relating to the personnel department? In this dreadful world of job insecurity and appraisal schemes, the author has just cause to explain a possible means to learn employer’s secrets.

A statistical database is, in it’s simplicity, a store of information relating to the infrastructure of entire organisations. This includes personal and employee details. These systems are implemented by means of Microsoft Access, MYSQL and other similar software, but what they all have in common is that one fact must be stored in one place. This is vital to ensure that queries return unique results. Please note that, in order to use this information successfully, a working knowledge of SQL (Structured Query Language) and relational algebra, is assumed. Some operand details are provided; however please note that this is not a SQL reference manual! This is a huge topic. I am simply suggesting possible means by which they may be manipulated in order to yield up details to which the database administrator has forbidden you access. The methods of trying to bypass access restrictions either may or may not work on all systems; the author merely
states that they have been successfully tried with success on some experimental databases.

Hacking a Statistical Database

‘Views’ are used by a database administrator in order to hide certain data from those who do not need access to it according to their job description. For example, take this simple database for a small company having 10 employees:

<table>
<thead>
<tr>
<th>Fname</th>
<th>Lname</th>
<th>Sex</th>
<th>dependents</th>
<th>occupation</th>
<th>Salary</th>
<th>Tax</th>
<th>audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Harris</td>
<td>M</td>
<td>3</td>
<td>Programmer</td>
<td>25k</td>
<td>5k</td>
<td>3</td>
</tr>
<tr>
<td>Lisa</td>
<td>White</td>
<td>F</td>
<td>2</td>
<td>Receptionnant</td>
<td>15k</td>
<td>3k</td>
<td>0</td>
</tr>
<tr>
<td>Alison</td>
<td>Baker</td>
<td>F</td>
<td>0</td>
<td>Programmer</td>
<td>25k</td>
<td>5k</td>
<td>1</td>
</tr>
<tr>
<td>Emma</td>
<td>Foster</td>
<td>F</td>
<td>2</td>
<td>Secretary</td>
<td>13k</td>
<td>2.5k</td>
<td>1</td>
</tr>
<tr>
<td>Steve</td>
<td>Smith</td>
<td>M</td>
<td>2</td>
<td>Manager</td>
<td>30k</td>
<td>6k</td>
<td>0</td>
</tr>
<tr>
<td>Ann</td>
<td>Reid</td>
<td>F</td>
<td>1</td>
<td>Clerk</td>
<td>25k</td>
<td>5.5k</td>
<td>0</td>
</tr>
<tr>
<td>Micheal</td>
<td>Roberts</td>
<td>M</td>
<td>0</td>
<td>Secretary</td>
<td>12k</td>
<td>2k</td>
<td>0</td>
</tr>
<tr>
<td>Tom</td>
<td>Reynolds</td>
<td>M</td>
<td>3</td>
<td>Porter</td>
<td>11k</td>
<td>2k</td>
<td>0</td>
</tr>
<tr>
<td>Pauline</td>
<td>Blackman</td>
<td>F</td>
<td>4</td>
<td>Programmer</td>
<td>18k</td>
<td>3.5k</td>
<td>1</td>
</tr>
<tr>
<td>Sandra</td>
<td>Moore</td>
<td>F</td>
<td>1</td>
<td>Programmer</td>
<td>21k</td>
<td>4k</td>
<td>1</td>
</tr>
</tbody>
</table>

Suppose you wanted to find out John Harris’s salary. However, you do not have access to the salary and tax columns, as your administrator has excluded you from this view, as company policy states that only the personnel department need access to this data. The key is not accessible to users. However, anyone with a limited knowledge of relational algebra can still get the information they seek…

We must arm ourselves with what we do know about John. We know that he is male and is a programmer. Without any protection other than the view set by the database administrator, these queries will flush out his salary:

SELECT COUNT (*) FROM Stats
WHERE sex = ‘M’ AND Occupation = ‘Programmer’
Response 1
We have a single male programmer!
SELECT Sum(salary) Sum(tax) FROM Stats
WHERE Sex = ‘M’ AND occupation = ‘Programmer’
We have found John’s salary out. This single tuple attack is unlikely to work as, for security the administrator may have ruled that a query must say, more than one tuple. Therefore a single subject cannot be weeded out as before. However the multi-tuple manipulation can counter this as follows.

```sql
SELECT COUNT(*) FROM Stats
Response 10
SELECT COUNT(*) FROM Stats
WHERE NOT (sex = 'M' AND occupation = 'Programmer')
Response 9 (10 - 1 = 9)
SELECT Sum(salary) Sum(tax) FROM Stats
Response 195k, 38.5k
SELECT Sum(salary) Sum(tax) FROM Stats
WHERE NOT Sex = 'M' AND occupation = 'Programmer'
Response 170k, 33.5k
So 195 - 170 = 25, 38.5 - 33.5 = 5
Answer = 25k, 5k
We have still got John’s salary! As the response in each case contained more than one tuple, it passed as an admissible query!
```

The individual tracker approach

This method utilises predicates about John to construct queries.

```sql
SELECT COUNT(*) FROM Stats
WHERE sex = 'M'
Response 4
So there exist 4 males on the database.
SELECT COUNT(*) FROM Stats
WHERE sex = 'M' AND NOT (occupation = 'programmer')
Response 3
So there is only 1 male programmer.
SELECT Sum(salary) Sum(tax) FROM Stats
WHERE Sex = 'M'
Response 78k, 15k
SELECT Sum(salary) Sum(tax) FROM Stats
WHERE Sex = 'M' AND NOT (occupation = 'programmer')
Response 53k, 10k
So 78-53=25 and 15-10=5
Result 25k, 5k
So as before, we have John’s salary. If we have a predicate about a specific record, i.e. John is male AND a programmer, we can formulate queries to obtain the results we wish to obtain. This can be summed up as P1 AND P2. The predicate P1 AND NOT P2 can be used as a tracker for that individual record.
Hardware Tricks

For the hacker with some knowledge of computer hardware and general electronics, and who is prepared to mess about with circuit diagrams, a soldering iron and perhaps a voltmeter, logic probe or oscilloscope, still further possibilities open up. One of the most useful bits of kit consists of a small cheap radio receiver (MW/AM band), a microphone and a tape recorder. Radios in the vicinity of computers, modems and telephone lines can readily pick up the chirp chirp of digital communications without the need of carrying out a physical phone ‘tap’. Alternatively, an inductive loop with a small low-gain amplifier in the vicinity of a telephone or line will give you a recording you can analyse later at your leisure.

By identifying the pairs of tones being used, you can separate the caller and the host. By feeding the recorded tones onto an oscilloscope display you can freeze bits, ‘characters’ and ‘words’; you can strip off the start and stop bits and, with the aid of an ASCII-to-binary table, examine what is happening. With experience it is entirely possible to identify a wide range of protocols simply from the ‘look’ of an oscilloscope. A cruder technique is simply to record and playback sign-on sequences; the limitation is that, even if you manage to log on, you may not know what to do afterwards. Listening on phone lines is of course a technique also used by some sophisticated robbers. In 1982 the Lloyds Bank Holborn branch was raided; the alarm did not ring because the thieves had previously recorded the ‘all-clear’ signal from the phone line and then, during the break-in, replayed the recording up the line to the alarm monitoring apparatus. Sometimes the hacker must devise ad hoc bits of hardware trickery in order to achieve his ends. Access has been obtained to a well-known financial prices service largely by stringing together a series of simple hardware skills. The service is available mostly on leased lines, as the normal vagaries of dial-up would be too unreliable for the City folk who are the principal customers.
However, each terminal also has an associated dial-up facility, in case the leased line should go down; and in addition, the same terminals can have access to Prestel. Thus the hacker thought that it should be possible to access the service with ordinary viewdata equipment instead of the special units supplied along with the annual subscription. Obtaining the phone number was relatively easy: it was simply a matter of selecting manual dial-up from the appropriate menu, and listening to the pulses as they went through the regular phone.

The next step was to obtain a password. The owners of the terminal to which the hacker had access did not know their ID; they had no need to know it because it was programmed into the terminal and sent automatically. The hacker could have put micro ‘back-to-front’ across the line and sent a ENQ to see if an ID would be sent back. Instead he tried something less obvious.

The terminal was known to be programmable, provided one knew how and had the right type of keyboard. Engineers belonging to the service had been seen doing just that. How could the hacker acquire ‘engineer’ status? He produced the following hypothesis: the keyboard used by the service’s customers was a simple affair, lacking many of the obvious keys used by normal terminals; the terminal itself was manufactured by the same company that produced a range of editing terminals for viewdata operators and publishers. Perhaps if one obtained a manual for the editing terminal, important clues might appear. A suitable photocopy was obtained and, lo and behold, there were instructions for altering terminal IDs, setting auto-diallers and so on.

**Linux & Unix for beginners**

Unix has become the primo operating system of the Internet. In fact, Unix is the most widely used operating system in the world among computers with more power than PCs. True, Windows NT is coming up fast as a common Internet operating system. But today Unix in all its flavours still is the operating system to know in order to be a truly elite hacker. So far we have assumed that you have been hacking using a shell account that you get through your Internet Service Provider (ISP). A shell account allows you to give Unix commands on one of your ISP's computers. But you don't need to depend on your ISP for a machine that lets you play with Unix. You can run Unix on your own computer and with a SLIP or PPP connection be directly connected to the Internet.

Note: Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol (PPP) connections give you a temporary Internet Protocol (IP) address that allows you to be hooked directly to the Internet. You have to use either SLIP or PPP connections to get to use a Web browser that gives you pictures instead on text only. So if you can see pictures on the Web, you already have one of these available to you. The advantage of using one of these direct connections for your hacking activities is that you will not leave behind a shell log file for your ISP's sysadmin to study. Even if you are not breaking the law, a shell log file that shows you doing lots of hacking can be enough for some sysadmins to summarily close your account.

What is the best kind of computer to run Unix on? Unless you are a wealthy hacker who thinks nothing of buying a Sun SPARC workstation, you'll probably do best with some sort of PC. There are almost countless variants of Unix that run on PCs, and a few for Macs. Most of them are free for download, or inexpensively available on CD-ROMs. The three most common variations of Unix that run on PCs are Sun's Solaris, FreeBSD and Linux. Solaris costs around $700. Enough said. FreeBSD is very good indeed.

Linux, however, has the advantage of being available in many variants (so you can have fun mixing and matching programs from different Linux offerings). Most importantly, Linux is supported by many manuals, news groups, mail lists and Web sites. out.

Historical note: Linux was created in 1991 by a group led by Linus Torvalds of the University of Helsinki. Linux is copyrighted under the GNU General Public License. Under this agreement, Linux may be redistributed to anyone along with the source code. Anyone
can sell any variant of Linux and modify it and repackage it. But even if someone modifies the source code he or she may not claim copyright for anything created from Linux. Anyone who sells a modified version of Linux must provide source code to the buyers and allow them to reuse it in their commercial products without charging licensing fees. This arrangement is known as a "copyleft." Under this arrangement the original creators of Linux receive no licensing or shareware fees. Linus Torvalds and the many others who have contributed to Linux have done so from the joy of programming and a sense of community with all of us who will hopefully use Linux in the spirit of good guy hacking. Viva Linux! Viva Torvalds! Linux consists of the operating system itself (called the "kernel") plus a set of associated programs.

The kernel, like all types of Unix, is a multitasking, multi-user operating system. Although it uses a different file structure, and hence is not directly compatible with DOS and Windows, it is so flexible that many DOS and Windows programs can be run while in Linux. So a power user will probably want to boot up in Linux and then be able to run DOS and Windows programs from Linux. Associated programs that come with most Linux distributions may include:

* a shell program (Bourne Again Shell -- BASH -- is most common);
* compilers for programming languages such as Fortran-77 (my favorite!), C, C++, Pascal, LISP, Modula-2, Ada, Basic (the best language for a beginner), and Smalltalk;
* X (sometimes called X-windows), a graphical user interface
* utility programs such as the email reader Pine (my favorite) and Elm

Top ten reasons to install Linux on your PC:

1. When Linux is outlawed, only outlaws will own Linux.
2. When installing Linux, it is so much fun to run fdisk without backing up first.
3. The flames you get from asking questions on Linux newsgroups are of a higher quality than the flames you get for posting to alt.sex.bestiality.
4. No matter what flavor of Linux you install, you'll find out tomorrow there was a far more 311te version you should have gotten instead.
5. People who use Free BSD or Solaris will not make fun of you. They will offer their sympathy instead.
6. At the next Def Con you'll be able to say stuph like "so then I su-ed to his account and grepped all his files for 'kissyface'." Oops, grepping other people's files is a no-no, forget I ever suggested it.
7. Port surf in privacy.
8. One word: exploits.
9. Installing Linux on your office PC is like being a postal worker and bringing an Uzi to work.
10. But - - if you install Linux on your office computer, you boss won't have a clue what that means.

What types of Linux work best? It depends on what you really want. Redhat Linux is famed for being the easiest to install. The Walnut Creek Linux 3.0 CD-ROM set is also really easy to install -- for Linux, that is! My approach has been to get lots of Linux versions and mix and match the best from each distribution. I like the Walnut Creek version best because with my brand X hardware, its autodetection feature was a life-saver.

INSTALLING LINUX is not for the faint of heart! Several tips for surviving installation are:

1) Although you in theory can run Linux on a 286 with 4 MB RAM and two floppy drives, it is *much* easier with a 486 or above with 8 MB RAM, a CD-ROM, and at least 200 MB free hard disk space.
2) Know as much as possible about what type of mother board, modem, hard disk, CD-
ROM, and video card you have. If you have any documentation for these, have them on hand to reference during installation.

3) It works better to use hardware that is name-brand and somewhat out-of-date on your computer. Because Linux is freeware, it doesn’t offer device drivers for all the latest hardware. And if your hardware is like mine -- lots of Brand X and El Cheapo stuff, you can take a long time experimenting with what drivers will work.

4) Before beginning installation, back up your hard disk(s)! In theory you can install Linux without harming your DOS/Windows files. But we are all human, especially if following the advice of point 7).

5) Get more than one Linux distribution. The first time I successfully installed Linux, I finally hit on something that worked by using the boot disk from one distribution with the CD-ROM for another. In any case, each Linux distribution had different utility programs, operating system emulators, compilers and more. Add them all to your system and you will be set up to become beyond elite.

6) Buy a book or two or three on Linux. I didn't like any of them! But they are better than nothing. Most books on Linux come with one or two CD-ROMs that can be used to install Linux. But I found that what was in the books did not exactly coincide with what was on the CD-ROMs.

7) I recommend drinking while installing. It may not make debugging go any faster, but at least you won't care how hard it is.

Now I can almost guarantee that even following all these 6 pieces of advice, you will still have problems installing Linux. Oh, do I have 7 advisories up there? Forget number 7.

But be of good cheer. Since everyone else also suffers mightily when installing and using Linux, the Internet has an incredible wealth of resources for the Linux -challenged. If you are allergic to getting flamed, you can start out with Linux support Web sites.

The best I have found is http://sunsite.unc.edu:/pub/Linux/. It includes the Linux Frequently Asked Questions list (FAQ), available from sunsite.unc.edu:/pub/Linux/docs/FAQ.

In the directory /pub/Linux/docs on sunsite.unc.edu you'll find a number of other documents about Linux, including the Linux INFO-SHEET and META-FAQ. The Linux HOWTO archive is on the sunsite.unc.edu Web site at: /pub/Linux/docs/HOWTO. The directory /pub/Linux/docs/LDP contains the current set of LDP manuals. You can get ``Linux Installation and Getting Started" from sunsite.unc.edu in /pub/Linux/docs/LDP/install-guide. The README file there describes how you can order a printed copy of the book of the same name (about 180 pages).

Now if you don't mind getting flamed, you may want to post questions to the amazing number of Usenet news groups that cover Linux. These include:

comp.os.linux.advocacy Benefits of Linux compared
comp.os.linux.development.system Linux kernels, device drivers
comp.os.linux.x Linux X Window System servers
comp.os.linux.development.apps Writing Linux applications
comp.os.linux.hardware Hardware compatibility
comp.os.linux.setup Linux installation
comp.os.linux.networking Networking and communications
comp.os.linux.answers FAQs, How-To's, READMEs, etc.
linux.redhat.misc
alt.os.linux Use comp.os.linux.* instead
alt.uu.comp.os.linux.questions Usenet University helps you
comp.os.linux.announce Announcements important to Linux
comp.os.linux.misc Linux-specific topics Want your Linux free? Tobin Fricke has pointed out that "free copies of Linux CD-ROMs are available the Linux Support & CD Givaway web site at http://emile.math.ucsb.edu:8000/giveaway.html. This is a project where people donate Linux CD's that they don't need any more. The project was seeded by Linux Systems Labs, who donated 800 Linux CDs initially! Please remember to donate your Linux CD's when you are done with them. If you live near a computer swap meet, Fry's, Microcenter, or other such place, look for Linux CD's there. They are usually under $20, which is an excellent investment. I personally like the Linux Developer's Resource by Infomagic, which is now up to a seven CD set, I believe, which includes all major Linux distributions (Slackware, Redhat, Debian, Linux for DEC Alpha to name a few) plus mirrors of tpx11.mit.edu and sunsite.unc.edu/pub/linux plus much more. You should also visit the WONDERFUL linux page at http://sunsite.unc.edu/linux, which has tons of information, as well as the http://www.linux.org/. You might also want to check out http://www.redhat.com/ and http://www.caldera.com/ for more information on commercial versions of linux (which are still freely available under GNU)."

What about Linux security? Yes, Linux, like every operating system, is imperfect. Eminently hackable, if you really want to know. So if you want to find out how to secure your Linux system, or if you should come across one of the many ISPs that use Linux and want to go exploring (oops, forget I wrote that), here's where you can go for info:
ftp://info.cert.org/pub/cert_advisories/CA-94:01.network.monitoring.attacks
ftp://info.cert.org/pub/tech_tips/root_compromise http://bach.cis.temple.edu/linux/linux-security/ http://www.geek-girl.com/bugtraq/ There is also help for Linux users on Internet Relay Chat (IRC). Ben (cyberkid@usa.net) hosts a channel called #LinuxHelp on the Undernet IRC server.

**Brief SQL Reference**

To get all columns of a table without typing all column names, use: SELECT * FROM TableName; To get the total number of tuples (rows): SELECT Count(*); FROM EMPLOYEE To get the total number of female employees in reception: SELECT Count(*) FROM EMPLOYEE WHERE sex = 'm' AND Department = 'reception'.

**Relational Operators**

There are six Relational Operators in SQL, and after introducing them, we'll see how they're used: = Equal <> or != Not Equal < Less Than > Greater Than <= Less Than or Equal To >= Greater Than or Equal To

For example, if you wanted to see the EMPLOYEE ID NO's of those making at least, or over $50,000, use the following:

SELECT EMPLOYEEIDNO FROM EMPLOYEESTATISTICSTABLE WHERE SALARY >= 50000;

Notice that the >= (greater than or equal to) sign is used, as we wanted to see those who made greater than $50,000, or equal to $50,000, listed together.

The **WHERE** description, SALARY >= 50000, is known as a **condition** (an operation which evaluates to True or False). The same can be done for text columns:
SELECT EMPLOYEEIDNO FROM EMPLOYEE STATISTICSTABLE WHERE POSITION = ‘Manager’;

This displays the ID Numbers of all Managers.

More Complex Conditions: Compound Conditions / Logical Operators

The **AND** operator joins two or more conditions, and displays a row only if that row’s data satisfies **ALL** conditions listed (i.e. all conditions hold true). For example, to display all staff making over $40,000, use:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEESTATISTICSTABLE WHERE SALARY > 40000 AND POSITION = ‘Staff’;
```

The **OR** operator joins two or more conditions, but returns a row if **ANY** of the conditions listed hold true. To see all those who make less than $40,000 or have less than $10,000 in benefits, listed together, use the following query:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEESTATISTICSTABLE WHERE SALARY < 40000 OR BENEFITS < 10000
```

AND & OR can be combined, for example:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEESTATISTICSTABLE WHERE POSITION = ‘Manager’ AND SALARY > 60000 OR BENEFITS > 12000;
```

First, SQL finds the rows where the salary is greater than $60,000 and the position column is equal to Manager, then taking this new list of rows, SQL then sees if any of these rows satisfies the previous AND condition or the condition that the Benefits column is greater than $12,000. Subsequently, SQL only displays this second new list of rows, keeping in mind that anyone with Benefits over $12,000 will be included as the OR operator includes a row if either resulting condition is True. Also note that the AND operation is done first. This is a law of Boolean algebra. This is analogous to

the principle of mathematics which state that ‘multiplication and division take precedence over addition and subtraction’.

To perform OR’s before AND’s, like if you wanted to see a list of employees making a large salary (> $50,000) or have a large benefit package (> $10,000), and that happen to be a manager, use parentheses:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEESTATISTICSTABLE WHERE POSITION = ‘Manager’ AND (SALARY > 50000 OR BENEFIT > 10000);
```

IN & BETWEEN
An easier method of using compound conditions uses *IN* or *BETWEEN*. For example, if you wanted to list all managers and staff:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEEESTATISTICSTABLE WHERE POSITION IN ('Manager', 'Staff');
```

or to list those making greater than or equal to $30,000, but less than or equal to $50,000, use:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEEESTATISTICSTABLE WHERE SALARY BETWEEN 30000 AND 50000;
```

To list everyone not in this range, try:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEEESTATISTICSTABLE WHERE SALARY NOT BETWEEN 30000 AND 50000;
```

Similarly, *NOT IN* lists all rows excluded from the *IN* list.

Additionally, *NOT*’s can be thrown in with *AND*’s & *OR*’s, except that *NOT* is a unary operator (evaluates one condition, reversing its value, whereas, *AND*’s & *OR*’s evaluate two conditions), and that all *NOT*’s are performed before any *AND*’s or *OR*’s.

SQL Order of Logical Operations (each operates from left to right) 1. NOT 2. AND 3. OR

**Using LIKE**

If you wanted to see all people whose last names started with “L”; try:

```
SELECT EMPLOYEEIDNO FROM EMPLOYEEESTATISTICSTABLE WHERE LASTNAME LIKE 'L%';
```

The percent sign (%) is used to represent any possible character (number, letter, or punctuation) or set of characters that might appear after the “L”. To find those people with *LastName*’s ending in “L”, use ‘%L’, or if you wanted the “L” in the middle of the word, try ‘%L%’. The ‘%’ can be used for any characters in the same position relative to the given characters. NOT LIKE displays rows not fitting the given description. Other possibilities of using LIKE, or any of these discussed conditionals, are available, though it depends on what DBMS you are using; as usual, consult a manual for the available features on your system, or just to make sure that what you are trying to do is available and allowed. This disclaimer holds for the features of SQL that will be discussed below. This section is just to give you an idea of the possibilities of queries that can be written in SQL.

**Joins**

In this section, we will only discuss *inner* joins, and *equijoins*, as in general, they are the most useful. For more information, refer to an SQL manual.

Good database design suggests that each table lists data only about a single *entity*, and detailed information can be obtained in a relational database, by using additional tables, and by using a *join*.

First, take a look at these example tables:

**AntiqueOwners**

<table>
<thead>
<tr>
<th>OwnerID</th>
<th>OwnerLastName</th>
<th>OwnerFirstName</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Jones</td>
<td>Bill</td>
</tr>
<tr>
<td>02</td>
<td>Smith</td>
<td>Bob</td>
</tr>
<tr>
<td>15</td>
<td>Lawson</td>
<td>Patricia</td>
</tr>
<tr>
<td>21</td>
<td>Akins</td>
<td>Jane</td>
</tr>
<tr>
<td>50</td>
<td>Fowler</td>
<td>Sam</td>
</tr>
</tbody>
</table>
Orders

**OwnerID** ItemDesired 02 Table 02 Desk 21 Chair 15 Mirror

Antiques

**SellerID** BuyerID Item 01 50 Bed 02 15 Table 15 02 Chair 21 50 Mirror 50 01 Desk 01 21 Cabinet 02 21 Coffee Table 15 50 Chair 01 15 Jewelry Box 02 21 Pottery 21 02 Bookcase 50 01 Plant Stand

Keys

First, let’s discuss the concept of **keys**. A **primary key** is a column or set of columns that uniquely identifies the rest of the data in any given row. For example, in the AntiqueOwners table, the OwnerID column uniquely identifies that row. This means two things: no two rows can have the same OwnerID, and, even if two owners have the same first and last names, the OwnerID column ensures that the two owners will not be confused with each other, because the unique OwnerID column will be used throughout the database to track the owners, rather than the names.

A **foreign key** is a column in a table where that column is a primary key of another table, which means that any data in a foreign key column must have corresponding data in the other table where that column is the primary key. In DBMS-speak, this correspondence is known as **referential integrity**. For example, in the Antiques table, both the BuyerID and SellerID are foreign keys to the primary key of the AntiqueOwners table (OwnerID; for purposes of argument, one has to be an Antique Owner before one can buy or sell any items), as, in both tables, the ID rows are used to identify the owners or buyers and sellers, and that the OwnerID is the primary key of the AntiqueOwners table. In other words, all of this “ID” data is used to refer to the owners, buyers, or sellers of antiques, themselves, without having to use the actual names.

Performing a Join

The purpose of these **keys** is so that data can be related across tables, without having to repeat data in every table—this is the power of relational databases. For example, you can find the names of those who bought a chair without having to list the full name of the buyer in the Antiques table...you can get the name by relating those who bought a chair with the names in the AntiqueOwners table through the use of the OwnerID, which relates the data in the two tables. To find the names of those who bought a chair, use the following query:

```sql
SELECT OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUEOWNERS, ANTIQUES
WHERE BUYERID = OWNERID AND ITEM = 'Chair';
```

Note the following about this query...notice that both tables involved in the relation are listed in the FROM clause of the statement. In the WHERE clause, first notice that the ITEM = ‘Chair’ part restricts the listing to those who have bought (and in this example, thereby owns) a chair. Secondly, notice how the ID columns are related from one table to the next by use of the BUYERID = OWNERID clause. Only where ID’s match across tables and the item purchased is a chair (because of the AND), will the names from the AntiqueOwners table be listed. Because the joining condition used an equal sign, this join is called an **equijoin**. The result of this query is two names: Smith, Bob & Fowler, Sam.
Dot notation refers to prefixing the table names to column names, to avoid ambiguity, as follows:

```
SELECT ANTIQUEOWNERS.OWNERLASTNAME,
 ANTIQUEOWNERS.OWNERFIRSTNAME
FROM ANTIQUEOWNERS, ANTIQUES
WHERE ANTIQUES.BUYERID = ANTIQUEOWNERS.OWNERID AND ANTIQUES.ITEM = 'Chair';
```

As the column names are different in each table, however, this wasn’t necessary.

**DISTINCT** and Eliminating Duplicates

Let’s say that you want to list the ID and names of only those people who have sold an antique. Obviously, you want a list where each seller is only listed once—you don’t want to know how many antiques a person sold, just the fact that this person sold one (for counts, see the Aggregate Function section below). This means that you will need to tell SQL to eliminate duplicate sales rows, and just list each person only once. To do this, use the **DISTINCT** keyword.

First, we will need an equijoin to the AntiqueOwners table to get the detail data of the person’s LastName and FirstName. However, keep in mind that since the SellerID column in the Antiques table is a foreign key to the AntiqueOwners table, a seller will only be listed if there is a row in the AntiqueOwners table listing the ID and names. We also want to eliminate multiple occurrences of the SellerID in our listing, so we use **DISTINCT on the column where the repeats may occur.**

To throw in one more twist, we will also want the list alphabetized by LastName, then by FirstName (on a LastName tie). Thus, we will use the **ORDER BY** clause:

```
SELECT DISTINCT SELLERID, OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUES, ANTIQUEOWNERS WHERE SELLERID = OWNERID ORDER BY
 OWNERLASTNAME, OWNERFIRSTNAME;
```

In this example, since everyone has sold an item, we will get a listing of all of the owners, in alphabetical order by last name. For future reference (and in case anyone asks), this type of join is considered to be in the category of inner joins. Please note that by no means is this a complete reference!!! It is, however, a guide to the queries you will need to know in order to (hopefully) extract the data you seek. Have fun…

**The ‘Ping of Death’**

Essentially, it is possible to crash, reboot or otherwise kill a large number of systems by sending a ping of a certain size from a remote machine. This is a serious problem, mainly because this can be reproduced very easily, and from a remote machine. The attacker needs to know nothing about the machine other than its IP address. Be afraid.

It’s very easy to exploit - basically, some systems don’t like being pinged with a packet greater than 65536 bytes (as opposed to the default 64 bytes).

An IP datagram of 65536 bytes is illegal, but possible to create owing to the way the packet is fragmented (broken into chunks for transmission). When the fragments are reassembled at the other end into a complete packet, it overflows the buffer on some systems, causing a reboot, panic...
or hang, but sometimes even having no effect at all.

Most implementations of ping won’t allow an invalid datagram like this to be sent. Among the exceptions are Windows ’95 and NT, although they are certainly not the only ones...

IP packets as per RFC-791 can be up to 65,535 (2^16-1) octets long, which includes the header length (typically 20 octets if no IP options are specified. An ICMP ECHO request “lives” inside the IP packet, consisting of eight octets of ICMP header information (RFC-792) followed by the number of data octets in the “ping” request. Hence the maximum allowable size of the data area is 65535 - 20 - 8 = 65507 octets.

Note that it is possible to send an illegal echo packet with more than 65507 octets of data due to the way the fragmentation is performed. The fragmentation relies on an offset value in each fragment to determine where the individual fragment goes upon reassembly. Thus on the last fragment, it is possible to combine a valid offset with a suitable fragment size such that (offset + size) > 65535. Since typical machines don’t process the packet until they have all fragments and have tried to reassemble it, there is the possibility for overflow of 16 bit internal variables, which can lead to system crashes, reboots, kernel dumps and the like. The problem can be exploited by anything that sends an IP datagram - probably the most fundamental building block of the net. Not only ICMP echo, but TCP, UDP and (apparently) even new style IPX can be used to hit machines where it hurts. This bug is extremely easy to exploit. Users are already trying it out “just to see if it works”!

**Port Numbers and Services**

This data is from Internet Assigned Numbers Authority (IANA). IANA maintains the Assigned Numbers RFC. The entries in this file are in the same format as found in a standard Berkeley UNIX /etc/services file. There are also links between the protocol and services names, and their respective RFCs (their standard documentation). This file has two sections:

Well known Port Numbers: port numbers that IANA assigns Registered Port Numbers: port numbers that IANA does not assign. This provides a list of which ports are used my which services. There really is more to the net than HTTP alone!

**WELL KNOWN PORT NUMBERS**

The Well Known Ports are controlled and assigned by the IANA and on most systems can only be used by system (or root) processes or by programs executed by privileged users. Ports are used in the TCP [RFC793] to name the ends of logical connections which carry long term conversations. For the purpose of providing services to unknown callers, a service contact port is defined. This list specifies the port used by the server process as its contact port. The contact port is sometimes called the “well-known port”.

To the extent possible, these same port assignments are used with the UDP [RFC768].

The assigned ports use a small portion of the possible port numbers. For many years the assigned ports were in the range 0-255. Recently, the range for assigned ports managed by the IANA has been expanded to the range 0-1023.
Port Assignments:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/tcp</td>
<td>Reserved</td>
<td>TCP Port Service Multiplexer</td>
<td>Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>0/udp</td>
<td>Reserved</td>
<td>TCP Port Service Multiplexer</td>
<td>Mark Lottor <a href="mailto:MKL@nisc.sri.com">MKL@nisc.sri.com</a></td>
</tr>
<tr>
<td>tcpmux</td>
<td>1/tcp</td>
<td>TCP Port Service Multiplexer</td>
<td></td>
</tr>
<tr>
<td>tcpmux</td>
<td>1/udp</td>
<td>TCP Port Service Multiplexer</td>
<td></td>
</tr>
<tr>
<td>compressnet</td>
<td>2/tcp</td>
<td>Management Utility</td>
<td>Bernie Volz <a href="mailto:VOLZ@PROCESS.COM">VOLZ@PROCESS.COM</a></td>
</tr>
<tr>
<td>compressnet</td>
<td>2/udp</td>
<td>Management Utility</td>
<td></td>
</tr>
<tr>
<td>compressnet</td>
<td>3/tcp</td>
<td>Compression Process</td>
<td></td>
</tr>
<tr>
<td>compressnet</td>
<td>3/udp</td>
<td>Compression Process</td>
<td></td>
</tr>
<tr>
<td>rje</td>
<td>5/tcp</td>
<td>Remote Job Entry</td>
<td>Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>rje</td>
<td>5/udp</td>
<td>Remote Job Entry</td>
<td></td>
</tr>
<tr>
<td>echo</td>
<td>7/tcp</td>
<td>Echo</td>
<td>Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>echo</td>
<td>7/udp</td>
<td>Echo</td>
<td></td>
</tr>
<tr>
<td>discard</td>
<td>9/tcp</td>
<td>Discard</td>
<td>Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>discard</td>
<td>9/udp</td>
<td>Discard</td>
<td></td>
</tr>
<tr>
<td>systat</td>
<td>11/tcp</td>
<td>Active Users</td>
<td>Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>systat</td>
<td>11/udp</td>
<td>Active Users</td>
<td></td>
</tr>
<tr>
<td>daytime</td>
<td>13/tcp</td>
<td>Daytime</td>
<td>Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>daytime</td>
<td>13/udp</td>
<td>Daytime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/tcp</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14/udp</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15/tcp</td>
<td>Unassigned [was netstat]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15/udp</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/tcp</td>
<td>Unassigned</td>
<td></td>
</tr>
</tbody>
</table>
#                16/udp    Unassigned
qotd             17/tcp    Quote of the Day
qotd             17/udp    Quote of the Day
#                          Jon Postel <postel@isi.edu>
msp              18/tcp    Message Send Protocol
msp              18/udp    Message Send Protocol
#                          Rina Nethaniel <---none--->
chargen          19/tcp    Character Generator
chargen          19/udp    Character Generator

ftp (data and control)
ftp-data         20/tcp    File Transfer [Default Data]
ftp-data         20/udp    File Transfer [Default Data]
ftp              21/tcp    File Transfer [Control]
ftp              21/udp    File Transfer [Control]
#                          Jon Postel <postel@isi.edu>
ssh              22/tcp    SSH Remote Login Protocol
ssh              22/udp    SSH Remote Login Protocol
#                          Tatu Ylonen <ylo@cs.hut.fi>
telnet           23/tcp    Telnet
telnet           23/udp    Telnet
#                          Jon Postel <postel@isi.edu>
#                24/tcp    any private mail system
#                24/udp    any private mail system
#                          Rick Adams <rick@UUNET.UU.NET>
smtp             25/tcp    Simple Mail Transfer
smtp             25/udp    Simple Mail Transfer
#                          Jon Postel <postel@isi.edu>
#                26/tcp    Unassigned
#                26/udp    Unassigned
nsw-fe           27/tcp    NSW User System FE
nsw-fe           27/udp    NSW User System FE
#                          Robert Thomas <BThomas@F.BBN.COM>
#                28/tcp    Unassigned
#                28/udp    Unassigned
msg-icp          29/tcp    MSG ICP
msg-icp          29/udp    MSG ICP
#                          Robert Thomas <BThomas@F.BBN.COM>
#                30/tcp    Unassigned
#                30/udp    Unassigned
msg-auth         31/tcp    MSG Authentication
msg-auth         31/udp    MSG Authentication
#                          Robert Thomas <BThomas@F.BBN.COM>
#                32/tcp    Unassigned
#                32/udp    Unassigned
dsp              33/tcp    Display Support Protocol
dsp              33/udp    Display Support Protocol
#                          Ed Cain <cain@edn-unix.dca.mil>
#                34/tcp    Unassigned
34/udp   Unassigned
35/tcp   any private printer server
35/udp   any private printer server
#                Jon Postel <postel@isi.edu>
#                36/tcp   Unassigned
#                36/udp   Unassigned
time       37/tcp   Time
time       37/udp   Time
#                Jon Postel <postel@isi.edu>
rap        38/tcp   Route Access Protocol
rap        38/udp   Route Access Protocol
#                          Robert Ullmann <ariel@world.std.com>
rlp        39/tcp   Resource Location Protocol
rlp        39/udp   Resource Location Protocol
#                          Mike Accetta <MIKE.ACCETTA@CMU-CS-A.EDU>
#                40/tcp   Unassigned
#                40/udp   Unassigned
graphics   41/tcp   Graphics
graphics   41/udp   Graphics
nameserver 42/tcp   Host Name Server
nameserver 42/udp   Host Name Server
nicname    43/tcp   Who Is
nicname    43/udp   Who Is
mpm-flags  44/tcp   MPM FLAGS Protocol
mpm-flags  44/udp   MPM FLAGS Protocol
mpm        45/tcp   Message Processing Module [recv]
mpm        45/udp   Message Processing Module [recv]
mpm-snd    46/tcp   MPM [default send]
mpm-snd    46/udp   MPM [default send]
#                Jon Postel <postel@isi.edu>
ni-ftp      47/tcp   NI FTP
ni-ftp      47/udp   NI FTP
#                          Steve Kille <S.Kille@isode.com>
auditd     48/tcp   Digital Audit Daemon
auditd     48/udp   Digital Audit Daemon
#                          Larry Scott <scott@zk3.dec.com>
bbn-login   49/tcp   Login Host Protocol (TACACS)
bbn-login   49/udp   Login Host Protocol (TACACS)
#                          Pieter Ditmars <pditmars@BBN.COM>
re-mail-ck  50/tcp   Remote Mail Checking Protocol
re-mail-ck  50/udp   Remote Mail Checking Protocol
#                          Steve Dorner <s-dorner@UIUC.EDU>
la-maint    51/tcp   IMP Logical Address Maintenance
la-maint    51/udp   IMP Logical Address Maintenance
#                          Andy Malis <malis_a@timeplex.com>
xns-time   52/tcp   XNS Time Protocol
xns-time   52/udp   XNS Time Protocol
#                          Susie Armstrong <Armstrong.wbst128@XEROX>
domain     53/tcp   Domain Name Server
domain     53/udp   Domain Name Server
<table>
<thead>
<tr>
<th>Service</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xns-ch</td>
<td>54/tcp</td>
<td>XNS Clearinghouse</td>
</tr>
<tr>
<td>xns-ch</td>
<td>54/udp</td>
<td>XNS Clearinghouse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xns-ch</td>
<td>54/tcp</td>
<td>XNS Clearinghouse</td>
</tr>
<tr>
<td>xns-ch</td>
<td>54/udp</td>
<td>XNS Clearinghouse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xns-auth</td>
<td>56/tcp</td>
<td>XNS Authentication</td>
</tr>
<tr>
<td>xns-auth</td>
<td>56/udp</td>
<td>XNS Authentication</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57/tcp</td>
<td></td>
<td>any private terminal access</td>
</tr>
<tr>
<td>57/udp</td>
<td></td>
<td>any private terminal access</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isi-gl</td>
<td>55/tcp</td>
<td>ISI Graphics Language</td>
</tr>
<tr>
<td>isi-gl</td>
<td>55/udp</td>
<td>ISI Graphics Language</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58/tcp</td>
<td></td>
<td>any private file service</td>
</tr>
<tr>
<td>58/udp</td>
<td></td>
<td>any private file service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60/tcp</td>
<td></td>
<td>Unassigned</td>
</tr>
<tr>
<td>60/udp</td>
<td></td>
<td>Unassigned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61/tcp</td>
<td></td>
<td>NI MAIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62/tcp</td>
<td></td>
<td>ACA Services</td>
</tr>
<tr>
<td>62/udp</td>
<td></td>
<td>ACA Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63/tcp</td>
<td></td>
<td>whois++</td>
</tr>
<tr>
<td>63/udp</td>
<td></td>
<td>whois++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64/tcp</td>
<td></td>
<td>Communications Integrator (CI)</td>
</tr>
<tr>
<td>64/udp</td>
<td></td>
<td>Communications Integrator (CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65/tcp</td>
<td></td>
<td>TACACS-Database Service</td>
</tr>
<tr>
<td>65/udp</td>
<td></td>
<td>TACACS-Database Service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66/tcp</td>
<td></td>
<td>Oracle SQL*NET</td>
</tr>
<tr>
<td>66/udp</td>
<td></td>
<td>Oracle SQL*NET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67/tcp</td>
<td></td>
<td>Bootstrap Protocol Server</td>
</tr>
<tr>
<td>67/udp</td>
<td></td>
<td>Bootstrap Protocol Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68/tcp</td>
<td></td>
<td>Bootstrap Protocol Client</td>
</tr>
<tr>
<td>68/udp</td>
<td></td>
<td>Bootstrap Protocol Client</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69/tcp</td>
<td></td>
<td>Trivial File Transfer</td>
</tr>
<tr>
<td>69/udp</td>
<td></td>
<td>Trivial File Transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70/tcp</td>
<td></td>
<td>Gopher</td>
</tr>
<tr>
<td>70/udp</td>
<td></td>
<td>Gopher</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71/tcp</td>
<td></td>
<td>Remote Job Service</td>
</tr>
<tr>
<td>Service</td>
<td>Port</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>netrjs-1</td>
<td>71</td>
<td>71/udp Remote Job Service</td>
</tr>
<tr>
<td>netrjs-2</td>
<td>72</td>
<td>72/tcp Remote Job Service</td>
</tr>
<tr>
<td>netrjs-2</td>
<td>72</td>
<td>72/udp Remote Job Service</td>
</tr>
<tr>
<td>netrjs-3</td>
<td>73</td>
<td>73/tcp Remote Job Service</td>
</tr>
<tr>
<td>netrjs-3</td>
<td>73</td>
<td>73/udp Remote Job Service</td>
</tr>
<tr>
<td>netrjs-4</td>
<td>74</td>
<td>74/tcp Remote Job Service</td>
</tr>
<tr>
<td>netrjs-4</td>
<td>74</td>
<td>74/udp Remote Job Service</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td># Bob Braden <a href="mailto:Braden@ISI.EDU">Braden@ISI.EDU</a></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75/tcp any private dial out service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75/udp any private dial out service</td>
</tr>
<tr>
<td>deos</td>
<td>76</td>
<td># Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>deos</td>
<td>76</td>
<td>76/tcp Distributed External Object Store</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76/udp Distributed External Object Store</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td># Robert Ullmann <a href="mailto:ariel@world.std.com">ariel@world.std.com</a></td>
</tr>
<tr>
<td></td>
<td></td>
<td>77/tcp any private RJE service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77/udp any private RJE service</td>
</tr>
<tr>
<td>vettcp</td>
<td>78</td>
<td># Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>vettcp</td>
<td>78</td>
<td>78/tcp vettcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78/udp vettcp</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td># Christopher Leong <a href="mailto:leong@kolmod.mlo.dec.com">leong@kolmod.mlo.dec.com</a></td>
</tr>
<tr>
<td>finger</td>
<td>79</td>
<td>79/tcp Finger</td>
</tr>
<tr>
<td>finger</td>
<td>79</td>
<td>79/udp Finger</td>
</tr>
<tr>
<td></td>
<td></td>
<td># David Zimmerman <a href="mailto:dpz@RUTGERS.EDU">dpz@RUTGERS.EDU</a></td>
</tr>
<tr>
<td>http</td>
<td>80</td>
<td>http 80/tcp World Wide Web HTTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http 80/udp World Wide Web HTTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www-http 80/tcp World Wide Web HTTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www-http 80/udp World Wide Web HTTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td># Tim Berners-Lee <a href="mailto:timbl@W3.org">timbl@W3.org</a></td>
</tr>
<tr>
<td>hosts2-ns</td>
<td>81</td>
<td>hosts2-ns 81/tcp HOSTS2 Name Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hosts2-ns 81/udp HOSTS2 Name Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td># Earl Killian <a href="mailto:EAK@MORDOR.S1.GOV">EAK@MORDOR.S1.GOV</a></td>
</tr>
<tr>
<td>xfer</td>
<td>82</td>
<td>xfer 82/tcp XFER Utility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xfer 82/udp XFER Utility</td>
</tr>
<tr>
<td></td>
<td></td>
<td># Thomas M. Smith <a href="mailto:tmsmith@esc.syr.ge.com">tmsmith@esc.syr.ge.com</a></td>
</tr>
<tr>
<td>mit-ml-dev</td>
<td>83</td>
<td>mit-ml-dev 83/tcp MIT ML Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mit-ml-dev 83/udp MIT ML Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td># David Reed &lt;--none---&gt;</td>
</tr>
<tr>
<td>ctf</td>
<td>84</td>
<td>ctf 84/tcp Common Trace Facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ctf 84/udp Common Trace Facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td># Hugh Thomas <a href="mailto:thomas@oils.enet.dec.com">thomas@oils.enet.dec.com</a></td>
</tr>
<tr>
<td>mit-ml-dev</td>
<td>85</td>
<td>mit-ml-dev 85/tcp MIT ML Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mit-ml-dev 85/udp MIT ML Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td># David Reed &lt;--none---&gt;</td>
</tr>
<tr>
<td>mfcobol</td>
<td>86</td>
<td>mfcobol 86/tcp Micro Focus Cobol</td>
</tr>
<tr>
<td>mfcobol</td>
<td>86</td>
<td>86/udp Micro Focus Cobol</td>
</tr>
<tr>
<td></td>
<td></td>
<td># Simon Edwards &lt;--none---&gt;</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>87/tcp any private terminal link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87/udp any private terminal link</td>
</tr>
<tr>
<td></td>
<td></td>
<td># Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>kerberos</td>
<td>88</td>
<td>kerberos 88/tcp Kerberos</td>
</tr>
<tr>
<td>kerberos</td>
<td>88</td>
<td>88/udp Kerberos</td>
</tr>
</tbody>
</table>
su-mit-tg              89/tcp    SU/MIT Telnet Gateway  
su-mit-tg              89/udp    SU/MIT Telnet Gateway  
#                      Mark Crispin <MRC@PANDA.COM>  
dnsix                  90/tcp    DNSIX Securit Attribute Token Map  
dnsix                  90/udp    DNSIX Securit Attribute Token Map  
#                      Charles Watt <watt@ware.com>  
mit-dov                91/tcp    MIT Dover Spooler  
mit-dov                91/udp    MIT Dover Spooler  
#                      Eliot Moss <EBM@XX.LCS.MIT.EDU>  
npp                    92/tcp    Network Printing Protocol  
npp                    92/udp    Network Printing Protocol  
#                      Louis Mamakos <louie@sayshell.umd.edu>  
dcp                    93/tcp    Device Control Protocol  
dcp                    93/udp    Device Control Protocol  
#                      Daniel Tappan <Tappan@BBN.COM>  
objcall                94/tcp    Tivoli Object Dispatcher  
objcall                94/udp    Tivoli Object Dispatcher  
#                      Tom Bereiter <--none-->  
supdup                 95/tcp    SUPDUP  
supdup                 95/udp    SUPDUP  
#                      Mark Crispin <MRC@PANDA.COM>  
dixie                  96/tcp    DIXIE Protocol Specification  
dixie                  96/udp    DIXIE Protocol Specification  
#                      Tim Howes <Tim.Howes@terminator.cc.umich.edu>  
swift-rvf               97/tcp    Swift Remote Virtual File Protocol  
swift-rvf               97/udp    Swift Remote Virtual File Protocol  
#                      Maurice R. Turcotte  
#                      <mailrus!uflorida!rm1!dnmrt%rmatl@uunet.UU.NET>  
tacnews                98/tcp    TAC News  
tacnews                98/udp    TAC News  
#                      Jon Postel <postel@isi.edu>  
metagram                99/tcp    Metagram Relay  
metagram                99/udp    Metagram Relay  
#                      Geoff Goodfellow <Geoff@FERNWOOD.MPK.CA.U>  
newacct                100/tcp   [unauthorized use]  
hostname                101/tcp   NIC Host Name Server  
hostname                101/udp   NIC Host Name Server  
#                      Jon Postel <postel@isi.edu>  
isotsap                102/tcp   ISO-TSAP Class 0  
isotsap                102/udp   ISO-TSAP Class 0  
#                      Marshall Rose <mrose@dbc.mtview.ca.us>  
gppitnp                103/tcp   Genesis Point-to-Point Trans Net  
gppitnp                103/udp   Genesis Point-to-Point Trans Net  
acr-nema                104/tcp   ACR-NEMA Digital Imag. & Comm.  
acr-nema                104/udp   ACR-NEMA Digital Imag. & Comm.  
#                      Patrick McNameee <--none-->  

<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
<th>Description</th>
<th>Network Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>csnet-ns</td>
<td>105/tcp</td>
<td>Mailbox Name Nameserver</td>
<td>Marvin Solomon <a href="mailto:solomon@CS.WISC.EDU">solomon@CS.WISC.EDU</a></td>
</tr>
<tr>
<td>csnet-ns</td>
<td>105/udp</td>
<td>Mailbox Name Nameserver</td>
<td>Jeremy Siegel <a href="mailto:jzs@NSD.3Com.COM">jzs@NSD.3Com.COM</a></td>
</tr>
<tr>
<td>3com-tsmux</td>
<td>106/tcp</td>
<td>3COM-TSMUX</td>
<td>Jon Postel <a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>3com-tsmux</td>
<td>106/udp</td>
<td>3COM-TSMUX</td>
<td>Kevin Murphy <a href="mailto:murphy@sevens.lkg.dec.com">murphy@sevens.lkg.dec.com</a></td>
</tr>
<tr>
<td>rtelnet</td>
<td>107/tcp</td>
<td>Remote Telnet Service</td>
<td>Joyce K. Reynolds <a href="mailto:jkrey@isi.edu">jkrey@isi.edu</a></td>
</tr>
<tr>
<td>rtelnet</td>
<td>107/udp</td>
<td>Remote Telnet Service</td>
<td>Marshall Rose <a href="mailto:mrose@dirc.mtvw.ca.us">mrose@dirc.mtvw.ca.us</a></td>
</tr>
<tr>
<td>snagas</td>
<td>108/tcp</td>
<td>SNA Gateway Access Server</td>
<td>Chuck McManis <a href="mailto:cmcmannis@sun.com">cmcmannis@sun.com</a></td>
</tr>
<tr>
<td>snagas</td>
<td>108/udp</td>
<td>SNA Gateway Access Server</td>
<td>Martin Forssen <a href="mailto:maf@dtek.chalmers.se">maf@dtek.chalmers.se</a></td>
</tr>
<tr>
<td>pop2</td>
<td>109/tcp</td>
<td>Post Office Protocol - Version 2</td>
<td>Mark Lottor <a href="mailto:MKL@nisc.sri.com">MKL@nisc.sri.com</a></td>
</tr>
<tr>
<td>pop2</td>
<td>109/udp</td>
<td>Post Office Protocol - Version 2</td>
<td>Nicola J. Howarth <a href="mailto:njh@ansa.co.uk">njh@ansa.co.uk</a></td>
</tr>
<tr>
<td>pop3</td>
<td>110/tcp</td>
<td>Post Office Protocol - Version 3</td>
<td>Larry Barnes <a href="mailto:barnes@broke.enet.dec.com">barnes@broke.enet.dec.com</a></td>
</tr>
<tr>
<td>pop3</td>
<td>110/udp</td>
<td>Post Office Protocol - Version 3</td>
<td>Phil Lapsley <a href="mailto:phil@UCBARPA.BERKELEY.EDU">phil@UCBARPA.BERKELEY.EDU</a></td>
</tr>
<tr>
<td>sunrpc</td>
<td>111/tcp</td>
<td>SUN Remote Procedure Call</td>
<td>John Ioannidis <a href="mailto:ji@close.cs.columbia.ed">ji@close.cs.columbia.ed</a></td>
</tr>
<tr>
<td>sunrpc</td>
<td>111/udp</td>
<td>SUN Remote Procedure Call</td>
<td>Jack O’Neil &lt;---none---&gt;</td>
</tr>
<tr>
<td>auth</td>
<td>113/tcp</td>
<td>Authentication Service</td>
<td>Mike St. Johns <a href="mailto:stjohns@arpa.mil">stjohns@arpa.mil</a></td>
</tr>
<tr>
<td>auth</td>
<td>113/udp</td>
<td>Authentication Service</td>
<td></td>
</tr>
<tr>
<td>audionews</td>
<td>114/tcp</td>
<td>Audio News Multicast</td>
<td></td>
</tr>
<tr>
<td>audionews</td>
<td>114/udp</td>
<td>Audio News Multicast</td>
<td></td>
</tr>
<tr>
<td>sftp</td>
<td>115/tcp</td>
<td>Simple File Transfer Protocol</td>
<td></td>
</tr>
<tr>
<td>sftp</td>
<td>115/udp</td>
<td>Simple File Transfer Protocol</td>
<td></td>
</tr>
<tr>
<td>ansanotify</td>
<td>116/tcp</td>
<td>ANSA REX Notify</td>
<td></td>
</tr>
<tr>
<td>ansanotify</td>
<td>116/udp</td>
<td>ANSA REX Notify</td>
<td></td>
</tr>
<tr>
<td>uucp-path</td>
<td>117/tcp</td>
<td>UUCP Path Service</td>
<td></td>
</tr>
<tr>
<td>uucp-path</td>
<td>117/udp</td>
<td>UUCP Path Service</td>
<td></td>
</tr>
<tr>
<td>sqlserv</td>
<td>118/tcp</td>
<td>SQL Services</td>
<td></td>
</tr>
<tr>
<td>sqlserv</td>
<td>118/udp</td>
<td>SQL Services</td>
<td></td>
</tr>
<tr>
<td>nntp</td>
<td>119/tcp</td>
<td>Network News Transfer Protocol</td>
<td></td>
</tr>
<tr>
<td>nntp</td>
<td>119/udp</td>
<td>Network News Transfer Protocol</td>
<td></td>
</tr>
<tr>
<td>cfdptkt</td>
<td>120/tcp</td>
<td>CFDPTKT</td>
<td></td>
</tr>
<tr>
<td>cfdptkt</td>
<td>120/udp</td>
<td>CFDPTKT</td>
<td></td>
</tr>
<tr>
<td>erpc</td>
<td>121/tcp</td>
<td>Encore Expedited Remote Pro.Call</td>
<td></td>
</tr>
<tr>
<td>erpc</td>
<td>121/udp</td>
<td>Encore Expedited Remote Pro.Call</td>
<td></td>
</tr>
</tbody>
</table>
smakynet 122/udp SMAKYNET
# Mike O’Dowd <odowd@ltisun8.epfl.ch>
ntp 123/tcp Network Time Protocol
ntp 123/udp Network Time Protocol
# Dave Mills <Mills@HUEY.UDEL.EDU>
anstatrader 124/tcp ANSA REX Trader
anstatrader 124/udp ANSA REX Trader
# Nicola J. Howarth <njh@ansa.co.uk>
locus-map 125/tcp Locus PC-Interface Net Map Ser
locus-map 125/udp Locus PC-Interface Net Map Ser
# Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
utitary 126/tcp Unisys Unitary Login
nutitary 126/udp Unisys Unitary Login
# <feil@kronos.nisd.cam.unisys.com>
locus-con 127/tcp Locus PC-Interface Conn Server
locus-con 127/udp Locus PC-Interface Conn Server
# Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
gss-xlicen 128/tcp GSS X License Verification
gss-xlicen 128/udp GSS X License Verification
# John Light <johnl@gssc.gss.com>
pwdgen 129/tcp Password Generator Protocol
pwdgen 129/udp Password Generator Protocol
# Frank J. Wacho <WANCHO@WSMR-SIMTEL20.ARMY.MIL>
cisco-fna 130/tcp cisco FNATIVE
cisco-fna 130/udp cisco FNATIVE
cisco-tna 131/tcp cisco TNATIVE
cisco-tna 131/udp cisco TNATIVE
cisco-sys 132/tcp cisco SYSMAINT
cisco-sys 132/udp cisco SYSMAINT
statsrv 133/tcp Statistics Service
statsrv 133/udp Statistics Service
# Dave Mills <Mills@HUEY.UDEL.EDU>
ingres-net 134/tcp INGRES-NET Service
ingres-net 134/udp INGRES-NET Service
# Mike Berrow <---none--->
loc-srv 135/tcp Location Service
loc-srv 135/udp Location Service
# Joe Pato <apollo!pato@EDDIE.MIT.EDU>
profile 136/tcp PROFILE Naming System
profile 136/udp PROFILE Naming System
# Larry Peterson <llp@ARIZONA.EDU>
netbios-ns 137/tcp NETBIOS Name Service
netbios-ns 137/udp NETBIOS Name Service
netbios-dgm 138/tcp NETBIOS Datagram Service
netbios-dgm 138/udp NETBIOS Datagram Service
netbios-ssn 139/tcp NETBIOS Session Service
netbios-ssn 139/udp NETBIOS Session Service
# Jon Postel <postel@isi.edu>
emfis-data 140/tcp EMFIS Data Service
emfis-data 140/udp EMFIS Data Service
emfis-cntl 141/tcp EMFIS Control Service
emfis-cntl  141/udp  EMFIS Control Service
#             Gerd Beling <GBELING@ISI.EDU>
b1-idm         142/tcp  Britton-Lee IDM
bl-idm         142/udp  Britton-Lee IDM
#             Susie Snitzer <---none--->
imap2        143/tcp  Interim Mail Access Protocol v2
imap2        143/udp  Interim Mail Access Protocol v2
#             Mark Crispin <MRC@PANDA.COM>
news         144/tcp  NewS
news         144/udp  NewS
#             James Gosling <JAG@SUN.COM>
uacc          145/tcp  UAAC Protocol
uacc          145/udp  UAAC Protocol
#             David A. Gomberg <gomberg@GATEWAY.MITRE.ORG>
iso-tp0        146/tcp  ISO-IP0
iso-tp0        146/udp  ISO-IP0
iso-ip          147/tcp  ISO-IP
iso-ip          147/udp  ISO-IP
#             Marshall Rose <mrose@dbc.mtview.ca.us>
cronus         148/tcp  CRONUS-SUPPORT
cronus         148/udp  CRONUS-SUPPORT
#             Jeffrey Buffun <jbuffun@APOLLO.COM>
aed-512       149/tcp  AED 512 Emulation Service
aed-512       149/udp  AED 512 Emulation Service
#             Albert G. Broscius <broscius@DSL.CIS.UPENN.EDU>
sql-net        150/tcp  SQL-NET
sql-net        150/udp  SQL-NET
#             Martin Picard <---none--->
hems          151/tcp  HEMS
hems          151/udp  HEMS
#             Christopher Tengi <tengi@Princeton.EDU>
bftp           152/tcp  Background File Transfer Program
bftp           152/udp  Background File Transfer Program
#             Annette DeSchon <DESCHON@ISLEDU>
sgmp          153/tcp  SGMP
sgmp          153/udp  SGMP
#             Marty Schoffstahl <schoff@NISC.NYSER.NET>
netsc-prod     154/tcp  NETSC
netsc-prod     154/udp  NETSC
netsc-dev       155/tcp  NETSC
netsc-dev       155/udp  NETSC
#             Sergio Heker <heker@JVNCC.CSC.ORG>
sqlsrv         156/tcp  SQL Service
sqlsrv         156/udp  SQL Service
#             Craig Rogers <Rogers@ISI.EDU>
knet-cmp       157/tcp  KNET/VM Command/Message Protocol
knet-cmp       157/udp  KNET/VM Command/Message Protocol
#             Gary S. Malkin <GMALKIN@XYLOGICS.COM>
pcmail-srv     158/tcp  PCMail Server
pcmail-srv   158/udp  PCMail Server
#                          Mark L. Lambert <markl@PTT.LCS.MIT.EDU>
nss-routing    159/tcp  NSS-Routing
nss-routing    159/udp  NSS-Routing
#                          Yakov Rekhter <Yakov@IBM.COM>
sgmp-traps    160/tcp  SGMP-TRAPS
sgmp-traps    160/udp  SGMP-TRAPS
#                          Marty Schoffstahl <schoff@NISC.NYSER.NET>
snmp          161/tcp  SNMP
snmp          161/udp  SNMP
snmptrap      162/tcp  SNMPTRAP
snmptrap      162/udp  SNMPTRAP
#                          Marshall Rose <mrose@dbc.mtview.ca.us>
cmip-man      163/tcp  CMIP/TCP Manager
cmip-man      163/udp  CMIP/TCP Manager
cmip-agent    164/tcp  CMIP/TCP Agent
smip-agent    164/udp  CMIP/TCP Agent
#                          Amatzia Ben-Artzi <---none--->
xns-courier    165/tcp  Xerox
xns-courier    165/udp  Xerox
#                          Susie Armstrong <Armstrong.wbst128@XEROX.COM>
s-net         166/tcp  Sirius Systems
s-net         166/udp  Sirius Systems
#                          Brian Lloyd <---none--->
namp          167/tcp  NAMP
namp          167/udp  NAMP
#                          Marty Schoffstahl <schoff@NISC.NYSER.NET>
rsvd          168/tcp  RSVD
rsvd          168/udp  RSVD
#                          Neil Todd <mcvax!ist.co.uk!neil@UUNET.UU.NET>
send          169/tcp  SEND
send          169/udp  SEND
#                          William D. Wisner <wisner@HAYES.FALALASKA.EDU>
print-srv     170/tcp  Network PostScript
print-srv     170/udp  Network PostScript
#                          Brian Reid <reid@DECWRL.DEC.COM>
multiplex     171/tcp  Network Innovations Multiplex
multiplex     171/udp  Network Innovations Multiplex
cl/1          172/tcp  Network Innovations CL/1
cl/1          172/udp  Network Innovations CL/1
#                          Kevin DeVault <---none--->
xyplex-mux    173/tcp  Xyplex
xyplex-mux    173/udp  Xyplex
#                          Bob Stewart <STEWART@XYPLEX.COM>
mailq         174/tcp  MAILQ
mailq         174/udp  MAILQ
#                          Rayan Zachariassen <rayan@AI.TORONTO.EDU>
vmnet         175/tcp  VMNET
vmnet           175/udp    VMNET
#                          Christopher Tengi <tengi@Princeton.EDU>
genrad-mux      176/tcp   GENRAD-MUX
/genrad-mux      176/udp   GENRAD-MUX
#                          Ron Thornton <thornton@qm7501.genrad.com>
xdmcp           177/tcp   X Display Manager Control Protocol
xdmcp           177/udp   X Display Manager Control Protocol
#                          Robert W. Scheifler <RWS@XX.LCS.MIT.EDU>
nextstep        178/tcp   NextStep Window Server
NextStep        178/udp   NextStep Window Server
#                          Leo Hourvitz <leo@NEXT.COM>
bgp             179/tcp   Border Gateway Protocol
bgp             179/udp   Border Gateway Protocol
#                          Kirk Lougheed <LOUGHEED@MATHOM.CISCO.COM>
ris             180/tcp   Intergraph
ris             180/udp   Intergraph
#                          Dave Buehmann <ingr!daveb@UUNET.UU.NET>
unify           181/tcp   Unify
unify           181/udp   Unify
#                          Vinod Singh <--none-->-->
audit           182/tcp   Unisys Audit SITP
audit           182/udp   Unisys Audit SITP
#                          Gil Greenbaum <gcole@nisd.cam.unisys.com>
ocbinder       183/tcp   OCBinder
ocbinder       183/udp   OCBinder
ocserver       184/tcp   OCServer
ocserver       184/udp   OCServer
#                          Jerrilynn Okamura <--none-->-->
remote-kis      185/tcp   Remote-KIS
remote-kis      185/udp   Remote-KIS
kis             186/tcp   KIS Protocol
kis             186/udp   KIS Protocol
#                          Ralph Droms <rdroms@NRI.RESTON.VA.US>
aci             187/tcp   Application Communication Interface
aci             187/udp   Application Communication Interface
#                          Rick Carlos <rick.ticipa.csc.ti.com>
mumps           188/tcp   Plus Five’s MUMPS
mumps           188/udp   Plus Five’s MUMPS
#                          Hokey Stenn <hokey@PLUS5.COM>
qft             189/tcp   Queued File Transport
qft             189/udp   Queued File Transport
#                          Wayne Schroeder <schroeder@SDS.SDSC.EDU>
gacp            190/tcp   Gateway Access Control Protocol
<table>
<thead>
<tr>
<th>Service</th>
<th>Port Type</th>
<th>Description</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cacp</td>
<td>190/udp</td>
<td>Gateway Access Control Protocol</td>
<td>C. Philip Wood <a href="mailto:cpw@LANL.GOV">cpw@LANL.GOV</a></td>
</tr>
<tr>
<td>prospero</td>
<td>191/tcp</td>
<td>Prospero Directory Service</td>
<td>B. Clifford Neuman <a href="mailto:bcn@isi.edu">bcn@isi.edu</a></td>
</tr>
<tr>
<td>prospero</td>
<td>191/udp</td>
<td>Prospero Directory Service</td>
<td>B. Clifford Neuman <a href="mailto:bcn@isi.edu">bcn@isi.edu</a></td>
</tr>
<tr>
<td>osu-nms</td>
<td>192/tcp</td>
<td>OSU Network Monitoring System</td>
<td>Doug Karl <a href="mailto:KARL-D@OSU-20.IRCC.OHIO-STATE.EDU">KARL-D@OSU-20.IRCC.OHIO-STATE.EDU</a></td>
</tr>
<tr>
<td>osu-nms</td>
<td>192/udp</td>
<td>OSU Network Monitoring System</td>
<td>Doug Karl <a href="mailto:KARL-D@OSU-20.IRCC.OHIO-STATE.EDU">KARL-D@OSU-20.IRCC.OHIO-STATE.EDU</a></td>
</tr>
<tr>
<td>srmp</td>
<td>193/tcp</td>
<td>Spider Remote Monitoring Protocol</td>
<td>Ted J. Socolofsky <a href="mailto:Teds@SPIDER.CO.UK">Teds@SPIDER.CO.UK</a></td>
</tr>
<tr>
<td>srmp</td>
<td>193/udp</td>
<td>Spider Remote Monitoring Protocol</td>
<td>Ted J. Socolofsky <a href="mailto:Teds@SPIDER.CO.UK">Teds@SPIDER.CO.UK</a></td>
</tr>
<tr>
<td>irc</td>
<td>194/tcp</td>
<td>Internet Relay Chat Protocol</td>
<td>Jarkko Oikarinen <a href="mailto:jto@TOLSUN.OULU.FI">jto@TOLSUN.OULU.FI</a></td>
</tr>
<tr>
<td>irc</td>
<td>194/udp</td>
<td>Internet Relay Chat Protocol</td>
<td>Jarkko Oikarinen <a href="mailto:jto@TOLSUN.OULU.FI">jto@TOLSUN.OULU.FI</a></td>
</tr>
<tr>
<td>dn6-nlm-aud</td>
<td>195/tcp</td>
<td>DNSIX Network Level Module Audit</td>
<td>Lawrence Lebahn <a href="mailto:DIA3@PAXRV-NESS.NAVY.MIL">DIA3@PAXRV-NESS.NAVY.MIL</a></td>
</tr>
<tr>
<td>dn6-nlm-aud</td>
<td>195/udp</td>
<td>DNSIX Network Level Module Audit</td>
<td>Lawrence Lebahn <a href="mailto:DIA3@PAXRV-NESS.NAVY.MIL">DIA3@PAXRV-NESS.NAVY.MIL</a></td>
</tr>
<tr>
<td>dn6-smm-red</td>
<td>196/tcp</td>
<td>DNSIX Session Mgt Module Audit Redir</td>
<td>Marshall Rose <a href="mailto:mrose@dbc.mtview.ca.us">mrose@dbc.mtview.ca.us</a></td>
</tr>
<tr>
<td>dn6-smm-red</td>
<td>196/udp</td>
<td>DNSIX Session Mgt Module Audit Redir</td>
<td>Marshall Rose <a href="mailto:mrose@dbc.mtview.ca.us">mrose@dbc.mtview.ca.us</a></td>
</tr>
<tr>
<td>dls</td>
<td>197/tcp</td>
<td>Directory Location Service</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>dls</td>
<td>197/udp</td>
<td>Directory Location Service</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>dls-mon</td>
<td>198/tcp</td>
<td>Directory Location Service Monitor</td>
<td>Scott Bellew <a href="mailto:smb@cs.purdue.edu">smb@cs.purdue.edu</a></td>
</tr>
<tr>
<td>dls-mon</td>
<td>198/udp</td>
<td>Directory Location Service Monitor</td>
<td>Scott Bellew <a href="mailto:smb@cs.purdue.edu">smb@cs.purdue.edu</a></td>
</tr>
<tr>
<td>smux</td>
<td>199/tcp</td>
<td>SMUX</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>smux</td>
<td>199/udp</td>
<td>SMUX</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>src</td>
<td>200/tcp</td>
<td>IBM System Resource Controller</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>src</td>
<td>200/udp</td>
<td>IBM System Resource Controller</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-rtmp</td>
<td>201/tcp</td>
<td>AppleTalk Routing Maintenance</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-rtmp</td>
<td>201/udp</td>
<td>AppleTalk Routing Maintenance</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-nbp</td>
<td>202/tcp</td>
<td>AppleTalk Name Binding</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-nbp</td>
<td>202/udp</td>
<td>AppleTalk Name Binding</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-3</td>
<td>203/tcp</td>
<td>AppleTalk Unused</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-3</td>
<td>203/udp</td>
<td>AppleTalk Unused</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-echo</td>
<td>204/tcp</td>
<td>AppleTalk Echo</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
<tr>
<td>at-echo</td>
<td>204/udp</td>
<td>AppleTalk Echo</td>
<td>Gerald McBrearty &lt;---none---&gt;</td>
</tr>
</tbody>
</table>
at-5  205/tcp  AppleTalk Unused
at-5  205/udp  AppleTalk Unused
at-zis 206/tcp  AppleTalk Zone Information
at-zis 206/udp  AppleTalk Zone Information
at-7  207/tcp  AppleTalk Unused
at-7  207/udp  AppleTalk Unused
at-8  208/tcp  AppleTalk Unused
at-8  208/udp  AppleTalk Unused

#                          Rob Chandhok <chandhok@gnome.cs.cmu.edu>
tam 209/tcp  Trivial Authenticated Mail Protocol
tam 209/udp  Trivial Authenticated Mail Protocol
#               Dan Bernstein <djb@silverton.berkeley.edu>
z39.50 210/tcp  ANSI Z39.50
z39.50 210/udp  ANSI Z39.50
#                          Mark Needleman
#                         <mhnur%uccmvsa.bitnet@cornell.cit.cornell.edu>
914c/g 211/tcp  Texas Instruments 914C/G Terminal
914c/g 211/udp  Texas Instruments 914C/G Terminal
#                          Bill Harrell <---none--->
anet 212/tcp  ATEXSSTR
anet 212/udp  ATEXSSTR
#                          Jim Taylor <taylor@heart.epps.kodak.com>
ixp  213/tcp  IPX
ixp  213/udp  IPX

#                          Don Provan <donp@xlnvax.novell.com>
vmwscs 214/tcp  VM PWSCS
vmwscs 214/udp  VM PWSCS
#                          Dan Shia <dset!shia@uunet.UU.NET>
softpc 215/tcp  Insignia Solutions
softpc 215/udp  Insignia Solutions
#                          Martyn Thomas <---none--->
atls 216/tcp  Access Technology License Server
atls 216/udp  Access Technology License Server

#                          Larry DeLuca <henrik@EDDIE.MIT.EDU>
dbbase 217/tcp  dBASE Unix
dbbase 217/udp  dBASE Unix
#                          Don Gibson
# sequent@aero!twinsun!ashtate.A-T.COM!dong@uunet.UU.NET>

mpp 218/tcp Netix Message Posting Protocol
mpp 218/udp Netix Message Posting Protocol
# Shannon Yeh <yeh@netix.com>
uarps 219/tcp Unisys ARPs
uarps 219/udp Unisys ARPs
# Ashok Marwaha <---none--->
imap3 220/tcp Interactive Mail Access Protocol v3
imap3 220/udp Interactive Mail Access Protocol v3
# James Rice <RICE@SUMEX-AIM.STANFORD.EDU>
fln-spx 221/tcp Berkeley rlogind with SPX auth
fln-spx 221/udp Berkeley rlogind with SPX auth
rsh-spx 222/tcp Berkeley rshd with SPX auth
rsh-spx 222/udp Berkeley rshd with SPX auth
cdc 223/tcp Certificate Distribution Center
cdc 223/udp Certificate Distribution Center
# Kannan Alagappan <kannan@sejour.enet.dec.com>
# 224-241 Reserved
# Jon Postel <postel@isi.edu>
# 242/tcp Unassigned
# 242/udp Unassigned
sur-meas 243/tcp Survey Measurement
sur-meas 243/udp Survey Measurement
# Dave Clark <ddc@LCS.MIT.EDU>
# 244/tcp Unassigned
# 244/udp Unassigned
link 245/tcp LINK
link 245/udp LINK
dsp3270 246/tcp Display Systems Protocol
dsp3270 246/udp Display Systems Protocol
# Weldon J. Showalter <Gamma@MINTAKA.DCA.MIL>
# 247-255 Reserved
# Jon Postel <postel@isi.edu>
# 256-343 Unassigned
pdap 344/tcp Prospero Data Access Protocol
pdap 344/udp Prospero Data Access Protocol
# B. Clifford Neuman <bcn@isi.edu>
pawser 345/tcp Perf Analysis Workbench
pawser 345/udp Perf Analysis Workbench
zserv 346/tcp Zebra server
zserv 346/udp Zebra server
fatser 347/tcp Fatmen Server
fatser 347/udp Fatmen Server
csi-sgwp 348/tcp Cabletron Management Protocol
csi-sgwp 348/udp Cabletron Management Protocol
# 349-370 Unassigned
clearcase 371/tcp Clearcase
clearcase 371/udp Clearcase
# Dave LeBlang <leblang@atria.com>
ulistserv 372/tcp Unix Listserv
ulistserv 372/udp  Unix Listserv
#    Anastasios Kotsikonas <tasos@cs.bu.edu>
legent-1 373/tcp  Legent Corporation
legent-1 373/udp  Legent Corporation
legent-2 374/tcp  Legent Corporation
legent-2 374/udp  Legent Corporation
#    Keith Boyce <---none--->
hassle 375/tcp  Hassle
hassle 375/udp  Hassle
#    Reinhard Doelz <doelz@comp.bioz.unibas.ch>
nip 376/tcp  Amiga Envoy Network Inquiry Proto
#    Heinz Wrobel <heinz@iam.com>
#    Dale L. Larson <dale@iam.com>
tnETOS 377/tcp  NEC Corporation
tnETOS 377/udp  NEC Corporation
dsETOS 378/tcp  NEC Corporation
dsETOS 378/udp  NEC Corporation
#    Tomoo Fujita <tf@arc.bs1.fc.nec.co.jp>
is99c 379/tcp  TIA/EIA/IS-99 modem client
is99c 379/udp  TIA/EIA/IS-99 modem client
is99s 380/tcp  TIA/EIA/IS-99 modem server
is99s 380/udp  TIA/EIA/IS-99 modem server
#    Frank Quick <fquick@qualcomm.com>
hp-collector 381/tcp  hp performance data collector
hp-collector 381/udp  hp performance data collector
hp-managed-node 382/tcp  hp performance data managed node
hp-managed-node 382/udp  hp performance data managed node
hp-alarm-mgr 383/tcp  hp performance data alarm manager
hp-alarm-mgr 383/udp  hp performance data alarm manager
#    Frank Blakely <frankb@hpptc16.rose.hp.com>
arns 384/tcp  A Remote Network Server System
arns 384/udp  A Remote Network Server System
#    David Hornsby <djh@munnari.OZ.AU>
ibm-app 385/tcp  IBM Application
ibm-app 385/tcp  IBM Application
#    Lisa Tomita <---none--->
asa 386/tcp  ASA Message Router Object Def.
asa 386/udp  ASA Message Router Object Def.
#    Steve Laitinen <laitinen@brutus.aa.ab.com>
aurp 387/tcp  Appletalk Update-Based Routing Pro.
aurp 387/udp  Appletalk Update-Based Routing Pro.
#    Chris Ranch <cranch@novell.com>
unidata-ldm 388/tcp  Unidata LDM Version 4
unidata-ldm 388/udp  Unidata LDM Version 4
#    Glenn Davis <davis@unidata.ucar.edu>
ldap 389/tcp  Lightweight Directory Access Protocol
ldap 389/udp  Lightweight Directory Access Protocol
#    Tim Howes <Tim.Howes@terminator.cc.umich.edu>
uis 390/tcp  UIS
uis 390/udp UIS
#                          Ed Barron <---none-->
synotics-relay 391/tcp SynOptics SNMP Relay Port
synotics-relay 391/udp SynOptics SNMP Relay Port
synotics-broker 392/tcp SynOptics Port Broker Port
synotics-broker 392/udp SynOptics Port Broker Port
#                          Illan Raab <iraab@synoptics.com>
dis 393/tcp Data Interpretation System
dis 393/udp Data Interpretation System
#                          Paul Stevens <pstevens@chinacat.Metaphor.COM>
etcp 395/tcp NETscout Control Protocol
netcp 395/udp NETscout Control Protocol
#                          Anil Singhal <---none-->
etware-ip 396/tcp Novell Netware over IP
netware-ip 396/udp Novell Netware over IP
#                          Soumitra Sarkar <sarkar@vnet.ibm.com>
kryptolan 398/tcp Kryptolan
kryptolan 398/udp Kryptolan
#                          Peter de Laval <pdl@sectra.se>
iso-tsap-c2 399/tcp ISO-TSAP Class 2
iso-tsap-c2 399/udp ISO-TSAP Class 2
#                          Yanivk Pouffary <pouffary@yaec.enet.dec.com>
work-sol 400/tcp Workstation Solutions
work-sol 400/udp Workstation Solutions
#                          Jim Ward <jimw@worksta.com>
ups 401/tcp Uninterruptible Power Supply
ups 401/udp Uninterruptible Power Supply
#                          Guenther Seybold <gs@hrz.th-darmstadt.de>
genie 402/tcp Genie Protocol
genie 402/udp Genie Protocol
#                          Mark Hankin <---none-->
decap 403/tcp decap
decap 403/udp decap
nced 404/tcp nced
nced 404/udp nced
ncld 405/tcp ncld
ncld 405/udp ncld
#                          Richard Jones <---none-->
imsp 406/tcp Interactive Mail Support Protocol
imsp 406/udp Interactive Mail Support Protocol
#                          John Myers <jgm+@cmu.edu>
timbuktu 407/tcp Timbuktu
timbuktu 407/udp Timbuktu
#                          Marc Epard <marc@waygate.farallon.com>
prm-nm 409/tcp  Prospero Resource Manager Node Man.
# B. Clifford Neuman <bcn@isi.edu>
decladebug 410/tcp  DECLadebug Remote Debug Protocol
decladebug 410/udp  DECLadebug Remote Debug Protocol
# Anthony Berent <berent@rdgeng.enet.dec.com>
rmt 411/tcp  Remote MT Protocol
rmt 411/udp  Remote MT Protocol
# Peter Eriksson <pen@lysator.liu.se>
synoptics-trap 412/tcp  Trap Convention Port
synoptics-trap 412/udp  Trap Convention Port
# Ilan Raab <iraab@synoptics.com>
smsp 413/tcp  SMSP
smsp 413/udp  SMSP
infoseek 414/tcp  InfoSeek
infoseek 414/udp  InfoSeek
# Steve Kirsch <stk@frame.com>
bnet 415/tcp  BNet
bnet 415/udp  BNet
# Jim Mertz <JMertz+RV09@rvdc.unisys.com>
silverplatter 416/tcp  Silverplatter
silverplatter 416/udp  Silverplatter
# Peter Ciuffetti <petec@siverplatter.com>
onmux 417/tcp  Onmux
onmux 417/udp  Onmux
# Stephen Hanna <hanna@world.std.com>
hyper-g 418/tcp  Hyper-G
hyper-g 418/udp  Hyper-G
# Frank Kappe <fkappe@iicm.tu-graz.ac.at>
ariel1 419/tcp  Ariel
ariel1 419/udp  Ariel
# Jonathan Lavigne <BL.JPL@RLG.Stanford.EDU>
smpte 420/tcp  SMPTE
smpte 420/udp  SMPTE
# Si Becker <71362.22@CompuServe.COM>
ariel2 421/tcp  Ariel
ariel2 421/udp  Ariel
ariel3 422/tcp  Ariel
ariel3 422/udp  Ariel
# Jonathan Lavigne <BL.JPL@RLG.Stanford.EDU>
opc-job-start 423/tcp  IBM Operations Planning and Control Start
opc-job-start 423/udp  IBM Operations Planning and Control Start
opc-job-track 424/tcp  IBM Operations Planning and Control Track
opc-job-track 424/udp  IBM Operations Planning and Control Track
# Conny Larsson <cocke@VNET.IBM.COM>
icad-el 425/tcp  ICAD
icad-el 425/udp  ICAD
Larry Stone <lcs@icad.com>
smartsdp 426/tcp  smartsdp
smartsdp 426/udp  smartsdp

Alexander Dupuy <dupuy@smarts.com>
svrloc 427/tcp  Server Location
svrloc 427/udp  Server Location

<veizades@ftp.com>
ocs_cmu 428/tcp  OCS_CMU
ocs_cmu 428/udp  OCS_CMU
ocs_amu 429/tcp  OCS_AMU
ocs_amu 429/udp  OCS_AMU

Florence Wyman <wyman@peabody.plk.af.mil>
utmpsd 430/tcp  UTMPSD
utmpsd 430/udp  UTMPSD
utmpcd 431/tcp  UTMPCD
utmpcd 431/udp  UTMPCD

Nir Baroz <nbaroz@encore.com>
nns 433/tcp  NNSP
nns 433/udp  NNSP

Rob Robertson <rob@gangrene.berkeley.edu>
mobileip-agent 434/tcp  MobileIP-Agent
mobileip-agent 434/udp  MobileIP-Agent

Kannan Alagappan <kannan@sejour.lkg.dec.com>
dna-cml 436/tcp  DNA-CML
dna-cml 436/udp  DNA-CML

Dan Flowers <flowers@smaug.lkg.dec.com>
comscm 437/tcp  comscm
comscm 437/udp  comscm

Jim Teague <teague@zso.dec.com>
dsfw 438/tcp  dsfw
dsfw 438/udp  dsfw

Andy McKeen <mkeeen@osf.org>
dasp 439/tcp  dasp  Thomas Obermair
dasp 439/udp  dasp  tommy@inlab.m.eunet.de

Thomas Obermair <tommy@inlab.m.eunet.de>
sgcp 440/tcp  sgcp
sgcp 440/udp  sgcp

Marshall Rose <mrose@dcb.mtview.ca.us>
decvms-sysmgt 441/tcp  decvms-sysmgt
decvms-sysmgt 441/udp  decvms-sysmgt

Lee Barton <barton@star.enet.dec.com>
cvc_hostd 442/tcp  cvc_hostd
cvc_hostd 442/udp  cvc_hostd

Bill Davidson <billd@equalizer.cray.com>
https 443/tcp  https MCom
https 443/udp  https MCom

Kipp E.B. Hickman <kipp@mcom.com>
snpp  444/tcp Simple Network Paging Protocol
snpp  444/udp Simple Network Paging Protocol
#                          [RFC1568]
microsoft-ds  445/tcp Microsoft-DS
microsoft-ds  445/udp Microsoft-DS
#                          Arnold Miller <arnoldm@microsoft.com>
ddm-rdb  446/tcp DDM-RDB
ddm-rdb  446/udp DDM-RDB
ddm-dfm  447/tcp DDM-RFM
ddm-dfm  447/udp DDM-RFM
ddm-byte  448/tcp DDM-BYTE
ddm-byte  448/udp DDM-BYTE
#                          Jan David Fisher <jdfisher@VNET.IBM.COM>
as-servermap  449/tcp AS Server Mapper
as-servermap  449/udp AS Server Mapper
#                          Barbara Foss <BGFOSS@rchvmv.vnet.ibm.com>
tserver  450/tcp TServer
tserver  450/udp TServer
#                          Harvey S. Schultz <hss@mtgfs3.mt.att.com>
sfs-smp-net  451/tcp Cray Network Semaphore server
sfs-smp-net  451/udp Cray Network Semaphore server
sfs-config  452/tcp Cray SFS config server
sfs-config  452/udp Cray SFS config server
#                          Walter Poxon <wdp@ironwood.cray.com>
creativeserver  453/tcp CreativeServer
creativeserver  453/udp CreativeServer
contentserver  454/tcp ContentServer
contentserver  454/udp ContentServer
creativepartnr  455/tcp CreativePartnr
creativepartnr  455/udp CreativePartnr
#                          Jesus Ortiz <jesus_ortiz@emotion.com>
macon-tcp  456/tcp macon-tcp
macon-udp  456/udp macon-udp
#                          Yoshinobu Inoue
#                          <shin@hodaka.mfd.cs.fujitsu.co.jp>
scohelp  457/tcp scohelp
scohelp  457/udp scohelp
#                          Faith Zack <faithz@sco.com>
appleqtc  458/tcp apple quick time
appleqtc  458/udp apple quick time
#                          Murali Ranganathan <murali_ranganathan@quickmail.apple.com>
ampr-rcmd  459/tcp ampr-rcmd
ampr-rcmd  459/udp ampr-rcmd
#                          Rob Janssen <rob@sys3.pe1chl.ampr.org>
skronk  460/tcp skronk
skronk  460/udp skronk
#                          Henry Strickland <strick@yak.net>
datasurfsrv  461/tcp DataSurfSrv
datasurfsrv  461/udp DataSurfSrv
datasurfsrvsec  462/tcp DataSurfSrvSec
datasurfsrvsec  462/udp DataSurfSrvSec
# Larry Barnes <Larryb@larryb.MV.COM>

alpes 463/tcp alpes
alpes 463/udp alpes
# Alain Durand <Alain.Durand@imag.fr>

kpasswd 464/tcp kpasswd
kpasswd 464/udp kpasswd
# Theodore Ts’o <tytso@MIT.EDU>

sssmtp 465/tcp ssmtp
sssmtp 465/udp ssmtp
# John Hemming <JohnHemming@Mkn.co.uk>

digital-vrc 466/tcp digital-vrc
digital-vrc 466/udp digital-vrc
# Dave Forster <forster@marvin.enet.dec.com>

mylex-mapd 467/tcp mylex-mapd
mylex-mapd 467/udp mylex-mapd
# Gary Lewis <GaryL@hq.mylex.com>

photuris 468/tcp photuris
photuris 468/udp photuris
# Bill Simpson <Bill.Simpson@um.cc.umich.edu>

rcp 469/tcp Radio Control Protocol
rcp 469/udp Radio Control Protocol
# Jim Jennings +1-708-538-7241

scx-proxy 470/tcp scx-proxy
scx-proxy 470/udp scx-proxy
# Walter Poxon <wdp@ironwood-fddi.cray.com>

mondex 471/tcp Mondex
mondex 471/udp Mondex
# Bill Reding <redingb@nwdt.natwest.co.uk>

ljk-login 472/tcp ljk-login
ljk-login 472/udp ljk-login
# LJK Software, Cambridge, Massachusetts
# <support@ljk.com>

hybrid-pop 473/tcp hybrid-pop
hybrid-pop 473/udp hybrid-pop
# Rami Rubin <rami@hybrid.com>

tn-tl-w1 474/tcp tn-tl-w1
tn-tl-w2 474/udp tn-tl-w2
# Ed Kress <eskress@thinknet.com>
tcpnethaspsrv 475/tcp tcpnethaspsrv
tcpnethaspsrv 475/udp tcpnethaspsrv
# Charlie Hava <charlie@aladdin.co.il>
# 476-511 Unassigned
eexec 512/tcp remote process execution;
# authentication performed using
# passwords and UNIX loppgin names
biff 512/udp used by mail system to notify users
# of new mail received; currently
# receives messages only from
# processes on the same machine
login 513/tcp    remote login a la telnet;
#       automatic authentication performed
#       based on privileged port numbers
#       and distributed databases which
#       identify "authentication domains"
who 513/udp    maintains databases showing who’s
#       logged into machines on a local
#       network and the load average of the
#       machine


#       514/tcp    like exec, but automatic
#       authentication is performed as for
#       login server

syslog 514/udp
printer 515/tcp    spooler
printer 515/udp    spooler
#       516/tcp    Unassigned
#       516/udp    Unassigned

#       517/tcp    like tenex link, but across
#       machine - unfortunately, doesn’t
#       use link protocol (this is actually
#       just a rendezvous port from which a
tcp connection is established)
talk 517/udp    like tenex link, but across
#       machine - unfortunately, doesn’t
#       use link protocol (this is actually
#       just a rendezvous port from which a
tcp connection is established)

talk 518/tcp
ntalk 518/udp
utime 519/tcp    unixtime
utime 519/udp    unixtime
efs 520/tcp    extended file name server
router 520/udp    local routing process (on site);
#       uses variant of Xerox NS routing
#       information protocol
#       521-524    Unassigned
timed 525/tcp    timeserver
timed 525/udp    timeserver
tempo 526/tcp    newdate
tempo 526/udp    newdate
#       527-529    Unassigned
courier 530/tcp    rpc
courier 530/udp    rpc
conference 531/tcp    chat
conference 531/udp    chat
netnews 532/tcp    readnews
netnews 532/udp    readnews
netwall 533/tcp    for emergency broadcasts
netwall 533/udp    for emergency broadcasts
#       534-538    Unassigned
apertus-ldp 539/tcp    Apertus Technologies Load Determination
apertus-ldp    539/udp    Apertus Technologies Load Determination
uucp         540/tcp    uucpd
uucp         540/udp    uucpd
uucp-rlogin  541/tcp    uucp-rlogin
uucp-rlogin  541/udp    uucp-rlogin
#                         Stuart Lynne <sl@wimsey.com>
#             542/tcp    Unassigned
#             542/udp    Unassigned
klogin       543/tcp
klogin       543/udp
kshell       544/tcp    krcmd
kshell       544/udp    krcmd
appleqtcsrvr 545/tcp    appleqtcsrvr
appleqtcsrvr 545/udp    appleqtcsrvr
#                    Murali Ranganathan <Murali_Ranganathan@quickmail.apple.com>
dhcp-client   546/tcp    DHCP Client
dhcp-client   546/udp    DHCP Client
dhcp-server   547/tcp    DHCP Server
dhcp-server   547/udp    DHCP Server
#                        Jim Bound <bound@zk3.dec.com>
#             548/tcp    Unassigned
#             548/udp    Unassigned
#             549/tcp    Unassigned
#             549/udp    Unassigned
new-rwho      550/tcp    new-who
new-rwho      550/udp    new-who
cybercash     551/tcp    cybercash
cybercash     551/udp    cybercash
#                          Donald E. Eastlake 3rd <dee@cybercash.com>
deviceshare   552/tcp    deviceshare
deviceshare   552/udp    deviceshare
#                         Brian Schenkenberger <brians@advsyscon.com>
pirp          553/tcp    pirp
pirp          553/udp    pirp
#                   D. J. Bernstein <djb@silverton.berkeley.edu>
#             554/tcp    Unassigned
#             554/udp    Unassigned
dsf           555/tcp
sf            555/udp
remotefs      556/tcp    rfs server
remotefs      556/udp    rfs server
openvms-sysipc 557/tcp    openvms-sysipc
openvms-sysipc 557/udp    openvms-sysipc
#                       Alan Potter <potter@movies.enet.dec.com>
sdnskmp       558/tcp    SDNSKMP
sdnskmp       558/udp    SDNSKMP
teedtap       559/tcp    TEEDTAP
teedtap       559/udp    TEEDTAP
#                      Mort Hoffman <hoffman@mail.ndhm.gtegsc.com>
rmonitor      560/tcp    rmonitord
rmonitor      560/udp    rmonitord
monitor 561/tcp
monitor 561/udp
chshell 562/tcp chcmd
chshell 562/udp chcmd
snews 563/tcp snews
snews 563/udp snews
# Kipp E.B. Hickman <kipp@netscape.com>
9pfs 564/tcp  plan 9 file service
9pfs 564/udp  plan 9 file service
whoami 565/tcp whoami
whoami 565/udp whoami
streettalk 566/tcp streettalk
streettalk 566/udp streettalk
banyan-rpc 567/tcp banyan-rpc
banyan-rpc 567/udp banyan-rpc
# Tom Lemaire <toml@banyan.com>
ms-shuttle 568/tcp microsoft shuttle
ms-shuttle 568/udp microsoft shuttle
# Rudolph Balaz <rudolphb@microsoft.com>
ms-rome 569/tcp microsoft rome
ms-rome 569/udp microsoft rome
# Rudolph Balaz <rudolphb@microsoft.com>
meter 570/tcp demon
meter 570/udp demon
meter 571/tcp udemon
meter 571/udp udemon
sonar 572/tcp sonar
sonar 572/udp sonar
# Keith Moore <moore@cs.utk.edu>
banyan-vip 573/tcp banyan-vip
banyan-vip 573/udp banyan-vip
# Denis Leclerc <DLeclerc@banyan.com>
# 574-599 Unassigned
ipcserver 600/tcp Sun IPC server
ipcserver 600/udp Sun IPC server
nqs 607/tcp nqs
nqs 607/udp nqs
urm 606/tcp Cray Unified Resource Manager
urm 606/udp Cray Unified Resource Manager
# Bill Schiefelbein <schief@aspen.cray.com>
sift-uft 608/tcp Sender-Initiated/Unsolicited File Transfer
sift-uft 608/udp Sender-Initiated/Unsolicited File Transfer
# Rick Troth <troth@rice.edu>
npmp-trap 609/tcp npmp-trap
npmp-trap 609/udp npmp-trap
npmp-local 610/tcp npmp-local
npmp-local 610/udp npmp-local
npmp-gui 611/tcp npmp-gui
npmp-gui 611/udp npmp-gui
# John Barnes <jbarnes@crl.com>
ginad 634/tcp  ginad
ginad 634/udp  ginad
#    Mark Crother <mark@eis.calstate.edu>
mdqs 666/tcp
mdqs 666/udp
doom 666/tcp  doom Id Software
doom 666/udp  doom Id Software
#    <ddt@idcube.idsoftware.com>
elcsd 704/tcp  errlog copy/server daemon
elcsd 704/udp  errlog copy/server daemon
entrustmanager 709/tcp  EntrustManager
entrustmanager 709/udp  EntrustManager
#    Peter Whittaker <pww@bnr.ca>
netviewdm1 729/tcp  IBM NetView DM/6000 Server/Client
netviewdm1 729/udp  IBM NetView DM/6000 Server/Client
netviewdm2 730/tcp  IBM NetView DM/6000 send/tcp
netviewdm2 730/udp  IBM NetView DM/6000 send/tcp
netviewdm3 731/tcp  IBM NetView DM/6000 receive/tcp
netviewdm3 731/udp  IBM NetView DM/6000 receive/tcp
#    Philippe Binet (phbinet@vnet.IBM.COM)
netgw 741/tcp  netGW
netgw 741/udp  netGW
#    Gordon C. Galligher <gorpong@ping.chi.il.us>
flexlm 744/tcp  Flexible License Manager
flexlm 744/udp  Flexible License Manager
#    Matt Christiano
#    <globes@matt@oliveb.atc.olivetti.com>
fujitsu-dev 747/tcp  Fujitsu Device Control
fujitsu-dev 747/udp  Fujitsu Device Control
ris-cm 748/tcp  Russell Info Sci Calendar Manager
ris-cm 748/udp  Russell Info Sci Calendar Manager
kerberos-adm 749/tcp  kerberos administration
kerberos-adm 749/udp  kerberos administration
rfile 750/tcp
loadav 750/udp
pump 751/tcp
pump 751/udp
qrh 752/tcp
qrh 752/udp
rrh 753/tcp
rrh 753/udp
tell 754/tcp  send
tell 754/udp  send
nlogin 758/tcp
nlogin 758/udp
con 759/tcp
con 759/udp
ns 760/tcp
ns         760/udp
rxe         761/tcp
rxe         761/udp
quotad      762/tcp
quotad      762/udp
cycleserv   763/tcp
cycleserv   763/udp
omserv      764/tcp
omserv      764/udp
webster     765/tcp
webster     765/udp
phonebook   767/tcp    phone
phonebook   767/udp    phone
vid         769/tcp
vid         769/udp
cadlock     770/tcp
cadlock     770/udp
rtip        771/tcp
rtip        771/udp
cycleserv2  772/tcp
cycleserv2  772/udp
submit      773/tcp
notify      773/udp
rpasswd     774/tcp
acmaint_dbd 774/udp
entomb      775/tcp
acmaint_transd 775/udp
wpages      776/tcp
wpages      776/udp
wpgs        780/tcp
wpgs        780/udp
concert     786/tcp    Concert
concert     786/udp    Concert
#                        Josyula R. Rao <jrrao@watson.ibm.com>
mdbs_daemon 800/tcp
mdbs_daemon 800/udp
device      801/tcp
device      801/udp
accessbuilder 888/tcp    AccessBuilder
accessbuilder 888/udp    AccessBuilder
#                        Steve Sweeney <Steven_Sweeney@3mail.3com.com>
vsinet      996/tcp    vsinet
vsinet      996/udp    vsinet
#                        Rob Juergens <robj@vsi.com>
maitrd      997/tcp
maitrd      997/udp
busboy      998/tcp
puparp      998/udp
garcon      999/tcp
applix      999/udp    Applix ac
puprouter   999/tcp
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>puprouter</td>
<td>999/udp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cadlock</td>
<td>1000/tcp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ock</td>
<td>1000/udp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1023/tcp</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024/udp</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>IANA <a href="mailto:iana@isi.edu">iana@isi.edu</a></td>
<td></td>
</tr>
</tbody>
</table>

**REGISTERED PORT NUMBERS**

The Registered Ports are not controlled by the IANA and on most systems can be used by ordinary user processes or programs executed by ordinary users. Ports are used in the TCP [RFC793] to name the ends of logical connections which carry long term conversations. For the purpose of providing services to unknown callers, a service contact port is defined. This list specifies the port used by the server process as its contact port. While the IANA can not control uses of these ports it does register or list uses of these ports as a convienience to the community. To the extent possible, these same port assignments are used with the UDP [RFC768].

The Registered Ports are in the range 1024-65535.

[Go back to top of file]

Port Assignments:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Decimal</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1024/tcp</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024/udp</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>IANA <a href="mailto:iana@isi.edu">iana@isi.edu</a></td>
<td></td>
</tr>
<tr>
<td>blackjack</td>
<td>1025/tcp</td>
<td>network blackjack</td>
<td></td>
</tr>
<tr>
<td>blackjack</td>
<td>1025/udp</td>
<td>network blackjack</td>
<td></td>
</tr>
<tr>
<td>iad1</td>
<td>1030/tcp</td>
<td>BBN IAD</td>
<td></td>
</tr>
<tr>
<td>iad1</td>
<td>1030/udp</td>
<td>BBN IAD</td>
<td></td>
</tr>
<tr>
<td>iad2</td>
<td>1031/tcp</td>
<td>BBN IAD</td>
<td></td>
</tr>
<tr>
<td>iad2</td>
<td>1031/udp</td>
<td>BBN IAD</td>
<td></td>
</tr>
<tr>
<td>iad3</td>
<td>1032/tcp</td>
<td>BBN IAD</td>
<td></td>
</tr>
<tr>
<td>iad3</td>
<td>1032/udp</td>
<td>BBN IAD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>Andy Malis <a href="mailto:malis_a@timeplex.com">malis_a@timeplex.com</a></td>
<td></td>
</tr>
<tr>
<td>nim</td>
<td>1058/tcp</td>
<td>nim</td>
<td></td>
</tr>
<tr>
<td>nim</td>
<td>1058/udp</td>
<td>nim</td>
<td></td>
</tr>
<tr>
<td>nimreg</td>
<td>1059/tcp</td>
<td>nimreg</td>
<td></td>
</tr>
<tr>
<td>nimreg</td>
<td>1059/udp</td>
<td>nimreg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>Robert Gordon <a href="mailto:rbg@austin.ibm.com">rbg@austin.ibm.com</a></td>
<td></td>
</tr>
<tr>
<td>instl_boots</td>
<td>1067/tcp</td>
<td>Installation Bootstrap Proto. Serv.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1067/udp</td>
<td>Installation Bootstrap Proto. Serv.</td>
<td></td>
</tr>
</tbody>
</table>
socks 1080/tcp Socks
socks 1080/udp Socks

ansoft-lm-1 1083/tcp Anasoft License Manager
ansoft-lm-1 1083/udp Anasoft License Manager
ansoft-lm-2 1084/tcp Anasoft License Manager
ansoft-lm-2 1084/udp Anasoft License Manager
nfsd-status 1110/tcp Cluster status info
nfsd-keepalive 1110/udp Client status info

nfa 1155/tcp Network File Access
nfa 1155/udp Network File Access

lupa 1212/tcp lupa
lupa 1212/udp lupa

nerv 1222/tcp SNI R&D network
nerv 1222/udp SNI R&D network

alta-ana-lm 1346/tcp Alta Analytics License Manager
alta-ana-lm 1346/udp Alta Analytics License Manager

bbn-mmc 1347/tcp multi media conferencing
bbn-mmc 1347/udp multi media conferencing
bbn-mmx 1348/tcp multi media conferencing
bbn-mmx 1348/udp multi media conferencing
sbook 1349/tcp Registration Network Protocol
sbook 1349/udp Registration Network Protocol

editbench 1350/tcp Registration Network Protocol
editbench 1350/udp Registration Network Protocol

equationbuilder 1351/tcp Digital Tool Works (MIT)
equationbuilder 1351/udp Digital Tool Works (MIT)

lotusnote 1352/tcp Lotus Note
lotusnote 1352/udp Lotus Note

relief 1353/tcp Relief Consulting
relief 1353/udp  Relief Consulting

rightbrain 1354/tcp  RightBrain Software
rightbrain 1354/udp  RightBrain Software
#       Glenn Reid <glann@rightbrain.com>
intuitive edge 1355/tcp  Intuitive Edge
intuitive edge 1355/udp  Intuitive Edge
#       Montgomery Zukowski
#       <monty@nextnorth.acs.ohio-state.edu>

cuillamartin 1356/tcp  CuillaMartin Company
cuillamartin 1356/udp  CuillaMartin Company
pegboard 1357/tcp  Electronic PegBoard
pegboard 1357/udp  Electronic PegBoard
#       Chris Cuilla
#       <balr!vpnet!cuilla!chris@clout.chi.il.us>

connlcli 1358/tcp  CONNLCLI
connlcli 1358/udp  CONNLCLI

ftsrv 1359/tcp  FTSRV
ftsrv 1359/udp  FTSRV

#       Ines Homem de Melo <sidinf@brfapesp.bitnet>
mimer 1360/tcp  MIMER
mimer 1360/udp  MIMER

#       Per Schroeder <Per.Schroder@mimer.se>
linx 1361/tcp  LinX
linx 1361/udp  LinX
#       Steffen Schilke <---none--->
timeflies 1362/tcp  TimeFlies
timeflies 1362/udp  TimeFlies

#       Doug Kent <mouthers@slugg@nwnexus.wa.com>
ndm-requester 1363/tcp  Network DataMover Requester
ndm-requester 1363/udp  Network DataMover Requester
ndm-server 1364/tcp  Network DataMover Server
ndm-server 1364/udp  Network DataMover Server
#       Toshio Watanabe
#       <watanabe@godzilla.rsc.spdd.ricoh.co.jp>

adapt-sna 1365/tcp  Network Software Associates
adapt-sna 1365/udp  Network Software Associates
#       Jeffery Chiao <714-768-401>
netware-csp 1366/tcp  Novell NetWare Comm Service Platform
netware-csp 1366/udp Novell NetWare Comm Service Platform
# Laurie Lindsey <llindsey@novell.com>
dcs 1367/tcp DCS
dcs 1367/udp DCS
# Stefan Siebert <ssiebert@dcs.de>
screencast 1368/tcp ScreenCast
screencast 1368/udp ScreenCast

# Bill Tschumy <other!bill@uunet.UU.NET>
vus 1369/tcp GlobalView to Unix Shell
gv-us 1369/udp GlobalView to Unix Shell
us-gv 1370/tcp Unix Shell to GlobalView
us-gv 1370/udp Unix Shell to GlobalView
# Makoto Mita <mita@ssdev.ksp.fujixerox.co.jp>
fc-cli 1371/tcp Fujitsu Config Protocol
fc-cli 1371/udp Fujitsu Config Protocol
fc-ser 1372/tcp Fujitsu Config Protocol
fc-ser 1372/udp Fujitsu Config Protocol
# Ryuichi Horie <horie@spad.sysrap.cs.fujitsu.co.jp>
chromagrafx 1373/tcp Chromagrafx
chromagrafx 1373/udp Chromagrafx

# Mike Barthelemy <msb@chromagrafx.com>
molly 1374/tcp EPI Software Systems
molly 1374/udp EPI Software Systems
# Jim Vlcek <vlcek@epimbe.com>
bytex 1375/tcp Bytex
bytex 1375/udp Bytex
# Mary Ann Burt <bytex!ws054!maryann@uunet.UU.NET>
ibm-pps 1376/tcp IBM Person to Person Software
ibm-pps 1376/udp IBM Person to Person Software
# Simon Phipps <sphipps@vnet.ibm.com>
cichlid 1377/tcp Cichlid License Manager
cichlid 1377/udp Cichlid License Manager
# Andy Burgess <aab@cichlid.com>
elan 1378/tcp Elan License Manager
elan 1378/udp Elan License Manager
# Ken Greer <kg@elan.com>
dbreporter 1379/tcp Integrity Solutions
dbreporter 1379/udp Integrity Solutions
# Tim Dawson <tdawson%mspboss@uunet.UU.NET>
telesis-licman 1380/tcp  Telesis Network License Manager

telesis-licman 1380/udp  Telesis Network License Manager

# Karl Schendel, Jr. <wiz@telesis.com>
apple-licman 1381/tcp  Apple Network License Manager
apple-licman 1381/udp  Apple Network License Manager

# Earl Wallace <earlw@apple.com>
udt_os 1382/tcp
udt_os 1382/udp
gwha 1383/tcp  GW Hannaway Network License Manager
gwha 1383/udp  GW Hannaway Network License Manager

# J. Gabriel Foster <fop@gwha.com>
os-licman 1384/tcp  Objective Solutions License Manager
os-licman 1384/udp  Objective Solutions License Manager

# Donald Cornwell <don.cornwell@objective.com>
atex_elmd 1385/tcp  Atex Publishing License Manager
atex_elmd 1385/udp  Atex Publishing License Manager

# Brett Sorenson <bcs@atex.com>
checksum 1386/tcp  CheckSum License Manager
checksum 1386/udp  CheckSum License Manager

# Andreas Glocker <glocker@sirius.com>
cadsi-lm 1387/tcp  Computer Aided Design Software Inc LM

# Sulistio Muljadi
objective-dbc 1388/tcp  Objective Solutions DataBase Cache
objective-dbc 1388/udp  Objective Solutions DataBase Cache

# Donald Cornwell
iclpv-dm 1389/tcp  Document Manager
iclpv-dm 1389/udp  Document Manager

iclpv-sc 1390/tcp  Storage Controller
iclpv-sc 1390/udp  Storage Controller

iclpv-sas 1391/tcp  Storage Access Server
iclpv-sas 1391/udp  Storage Access Server

iclpv-pm 1392/tcp  Print Manager
iclpv-pm 1392/udp  Print Manager
iclpv-nls 1393/tcp  Network Log Server
iclpv-nls 1393/udp  Network Log Server
iclpv-nlc 1394/tcp  Network Log Client
iclpv-nlc 1394/udp  Network Log Client
iclpv-wsm 1395/tcp  PC Workstation Manager software
iclpv-wsm 1395/udp  PC Workstation Manager software
# A.P. Hobson <A.P.Hobson@bra0112.wins.icl.co.uk>
dvl-activemail 1396/tcp  DVL Active Mail
dvl-activemail 1396/udp  DVL Active Mail
audio-activmail 1397/tcp  Audio Active Mail
audio-activmail 1397/udp  Audio Active Mail
video-activmail 1398/tcp  Video Active Mail
video-activmail 1398/udp  Video Active Mail
# Ehud Shapiro <udi@wisdom.weizmann.ac.il>
cadkey-licman 1399/tcp  Cadkey License Manager
cadkey-licman 1399/udp  Cadkey License Manager
cadkey-tablet 1400/tcp  Cadkey Tablet Daemon
cadkey-tablet 1400/udp  Cadkey Tablet Daemon
# Joe McCollough <joe@cadkey.com>
goldleaf-licman 1401/tcp  Goldleaf License Manager
goldleaf-licman 1401/udp  Goldleaf License Manager
# John Fox <---none--->
prm-sm-np 1402/tcp  Prospero Resource Manager
prm-sm-np 1402/udp  Prospero Resource Manager
prm-nm-np 1403/tcp  Prospero Resource Manager
prm-nm-np 1403/udp  Prospero Resource Manager
# B. Clifford Neuman <bcn@isi.edu>
igi-lm 1404/tcp  Infinite Graphics License Manager
igi-lm 1404/udp  Infinite Graphics License Manager
ibm-res 1405/tcp  IBM Remote Execution Starter
ibm-res 1405/udp  IBM Remote Execution Starter
netlabs-lm 1406/tcp  NetLabs License Manager
netlabs-lm 1406/udp  NetLabs License Manager
dbsa-lm 1407/tcp  DBSA License Manager
dbsa-lm 1407/udp  DBSA License Manager
# Scott Shattuck <ss@dbsa.com>
sophia-lm 1408/tcp  Sophia License Manager
sophia-lm       1408/udp   Sophia License Manager
#                          Eric Brown <sst!emerald!eric@uunet.UU.net>
here-lm         1409/tcp   Here License Manager
here-lm         1409/udp   Here License Manager
#                          David Ison <here@dialup.oar.net>
hiq             1410/tcp   HiQ License Manager
hiq             1410/udp   HiQ License Manager
#                          Rick Pugh <rick@bilmillennium.com>
af              1411/tcp   AudioFile
af              1411/udp   AudioFile
#                          Jim Gettys <jg@crl.dec.com>
inynos          1412/tcp   InnoSys
inynos          1412/udp   InnoSys
innosys-acl     1413/tcp   Innosys-ACL
innosys-acl     1413/udp   Innosys-ACL
#                          Eric Welch <---none--->
ibm-mqseries    1414/tcp   IBM MQSeries
ibm-mqseries    1414/udp   IBM MQSeries
#                          Roger Meli <rmmeli%winvmd@vnet.ibm.com>
dbstar          1415/tcp   DBStar
dbstar          1415/udp   DBStar
#                          Jeffrey Millman <jcm@dbstar.com>
novell-lu6.2    1416/tcp   Novell LU6.2
novell-lu6.2    1416/udp   Novell LU6.2
#                          Peter Liu <--none-->-
timbuktu-srv1   1417/tcp   Timbuktu Service 1 Port
timbuktu-srv1   1417/tcp   Timbuktu Service 1 Port
timbuktu-srv2   1418/tcp   Timbuktu Service 2 Port
timbuktu-srv2   1418/udp   Timbuktu Service 2 Port
timbuktu-srv3   1419/tcp   Timbuktu Service 3 Port
timbuktu-srv3   1419/udp   Timbuktu Service 3 Port
timbuktu-srv4   1420/tcp   Timbuktu Service 4 Port
timbuktu-srv4   1420/udp   Timbuktu Service 4 Port
#                          Marc Epard <marc@waygate.farallon.com>
gandalf-lm      1421/tcp   Gandalf License Manager
gandalf-lm      1421/udp   Gandalf License Manager
#                          gilmer@gandalf.ca
autodesk-lm      1422/tcp   Autodesk License Manager
autodesk-lm      1422/udp   Autodesk License Manager
#                          David Ko <dko@autodesk.com>
essbase       1423/tcp  Essbase Arbor Software
essbase       1423/udp  Essbase Arbor Software
hybrid        1424/tcp  Hybrid Encryption Protocol
hybrid        1424/udp  Hybrid Encryption Protocol
#             Howard Hart <hch@hybrid.com>
zion-lm       1425/tcp  Zion Software License Manager
zion-lm       1425/udp  Zion Software License Manager
#             David Ferrero <david@zion.com>
sas-1         1426/tcp  Satellite-data Acquisition System 1
sas-1         1426/udp  Satellite-data Acquisition System 1
#             Bill Taylor <sais@ssec.wisc.edu>
mload         1427/tcp  mload monitoring tool
mload         1427/udp  mload monitoring tool
#             Bob Braden <braden@isi.edu>
informatik-lm 1428/tcp  Informatik License Manager
informatik-lm 1428/udp  Informatik License Manager
#             Harald Schlangmann
#             <schlangm@informatik.uni-muenchen.de>
nms           1429/tcp  Hypercom NMS
nms           1429/udp  Hypercom NMS
t pdu          1430/tcp  Hypercom TPDU
t pdu          1430/udp  Hypercom TPDU
#             Noor Chowdhury <noor@hypercom.com>
rgtp          1431/tcp  Reverse Gossip Transport
rgtp          1431/udp  Reverse Gossip Transport
#             Ian Jackson <iwj@cam-orl.co.uk>
blueberry-lm  1432/tcp  Blueberry Software License Manager
blueberry-lm  1432/udp  Blueberry Software License Manager
#             Steve Beigel <ublueb!steve@uunet.uu.net>
ms-sql-s      1433/tcp  Microsoft-SQL-Server
ms-sql-s      1433/udp  Microsoft-SQL-Server
ms-sql-m      1434/tcp  Microsoft-SQL-Monitor
ms-sql-m      1434/udp  Microsoft-SQL-Monitor
#             Peter Hussey <peterhus@microsoft.com>
ibm-cics       1435/tcp  IBM CISC
ibm-cics       1435/udp  IBM CISC
#             Geoff Meacock <gbibmswl@ibmmail.COM>
sas-2         1436/tcp  Satellite-data Acquisition System 2
sas-2         1436/udp  Satellite-data Acquisition System 2
#             Bill Taylor <sais@ssec.wisc.edu>
tabula         1437/tcp  Tabula
tabula         1437/udp  Tabula
#             Marcelo Einhorn
#             <KGUNE%HUIVM1.bitnet@taunivm.tau.ac.il>
eicon-server  1438/tcp  Eicon Security Agent/Server
eicon-server 1438/udp Eicon Security Agent/Server

eicon-x25 1439/tcp Eicon X25/SNA Gateway

eicon-x25 1439/udp Eicon X25/SNA Gateway

eicon-slp 1440/tcp Eicon Service Location Protocol

eicon-slp 1440/udp Eicon Service Location Protocol

# Pat Calhoun <CALHOUN@admin.eicon.qc.ca>

cadis-1 1441/tcp Cadis License Management

cadis-1 1441/udp Cadis License Management

cadis-2 1442/tcp Cadis License Management

cadis-2 1442/udp Cadis License Management

# Todd Wichers <twichers@csn.org>

ies-lm 1443/tcp Integrated Engineering Software

ies-lm 1443/udp Integrated Engineering Software

# David Tong <David_Tong@integrated.mb.ca>

marcam-lm 1444/tcp Marcam License Management

marcam-lm 1444/udp Marcam License Management

# Therese Hunt <hunt@marcam.com>

proxima-lm 1445/tcp Proxima License Manager

proxima-lm 1445/udp Proxima License Manager

ora-lm 1446/tcp Optical Research Associates License Manager

ora-lm 1446/udp Optical Research Associates License Manager

apri-lm 1447/tcp Applied Parallel Research LM

apri-lm 1447/udp Applied Parallel Research LM

# Jim Dillon <sjed@apri.com>

oc-lm 1448/tcp OpenConnect License Manager

oc-lm 1448/udp OpenConnect License Manager

# Sue Barnhill <snb@oc.com>

peport 1449/tcp PEport

peport 1449/udp PEport

# Qentin Neill <quentin@ColumbiaSC.NCR.COM>

dwf 1450/tcp Tandem Distributed Workbench Facility

dwf 1450/udp Tandem Distributed Workbench Facility

# Mike Bert <BERG MIKE@tandem.com>

infoman 1451/tcp IBM Information Management

infoman 1451/udp IBM Information Management

# Karen Burns <---none--->

gtegsc-lm 1452/tcp GTE Government Systems License Man
gtegsc-lm 1452/udp  GTE Government Systems License Manager

# Mike Gregory <Gregory_Mike@msmail.iipo.gtegsc.com>
genie-lm 1453/tcp  Genie License Manager

genie-lm 1453/udp  Genie License Manager

# Paul Applegate <p.applegate2@genie.geis.com>
interhdl_elmd 1454/tcp  interHDL License Manager
interhdl_elmd 1454/udp  interHDL License Manager
# Eli Sternheim eli@interhdl.com
esl-lm 1455/tcp  ESL License Manager
esl-lm 1455/udp  ESL License Manager
# Abel Chou <abel@willy.esl.com>
dca 1456/tcp  DCA
dca 1456/udp  DCA
# Jeff Garbers <jgarbers@netcom.com>
valisys-lm 1457/tcp  Valisys License Manager
valisys-lm 1457/udp  Valisys License Manager
# Leslie Lincoln <leslie_lincoln@valisys.com>
nrcabq-lm 1458/tcp  Nichols Research Corp.
nrcabq-lm 1458/udp  Nichols Research Corp.
# Howard Cole <hcole@tumbleweed.nrcabq.com>
proshare1 1459/tcp  Proshare Notebook Application
proshare1 1459/udp  Proshare Notebook Application
proshare2 1460/tcp  Proshare Notebook Application
proshare2 1460/udp  Proshare Notebook Application
# Robin Kar <Robin_Kar@ccm.hf.intel.com>
ibm_wrless_lan 1461/tcp  IBM Wireless LAN
ibm_wrless_lan 1461/udp  IBM Wireless LAN
# <flanne@vnet.IBM.COM>
world-lm 1462/tcp  World License Manager
world-lm 1462/udp  World License Manager
# Michael S Amirault <ambi@world.std.com>
nucleus 1463/tcp  Nucleus
nucleus 1463/udp  Nucleus
# Venky Nagar <venky@fafner.Stanford.EDU>
msl_lmd 1464/tcp  MSL License Manager
msl_lmd 1464/udp  MSL License Manager
# Matt Timmermans
pipes 1465/tcp  Pipes Platform
pipes 1465/udp  Pipes Platform mfarlin@peerlogic.com
# Mark Farlin <mfarlin@peerlogic.com>
oceansoft-lm 1466/tcp  Ocean Software License Manager
oceansoft-lm 1466/udp  Ocean Software License Manager
# Randy Leonard <randy@oceansoft.com>
csdmbase 1467/tcp  CSDMBASE
csdmbase 1467/udp  CSDMBASE
csdm 1468/tcp  CSDM
csdm 1468/udp  CSDM
# Robert Stabl <stabl@informatik.uni-muenchen.de>
aal-lm 1469/tcp    Active Analysis Limited License Manager
aal-lm 1469/udp    Active Analysis Limited License Manager
#    David Snocken +44 (71)437-7009
uaiact 1470/tcp    Universal Analytics
uaiact 1470/udp    Universal Analytics
#    Mark R. Ludwig <Mark-Ludwig@uai.com>
csdmbase 1471/tcp   csdmbase
csdmbase 1471/udp   csdmbase
csdm 1472/tcp      csdm
csdm 1472/udp      csdm
#    Robert Stabl <stabl@informatik.uni-muenchen.de>
openmath 1473/tcp    OpenMath
openmath 1473/udp    OpenMath
#    Garth Mayville <mayville@maplesoft.on.ca>
telefinder 1474/tcp    Telefinder
telefinder 1474/udp    Telefinder
#    Jim White <Jim_White@spiderisland.com>
taligent-lm 1475/tcp    Taligent License Manager
taligent-lm 1475/udp    Taligent License Manager
#    Mark Sapsford <Mark_Sapsford@@taligent.com>
clvm-cfg 1476/tcp    clvm-cfg
clvm-cfg 1476/udp    clvm-cfg
#    Eric Soderberg <seric@cup.hp.com>
ms-sna-server 1477/tcp   ms-sna-server
ms-sna-server 1477/udp   ms-sna-server
ms-sna-base 1478/tcp    ms-sna-base
ms-sna-base 1478/udp    ms-sna-base
#    Gordon Mangione <gordm@microsoft.com>
dberegister 1479/tcp    dberegister
dberegister 1479/udp    dberegister
#    Brian Griswold <brian@dancingbear.com>
pacerforum 1480/tcp    PacerForum
pacerforum 1480/udp    PacerForum
#    Peter Caswell <pfc@pacvax.pacersoft.com>
airs 1481/tcp    AIRS
airs 1481/udp    AIRS
#    Bruce Wilson, 905-771-6161
miteksys-lm 1482/tcp    Miteksys License Manager
miteksys-lm 1482/udp    Miteksys License Manager
#    Shane McRoberts <mroberts@miteksys.com>
afs 1483/tcp    AFS License Manager
afs 1483/udp    AFS License Manager
#    Michael R. Pizolato <michael@afs.com>
confluent 1484/tcp    Confluent License Manager
confluent 1484/udp    Confluent License Manager
#    James Greenfiel <jim@pa.confluent.com>
lansource 1485/tcp    LANSource
lansource 1485/udp    LANSource
#    Doug Scott <lansourc@hookup.net>
nms_topo_serv 1486/tcp    nms_topo_serv
nms_topo_serv 1486/udp    nms_topo_serv
# Sylvia Siu <Sylvia_Siu@Novell.CO>
localinfosrvr 1487/tcp LocalInfoSrvr
localinfosrvr 1487/udp LocalInfoSrvr
# Brian Matthews <brian_matthews@ibist.ibis.com>
docstor 1488/tcp DocStor
docstor 1488/udp DocStor
# Brian Spears <bspears@salix.com>
dmdocbroker 1489/tcp dmdocbroker
dmdocbroker 1489/udp dmdocbroker
# Razmik Abnous <abnous@documentum.com>
insitu-conf 1490/tcp insitu-conf
insitu-conf 1490/udp insitu-conf
# Paul Blacknell <paul@insitu.com>
anynetgateway 1491/tcp anynetgateway
anynetgateway 1491/udp anynetgateway
# Dan Poirier <poirier@VNET.IBM.COM>
stone-design-1 1492/tcp stone-design-1
stone-design-1 1492/udp stone-design-1
# Andrew Stone <andrew@stone.com>
netmap_lm 1493/tcp netmap_lm
netmap_lm 1493/udp netmap_lm
# Phillip Magson <philm@extro.ucc.su.OZ.AU>
ica 1494/tcp ica
ica 1494/udp ica
# John Richardson, Citrix Systems
cvc 1495/tcp cvc
cvc 1495/udp cvc
# Bill Davidson <bildo@equalizer.cray.com>
liberty-lm 1496/tcp liberty-lm
liberty-lm 1496/udp liberty-lm
# Jim Rogers <tranelimbo@pacbell.com>
rfx-lm 1497/tcp rfx-lm
rfx-lm 1497/udp rfx-lm
# Bill Bishop <bil@rfx.rfx.com>
watcom-sql 1498/tcp Watcom-QLQ
watcom-sql 1498/udp Watcom-QLQ
# Rog Skubowius <rwskubow@ccnga.uwaterloo.ca>
fhc 1499/tcp Federico Heinz Consultora
fhc 1499/udp Federico Heinz Consultora
# Federico Heinz <federico@heinz.com>
vlsi-lm 1500/tcp VLSI License Manager
vlsi-lm 1500/udp VLSI License Manager
# Shue-Lin Kuo <shuelin@mdk.sanjose.vlsi.com>
sas-3 1501/tcp Satellite-data Acquisition System
3
sas-3 1501/udp Satellite-data Acquisition System
3
# Bill Taylor <sais@ssec.wisc.edu>
shivadiscovery 1502/tcp Shiva
shivadiscovery 1502/udp Shiva
# Jonathan Wenocur <jhw@Shiva.COM>
imtc-mcs  1503/tcp  Databeam
imtc-mcs  1503/udp  Databeam
#    Jim Johnstone <jjohnstone@databeam.com>
evb-elm  1504/tcp  EVB Software Engineering License Manager
evb-elm  1504/udp  EVB Software Engineering License Manager
#    B.G. Mahesh < mahesh@sett.com>
funkproxy  1505/tcp  Funk Software, Inc.
funkproxy  1505/udp  Funk Software, Inc.
#    Robert D. Vincent <bert@willowpond.com>
utcd  1506/tcp  Universal Time daemon (utcd)
utcd  1506/udp  Universal Time daemon (utcd)
#    Walter Poxon <wpoxon@ironwood.cray.com>
symplex  1507/tcp  symplex
symplex  1507/udp  symplex
#    Mike Turley <turley@symplex.com>
diagmond  1508/tcp  diagmond
diagmond  1508/udp  diagmond
#    Pete Moscatelli <moscat@hprdstl0.rose.hp.com>
robcad-lm  1509/tcp  Robcad, Ltd. License Manager
robcad-lm  1509/udp  Robcad, Ltd. License Manager
#    Hindin Joseph <hindin%robcad@uunet.uu.net>
mvx-lm  1510/tcp  Midland Valley Exploration Ltd. Lic. Man.
mvx-lm  1510/udp  Midland Valley Exploration Ltd. Lic. Man.
#    Charles X. Chen <charles@mvel.demon.co.uk>
3l-l1  1511/tcp  3l-l1
3l-l1  1511/udp  3l-l1
#    Ian A. Young <iay@threel.co.uk>
wins  1512/tcp  Microsoft’s Windows Internet Name Service
winc  1512/udp  Microsoft’s Windows Internet Name Service
#    Pradeep Bahl <pradeepb@microsoft.com>
fujitsu-dtc  1513/tcp  Fujitsu Systems Business of America, Inc
fujitsu-dtc  1513/udp  Fujitsu Systems Business of America, Inc
fujitsu-dtcns  1514/tcp  Fujitsu Systems Business of America, Inc
fujitsu-dtcns  1514/udp  Fujitsu Systems Business of America, Inc
#    Charles A. Higgins
#    <75730.2257@compuserve.com>
ifor-protocol  1515/tcp  ifor-protocol
ifor-protocol  1515/udp  ifor-protocol
#    Dr. R.P. Alston <robin@gradient.com>
vpad  1516/tcp  Virtual Places Audio data
vpad  1516/udp  Virtual Places Audio data
vpac 1517/tcp Virtual Places Audio control
vpac 1517/udp Virtual Places Audio control
vpvd 1518/tcp Virtual Places Video data
vpvd 1518/udp Virtual Places Video data
vpvc 1519/tcp Virtual Places Video control
vpvc 1519/udp Virtual Places Video control
# Ehud Shapiro <udi@ubique.co.il>
atm-zip-office 1520/tcp atm zip office
atm-zip-office 1520/udp atm zip office
# Wilson Kwan <wilsonk%toronto@zip.atm.com>
cube-lm 1521/tcp nCube License Manager
cube-lm 1521/udp nCube License Manager
# Maxine Yuen <maxine@hq.ncube.com>
rna-lm 1522/tcp Ricardo North America License Manager
rna-lm 1522/udp Ricardo North America License Manager
# MFlemming@aol.com
cichild-lm 1523/tcp cichild
cichild-lm 1523/udp cichild
# Andy Burgess <aab@cichlid.com>
ingreslock 1524/tcp ingres
ingreslock 1524/udp ingres
orasrv 1525/tcp oracle
orasrv 1525/udp oracle
prospero-np 1525/tcp Prospero Directory Service non-priv
prospero-np 1525/udp Prospero Directory Service non-priv
pdap-np 1526/tcp Prospero Data Access Prot non-priv
pdap-np 1526/udp Prospero Data Access Prot non-priv
# B. Clifford Neuman <bcn@isi.edu>
tlsrv 1527/tcp oracle
tlsrv 1527/udp oracle
mciautoreg 1528/tcp mciautoreg
mciautoreg 1528/udp mciautoreg
# John Klensin <klensin@MAIL1.RESTON.MCI.NET>
coauthor 1529/tcp oracle
coauthor 1529/udp oracle
rap-service 1530/tcp rap-service
rap-service 1530/udp rap-service
rap-listen 1531/tcp rap-listen
rap-listen 1531/udp rap-listen
# Phil Servita <meister@ftp.com>
microconnect 1532/tcp microconnect
microconnect 1532/udp microconnect
# Michael Fischer +49 531 21 13 0
virtual-places 1533/tcp Virtual Places Software
virtual-places 1533/udp Virtual Places Software
# Ehud Shapiro <udi@ubique.co.il>
micromuse-lm 1534/tcp micromuse-lm
micromuse-lm 1534/udp micromuse-lm
ampr-info       1535/tcp    ampr-info
ampr-info       1535/udp    ampr-info
ampr-inter      1536/tcp    ampr-inter
ampr-inter      1536/udp    ampr-inter
sdsc-lm         1537/tcp    isi-lm
sdsc-lm         1537/udp    isi-lm
3ds-lm          1538/tcp    3ds-lm
3ds-lm          1538/udp    3ds-lm
intellistor-lm  1539/tcp    Intellistor License Manager
intellistor-lm  1539/udp    Intellistor License Manager
rds             1540/tcp    rds
rds             1540/udp    rds
rds2            1541/tcp    rds2
rds2            1541/udp    rds2
gridgen-elmd    1542/tcp    gridgen-elmd
gridgen-elmd    1542/udp    gridgen-elmd
simba-cs        1543/tcp    simba-cs
simba-cs        1543/udp    simba-cs
aspeclmd        1544/tcp    aspeclmd
aspeclmd        1544/udp    aspeclmd
vistium-share   1545/tcp    vistium-share
vistium-share   1545/udp    vistium-share
abbaccuray      1546/tcp    abbaccuray
abbaccuray      1546/udp    abbaccuray
laplink         1547/tcp    laplink
laplink         1547/udp    laplink
shivahose       1549/tcp    Shiva Hose
shivasound      1549/udp    Shiva Sound
3m-image-lm     1550/tcp    Image Storage license manager 3M Company
3m-image-lm     1550/udp    Image Storage license manager 3M Company
hecmtl-db       1551/tcp    HECMTL-DB
hecmtl-db       1551/udp    HECMTL-DB
pciarray        1552/tcp    pciarray
<table>
<thead>
<tr>
<th>Service</th>
<th>Port</th>
<th>Description</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>pciarray</td>
<td>1552/udp</td>
<td>pciarray</td>
<td>Ron Folk <a href="mailto:rfolkes@avl.com">rfolkes@avl.com</a></td>
</tr>
<tr>
<td>sna-cs</td>
<td>1553/tcp</td>
<td>sna-cs</td>
<td>Tony Sowter <a href="mailto:ts@datcon.co.uk">ts@datcon.co.uk</a></td>
</tr>
<tr>
<td>sna-cs</td>
<td>1553/udp</td>
<td>sna-cs</td>
<td>Tony Sowter <a href="mailto:ts@datcon.co.uk">ts@datcon.co.uk</a></td>
</tr>
<tr>
<td>caci-lm</td>
<td>1554/tcp</td>
<td>CACI Products Company License Manager</td>
<td>Erik Blume &lt;erikb@ caciasl.com&gt;</td>
</tr>
<tr>
<td>caci-lm</td>
<td>1554/udp</td>
<td>CACI Products Company License Manager</td>
<td>Erik Blume &lt;erikb@ caciasl.com&gt;</td>
</tr>
<tr>
<td>livelan</td>
<td>1555/tcp</td>
<td>livelan</td>
<td><a href="mailto:khedayat@roadrunner.pictel.com">khedayat@roadrunner.pictel.com</a> &lt;Kaynam Hedayat&gt;</td>
</tr>
<tr>
<td>livelan</td>
<td>1555/udp</td>
<td>livelan</td>
<td><a href="mailto:khedayat@roadrunner.pictel.com">khedayat@roadrunner.pictel.com</a> &lt;Kaynam Hedayat&gt;</td>
</tr>
<tr>
<td>ashwin</td>
<td>1556/tcp</td>
<td>AshWin CI Tecnologies</td>
<td>Dave Neal <a href="mailto:daven@ashwin.com">daven@ashwin.com</a></td>
</tr>
<tr>
<td>ashwin</td>
<td>1556/udp</td>
<td>AshWin CI Tecnologies</td>
<td>Dave Neal <a href="mailto:daven@ashwin.com">daven@ashwin.com</a></td>
</tr>
<tr>
<td>arbortext-lm</td>
<td>1557/tcp</td>
<td>ArborText License Manager</td>
<td>David J. Wilson <a href="mailto:djw@arbortext.com">djw@arbortext.com</a></td>
</tr>
<tr>
<td>arbortext-lm</td>
<td>1557/udp</td>
<td>ArborText License Manager</td>
<td>David J. Wilson <a href="mailto:djw@arbortext.com">djw@arbortext.com</a></td>
</tr>
<tr>
<td>xingmpeg</td>
<td>1558/tcp</td>
<td>xingmpeg</td>
<td>Howard Gordon <a href="mailto:hgordon@system.xingtech.com">hgordon@system.xingtech.com</a></td>
</tr>
<tr>
<td>xingmpeg</td>
<td>1558/udp</td>
<td>xingmpeg</td>
<td>Howard Gordon <a href="mailto:hgordon@system.xingtech.com">hgordon@system.xingtech.com</a></td>
</tr>
<tr>
<td>web2host</td>
<td>1559/tcp</td>
<td>web2host</td>
<td>Stephen Johnson <a href="mailto:sjohnson@mindspring.com">sjohnson@mindspring.com</a></td>
</tr>
<tr>
<td>web2host</td>
<td>1559/udp</td>
<td>web2host</td>
<td>Stephen Johnson <a href="mailto:sjohnson@mindspring.com">sjohnson@mindspring.com</a></td>
</tr>
<tr>
<td>asci-val</td>
<td>1560/tcp</td>
<td>asci-val</td>
<td>Brian Schenkenberger <a href="mailto:brians@advsycon.com">brians@advsycon.com</a></td>
</tr>
<tr>
<td>asci-val</td>
<td>1560/udp</td>
<td>asci-val</td>
<td>Brian Schenkenberger <a href="mailto:brians@advsycon.com">brians@advsycon.com</a></td>
</tr>
<tr>
<td>facilityview</td>
<td>1561/tcp</td>
<td>facilityview</td>
<td>Ed Green <a href="mailto:egreen@pmeasuring.com">egreen@pmeasuring.com</a></td>
</tr>
<tr>
<td>facilityview</td>
<td>1561/udp</td>
<td>facilityview</td>
<td>Ed Green <a href="mailto:egreen@pmeasuring.com">egreen@pmeasuring.com</a></td>
</tr>
<tr>
<td>pconnectmgr</td>
<td>1562/tcp</td>
<td>pconnectmgr</td>
<td>Bob Kaiser <a href="mailto:BKaiser@palindrome.com">BKaiser@palindrome.com</a></td>
</tr>
<tr>
<td>pconnectmgr</td>
<td>1562/udp</td>
<td>pconnectmgr</td>
<td>Bob Kaiser <a href="mailto:BKaiser@palindrome.com">BKaiser@palindrome.com</a></td>
</tr>
<tr>
<td>cadabra-lm</td>
<td>1563/tcp</td>
<td>Cadabra License Manager</td>
<td>Arthur Castonguay <a href="mailto:arthurc@doe.carleton.ca">arthurc@doe.carleton.ca</a></td>
</tr>
<tr>
<td>cadabra-lm</td>
<td>1563/udp</td>
<td>Cadabra License Manager</td>
<td>Arthur Castonguay <a href="mailto:arthurc@doe.carleton.ca">arthurc@doe.carleton.ca</a></td>
</tr>
<tr>
<td>pay-per-view</td>
<td>1564/tcp</td>
<td>Pay-Per-View</td>
<td>Brian Tung <a href="mailto:brian@isi.edu">brian@isi.edu</a></td>
</tr>
<tr>
<td>pay-per-view</td>
<td>1564/udp</td>
<td>Pay-Per-View</td>
<td>Brian Tung <a href="mailto:brian@isi.edu">brian@isi.edu</a></td>
</tr>
<tr>
<td>winddlb</td>
<td>1565/tcp</td>
<td>WinDD</td>
<td>Kelly Sims <a href="mailto:kellys@garnet.wv.tek.com">kellys@garnet.wv.tek.com</a></td>
</tr>
<tr>
<td>winddlb</td>
<td>1565/udp</td>
<td>WinDD</td>
<td>Kelly Sims <a href="mailto:kellys@garnet.wv.tek.com">kellys@garnet.wv.tek.com</a></td>
</tr>
<tr>
<td>corelvideo</td>
<td>1566/tcp</td>
<td>CORELVIDEO</td>
<td>Ming Poon <a href="mailto:mingp@corel.ca">mingp@corel.ca</a></td>
</tr>
<tr>
<td>corelvideo</td>
<td>1566/udp</td>
<td>CORELVIDEO</td>
<td>Ming Poon <a href="mailto:mingp@corel.ca">mingp@corel.ca</a></td>
</tr>
<tr>
<td>jlicelmd</td>
<td>1567/tcp</td>
<td>jlicelmd</td>
<td>Christian Schormann <a href="mailto:100410.3063@compuserve.com">100410.3063@compuserve.com</a></td>
</tr>
<tr>
<td>jlicelmd</td>
<td>1567/udp</td>
<td>jlicelmd</td>
<td>Christian Schormann <a href="mailto:100410.3063@compuserve.com">100410.3063@compuserve.com</a></td>
</tr>
<tr>
<td>tsspmap</td>
<td>1568/tcp</td>
<td>tsspmap</td>
<td>Paul W. Nelson <a href="mailto:nelson@thursby.com">nelson@thursby.com</a></td>
</tr>
<tr>
<td>tsspmap</td>
<td>1568/udp</td>
<td>tsspmap</td>
<td>Paul W. Nelson <a href="mailto:nelson@thursby.com">nelson@thursby.com</a></td>
</tr>
</tbody>
</table>
ets             1569/tcp    ets
ets             1569/udp    ets
#                           Carstein Seeberg <case@boole.no>
orbixd          1570/tcp    orbixd
orbixd          1570/udp    orbixd
#                           Bridget Walsh <bwalsh@iona.ie>
rbdb-disp       1571/tcp    Oracle Remote Data Base
rbdb-disp       1571/udp    Oracle Remote Data Base
#                           <mackin@us.oracle.com>
chip-lm          1572/tcp    Chipcom License Manager
chip-lm          1572/udp    Chipcom License Manager
#                           Jerry Natowitz <Jerry Natowitz>
itscomm-ns      1573/tcp    itscomm-ns
itscomm-ns      1573/udp    itscomm-ns
#                           Rich Thompson <richt@watson.ibm.com>
mvel-lm          1574/tcp    mvel-lm
mvel-lm          1574/udp    mvel-lm
#                           David Bisset <dbisset@mvel.demon.co.uk>
oraclenames    1575/tcp    oraclenames
oraclenames    1575/udp    oraclenames
#                           P.V.Shivkumar <PSHIVKUM@us.oracle.com>
moldflow-lm       1576/tcp    moldflow-lm
moldflow-lm       1576/udp    moldflow-lm
#                           Paul Browne <browne@moldflow.com.au>
hypercube-lm       1577/tcp    hypercube-lm
hypercube-lm       1577/udp    hypercube-lm
#                           Michael Moller <moller@hyper.hyper.com>
jacobus-lm          1578/tcp    Jacobus License Manager
jacobus-lm          1578/udp    Jacobus License Manager
#                           Tony Cleveland <tony.cleveland@jacobus.com>
ios-comm-ns          1579/tcp    ioc-sea-lm
ios-comm-ns          1579/udp    ioc-sea-lm
#                           Paul Nelson <paul@ioc-sea.com>
tn-tl-r1            1580/tcp    tn-tl-r1
tn-tl-r2            1580/udp    tn-tl-r2
#                           Ed Kress <eskress@thinknet.com>
vmf-msg-port        1581/tcp    vmf-msg-port
vmf-msg-port        1581/udp    vmf-msg-port
#                           Eric Whitehill <eawhiteh@itt.com>
tams-lm            1582/tcp    Toshiba America Medical Systems
#                           Philip Scott <pks@smtp.orasis.com>
simbaexpress    1583/tcp    simbaexpress
simbaexpress    1583/udp    simbaexpress
#                           Betsy Alexander +1 604-681-4549
#                           1584-1599 Unassigned
issd 1600/tcp
issd 1600/udp
#        1601-1641 Unassigned
isis-am 1642/tcp isis-am
isis-am 1642/udp isis-am
isis-amb 1643/tcp isis-amb
isis-amb 1643/udp isis-amb
#                        Ken Chapman <kchapman@isis.com>
#        1644-1649 Unassigned
nkd 1650/tcp
nkd 1650/udp
shiva_confsrvr 1651/tcp shiva_confsrvr
shiva_confsrvr 1651/udp shiva_confsrvr
#                        Mike Horowitz <mah@Shiva.COM>
xnmp 1652/tcp xnmp
xnmp 1652/udp xnmp
#                        Ali Saleh <scomm@cerf.net>
#        1653-1660 Unassigned
netview-aix-1 1661/tcp netview-aix-1
netview-aix-1 1661/udp netview-aix-1
netview-aix-2 1662/tcp netview-aix-2
netview-aix-2 1662/udp netview-aix-2
netview-aix-3 1663/tcp netview-aix-3
netview-aix-3 1663/udp netview-aix-3
netview-aix-4 1664/tcp netview-aix-4
netview-aix-4 1664/udp netview-aix-4
netview-aix-5 1665/tcp netview-aix-5
netview-aix-5 1665/udp netview-aix-5
netview-aix-6 1666/tcp netview-aix-6
netview-aix-6 1666/udp netview-aix-6
netview-aix-7 1667/tcp netview-aix-7
netview-aix-7 1667/udp netview-aix-7
netview-aix-8 1668/tcp netview-aix-8
netview-aix-8 1668/udp netview-aix-8
netview-aix-9 1669/tcp netview-aix-9
netview-aix-9 1669/udp netview-aix-9
netview-aix-10 1670/tcp netview-aix-10
netview-aix-10 1670/udp netview-aix-10
netview-aix-11 1671/tcp netview-aix-11
netview-aix-11 1671/udp netview-aix-11
netview-aix-12 1672/tcp netview-aix-12
netview-aix-12 1672/udp netview-aix-12
#                        Martha Crisson <CRISSON@ralvm12.vnet.ibm.com>
#        1673-1987 Unassigned
licensedaemon 1986/tcp cisco license management
licensedaemon 1986/udp cisco license management
tr-rsrb-p1 1987/tcp cisco RSRB Priority 1 port
tr-rsrb-p1 1987/udp cisco RSRB Priority 1 port
tr-rsrb-p2 1988/tcp cisco RSRB Priority 2 port
tr-rsrb-p2 1988/udp cisco RSRB Priority 2 port
tr-rsrb-p3 1989/tcp cisco RSRB Priority 3 port
tr-rsrb-p3 1989/udp cisco RSRB Priority 3 port
mshnet 1989/tcp  MHSnet system
mshnet 1989/udp  MHSnet system
#               Bob Kummerfeld <bob@sarad.cs.su.oz.au>

stun-p1 1990/tcp  cisco STUN Priority 1 port
stun-p1 1990/udp  cisco STUN Priority 1 port
stun-p2 1991/tcp  cisco STUN Priority 2 port
stun-p2 1991/udp  cisco STUN Priority 2 port
stun-p3 1992/tcp  cisco STUN Priority 3 port
stun-p3 1992/udp  cisco STUN Priority 3 port
#               Bob Kummerfeld <bob@sarad.cs.su.oz.au>

ipsendmsg 1992/tcp  IPsendmsg
ipsendmsg 1992/udp  IPsendmsg
#               Bob Kummerfeld <bob@sarad.cs.su.oz.au>

snmp-tcp-port  1993/tcp  cisco SNMP TCP port
snmp-tcp-port  1993/udp  cisco SNMP TCP port
stun-port 1994/tcp  cisco serial tunnel port
stun-port 1994/udp  cisco serial tunnel port
perf-port 1995/tcp  cisco perf port
perf-port 1995/udp  cisco perf port
tr-rsrb-port  1996/tcp  cisco Remote SRB port
tr-rsrb-port  1996/udp  cisco Remote SRB port
gdp-port 1997/tcp  cisco Gateway Discovery Protocol
gdp-port 1997/udp  cisco Gateway Discovery Protocol
x25-svc-port  1998/tcp  cisco X.25 service (XOT)
x25-svc-port  1998/udp  cisco X.25 service (XOT)
tcp-id-port 1999/tcp  cisco identification port
tcp-id-port 1999/udp  cisco identification port
callbook 2000/tcp
callbook 2000/udp
dc 2001/tcp
wizard 2001/udp  curry
globe 2002/tcp
globe 2002/udp
mailbox 2004/tcp
dmce 2004/udp  CCWS mm conf
berknet 2005/tcp
oracle 2005/udp
invokator 2006/tcp
raid-cc 2006/udp  raid
dectalk 2007/tcp
raid-am 2007/udp
cnf 2008/tcp
terminaldb 2008/udp
news 2009/tcp
whosockami 2009/udp
search 2010/tcp
pipe_server 2010/udp
raid-cc 2011/tcp raid
servserv 2011/udp
ttyinfo 2012/tcp
raid-ac 2012/udp
raid-am 2013/tcp
raid-cd 2013/udp
troff 2014/tcp
raid-sf 2014/udp
cypress 2015/tcp
raid-CS 2015/udp
bootserver 2016/tcp
bootserver 2016/udp
cypress-stat 2017/tcp
bootclient 2017/udp
terminaldb 2018/tcp
rellpack 2018/udp
whosockami 2019/tcp
about 2019/udp
xinupageserver 2020/tcp
xinupageserver 2020/udp
servexec 2021/tcp
xinuexpansion1 2021/udp
down 2022/tcp
xinuexpansion2 2022/udp
xinuexpansion3 2023/tcp
xinuexpansion3 2023/udp
xinuexpansion4 2024/tcp
xinuexpansion4 2024/udp
ellpack 2025/tcp
xribs 2025/udp
scrabble 2026/tcp
scrabble 2026/udp
shadowserver 2027/tcp
shadowserver 2027/udp
submitserver 2028/tcp
submitserver 2028/udp
device2 2030/tcp
device2 2030/udp
blackboard 2032/tcp
blackboard 2032/udp
glogger 2033/tcp
glogger 2033/udp
scoremgr 2034/tcp
scoremgr 2034/udp
imsldoc 2035/tcp
imsldoc 2035/udp
objectmanager 2038/tcp
objectmanager 2038/udp
lam 2040/tcp
lam 2040/udp
interbase 2041/tcp
interbase 2041/udp
isis 2042/tcp  isis
isis 2042/udp  isis
isis-bcast 2043/tcp  isis-bcast
isis-bcast 2043/udp  isis-bcast
#                          Ken Chapman <kchapman@isis.com
ivs-video       2232/udp   IVS Video default
rimsl  2044/tcp
rimsl  2044/udp
cdfunc  2045/tcp
cdfunc  2045/udp
sdfunc  2046/tcp
sdfunc  2046/udp
dls  2047/tcp
dls  2047/udp
dls-monitor 2048/tcp
dls-monitor 2048/udp
shilp  2049/tcp
shilp  2049/udp
dlsrpn  2065/tcp   Data Link Switch Read Port Number
dlsrpn  2065/udp   Data Link Switch Read Port Number
dlswpn  2067/tcp   Data Link Switch Write Port Number
dlswpn  2067/udp   Data Link Switch Write Port Number
ats  2201/tcp   Advanced Training System Program
ats  2201/udp   Advanced Training System Program
#                          Thierry Turletti <Thierry.Turletti@sophia.inria.fr>
ivsd            2241/tcp   IVS Daemon
ivsd            2241/udp   IVS Daemon
#                          Thierry Turletti <Thierry.Turletti@sophia.inria.fr>
pehelp          2307/tcp   pehelp
pehelp          2307/udp   pehelp
#                          Jens Kilian <jensk@hpbeo82.bbn.hp.com>
#                          Aubrey Turner
#               <S95525ta%etsuacad.bitnet@ETSUADMIN.ETSU.EDU>
hp-3000-telnet  2564/tcp   HP 3000 NS/VT block mode telnet
www-dev         2784/tcp   world wide web - development
www-dev         2784/udp   world wide web - development
NSWS  3049/tcp
NSWS  3049/udp
vmodem          3141/tcp   VMODEM
vmodem          3141/udp   VMODEM
#                          Ray Gwinn <p00321@psilink.com>
ccmail  3264/tcp  cc:mail/lotus
ccmail  3264/udp  cc:mail/lotus
dec-notes  3333/tcp  DEC Notes
dec-notes  3333/udp  DEC Notes
#                          Kim Moraros <moraros@via.enet.dec.com>
mapper-nodemgr  3984/tcp  MAPPER network node manager
mapper-nodemgr  3984/udp  MAPPER network node manager
mapper-mapethd  3985/tcp  MAPPER TCP/IP server
mapper-mapethd  3985/udp  MAPPER TCP/IP server
mapper-ws_ethd  3986/tcp  MAPPER workstation server
mapper-ws_ethd  3986/udp  MAPPER workstation server
#                 John C. Horton <jch@unirsvl.rsvl.unisys.com>
bmap  3421/tcp  Bull Apprise portmapper
bmap  3421/udp  Bull Apprise portmapper
#                          Jeremy Gilbert <J.Gilbert@ma30.bull.com>
#
prsvp  3455/tcp  RSVP Port
prsvp  3455/udp  RSVP Port
#                          Bob Braden <Braden@isi.edu>
vat  3456/tcp  VAT default data
vat  3456/udp  VAT default data
#                          Van Jacobson <van@ee.lbl.gov>
vat-control  3457/tcp  VAT default control
vat-control  3457/udp  VAT default control
#                          Van Jacobson <van@ee.lbl.gov>
#
udt_os  3900/tcp  Unidata UDT OS
udt_os  3900/udp  Unidata UDT OS
#                          James Powell <james@mailhost.unidata.com>
netcheque  4008/tcp  NetCheque accounting
netcheque  4008/udp  NetCheque accounting
#                          B. Clifford Neuman <bcn@isi.edu>
nuts_dem  4132/tcp  NUTS Daemon
nats_dem  4132/udp  NUTS Daemon
nats_bootp  4133/tcp  NUTS Bootp Server
nats_bootp  4133/udp  NUTS Bootp Server
#                          Martin Freiss <freiss.pad@sni.>
rwhois  4321/tcp  Remote Who Is
rwhois  4321/udp  Remote Who Is
#                          Mark Kosters <markk@internic.net>
unicall  4343/tcp  UNICALL
unicall  4343/udp  UNICALL
#                          James Powell <james@enghp.unidata.comp>
krb524  4444/tcp  KR524
krb524  4444/udp  KR524
#                          B. Clifford Neuman <bcn@isi.edu>
# PROBLEM krb524 assigned the port,
# PROBLEM nv used it without an assignment
nv-video  4444/tcp  NV Video default
nv-video  4444/udp  NV Video default
#                          Ron Frederick <frederick@parc.xerox.com>
#
sae-urn  4500/tcp   sae-urn
sae-urn  4500/udp   sae-urn
urn-x-cdchoice  4501/tcp   urn-x-cdchoice
urn-x-cdchoice  4501/udp   urn-x-cdchoice
# Paul Hoffman <phoffman@proper.com>
rfa  4672/tcp   remote file access server
rfa  4672/udp   remote file access server
commmplex-main  5000/tcp
commmplex-main  5000/udp
commmplex-link  5001/tcp
commmplex-link  5001/udp
rfe  5002/tcp   radio free ethernet
rfe  5002/udp   radio free ethernet
claris-fmpro  5003/tcp   Claris FileMaker Pro
claris-fmpro  5003/udp   Claris FileMaker Pro
# Jon Thatcher <jon_thatcher@qm.claris.com>
telelpathstart  5010/tcp   TelepathStart
telelpathstart  5010/udp   TelepathStart
telelpathattack  5011/tcp   TelepathAttack
telelpathattack  5011/udp   TelepathAttack
# Helmuth Breitenfellner <hbreitenf@vnet.imb.com>
mmcc  5050/tcp   multimedia conference control tool
mmcc  5050/udp   multimedia conference control tool
# Steve Casner <Casner@isi.edu>
rmonitor_secure  5145/tcp
rmonitor_secure  5145/udp
aol  5190/tcp   America-Onine
aol  5190/udp   America-Onine
# Marty Lyons <marty@aol.com>
aol-1  5191/tcp   AmericaOnline1
aol-1  5191/udp   AmericaOnline1
aol-2  5192/tcp   AmericaOnline2
aol-2  5192/udp   AmericaOnline2
aol-3  5193/tcp   AmericaOnline3
aol-3  5193/udp   AmericaOnline3
# Bruce Mackey <BAMackey@aol.com>
padl2sim  5236/tcp
padl2sim  5236/udp
hacl-hb  5300/tcp   # HA cluster heartbeat
hacl-hb  5300/udp   # HA cluster heartbeat
hacl-gs  5301/tcp   # HA cluster general services
hacl-gs  5301/udp   # HA cluster general services
hacl-cfg  5302/tcp   # HA cluster configuration
hacl-cfg  5302/udp   # HA cluster configuration
hacl-probe  5303/tcp   # HA cluster probing
hacl-probe  5303/udp   # HA cluster probing
hacl-local  5304/tcp
hacl-local  5304/udp
hacl-test  5305/tcp
hacl-test  5305/udp
# Eric Soderberg <seric@hposl102.cup.hp>
proshareaudio 5713/tcp  proshare conf audio
proshareaudio 5713/udp  proshare conf audio
prosharevideo 5714/tcp  proshare conf video
prosharevideo 5714/udp  proshare conf video
prosharedata  5715/tcp  proshare conf data
prosharedata  5715/udp  proshare conf data
prosharerequest 5716/tcp  proshare conf request
prosharerequest 5716/udp  proshare conf request
prosharenotify  5717/tcp  proshare conf notify
prosharenotify  5717/udp  proshare conf notify

# <gunner@ibeam.intel.com>
x11  6000-6063/tcp  X Window System
x11  6000-6063/udp  X Window System
# Stephen Gildea <gildea@expo.lcs.mit.edu>
softcm   6110/tcp   HP SoftBench CM
softcm   6110/udp   HP SoftBench CM
spc      6111/tcp   HP SoftBench Sub-Process Control
spc      6111/udp   HP SoftBench Sub-Process Control
# Scott A. Kramer <sk@tleilaxu.sde.hp.com>
dtspcd   6112/tcp   dtspcd
dtspcd   6112/udp   dtspcd
# Doug Royer <Doug.Royer@eng.sun.com>
meta-corp 6141/tcp   Meta Corporation License Manager
meta-corp 6141/udp   Meta Corporation License Manager
# Osamu Masuda <--none--->
apsentec-lm 6142/tcp   Aspen Technology License Manager
apsentec-lm 6142/udp   Aspen Technology License Manager
# Kevin Massey <massey@aspentec.com>
watershed-lm 6143/tcp   Watershed License Manager
watershed-lm 6143/udp   Watershed License Manager
# David Ferrero <david@zion.com>
statsci1-lm 6144/tcp   StatSci License Manager - 1
statsci1-lm 6144/udp   StatSci License Manager - 1
statsci2-lm 6145/tcp   StatSci License Manager - 2
statsci2-lm 6145/udp   StatSci License Manager - 2
# Scott Blachowicz <scott@statsci.com>
lonewolf-lm 6146/tcp   Lone Wolf Systems License Manager
lonewolf-lm 6146/udp   Lone Wolf Systems License Manager
# Dan Klein <dvk@lonewolf.com>
montage-lm 6147/tcp   Montage License Manager
montage-lm 6147/udp   Montage License Manager
# Michael Ubell <michael@montage.com>
ricardo-lm 6148/tcp   Ricardo North America License Manager
ricardo-lm 6148/udp   Ricardo North America License Manager
# M Flemming <mflemming@aol.com>
xdsxdm  6558/tcp
xdsxdm  6558/udp
acmsoda   6969/tcp   acmsoda
acmsoda   6969/udp   acmsoda
# Daniel Simms <dsimms@acm.uiuc.edu>
afs3-fileserver 7000/tcp file server itself
afs3-fileserver 7000/udp file server itself
afs3-callback 7001/tcp callbacks to cache managers
afs3-callback 7001/udp callbacks to cache managers
afs3-prserver 7002/tcp users & groups database
afs3-prserver 7002/udp users & groups database
afs3-vlserver 7003/tcp volume location database
afs3-vlserver 7003/udp volume location database
afs3-kaserver 7004/tcp AFS/Kerberos authentication service
afs3-kaserver 7004/udp AFS/Kerberos authentication service
afs3-volser 7005/tcp volume management server
afs3-volser 7005/udp volume management server
afs3-errors 7006/tcp error interpretation service
afs3-errors 7006/udp error interpretation service
afs3-bos 7007/tcp basic overseer process
afs3-bos 7007/udp basic overseer process
afs3-update 7008/tcp server-to-server updater
afs3-update 7008/udp server-to-server updater
afs3-rmtsys 7009/tcp remote cache manager service
afs3-rmtsys 7009/udp remote cache manager service
ups-onlinet 7010/tcp onlinet uninterruptable power supplies
ups-onlinet 7010/udp onlinet uninterruptable power supplies
# Brian Hammill <hamill@dolphin.exide.com>
font-service 7100/tcp X Font Service
font-service 7100/udp X Font Service
# Stephen Gildea <gildea@expo.lcs.mit.edu>
fodms 7200/tcp FODMS FLIP
fodms 7200/udp FODMS FLIP
# David Anthony <anthony@power.amasd.anatcp.rockwell.com>
dlip 7201/tcp DLIP
dlip 7201/udp DLIP
# Albert Manfredi <manfredi@engr05.comsys.rockwell.com>
npmp 8450/tcp npmp
npmp 8450/udp npmp
# Ian Chard <ian@tanagra.demon.co.uk>
man 9535/tcp
man 9535/udp
sd 9876/tcp Session Director
sd 9876/udp Session Director
# Van Jacobson <van@ee.lbl.gov>
distinct 9999/tcp distinct
distinct 9999/udp distinct
# Anoop Tewari <anoop@next.distinct.com>
isode-dua 17007/tcp
isode-dua 17007/udp
biimenu 18000/tcp Beckman Instruments, Inc.
birimenu 18000/udp Beckman Instruments, Inc.
R. L. Meyering <RLMEYERING@BIIVAX.DP.BECKMAN.COM>
icl-twobase1 25000/tcp icl-twobase1
icl-twobase1 25000/udp icl-twobase1
icl-twobase2 25001/tcp icl-twobase2
icl-twobase2    25001/udp icl-twobase2
icl-twobase3    25002/tcp icl-twobase3
icl-twobase3    25002/udp icl-twobase3
icl-twobase4    25003/tcp icl-twobase4
icl-twobase4    25003/udp icl-twobase4
icl-twobase5    25004/tcp icl-twobase5
icl-twobase5    25004/udp icl-twobase5
icl-twobase6    25005/tcp icl-twobase6
icl-twobase6    25005/udp icl-twobase6
icl-twobase7    25006/tcp icl-twobase7
icl-twobase7    25006/udp icl-twobase7
icl-twobase8    25007/tcp icl-twobase8
icl-twobase8    25007/udp icl-twobase8
icl-twobase9    25008/tcp icl-twobase9
icl-twobase9    25008/udp icl-twobase9
icl-twobase10   25009/tcp icl-twobase10
icl-twobase10   25009/udp icl-twobase10
#               J. A. (Tony) Sever <J.A.Sever@bra0119.wins.icl.co.uk>
dbbrowse        47557/tcp Databeam Corporation
dbbrowse        47557/udp Databeam Corporation
#                         Cindy Martin <cmartin@databeam.com>
REFERENCES

•    DARPA
    Internet Program Protocol Specification”, STD 7,

RFC 793,
USC/Information Sciences Institute, September 1981.