United States Patent

Phillips et al.

[54] RECOVERING NITROAMINOS AND REFORMULATION OF BY-PRODUCTS

[21] Appl. No.: 09/212,050

Related U.S. Application Data

[60] Provisional application No. 60/069,492, Dec. 15, 1997.

[51] Int. Cl. C07C 24/00
[52] U.S. Cl. 564/112; 564/107
[58] Field of Search 564/107, 112

[56] References Cited

U.S. PATENT DOCUMENTS

Primary Examiner—Paul J. Killos
Attorney, Agent, or Firm—Nancy E. Ownbey; Deborah A. Peacock; Jeffrey D. Myers

[57] ABSTRACT

Methods to recover nitroamines from energetic pyrotechnic materials yielding usable by-products and producing zero waste. The methods are used on materials containing HMX and RDX.

40 Claims, No Drawings
1

RECOVERING NITROAMINES AND FORMULATION OF BY-PRODUCTS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing of U.S. Provisional patent application Ser. No. 60/069,492, entitled METHOD FOR RECOVERING NITROAMINES AND FORMULATION OF BY-PRODUCTS, filed on Dec. 15, 1997, and the specification thereof is incorporated herein by reference.

GOVERNMENT RIGHTS

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract No. N00164-95-C-0023 awarded by U.S. Department of Defense.

BACKGROUND OF THE INVENTION

1. Field of the Invention (Technical Field)

The present invention relates to the recovery of nitroamines from surplus energetic materials, and their reformulation into useful products.

2. Background Art

The U.S. military has stockpiled thousands of tons of surplus energetic materials that are now obsolete and either will not or cannot be used for future applications. Reduction of this obsolete surplus is of economic and environmental necessity. However, the traditional means of open burning, open detonation or dumping are not acceptable. They yield no usable materials, contribute to pollution and increase disposal site remediation costs. Two of the major components in many of these energetic materials are cyclotetramethylene tetrinitramine (HMX) and cyclotetramethylene trinitramine (RDX). These compounds have the potential to be recovered from the energetic material surplus in a demilitarization method, and used as blasting agents that are booster-sensitive but not blasting cap -sensitive, nutrient additives for fertilizer, explosive metal bonding, and used in well perforating charges. On an economic basis, demilitarization to produce purified nitroamines is preferable to mere reuse as blasting agents—gross income from the sale of the processed HMX is on the order of a magnitude greater than that from the sale of the surplus for reuse as is.

Various chemical demilitarization methods have been proposed, but involve the use of organic solvents which result in hazardous waste. For example, U.S. Pat. No. 5,523,517, entitled Destruction of Nitramines Employing Aqueous Dispersion of Metal Powders to Cannizzo et. al. uses metal salts, which must be separated and properly disposed of, and U.S. Pat. No. 4,988,627, entitled Solventic Degradation of Pyrotechnic Materials Containing Crosslinked Polymers to Tompa et. al. uses hazardous solvents such as ethylene diamine, benzene and DMSO (dimethylsulfoxide). Neither addresses the need for producing reusable products from the demilitarization.

The continuously mounting stockpile emphasizes the need for a more cost-effective method that maintains quality of product. The cost-effectiveness depends upon capital investment (equipment), supplies, waste clean-up required, and labor. With the present need for a process that has no environmental repercussions, a method to demilitarize surplus energetic materials that results in a useable resource and yet has a zero waste stream is most advantageous. The present invention addresses this need.

2

SUMMARY OF THE INVENTION

(DISCLOSURE OF THE INVENTION)

The present invention is directed to a method of recovering nitroamines from energetic pyrotechnic materials and yielding an additional useful product. The materials solubilized are preferably nitramines. The preferred method comprising the steps of solubilizing the material in a nitric acid solution, removing the effluent to yield a nitroamine, neutralizing the effluent with a base, removing the liquid content from the effluent to yield a compound salt, rinsing the nitroamine, and desensitizing the nitroamine.

The nitric acid solution is preferably 60–70% nitric acid, and more preferably 65–70% nitric acid. The steps of solubilizing and stirring are preferably conducted at ambient temperature. After solubilization, the solution may be heated, preferably to a temperature between 40–80° C., and more preferably to at least 70° C. The effluent is removed preferably by centrifuging or filtering. The effluent is preferably neutralized with ammonium hydroxide, and more preferably with at least 26% ammonium hydroxide, to neutralize preferably to a pH of approximately 6.8. The compound salt yielded from evaporation is preferably ammonium nitrate polymeric fuel (ANPF).

The nitroamine is preferably rinsed with water, and desensitized preferably with alcohol, and more preferably isopropyl alcohol, added to a total liquid content of 20 w%. The method preferably yields cyclotetramethylene tetranitramine.

The invention is also directed to a method of recovering nitroamines from energetic pyrotechnic materials comprising providing an energetic material, forming a solution, adding a substance to increase density of the solution, and separating the solution into a wax component and a nitroamine-containing component.

In the preferred embodiment, the energetic material provided is a compound containing a nitramine, and preferably cyclotetramethylene trinitramine. The solution is formed preferably by adding water, preferably to form a water to material ratio of between 3:1 and 7:1, and more preferably of at least 5:1. The substance added to increase density is preferably a salt, and more preferably CaCl₂. The substance may also be sodium chloride, sodium bicarbonate, potassium nitrate or a sulfate. The density is increased to between 1.1 and 1.7 g/cc, and preferably to approximately 1.2 g/cc. The solution may be heated, preferably to 80–85° C. A surfactant may be added. The surfactant added is preferably resistant to high temperatures and high acidity, and is more preferably Tween 20. The solution is preferably cooled to a maximum of 70° C. A preferred embodiment of the invention involves separation by skimming the wax substance from the top of the solution, and aspirating the solution to leave the nitroamine. The product left after aspiration is preferably cyclotetramethylene trinitramine, which is then preferably rinsed.

A primary object of the present invention is to provide a method for demilitarization of surplus energetic materials that generates value-added products.

Another object of the present invention is to provide a method for demilitarization that results in a zero waste stream.

Another object of the present invention is to provide a method for demilitarization that is less costly.

Another object of the present invention is to provide a method of demilitarization that addresses the need of a diverse surplus industry.
Another object of the present invention is to provide a method of demilitarization that relies upon disparate densities for separation of compounds.

A primary advantage of the present invention is the lack of hazardous waste of which to dispose.

Another advantage of the present invention is the use of inexpensive and readily available resources in the demilitarization process.

Another advantage of the present invention is the production of value-added products of high quality.

Other objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

DESCRIPTION OF THE PREFERRED EMBODIMENTS (BEST MODES FOR CARRYING OUT THE INVENTION)

The present invention is a demilitarization method of recovering nitroamines, particularly HMX (cyclooctamethylene tetranitramine) and RDX (cyclooctamethylene trinitramine) from energetic pyrotechnic materials. The energetic materials include HMX-containing compounds such as LX-14, VIG-5A, and WAY, and RDX-containing compounds such as Comp-A3. The method comprises the following steps: The energetic pyrotechnic material is solubilized in a nitric acid solution. This solution is preferably 60–70% nitric acid, and more preferably 65–70% nitric acid. A preferred solvent to feed ratio was 0 5:1 l/kg, and a most preferred ratio is 1:0.1:0. The solubilization can take place at ambient temperature. The mixture is then heated to between 40–80 °C, and preferably to approximately 70 °C. The heat is needed to recover the HMX from the slurry, and further solubilize the oxidized binder and completely remove it from the HMX. If heat is added at the beginning, the processing time is decreased. However, the longer the heating time, the more nitric acid required.

After heating, the solution is either centrifuged or filtered to remove the effluent. The remaining substance is a nitroamine, with particle size and morphology unaffected.

The resulting particles are round. Rounded particles are important for reuse applications—they blend readily, and have less sensitivity to shock and mechanical stimuli.

The nitroamine is rinsed, preferably with water to minimize waste, and then is desensitized with an alcohol, preferably isopropyl alcohol, to prepare for shipping or storage. The alcohol content should bring the nitroamine to a total liquid content of 20% by weight.

The effluent that is removed from the nitroamine is neutralized with 26–30% ammonium hydroxide to a pH of approximately 6.8. The water content is evaporated off, and the remaining compound is ANPF (ammonium nitrate polymeric fuel), a useable by-product.

Another method for recovering nitroamines from energetic pyrotechnic materials involves extraction of RDX from RDX-containing compounds. The method relies upon disparate densities of the binder and RDX to accomplish the separation. The method comprises adding water to the energetic material to form a solution. The water to material ratio should be from 3:1 to 7:1, and preferably be 5:1 by weight.

The density of the solution is then increased to between 1.1–1.7, and preferably to approximately 1.2, by the addition of a salt. This salt is preferably calcium chloride due to its ease of disposability. However, the salt may also be sodium chloride, sodium bicarbonate, potassium nitrate, or a sulfate. The increased density allows for the wax to separate from the nitroamine physically—the nitroamine has a heavier density and sinks, while the wax has a lighter density and floats. The solution is heated to between 80–85 °C. In the presence of a surfactant that can withstand high temperatures and an acid environment, such as Tween 20™ (ICI Americas, Inc. Edinburgh, Scotland). The surfactant facilitates the heat transfer to the wax. The solution is then cooled to a temperature at or below 70 °C to coagulate the wax at the surface. The wax is then skimmed off the top, and the solution is aspirated to leave the nitroamine. The nitroamine is rinsed to purify.

Industrial Applicability:

The invention is further illustrated by the following non-limiting examples.

EXAMPLE 1

A preferred embodiment of the HMX-compound demilitarization process is as follows: The materials that are used in the process are technical grade nitric acid (preferably 60–70% by weight, and more preferably 65–70% by weight), and ammonium hydroxide (preferably 26–30% by weight). Any less than 60% by weight nitric acid yields HMX that is yellow in color, indicating the presence of binder. The water was non-purified, and filtered through a 40 micron filter. The rinse acid from the process was used as a reaction acid for a second process, thus reducing costs. The process is neither labor- nor time-intensive.

The plastic binder of the surplus energetic material was solubilized in 65–70% nitric acid at ambient temperature and pressure. The solvent to feed ratio was 1:1. Degradation was finalized by agitating and heating the mixture to approximately 70 °C. The mixture was then centrifuged to remove the effluent, which was then neutralized with 26–30% ammonium hydroxide to form ammonium nitrate. The water was evaporated to yield approximately 98% ammonium nitrate plus 2% degraded polymer residue (plastic binder) plus trace HMX, a compound salt called ANPF (ammonium nitrate polymeric fuel). This ANPF had a tested detonation velocity of an average of 2.4 km/sec, and in fertilization tests on Brassica rapa, it yielded plants with higher than average weights with no adverse growth effects.

The recovered HMX was rinsed with water to remove the nitric acid, then centrifuged. Per kg of LX-14, for example a maximum of 15–20 liters of water was needed to remove acidity. The rinse water was added to effluent before the neutralization step. Isopropyl alcohol was added to the resulting HMX to a total liquid content of 20% by weight to desensitize the HMX for storage or transport, and prevent freezing. The HMX product recovered from this method was primarily class I, and 8–10% class 5 HMX as defined in HMX Military Specification MIL-H-4544B, and was relatively pure, as evidenced by its white color.

EXAMPLE 2

For energetic materials containing RDX (e.g., Comp A-3) encapsulated in a wax binder, the method of nitroamine extraction was slightly different, but still produced a relatively pure product without hazardous waste. Comp A-3 was added to water in a water to feedstock ratio of 5:1 (mass). CaCl2 was added to increase the density of the
solution from 1.0 g/cc to 1.2 g/cc. The temperature of the mixture was increased to 80–85°C. A surfactant (e.g., 5% by weight Tween 20™, ICI Americas, Inc, Edinburgh, Scotland) was added to facilitate the heat transfer from the heated solution to the wax. The resulting density change caused the physical separation of the wax and the RDX as they uncoupled. Because the density of wax is less than 1.2 g/cc, it floated to the surface. Likewise, because the density of RDX is greater than 1.2 g/cc, once separated from the binder, it sank to the bottom of the reaction vessel. The reaction mixture was cooled to approximately 70°C to minimize the amount of wax in solution. The wax was then skimmed off the surface, and the solution layer was aspirated. The remaining RDX was rinsed, centrifuged, and packaged for storage.

Several tests were run to determine quality of the extracted HMX and ANPF (ammonium nitrate polymeric fuel). Scanning electron micrographs (SEM) showed a morphology of HMX with no jagged edges. The chemical purities were established by Fourier transform infrared spectroscopy (FT-IR) and further characterized by proton nuclear magnetic resonance spectroscopy (NMR - IBM Instruments Inc., model NR/300 FT NMR). Purity was confirmed using differential scanning calorimetric (DSC) melting tests. HPLC (high-performance liquid chromatography) was conducted to determine content and purity, as well, using a Brownlee reverse phase, 5 μC-18 column with mobile phase of 50% water:50% acetonitrile at 40°C, 0.7 ml/min flow, with a 20 μl sample, UV at 220 nm.

The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.

What is claimed is:

1. A method of recovering nitroamines from energetic pyrotechnic materials comprising the following steps:
 a) solubilizing the material in a nitric acid solution;
 b) removing an effluent from the solution to leave a nitroamine;
 c) neutralizing the effluent with a base;
 d) removing liquid content from the effluent to yield a compound salt;
 e) rinsing the nitroamine; and
 f) desensitizing the nitroamine.

2. The method of claim 1 wherein the step of solubilizing the material comprises solubilizing in a 65–70% nitric acid solution.

3. The method of claim 1 further comprising after step (a), step (g) agitating the solution.

4. The method of claim 1 further comprising after step (a), step (b) heating the solution.

5. The method of claim 4 wherein the step of heating comprises heating to between 40–80°C.

6. The method of claim 4 wherein the step of heating comprises heating to at least 70°C.

7. The method of claim 1 wherein the step of solubilizing the material comprises solubilizing in a 60–70% nitric acid solution.

8. The method of claim 7 wherein the step of solubilizing the material comprises solubilizing in a 65–70% nitric acid solution.

9. The method of claim 1 wherein steps (a) and (b) are conducted at ambient temperature.

10. The method of claim 1 wherein the step of removing the effluent comprises at least one method selected from the group consisting of centrifuging and filtering.

11. The method of claim 1 wherein the step of solubilizing with a base comprises neutralizing with ammonium hydroxide.

12. The method of claim 11 wherein the step of neutralizing comprises neutralizing with at least 26% ammonium hydroxide.

13. The method of claim 1 wherein the step of neutralizing comprises neutralizing the solution to a pH of approximately 6.8.

14. The method of claim 1 wherein the step of removing liquid content comprises evaporating to yield ammonium nitrate polymeric fuel (ANPF).

15. The method of claim 1 wherein the step of rinsing the nitroamine comprises rinsing with water.

16. The method of claim 1 wherein the step of desensitizing the nitroamine comprises desensitizing by adding alcohol.

17. The method of claim 16 wherein the step of desensitizing the nitroamine by adding alcohol comprises desensitizing by adding isopropyl alcohol to a total liquid content of 20% by weight.

18. The method of claim 1 wherein the step of removing the effluent to leave a nitroamine comprises removing the effluent to leave a cyclotetramethylene tetranitramine.

19. A method of recovering nitroamines from energetic pyrotechnic materials, the method comprising the following steps:
 a) providing the energetic material;
 b) forming a solution;
 c) adding a substance to the solution to increase density; and
 d) separating the solution into a wax component and a nitroamine-containing component.

20. The method of claim 19 wherein the step of providing an energetic material comprises providing a compound containing a nitramine.

21. The method of claim 20 wherein the step of providing an energetic material comprises providing cyclotetramethylene trinitramine.

22. The method of claim 19 wherein the step of forming a solution comprises forming a solution by adding water.

23. The method of claim 22 wherein the step of forming a solution comprises forming a solution by adding water to form a water to material ratio of between 3:1 and 7:1 by weight.

24. The method of claim 23 wherein the step forming a solution comprises forming a solution by adding water to form a water to material ratio of at least 5:1.

25. The method of claim 19 wherein the step of adding a substance to the solution comprises adding a salt.

26. The method of claim 25 wherein the step of adding a substance to the solution comprises adding CaCl₂.

27. The method of claim 25 wherein the step of adding a substance to the solution comprises adding at least one salt from the group consisting of sodium chloride, sodium bicarbonate, potassium nitrate, and sulfates.

28. The method of claim 19 wherein the step of adding a substance to increase density comprises adding a substance to increase density to between 1.1–1.7 g/cc.
29. The method of claim 28 wherein the step of adding a substance to increase density comprises adding a substance to increase density to approximately 1.2 g/cc.

30. The method of claim 19 further comprising after step (c), step (e) heating the solution.

31. The method of claim 30 wherein the step of heating the solution comprises heating to 80–85°C.

32. The method of claim 19 further comprising after step (c), step (f) adding a surfactant to the solution.

33. The method of claim 32 wherein the step of adding a surfactant comprises adding a surfactant resistant to high temperatures and high acidity.

34. The method of claim 33 wherein the step of adding a surfactant comprises adding Tween 20.

35. The method of claim 19 further comprising after step (c), step (g) cooling the solution.

36. The method of claim 35 wherein the step of cooling the solution comprises cooling to a maximum of 70°C.

37. The method of claim 19 wherein the step of separating the solution comprises separating by skimming a wax substance from top of the solution.

38. The method of claim 19 wherein the step of separating the solution comprises separating by aspirating the solution to leave the nitroamine.

39. The method of claim 38 wherein the step of aspirating to yield a nitroamine comprises aspirating to yield cyclotetramethylene trinitramine.

40. The method of claim 19 further comprising after step (d), step (h) rinsing the nitroamine.