WARNING!
<table>
<thead>
<tr>
<th>Page</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Introduction</td>
</tr>
<tr>
<td>17</td>
<td>Sequence of Operation</td>
</tr>
<tr>
<td>27</td>
<td>Parts to be Removed Semi-Automatically</td>
</tr>
<tr>
<td>37</td>
<td>Parts to be Modified</td>
</tr>
<tr>
<td>99</td>
<td>Parts List</td>
</tr>
</tbody>
</table>

Chapter 4 |

Chapter 3 |

Chapter 2 |
The Ruger 10-22 is an economical weapon able to many different shooting arrangements. The Ruger 10-22 is one of the most popular firearms in the world, and this became one of the most popular firearms when it entered into production in 1964.

The Ruger 10-22 is a semi-automatic rifle with a selector lever that allows fully automatic or semi-automatic operation. The weapon features its semi-automatic mode when modified to the semi-automatic fire mode.

The purpose of this manual is to provide instructions and manufacturing data required for conversion of the Ruger 10-22 semi-automatic carbine into a selective 10-22 semi-automatic carbine. This is a selection of the semi-automatic features.
This action compresses the recoil spring. Upon completion of the hammer, the rear guard returns the bolt handle (and bolt) to the rear guard position, releasing the bolt.

Assuming there is a loaded magazine in place:

1. Cocking the weapon

The sequence of events are:

- The rear guard 12-22 still retains the close
- The rear guard 12-22 still retains the close
- The rear guard 12-22 still retains the close

The systems for various applications are provided, including the following:

- Rubber-coated barrel
- Rubber-coated strip
- Rubber-coated strip
- Rubber-coated strip

The weapon is well-adapted to various applications

With the 12-22, the weapon is suitable for various applications, providing greater flexibility for various purposes. Providing greater flexibility for various applications, providing greater flexibility for various applications. Providing greater flexibility for various applications.
2. SEAM-ANT FIRE

At this point, the weapon is ready to fire.

(2) HOLD THE CATCH AND RELEASE THE RECOIL SPRING TO FIRE.

(3) FIRING MECHANISM

The firing mechanism consists of the trigger, the sear, the hammer, and the sear. The trigger actuates the sear, which in turn actuates the hammer. The hammer, in turn, actuates the bolt. The bolt then extracts and ejects the spent cartridge. The sear is a spring-loaded device that prevents the hammer from being released until the trigger is actuated. The sear also prevents the hammer from being released accidentally when the weapon is not in use. The sear is retained in a cocked position by the sear spring. The sear spring is a coiled spring that provides tension to keep the sear in the cocked position. When the trigger is pulled, the sear is disengaged, allowing the hammer to rotate, cocking the gun.

(4) BOLT MECHANISM

The bolt mechanism is responsible for the extraction and ejection of spent cartridges. The bolt is a sliding mechanism that is actuated by the hammer. The bolt slides rearward, extracting the spent cartridge and ejecting it from the chamber. The bolt then returns to the forward position, ready to receive the next cartridge.

(5) SAFETY MECHANISM

The safety mechanism is a device that prevents the firearm from firing when it is not intended. The safety is activated by a lever or a knob, which blocks the trigger mechanism from actuating the hammer. The safety is an important feature of any firearm, as it helps prevent accidents and accidental discharges.

(6) MAGAZINE MECHANISM

The magazine mechanism is responsible for holding and feeding the cartridges into the chamber. The magazine is a detachable component that can be removed from the firearm and loaded with cartridges. The magazine is actuated by a lever or a knob, which allows the user to load the magazine with cartridges and then insert it into the firearm.
3. The selector lever must be positioned in the "SAFE" position."

4. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

5. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

6. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

7. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

8. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

9. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

10. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

11. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.

12. The trigger remains depressed as described in
 paragraph 3-7, the hammer is cocked.
FULL SCALE

DRAW NO 1A

OPERATING SEQUENCE

With the weapon in the firing position, moving safety to "OFF" and depressing trigger:

1. Moving safety to "OFF" and depressing trigger:
 - Hammer is cocked, sear engaged.
 - Bolt is in closed position.
 - Selector is set at "Semi-Auto Functioning".

This cycle is repeated until the trigger is released. The sear can then rise. Interrupting the hammer and interrupting the firing cycle:

- The sear is released. The sear can then rise. Interrupting the hammer and interrupting the firing cycle:
Parts To Be Removed

Sem-Auto
3. Stock - Drawing #3:

of the selector lever assembly.

hole and 1/16" long x 1/8", which slot is
chair/receiver/receiver assembly. After, a 7/32"
cut/trigger housing base. The trigger housing
hole is drilled through the housing at right-
angle to the receiver housing requiring that a 1/8"

2. Trigger housing - Drawing #2:

selector lever. Locate the position of the
control. The receiver requires 1/16" x 0.003
diagram #2.

1. Receiver - Drawing #1:

standard caliber is required. The modifications
standard caliber is required. The modifications
10-22, minor modifications to six parts of the
For select-fire conversion of the Ruger

Parts To Be Modified

3
SELECTOR POSITIONING CAUTIONS

1. For correct with the release lever.
2. Bolt - Drawing 4.7
3. D. diaphragm is the catch when assembled.
4. HINGE notch is cut into the number as
5. TRIGGER - Drawing 5.
New Style Bolt

Old Style Bolt

NOTE ON BOLTS

Diagonally shaded area represents the flat surfaces of underside of bolt.

Dash line, lead or interchangeability. For this modification, each bolt can
be used at some point. Below are shown examples. The bolt design for the angle 10-22 was

100 Radius

Depth of Slot

Thickess of Slot

0.080

2.975

1.00 Radius

2.00

150

150
Full Scale Drawing No. 5
Hammer FA

Bolt notch is to be ground to the dimensions shown.

1/8 (0.125)

1.750

File web down in this area.

1.50 X 0.30
Epoxy the shim in this area.

1/16 (1.6 mm)

File web down in this area.

Full Scale Drawing No. 5
Pivot Pin-Catch Rel. Lever

Leader FA

Leader EA
ed length, a lap, and then grind to finish. A shape of the product with the use of the proper width, and then filling a piece of 0.50 steel metal into a chamfer shape of each shown can be made by bonding a.

2. Catch-drawing / 8.43.01.34231.52

Parts To Be Manufactured

Note: The above is a preliminary draft and may be subject to change. Parts To Be Manufactured are also included. For more details, refer to the manufacturer's specifications.
7. Select the proper head and be sure it is held in place.

8. Do not allow the lug to touch the chamber against the lever. The chamber insert is shown and it is thin when assembled to the selector lever.

9. This lug can be made of any material.

10. Select the correct lug - Drawing # 12.

5. Selector Lever - Drawing # 11.

4. Spring Catch - Drawing # 10.

2. Same as above in # 3.

1. Return the spring to the drawing.

Cut spring arms to the approximate length of the spring and bend the two curves as shown. Be sure to hold the two pieces of the arm and the two right angles together. Place the large piece of the arm and the two parts of the arm together.

In a free forming adapter, cut and bend the large piece of the arm and the two pieces of the arm together. It can be done with a little pressure. It can be done with a little pressure.

A little piece of the arm can be made from 0.050 material as the lug in # 7. The work is done, if possible, to ensure proper engagement.

Dimensions must be as accurate as possible to ensure proper engagement.