LOS ALAMOS SERIES ON
DYNAMIC MATERIAL PROPERTIES

LOS ALAMOS DATA CENTER
FOR DYNAMIC MATERIAL PROPERTIES

TECHNICAL COMMITTEE

Charles L. Mader Program Manager
Terry R. Gibbs Explosive Data Editor
Stanley P. Marsh Equation of State Editor
Charles E. Morris Shock Wave Profile Editor
Alphonse Popolato Explosive Data Editor
Martha S. Hoyt Computer Applications Analyst
Kasha V. Thayer Technical Editor

John F. Barnes
William E. Deal, Jr.
Richard D. Dick
John W. Hopson, Jr.
James N. Johnson
Elizabeth Marshall
Timothy R. Neal
Raymond N. Rogers
Melvin T. Thieme
Jerry D. Wackerle
John M. Walsh
CONTENTS

INTRODUCTION .. 1
DATA PRESENTATION .. 2
REFERENCES .. 10

CATALOG OF SHOT SUBJECTS,
 PHERMEX SHOTS 401 THROUGH 800 (Vol. II) 13

CATALOG OF SHOT SUBJECTS,
 PHERMEX SHOTS 1 THROUGH 800 (Vols. I and II) 15

PHERMEX SHOTS 401 THROUGH 800 19
INTRODUCTION

About 15 years ago, a unique and important flash-radiographic facility became operational at the Los Alamos Scientific Laboratory. This facility is known as PHERMEX, which is an acronym for Pulsed High Energy Radiographic Machine Emitting X rays. The PHERMEX machine is a high-current, 30-MeV, linear electron accelerator that produces very intense but short-duration bursts of bremsstrahlung from a thin tungsten target for flash radiographic studies of explosives and explosive-driven metal systems. The facility was built in the early 1960s to complement other hydrodynamics facilities at Los Alamos and to implement studies of shock waves, jets, spalling, detonation characteristics of chemical explosives, and other hydrodynamic phenomena.

Flash radiography has been used in diagnosing explosive-driven systems for about 40 years and has provided direct observation of dynamic processes. The size of systems that could be radiographed dynamically using conventional equipment has always been severely limited by the poor ability of the available x-ray flux to penetrate the blast protection devices. PHERMEX, however, was designed and built to overcome these limitations and to permit precise radiography of large systems containing materials of high atomic number.

PHERMEX has been used to study materials in various geometries under a variety of shock conditions. Over 1800 unclassified radiographs will be presented and described in the LASL PHERMEX data collection. This is the second of the five volumes scheduled for publication by the LASL Data Center. The PHERMEX facility is described in Volume I.
DATA PRESENTATION

The PHERMEX data, starting with Shot 401, are presented by increasing shot number, which increases according to the date the shot was planned, not necessarily the date on which it was fired. A few shots either failed or were never completed. A descriptive shot title is given, along with the date on which the shot was fired and the name of the person who originated the experiment. The radiographic time is that from initiation of the detonator to the middle of the radiograph pulse. The radiograph pulse width is 0.2 µs. The plane-wave lens and detonator burning times (typical of the PHERMEX firing system) used to estimate other times were

\[
\begin{align*}
 P-040 & \quad 13.5 \ \mu s, \\
 P-081 & \quad 22.5 \ \mu s, \\
 P-120 & \quad 29.5 \ \mu s.
\end{align*}
\]

Literature that describes a shot or its general purpose is cited. The purpose of the shot and important features of the radiograph are discussed. The experimental setup is sketched, and certain dimensions pertinent to each shot are given in millimeters. The distance, h, of the beam axis from some shot geometry location is given. All available static radiographs are presented, and the dynamic radiographs are shown on the same scale.

The first few hundred shots, described in Volume I, were designed to survey various topics of interest in the fields of shock hydrodynamics and detonations. The process of jet formation from grooved aluminum and steel plates was investigated extensively.

Shots 401 through 800, described in this volume, examined the dynamic fracture of other materials and the particle velocity flow patterns of detonation products. Materials such as iron, antimony, bismuth, and boron nitride, which exhibit phase change upon being shocked, were examined. Mach and regular reflections in metals and explosives were studied.
Table I is a cumulative summary of the dynamic fracture shots. Table II presents the spalling thicknesses observed in aluminum, copper, nickel, thorium, uranium, beryllium, lead, tin, zinc, and steel. Part of the data is from the shots described in Vol. I of the LASL PHREMEX data.

TABLE I

DYNAMIC FRACTURE SHOTS

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Explosive Thickness (mm)</th>
<th>Material</th>
<th>Material Thickness (mm)</th>
<th>Radiographic Time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.4</td>
<td>34.1</td>
</tr>
<tr>
<td>61</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.4</td>
<td>37.9</td>
</tr>
<tr>
<td>62</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.4</td>
<td>46.0</td>
</tr>
<tr>
<td>63</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.4</td>
<td>53.9</td>
</tr>
<tr>
<td>68</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>24.5</td>
<td>28.9</td>
</tr>
<tr>
<td>69</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>24.6</td>
<td>31.4</td>
</tr>
<tr>
<td>70</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>24.6</td>
<td>33.9</td>
</tr>
<tr>
<td>76</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.1</td>
<td>28.0</td>
</tr>
<tr>
<td>77</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.0</td>
<td>32.9</td>
</tr>
<tr>
<td>78</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.0</td>
<td>32.9</td>
</tr>
<tr>
<td>79</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.1</td>
<td>27.3</td>
</tr>
<tr>
<td>80</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.0</td>
<td>30.9</td>
</tr>
<tr>
<td>81</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.0</td>
<td>30.8</td>
</tr>
<tr>
<td>82</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.0</td>
<td>33.9</td>
</tr>
<tr>
<td>83</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>1</td>
<td>30.5</td>
</tr>
<tr>
<td>84</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>3</td>
<td>30.7</td>
</tr>
<tr>
<td>85</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>6</td>
<td>31.2</td>
</tr>
<tr>
<td>88</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>12</td>
<td>32.0</td>
</tr>
<tr>
<td>89</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.0</td>
<td>33.9</td>
</tr>
<tr>
<td>97</td>
<td>101.6</td>
<td>2024 aluminum</td>
<td>25.0</td>
<td>33.9</td>
</tr>
<tr>
<td>102</td>
<td>101.6</td>
<td>aluminum</td>
<td>3</td>
<td>34.3</td>
</tr>
<tr>
<td>103</td>
<td>101.6</td>
<td>aluminum</td>
<td>3</td>
<td>38.3</td>
</tr>
<tr>
<td>104</td>
<td>101.6</td>
<td>aluminum</td>
<td>6</td>
<td>38.4</td>
</tr>
<tr>
<td>105</td>
<td>101.6</td>
<td>aluminum</td>
<td>6</td>
<td>34.29</td>
</tr>
<tr>
<td>107</td>
<td>101.6</td>
<td>aluminum</td>
<td>6</td>
<td>28.43</td>
</tr>
</tbody>
</table>

*A P-040 lens was used throughout, except in Shots 245-247 for which a P-081 lens was used.

*bComposition B-3 was used throughout, except in Shots 470-473 for which PBX-9404 was used.
<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Explosive Thickness (mm)</th>
<th>Material</th>
<th>Material Thickness (mm)</th>
<th>Radiographic Time ((\mu s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>101.6</td>
<td>aluminum</td>
<td>12</td>
<td>34.30</td>
</tr>
<tr>
<td>109</td>
<td>101.6</td>
<td>aluminum</td>
<td>12</td>
<td>30.43</td>
</tr>
<tr>
<td>110</td>
<td>101.6</td>
<td>aluminum</td>
<td>12</td>
<td>42.29</td>
</tr>
<tr>
<td>115</td>
<td>101.6</td>
<td>nickel</td>
<td>25.4</td>
<td>38.0</td>
</tr>
<tr>
<td>116</td>
<td>101.6</td>
<td>nickel</td>
<td>25.4</td>
<td>45.29</td>
</tr>
<tr>
<td>129</td>
<td>101.6</td>
<td>uranium</td>
<td>1</td>
<td>34.4</td>
</tr>
<tr>
<td>130</td>
<td>101.6</td>
<td>thorium</td>
<td>1</td>
<td>34.41</td>
</tr>
<tr>
<td>131</td>
<td>101.6</td>
<td>uranium</td>
<td>25</td>
<td>43.28</td>
</tr>
<tr>
<td>132</td>
<td>101.6</td>
<td>thorium</td>
<td>25</td>
<td>41.44</td>
</tr>
<tr>
<td>133</td>
<td>101.6</td>
<td>uranium</td>
<td>12</td>
<td>39.64</td>
</tr>
<tr>
<td>165</td>
<td>101.6</td>
<td>uranium</td>
<td>25</td>
<td>39.39</td>
</tr>
<tr>
<td>166</td>
<td>38.1</td>
<td>uranium</td>
<td>25</td>
<td>33.40</td>
</tr>
<tr>
<td>167</td>
<td>101.6</td>
<td>uranium</td>
<td>25</td>
<td>41.42</td>
</tr>
<tr>
<td>168</td>
<td>101.6</td>
<td>uranium</td>
<td>12</td>
<td>33.8</td>
</tr>
<tr>
<td>169</td>
<td>19.05</td>
<td>uranium</td>
<td>12</td>
<td>25.35</td>
</tr>
<tr>
<td>170</td>
<td>6.35</td>
<td>uranium</td>
<td>12</td>
<td>25.72</td>
</tr>
<tr>
<td>171</td>
<td>101.6</td>
<td>uranium</td>
<td>6</td>
<td>30.55</td>
</tr>
<tr>
<td>172</td>
<td>101.6</td>
<td>thorium</td>
<td>25</td>
<td>37.41</td>
</tr>
<tr>
<td>173</td>
<td>50.8</td>
<td>thorium</td>
<td>25</td>
<td>32.89</td>
</tr>
<tr>
<td>174</td>
<td>38.1</td>
<td>thorium</td>
<td>25</td>
<td>31.33</td>
</tr>
<tr>
<td>175</td>
<td>101.6</td>
<td>thorium</td>
<td>12</td>
<td>32.76</td>
</tr>
<tr>
<td>176</td>
<td>19.05</td>
<td>thorium</td>
<td>12</td>
<td>29.27</td>
</tr>
<tr>
<td>177</td>
<td>12.7</td>
<td>nickel</td>
<td>25</td>
<td>27.28</td>
</tr>
<tr>
<td>178</td>
<td>12.7</td>
<td>nickel</td>
<td>12</td>
<td>25.05</td>
</tr>
<tr>
<td>179</td>
<td>101.6</td>
<td>thorium</td>
<td>6</td>
<td>29.56</td>
</tr>
<tr>
<td>191</td>
<td>101.6</td>
<td>water</td>
<td>25.4</td>
<td>34.83</td>
</tr>
<tr>
<td>211</td>
<td>6.35</td>
<td>aluminum</td>
<td>25</td>
<td>18.28</td>
</tr>
<tr>
<td>212</td>
<td>6.35</td>
<td>aluminum</td>
<td>6</td>
<td>16.39</td>
</tr>
<tr>
<td>213</td>
<td>101.6</td>
<td>aluminum</td>
<td>6</td>
<td>37.53</td>
</tr>
<tr>
<td>222</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>26.95</td>
</tr>
<tr>
<td>223</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>27.88</td>
</tr>
<tr>
<td>224</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>28.90</td>
</tr>
<tr>
<td>226</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>29.89</td>
</tr>
<tr>
<td>227</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>30.41</td>
</tr>
<tr>
<td>228</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>30.92</td>
</tr>
</tbody>
</table>
Table I (cont)

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Explosive Thickness (mm)</th>
<th>Material</th>
<th>Material Thickness (mm)</th>
<th>Radiographic Time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>229</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>31.41</td>
</tr>
<tr>
<td>230</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>32.40</td>
</tr>
<tr>
<td>231</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>32.92</td>
</tr>
<tr>
<td>232</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>33.42</td>
</tr>
<tr>
<td>234</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>36.43</td>
</tr>
<tr>
<td>235</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>36.40</td>
</tr>
<tr>
<td>236</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>26.93</td>
</tr>
<tr>
<td>238</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>32.43</td>
</tr>
<tr>
<td>239</td>
<td>19.05</td>
<td>copper</td>
<td>12</td>
<td>26.64</td>
</tr>
<tr>
<td>240</td>
<td>12.7</td>
<td>copper</td>
<td>12</td>
<td>25.25</td>
</tr>
<tr>
<td>241</td>
<td>19.05</td>
<td>aluminum</td>
<td>12</td>
<td>22.50</td>
</tr>
<tr>
<td>242</td>
<td>25.4</td>
<td>nickel</td>
<td>25</td>
<td>28.89</td>
</tr>
<tr>
<td>245</td>
<td>101.6</td>
<td>aluminum</td>
<td>6</td>
<td>38.24</td>
</tr>
<tr>
<td>246</td>
<td>6.35</td>
<td>aluminum</td>
<td>6</td>
<td>28.24</td>
</tr>
<tr>
<td>247</td>
<td>101.6</td>
<td>aluminum</td>
<td>6</td>
<td>37.51</td>
</tr>
<tr>
<td>270</td>
<td>19.05</td>
<td>nickel</td>
<td>12</td>
<td>25.91</td>
</tr>
<tr>
<td>271</td>
<td>50.8</td>
<td>beryllium</td>
<td>25</td>
<td>28.34</td>
</tr>
<tr>
<td>305</td>
<td>101.6</td>
<td>aluminum</td>
<td>25</td>
<td>33.38</td>
</tr>
<tr>
<td>348</td>
<td>50.8</td>
<td>aluminum</td>
<td>25</td>
<td>24.77</td>
</tr>
<tr>
<td>349</td>
<td>38.1</td>
<td>aluminum</td>
<td>25</td>
<td>23.02</td>
</tr>
<tr>
<td>355</td>
<td>50.8</td>
<td>aluminum</td>
<td>25</td>
<td>25.25</td>
</tr>
<tr>
<td>356</td>
<td>50.9</td>
<td>aluminum</td>
<td>25</td>
<td>25.71</td>
</tr>
<tr>
<td>357</td>
<td>50.8</td>
<td>aluminum</td>
<td>25</td>
<td>26.23</td>
</tr>
<tr>
<td>358</td>
<td>38.1</td>
<td>aluminum</td>
<td>25</td>
<td>25.07</td>
</tr>
<tr>
<td>359</td>
<td>38.1</td>
<td>aluminum</td>
<td>25</td>
<td>23.53</td>
</tr>
<tr>
<td>360</td>
<td>38.1</td>
<td>aluminum</td>
<td>25</td>
<td>24.02</td>
</tr>
<tr>
<td>361</td>
<td>38.1</td>
<td>aluminum</td>
<td>25</td>
<td>24.52</td>
</tr>
<tr>
<td>379</td>
<td>6.35</td>
<td>beryllium</td>
<td>25</td>
<td>21.52</td>
</tr>
<tr>
<td>380</td>
<td>25.4</td>
<td>beryllium</td>
<td>25</td>
<td>23.94</td>
</tr>
<tr>
<td>381</td>
<td>50.8</td>
<td>beryllium</td>
<td>25</td>
<td>27.04</td>
</tr>
<tr>
<td>382</td>
<td>38.1</td>
<td>beryllium</td>
<td>12</td>
<td>24.33</td>
</tr>
<tr>
<td>383</td>
<td>19.05</td>
<td>beryllium</td>
<td>12</td>
<td>21.95</td>
</tr>
<tr>
<td>384</td>
<td>12.7</td>
<td>beryllium</td>
<td>12</td>
<td>21.07</td>
</tr>
<tr>
<td>385</td>
<td>6.35</td>
<td>beryllium</td>
<td>6</td>
<td>19.60</td>
</tr>
<tr>
<td>386</td>
<td>25.4</td>
<td>aluminum</td>
<td>25</td>
<td>23.73</td>
</tr>
</tbody>
</table>
Table I (cont)

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Explosive Thickness (mm)</th>
<th>Material</th>
<th>Material Thickness (mm)</th>
<th>Radiographic Time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>387</td>
<td>213.2</td>
<td>aluminum</td>
<td>25</td>
<td>46.10</td>
</tr>
<tr>
<td>389</td>
<td>50.8</td>
<td>copper</td>
<td>25</td>
<td>32.38</td>
</tr>
<tr>
<td>390</td>
<td>38.1</td>
<td>copper</td>
<td>25</td>
<td>31.00</td>
</tr>
<tr>
<td>391</td>
<td>25.4</td>
<td>copper</td>
<td>25</td>
<td>29.2</td>
</tr>
<tr>
<td>392</td>
<td>50.8</td>
<td>nickel</td>
<td>25</td>
<td>32.10</td>
</tr>
<tr>
<td>393</td>
<td>38.1</td>
<td>nickel</td>
<td>25</td>
<td>30.55</td>
</tr>
<tr>
<td>394</td>
<td>25.4</td>
<td>nickel</td>
<td>25</td>
<td>28.88</td>
</tr>
<tr>
<td>395</td>
<td>25.4</td>
<td>thorium</td>
<td>25</td>
<td>29.70</td>
</tr>
<tr>
<td>396</td>
<td>12.7</td>
<td>thorium</td>
<td>25</td>
<td>28.09</td>
</tr>
<tr>
<td>401</td>
<td>50.8</td>
<td>uranium</td>
<td>25.0</td>
<td>32.8</td>
</tr>
<tr>
<td>402</td>
<td>38.1</td>
<td>uranium</td>
<td>25.0</td>
<td>31.2</td>
</tr>
<tr>
<td>403</td>
<td>25.4</td>
<td>uranium</td>
<td>25.0</td>
<td>29.66</td>
</tr>
<tr>
<td>462</td>
<td>6.35</td>
<td>copper</td>
<td>6.0</td>
<td>23.4</td>
</tr>
<tr>
<td>463</td>
<td>50.8</td>
<td>uranium</td>
<td>25.0</td>
<td>33.76</td>
</tr>
<tr>
<td>464</td>
<td>25.4</td>
<td>copper</td>
<td>25.0</td>
<td>30.68</td>
</tr>
<tr>
<td>465</td>
<td>50.8</td>
<td>nickel</td>
<td>25.0</td>
<td>32.07</td>
</tr>
<tr>
<td>466</td>
<td>25.4</td>
<td>uranium</td>
<td>25.0</td>
<td>32.54</td>
</tr>
<tr>
<td>467</td>
<td>101.6</td>
<td>beryllium</td>
<td>25.0</td>
<td>33.4</td>
</tr>
<tr>
<td>468</td>
<td>12.7</td>
<td>beryllium</td>
<td>25.0</td>
<td>22.24</td>
</tr>
<tr>
<td>469</td>
<td>12.7</td>
<td>aluminum</td>
<td>12.0</td>
<td>20.52</td>
</tr>
<tr>
<td>470</td>
<td>50.8<sup>b</sup></td>
<td>aluminum</td>
<td>25.0</td>
<td>26.0</td>
</tr>
<tr>
<td>471</td>
<td>25.4<sup>b</sup></td>
<td>aluminum</td>
<td>25.0</td>
<td>23.14</td>
</tr>
<tr>
<td>472</td>
<td>12.7<sup>b</sup></td>
<td>beryllium</td>
<td>12.0</td>
<td>21.04</td>
</tr>
<tr>
<td>473</td>
<td>25.4<sup>b</sup></td>
<td>beryllium</td>
<td>25.0</td>
<td>23.47</td>
</tr>
<tr>
<td>486</td>
<td>101.6</td>
<td>aluminum</td>
<td>25.0</td>
<td>33.41</td>
</tr>
<tr>
<td>494</td>
<td>101.6</td>
<td>beryllium</td>
<td>25.0</td>
<td>36.48</td>
</tr>
<tr>
<td>496</td>
<td>12.7</td>
<td>aluminum</td>
<td>25.0</td>
<td>23.52</td>
</tr>
<tr>
<td>498</td>
<td>12.7</td>
<td>thorium</td>
<td>12.0</td>
<td>26.46</td>
</tr>
<tr>
<td>499</td>
<td>12.7</td>
<td>uranium</td>
<td>12.0</td>
<td>26.39</td>
</tr>
<tr>
<td>500</td>
<td>12.7</td>
<td>copper</td>
<td>25.0</td>
<td>27.59</td>
</tr>
<tr>
<td>501</td>
<td>6.35</td>
<td>copper</td>
<td>6.0</td>
<td>23.4</td>
</tr>
<tr>
<td>502</td>
<td>6.35</td>
<td>uranium</td>
<td>6.0</td>
<td>23.97</td>
</tr>
<tr>
<td>506</td>
<td>203.2</td>
<td>aluminum</td>
<td>25.0</td>
<td>46.12</td>
</tr>
<tr>
<td>507</td>
<td>12.7</td>
<td>uranium</td>
<td>25.0</td>
<td>31.95</td>
</tr>
<tr>
<td>508</td>
<td>12.7</td>
<td>beryllium</td>
<td>12.0</td>
<td>22.3</td>
</tr>
</tbody>
</table>
Table I (cont)

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Explosive Thickness (mm)</th>
<th>Material</th>
<th>Material Thickness (mm)</th>
<th>Radiographic Time (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>509</td>
<td>101.6</td>
<td>beryllium</td>
<td>25.0</td>
<td>36.75</td>
</tr>
<tr>
<td>517</td>
<td>101.6</td>
<td>lockalloyc</td>
<td>25.0</td>
<td>34.02</td>
</tr>
<tr>
<td>518</td>
<td>50.8</td>
<td>lockalloyc</td>
<td>25.0</td>
<td>26.2</td>
</tr>
<tr>
<td>519</td>
<td>38.1</td>
<td>lockalloyc</td>
<td>25.0</td>
<td>24.99</td>
</tr>
<tr>
<td>520</td>
<td>25.4</td>
<td>lockalloyc</td>
<td>25.0</td>
<td>23.71</td>
</tr>
<tr>
<td>521</td>
<td>12.7</td>
<td>lockalloyc</td>
<td>12.0</td>
<td>20.51</td>
</tr>
<tr>
<td>522</td>
<td>19.05</td>
<td>lockalloyc</td>
<td>12.0</td>
<td>22.35</td>
</tr>
<tr>
<td>604</td>
<td>101.6</td>
<td>lead</td>
<td>25.0</td>
<td>43.41</td>
</tr>
<tr>
<td>605</td>
<td>50.8</td>
<td>lead</td>
<td>25.0</td>
<td>37.03</td>
</tr>
<tr>
<td>606</td>
<td>38.1</td>
<td>lead</td>
<td>25.0</td>
<td>35.32</td>
</tr>
<tr>
<td>607</td>
<td>25.4</td>
<td>lead</td>
<td>25.0</td>
<td>33.82</td>
</tr>
<tr>
<td>608</td>
<td>12.7</td>
<td>lead</td>
<td>25.0</td>
<td>32.23</td>
</tr>
<tr>
<td>609</td>
<td>12.7</td>
<td>lead</td>
<td>12.0</td>
<td>28.55</td>
</tr>
<tr>
<td>610</td>
<td>19.05</td>
<td>lead</td>
<td>12.0</td>
<td>29.32</td>
</tr>
<tr>
<td>611</td>
<td>101.6</td>
<td>thorium</td>
<td>25.0</td>
<td>43.36</td>
</tr>
<tr>
<td>624</td>
<td>12.7</td>
<td>nickel</td>
<td>25.0</td>
<td>27.32</td>
</tr>
<tr>
<td>625</td>
<td>50.8</td>
<td>nickel</td>
<td>25.0</td>
<td>32.10</td>
</tr>
<tr>
<td>626</td>
<td>19.05</td>
<td>beryllium</td>
<td>12.0</td>
<td>21.86</td>
</tr>
<tr>
<td>627</td>
<td>12.7</td>
<td>beryllium</td>
<td>12.0</td>
<td>21.02</td>
</tr>
<tr>
<td>628</td>
<td>6.35</td>
<td>beryllium</td>
<td>6.0</td>
<td>19.56</td>
</tr>
<tr>
<td>640</td>
<td>101.6</td>
<td>tin</td>
<td>25.0</td>
<td>41.75</td>
</tr>
<tr>
<td>691</td>
<td>101.6</td>
<td>773 K aluminum</td>
<td>25.0</td>
<td>33.41</td>
</tr>
<tr>
<td>692</td>
<td>101.6</td>
<td>78 K lead</td>
<td>25.0</td>
<td>43.39</td>
</tr>
<tr>
<td>693</td>
<td>38.1</td>
<td>78 K lead</td>
<td>25.0</td>
<td>35.29</td>
</tr>
<tr>
<td>694</td>
<td>50.8</td>
<td>78 K lead</td>
<td>25.0</td>
<td>36.99</td>
</tr>
<tr>
<td>695</td>
<td>25.4</td>
<td>78 K lead</td>
<td>25.0</td>
<td>33.83</td>
</tr>
<tr>
<td>696</td>
<td>25.4</td>
<td>78 K lead</td>
<td>25.0</td>
<td>32.19</td>
</tr>
<tr>
<td>701</td>
<td>12.7</td>
<td>tin</td>
<td>25.0</td>
<td>29.61</td>
</tr>
<tr>
<td>702</td>
<td>12.7</td>
<td>tin</td>
<td>25.0</td>
<td>33.82</td>
</tr>
<tr>
<td>711</td>
<td>12.7</td>
<td>78 K lead</td>
<td>12.0</td>
<td>28.52</td>
</tr>
<tr>
<td>712</td>
<td>50.8</td>
<td>tin</td>
<td>25.0</td>
<td>35.41</td>
</tr>
<tr>
<td>713</td>
<td>12.7</td>
<td>tin</td>
<td>12.0</td>
<td>27.75</td>
</tr>
<tr>
<td>714</td>
<td>19.05</td>
<td>tin</td>
<td>12.0</td>
<td>28.79</td>
</tr>
<tr>
<td>715</td>
<td>50.8</td>
<td>beryllium</td>
<td>25.0</td>
<td>28.36</td>
</tr>
<tr>
<td>726</td>
<td>25.4</td>
<td>zinc</td>
<td>25.0</td>
<td>29.72</td>
</tr>
</tbody>
</table>

*lockalloy is 38% aluminum and 62% beryllium; $\rho_0 = 2.1 \text{ g/cm}^3$.
<table>
<thead>
<tr>
<th>HE/Metal</th>
<th>Aluminum</th>
<th>Copper</th>
<th>Nickel</th>
<th>Thorium</th>
<th>Uranium</th>
<th>Beryllium</th>
<th>Lead</th>
<th>Tin</th>
<th>Zinc</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm)</td>
</tr>
<tr>
<td>200/25</td>
<td>2.5 ± 0.1</td>
<td></td>
<td></td>
<td>none</td>
<td>2.2 ± 0.2</td>
<td>2.5 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td></td>
<td>2.35 ± 0.1</td>
<td>3.0 ± 0.2</td>
</tr>
<tr>
<td>100/25</td>
<td>2.6 ± 0.2</td>
<td>2.4 ± 0.2</td>
<td>3.3 ± 0.2</td>
<td>none</td>
<td>2.0 ± 0.3</td>
<td>3.3 ± 0.2</td>
<td>1.1 ± 0.2</td>
<td>1.7 ± 0.2</td>
<td>2.35 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>51/25</td>
<td>2.4 ± 0.2</td>
<td>2.2 ± 0.2</td>
<td>2.9 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>2.0 ± 0.3</td>
<td>1.1 ± 0.2</td>
<td>1.7 ± 0.2</td>
<td>2.35 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1/25</td>
<td>2.1 ± 0.2</td>
<td>1.95 ± 0.2</td>
<td>2.9 ± 0.2</td>
<td>1.7 ± 0.1</td>
<td>1.9 ± 0.3</td>
<td>1.2 ± 0.2</td>
<td>0.85 ± 0.2</td>
<td>1.65 ± 0.2</td>
<td>2.30 ± 0.1</td>
<td>2.55 ± 0.1</td>
</tr>
<tr>
<td>25/25</td>
<td>1.86 ± 0.2</td>
<td>1.7 ± 0.2</td>
<td>2.6 ± 0.2</td>
<td>1.4 ± 0.1</td>
<td>1.95 ± 0.2</td>
<td>2.0 ± 0.2</td>
<td>1.0 ± 0.2</td>
<td>1.4 ± 0.1</td>
<td>1.95 ± 0.1</td>
<td>2.4 ± 0.1</td>
</tr>
<tr>
<td>12.7/25</td>
<td>1.8 ± 0.1</td>
<td>1.65 ± 0.2</td>
<td>2.2 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>2.0 ± 0.3</td>
<td>1.8 ± 0.2</td>
<td>1.2 ± 0.1</td>
<td>1.65 ± 0.1</td>
<td>2.38 ± 0.1</td>
<td>2.95 ± 0.1</td>
</tr>
<tr>
<td>10/12</td>
<td>1.46 ± 0.1</td>
<td>1.3 ± 0.2</td>
<td>1.85 ± 0.1</td>
<td>1.2 ± 0.1</td>
<td>1.6 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>0.75 ± 0.2</td>
<td>1.2 ± 0.1</td>
<td>1.45 ± 0.1</td>
<td>1.8 ± 0.1</td>
</tr>
<tr>
<td>12.7/12</td>
<td>1.5 ± 0.1</td>
<td>1.2 ± 0.2</td>
<td>1.7 ± 0.2</td>
<td>1.15 ± 0.1</td>
<td>1.7 ± 0.2</td>
<td>1.0 ± 0.2</td>
<td>0.40 ± 0.1</td>
<td>1.1 ± 0.2</td>
<td>1.6 ± 0.1</td>
<td>1.75 ± 0.1</td>
</tr>
<tr>
<td>6.37/12</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.37/5</td>
<td>0.7 ± 0.2</td>
<td>0.85 ± 0.1</td>
<td></td>
<td></td>
<td>1.45 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/12</td>
<td>2.2 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/6</td>
<td>2.3 ± 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/3</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/1</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The HE driver was Composition B-3, whose initial density was about 1.73 g/cm³.
* Aluminum specimens were Type 1100-F.
* Electrolytic tough pitch (ETP) copper was used.
* Commercially pure "A" nickel was used.
* High-purity (11.66 g/cm³) thorium was supplied by Oak Ridge.
* The uranium was 99.9% pure, at 18.93 g/cm³.
* General Astronautics Corporation Grade B-2 beryllium was used. This resembles Whisch Corporation beryllium S-200-C. Several shots with beryllium used vacuum-cast material. The data for this material lay within the error bars for the GB-2 beryllium.
* Lead plates were formed from commercially pure deep-milled material.
* This was 347 stainless steel.
<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Explosive Thickness (mm)</th>
<th>Material</th>
<th>Material Thickness (mm)</th>
<th>Radiographic Time (μs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>727</td>
<td>25.4</td>
<td>tin</td>
<td>25.0</td>
<td>30.18</td>
</tr>
<tr>
<td>729</td>
<td>50.8</td>
<td>zinc</td>
<td>25.0</td>
<td>32.93</td>
</tr>
<tr>
<td>730</td>
<td>101.6</td>
<td>zinc</td>
<td>25.0</td>
<td>39.35</td>
</tr>
<tr>
<td>731</td>
<td>50.8</td>
<td>zinc</td>
<td>25.0</td>
<td>28.15</td>
</tr>
<tr>
<td>732</td>
<td>38.1</td>
<td>zinc</td>
<td>25.0</td>
<td>31.34</td>
</tr>
<tr>
<td>733</td>
<td>12.7</td>
<td>zinc</td>
<td>12.0</td>
<td>25.52</td>
</tr>
<tr>
<td>734</td>
<td>19.05</td>
<td>zinc</td>
<td>12.0</td>
<td>26.34</td>
</tr>
<tr>
<td>736</td>
<td>25.4</td>
<td>beryllium</td>
<td>25.0</td>
<td>25.15</td>
</tr>
<tr>
<td>756</td>
<td>19.05</td>
<td>347 steel</td>
<td>12.0</td>
<td>29.92</td>
</tr>
<tr>
<td>757</td>
<td>12.7</td>
<td>347 steel</td>
<td>12.0</td>
<td>29.27</td>
</tr>
<tr>
<td>758</td>
<td>12.7</td>
<td>347 steel</td>
<td>25.0</td>
<td>31.27</td>
</tr>
<tr>
<td>759</td>
<td>25.4</td>
<td>347 steel</td>
<td>25.0</td>
<td>32.89</td>
</tr>
<tr>
<td>760</td>
<td>38.1</td>
<td>347 steel</td>
<td>25.0</td>
<td>34.45</td>
</tr>
<tr>
<td>761</td>
<td>101.6</td>
<td>347 steel</td>
<td>25.0</td>
<td>42.46</td>
</tr>
<tr>
<td>762</td>
<td>50.8</td>
<td>347 steel</td>
<td>25.0</td>
<td>36.11</td>
</tr>
<tr>
<td>788</td>
<td>38.1</td>
<td>cobalt</td>
<td>25.0</td>
<td>30.44</td>
</tr>
<tr>
<td>789</td>
<td>12.7</td>
<td>cobalt</td>
<td>25.0</td>
<td>27.26</td>
</tr>
<tr>
<td>794</td>
<td>50.8</td>
<td>cobalt</td>
<td>25.0</td>
<td>32.57</td>
</tr>
<tr>
<td>795</td>
<td>25.4</td>
<td>cobalt</td>
<td>25.0</td>
<td>28.82</td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Back Surface</td>
<td>543-546, 600, and 601</td>
</tr>
<tr>
<td>Aluminum Flying Plate</td>
<td>700, 706, 707, and 710</td>
</tr>
<tr>
<td>Aluminum Mach Reflection</td>
<td>615</td>
</tr>
<tr>
<td>Aluminum Regular Shock Reflection</td>
<td>614</td>
</tr>
<tr>
<td>Aluminum Wedge</td>
<td>415-418</td>
</tr>
<tr>
<td>Antimony Phase Change</td>
<td>716-718, 723, 775, and 786</td>
</tr>
<tr>
<td>Baratol and Composition B-3 Interface</td>
<td>487-491</td>
</tr>
<tr>
<td>Beryllium Shock Wave</td>
<td>654-657</td>
</tr>
<tr>
<td>Bismuth Phase Change</td>
<td>769</td>
</tr>
<tr>
<td>Boron Nitride Phase Change</td>
<td>750, 751, 768, and 776</td>
</tr>
<tr>
<td>Brass Back Surface</td>
<td>523-533, 535-541, 547, and 553</td>
</tr>
<tr>
<td>Colliding Aluminum Plates</td>
<td>688-690, 704, 705, and 798-800</td>
</tr>
<tr>
<td>Colliding PBX-9404 and Composition B-3 Detonations</td>
<td>763-767</td>
</tr>
<tr>
<td>Composition B-3 Confined by Aluminum</td>
<td>411, 459, and 474</td>
</tr>
<tr>
<td>Composition B-3 Confined by Iron</td>
<td>460, 461, 578, and 620</td>
</tr>
<tr>
<td>Composition B-3 Confined by Tantalum</td>
<td>576</td>
</tr>
<tr>
<td>Composition B-3 Detonation Wave</td>
<td>634-639, 645-650, 697, and 698</td>
</tr>
<tr>
<td>Composition B-3 With Aluminum Strips</td>
<td>437 and 438</td>
</tr>
<tr>
<td>Composition B-3 With an Embedded Aluminum Plate</td>
<td>580-583</td>
</tr>
<tr>
<td>Composition B-3 With an Embedded Iron Plate</td>
<td>588-591</td>
</tr>
<tr>
<td>Composition B-3 With an Embedded Uranium Plate</td>
<td>596-599 and 651</td>
</tr>
<tr>
<td>Copper Shock Wave</td>
<td>668-672</td>
</tr>
<tr>
<td>Cylindrical Hole in Polyethylene</td>
<td>409, 612, and 613</td>
</tr>
<tr>
<td>Cylindrical Implosion of a Brass Tube</td>
<td>492 and 574</td>
</tr>
<tr>
<td>Dynamic Fracture of 347 Steel</td>
<td>756-762</td>
</tr>
<tr>
<td>Dynamic Fracture of Aluminum</td>
<td>469-471, 486, 496, and 506</td>
</tr>
</tbody>
</table>
DYNAMIC FRACTURE OF
BERYLLIUM 467, 468, 472, 473, 494, 508, 509, 626-628, 715, and 736
DYNAMIC FRACTURE OF COBALT 788, 789, 794, and 795
DYNAMIC FRACTURE OF COLD LEAD 692-696, and 711
DYNAMIC FRACTURE OF COPPER 462, 464, 500, and 501
DYNAMIC FRACTURE OF HOT ALUMINUM 691
DYNAMIC FRACTURE OF LEAD 604-610
DYNAMIC FRACTURE OF LOCKALLOY 517-522
DYNAMIC FRACTURE OF NICKEL 465, 624 and 625
DYNAMIC FRACTURE OF THORIUM 498 and 611
DYNAMIC FRACTURE OF TIN 640, 701, 702, 712-714, and 727
DYNAMIC FRACTURE OF URANIUM 401-403, 463, 466, 499, 502, and 507
DYNAMIC FRACTURE OF ZINC 726 and 729-734

FRACTURE RESOLUTION 477 and 505

INTERACTION OF PBX-9404 AND
COMPOSITION B-3 DETONATION 744
IRON PHASE CHANGE 410, 412, 413, 475, 476, 511, 513, 514, 720, and 721
IRON REGULAR SHOCK REFLECTION 579
IRON SHOCK WAVE 673-677

LATERAL FLOW IN CONFINED
COMPOSITION B-3 586, 587, and 592-594
LEAD BACK SURFACE 557-560
LEAD SHOCK WAVE 478-485
MACH REFLECTIONS IN COMPOSITION B-3 621, 678, 679
MERCURY BACK SURFACE 562
METAL INTERFACE MOTION 497, 510, and 699
NICKEL BACK SURFACE 550-552 and 602
NICKEL SHOCK WAVE 663-665, 667, and 722
OBLIQUE PBX-9404 and
COMPOSITION B-3 DETONATIONS 573, 575, 618, 619, and 724
P-040 LENS DETONATION WAVE 630-633 and 641-644
PBX-9404 WITH EMBEDDED GOLD FOILS 735
PERLITE SHOCK INTERACTING WITH
ALUMINUM PLATES 408, 493, and 504
PERLITE SHOCK VELOCITY 406, 407, 493 and 503
QUARTZ PHASE CHANGE 414
SHOCKED ALUMINUM GROOVES INTERACTING
WITH MERCURY 617
Spherically Diverging Composition B-3
DETONATION 770, 796, and 797
TWO PBX-9404 DETONATIONS INTERACTING
WITH AN EMBEDDED PLATE 787
URANIUM SHOCK WAVE 658-662
VERMICULITE SHOCK VELOCITY 404 and 405
WATER BACK SURFACE 569
CATALOG OF SHOT SUBJECTS, PHERMEX SHOTS 1 THROUGH 800 (VOLUMES I AND II)

ALUMINUM BACK SURFACE 543-546, 600, and 601
ALUMINUM FLYING PLATE 700, 706, 707, and 710
ALUMINUM JETS 1, 6-13, 16-25, 28-30, 32, 36, 37, 141-149, and 197-199
ALUMINUM JETS FROM 40° GROOVES 161 and 162
ALUMINUM JETS FROM 60° GROOVES 159 and 160
ALUMINUM JETS FROM 120° GROOVES 157 and 158
ALUMINUM JETS FROM 140° GROOVES 155 and 156
ALUMINUM JETS FROM 160° GROOVES 153 and 154
ALUMINUM JETS FROM 170° GROOVES 151 and 152
ALUMINUM JETS PENETRATING URANIUM 150 and 201
ALUMINUM MACH REFLECTION 615
ALUMINUM REGULAR SHOCK REFLECTION 614
ALUMINUM ROD IN WATER 189, 190, 269, 281, and 282
ALUMINUM WEDGE .. 39, 135-138, 193, 214-217, and 415-418
ANTIMONY PHASE CHANGE 716-718, 723, 775, and 786
ARMCO IRON SPLASH WAVE 57
BARATOL AND COMPOSITION B-3 INTERFACE 487-491
BERRILLIUM SHOCK WAVE 654-657
BISMUTH PHASE CHANGE 769
BORON NITRIDE PHASE CHANGE 750, 751, 768, and 776
BRASS BACK SURFACE 523-533, 535-541, 547, and 553
COLLIDING ALUMINUM PLATES 688-690, 704, 705, and 798-800
COLLIDING COMPOSITION B-3 139, 140, 195, and 196
COLLIDING DETONATION PRODUCTS 139, 140, 195, and 196
COLLIDING COMPOSITION B-3................................ 139, 140, 195, and 196
COLLIDING CYCLOTOL DETONATIONS 86, 87, 91, 92, and 273-277
COLLIDING OCTOL DETONATIONS 294-297
COLLIDING PBX-9404 AND COMPOSITION B-3 DETONATIONS .. 763-767
COLLIDING PBX-9404 DETONATIONS 207-210, and 292
COMPOSITION B-3 CONFINED BY ALUMINUM 411, 459, and 474
COMPOSITION B-3 CONFINED BY IRON 460, 461, 578, and 620
COMPOSITION B-3 CONFINED BY TANTALUM 576
COMPOSITION B-3 DETONATION WAVE . 634-639, 645-650, 697, and 698
COMPOSITION B-3 TURNING A 15° CORNER 377 and 378
COMPOSITION B-3 TURNING A 30° CORNER 375 and 376
COMPOSITION B-3 TURNING A 45° CORNER 373 and 374
COMPOSITION B-3 TURNING A 60° CORNER 371 and 372
COMPOSITION B-3 TURNING A 75° CORNER 369 and 370
COMPOSITION B-3 TURNING A 90° CORNER 366-368
COMPOSITION B-3 WITH ALUMINUM STRIPS 437 and 438
COMPOSITION B-3 WITH AN EMBEDDED ALUMINUM PLATE .. 580-583
COMPOSITION B-3 WITH AN EMBEDDED IRON PLATE 588-591
COMPOSITION B-3 WITH AN EMBEDDED URANIUM PLATE 596-599 and 651
COMPOSITION B-3 WITH EMBEDDED TANTALUM FOILS 220, 221, 272, 290, 352-354, 419, 423, 424, 426-436, 439, 442, 450, 495, and 784
CONVERGING MUNROE JET 363-365
COPPER JETS 43
COPPER SHOCK WAVE 668-672
COPPER SPLASH WAVE 54
CYLINDRICAL HOLE IN POLYETHYLENE .. 314, 351, 409, 612, and 613
CYLINDRICAL HOLE IN WATER 187, 188, 278-289, 300, and 318
CYLINDRICAL IMPLOSION OF A BRASS TUBE 492 and 574
DETONATION OF TWO P-040 LENSES 14
DIVERGING MUNROE JET 322-330
DYNAMIC FRACTURE OF 347 STEEL 756-762
DYNAMIC FRACTURE OF BERYLLIUM 271, 379-385, 467, 468, 472, 473, 494, 508, 509, 626-628, 715, and 736
DYNAMIC FRACTURE OF COBALT 788, 789, 794, and 795
DYNAMIC FRACTURE OF COLD LEAD 692-696 and 711
DYNAMIC FRACTURE OF COPPER 239, 240, 389-391, 462, 464, 500, and 501
DYNAMIC FRACTURE OF HOT ALUMINUM 691
DYNAMIC FRACTURE OF LEAD 604-610
DYNAMIC FRACTURE OF LOCKALLOY 517-522
DYNAMIC FRACTURE OF NICKEL 115, 116, 177, 178, 242, 270, 392-394, 465, 624 and 625
DYNAMIC FRACTURE OF THORIUM 130, 132, 172-176, 179, 395, 396, 498, and 611
DYNAMIC FRACTURE OF TIN 640, 701, 702, 712-714, and 727
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNAMIC FRACTURE OF URANIUM</td>
<td>123, 129, 131, 133, 165-171, 401-403, 463, 466, 499, 502, and 507</td>
</tr>
<tr>
<td>DYNAMIC FRACTURE OF ZINC</td>
<td>.726 and 729-734</td>
</tr>
<tr>
<td>EXPANSION OF COMPOSITION B-3 PRODUCTS INTO A VACUUM</td>
<td>.93 and 94</td>
</tr>
<tr>
<td>EXPLOSIVE DRIVER FOR MULTIPLE PLATE FRACTURE</td>
<td>.334 and 347</td>
</tr>
<tr>
<td>FRACTURE RESOLUTION</td>
<td>.477 and 505</td>
</tr>
<tr>
<td>INTERACTING ALUMINUM JETS</td>
<td>.41, 42, and 59</td>
</tr>
<tr>
<td>INTERACTION OF COMPOSITION B-3 AND BARATOL PRODUCTS</td>
<td>.2</td>
</tr>
<tr>
<td>INTERACTION OF PBX-9404 AND COMPOSITION B-3 DETONATION PRODUCTS</td>
<td>.744</td>
</tr>
<tr>
<td>IRON PHASE CHANGE</td>
<td>.410, 412, 413, 475, 476, 511, 513, 514, 720, and 721</td>
</tr>
<tr>
<td>IRON REGULAR SHOCK REFLECTION</td>
<td>.579</td>
</tr>
<tr>
<td>IRON SHOCK WAVE</td>
<td>.673-677</td>
</tr>
<tr>
<td>LATERAL FLOW IN CONFINED COMPOSITION B-3</td>
<td>.586, 587, and 592-594</td>
</tr>
<tr>
<td>LEAD BACK SURFACE</td>
<td>.557-560</td>
</tr>
<tr>
<td>LEAD JETS</td>
<td>.45</td>
</tr>
<tr>
<td>LEAD SHOCK WAVE</td>
<td>.478-486</td>
</tr>
<tr>
<td>LUCITE AND WATER CORNER</td>
<td>.112 and 114</td>
</tr>
<tr>
<td>LUCITE SHOCK WAVE</td>
<td>.75</td>
</tr>
<tr>
<td>MACH REFLECTION IN BARATOL</td>
<td>3-5, 15, and 55</td>
</tr>
<tr>
<td>MACH REFLECTION IN COMPOSITION B-3</td>
<td>101</td>
</tr>
<tr>
<td>MACH REFLECTIONS IN COMPOSITION B-3</td>
<td>.621, 678, and 679</td>
</tr>
<tr>
<td>MAGNESIUM JETS</td>
<td>.321</td>
</tr>
<tr>
<td>MERCURY BACK SURFACE</td>
<td>.562</td>
</tr>
<tr>
<td>METAL INTERFACE MOTION</td>
<td>.497, 510, and 699</td>
</tr>
<tr>
<td>MULTIPLE PLATE FRACTURE</td>
<td>308-313, 319, 331-333, 335-339, and 385</td>
</tr>
<tr>
<td>MUNROE JET INTERACTING WITH ALUMINUM</td>
<td>.344-346</td>
</tr>
<tr>
<td>NICKEL BACK SURFACE</td>
<td>.550-551 and 602</td>
</tr>
<tr>
<td>NICKEL SHOCK WAVE</td>
<td>.663-665, 667, and 722</td>
</tr>
<tr>
<td>OBLIQUE ALUMINUM PLATE IMPACT</td>
<td>.90 and 96</td>
</tr>
<tr>
<td>OBLIQUE ALUMINUM PLATE IMPACT OF COMPOSITION B-3</td>
<td>.98 and 99</td>
</tr>
<tr>
<td>OBLIQUE PBX-9404 AND COMPOSITION B-3</td>
<td>.573, 575, 618, 619, and 724</td>
</tr>
<tr>
<td>P-040 LENS DETONATION WAVE</td>
<td>.630-633 and 641-644</td>
</tr>
<tr>
<td>PBX-9404 WITH EMBBEDDED GOLD FOILS</td>
<td>.735</td>
</tr>
<tr>
<td>PERLITE SHOCK INTERACTING WITH ALUMINUM PLATES</td>
<td>.408, 493, and 504</td>
</tr>
<tr>
<td>PERLITE SHOCK VELOCITY</td>
<td>.320, 406, 407, 493 and 503</td>
</tr>
<tr>
<td>PLANE-WAVE ALUMINUM GUN</td>
<td>.250-252</td>
</tr>
<tr>
<td>QUARTZ PHASE CHANGE</td>
<td>.414</td>
</tr>
</tbody>
</table>
REGULAR REFLECTION IN COMPOSITION B-3 100
SHOCKED ALUMINUM GROOVES INTERACTING
 WITH MERCURY .. 27 and 617
SHOCKED MERCURY INTERACTING
 WITH ALUMINUM GROOVES .. 26 and 184-186
SPHERICAL HOLE IN WATER ... 56 and 95
SPHERICALLY DIVERGING COMPOSITION B-3
 DETONATION ... 770, 796, and 797
STEEL JETS ... 44 and 46-51
STEEL SPLASH WAVE ... 58
THORIUM JETS ... 125-128
TWO COMPOSITION B-3 DETONATIONS ... 35, 38, 40, and 64
TWO COMPOSITION B-3 DETONATIONS COLLIDING
 WITH ALUMINUM ... 33 and 34
TWO PBX-9404 DETONATIONS
 INTERACTING WITH AN EMBEDDED PLATE 787
TWO OFFSET COMPOSITION B-3 DETONATIONS 31 and 71-73
URANIUM JETS ... 74, 117, 122, and 180-182
URANIUM JETS PENETRATING ALUMINUM 118 and 124
URANIUM SHOCK WAVE .. 658-662
VERMICULITE SHOCK VELOCITY .. .340, 404, and 405
WATER BACK SURFACE .. 569
WATER FREE SURFACE MOTION .. 191
WATER JET .. 192, 298, 299
WATER SHOCK .. 52, 53, 111, 113, 253, and 254
PHERMEX SHOTS 401 THROUGH 800
SHOT 401: **Dynamic Fracture of Uranium**

Date: December 22, 1965
Experimenter: Benny Ray Breed
Radiographic Time: 32.8 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, \(t \), uranium. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. \(h \) is 38.1 mm.

![Diagram of experimental setup]
SHOT 402: Dynamic Fracture of Uranium

Date: December 30, 1965
Experimenter: Benny Ray Breed
Radiographic Time: 31.2 \mu s
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, uranium. The plate is shocked by 38.1 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 403: Dynamic Fracture of Uranium

Date: December 29, 1965
Experimenter: Benny Ray Breed
Radiographic Time: 29.66 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, uranium. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 404: Vermiculite Shock Velocity

Date: January 11, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 48.87 μs

Bulk-density vermiculite shocked by 101.6 mm of Composition B-3. The rod on the left side of the radiograph contained four timing pins 25.4 mm apart. h is 76.2 mm. The pin times were 26.26, 31.25, 37.69, and 45.66 μs, the first pin being at the Composition B-3 and vermiculite interface. See Shots 340 and 405.
SHOT 405: Vermiculite Shock Velocity
Date: January 11, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 60.09 μs
Bulk-density vermiculite shocked by 101.6 mm of Composition B-3. The rod at the left side of the radiograph contained four timing pins 25.4 mm apart. The pin times were 47.77, 56.75, 64.76, and 76.35 μs, the first pin being 76.2 mm above the Composition B-3 and vermiculite interface. See Shots 340 and 404.
SHOT 406: Perlite Shock Velocity

Date: January 11, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 48.56 μs

Bulk-density perlite shocked by 101.6 mm of Composition B-3. The rod on the left side of the radiograph contained four timing pins 25.4 mm apart. h is 76.2 mm. The pin times were 26.22, 31.21, 37.86, and 45.84 μs, the first pin being at the Composition B-3 and perlite interface. See Shots 320 and 407.
SHOT 407: Perlite Shock Velocity
Date: January 11, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 60.11 µs
Bulk-density perlite shocked by 101.6 mm of Composition B-3. The rod at the left side of the radiograph contained three timing pins 25.4 mm apart. h is 101.6 mm. The pin times were 46.67, 55.66, and 67.18 µs, the first pin being 76.2 mm above the Composition B-3 and perlite interface. See Shots 320 and 406.
SHOT 408: Perlite Shock Interacting with Aluminum Plates

Date: February 23, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 83.47 μs

Bulk-density perlite shocked by 101.6 mm of Composition B-3 and interacting with 3.175-mm-thick aluminum plates. h is 158.75 mm. See Shot 493.
SHOT 409: Cylindrical Hole in Polyethylene

Date: February 14, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 46.23 μs
References: Mader et al., 1967; Mader and Kershner, 1972

Study of 10-mm-radius hole in a block of polyethylene. The shock wave was generated by 203.2 mm of Composition B-3 interacting with 6.35 mm of Lucite. h is 46.03 mm. See Shots 314 and 351.
SHOT 410: Iron Phase Change
Date: January 18, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 40.89 μs
Reference: Mader, 1966b

A 50.8-mm\(^2\) by 25.0-mm-high block of Armco iron is shocked by 114.3 mm of Baratol initiated by a P-040 lens.
SHOT 411: Composition B-3 Confined by Aluminum
Date: January 18, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 26.32 μs
A 101.6-mm cube of Composition B-3 initiated by a P-040 lens is confined by two 25.4-mm-thick by 152.4-mm-wide aluminum plates. h is 80.26 mm.
SHOT 412: Iron Phase Change

Date: January 31, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 40.84 μs
Reference: Mader, 1966b

A 50.8-mm cube of Armco iron is shocked by 114.3 mm of Baratol initiated by a P-040 lens.

[Diagram of experiment setup]
SHOT 413: Iron Phase Change
Date: February 1, 1966
Experiment: Benny Ray Breed
Radiographic Time: 40.9 µs
Reference: Mader, 1966b

A 50.8-mm-high by 38.1-mm-thick block of Armco iron is shocked by 114.3 mm of Baratol initiated by a P-040 lens.

[Diagram of experimental setup]
SHOT 414: Quartz Phase Change

Date: February 1, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 52.65 μs

A 127-mm cube of quartz is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens and interacts with 12.7 mm of aluminum.
SHOT 415: Aluminum Wedge
Date: May 26, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.87 μs
A shock wave generated by 101.6 mm of Composition B-3 initiated by a P-040 lens interacts with a 45° aluminum wedge.
SHOT 416: Aluminum Wedge

Date: June 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 37.43 μs

A shock wave generated by 101.6 mm of Composition B-3 initiated by a P-040 lens interacts with a 45° aluminum wedge.
SHOT 417: Aluminum Wedge

Date: June 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 31.99 μs

A shock wave generated by 101.6 mm of Composition B-3 initiated by a P-040 lens interacts with a 30° aluminum wedge.
SHOT 418: Aluminum Wedge
Date: June 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 37.41 μs
A shock wave generated by 101.6 mm of Composition B-3 initiated by a P-040 lens interacts with a 60° aluminum wedge.
SHOT 419: Composition B-3 with Embedded Tantalum Foils

Date: November 9, 1966
Experimenter: Douglas Venable
Radiographic Time: 34.94 μs

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.025-mm-thick tantalum foils are initiated by a 50.8-mm-thick slab of Composition B-3 and a P-081 lens.
SHOT 423: Composition B-3 with Embedded Tantalum Foils

Date: November 6, 1966
Experimenter: Douglas Venable
Radiographic Time: 34.97 μs
References: Mader, 1972b; Mader, 1974; Mader, 1979

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.0254-mm-thick tantalum foils were initiated by 50.8 mm of Composition B-3 and a P-081 lens. The explosive products were confined by two 25.4-mm-thick aluminum plates.
SHOT 424: Composition B-3 with Embedded Tantalum Foils
Date: January 5, 1967
Experimenter: Douglas Venable
Radiographic Time: 34.97 μs
Reference: Venable, 1965

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.0254-mm-thick tantalum foils were initiated by 50.8 mm of Composition B-3 and a P-081 lens. The explosive products were confined by two 25.4-mm-thick copper plates. The dynamic radiograph is shown twice at different exposures.
SHOT 425: Composition B-3 with Embedded Tantalum Foils

Date: November 23, 1966
Experimenter: Douglas Venable
Radiographic Time: 34.93 μs

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.0254-mm-thick tantalum foils were initiated by 50.8 mm of Composition B-3 and a P-081 lens. The explosive products were confined by two 25.4-mm-thick iron plates.

![Diagram showing the setup of the experiment.](image-url)
SHOT 426: Composition B-3 with Embedded Tantalum Foils
Date: December 7, 1966
Experimenter: Douglas Venable
Radiographic Time: 34.71 µs

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.0254-mm-thick tantalum foils were initiated by 60.8 mm of Composition B-3 and a P-081 lens. The explosive products were confined by two 25.4-mm-thick lead plates.
SHOT 427: Composition B-3 with Embedded Tantalum Foils

Date: February 27, 1968
Experimenter: Douglas Venable
Radiographic Time: 35.31 μs
References: Davis and Venable, 1970; Rivard et al., 1970

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils are initiated by 50.8 mm of Composition B-3 and a P-081 lens.
SHOT 428: Composition B-3 with Embedded Tantalum Foils

Date: May 14, 1968
Experimenter: Douglas Venable
Radiographic Time: 34.35 µs
References: Davis and Venable, 1970; Rivard et al., 1970

Seven slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils are initiated by 50.8 mm of Composition B-3 and a P-081 lens.
SHOT 429: Composition B-3 with Embedded Tantalum Foils

Date: November 3, 1966
Experimenter: Douglas Venable
Radiographic Time: 27.48 μs
References: Davis and Venable, 1970; Rivard et al., 1970

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.025-mm-thick tantalum foils are initiated by a P-081 lens.
SHOT 430: Composition B-3 with Embedded Tantalum Foils

Date: May 20, 1968
Experimenter: Douglas Venable
Radiographic Time: 32.79 μs
References: Davis and Venable, 1970; Rivard et al., 1970

Nine slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by 25.4 mm, W, of Composition B-3 and a P-081 lens.
SHOT 431: Composition B-3 with Embedded Tantalum Foils

Date: May 16, 1968
Experimenter: Douglas Venable
Radiographic Time: 32.04 μs
References: Davis and Venable, 1970; Rivard et al., 1970

Nine slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by 19.05 mm, W, of Composition B-3 and a P-081 lens.
SHOT 432: Composition B-3 with Embedded Tantalum Foils
Date: May 16, 1968
Experimenter: Douglas Venable
Radiographic Time: 31.22 μs
References: Davis and Venable, 1970; Rivard et al., 1970
Nine slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by 12.7 mm, W, of Composition B-3 and a P-081 lens.
SHOT 433: Composition B-3 with Embedded Tantalum Foils

Date: May 15, 1968
Experimenter: Douglas Venable
Radiographic Time: 30.42 µs
References: Davis and Venable, 1970; Rivard et al., 1970

Nine slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by 6.35 mm, W, of Composition B-3 and a P-081 lens.
SHOT 434: Composition B-3 with Embedded Tantalum Foils

Date: May 13, 1968
Experimenter: Douglas Venable
Radiographic Time: 29.58 μs
References: Davis and Venable, 1970; Rivard et al., 1970

Four slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by 31.75 mm of Composition B-3 and a P-081 lens.
SHOT 435: Composition B-3 with Embedded Tantalum Foils

Date: May 15, 1968
Experimenter: Douglas Venable
Radiographic Time: 28.84 μs
References: Davis and Venable, 1970; Rivard et al., 1970

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by a P-081 lens.
SHOT 436: Composition B-3 with Embedded Tantalum Foils

Date: April 10, 1968
Experimenter: Douglas Venable
Radiographic Time: 35.32 μs

Eight slabs of 6.35-mm-thick Composition B-3 separated by 0.0254-mm-thick tantalum foils were initiated by 50.8 mm of Composition B-3 and a P-081 lens. The explosive products were confined by two 25.4-mm-thick aluminum plates.
SHOT 437: Composition B-3 with Aluminum Strips
Date: April 9, 1968
Experimenter: Douglas Venable
Radiographic Time: 35.23 μs

Eight slabs of 6.35-mm-thick Composition B-3 separated around the edges by 0.0635-mm-thick aluminum (Mylar) strips 6.35 mm wide were initiated by 50.8 mm of Composition B-3 and a P-081 lens. The purpose of the shot was to study the effect of gaps between the explosive slabs.
SHOT 438: Composition B-3 with Aluminum Strips

Date: May 22, 1968
Experimenter: Douglas Venable
Radiographic Time: 35.24 μs

Eight slabs of 6.35-mm-thick Composition B-3 separated around the edges by 0.0254-mm-thick aluminum strips 6.35 mm wide were initiated by 50.8 mm of Composition B-3 and a P-081 lens.
SHOT 439: Composition B-3 with Embedded Tantalum Foils
Date: May 21, 1968
Experimenter: Douglas Venable
Radiographic Time: 33.6 μs
References: Davis and Venable, 1970; Rivard et al., 1970
Nine slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by 31.75 mm, W, of Composition B-3 and a P-081 lens.
SHOT 442: Composition B-3 with Embedded Tantalum Foils

Date: May 29, 1968
Experimenter: Douglas Venable
Radiographic Time: 30.43 μs
References: Davis and Venable, 1970; Rivard et al., 1970

Nine slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils were initiated by 6.35 mm, W, of Composition B-3 and a P-081 lens.
SHOT 450: Composition B-3 with Embedded Tantalum Foils

Date: August 19, 1970
Experimenter: Douglas Venable
Radiographic Time: 34.08 μs

Sixteen 6.35 by 50.8 by 101.6-mm Composition B-3 slabs separated by 0.0127-mm-thick tantalum foils were placed perpendicular to a P-081 lens. Sixteen more slabs were placed parallel to the lens and in contact with the first sixteen slabs. The explosive slabs were confined by two 25.4-mm-thick by 101.6-mm-wide iron plates.
SHOT 459: Composition B-3 Confined by Aluminum

Date: March 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 24.74 μs
References: Mader, 1972b; Mader, 1974; Mader, 1979

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens is confined by two 25.4-mm-thick by 101.6-mm-wide aluminum plates. h is 88.9 mm. See Shot 474 for a later time.
SHOT 460: Composition B-3 Confined by Iron

Date: March 17, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 24.73 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens is confined by two 25.4-mm-thick by 101.6-mm-wide iron plates. h is 88.9 mm.
SHOT 461: Composition B-3 Confined by Iron

Date: March 17, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 24.73 μs

A 101.6-mm-high by 50.8-mm-wide Composition B-3 block is confined by two 25.4-mm-thick by 50.8-mm-wide iron plates. h is 88.9 mm.
SHOT 462: Dynamic Fracture of Copper

Date: March 1, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.4 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 6.0-mm-thick, t, copper. The plate is shocked by 6.35 mm of Composition B-3 initiated by a P-040 lens. h is 19.05 mm.
SHOT 463: Dynamic Fracture of Uranium
Date: February 24, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.76 μs
References: Breed et al., 1967; Thurston and Mudd, 1968
Dynamic fracture of 25.0-mm-thick, t, uranium. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 464: Dynamic Fracture of Copper

Date: March 1, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 30.68 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, copper. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 465: Dynamic Fracture of Nickel

Date: March 1, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 32.07 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, nickel. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 466: Dynamic Fracture of Uranium

Date: March 1, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 32.54 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, uranium. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 467: Dynamic Fracture of Beryllium

Date: February 24, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.4 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, beryllium. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 41.275 mm.
SHOT 468: Dynamic Fracture of Beryllium

Date: February 24, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 22.24 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, beryllium. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 41.275 mm.
SHOT 469: Dynamic Fracture of Aluminum

Date: February 16, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 20.52 μs

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, aluminum. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 25.4 mm.
SHOT 470: Dynamic Fracture of Aluminum
Date: March 22, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 26.0 μs
References: Breed et al., 1967; Thurston and Mudd, 1968
Dynamic fracture of 25.0-mm-thick, t, aluminum. The plate is shocked by 50.8 mm of PBX-9404 initiated by a P-040 lens. h is 38.1 mm.
SHOT 471: Dynamic Fracture of Aluminum
Date: March 22, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.14 µs
References: Breed et al., 1967; Thurston and Mudd, 1968
Dynamic fracture of 25.0-mm-thick, t, aluminum. The plate is shocked by 25.4 mm of PBX-9404 initiated by a P-040 lens. h is 38.1 mm.
SHOT 472: Dynamic Fracture of Beryllium

Date: March 2, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 21.04 μs

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, beryllium. The plate is shocked by 12.7 mm of PBX-9404 initiated by a P-040 lens. h is 28.575 mm.
Dynamic Fracture of Beryllium

Date: March 2, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.47 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, beryllium. The plate is shocked by 25.4 mm of PBX-9404 initiated by a P-040 lens. h is 41.275 mm.
SHOT 474: Composition B-3 Confined by Aluminum
Date: February 2, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.24 μs
A 101.6-mm cube of Composition B-3 initiated by a P-040 lens is confined by two 25.4-mm-thick by 101.6-mm-wide aluminum plates. h is 101.6 mm. See Shot 459 for an earlier time.
SHOT 475: Iron Phase Change
Date: March 17, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 40.83 μs
Reference: Mader, 1966b

A block of Armco iron with a calibration wedge placed above where the shock front was expected. The iron was shocked by 114.3 mm of Baratol initiated by a P-040 lens. The magnification was 1.225; otherwise, this shot was identical to Shot 476.
SHOT 476: Iron Phase Change

Date: March 23, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 40.82 µs
Reference: Mader, 1966b

A block of Armco iron with a calibration wedge placed above where the shock front was expected. The iron was shocked by 114.3 mm of Baratol initiated by a P-040 lens. The magnification was 1.5625; otherwise, this shot was identical to Shot 475.
SHOT 477: Fracture Resolution
Date: March 23, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.29 μs
A study of the radiographic resolution of fracture thickness. A 2.0-mm-thick aluminum plate on top of a 23.0-mm-thick aluminum plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm. See Shot 505.
SHOT 478: Lead Shock Wave
Date: March 31, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 26.38 μs
A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. h is 3.30 mm.
SHOT 479: Lead Shock Wave
Date: April 6, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 26.38 µs
A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. h is 10.59 mm.
SHOT 480: Lead Shock Wave
Date: April 6, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 28.39 µs

A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. It is 5.52 mm.
SHOT 481: Lead Shock Wave
Date: April 6, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 28.39 μs
A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. h is 17.65 mm.
SHOT 482: Lead Shock Wave
Date: April 7, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 30.89 μs
A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. It is 8.25 mm.
SHOT 483: Lead Shock Wave

Date: April 7, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 30.86 μs

A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. h is 26.41 mm.
SHOT 484: Lead Shock Wave
Date: April 7, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.4 μs

A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. It is 10.92 mm.
SHOT 485: Lead Shock Wave
Date: April 12, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.39 µs
A lead block is shocked by 101.6 mm of Composition B-3 initiated by a P-022 lens. h is 35.30 mm.
SHOT 486: Dynamic Fracture of Aluminum

Date: March 9, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 33.41 μs

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 6.35-mm-thick, t, aluminum. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm. The apparatus for remotely placing a hot aluminum plate on the Composition B-3 is shown on the right side of the radiograph. It failed to operate.
SHOT 487: Baratol and Composition B-3 Interface

Date: March 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 14.01 μs

A 6.35-mm slab of Composition B-3 initiated by a P-040 lens. h is 0.0 mm.
SHOT 488: Baratol and Composition B-3 Interface

Date: March 22, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 14.87 μs

A 6.35-mm slab of Composition B-3 initiated by a P-040 lens. h is 1.58 mm.
SHOT 489: Baratol and Composition B-3 Interface

Date: March 23, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 15.48 μs

A 6.35-mm slab of Composition B-3 initiated by a P-040 lens. h is 1.58 mm.
SHOT 490: Baratol and Composition B-3 Interface
Date: March 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 15.99 µs
A 6.35-mm slab of Composition B-3 initiated by a P-040 lens. h is 3.17 mm.
SHOT 491: Baratol and Composition B-3 Interface
Date: March 23, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 16.49 μs
A 6.35-mm slab of Composition B-3 initiated by a P-040 lens. h is 3.17 mm.
SHOT 492: Cylindrical Implosion of a Brass Tube

Date: April 19, 1966

Experimenter: Douglas Venable

Radiographic Time: 36.21 μs

A 40.0-mm-diameter, 1.66-mm-thick brass tube was surrounded with a 177.8-mm-diameter Composition B-3 cylinder and detonated by a circular lens. The cylinder of Composition B-3 was used to drive an argon flash. The brass liner was added to study whether a jet would be formed. No jet was observed.
SHOT 493: Perlite Shock Velocity

Date: March 14, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 70.78 µs

Bulk-density perlite shocked by a P-040 lens. h is 158.7 mm. The shock wave was slower than expected.
SHOT 494: Dynamic Fracture of Beryllium

Date: March 14, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 36.48 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, beryllium. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 50.8 mm.
SHOT 495: Composition B-3 with Embedded Tantalum Foils

Date: March 16, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.4 μs

Sixteen slabs of 6.35-mm-thick Composition B-3 separated by 0.0254-mm-thick tantalum foils were initiated by a P-040 lens. The flow of the products confined by 25.4-mm-thick steel is shown. Two slabs of Lucite separated by tantalum foils were placed on top of the Composition B-3. h is 50.8 mm.
SHOT 496: Dynamic Fracture of Aluminum

Date: March 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.52 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, aluminum. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 33.02 mm.
SHOT 497: Metal Interface Motion

Date: March 31, 1966
Experimenter: William R. Field
Radiographic Time: 30.33 μs

A study of the movement of shocked metal plates perpendicular to each other. An 11.93-mm-thick magnesium plate and a 6.35-mm-thick uranium plate are driven perpendicular to a 6.35-mm-thick uranium plate by 101.6 mm of Composition B-3 initiated by a P-040 lens. A uranium reference plate was located 25.4 mm below the magnesium plate and behind the shot. See Shot 510.
SHOT 498: Dynamic Fracture of Thorium

Date: March 21, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 26.46 μs

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, thorium. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 41.275 mm.
SHOT 499: Dynamic Fracture of Uranium
Date: March 21, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 26.39 µs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, uranium. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 500: Dynamic Fracture of Copper

Date: March 21, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 27.59 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, copper. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 501: Dynamic Fracture of Copper

Date: March 21, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.4 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 6.0-mm-thick, t, copper. The plate is shocked by 6.35 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 502: Dynamic Fracture of Uranium

Date: March 22, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.97 µs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 6.0-mm-thick, t, uranium. The plate is shocked by 6.35 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 503: Perlite Shock Velocity

Date: March 24, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 128.07 μs

Bulk-density perlite shocked by a P-040 lens. h is 133.35 mm. The pins in the array were spaced 20.0 mm apart, with the first pin at the P-040 and perlite interface. The pin times were 13.49, 20.77, 30.33, and 42.16 μs.
SHOT 504: Perlite Shock Interacting with Aluminum Plates

Date: March 29, 1966
Experimenter: Gary W. Rodenz
Radiographic Time: 140.09 μs
Bulk-density perlite shocked by a P-040 lens. h is 165.1 mm. See Shots 408 and 493.
SHOT 505: Fracture Resolution
Date: April 5, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.3 μs

A study of the radiographic resolution of the fracture layer. A 2.0-mm-thick aluminum plate on top of a 23.0-mm-thick aluminum plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm. See Shot 477.
SHOT 506: Dynamic Fracture of Aluminum
Date: May 17, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 46.12 μs
References: Breed et al., 1967; Thurston and Mudd, 1968
Dynamic fracture of 25.0-mm-thick, t, aluminum shocked by 203.2 mm of Composition B-3 that was initiated by a P-040 lens. The Composition B-3 and P-040 lens are confined by 50.8-mm-thick steel plates. h is 38.1 mm.
SHOT 507: Dynamic Fracture of Uranium

Date: April 13, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 31.96 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, uranium. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 41.275 mm.
SHOT 508: Dynamic Fracture of Beryllium

Date: April 14, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 22.3 µs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, beryllium. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 31.75 mm.
SHOT 509: Dynamic Fracture of Beryllium
Date: April 14, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 36.75 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, beryllium. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 53.975 mm.
SHOT 510: Metal Interface Motion

Date: April 6, 1966
Experimenter: William R. Field
Radiographic Time: 27.63 μs

A study of the movement of shocked 6.35-mm-thick aluminum plates moving perpendicular to each other. The plates are driven by 101.6 mm of Composition B-3 initiated by a P-040 lens. See Shot 497.
SHOT 511: Iron Phase Change

Date: May 26, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.14 μs

A 60.8 by 38.1 by 144.0-mm block of Armco iron was shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. The detonation wave proceeds perpendicular to the iron plate. The iron phase change causes formation of two shocks in the iron at the intersection of the detonation wave front and the iron plate. These shocks spread apart as they travel into the plate.
SHOT 513:

Iron Phase Change

Date:
June 14, 1966

Experimenter:
Benny Ray Breed

Radiographic Time:
23.08 μs

A 50.8 by 50.8 by 144.0-mm block of Armco iron was shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. See Shots 511 and 514.
SHOT 514: Iron Phase Change
Date: June 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.12 \(\mu \)s

A 50.8 by 50.8 by 144.0-mm block of Armco iron was shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. See Shots 511 and 513.
SHOT 517: Dynamic Fracture of Lockalloy

Date: May 3, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 34.02 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, Lockalloy. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 41.275 mm. Lockalloy is 38% aluminum and 62% beryllium. The density is 2.1 g/cm³.
SHOT 518: Dynamic Fracture of Lockalloy

Date: May 4, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 26.2 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, Lockalloy. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 519: Dynamic Fracture of Lockalloy

Date: May 4, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 24.99 µs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, Lockalloy. The plate is shocked by 38.1 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 520: Dynamic Fracture of Lockalloy

Date: May 9, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 23.71 µs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, Lockalloy. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 521: Dynamic Fracture of Lockalloy

Date: May 10, 1966
Experiment: Benny Ray Breed
Radiographic Time: 20.51 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, Lockalloy. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 31.75 mm.
SHOT 522: Dynamic Fracture of Lockalloy

Date: May 11, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 22.35 μs

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, Lockalloy. The plate is shocked by 19.05 mm of Composition B-3 initiated by a P-040 lens. h is 41.275 mm.
SHOT 523: Brass Back Surface
Date: May 5, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 36.16 μs

A 0.79-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 3.81 mm.
SHOT 524: Brass Back Surface
Date: June 9, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 36.66 μs

A 0.79-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 6.78 mm.
SHOT 525: Brass Back Surface

Date: June 16, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 37.93 μs

A 0.79-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 10.795 mm.
SHOT 526: Brass Back Surface
Date: August 2, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 38.95 μs

A 0.79-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 14.478 mm.
SHOT 527: Brass Back Surface

Date: August 3, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 40 µs

A 0.79-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 15.265 mm.
SHOT 528: Brass Back Surface
Date: August 4, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 41.30 μs
A 0.79-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 19.786 mm.
SHOT 529: Brass Back Surface
Date: September 7, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 35.99 μs

A 1.58-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 2.666 mm.
SHOT 530: Brass Back Surface
Date: March 1, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 36.70 μs
A 1.58-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens, h is 5.064 mm.
SHOT 531: Brass Back Surface

Date: March 1, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 37.73 μs

A 1.58-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 8.56 mm.
SHOT 532: Brass Back Surface

Date: March 21, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 38.62 μs

A 1.58-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 11.567 mm.
SHOT 533: Brass Back Surface
Date: March 21, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 39.61 \mu s
A 1.66-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 15.06 mm.
SHOT 535: Brass Back Surface

Date: September 8, 1966
Experimenter: Roger W. Taylor

Radiographic Time: 37.15 μs

A 3.18-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 6.172 mm.
SHOT 536: Brass Back Surface
Date: August 1, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 37.70 μs
A 3.18-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 7.67 mm.
SHOT 537: Brass Back Surface
Date: August 3, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 39.24 µs
A 3.18-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 10.16 mm.
SHOT 538: Brass Back Surface

Date: August 16, 1967

Experimenter: Roger W. Taylor

Radiographic Time: 39.88 μs

A 3.18-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 13.182 mm.
SHOT 539: Brass Back Surface

Date: August 10, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 41.20 μs

A 3.18-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 16.66 mm.
SHOT 540: Brass Back Surface

Date: September 1, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 42.70 μs

A 3.18-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 20.65 mm.
SHOT 541: Brass Back Surface

Date: September 14, 1966

Experimenter: Roger W. Taylor

Radiographic Time: 37.43 μs

A 6.35-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 7.85 mm.
SHOT 543: Aluminum Back Surface
Date: February 20, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 18.17 μs
A 12.0-mm-thick aluminum plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 4.19 mm.
SHOT 544: Aluminum Back Surface
Date: February 20, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 19.17 µs
A 12.0-mm-thick aluminum plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 5.41 mm.
SHOT 545: Aluminum Back Surface

Date: February 20, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 20.20 µs

A 12.0-mm-thick aluminum plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 6.50 mm.
SHOT 546: Aluminum Back Surface

Date: February 25, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 21.10 μs

A 12.0-mm-thick aluminum plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 8.0 mm.
SHOT 547: Brass Back Surface

Date: May 12, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 38.94 µs

A 9.52-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 12.52 mm.
SHOT 550: Nickel Back Surface
Date: March 6, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 24.08 μs

A 12.0-mm-thick nickel plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 2.79 mm. A reference bar is shown above the shot.
SHOT 551: Nickel Back Surface
Date: March 18, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 27.11 μs
A 12.0-mm-thick nickel plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 6.70 mm. A reference bar is shown above the shot.
SHOT 552: Nickel Back Surface
Date: March 19, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 30.15 μs

A 12.0-mm-thick nickel plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 11.0 mm. A reference bar is shown above the shot.
SHOT 553: Brass Back Surface
Date: April 28, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 38.70 μs

A 12.7-mm-thick brass plate is shocked by 101.6 mm of Composition B-3 initiated by a P-081 lens. h is 14.2 mm.
SHOT 557: Lead Back Surface
Date: February 25, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 22.59 μs

A 12.0-mm-thick lead plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 3.40 mm. A reference bar is shown above the shot.
SHOT 558: Lead Back Surface
Date: February 25, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 25.05 μs
A 12.0-mm-thick lead plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 5.10 mm. A reference bar is shown above the shot.
SHOT 559: Lead Back Surface
Date: February 26, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 27.56 μs
A 12.0-mm-thick lead plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 7.80 mm. A reference bar is shown above the shot.
SHOT 560: Lead Back Surface

Date: March 6, 1969

Experimenter: Roger W. Taylor

Radiographic Time: 30.09 μs

A 12.0-mm-thick lead plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 11.61 mm. A reference bar is shown above the shot.
SHOT 562: Mercury Back Surface

Date: May 13, 1963

Experimenter: Roger W. Taylor

Radiographic Time: 20.11 μs

Twelve mm of mercury in a Plexiglas box is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 2.59 mm. A reference bar and its holder also are shown.
SHOT 569: Water Back Surface

Date: May 13, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 19.59 μs

Twelve mm of water in a Plexiglas box is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 8.30 mm. A reference bar and its holder also are shown.
SHOT 573: Oblique PBX-9404 and Composition B-3 Detonations

Date: April 20, 1966
Experimenter: Douglas Venable
Radiographic Time: 24.68 μs

This experiment was performed to examine overdriving of Composition B-3 by PBX-9404 in an oblique geometry.
SHOT 574: Cylindrical Implosion of a Brass Tube

Date: May 5, 1965
Experimenter: Douglas Venable
Radiographic Time: $47.60 \mu s$

A 40.0-mm-diameter, 1.68-mm-thick brass tube was surrounded by a 177.8-mm-diameter Composition B-3 cylinder and detonated by a cylindrical lens. The Composition B-3 was used to drive an argon flash. The brass liner was added to study whether a jet would be formed, but no jet was observed. See Shot 492.
This experiment was performed to examine how PBX 9404 overdrives Composition B-3 in an oblique geometry. Aluminum and 1020 steel also could be examined to determine their Hugoniot data. The experiment was radiographed when the detonation wave was almost at the upper end of the PBX-9404. A Mach wave interaction in the aluminum is shown.
SHOT 576: Composition B-3 Confined by Tantalum

Date: May 12, 1966
Experimenter: Douglas Venable
Radiographic Time: 34.97 μs

A 101.6- by 203.2-mm Composition B-3 slab initiated by a P-061 lens. The slab ends are confined by 0.0254- and 1.016-mm-thick tantalum plates. Designed to study the effect of varying lateral rarefaction magnitude.
SHOT 578: Composition B-3 Confined by Iron

Date: May 17, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.32 μs

A 101.6-mm-high by 101.6-mm-wide Composition B-3 block is confined by two 25.4-mm-thick by 101.6-mm-wide iron plates. The Composition B-3 is initiated by a P-040 lens. The beam axis is coincident with that of the P-040 lens.
SHOT 579: Iron Regular Shock Reflection
Date: August 16, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 43.30 μs

Two 114.3-mm-high Baratol blocks in contact with an Armco iron wedge were initiated simultaneously by P-040 lenses. Regular reflection of the two iron shock waves occurs at a 45° collision angle. The experiment was an attempt to observe collision of the double shocks from the iron phase change.
SHOT 580: Composition B-3 with an Embedded Aluminum Plate

Date: May 10, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.65 μs

A 1.0-mm-thick aluminum plate is embedded between a P-040 lens and 50.8 mm of Composition B-3 that shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 581: Composition B-3 with an Embedded Aluminum Plate

Date: May 18, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.67 μs

A 1.0-mm-thick aluminum plate is embedded between a 38.1-mm-thick Composition B-3 slab and a 12.7-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum, h is 28.575 mm.
SHOT 582: Composition B-3 with an Embedded Aluminum Plate

Date: May 18, 1968
Experimenter: Jack N. Hardwick
Radiographic Time: 26.66 µs

A 1.0-mm-thick aluminum plate is embedded between a 25.4-mm-thick Composition B-3 slab and another 25.4-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 583: Composition B-3 with an Embedded Aluminum Plate

Date: May 19, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.68 μs

A 1.0-mm-thick aluminum plate is embedded between a 12.7-mm-thick Composition B-3 slab and a 38.1-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 586: Lateral Flow in Confined Composition B-3

Date: April 23, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 17.64 μs

Five 0.0127-mm-thick tantalum foils are embedded parallel to the detonation wave in a 12.7-mm-thick slab of Composition B-3 initiated by a P-040 lens. The detonation wave interacts with a 12.7-mm-thick lead plate. The objective was to study the lateral flow in confined Composition B-3 detonation products. See Shots 587 and 592-594.
SHOT 587: Lateral Flow in Confined Composition B-3

Date: April 23, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 20.10 μs

Five 0.0127-mm-thick tantalum foils are embedded parallel to the detonation wave in a 12.7-mm-thick slab of Composition B-3 initiated by a P-040 lens. The detonation wave interacts with a 12.7-mm-thick lead plate. The objective was to study the lateral flow in confined Composition B-3 detonation products. See Shots 586 and 592-594.
SHOT 588: Composition B-3 with an Embedded Iron Plate

Date: August 2, 1986
Experimenter: Jack N. Hardwick
Radiographic Time: $26.70 \mu s$

A 1.0-mm-thick iron plate is embedded between a P-040 lens and 50.8 mm of Composition B-3 that shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 589: Composition B-3 with an Embedded Iron Plate

Date: August 16, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.72 μs

A 1.0-mm-thick iron plate is embedded between a 38.1-mm-thick Composition B-3 slab and a 12.7-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 590: Composition B-3 with an Embedded Iron Plate

Date: August 18, 1966

Experimenter: Jack N. Hardwick

Radiographic Time: 26.71 μs

A 1.0-mm-thick iron plate is embedded between a 25.4-mm-thick Composition B-3 slab and another 25.4-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 591: Composition B-3 with an Embedded Iron Plate

Date: August 18, 1966

Experimenter: Jack N. Hardwick

Radiographic Time: 26.71 \(\mu s \)

A 1.0-mm-thick iron plate is embedded between a 12.7-mm-thick Composition B-3 slab and a 38.1-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum, h is 28.575 mm.
SHOT 592: Lateral Flow in Confined Composition B-3

Date: April 24, 1969

Experimenter: Roger W. Taylor

Radiographic Time: 22.63 μs

Five 0.0127-mm-thick tantalum foils are embedded parallel to the detonation wave in a 12.7-mm-thick slab of Composition B-3 initiated by a P-040 lens. The detonation wave interacts with a 12.7-mm-thick lead plate. See Shots 586, 587, 593, and 594.
SHOT 593: Lateral Flow in Confined Composition B-3

Date: April 24, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 26.14 μs

Five 0.0127-mm-thick tantalum foils are embedded parallel to the detonation wave in a 12.7-mm-thick slab of Composition B-3 initiated by a P-040 lens. The detonation wave interacts with a 12.7-mm-thick lead plate. See Shots 586, 587, 592, and 594.
SHOT 594: Lateral Flow in Confined Composition B-3

Date: April 24, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 27.60 μs

Five 0.0127-mm-thick tantalum foils are embedded parallel to the detonation wave in a 12.7-mm-thick slab of Composition B-3 initiated by a P-040 lens. The detonation wave interacts with a 12.7-mm-thick lead plate. See Shots 586, 587, 592, and 593.
SHOT 596: Composition B-3 with an Embedded Uranium Plate

Date: May 10, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.81 μs

A 1.0-mm-thick uranium plate is embedded between a P-040 lens and 50.8 mm of Composition B-3 that shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 597: Composition B-3 with an Embedded Uranium Plate

Date: May 19, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.82 μs

A 1.0-mm-thick uranium plate is embedded between a 38.1-mm-thick Composition B-3 slab and a 12.7-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 598: Composition B-3 with an Embedded Uranium Plate
Date: May 19, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.83 μs

A 1.0-mm-thick uranium plate is embedded between a 25.4-mm-thick Composition B-3 slab and another 25.4-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm. See Shot 651.
SHOT 599: Composition B-3 with an Embedded Uranium Plate

Date: May 19, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.83 μs

A 1.0-mm-thick uranium plate is embedded between a 12.7-mm-thick Composition B-3 slab and a 38.1-mm-thick Composition B-3 slab plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm.
SHOT 600: Aluminum Back Surface

Date: March 26, 1969

Experimenter: Roger W. Taylor

Radiographic Time: 16.16 μs

A 12.0-mm-thick aluminum plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 1.40 mm.
SHOT 601: Aluminum Back Surface
Date: March 27, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 17.07 μs
A 12.0-mm-thick aluminum plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 2.80 mm. A reference bar is shown above the shot.
SHOT 602: Nickel Back Surface

Date: March 27, 1969
Experimenter: Roger W. Taylor
Radiographic Time: 18.10 μs

A 12.0-mm-thick nickel plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens, h is 1.40 mm. A reference bar is shown above the shot.
SHOT 604: Dynamic Fracture of Lead

Date: June 15, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 43.41 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, lead. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 44.45 mm.
SHOT 605: Dynamic Fracture of Lead

Date: July 7, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 37.03 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, lead. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 44.45 mm.
SHOT 606: Dynamic Fracture of Lead
Date: July 5, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 35.32 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, lead. The plate is shocked by 38.1 mm of Composition B-3 initiated by a P-040 lens. h is 44.45 mm.
SHOT 607: Dynamic Fracture of Lead

Date: June 29, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.82 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, lead. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 44.45 mm.
SHOT 608: Dynamic Fracture of Lead

Date: June 29, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 32.23 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, lead. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 44.45 mm.
SHOT 609: Dynamic Fracture of Lead

Date: June 15, 1968
Experimenter: Benny Ray Breed
Radiographic Time: 28.55 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, lead. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 31.75 mm.
SHOT 610: Dynamic Fracture of Lead

Date: June 22, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 29.32 µs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, lead. The plate is shocked by 19.05 mm of Composition B-3 initiated by a P-040 lens. h is 31.75 mm.
SHOT 611: Dynamic Fracture of Thorium

Date: May 11, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 43.36 μs

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, thorium. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens, h is 44.46 mm.
SHOT 612: Cylindrical Hole in Polyethylene
Date: May 17, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 46.23 μs
References: Mader et al., 1967; Mader and Kerhner, 1972

Study of a 10-mm-radius hole in a block of polyethylene. The shock wave was generated by 203.2 mm of Composition B-3 interacting with 6.35 mm of Lucite. h is 46.03 mm. See Shots 314, 351, 409, and 613.
SHOT 613: Cylindrical Hole in Polyethylene
Date: May 17, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 47.73 µs
References: Mader et al., 1967; Mader and Kerhner, 1972
Study of a 10-mm-radius hole in a block of polyethylene. The shock wave was generated by 203.2 mm of Composition B-3 interacting with 6.35 mm of Lucite. h is 53.97 mm.
Two 101.6-mm Composition B-3 blocks in contact with an aluminum wedge were initiated simultaneously by P-040 lenses. At a 33.70° collision angle, regular reflection of the two aluminum shock waves occurs.
SHOT 615: Aluminum Mach Reflection
Date: July 27, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 42.53 µs
Reference: Mader, 1967

Two 101.6-mm Composition B-3 blocks in contact with an aluminum wedge were initiated simultaneously by P-040 lenses. At a 60° collision angle, Mach reflection of the two aluminum shock waves occurs.
SHOT 617: Shocked Aluminum Grooves Interacting with Mercury

Date: September 8, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 47.55 μs

A shocked 90°-grooved aluminum plate interacting with mercury. See Shot 27 for an earlier time.
SHOT 618: Oblique PBX-9404 and Composition B-3 Detonations

Date: September 7, 1966
Experimenter: Douglas Venable
Radiographic Time: 33.83 μs

This experiment was performed to examine how PBX-9404 overdrives Composition B-3 in oblique geometry. A repeat of Shot 575 with a different magnification.
SHOT 619: Oblique PBX-9404 and Composition B-3 Detonations

Date: November 23, 1966
Experimenter: Douglas Venable
Radiographic Time: 33.80 μs

An experiment to examine how PBX-9404 overdrives Composition B-3 in oblique geometry.
SHOT 620: Composition B-3 Confined by Iron

Date: August 2, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.30 μs

A 101.6-mm height of 50.8-mm-wide Composition B-3 is confined by two 25.4-mm-thick by 50.8-mm-wide iron plates. There is 12.7 mm of Lucite on top of the Composition B-3. h is 80.26 mm.
SHOT 621: Mach Reflections in Composition B-3

Date: June 9, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 23.41 μs

Five 44.45-mm-thick by 101.6-mm-square blocks of Composition B-3 are initiated by P-040 lenses. These blocks are placed in contact with the five 101.6-mm-wide sides of a "Hepta-HE-dron" of Composition B-3. See Shots 678 and 679 for later times.
SHOT 624: Dynamic Fracture of Nickel

Date: May 24, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 27.32 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, nickel. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 625: Dynamic Fracture of Nickel
Date: May 25, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 32.10 μs
References: Breed et al., 1967; Thurston and Mudd, 1988
Dynamic fracture of 25.0-mm-thick, t, nickel. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 626: Dynamic Fracture of Beryllium

Date: June 14, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 21.86 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, beryllium. The plate is shocked by 19.05 mm of Composition B-3 initiated by a P-040 lens. h is 31.75 mm.
SHOT 627: Dynamic Fracture of Beryllium

Date: June 15, 1966
Experiment: Benny Ray Breed
Radiographic Time: 21.02 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, beryllium. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 28.575 mm.
SHOT 628: Dynamic Fracture of Beryllium

Date: June 14, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 19.56 μs

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 6.0-mm-thick, t, beryllium. The plate is shocked by 6.35 mm of Composition B-3 initiated by a P-040 lens. h is 22.22 mm.
SHOT 630: P-040 Lens Detonation Wave
Date: August 3, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 7.49 μs
A P-040 lens 7.49 μs after initiation. h is 12.34 mm.
SHOT 631: P-040 Lens Detonation Wave

Date: August 3, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 9.59 μs

A P-040 lens 9.59 μs after initiation. h is 25.19 mm.
SHOT 632: P-040 Lens Detonation Wave

Date: August 4, 1966

Experimenter: Jack N. Hardwick

Radiographic Time: 11.67 µs

A P-040 lens 11.67 µs after initiation. h is 32.96 mm.
SHOT 633: P-040 Lens Detonation Wave

Date: June 30, 1966

Experimenter: Jack N. Hardwick

Radiographic Time: 13.74 µs

A P-040 lens 13.74 µs after initiation. h is 38.0 mm.
SHOT 634: Composition B-3 Detonation Wave
Date: July 12, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 15.99 μs
A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 16.67 mm.
SHOT 635: Composition B-3 Detonation Wave
Date: July 12, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 17.94 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 34.93 mm.
SHOT 636: Composition B-3 Detonation Wave
Date: June 30, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 20.0 μs
A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 51.6 mm.
SHOT 637: Composition B-3 Detonation Wave

Date: July 13, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 22.11 µs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 67.47 mm.
SHOT 638: Composition B-3 Detonation Wave

Date: July 13, 1966

Experimenter: Jack N. Hardwick

Radiographic Time: 24.16 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 84.14 mm.
SHOT 639: Composition B-3 Detonation Wave
Date: June 30, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 26.28 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 100.80 mm.
SHOT 640: Dynamic Fracture of Tin
Date: January 24, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 41.75 μs
References: Breed et al., 1967; Thurston and Mudd, 1968
Dynamic fracture of 25.0-mm-thick, tin. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 50.8 mm.
SHOT 641: P-040 Lens Detonation Wave

Date: August 25, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 7.47 μs

A P-040 lens 7.47 μs after initiation. h is 12.7 mm.
SHOT 642: P-040 Lens Detonation Wave

Date: August 30, 1986
Experimenter: Jack N. Hardwick
Radiographic Time: 9.58 μs

A P-040 lens 9.58 μs after initiation. h is 22.65 mm.
SHOT 643: P-040 Lens Detonation Wave

Date: September 14, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 11.62 μs

A P-040 lens 11.62 μs after initiation. h is 32.96 mm.
SHOT 644: P-040 Lens Detonation Wave
Date: November 23, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 13.75 µs
A P-040 lens 13.75 µs after initiation. h is 38 mm.
SHOT 645: Composition B-3 Detonation Wave

Date: December 8, 1966

Experimenter: Jack N. Hardwick

Radiographic Time: 16.07 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens. h is 18.26 mm.
SHOT 646: Composition B-3 Detonation Wave

Date: December 8, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 17.94 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens. h is 34.93 mm.
SHOT 647: Composition B-3 Detonation Wave
Date: January 4, 1967
Experimenter: Jack N. Hardwick
Radiographic Time: 20.03 μs
A 101.6-mm cube of Composition B-3 initiated by a P-040 lens. h is 51.59 mm.
SHOT 648: Composition B-3 Detonation Wave

Date: January 4, 1967
Experimenter: Jack N. Hardwick
Radiographic Time: 22.10 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens. h is 67.46 mm.
SHOT 649: Composition B-3 Detonation Wave

Date: January 9, 1967
Experimenter: Jack N. Hardwick
Radiographic Time: 24.60 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens. h is 84.14 mm.
SHOT 650: Composition B-3 Detonation Wave

Date: January 9, 1967
Experimenter: Jack N. Hardwick
Radiographic Time: 26.06 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens. h is 100.8 mm.
SHOT 651: Composition B-3 with an Embedded Uranium Plate

Date: July 14, 1986
Experimenter: Jack N. Hardwick
Radiographic Time: 26.79 μs

A 1.0-mm-thick uranium plate is embedded between a 25.4-mm-thick slab of Composition B-3 and another 25.4-mm-thick slab of Composition B-3 plus a P-040 lens. The system shocks 12.0 mm of aluminum. h is 28.575 mm. See Shot 598.
SHOT 654: Beryllium Shock Wave
Date: October 25, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.80 μS
A 25.0-mm-thick, t, beryllium plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.0 mm.
SHOT 655: Beryllium Shock Wave
Date: January 10, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 27.31 μs

A 25.0-mm-thick, t, beryllium plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.79 mm.
SHOT 656: Beryllium Shock Wave
Date: January 10, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 27.78 μs
A 25.0-mm-thick, t, beryllium plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 1.587 mm.
SHOT 657: Beryllium Shock Wave

Date: January 11, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 28.28 µs

A 25.0-mm-thick, t, beryllium plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 2.381 mm.
SHOT 658: Uranium Shock Wave

Date: October 25, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 27.30 μs

A 25.0-mm-thick, t, uranium plate is shocked by 101.8 mm of Composition B-3 initiated by a P-040 lens. h is 0.0 mm.
SHOT 659: Uranium Shock Wave

Date: December 8, 1966

Experimenter: Roger W. Taylor

Radiographic Time: 28.30 μs

A 25.0-mm-thick, t, uranium plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.79 mm.
SHOT 640: Uranium Shock Wave
Date: February 23, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 29.26 µs
A 25.0-mm-thick, t, uranium plate is shocked by 101.8 mm of Composition B-3 initiated by a P-040 lens. h is 1.587 mm.
SHOT 661: Uranium Shock Wave

Date: February 23, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 30.26 μs

A 25.0-mm-thick, t, uranium plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 2.38 mm.
SHOT 662: Uranium Shock Wave

Date: February 23, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 31.26 μs

A 25.0-mm-thick, t, uranium plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 3.175 mm.
SHOT 663: Nickel Shock Wave
Date: August 17, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.77 µs
A 25.0-mm-thick, t, nickel plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.0 mm.
SHOT 664: Nickel Shock Wave

Date: August 23, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 27.28 μs

A 25.0-mm-thick, t, nickel plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.79 mm.
SHOT 665: Nickel Shock Wave
Date: October 19, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 28.29 µs
A 25.0-mm-thick, t, nickel plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 1.57 mm.
SHOT 667: Nickel Shock Wave
Date: October 25, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 30.28 μs
A 25.0-mm-thick, t, nickel plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 3.176 mm.
SHOT 668: Copper Shock Wave
Date: August 18, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.80 μs
A 25.0-mm-thick, t, copper plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.0 mm.
SHOT 669: Copper Shock Wave
Date: August 4, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 27.58 µs
A 25.0-mm-thick, t, copper plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.79 mm.
SHOT 670: Copper Shock Wave
Date: October 20, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 28.60 μs
A 25.0-mm-thick, t, copper plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 1.69 mm.
SHOT 671: Copper Shock Wave
Date: October 25, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 29.60 µs
A 25.0-mm-thick, t, copper plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 2.38 mm.
SHOT 672: Copper Shock Wave
Date: January 11, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 30.56 μs
A 25.0-mm-thick, t, copper plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 3.175 mm.
SHOT 673: Iron Shock Wave
Date: August 18, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 26.81 μs

A 25.0-mm-thick, t, iron plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.0 mm.
SHOT 674: Iron Shock Wave

Date: August 23, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 27.58 μs

A 25.0-mm-thick, t, iron plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 0.79 mm.
SHOT 675: Iron Shock Wave
Date: October 20, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 28.63 μs

A 25.0-mm-thick, t, iron plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 1.59 mm.
SHOT 676: Iron Shock Wave
Date: January 5, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 29.56 μs
A 25.0-mm-thick, t, iron plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 2.38 mm.
SHOT 677: Iron Shock Wave
Date: January 11, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 30.58 μs

A 25.0-mm-thick, t, iron plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 3.175 mm.
SHOT 678: Mach Reflections in Composition B-3
Date: July 28, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 25.57 µs
Five 44.54-mm-thick by 101.6-mm-square blocks of Composition B-3 are initiated by P-040 lenses. These blocks are placed in contact with the five 101.6-mm-wide sides of a "Hepta-HE-dron" of Composition B-3. See Shots 621 and 679 for other times.
SHOT 679: Mach Reflections in Composition B-3

Date: July 28, 1966

Experimenter: Roger W. Taylor

Radiographic Time: 26.64 μs

Five 44.45-mm-thick by 101.6-mm-square blocks of Composition B-3 are initiated by P-040 lenses. These blocks are placed in contact with the five 101.6-mm-wide sides of a "Hepta-HE-dron" of Composition B-3. See Shots 621 and 678 for other times.
SHOT 688: Colliding Aluminum Plates

Date: September 1, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 49.42 μs

Two 6.35-mm-thick aluminum plates at a 50° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-081 lens.
SHOT 689: Colliding Aluminum Plates
Date: March 22, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 40.42 μs

Two 6.35-mm-thick aluminum plates at a 30° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-081 lens.
Two 6.35-mm-thick aluminum plates at a 34° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-081 lens.
SHOT 691: Dynamic Fracture of Hot Aluminum

Date: September 8, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.41 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, 773 K, 1100 aluminum. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm. The apparatus for remotely placing the hot aluminum plate on a 6.35-mm-thick aluminum cap over the Composition B-3 is shown on the right.
SHOT 692: Dynamic Fracture of Cold Lead
Date: August 30, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 43.39 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, 78 K lead. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 693: Dynamic Fracture of Cold Lead
Date: September 28, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 35.29 \(\mu \)s
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, 78 K lead. The plate is shocked by 38.1 mm of Composition B-3 initiated by a P-040 lens. \(h \) is 44.5 mm.
SHOT 694: Dynamic Fracture of Cold Lead

Date: September 29, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 36.99 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, 78 K lead. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 695: Dynamic Fracture of Cold Lead

Date: October 5, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 33.83 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, 78 K lead. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 696: Dynamic Fracture of Cold Lead

Date: October 5, 1986
Experimenter: Benny Ray Breed
Radiographic Time: 32.19 μs
Reference: Thurston and Mudd, 1988

Dynamic fracture of 25.0-mm-thick, t, 78 K lead. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 697: Composition B-3 Detonation Wave

Date: August 16, 1966
Experimenter: Jack N. Hardwick
Radiographic Time: 14.78 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 10.31 mm.
SHOT 698: Composition B-3 Detonation Wave

Date: August 17, 1966

Experimenter: Jack N. Hardwick

Radiographic Time: 16.88 μs

A 101.6-mm cube of Composition B-3 initiated by a P-040 lens and viewed edge-on. h is 26.19 mm.
SHOT 699: Metal Interface Motion

Date: September 13, 1966
Experimenter: Roger W. Taylor
Radiographic Time: 27.47 μs

A study of the movement of a shocked 12.7-mm-thick aluminum plate moving perpendicular to two 25.4-mm-thick aluminum plates. The plates are driven by 101.6 mm of Composition B-3 initiated by a P-040 lens.
SHOT 700: Aluminum Flying Plate

Date: September 7, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 35.18 µs

A 3.0-mm-thick aluminum plate is initially shocked by a system of 12.7-mm-thick lead and 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 50.8 mm. See Shots 706, 707, and 710.
SHOT 701: Dynamic Fracture of Tin
Date: February 7, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 29.61 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.07-mm-thick, tin. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 50.8 mm.
SHOT 702: Dynamic Fracture of Tin

Date: February 8, 1967

Experimenter: Benny Ray Breed

Radiographic Time: 33.82 μs

Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick tin. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 50.8 mm.
SHOT 704: Colliding Aluminum Plates

Date: April 6, 1987

Experimenter: Roger W. Taylor

Radiographic Time: 48.36 \(\mu \)s

Two 6.35-mm-thick aluminum plates at a 50° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-081 lens.
SHOT 705: Colliding Aluminum Plates

Date: April 6, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 38.67 μs

Two 6.35-mm-thick aluminum plates at a 25° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-081 lens.
SHOT 706: Aluminum Flying Plate

Date: October 12, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 35.19 μs

A 3.0-mm-thick aluminum plate is initially shocked by a system of 12.7-mm-thick lead and 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 28.6 mm. See Shots 700, 707, and 710.
SHOT 707: Aluminum Flying Plate

Date: October 13, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 40.06 µs

A 3.0-mm-thick aluminum plate is initially shocked by a system of 12.7-mm-thick lead and 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm. See Shots 700, 706, and 710.
SHOT 710: Aluminum Flying Plate

Date: October 17, 1966
Experiment: Benny Ray Breed
Radiographic Time: 40.10 µs

A 1.5875-mm-thick aluminum plate is initially shocked by a system of 12.7-mm-thick lead and 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm. See Shots 700, 706, and 707.
SHOT 711: Dynamic Fracture of Cold Lead

Date: October 5, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 28.52 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, 78 K lead. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 712: Dynamic Fracture of Tin

Date: February 8, 1967

Experimenter: Benny Ray Breed

Radiographic Time: 35.41 μs

Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, tin. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 50.8 mm.
SHOT 713: Dynamic Fracture of Tin

Date: February 9, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 27.75 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick tin. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 714: Dynamic Fracture of Tin

Date: February 9, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 28.79 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, tin. The plate is shocked by 19.05 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 715: Dynamic Fracture of Beryllium

Date: January 24, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 28.36 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, beryllium. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 716: Antimony Phase Change
Date: October 11, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 26.01 µs
Reference: Breed and Venable, 1968; Neal, 1976b
A 50.8- by 38.1-mm block of antimony is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. The explosive overdrives the phase change.
SHOT 717: Antimony Phase Change

Date: October 11, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 31.79 μs

A 50.8- by 38.1-mm block of antimony is shocked by 101.6 mm of Baratol initiated by a P-040 lens. Two plastic waves were formed in the antimony. Curvature of the second plastic wave indicates that it is accelerating.
SHOT 718: **Antimony Phase Change**

Date: October 24, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 31.80 µs

A 50.8- by 38.1-mm block of antimony is shocked by 101.6 mm of Baratol initiated by a P-040 lens.
SHOT 720: Iron Phase Change

Date: November 3, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 25.01 μs

A 50.8- by 38.1-mm block of Armco iron is separated from 101.6 mm of Composition B-3 and a P-040 lens by 6.35-mm-thick aluminum.
SHOT 721: Iron Phase Change

Date: October 13, 1966
Experimenter: Benny Ray Breed
Radiographic Time: 25.00 μs

A 50.8- by 38.1-mm block of Armco iron is separated from 101.6 mm of Composition B-3 and a P-040 lens by 6.35-mm-thick uranium.
SHOT 722: Nickel Shock Wave

Date: January 11, 1987
Experimenter: Roger W. Taylor
Radiographic Time: 29.28 µs

A 25.0-mm-thick nickel plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 2.38 mm.
SHOT 728: Antimony Phase Change

Date: November 16, 1966
Experimenter: Benny Ray Breed

Radiographic Time: 31.77 μs

A 50.8- by 38.1-mm block of antimony with five embedded 0.0606-mm-thick aluminum foils is shocked by 101.6 mm of Baratol initiated by a P-040 lens.
SHOT 724: Oblique PBX-9404 and Composition B-3 Detonations

Date: January 19, 1967
Experimenter: Douglas Venable
Radiographic Time: 34.07 μs

An experiment performed to examine how PBX-9404 overdrives Composition B-3 in oblique geometry.
SHOT 726: Dynamic Fracture of Zinc

Date: November 8, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 29.72 μs

Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, zinc. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 727: Dynamic Fracture of Tin

Date: November 8, 1966

Experimenter: Benny Ray Breed

Radiographic Time: 30.18 μs

Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, tin. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 729: Dynamic Fracture of Zinc
Date: January 5, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 32.93 µs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, zinc. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 730: Dynamic Fracture of Zinc

Date: January 10, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 39.35 µs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, zinc. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 731: Dynamic Fracture of Zinc
Date: January 19, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 28.15 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, zinc. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 732: Dynamic Fracture of Zinc

Date: January 24, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 31.34 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, zinc. The plate is shocked by 38.1 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 733: Dynamic Fracture of Zinc

Date: January 10, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 25.52 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, zinc. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 31.75 mm.
SHOT 734: Dynamic Fracture of Zinc
Date: February 14, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 26.34 μs
Reference: Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, zinc. The plate is shocked by 19.05 mm of Composition B-3 initiated by a P-040 lens. h is 31.75 mm.
SHOT 735: PBX 9404 with Embedded Gold Foils

Date: January 18, 1967
Experimenter: Douglas Venable

Radiographic Time: 30.47 μs

Five 2.54-mm-thick slabs of PBX 9404 separated by 0.101-mm-thick gold foils and placed between a 6.35-mm-thick brass plate and a 6.096-mm-thick aluminum plate are shocked by 50.8 mm of PBX-9401 and a P-081 lens.
SHOT 736: Dynamic Fracture of Beryllium
Date: January 24, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 25.15 μs
Reference: Thurston and Mudd, 1968
Dynamic fracture of 25.0-mm-thick, t, beryllium. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 44.5 mm.
SHOT 744: Interaction of PBX-9404 and Composition B-3 Detonation Products

Date: February 14, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 26.12 μs

Interaction of the detonation products of Composition B-3 and PBX 9404 blocks placed 38.1 mm apart and detonated so that the detonation waves would arrive at the tops of the blocks simultaneously after 101.6 mm of travel.
SHOT 750: Boron Nitride Phase Change

Date: February 21, 1967

Experimenter: Benny Ray Breed

Radiographic Time: 31.74 μs

A 50.8- by 38.1-mm block of boron nitride is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens.
SHOT 751: Boron Nitride Phase Change

Date: February 23, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 24.65 μs

A 50.8- by 38.1-mm block of boron nitride is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. See Shots 768 and 776.
SHOT 756: Dynamic Fracture of 347 Steel

Date: March 7, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 29.92 μs

Dynamic fracture of 12.0-mm-thick, t, 347 steel. The plate is shocked by 19.05 mm of Composition B-3 initiated by a P-040 lens. h is 25.4 mm.
SHOT 757: Dynamic Fracture of 347 Steel

Date: March 8, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 29.27 μs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 12.0-mm-thick, t, 347 steel. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 25.4 mm.
SHOT 758: Dynamic Fracture of 347 Steel

Date: March 8, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 31.27 µs
References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, 347 steel. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 759: Dynamic Fracture of 347 Steel

Date: March 8, 1967

Experimenter: Benny Ray Breed

Radiographic Time: 32.89 μs

Reference: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, 347 steel. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 760: Dynamic Fracture of 347 Steel
Date: March 8, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 34.45 µs
References: Breed et al., 1967; Thurston and Mudd, 1968
Dynamic fracture of 25.0-mm-thick, t, 347 steel. The plate is shocked by 38.1 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 761: Dynamic Fracture of 347 Steel

Date: March 15, 1967

Experimenter: Benny Ray Breed

Radiographic Time: 42.46 \(\mu \)s

References: Breed et al., 1967; Thurston and Mudd, 1968

Dynamic fracture of 25.0-mm-thick, t, 347 steel. The plate is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 762: Dynamic Fracture of 347 Steel
Date: May 31, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 36.11 μs
Dynamic fracture of 25.0-mm-thick, t, 347 steel. The plate is shocked by 60.8 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 763: Colliding PBX-9404 and Composition B-3 Detonations

Date: March 23, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 25.53 μs

The collision of Composition B-3 and PBX 9404 detonation waves with a 0.0254-mm-thick tantalum foil.
SHOT 764: Colliding PBX-9404 and Composition B-3 Detonations

Date: June 1, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 26.04 μs

The reflected shocks in Composition B-3 and PBX-9404 detonation products 0.5 μs after the waves collided. See Shots 763 and 765-767.
SHOT 765: Colliding PBX-9404 and Composition B-3 Detonations

Date: June 21, 1967

Experimenter: Roger W. Taylor

Radiographic Time: 26.52 µs

The reflected shocks in Composition B-3 and PBX-9404 detonation products 1.0 µs after the waves collided. See Shots 763, 764, 766, and 767.
SHOT 766: Colliding PBX-9404 and Composition B-3 Detonations

Date: June 21, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 27.04 µs

The reflected shocks in Composition B-3 and PBX-9404 detonation products 1.5 µs after the waves collided. See Shots 763-765 and 767.
SHOT 767: Colliding PBX-9404 and Composition B-3 Detona-
tions

Date: June 29, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 27.56 μs

The reflected shocks in Composition B-3 and PBX-9404 detonation products 2.0 μs
after the waves collided. See Shots 763-766.
SHOT 768: Boron Nitride Phase Change

Date: March 15, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 24.73 μs

A 50.8- by 38.1-mm block of boron nitride is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens. See Shots 751 and 776.
SHOT 769: Bismuth Phase Change
Date: March 15, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 32.07 μs
Reference: Breed and Venable, 1968

A 60.8-by 38.1-mm block of bismuth is shocked by 101.6 mm of Baratol initiated by a P-040 lens.
SHOT 770: Spherically Diverging Composition B-3 Detonation

Date: May 18, 1967
Experimenter: Douglas Venable
Radiographic Time: 28.04 μs

A 162.4-mm cube of Composition B-3 is center initiated by composite hemispheres of PBX 9407 and PETN, center initiated by a length of MDF (mild detonating fuse). Five 0.0254-mm-thick tantalum foils are embedded in the Composition B-3 every 12.7 mm. The detonation product density may be calculated from the foil movement. See Shots 796 and 797.

594
SHOT 775: Antimony Phase Change

Date: June 14, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 32.01 μs
Reference: Breed and Venable, 1968

A 50.8- by 38.1-mm block of antimony is shocked by 101.6 mm of Baratol initiated by a P-040 lens.
SHOT 776: Boron Nitride Phase Change
Date: April 5, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 24.72 μs
A 50.8- by 38.1-mm block of boron nitride with seven embedded 0.0508-mm-thick gold foils is shocked by 101.6 mm of Composition B-3 initiated by a P-040 lens.
SHOT 784: Composition B-3 with Embedded Tantalum Foils
Date: June 15, 1967
Experimenter: Jack N. Hardwick
Radiographic Time: 29.56 μs

Sixteen slabs of 6.35-mm-thick Composition B-3 separated by 0.0127-mm-thick tantalum foils are initiated by a P-081 lens.
SHOT 786: Antimony Phase Change
Date: June 20, 1967
Experimenter: Benny Ray Reed
Radiographic Time: 32.06 µs
A 50.8- by 38.1-mm block of antimony is shocked by 101.6 mm of Baratol initiated by a P-040 lens.
SHOT 787: Two PBX-9404 Detonations Interacting with an Embedded Plate

Date: July 5, 1967
Experimenter: William R. Field
Radiographic Time: 21.43 µs

Two P-040 lenses simultaneously initiated 25.4- and 50.8-mm-thick PBX-9404 slabs separated by a 1.01-mm-thick uranium plate. The reflected shock waves from the embedded uranium plate and the interaction of the two detonation waves are shown.
SHOT 788: Dynamic Fracture of Cobalt

Date: July 11, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 30.44 μs

Dynamic fracture of 25.0-mm-thick, t, cobalt. The plate is shocked by 38.1 mm of Composition B-3 initiated by a P-040 lens. h is 38.1 mm.
SHOT 789: Dynamic Fracture of Cobalt

Date: July 11, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 27.26 μs

Dynamic fracture of 25.0-mm-thick, t, cobalt. The plate is shocked by 12.7 mm of Composition B-3 initiated by a P-040 lens. h is 41.27 mm.
SHOT 794: Dynamic Fracture of Cobalt

Date: May 25, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 32.57 μs

Dynamic fracture of 25.0-mm-thick, t, cobalt. The plate is shocked by 50.8 mm of Composition B-3 initiated by a P-040 lens. h is 41.27 mm.
SHOT 795: Dynamic Fracture of Cobalt
Date: June 1, 1967
Experimenter: Benny Ray Breed
Radiographic Time: 28.82 µs
Dynamic fracture of 25.0-mm-thick, t, cobalt. The plate is shocked by 25.4 mm of Composition B-3 initiated by a P-040 lens. h is 41.27 mm.
SHOT 796: Spherically Diverging Composition B-3 Detonation

Date: May 24, 1967
Experimenter: Douglas Venable
Radiographic Time: 26.80 μs

A 152.4-mm cube of Composition B-3 is center initiated by composite hemispheres of PBX-9407 and PETN, center initiated by a length of MDF (mild detonating fuse). Five 0.0254-mm-thick tantalum foils are embedded in the Composition B-3 every 12.7 mm. The detonation product density may be calculated from the foil movement. See Shots 770 and 797.
SHOT 797: Spherically Diverging Composition B-3 Detonation

Date: June 20, 1967
Experimenter: Douglas Venable
Radiographic Time: 29.27 μs

A 152.4-mm cube of Composition B-3 is center initiated by composite hemispheres of PBX-9407 and PETN, center initiated by a length of MDF (mild detonating fuse). Five 0.0254-mm-thick tantalum foils are embedded in the Composition B-3 every 12.7 mm. The detonation product density may be calculated from the foil movement. See Shots 770 and 796.
SHOT 798: Colliding Aluminum Plates

Date: June 29, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 38.66 μs

Two 6.35-mm-thick aluminum plates at a 25° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-081 lens.
SHOT 799: Colliding Aluminum Plates

Date: July 5, 1967
Experimenter: Roger W. Taylor
Radiographic Time: 42.99 µs

Two 6.35-mm-thick aluminum plates at a 30° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-061 lens.
SHOT 800: Colliding Aluminum Plates

Date: July 11, 1967

Experimenter: Roger W. Taylor

Radiographic Time: 44.98 μs

Two 6.35-mm-thick aluminum plates at a 34° angle are each driven by 50.8 mm of Composition B-3 initiated by a P-081 lens.