The chemistry of phenols
Patai Series: The Chemistry of Functional Groups

A series of advanced treatises founded by Professor Saul Patai and under the general editorship of Professor Zvi Rappoport

The Patai Series publishes comprehensive reviews on all aspects of specific functional groups. Each volume contains outstanding surveys on theoretical and computational aspects, NMR, MS, other spectroscopical methods and analytical chemistry, structural aspects, thermochemistry, photochemistry, synthetic approaches and strategies, synthetic uses and applications in chemical and pharmaceutical industries, biological, biochemical and environmental aspects.
To date, over 100 volumes have been published in the series.

Recently Published Titles

The chemistry of the Cyclopropyl Group (2 volumes, 3 parts)
The chemistry of the Hydrazo Azo and Azoxy Groups (2 volumes, 3 parts)
The chemistry of Double-Bonded Functional Groups — (3 volumes, 6 parts)
The chemistry of Organophosphorus Compounds (4 volumes)
The chemistry of Halides, Pseudo-Halides and Azides (2 volumes, 4 parts)
The chemistry of the Amino, Nitro and Nitroso Groups (2 volumes, 4 parts)
The chemistry of Dienes and Polynes (2 volumes)
The chemistry of Organic Derivatives of Gold and Silver
The chemistry of Organic Silicon Compounds (3 volumes, 6 parts)
The chemistry of Organic Germanium, Tin and Lead Compounds (2 volumes, 3 parts)
The chemistry of Phenols

Forthcoming Titles

The chemistry of Organolithium Compounds
The chemistry of Cyclobutanes
The chemistry of Peroxides (Volume 2)

The Patai Series Online

Starting in 2003 the Patai Series will be available in electronic format on Wiley InterScience. All new titles will be published online and a growing list of older titles will be added every year. It is the ultimate goal that all titles published in the Patai Series will be available in electronic format.
For more information see the Patai Series Online website:

www.interscience.wiley.com/bookfinder.html
The chemistry of phenols
Part 1

Edited by
ZVI RAPPOPORT
The Hebrew University, Jerusalem

2003

An Interscience® Publication
Dedicated to

Gadi, Adina,

Sharon and Michael
Contributing authors

L. Ross C. Barclay
Department of Chemistry, Mount Allison University, Sackville, New Brunswick, Canada, E4L 1G8

M. Berthelot
Laboratoire de Spectrochimie, University of Nantes, 2, rue de la Houssiniere BP 92208, F-44322 Nantes Cedex 3, France

Volker Böhmer
Johannes Gutenberg-Universität, Fachbereich Chemie und Pharmazie, Abteilung Lehramt Chemie, Duesbergweg 10–14, D-55099 Mainz, Germany

Luis Castedo
Departamento de Química Orgánica y Unidad Asociada al C.S.I.C., Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

M. J. Caulfield
Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia

Victor Glezer
National Public Health Laboratory, Ministry of Health, 69 Ben Zvi Rd., Tel Aviv, Israel

J. Graton
Laboratoire de Spectrochimie, University of Nantes, 2, rue de la Houssiniere BP 92208, F-44322 Nantes Cedex 3, France

Concepción González
Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, 27002 Lugo, Spain

Poul Erik Hansen
Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark

William M. Horspool
Department of Chemistry, The University of Dundee, Dundee DD1 4HN, Scotland, UK

Menahem Kaftory
Department of Chemistry, Technion—Israel Institute of Technology, Haifa 32000, Israel

Alla V. Koblik
ChemBridge Corporation, Malaya Pirogovskaya str., 1, 119435 Moscow, Russia

Eugene S. Kryachko
Department of Chemistry, University of Leuven, B-3001, Belgium, and Departement SBG, Limburgs Universitaire Centrum, B-3590 Diepenbeek, Belgium

Dietmar Kuck
Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
C. Laurence
Laboratoire de Spectrochimie, University of Nantes, 2, rue de la Houssiniere BP 92208, F-44322 Nantes Cedex 3, France

Joel F. Liebman
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA

Sergei M. Lukyanov
ChemBridge Corporation, Malaya Pirogovskaya str., 1, 119435 Moscow, Russia

P. Neta
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

Minh T. Nguyen
Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium

Ehud Pines
Chemistry Department, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel

G. K. Surya Prakash
Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, USA

G. G. Qiao
Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia

V. Prakash Reddy
Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65409, USA

Suzanne W. Slayden
Department of Chemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA

D. H. Solomon
Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia

Jens Spanget-Larsen
Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark

S. Steenken
Max-Planck-Institut für Strahlenchemie, D-45413 Mülheim, Germany

Luc G. Vanquickenborne
Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium

Melinda R. Vinqvist
Department of Chemistry, Mount Allison University, Sackville, New Brunswick, Canada, E4L 1G8

Masahiko Yamaguchi
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578 Japan

Shosuke Yamamura
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan

Jacob Zabicky
Institutes for Applied Research, Ben-Gurion University of the Negev, P. O. Box 653, Beer-Sheva 84105, Israel
Foreword

This is the first volume in The ‘Chemistry of Functional Groups’ series which deals with an aromatic functional group. The combination of the hydroxyl group and the aromatic ring modifies the properties of both groups and creates a functional group which differs significantly in many of its properties and reactions from its two constituents. Phenols are important industrially, in agriculture, in medicine, in chemical synthesis, in polymer chemistry and in the study of physical organic aspects, e.g. hydrogen bonding. These and other topics are treated in the book.

The two parts of the present volume contain 20 chapters written by experts from 11 countries. They include an extensive treatment of the theoretical aspects, chapters on various spectroscopies of phenols such as NMR, IR and UV, on their mass spectra, on the structural chemistry and thermochemistry, on the photochemical and radiation chemistry of phenols and on their synthesis and synthetic uses and on reactions involving the aromatic ring such as electrophilic substitution or rearrangements. There are also chapters dealing with the properties of the hydroxyl group, such as hydrogen bonding or photoacidity, and with the derived phenoxy radicals which are related to the biologically important antioxidant behavior of phenols. There is a chapter dealing with polymers of phenol and a specific chapter on calixarenes — a unique family of monocyclic compounds including several phenol rings.

Three originally promised chapters on organometallic derivatives, on acidity and on the biochemistry of phenols were not delivered. Although the chapters on toxicity and on analytical chemistry deal with biochemistry related topics and the chapter on photoacidity is related to the ground state acidity of phenols, we hope that the missing chapters will appear in a future volume.

The literature coverage in the various chapters is mostly up to 2002.

I will be grateful to readers who draw my attention to any mistakes in the present volume.

Jerusalem
February 2003

Zvi Rappoport
The Chemistry of Functional Groups
Preface to the series

The series ‘The Chemistry of Functional Groups’ was originally planned to cover in each volume all aspects of the chemistry of one of the important functional groups in organic chemistry. The emphasis is laid on the preparation, properties and reactions of the functional group treated and on the effects which it exerts both in the immediate vicinity of the group in question and in the whole molecule.

A voluntary restriction on the treatment of the various functional groups in these volumes is that material included in easily and generally available secondary or tertiary sources, such as Chemical Reviews, Quarterly Reviews, Organic Reactions, various ‘Advances’ and ‘Progress’ series and in textbooks (i.e. in books which are usually found in the chemical libraries of most universities and research institutes), should not, as a rule, be repeated in detail, unless it is necessary for the balanced treatment of the topic. Therefore each of the authors is asked not to give an encyclopaedic coverage of his subject, but to concentrate on the most important recent developments and mainly on material that has not been adequately covered by reviews or other secondary sources by the time of writing of the chapter, and to address himself to a reader who is assumed to be at a fairly advanced postgraduate level.

It is realized that no plan can be devised for a volume that would give a complete coverage of the field with no overlap between chapters, while at the same time preserving the readability of the text. The Editors set themselves the goal of attaining reasonable coverage with moderate overlap, with a minimum of cross-references between the chapters. In this manner, sufficient freedom is given to the authors to produce readable quasi-monographic chapters.

The general plan of each volume includes the following main sections:

(a) An introductory chapter deals with the general and theoretical aspects of the group.
(b) Chapters discuss the characterization and characteristics of the functional groups, i.e. qualitative and quantitative methods of determination including chemical and physical methods, MS, UV, IR, NMR, ESR and PES—as well as activating and directive effects exerted by the group, and its basicity, acidity and complex-forming ability.
(c) One or more chapters deal with the formation of the functional group in question, either from other groups already present in the molecule or by introducing the new group directly or indirectly. This is usually followed by a description of the synthetic uses of the group, including its reactions, transformations and rearrangements.
(d) Additional chapters deal with special topics such as electrochemistry, photochemistry, radiation chemistry, thermochemistry, syntheses and uses of isotopically labelled compounds, as well as with biochemistry, pharmacology and toxicology. Whenever applicable, unique chapters relevant only to single functional groups are also included (e.g. ‘Polyethers’, ‘Tetraaminoethylenes’ or ‘Siloxanes’).
This plan entails that the breadth, depth and thought-provoking nature of each chapter will differ with the views and inclinations of the authors and the presentation will necessarily be somewhat uneven. Moreover, a serious problem is caused by authors who deliver their manuscript late or not at all. In order to overcome this problem at least to some extent, some volumes may be published without giving consideration to the originally planned logical order of the chapters.

Since the beginning of the Series in 1964, two main developments have occurred. The first of these is the publication of supplementary volumes which contain material relating to several kindred functional groups (Supplements A, B, C, D, E, F and S). The second ramification is the publication of a series of ‘Updates’, which contain in each volume selected and related chapters, reprinted in the original form in which they were published, together with an extensive updating of the subjects, if possible, by the authors of the original chapters. A complete list of all above mentioned volumes published to date will be found on the page opposite the inner title page of this book. Unfortunately, the publication of the ‘Updates’ has been discontinued for economic reasons.

Advice or criticism regarding the plan and execution of this series will be welcomed by the Editors.

The publication of this series would never have been started, let alone continued, without the support of many persons in Israel and overseas, including colleagues, friends and family. The efficient and patient cooperation of staff-members of the publisher also rendered us invaluable aid. Our sincere thanks are due to all of them.

The Hebrew University
Jerusalem, Israel

Saul Patai
Zvi Rappoport

Sadly, Saul Patai who founded ‘The Chemistry of Functional Groups’ series died in 1998, just after we started to work on the 100th volume of the series. As a long-term collaborator and co-editor of many volumes of the series, I undertook the editorship and I plan to continue editing the series along the same lines that served for the preceding volumes. I hope that the continuing series will be a living memorial to its founder.

The Hebrew University
Jerusalem, Israel

Zvi Rappoport

June 2002
Contents

1 General and theoretical aspects of phenols
 Minh Tho Nguyen, Eugene S. Kryachko
 and Luc G. Vanquickenborne
 1

2 The structural chemistry of phenols
 Menahem Kaftory
 199

3 Thermochemistry of phenols and related arenols
 Suzanne W. Slayden and Joel F. Liebman
 223

4 Mass spectrometry and gas-phase ion chemistry of phenols
 Dietmar Kuck
 259

5 NMR and IR spectroscopy of phenols
 Poul Erik Hansen and Jens Spanget-Larsen
 333

6 Synthesis of phenols
 Concepción González and Luis Castedo
 395

7 UV-visible spectra and photoacidity of phenols, naphthols and
 pyrenols
 Ehud Pines
 491

8 Hydrogen-bonded complexes of phenols
 C. Laurence, M. Berthelot and J. Graton
 529

9 Electrophilic reactions of phenols
 V. Prakash Reddy and G. K. Surya Prakash
 605

10 Synthetic uses of phenols
 Masahiko Yamaguchi
 661

11 Tautomeric equilibria and rearrangements involving phenols
 Sergei M. Lukyanov and Alla V. Koblík
 713

12 Phenols as antioxidants
 L. Ross C. Barclay and Melinda R. Vinqvist
 839

13 Analytical aspects of phenolic compounds
 Jacob Zabicky
 909

14 Photochemistry of phenols
 1015
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Radiation chemistry of phenols</td>
<td>1097</td>
</tr>
<tr>
<td></td>
<td>P. Neta</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Transient phenoxy radicals: Formation and properties in aqueous solutions</td>
<td>1107</td>
</tr>
<tr>
<td></td>
<td>S. Steenken and P. Neta</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Oxidation of phenols</td>
<td>1153</td>
</tr>
<tr>
<td></td>
<td>Shosuke Yamamura</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Environmental effects of substituted phenols</td>
<td>1347</td>
</tr>
<tr>
<td></td>
<td>Victor Glezer</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Calixarenes</td>
<td>1369</td>
</tr>
<tr>
<td></td>
<td>Volker Böhmer</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Polymers based on phenols</td>
<td>1455</td>
</tr>
<tr>
<td></td>
<td>D. H. Solomon, G. G. Qiao and M. J. Caulfield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Author index</td>
<td>1507</td>
</tr>
<tr>
<td></td>
<td>Subject index</td>
<td>1629</td>
</tr>
</tbody>
</table>
List of abbreviations used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl (MeCO)</td>
</tr>
<tr>
<td>acac</td>
<td>acetylacetone</td>
</tr>
<tr>
<td>Ad</td>
<td>adamantyl</td>
</tr>
<tr>
<td>AIBN</td>
<td>azoisobutynitrile</td>
</tr>
<tr>
<td>Alk</td>
<td>alkyl</td>
</tr>
<tr>
<td>All</td>
<td>allyl</td>
</tr>
<tr>
<td>An</td>
<td>anisyl</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Bz</td>
<td>benzoyl (C₆H₅CO)</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl (C₄H₉)</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CI</td>
<td>chemical ionization</td>
</tr>
<tr>
<td>CIDNP</td>
<td>chemically induced dynamic nuclear polarization</td>
</tr>
<tr>
<td>CNDO</td>
<td>complete neglect of differential overlap</td>
</tr>
<tr>
<td>Cp</td>
<td>η⁵-cyclopentadienyl</td>
</tr>
<tr>
<td>Cp⁺</td>
<td>η⁵-pentamethylcyclopentadienyl</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-diazabicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>DBN</td>
<td>1,5-diazabicyclo[4.3.0]non-5-ene</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DIBAH</td>
<td>diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact</td>
</tr>
<tr>
<td>ESCA</td>
<td>electron spectroscopy for chemical analysis</td>
</tr>
<tr>
<td>ESR</td>
<td>electron spin resonance</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>eV</td>
<td>electron volt</td>
</tr>
</tbody>
</table>
List of abbreviations used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fc</td>
<td>ferrocenyl</td>
</tr>
<tr>
<td>FD</td>
<td>field desorption</td>
</tr>
<tr>
<td>FI</td>
<td>field ionization</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>Fu</td>
<td>furyl(OC₅H₃)</td>
</tr>
<tr>
<td>GLC</td>
<td>gas liquid chromatography</td>
</tr>
<tr>
<td>Hex</td>
<td>hexyl(C₆H₁₃)</td>
</tr>
<tr>
<td>c-Hex</td>
<td>cyclohexyl(c-C₆H₁₁)</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphortriamide</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>i-</td>
<td>iso</td>
</tr>
<tr>
<td>ICR</td>
<td>ion cyclotron resonance</td>
</tr>
<tr>
<td>Ip</td>
<td>ionization potential</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminium hydride</td>
</tr>
<tr>
<td>LCAO</td>
<td>linear combination of atomic orbitals</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>M</td>
<td>metal</td>
</tr>
<tr>
<td>M</td>
<td>parent molecule</td>
</tr>
<tr>
<td>MCPBA</td>
<td>m-chloroperbenzoic acid</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MNDO</td>
<td>modified neglect of diatomic overlap</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrum</td>
</tr>
<tr>
<td>n</td>
<td>normal</td>
</tr>
<tr>
<td>Naph</td>
<td>naphthyl</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>NCS</td>
<td>N-chlorosuccinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>Pen</td>
<td>pentyl(C₅H₁₁)</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Pip</td>
<td>piperidyl(C₅H₁₀N)</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl (C₃H₇)</td>
</tr>
<tr>
<td>PTC</td>
<td>phase transfer catalysis or phase transfer conditions</td>
</tr>
<tr>
<td>Py, Pyr</td>
<td>pyridyl (C₃H₂N)</td>
</tr>
</tbody>
</table>
List of abbreviations used

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>any radical</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>s-</td>
<td>secondary</td>
</tr>
<tr>
<td>SET</td>
<td>single electron transfer</td>
</tr>
<tr>
<td>SOMO</td>
<td>singly occupied molecular orbital</td>
</tr>
<tr>
<td>t-</td>
<td>tertiary</td>
</tr>
<tr>
<td>TCNE</td>
<td>tetracyanoethylene</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>Thi</td>
<td>thienyl(SC₄H₃)</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>tetramethylethylene diamine</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl or tetramethylsilane</td>
</tr>
<tr>
<td>Tol</td>
<td>tolyl(MeC₆H₄)</td>
</tr>
<tr>
<td>Tos or Ts</td>
<td>tosyl(p-toluenesulphonyl)</td>
</tr>
<tr>
<td>Trityl</td>
<td>triphenylmethyl(Ph₃C)</td>
</tr>
<tr>
<td>Xyl</td>
<td>xylyl(Me₂C₆H₃)</td>
</tr>
</tbody>
</table>

CHAPTER 1

General and theoretical aspects of phenols

MINH THO NGUYEN

Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium
fax: 32-16-327992; e-mail: minh.nguyen@chem.kuleuven.ac.be

EUGENE S. KRYACHKO*

Department of Chemistry, University of Leuven, B-3001, Belgium, and Departement SBG, Limburgs Universitaire Centrum, B-3590 Diepenbeek, Belgium
e-mail: eugene.kryachko@luc.ac.be

and

LUC G. VANQUICKENBORNE

Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium
e-mail: luc.vanquickenborne@chem.kuleuven.ac.be

I. INTRODUCTION .. 3
A. Summary of Key Physico-chemical Properties of Phenol 4
B. The History of the Discovery of Phenol 6
C. Usage and Production 7
II. MOLECULAR STRUCTURE AND BONDING OF PHENOL 20
A. The Equilibrium Structure of Phenol in the Ground Electronic State .. 20
B. Molecular Bonding Patterns in the Phenol So 21
C. Atom-in-Molecule Analysis 31
D. Vibrational Modes ... 34
E. Three Interesting Structures Related to Phenol 38
III. STRUCTURES AND PROPERTIES OF SUBSTITUTED PHENOLS ... 47
A. Intramolecular Hydrogen Bond in ortho-Halogenophenols 47
B. meta- and para-Halogenophenols 57

* On leave of absence from Bogoliubov Institute for Theoretical Physics, Kiev, 03143 Ukraine.

The Chemistry of Phenols. Edited by Z. Rappoport
C. The Bonding Trends in Monohalogenated Phenols in Terms of the Electronic Localization Function (ELF) 68
 1. Introduction to the ELF ... 68
 2. Topology of the ELF ... 68
 3. Vector gradient field $\nabla_r \eta(r)$ 70
 4. The bonding in benzene, phenol and phenyl halides 71
 5. Monohalogenated phenols: the bonding in terms of ELF 73
 a. The $ortho$-substituted phenols 73
 b. The $meta$-substituted phenols 76
 c. The $para$-substituted phenols 76
D. Some Representatives of Substituted Phenols 78

IV. ENERGETICS OF SOME FUNDAMENTAL PROCESSES 83
A. Protonation .. 83
 1. Protonation of phenol ... 83
 2. Proton affinities of halophenols 86
 3. Proton affinities of anisole and fluoroanisoles 88
 4. Two views on the protonation regioselectivity 89
 5. Interaction of phenol with Li^+, Na^+ and K^+ 92
B. Deprotonation ... 92
 1. Phenolate anion .. 93
 2. Gas-phase acidities ... 97
 3. Acidity in solution ... 101
 4. Correlation between intrinsic acidities and molecular properties ... 101
 5. Alkali metal phenolates 103
C. Electronic Excitation .. 105
D. Ionization ... 110
 1. Molecular and electronic structure of phenol radical cation ... 111
 2. Relative energies of the $(C_6H_5O)^+$ radical cations 114
 3. The $(C_6H_5O)^{++}$ potential energy surface (PES) 116
 4. Mass spectrometric experiments 121
 5. Keto–enol interconversion 127
E. The $O–H$ Bond Dissociation 129
 1. Phenoxy radicals .. 129
 a. Electronic structure .. 129
 b. Geometry and vibrational frequencies 132
 c. Spin densities ... 135
 d. Decomposition of phenoxy radical 137
 2. Antioxidant activity of phenols 139
 a. The $O–H$ bond dissociation energies 139
 b. Antioxidant activities 140
 c. Features of hydrogen atom abstraction from phenols 141

V. HYDROGEN BONDING ABILITIES OF PHENOLS 143
A. Introductory Survey .. 143
B. Phenol–(Water)$_n$, $1 \leq n \leq 4$ Complexes 147
 1. Introduction .. 147
 2. Interaction of phenol with water 149
 3. The most stable complexes of mono- and dihydrated phenol 149
 4. Lower-energy structures of $PhOH(H_2O)_3$ 156
 5. At the bottom of PES of $PhOH(H_2O)_4$ 160
I. INTRODUCTION

The chemistry of phenols has attracted continuing interest in the last two centuries. Compounds bearing this functional group have several applications indispensable in our daily life, as discussed in the following chapters of this book. Let us mention one example: phenols constitute, among others, an important class of antioxidants that inhibit the oxidative degradation of organic materials including a large number of biological aerobic organisms and commercial products. In human blood plasma, α-tocopherol, well-known as a component of vitamin E, is proved to be the most efficient phenol derivative to date to trap the damaging peroxy radicals (ROO·). Phenols owe their activity to their ability to scavenge radicals by hydrogen or electron transfer in much faster processes than radical attacks on an organic substrate.

In this chapter, we attempt to give an overview on the general and theoretical aspects of phenols, including a brief history of their discovery. However, in view of the very large wealth of related literature, the coverage is by no means complete. It is also not intended to be a comprehensive review of all the theoretical work in the area, and there are certainly many important studies of which we were unaware, for which we apologize.
We refer to the compilation *Quantum Chemistry Library Data Base* (QCLDB)\(^1\) for an extended list of available theoretical papers.

The focus of this chapter is a presentation of representative physico-chemical and spectroscopic properties of phenols revealed by quantum chemical calculations, many of them carried out by us specifically for this chapter. In the discussion, the description of methodological details will be kept to a minimum. Unless otherwise noted, all reported computations were performed using the GAUSSIAN 98\(^2\) and MOPAC-7\(^3\) sets of programs. The natural bond orbital analysis\(^4\) was conducted using the NBO (natural bond orbital) module\(^5\) of the GAUSSIAN 98 software package.\(^2\) For the vibrational analyses, the force constant matrices were initially obtained in terms of the cartesian coordinates and the non-redundant sets of internal coordinates were subsequently defined\(^6\). The calculation of potential energy distribution (PED) matrices of the vibrational frequencies\(^7\) was carried out using the GAR2PED program\(^8\).

A. Summary of Key Physico-chemical Properties of Phenol

Phenol shown in Chart 1 is the parent substance of a homologous series of compounds containing a hydroxyl group bound directly to the aromatic ring. Phenol, or PhOH in shorthand notation, belongs to the family of alcohols due to the presence of the OH group and it is in fact the simplest aromatic member of this family. The hydroxyl group of phenol determines its acidity whereas the benzene ring characterizes its basicity. Thus, it is formally the *enol* form of the carbonyl group (for a review, see ref. 9).

In this subsection we briefly outline the key physico-chemical properties of phenol. For its other properties consult with the NIST data located at URL http://webbook.nist.gov.

Phenol has a low melting point, it crystallizes in colourless prisms and has a characteristic, slightly pungent odor. In the molten state, it is a clear, colourless, mobile liquid. In the temperature range \(T < 68.4\) °C, its miscibility with water is limited; above this temperature it is completely miscible. The melting and solidification points of phenol are quite substantially lowered by water. A mixture of phenol and \(ca\) 10% water is called phenolum liquefactum, because it is actually a liquid at room temperature. Phenol is readily soluble in most organic solvents (aromatic hydrocarbons, alcohols, ketones, ethers, acids, halogenated hydrocarbons etc.) and somewhat less soluble in aliphatic hydrocarbons. Phenol forms azeotropic mixtures with water and other substances.
Other physical data of phenol follow below:

Molecular weight: 94.11 (molecular mass of C₆H₅OH is equal to 94.04186).
Weakly acidic: pKₘ(H₂O) = 9.94 (although it varies in different sources from 9.89 to 9.95).
Freezing point: 40.91°C.

Specific heats of combustion:
- $C_p = 3.06 \text{ J mol}^{-1} \text{ K}^{-1}$
- $C_v = 3.07 \text{ J mol}^{-1} \text{ K}^{-1}$

First ionization energy (IE):
- $8.47 \text{ eV (experimental)}$
- $8.264 \pm 0.02 \text{ eV (evaluated)}$

Proton affinity (PA): 820 kJ mol^{-1}

Gas phase basicity: $786.3 \text{ kJ mol}^{-1}$

Gas-phase heat of formation ($\Delta_f H_{298}^\circ$):
- Experimental: $-96.2 \pm 8 \text{ kJ mol}^{-1}$
- Theoretical: $-93.3 \text{ kJ mol}^{-1} (11)$

Solvation free energy:
- Experimental: $-27.7 \text{ kJ mol}^{-1}$
- Theoretical: $-17.3, -20.2, -16.4 \text{ kJ mol}^{-1}$

Gas phase acidity ($\Delta_{\text{acid}} H_{298}^\circ$):
- Experimental: $1465.7 \pm 10 \text{ kJ mol}^{-1}$
- Theoretical: $1456.4 \text{ kJ mol}^{-1}$

O–H bond dissociation energy ($D_{298} (C_6 H_5 O–H)$):
- Experimental: $362 \pm 8 \text{ kJ mol}^{-1}$
- Theoretical: $377.7 \text{ kJ mol}^{-1}$

What else is worth noting, in view of the present review on the theoretical aspects of phenol, is that its electronic subsystem consists of 50 electrons and the ground state is a singlet closed-shell state designated as S_0.

Phenol can be considered as the enol of cyclohexadienone. While the tautomeric keto–enol equilibrium lies far to the ketone side in the case of aliphatic ketones, for phenol it is shifted almost completely to the enol side. The reason of such stabilization is the formation of the aromatic system. The resonance stabilization is very high due to the contribution of the ortho- and para-quinonoid resonance structures. In the formation of the phenolate anion, the contribution of quinonoid resonance structures can stabilize the negative charge.

In contrast to aliphatic alcohols, which are mostly less acidic than phenol, phenol forms salts with aqueous alkali hydroxide solutions. At room temperature, phenol can be liberated from the salts even with carbon dioxide. At temperatures near the boiling point of phenol, it can displace carboxylic acids, e.g. acetic acid, from their salts, and then phenolates are formed. The contribution of ortho- and para-quinonoid resonance structures allows electrophilic substitution reactions such as chlorination, sulphonation, nitration, nitrosoation and mercuration. The introduction of two or three nitro groups into the benzene ring can only be achieved indirectly because of the sensitivity of phenol towards oxidation. Nitrosation in the para position can be carried out even at ice bath temperature. Phenol readily reacts with carbonyl compounds in the presence of acid or basic catalysts. Formaldehyde reacts with phenol to yield hydroxybenzyl alcohols, and synthetic resins on further reaction. Reaction of acetone with phenol yields bisphenol A [2,2-bis(4-hydroxyphenyl)propane].

The reaction in the presence of acid catalysts is used to remove impurities from synthetic phenol. Olefinic impurities or carbonyl compounds, e.g. mesityl oxide, can be polymerized into higher molecular weight compounds by catalytic quantities of sulphuric acid or acidic ion exchangers and can thus be separated easily from phenol, e.g. by its distillation.
Phenol readily couples with diazonium salts to yield coloured compounds. The latter can be used for the photometric detection of phenol as in the case of diazotized 4-nitroaniline. Salicylic acid (2-hydroxybenzoic acid) can be produced by the Kolbe–Schmitt reaction (studied by the density functional method) from sodium phenolate and carbon dioxide, whereas potassium phenolate gives the para compound. Alkylation and acylation of phenol can be carried out with aluminium chloride as catalyst; methyl groups can also be introduced by the Mannich reaction. Diaryl ethers can only be produced under extreme conditions.

With oxidizing agents, phenol readily forms a free radical which can dimerize to form diphenols or can be oxidized to form dihydroxybenzenes and quinones. Since phenol radicals are relatively stable, phenol is a suitable radical scavenger and can also be used as an oxidation inhibitor. Such a property can also be undesirable, e.g. the autoxidation of cumene can be inhibited by small quantities of phenol.

B. The History of the Discovery of Phenol

Phenol is a constituent of coal tar and was probably first (partly) isolated from coal tar in 1834 by Runge, who called it ‘carbolic acid’ (Karbolsäure) or ‘coal oil acid’ (Kohlenölsäure). Friedlieb Ferdinand Runge (born in Billwärder, near Hamburg, 8 February 1795—Oranienburg, died on 25 March 1867) began his career as a pharmacist and, after a long residence in Paris, became an associate professor in Breslau, Germany. Later, he served in the Prussian Marine in Berlin and Oranienburg. Runge published several scientific and technological papers and books (see References 31 and 32 and references therein). He rediscovered aniline in coal-tar oil and called it kyanol. He also discovered quinoline (leukol), pyrrole (πν ρρσ), rosolic acid and three other bases.

Pure phenol was first prepared by Laurent in 1841. Auguste Laurent (La Folie, near Langres, Haute-Marne, 14 September 1808—Paris, 15 April 1853), the son of a wine-merchant, was assistant to Dumas at the Ecole Centrale (1831) and to Brongniart at the Sevres porcelain factory (1833–1835) in France. From 1835 until 1836, he lived in a garret in the Rue St. Andre, Paris, where he had a private laboratory. In December 1837 Laurent defended his Paris doctorate and in 1838 became professor at Bordeaux. Since 1845 he worked in a laboratory at the Ecole Normale in Paris. In his studies of the distillate from coal-tar and chlorine, Laurent isolated dichlorophenol (acide chlorophénésique) C₂₄H₁₈Cl₂O₂ and trichlorophenol (acide chlorophénisique) C₂₄H₁₆Cl₆O₂, which both suggested the existence of phenol (phenhydrate). Laurent wrote: ‘I give the name phène (φατνω, I light) to the fundamental radical…’. He provided the table of ‘general formulae of the derived radicals of phène’ where phenol (hydrate of phène) was indicated by the incorrect formula C₂₄H₁₂ + H₄O₂ (=C₆H₅O, in modern notation). In 1841, Laurent isolated and crystallized phenol for the first time. He called it ‘hydrate de phényle’ or ‘acide phénique’. His reported melting point (between 34 and 35°C) and boiling point (between 187 and 188°C) are rather close to the values known today. Apart from measuring these elementary physical properties, Laurent also gave some crystals to a number of persons with toothache to try it out as a possible pain killer. The effect on the pain was rather unclear, but the substance was ‘very aggressive on the lips and the gums’. In the analysis of his experiments, Laurent applied the substitution hypothesis that was originally proposed by his former supervisor, Dumas. Apparently, however, Laurent went further than Dumas and assumed that the substitution reaction did not otherwise change the structural formula of the reactant and the product, whereas Dumas limited himself to the claim that the removal of one hydrogen atom was compensated by the addition of another group, leaving open the possibility of a complete rearrangement of the molecule.
1. General and theoretical aspects of phenols

The substitution hypothesis (especially in the form proposed by Laurent) was attacked rather strongly by Berzelius, who claimed that a simple replacement of the hydrogen atom by, for instance, the chlorine atom in an organic molecule should be utterly impossible ‘due to the strong electronegative character’ of chlorine. According to Berzelius, the very idea of Laurent contradicted the first principles of chemistry and ‘seems to be a bad influence (une influence nuisible) in science’ (see also Reference 32, p. 388). Instead, he reinterpreted all the results of Laurent by breaking up the reaction product into smaller (more familiar) molecules, satisfying the same global stoichiometry. It looks as if Berzelius was reluctant to accept the full richness of organic chemistry. He was unwilling to accept the existence of new molecules, if the atomic count (and a few other obvious properties) could be satisfied by known molecules. Dumas replied that Berzelius ‘attributes to me an opinion precisely contrary to that which I have always maintained, viz., that chlorine in this case takes the place of the hydrogen... The law of substitution is an empirical fact and nothing more; it expresses a relation between the hydrogen expelled and the chlorine retained. I am not responsible for the gross exaggeration with which Laurent has invested my theory; his analyses moreover do not merit any confidence’ (see also Reference 32, p. 388).

In 1843, Charles Frederic Gerhardt (Strasbourg, 21 August 1816—19 August 1856) also prepared phenol by heating salicylic acid with lime and gave it the name ‘phénol’.

Since the 1840s, phenol became a subject of numerous studies. Victor Meyer studied desoxybenzoïn, benzyl cyanide and phenyl-substituted methylene groups and showed that they have similar reactivities. He subsequently published a paper on ‘the negative nature of the phenyl group’, where he noted how phenyl together with other ‘negative groups’ can make the hydrogen atoms in methylene groups more reactive. In 1867, Heinrich von Brunck defended his Ph.D. thesis in Tübingen under Adolph Friedrich Ludwig Strecker and Wilhelm Staedel on the theme ‘About Derivatives of Phenol’, where he particularly studied the isomers of nitrophenol.

The Raschig–Dow process of manufacturing phenol by cumene was discovered by Wurtz and Kekule in 1867, although the earlier synthesis was recorded by Hunt in 1849. Interestingly, Friedrich Raschig, working earlier as a chemist at BASF and known for his work on the synthesis of phenol and production of phenol formaldehyde adduct, later established his own company in Ludwigshafen.

It is also interesting to mention in this regard that in 1905, the BAAS subcommittee on ‘dynamic isomerism’ was established and included Armstrong (chairman), Lowry (secretary) and Lapworth. In the 1909 report, Lowry summarized that one of the types of isomerism involves the ‘oscillatory transference’ of the hydrogen atom from carbon to oxygen, as in ethyl acetoacetate (acetoacetic ester), or from oxygen to nitrogen, as in isatin, or from one oxygen atom to the other one, as in para-nitroso-phenol.

C. Usage and Production

Phenol is one of the most versatile and important industrial organic chemicals. Until World War II, phenol was essentially a natural coal-tar product. Eventually, synthetic methods replaced extraction from natural sources because its consumption had risen significantly. For instance, as a metabolic product, phenol is normally excreted in quantities of up to 40 mg L\(^{-1}\) in human urine. Currently, small amounts of phenol are obtained from coal tar. Higher quantities are formed in coking or low-temperature carbonization of wood, brown coal or hard coal and in oil cracking. The earlier methods of synthesis (via benzene-sulphonic acid and chlorobenzene) have been replaced by modern processes, mainly by the Hock process starting from cumene, via the Raschig–Dow process and by sulphonation. Phenol is also formed during petroleum cracking. Phenol has achieved considerable importance as the starting material for numerous intermediates and final products.
Phenol occurs as a component or as an addition product in natural products and organisms. For example, it is a component of lignin, from which it can be liberated by hydrolysis. Lignin is a complex biopolymer that accounts for 20–30% of the dry weight of wood. It is formed by a free-radical polymerization of substituted phenylpropane units to give an amorphous polymer with a number of different functional groups including aryl ether linkages, phenols and benzyl alcohols. Most pulp-processing methods involve oxidative degradation of lignin, since its presence is a limitation to the utilization of wood pulps for high end uses such as print and magazine grade paper. Such limitation is due to the photoinduced yellowing of lignin-rich, high-yield mechanical pulps and, as a result, the photooxidative yellowing has been extensively studied in the hope of understanding its mechanism and ultimately preventing its occurrence. Phenoxyl radicals are produced during the photooxidation of lignin and their subsequent oxidation ultimately leads to quinones, which are actually responsible for the yellow colour.

Phenol was first used as a disinfectant in 1865 by the British surgeon Joseph Lister at Glasgow University, Scotland, for sterilizing wounds, surgical dressings and instruments. He showed that if phenol was used in operating theatres to sterilize equipment and dressings, there was less infection of wounds and, moreover, the patients stood a much better chance of survival. By the time of his death, 47 years later, Lister’s method of antiseptic surgery (Lister spray) was accepted worldwide. Its dilute solutions are useful antiseptics and, as a result of Lister’s success, phenol became a popular household antiseptic. Phenol was put as an additive in a so-called carbolic soap. Despite its benefits at that time, this soap is now banned. In Sax’s book Dangerous Properties of Industrial Materials (quoted in Reference 44), one finds frightening phrases like ‘kidney damage’, ‘toxic fumes’ and ‘co-carcinogen’. Clearly, phenol is totally unsuitable for general use, but the benefits 130 years ago plainly outweighed the disadvantages. However, because of its protein-degenerating effect, it often had a severely corrosive effect on the skin and mucous membranes.

Phenol only has limited use in pharmaceuticals today because of its toxicity. Phenol occurs in normal metabolism and is harmless in small quantities according to present knowledge, but it is definitely toxic in high concentrations. It can be absorbed through the skin, by inhalation and by swallowing. The typical main absorption route is the skin, through which phenol is resorbed relatively quickly, simultaneously causing caustic burns on the area of skin affected. Besides the corrosive effect, phenol can also cause sensitization of the skin in some cases. Resorptive poisoning by larger quantities of phenol (which is possible even over small affected areas of skin) rapidly leads to paralysis of the central nervous system with collapse and a severe drop in body temperature. If the skin is wetted with phenol or phenolic solutions, decontamination of the skin must therefore be carried out immediately. After removal of contaminated clothing, polyglycols (e.g. lutrol) are particularly suitable for washing the skin. On skin contamination, local anesthesia sets in after an initial painful irritation of the area of skin affected. Hereby the danger exists that possible resorptive poisoning is underestimated. If phenol penetrates deep into the tissue, this can lead to phenol gangrene through damage to blood vessels. The effect of phenol on the central nervous system—sudden collapse and loss of consciousness—is the same for humans and animals. In animals, a state of cramp precedes these symptoms because of the effect phenol has on the motor activity controlled by the central nervous system. Caustic burns on the cornea heal with scarred defects. Possible results of inhalation of phenol vapour or mist are dyspnea, coughing, cyanosis and lung edema. Swallowing phenol can lead to caustic burns on the mouth and esophagus and stomach pains. Severe, though not fatal, phenol poisoning can damage inner organs, namely kidneys, liver, spleen, lungs and heart. In addition, neuropsychiatric disturbances have been described after survival of acute phenol poisoning. Most of the phenol absorbed by the body is excreted in urine as phenol and/or its metabolites. Only smaller quantities are excreted with faeces or exhaled.
The reactions are:

\[\text{phenol} \quad \text{formaldehyde} \quad \text{phenol} \quad \text{new bonds} \]

This process continues, giving the polymer

CHART 2. Production of a phenolic resin
Phenol is a violent systemic poison. Less irritating and more efficient germicides (component of some plastics) replace phenol; nevertheless, it is widely used in the manufacture of phenolic resins (e.g. with formaldehyde—see Chart 2, with furfural etc.), epoxy resins, plastics, plasticizers, polycarbonates, antioxidants, lube oil additives, nylon, caprolactam, aniline insecticides, explosives, surface active agents, dyes and synthetic detergents, polyurethanes, wood preservatives, herbicides, fungicides (for wood preparation), gasoline additives, inhibitors, pesticides and as raw material for producing medical drugs like aspirin.

Acetylsalicylic acid was first synthesized by Bayer in 1897 and named Aspirin in 1899. Nevertheless, its analgesic and antipyretic effects had been known long before. For example, in the 18th century, Stone discovered the medical effects of the salicin of willow bark and, since that time, salicylic acid was recognized as the active ingredient. Salicin is enzymatically hydrolysed to saligenin and glucose by β-glucosidase. Saligenin is then slowly oxidized to salicylic acid in the blood and in the liver. As is well known, the sodium salt of salicylic acid was used in the 19th century as a painkiller despite the fact that it causes stomach irritations. In his search for less-irritating derivatives of salicylic acid, the Bayer chemist Felix Hoffmann synthesized acetylsalicylic acid (Figure 1).
The success of aspirin was terrific. In a 1994 article in the *Medical Sciences Bulletin*, it was written that ‘Americans consume about 80 billion aspirin tablets a year, and more than 50 nonprescription drugs contain aspirin as the principal active ingredient’. The Aspirin Foundation of America provides systematically scientific, regulatory, legislative and general educational information about aspirin to the medical community and the public. In 1971, Vane discovered that aspirin interferes with the biosynthesis of prostaglandins. In 1982 he was awarded the Nobel Prize in medicine in recognition of his work on the mechanism of the action of aspirin. In 1994, Garavito and coworkers elucidated the mechanism of aspirin interference with prostaglandin synthesis.

The crystal structure of aspirin was first determined by Wheatley in 1964 and was refined later, in 1985, by Kim and coworkers. Its crystal structure data can be obtained from the Cambridge Crystallographic Database. The key features of the crystal structure of aspirin are shown in Figure 2. Quite recently, the potential energy surface of aspirin was studied using the B3LYP/6-31G(d) method and all its nine conformational isomers were located.

![Figure 2](image-url)

FIGURE 2. Hydrogen bonding patterns and dipole alignment in the crystal structure of aspirin. Two positions are shown for each of the hydrogen-bonded hydrogen atoms (A). Aspirin may also form another conformation of the dimer structure, a sort of inversion-symmetric dimer, with a perfect dipole–dipole alignment of the carbonyl groups of two ester functions (B). Actually, each aspirin is partly involved in a dimer of A and B. This is shown in C. D demonstrates the arrangement of the chains in the crystal. Adapted from Reference 56 with permission.
Phenol is mainly used in the production of phenolic resins (plastics). These resins are important components of such items as appliance knobs, handles and housings, washing machine agitators and electrical devices. One example of its commercial usage is the phenol–formaldehyde polymer or phenol–formaldehyde resin called Bakelite (Formica, Micarta), first made in the USA in 1909. It took its name from its discoverer Leo Baekeland who developed it commercially between 1905 and 1910, and it was actually the first truly synthetic polymer. It is characterized by low cost, dimensional stability, high strength, stiffness and resistance to ageing; it is much safer than celluloid. It has insulating properties and could be moulded easily. Bakelite was the ideal plastic for electrical appliances, and in fact it was Bakelite which made possible the generation and distribution of electricity; it made electrical appliances safer for home utilization. It is also widely used in handles, table tops, cabinets and wall panels. The reaction between phenol and formaldehyde is a typical reaction of condensation polymerization, shown in Chart 2.

A phenol derivative, phenolphthalein is prepared by the reaction of phenol with phthalic anhydride in the presence of sulphuric acid and used as an indicator for acidity or alkalinity. Chlorinated phenol is much safer than phenol. Chlorine gas reacts with phenol to add one, two or three chlorine atoms and to form, respectively, chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol. The chlorination of phenol proceeds by electrophilic aromatic substitution. The latter two molecules are less soluble in water than phenol and appear to be a stronger antiseptic than phenol. Interestingly, in the first half of the past century, a bottle of antiseptic chlorophenols was a common attribute as a medicine in many homes. Its solution was used for bathing cuts, cleaning grazes, rinsing the mouth and gargling to cure sore throats. Nevertheless, it was revealed that its solution likely contains dioxins.

There are actually 31 different chloro- and polychlorophenols. One of them, 2,4-dichlorophenoxyacetic acid (2,4-D), acts as a growth hormone. This makes it particularly effective as a weedkiller against broad-leaf weeds, even in a tiny drop. Surprisingly, it is actually a superb selective weedkiller for lawns and grain crops because it does not affect grass and cereals. Sometimes, 2,4-D is used to trick plants into flowering. This is widely used in Hawaii, where visitors are greeted with pineapple flowers during the whole year! It is safe for animals in low quantity, but 35 g of it is likely a fatal dose for an average person weighing about 70 kg. 2,4-D is quite inexpensive, effective, more selective than other weedkillers and much safer than the sodium arsenate and sodium chlorate which were popular weedkillers in the 1950s. In 1948, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) came into the market and contained larger quantities of dioxin than 2,4-D. It was used as a killer for tough weeds and was so successful in killing woody plants that it was deployed in the Vietnam War. From 1962 to 1969, at least 50,000 tonnes of a 50:50 mixture of 2,4-D and 2,4,5-T (called defoliant and widely known as Agent Orange) was sprayed from the air to destroy the dense foliage of trees covering the troops of the Vietnam National Front of Liberation. Agent Orange was contaminated with ca 2–4% of dioxins and for this reason it caused birth defects in new-born babies in Vietnam. It may also be linked to a form of acute myelogenous leukaemia, which represents 8% of childhood cancers among the children of Vietnam veterans, as the US Institute of Medicine (IOM) committee has recently reported.

Interestingly, phenols from peat smoke are included in the flavours of Scotch whisky to dry the malt.

Complex phenols are widespread in nature, although the simple ones are relatively uncommon. Phenol is particularly found in mammalian urine, pine needles and oil tobacco leaves. Abundant natural substances such as thymol (1) and carvacrol (2) are derivatives of phenols.
1. General and theoretical aspects of phenols

Natural phenols57, 61, 62 arise in the three following manners57:

(i) Poly-\(\beta\)-ketones, for example (3), derived from the acid \(\text{RCO}_2\text{H}\) and three malonate units, are intermediates (enzyme-bound) in phenol biosynthesis. Cyclization can be envisaged as being similar to the aldol reaction (cf. 4) or the Claisen condensation (cf. 5) yielding phenolic acids like orsellinic acid (6), \(R = \text{Me}\), or phenolic ketones, e.g. phloracetophenone (7), \(R = \text{Me}\), respectively, after enolization of the carbonyl functions. Modification processes may ensue or intervene. The reduction of a carbonyl to secondary alcohol, away from the cyclization site, may thus afford a phenol with one less hydroxyl. However, such a mode of biogenesis63–65 leads to phenols with meta-disposed hydroxyls. This character may be diagnostic of the origin.

(ii) Aromatic rings may be hydroxylated in vivo by mono-oxygenases. Such reactions are often encountered in aromatics derived from the shikimate–prephenate pathway66. Phenylalanine (8) is thus \(p\)-hydroxylated to tyrosine (9) by phenylalanine mono-oxygenase using molecular oxygen. Cinnamic acid (10a) can be hydroxylated to \(p\)-hydroxycinnamic acid (10b), and on to di- and tri-hydroxy acids like, for instance, caffeic (10c) and gallic (10d) acids, with adjacent hydroxy functions. A useful list of micro-organisms and higher plant mono-oxygenases and phenolases is given elsewhere67. Hydroxylations such as
(8 → 9) may be accompanied by proton rearrangements as (8, R = D) → (9, R = D), the so-called ‘National Institute of Health’ (‘NIH’) shift, whose mechanism is displayed in Chart 3. Related ‘NIH’ shifts have been observed in vitro for various synthetic arene oxides and in oxidation of aromatics by permanganate and by chromyl compounds such as CrO₂Cl₂ and CrO₂(OAc)₂.

(iii) Alicyclic rings with oxygen functions may be dehydrogenated to phenols. Compounds 1 and 2 are likely derived from monocyclic monoterpenes carrying a 3- or 2-oxygen function. Phenolic steroids like, for instance, estrone and equilenin can be derived in a similar way. This route to phenolic products is not yet well understood.

Phenol moieties are present in salvarsan (11) and neosalvarsan (12) synthesized by the German scientist Paul Ehrlich (1854–1915), considered as the father of chemotherapy for
use in syphilis treatments prior to the discovery of penicillin. He received a Nobel Prize in 1908 for his work.

[Chemical structures of phenol radicals]

Phenol serves as a basic unit of larger molecules, e.g. tyrosine residues in proteins. The phenoxyl radical is treated as a model system for the tyrosyl radical whose formation via abstraction of the hydrogen atom from the hydroxyl group of tyrosine is a typical feature of oxidative stress in the physiological pH range $71, 72$. Phenols are an extremely important class of antioxidants whose utilization in living organisms and synthetic organic materials reduces the rate of the oxidative degradation which all organic materials undergo by being exposed to air $73–77$. The antioxidant property can be related to the readily abstractable phenolic hydrogen as a consequence of the relatively low bond dissociation enthalpy of the phenolic O--H group [BDE(O--H)]. A large variety of ortho- and/or para-alkoxy-substituted phenols have been identified as natural antioxidants, such as α-tocopherol (13), which is known as the most effective lipid-soluble chain-breaking antioxidant in human blood plasma, and ubiquino-10 (14), both present in low-density lipid proteins. The mechanism of action of many phenolic antioxidants relies on their ability to transfer the phenolic H atom to a chain-carrying peroxyl radical at a rate much faster than that at which the chain-propagating step of lipid peroxidation proceeds $73–77$. Natural phenolic antioxidants can be also isolated from plants 78 such as sesamolinol (15), from sesame seeds and coniferyl alcohol (16), one of the three precursors for the biosynthesis of lignin. For example, Vitamin E (17) is a chain-breaking antioxidant that interferes with one or more of the propagation steps in autoxidation by atmospheric oxygen 79.

Phenolic compounds are also known to suppress the lipid peroxidation in living organisms. Furthermore, they are widely used as additives in food technology.

Regarding the production of phenol, small quantities of phenol are isolated from tars and coking plant water produced in the coking of hard coal and the low temperature carbonization of brown coal as well as from the wastewater from cracking plants. Most of the past and currently employed phenol syntheses are based on using benzene as a precursor which, however, is known as a volatile organic carcinogen. About 20% of the global benzene production is used for the manufacture of phenol 80. By far the greatest proportion is obtained by oxidation of benzene or toluene. Although direct oxidation of
16 Minh Tho Nguyen, Eugene S. Kryachko and Luc G. Vanquickenborne
benzene is possible in principle, the phenol formed is immediately further oxidized. It is worth mentioning that a recent study\(^{81}\) performed a thorough computational study of the potential energy surface for the oxidation reaction of benzene in the lowest-lying triplet state (equation 1)

\[
C_6H_6 + O^{(3P)} \rightarrow \text{Products} \tag{1}
\]

followed by a kinetic analysis using the Rice–Ramsperger–Kassel–Marcus (RRKM) reaction theory\(^{82}\) based on the electronic structure calculations employing the MP4/6-31G(d)/HF/6-31G(d) and B3LYP/cc-pVDZ computational levels. Below we outline the key results of this work.

Reaction 1 has a large number of energetically feasible product channels. In Figure 3, we display the theoretical triplet potential energy surface (PES) for reaction 1. The reaction initially proceeds via the addition of O\(^{(3P)}\) to benzene, and this first step is exothermic by \(-37\) kJ mol\(^{-1}\) and characterized by a barrier of approximately 21 kJ mol\(^{-1}\). The chemically activated adduct reacts on the triplet PES in forming a number of products. The two lowest barriers lead to the formation of phenoxy radical (\(-14\) kJ mol\(^{-1}\)) and formylcyclopentadiene (\(-8\) kJ mol\(^{-1}\), both barriers taken relative to the reactant)\(^{81}\). The reaction route resulting in phenol is exothermic (\(-33\) kJ mol\(^{-1}\))\(^{81}\). However, it has a rather high barrier of 100 kJ mol\(^{-1}\). The calculated enthalpy of the reaction of the formation of

\[\begin{align*}
\text{C}_6\text{H}_6 + \text{O} & \rightarrow \text{O} + \text{C}_6\text{H}_5 \text{O} \\
\text{O} + \text{C}_6\text{H}_5 \text{O} & \rightarrow \text{C}_6\text{H}_5\text{OH} \text{O} \\
\text{C}_6\text{H}_5\text{OH} \text{O} & \rightarrow \text{C}_6\text{H}_5\text{OH} \text{O} \\
\text{C}_6\text{H}_5\text{OH} \text{O} & \rightarrow \text{C}_6\text{H}_5\text{OH} \text{O} \\
\text{C}_6\text{H}_5\text{OH} \text{O} & \rightarrow \text{C}_6\text{H}_5\text{OH} \text{O} \\
\end{align*}\]

FIGURE 3. The potential energy profile of triplet products and transition structures in reaction 1. Adapted from Reference 81 with permission
phenol amounts to -433 kJ mol$^{-1}$, which agrees fairly well with the experimental value of -428 kJ mol$^{-1}$181. The theoretical singlet–triplet splitting of phenol (352 kJ mol$^{-1}$) is also very close to its experimental value of 341 kJ mol$^{-1}$. One may conclude that such high activation is likely sufficient to overcome the barrier in order to form phenoxy radical (372 kJ mol$^{-1}$), and therefore one might expect that the formation of the latter dominates on the singlet PES. This concurs with the flame data of Bittner and Howard83 indicating that a direct reaction route to phenol is not possible.

It has been recently revealed that ZSM-5 zeolite exhibits an extremely high catalytic selectivity for the oxidation of benzene to phenol. The high reactivity of the zeolite should be ascribed to iron impurity arising in the intermediary steps in the zeolite synthesis84, 85. A surface oxygen (O) or α-oxygen, generated on Fe-ZSM-5 zeolite during N$_2$O decomposition84, 85 (equation 2)

$$\text{N}_2\text{O} \xrightarrow{\text{zeolites}} \text{(O)} + \text{N}_2 \quad (2)$$

takes part in the formation of phenol via equation 3

$$\text{(O)} + \text{C}_6\text{H}_6 \rightarrow \text{C}_6\text{H}_5\text{OH} \quad (3)$$

Reactions 2 and 3 have been thoroughly studied theoretically at the B3LYP computational level. In particular, a sound model of α-oxygen has been proposed85, 86. According to Reference 87, Solutia has recently developed a one-step technology producing phenol directly from benzene and N$_2$O. Due to the fact that such a process provides a very high yield and can use waste N$_2$O from the production of adipic acid, it is now considered to be a rather promising technology in the new millennium.

Therefore, alternative routes must be chosen for the production of phenol, e.g. via halogen compounds which are subsequently hydrolysed or via cumene hydroperoxide which is then cleaved catalytically. The following processes were developed as industrial synthesises for the production of phenol88:

1. Sulphonation of benzene and production of phenol by heating the benzenesulphonate in molten alkali hydroxide89.
2. Chlorination of benzene and alkaline hydrolysis of the chlorobenzene.
3. Chlorination of benzene and catalytic saponification by Cu in the steam hydrolysis of the chlorobenzene90, 91 (Raschig process, Raschig–Hooker, Gulf oxychlorination).
4. Alkylation of benzene with propene to isopropylbenzene (cumene), oxidation of cumene to the corresponding tert-hydroperoxide and cleavage to phenol and acetone (Hock process).
5. Toluene oxidation to benzoic acid and subsequent oxidizing decarboxylation to phenol (Dow process).

Among these processes, only the Hock process and the toluene oxidation are important industrially. The other processes were discarded for economic reasons. In the Hock process acetone is formed as a by-product. This has not, however, hindered the expansion of this process, because there is a market for acetone. New plants predominantly use the cumene process. More than 95% of the 4,691,000 m yr$^{-1}$ (m = metric tonnes) consumed is produced by the cumene peroxidation process. Phenol’s consumption growth rate of 3% is primarily based on its use in engineering plastics such as polycarbonates, polyetherimide and poly(phenylene oxide), and epoxy resins for the electronic industry. The Mitsui Company is, for instance, the world’s second largest producer of phenol. Japan’s production
output (in thousands of metric tonnes) is shown below:92.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>768</td>
<td>833</td>
<td>851</td>
<td>888</td>
<td>916</td>
<td>3.2%</td>
</tr>
<tr>
<td>Phenolic resins</td>
<td>294</td>
<td>303</td>
<td>259</td>
<td>250</td>
<td>262</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

The cumene process is based on the discovery of the oxidation of cumene with oxygen to cumene hydroperoxide and its acidic cleavage to phenol and acetone published in 194493. This reaction was developed into an industrial process shortly after World War II by the Distillers Co. in the United Kingdom and the Hercules Powder Co. in the United States. The first plant was put into operation in 1952 by Shawinigan in Canada and had an initial capacity of 8000 t−1 of phenol. Today, phenol is predominantly produced by this process in plants in the USA, Canada, France, Italy, Japan, Spain, Finland, Korea, India, Mexico, Brazil, Eastern Europe and Germany with an overall annual capacity of 5×10^{6} tons94,95. In addition to the economically favourable feedstock position (due to the progress in petrochemistry since the 1960s), the fact that virtually no corrosion problems occur and that all reaction stages work under moderate conditions with good yields was also decisive for the rapid development of the process. To produce cumene, benzene is alkylated with propene using phosphoric acid (UOP process) or aluminium chloride as catalyst.

The phenol-forming process via toluene oxidation developed originally by Dow (USA)96–98 has been carried out in the USA, Canada and the Netherlands. Snia Viscosa (Italy) uses the toluene oxidation only for the production of benzoic acid as an intermediate in the production of caprolactam99,100. The process proceeds in two stages. At the first stage, toluene is oxidized with atmospheric oxygen in the presence of a catalyst to benzoic acid in the liquid phase. At the second stage the benzoic acid is decarboxylated catalytically in the presence of atmospheric oxygen to produce phenol. This is a radical-chain reaction involving peroxy radicals. The activation energy of the exothermic oxidation of toluene to benzoic acid is 136 kJ mol−1199.

Most of the phenol produced is processed further to give phenol–formaldehyde resins. The quantities of phenol used in the production of caprolactam via cyclohexanol–cyclohexanone have decreased because phenol has been replaced by cyclohexane as the starting material for caprolactam. The production route starting from phenol is less hampered by safety problems than that starting from benzene, which proceeds via cyclohexane oxidation. Bisphenol A, which is obtained from phenol and acetone, has become increasingly important as the starting material for polycarbonates and epoxy resins. Aniline can be obtained from phenol by ammonolysis in the Halcon process. Adipic acid is obtained from phenol by oxidative cleavage of the aromatic ring. Alkylphenols, such as cresols, xylenols, 4-\textit{tert}-butylphenol, octylphenols and nonylphenols, are produced by alkylation of phenol with methanol or the corresponding olefins. Salicylic acid is synthesized by addition of CO$_2$ to phenol (Kolbe synthesis). Chlorophenols are also obtained directly from phenol. All these products have considerable economic importance because they are used for the production of a wide range of consumer goods and process materials. Examples are preforms, thermosets, insulating foams, binders (e.g. for mineral wool and molding sand), adhesives, laminates, impregnating resins, raw materials for varnishes, emulsifiers and detergents, plasticizers, herbicides, insecticides, dyes, flavours and rubber chemicals.

It is worth noting the recent work on the benzene-free synthesis of phenol101, which is actually a part of longstanding efforts102 to elaborate the alternatives to benzene. This new
alternative synthesis is based on the aromatization of shikimic acid which is now readily available by the elaboration of a microbe-catalysed synthesis from glucose in near-critical water, where phenol is the primary reaction product. An aqueous solution of shikimic acid is heated to and maintained at 350°C for 30 min yielding 53% of phenol.

II. MOLECULAR STRUCTURE AND BONDING OF PHENOL

A. The Equilibrium Structure of Phenol in the Ground Electronic State

Until the mid-thirties of the 20th century electron diffraction or microwave studies of phenol had not yet been conducted and so, rather peculiarly, the equilibrium configuration of phenol remained uncertain although some indirect evidence suggested its ground electronic state S_0 to be certainly planar. The first X-ray structural data became available by 1938 for several phenolic compounds. At that time, it was suggested that the C–O bond is about 1.36 Å, that is by ca. 0.07 Å shorter than the C–O bond in aliphatic alcohols. This was accounted for by the decrease in the effective radius of the carbon atom due to the change of hybridization from sp^3 to sp^2, even though some degree of electron delocalization across the C–O bond could be assumed. Such increase in double-bond character favours a completely planar equilibrium configuration of phenol in its ground electronic state.

This character results from quinonoid resonance structures in addition to the more important Kekulé-type structures and tends to cause the hydrogen atom to be placed in the molecular plane. This leads to two equivalent configurations with the hydrogen of the OH group being on one side of the other of the C–O bond. It implies the existence of the activation barrier V_τ of the OH torsion motion around the C–O bond estimated in the mid-thirties as equal to 14 kJ mol$^{-1}$.

The molecular geometry of phenol was later determined experimentally by microwave spectroscopy and electron diffraction (ED). In 1960, MW experiments of some phenol derivatives showed that their equilibrium configurations are planar (C_s symmetry). In 1966, two possible r_c-structures were determined by examining four new isotopic modifications of phenol, and three years later a partial r_s-structure was presented on the basis of the six monodeuteriated species. The full r_s-structure of phenol was reported in 1979 and is presented in Table 1. Generally speaking, the structure of the phenyl ring in phenol deviates only slightly from the regular isolated phenyl ring. This is shown in Figure 4. All C–H distances are nearly equal, within the experimental uncertainties, although the para-distance seems to be shorter than the other ones. The CCC bond angles are slightly perturbed, viz. the bond angle $C_1C_3C_5$ is larger than 120° whereas the $C_2C_6C_4$ angle is smaller than 120°. The angle between the C_6O_7 bond and the $C_1–C_4$ axis was reported equal to 2.52°. Our calculation performed at the B3LYP/6-31+G(d,p) computational method predicts it to be equal to 2.58°.

Since the first quantum mechanical calculation of phenol performed in 1967 using the CNDO/2 method, the phenol geometry was considered at a variety of computational levels ranging from the HF to the MP2 method of molecular orbital theory and density functional theory (DFT) employed with several basis sets, mainly of the split valence type as, e.g. 6-31G(d,p) and 6-31+G(d,p). These computational results are summarized in Tables 1–3 and Figure 4. It seems noteworthy that the semi-empirical geometries listed in Table 1 are rather close to the experimental observations. Also, to complete the theoretical picture of the phenol molecule, its theoretical inertia moments calculated at the B3LYP/6-31+G(d,p) level are equal to 320.14639, 692.63671 and 1012.78307 a.u.

Table 3 summarizes the key properties of phenol. Inspecting its rotational constants collected in Table 2, we may conclude that fair agreement between experiment and
1. General and theoretical aspects of phenols

Present calculations B3LYP/6-31+G(d, p):

Dipole moment (μ):

$\mu_x = 1.391$ $\mu_y = 0.117$

$\mu_{total} = 1.396$

Quadrupole moment (D. Å):

$Q_{xx} = 35.911$ $Q_{yy} = 38.426$ $Q_{zz} = 45.608$

$Q_{xy} = 4.554$ $Q_{xz} = Q_{yz} = 0$

Octapole moment (D. Å):

$Q_{xxx} = 0.595$ $Q_{yyy} = -6.921$ $Q_{zzz} = 13.329$

$Q_{xxy} = -5.677$ $Q_{xz} = 0.146$ $Q_{yz} = -5.796$

$Q_{zzz} = Q_{yyy} = 0$

Hexadecapole moment (D. Å):

$Q_{xxxx} = 283.505$ $Q_{yyyy} = 500.357$

$Q_{zzzz} = 55.514$ $Q_{xxxy} = 0.991$

$Q_{xxyy} = 36.133$ $Q_{xyzz} = 121.589$

$Q_{xxzz} = 68.116$ $Q_{yyzz} = 108.221$

$Q_{zzxy} = 0.269$ $Q_{xxyz} = 36.133$

$Q_{yyxz} = 108.221$ $Q_{zzzy} = 0$

Polarizability (a.u.):

$\alpha_{xx} = 89.57$

$\alpha_{yy} = 43.06$

$\alpha_{zz} = 82.94$

FIGURE 4. Key properties of the planar B3LYP/6-31+G(d,p) phenol molecule in the ground electronic state including the position of its centre of mass (c.m.), Mulliken charges and the direction of its total dipole moment.
<table>
<thead>
<tr>
<th>Bond lengths</th>
<th>Experiment</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1−C2</td>
<td>1.398</td>
<td>1.3912</td>
</tr>
<tr>
<td>C2−C3</td>
<td>1.3944</td>
<td>1.3969</td>
</tr>
<tr>
<td>C3−C4</td>
<td>1.3954</td>
<td>1.3969</td>
</tr>
<tr>
<td>C4−C5</td>
<td>1.3922</td>
<td>1.3954</td>
</tr>
<tr>
<td>C5−C6</td>
<td>1.3912</td>
<td>1.3922</td>
</tr>
<tr>
<td>C1−C6</td>
<td>1.364</td>
<td>1.3745</td>
</tr>
<tr>
<td>C2−H8</td>
<td>1.0856</td>
<td>1.0835</td>
</tr>
<tr>
<td>C3−H9</td>
<td>1.0822</td>
<td>1.0802</td>
</tr>
<tr>
<td>C4−H10</td>
<td>1.0836</td>
<td>1.0813</td>
</tr>
<tr>
<td>C5−H11</td>
<td>1.0891</td>
<td>1.0891</td>
</tr>
<tr>
<td>C6−H12</td>
<td>1.0913</td>
<td>0.9574</td>
</tr>
<tr>
<td>C1−O7</td>
<td>0.956</td>
<td>1.3745</td>
</tr>
<tr>
<td>C2−H8</td>
<td>1.076</td>
<td>1.0856</td>
</tr>
<tr>
<td>C3−H9</td>
<td>1.082</td>
<td>1.0822</td>
</tr>
<tr>
<td>C4−H10</td>
<td>1.0835</td>
<td>1.0836</td>
</tr>
<tr>
<td>C5−H11</td>
<td>1.0813</td>
<td>1.0813</td>
</tr>
<tr>
<td>C6−H12</td>
<td>1.0913</td>
<td>0.9574</td>
</tr>
<tr>
<td>O7−H13</td>
<td>0.956</td>
<td>0.9574</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond angles</th>
<th>Experiment</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1−C2</td>
<td>119.43</td>
<td>118.77</td>
</tr>
<tr>
<td>C2−C3</td>
<td>120.48</td>
<td>120.50</td>
</tr>
<tr>
<td>C3−C4</td>
<td>119.74</td>
<td>119.8</td>
</tr>
<tr>
<td>C4−C5</td>
<td>120.79</td>
<td>120.79</td>
</tr>
<tr>
<td>C5−C6</td>
<td>119.22</td>
<td>119.4</td>
</tr>
<tr>
<td>C1−C6</td>
<td>120.01</td>
<td>121.2</td>
</tr>
<tr>
<td>C2−H8</td>
<td>120.98</td>
<td>121.2</td>
</tr>
<tr>
<td>C3−H9</td>
<td>120.25</td>
<td>120.1</td>
</tr>
<tr>
<td>C4−H10</td>
<td>119.43</td>
<td>120.8</td>
</tr>
<tr>
<td>C5−H11</td>
<td>119.23</td>
<td>120.8</td>
</tr>
<tr>
<td>C6−H12</td>
<td>109.0</td>
<td>106.4</td>
</tr>
<tr>
<td>O7−H13</td>
<td>110.4</td>
<td>112.8</td>
</tr>
</tbody>
</table>

TABLE 1. Phenol geometry. Bond lengths in Å, bond angles in deg
<table>
<thead>
<tr>
<th>Theory</th>
<th>CAS(8,7) cc-pVDZ14</th>
<th>CAS(8,9) cc-pVDZ15</th>
<th>B3LYP/6-31G(d)16</th>
<th>B3LYP/6-31G(d,p)16</th>
<th>BLYP/6-31G(d,p)112</th>
<th>B3LYP/6-31+G(d,p)113</th>
<th>BLYP/6-311++G(2df,2p)a</th>
<th>B3LYP/cc-pVDZ14</th>
<th>MP2/DZP113</th>
<th>MP2/6-31G(d,p)111</th>
<th>MP2/6-31G(d,p)112</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.395</td>
<td>1.394</td>
<td>1.394</td>
<td>1.410</td>
<td>1.401</td>
<td>1.389</td>
<td>1.397</td>
<td>1.399</td>
<td>1.404</td>
<td>1.396</td>
<td>1.393</td>
<td>1.404</td>
</tr>
<tr>
<td>1.400</td>
<td>1.400</td>
<td>1.401</td>
<td>1.397</td>
<td>1.398</td>
<td>1.402</td>
<td>1.394</td>
<td>1.391</td>
<td>1.400</td>
<td>1.404</td>
<td>1.403</td>
<td>1.396</td>
</tr>
<tr>
<td>1.395</td>
<td>1.394</td>
<td>1.394</td>
<td>1.409</td>
<td>1.400</td>
<td>1.395</td>
<td>1.397</td>
<td>1.400</td>
<td>1.393</td>
<td>1.394</td>
<td>1.394</td>
<td>1.393</td>
</tr>
<tr>
<td>1.400</td>
<td>1.401</td>
<td>1.400</td>
<td>1.405</td>
<td>1.403</td>
<td>1.392</td>
<td>1.397</td>
<td>1.404</td>
<td>1.396</td>
<td>1.392</td>
<td>1.401</td>
<td>1.406</td>
</tr>
<tr>
<td>1.394</td>
<td>1.393</td>
<td>1.394</td>
<td>1.397</td>
<td>1.394</td>
<td>1.393</td>
<td>1.395</td>
<td>1.400</td>
<td>1.391</td>
<td>1.392</td>
<td>1.400</td>
<td>1.392</td>
</tr>
<tr>
<td>1.399</td>
<td>1.399</td>
<td>1.399</td>
<td>1.410</td>
<td>1.401</td>
<td>1.396</td>
<td>1.399</td>
<td>1.405</td>
<td>1.396</td>
<td>1.392</td>
<td>1.399</td>
<td>1.404</td>
</tr>
<tr>
<td>1.084</td>
<td>1.084</td>
<td>1.085</td>
<td>1.093</td>
<td>1.086</td>
<td>1.086</td>
<td>1.083</td>
<td>1.088</td>
<td>1.086</td>
<td>1.084</td>
<td>1.087</td>
<td>1.089</td>
</tr>
<tr>
<td>1.082</td>
<td>1.082</td>
<td>1.083</td>
<td>1.094</td>
<td>1.084</td>
<td>1.076</td>
<td>1.084</td>
<td>1.086</td>
<td>1.084</td>
<td>1.082</td>
<td>1.087</td>
<td>1.082</td>
</tr>
<tr>
<td>1.081</td>
<td>1.081</td>
<td>1.083</td>
<td>1.093</td>
<td>1.083</td>
<td>1.075</td>
<td>1.083</td>
<td>1.085</td>
<td>1.081</td>
<td>1.087</td>
<td>1.085</td>
<td>1.081</td>
</tr>
<tr>
<td>1.082</td>
<td>1.082</td>
<td>1.083</td>
<td>1.094</td>
<td>1.084</td>
<td>1.084</td>
<td>1.083</td>
<td>1.086</td>
<td>1.083</td>
<td>1.082</td>
<td>1.087</td>
<td>1.087</td>
</tr>
<tr>
<td>1.081</td>
<td>1.081</td>
<td>1.083</td>
<td>1.097</td>
<td>1.087</td>
<td>1.085</td>
<td>1.083</td>
<td>1.085</td>
<td>1.087</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
</tr>
<tr>
<td>0.945</td>
<td>0.946</td>
<td>0.945</td>
<td>0.981</td>
<td>0.967</td>
<td>0.943</td>
<td>0.962</td>
<td>0.966</td>
<td>0.963</td>
<td>0.962</td>
<td>0.946</td>
<td>0.973</td>
</tr>
<tr>
<td>119.9</td>
<td>119.9</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>119.7</td>
<td>119.8</td>
<td>119.9</td>
<td>119.7</td>
</tr>
<tr>
<td>120.4</td>
<td>120.4</td>
<td>120.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120.5</td>
<td>120.5</td>
<td>120.4</td>
<td>120.5</td>
</tr>
<tr>
<td>119.3</td>
<td>119.3</td>
<td>119.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>119.3</td>
<td>119.3</td>
<td>119.3</td>
<td>119.4</td>
</tr>
<tr>
<td>120.6</td>
<td>120.6</td>
<td>120.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120.8</td>
<td>120.8</td>
<td>120.6</td>
<td>120.6</td>
</tr>
<tr>
<td>119.8</td>
<td>119.8</td>
<td>119.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>119.5</td>
<td>119.6</td>
<td>119.8</td>
<td>119.6</td>
</tr>
<tr>
<td>120.1</td>
<td>120.1</td>
<td>120.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120.1</td>
<td>120.0</td>
<td>120.0</td>
<td>120.1</td>
</tr>
<tr>
<td>119.4</td>
<td>119.4</td>
<td>119.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>119.3</td>
<td>119.3</td>
<td>120.1</td>
<td>119.2</td>
</tr>
<tr>
<td>120.3</td>
<td>120.4</td>
<td>120.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120.3</td>
<td>120.3</td>
<td>120.3</td>
<td>120.3</td>
</tr>
<tr>
<td>110.2</td>
<td>110.2</td>
<td>110.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110.9</td>
<td>109.9</td>
<td>108.9</td>
<td>109.7</td>
</tr>
<tr>
<td>110.9</td>
<td>110.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110.2</td>
<td>110.2</td>
<td>108.3</td>
<td>108.4</td>
</tr>
</tbody>
</table>

aPresent work.
TABLE 2. Rotational constants (in MHz) of phenol in its electronic ground state. The values in parentheses are the deviation from the experimental values in percent.

<table>
<thead>
<tr>
<th>Method</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF/6-31G(d,p)</td>
<td>5750.0</td>
<td>2659.1</td>
<td>1818.3</td>
</tr>
<tr>
<td>HF/6-311++G(d,p)a</td>
<td>5752.6</td>
<td>2660.0</td>
<td>1818.9</td>
</tr>
<tr>
<td>CAS(8,7)/cc-pVDZ</td>
<td>5659.3(0.16)</td>
<td>2623.3(0.16)</td>
<td>1792.4(0.14)</td>
</tr>
<tr>
<td>MP2/6-31G(d,p)</td>
<td>5650.6</td>
<td>2614.6</td>
<td>1787.5</td>
</tr>
<tr>
<td>BLYP/6-31G(d,p)</td>
<td>5563.7</td>
<td>2573.7</td>
<td>1759.7</td>
</tr>
<tr>
<td>B3LYP/6-31G(d,p)</td>
<td>5650.4</td>
<td>2614.1</td>
<td>1787.3</td>
</tr>
<tr>
<td>B3LYP/6-31+G(d,p)a</td>
<td>5637.3</td>
<td>2607.3</td>
<td>1782.8</td>
</tr>
<tr>
<td>B3LYP/6-311++G(d,p)a</td>
<td>5667.2</td>
<td>2618.0</td>
<td>1790.8</td>
</tr>
<tr>
<td>B3LYP/6-311++G(2df,2p)a</td>
<td>5695.6</td>
<td>2629.6</td>
<td>1799.0</td>
</tr>
<tr>
<td>B3P86/6-31G(d,p)</td>
<td>5679.9</td>
<td>2630.0</td>
<td>1797.3</td>
</tr>
<tr>
<td>MW Expt.</td>
<td>5650.515</td>
<td>2619.236</td>
<td>1789.852</td>
</tr>
<tr>
<td>UV Expt.</td>
<td>5726.63</td>
<td>2660.0</td>
<td>1820.12</td>
</tr>
<tr>
<td>UV Expt.</td>
<td>5650.515</td>
<td>2619.236</td>
<td>1782.855</td>
</tr>
</tbody>
</table>

aPresent work.
1. General and theoretical aspects of phenols

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Phase of solvent</th>
<th>$T(\degree\text{C})$</th>
<th>μ(D)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40 ± 0.03</td>
<td>gas</td>
<td>20</td>
<td>1.73 CNDO/2110</td>
<td></td>
</tr>
<tr>
<td>1.41</td>
<td>gas</td>
<td>175</td>
<td>1.418 B3LYP/6-31+G(d,p)129</td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>liq</td>
<td>20</td>
<td>1.16 HF/MiDi130</td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>B</td>
<td>25</td>
<td>1.52 SM5.42R/HF/MiDi130</td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>B</td>
<td>25</td>
<td>1.46 n.s.</td>
<td></td>
</tr>
<tr>
<td>1.46</td>
<td>B</td>
<td>20</td>
<td>1.47 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>1.47 ± 0.02</td>
<td>B</td>
<td>25</td>
<td>1.53 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.53 ± 0.03</td>
<td>B</td>
<td>30</td>
<td>1.53 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.53</td>
<td>B</td>
<td>20</td>
<td>1.54 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.54</td>
<td>B</td>
<td>26</td>
<td>1.54 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.54</td>
<td>B</td>
<td>20</td>
<td>1.54 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>B</td>
<td>25</td>
<td>1.57 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>B</td>
<td>20</td>
<td>1.57 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.59</td>
<td>B</td>
<td>20</td>
<td>1.59 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>B</td>
<td>25</td>
<td>1.65 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.72</td>
<td>B</td>
<td>25</td>
<td>1.72 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>B</td>
<td>20</td>
<td>1.75 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.80</td>
<td>D</td>
<td>20</td>
<td>1.80 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.86</td>
<td>D</td>
<td>25</td>
<td>1.86 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.92</td>
<td>D</td>
<td>20</td>
<td>1.92 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.39</td>
<td>CCl\textsubscript{4}</td>
<td>30</td>
<td>1.39 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td>CCl\textsubscript{4}</td>
<td>20</td>
<td>1.40 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.46 ± 0.03</td>
<td>CCl\textsubscript{4}</td>
<td>10–60</td>
<td>1.46 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>CCl\textsubscript{4}</td>
<td>20</td>
<td>1.49 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>CCl\textsubscript{4}</td>
<td>20</td>
<td>1.50 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.53</td>
<td>CCl\textsubscript{4}</td>
<td>25</td>
<td>1.53 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>CCl\textsubscript{4}</td>
<td>27</td>
<td>1.55 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.37</td>
<td>c-Hx</td>
<td>30</td>
<td>1.37 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.32 ± 0.03</td>
<td>c-Hx</td>
<td>20</td>
<td>1.32 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.33 ± 0.03</td>
<td>c-Hx</td>
<td>20</td>
<td>1.33 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.39</td>
<td>c-Hx</td>
<td>30</td>
<td>1.39 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.43</td>
<td>c-Hx</td>
<td>25</td>
<td>1.43 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.37</td>
<td>Hp</td>
<td>20</td>
<td>1.37 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.44</td>
<td>Hp</td>
<td>20</td>
<td>1.44 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.86</td>
<td>Hp</td>
<td>20</td>
<td>1.86 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.44 – 1.53</td>
<td>Tol</td>
<td>0–75</td>
<td>1.44 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.46</td>
<td>Tol</td>
<td>30</td>
<td>1.46 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.38</td>
<td>CS\textsubscript{2}</td>
<td>20</td>
<td>1.38 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.39</td>
<td>CS\textsubscript{2}</td>
<td>30</td>
<td>1.39 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.64</td>
<td>CS\textsubscript{2}</td>
<td>25</td>
<td>1.64 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Ether</td>
<td>25</td>
<td>2.14 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Ether</td>
<td>20</td>
<td>2.14 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>2.29</td>
<td>Ether</td>
<td>20</td>
<td>2.29 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>ClB</td>
<td>20</td>
<td>1.45 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>1.53128</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aSee also Figure 4.
bB = benzene, D = dioxane, c-Hx = cyclohexane, Hp = n-heptane, Tol = toluene, ClB = chlorobenzene; n.s. = not specified.
FIGURE 5. Some molecular orbital patterns of the electronic ground state of the phenol molecule. Due to the \(C_s \) symmetry of phenol, its MOs are characterized by the \(a' \) or \(a'' \) irreducible representations of this group; \(\varepsilon \) denotes the corresponding orbital energy in eV.
of a' symmetry), five σ C–H bonds (also all of a' symmetry), the C–O σ bond (one a' orbital), the oxygen σ-type lone pair (one a' orbital), the oxygen p-type lone pair (19 a'' orbital) and, finally, the C–C π-bonds (three a'' orbitals, namely $23a''$, $24a''$ and the HOMO $25a''$). In addition, three unoccupied π molecular orbitals, the LUMO $26a''$, $27a'$ and $28a''$, are also shown in Figure 5.

In Table 4, we collect the natural atomic charges (nuclear charge minus the summed natural populations of the natural atomic occupancies, NAOs, on the atom) and the total core, valence and Rydberg populations on each atom. Table 4 presents a slightly larger positive charge on the hydroxyl hydrogen atom H_{13} relative to other atoms, arising due to the proximity of the electronegative oxygen atom. The other hydrogen atom H_8 next to the hydroxyl group is characterized by the lowest positive charge. This feature originates from electron donation from the ring to the corresponding C–H antibonding orbital taking place in order to decrease the electrostatic repulsion between the neighboring C–H and O–H bonds.

The HOMO and LUMO are of particular interest. As seen in Figure 5, the shape of the HOMO is generated by the out-of-phase overlap of the p_z AO localized, on the one
TABLE 4. Natural atomic orbital (NAO) occupancies, natural population of the MOs, summary of natural population analysis and Mulliken atomic charges of the electronic ground state of phenol

<table>
<thead>
<tr>
<th>NAOs N</th>
<th>Atom</th>
<th>N lm</th>
<th>Type(AO)</th>
<th>Occupancy</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>1 s</td>
<td>Cor(1s)</td>
<td>1.998</td>
<td>−9.95</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1 s</td>
<td>Val(2s)</td>
<td>0.947</td>
<td>−0.16</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1 s</td>
<td>Ryd(3s)</td>
<td>0.000</td>
<td>1.63</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>1 px</td>
<td>Val(2p)</td>
<td>1.170</td>
<td>−0.05</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1 px</td>
<td>Ryd(3p)</td>
<td>0.004</td>
<td>1.11</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>1 py</td>
<td>Val(2p)</td>
<td>1.114</td>
<td>−0.04</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>1 py</td>
<td>Ryd(3p)</td>
<td>0.005</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>1 pz</td>
<td>Val(2p)</td>
<td>1.049</td>
<td>−0.10</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>1 pz</td>
<td>Ryd(3p)</td>
<td>0.000</td>
<td>0.80</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>2 s</td>
<td>Cor(1s)</td>
<td>1.998</td>
<td>−10.04</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>2 s</td>
<td>Val(2s)</td>
<td>0.832</td>
<td>−0.15</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>2 s</td>
<td>Ryd(3s)</td>
<td>0.000</td>
<td>1.58</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>2 px</td>
<td>Val(2p)</td>
<td>1.105</td>
<td>−0.06</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>2 px</td>
<td>Ryd(3p)</td>
<td>0.006</td>
<td>1.03</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>2 py</td>
<td>Val(2p)</td>
<td>0.762</td>
<td>−0.04</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>2 py</td>
<td>Ryd(3p)</td>
<td>0.008</td>
<td>1.01</td>
</tr>
<tr>
<td>17</td>
<td>C</td>
<td>2 pz</td>
<td>Val(2p)</td>
<td>0.991</td>
<td>−0.12</td>
</tr>
<tr>
<td>18</td>
<td>C</td>
<td>2 pz</td>
<td>Ryd(3p)</td>
<td>0.001</td>
<td>0.80</td>
</tr>
<tr>
<td>19</td>
<td>C</td>
<td>3 s</td>
<td>Cor(1s)</td>
<td>1.998</td>
<td>−9.96</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>3 s</td>
<td>Val(2s)</td>
<td>0.944</td>
<td>−0.17</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>3 s</td>
<td>Ryd(3s)</td>
<td>0.000</td>
<td>1.63</td>
</tr>
<tr>
<td>22</td>
<td>C</td>
<td>3 px</td>
<td>Val(2p)</td>
<td>1.165</td>
<td>−0.06</td>
</tr>
<tr>
<td>23</td>
<td>C</td>
<td>3 px</td>
<td>Ryd(3p)</td>
<td>0.004</td>
<td>1.12</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>3 py</td>
<td>Val(2p)</td>
<td>1.121</td>
<td>−0.06</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>3 py</td>
<td>Ryd(3p)</td>
<td>0.006</td>
<td>0.94</td>
</tr>
<tr>
<td>26</td>
<td>C</td>
<td>3 pz</td>
<td>Val(2p)</td>
<td>1.087</td>
<td>−0.11</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
<td>3 pz</td>
<td>Ryd(3p)</td>
<td>0.000</td>
<td>0.79</td>
</tr>
<tr>
<td>28</td>
<td>C</td>
<td>4 s</td>
<td>Cor(1s)</td>
<td>1.998</td>
<td>−9.96</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>4 s</td>
<td>Val(2s)</td>
<td>0.944</td>
<td>−0.17</td>
</tr>
<tr>
<td>30</td>
<td>C</td>
<td>4 s</td>
<td>Ryd(3s)</td>
<td>0.000</td>
<td>1.62</td>
</tr>
<tr>
<td>31</td>
<td>C</td>
<td>4 px</td>
<td>Val(2p)</td>
<td>1.179</td>
<td>−0.05</td>
</tr>
<tr>
<td>32</td>
<td>C</td>
<td>4 px</td>
<td>Ryd(3p)</td>
<td>0.005</td>
<td>1.14</td>
</tr>
<tr>
<td>33</td>
<td>C</td>
<td>4 py</td>
<td>Val(2p)</td>
<td>1.100</td>
<td>−0.04</td>
</tr>
<tr>
<td>34</td>
<td>C</td>
<td>4 py</td>
<td>Ryd(3p)</td>
<td>0.004</td>
<td>0.94</td>
</tr>
<tr>
<td>35</td>
<td>C</td>
<td>4 pz</td>
<td>Val(2p)</td>
<td>0.989</td>
<td>−0.10</td>
</tr>
<tr>
<td>36</td>
<td>C</td>
<td>4 pz</td>
<td>Ryd(3p)</td>
<td>0.000</td>
<td>0.79</td>
</tr>
<tr>
<td>37</td>
<td>C</td>
<td>5 s</td>
<td>Cor(1s)</td>
<td>1.998</td>
<td>−9.95</td>
</tr>
<tr>
<td>38</td>
<td>C</td>
<td>5 s</td>
<td>Val(2s)</td>
<td>0.943</td>
<td>−0.16</td>
</tr>
<tr>
<td>39</td>
<td>C</td>
<td>5 s</td>
<td>Ryd(3s)</td>
<td>0.000</td>
<td>1.63</td>
</tr>
<tr>
<td>40</td>
<td>C</td>
<td>5 px</td>
<td>Val(2p)</td>
<td>1.070</td>
<td>−0.04</td>
</tr>
<tr>
<td>41</td>
<td>C</td>
<td>5 px</td>
<td>Ryd(3p)</td>
<td>0.005</td>
<td>0.84</td>
</tr>
<tr>
<td>42</td>
<td>C</td>
<td>5 py</td>
<td>Val(2p)</td>
<td>1.208</td>
<td>−0.05</td>
</tr>
<tr>
<td>43</td>
<td>C</td>
<td>5 py</td>
<td>Ryd(3p)</td>
<td>0.004</td>
<td>1.24</td>
</tr>
<tr>
<td>44</td>
<td>C</td>
<td>5 pz</td>
<td>Val(2p)</td>
<td>1.041</td>
<td>−0.10</td>
</tr>
<tr>
<td>45</td>
<td>C</td>
<td>5 pz</td>
<td>Ryd(3p)</td>
<td>0.000</td>
<td>0.80</td>
</tr>
<tr>
<td>46</td>
<td>C</td>
<td>6 s</td>
<td>Cor(1s)</td>
<td>1.998</td>
<td>−9.96</td>
</tr>
<tr>
<td>47</td>
<td>C</td>
<td>6 s</td>
<td>Val(2s)</td>
<td>0.946</td>
<td>−0.16</td>
</tr>
<tr>
<td>48</td>
<td>C</td>
<td>6 s</td>
<td>Ryd(3s)</td>
<td>0.000</td>
<td>1.63</td>
</tr>
<tr>
<td>49</td>
<td>C</td>
<td>6 px</td>
<td>Val(2p)</td>
<td>1.178</td>
<td>−0.05</td>
</tr>
</tbody>
</table>
Table 4. (continued)

<table>
<thead>
<tr>
<th>NAOs</th>
<th>Atom</th>
<th>N lm</th>
<th>Type(AO)</th>
<th>Occupancy</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>C</td>
<td>6 px</td>
<td>Ryd(3p)</td>
<td>0.005</td>
<td>1.15</td>
</tr>
<tr>
<td>51</td>
<td>C</td>
<td>6 py</td>
<td>Val(2p)</td>
<td>1.104</td>
<td>-0.04</td>
</tr>
<tr>
<td>52</td>
<td>C</td>
<td>6 py</td>
<td>Ryd(3p)</td>
<td>0.004</td>
<td>0.93</td>
</tr>
<tr>
<td>53</td>
<td>C</td>
<td>6 pz</td>
<td>Val(2p)</td>
<td>0.986</td>
<td>-0.10</td>
</tr>
<tr>
<td>54</td>
<td>C</td>
<td>6 pz</td>
<td>Ryd(3p)</td>
<td>0.000</td>
<td>0.79</td>
</tr>
<tr>
<td>55</td>
<td>O</td>
<td>7 s</td>
<td>Cor(1s)</td>
<td>1.999</td>
<td>-18.81</td>
</tr>
<tr>
<td>56</td>
<td>O</td>
<td>7 s</td>
<td>Val(2s)</td>
<td>1.664</td>
<td>-0.93</td>
</tr>
<tr>
<td>57</td>
<td>O</td>
<td>7 s</td>
<td>Ryd(3s)</td>
<td>0.000</td>
<td>3.22</td>
</tr>
<tr>
<td>58</td>
<td>O</td>
<td>7 px</td>
<td>Val(2p)</td>
<td>1.628</td>
<td>-0.30</td>
</tr>
<tr>
<td>59</td>
<td>O</td>
<td>7 px</td>
<td>Ryd(3p)</td>
<td>0.000</td>
<td>1.79</td>
</tr>
<tr>
<td>60</td>
<td>O</td>
<td>7 py</td>
<td>Val(2p)</td>
<td>1.467</td>
<td>-0.29</td>
</tr>
<tr>
<td>61</td>
<td>O</td>
<td>7 py</td>
<td>Ryd(3p)</td>
<td>0.001</td>
<td>1.62</td>
</tr>
<tr>
<td>62</td>
<td>O</td>
<td>7 pz</td>
<td>Val(2p)</td>
<td>1.850</td>
<td>-0.29</td>
</tr>
<tr>
<td>63</td>
<td>O</td>
<td>7 pz</td>
<td>Ryd(3p)</td>
<td>0.000</td>
<td>1.48</td>
</tr>
<tr>
<td>64</td>
<td>H</td>
<td>8 s</td>
<td>Val(1s)</td>
<td>0.765</td>
<td>0.06</td>
</tr>
<tr>
<td>65</td>
<td>H</td>
<td>8 s</td>
<td>Ryd(2s)</td>
<td>0.001</td>
<td>0.71</td>
</tr>
<tr>
<td>66</td>
<td>H</td>
<td>9 s</td>
<td>Val(1s)</td>
<td>0.757</td>
<td>0.09</td>
</tr>
<tr>
<td>67</td>
<td>H</td>
<td>9 s</td>
<td>Ryd(2s)</td>
<td>0.000</td>
<td>0.70</td>
</tr>
<tr>
<td>68</td>
<td>H</td>
<td>10 s</td>
<td>Val(1s)</td>
<td>0.757</td>
<td>0.09</td>
</tr>
<tr>
<td>69</td>
<td>H</td>
<td>10 s</td>
<td>Ryd(2s)</td>
<td>0.000</td>
<td>0.70</td>
</tr>
<tr>
<td>70</td>
<td>H</td>
<td>11 s</td>
<td>Val(1s)</td>
<td>0.756</td>
<td>0.09</td>
</tr>
<tr>
<td>71</td>
<td>H</td>
<td>11 s</td>
<td>Ryd(2s)</td>
<td>0.000</td>
<td>0.70</td>
</tr>
<tr>
<td>72</td>
<td>H</td>
<td>12 s</td>
<td>Val(1s)</td>
<td>0.745</td>
<td>0.09</td>
</tr>
<tr>
<td>73</td>
<td>H</td>
<td>12 s</td>
<td>Ryd(2s)</td>
<td>0.001</td>
<td>0.71</td>
</tr>
<tr>
<td>74</td>
<td>H</td>
<td>13 s</td>
<td>Val(1s)</td>
<td>0.546</td>
<td>0.05</td>
</tr>
<tr>
<td>75</td>
<td>H</td>
<td>13 s</td>
<td>Ryd(2s)</td>
<td>0.001</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Natural population of the MOs

Core 13.990 (99.9319% of 14)
Valence 35.927 (99.7975% of 36)
Natural Minimal Basis 49.917 (99.8352% of 50)
Natural Rydberg Basis 0.082 (0.1648% of 50)

Summary of natural population analysis

<table>
<thead>
<tr>
<th>Atom N</th>
<th>Charge</th>
<th>Core</th>
<th>Valence</th>
<th>Rydberg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 1</td>
<td>-0.252</td>
<td>1.999</td>
<td>4.234</td>
<td>0.018</td>
<td>6.252</td>
</tr>
<tr>
<td>C 2</td>
<td>0.315</td>
<td>1.998</td>
<td>3.662</td>
<td>0.022</td>
<td>5.684</td>
</tr>
<tr>
<td>C 3</td>
<td>-0.284</td>
<td>1.999</td>
<td>4.267</td>
<td>0.018</td>
<td>6.284</td>
</tr>
<tr>
<td>C 4</td>
<td>-0.183</td>
<td>1.999</td>
<td>4.165</td>
<td>0.018</td>
<td>6.183</td>
</tr>
<tr>
<td>C 5</td>
<td>-0.236</td>
<td>1.999</td>
<td>4.218</td>
<td>0.018</td>
<td>6.236</td>
</tr>
<tr>
<td>C 6</td>
<td>-0.182</td>
<td>1.999</td>
<td>4.165</td>
<td>0.017</td>
<td>6.182</td>
</tr>
<tr>
<td>O 7</td>
<td>-0.678</td>
<td>1.999</td>
<td>6.665</td>
<td>0.013</td>
<td>8.678</td>
</tr>
<tr>
<td>H 8</td>
<td>0.200</td>
<td>0.000</td>
<td>0.797</td>
<td>0.002</td>
<td>0.799</td>
</tr>
<tr>
<td>H 9</td>
<td>0.204</td>
<td>0.000</td>
<td>0.793</td>
<td>0.002</td>
<td>0.795</td>
</tr>
<tr>
<td>H 10</td>
<td>0.206</td>
<td>0.000</td>
<td>0.791</td>
<td>0.002</td>
<td>0.793</td>
</tr>
<tr>
<td>H 11</td>
<td>0.204</td>
<td>0.000</td>
<td>0.793</td>
<td>0.002</td>
<td>0.795</td>
</tr>
<tr>
<td>H 12</td>
<td>0.217</td>
<td>0.000</td>
<td>0.780</td>
<td>0.002</td>
<td>0.782</td>
</tr>
<tr>
<td>H 13</td>
<td>0.467</td>
<td>0.000</td>
<td>0.528</td>
<td>0.004</td>
<td>0.532</td>
</tr>
<tr>
<td><Total></td>
<td>0.000</td>
<td>13.994</td>
<td>35.863</td>
<td>0.142</td>
<td>50.000</td>
</tr>
</tbody>
</table>

(continued overleaf)
TABLE 4. (continued)

<table>
<thead>
<tr>
<th>Atom</th>
<th>Mulliken charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>−0.186</td>
</tr>
<tr>
<td>2 C</td>
<td>0.295</td>
</tr>
<tr>
<td>3 C</td>
<td>−0.223</td>
</tr>
<tr>
<td>4 C</td>
<td>−0.184</td>
</tr>
<tr>
<td>5 C</td>
<td>−0.195</td>
</tr>
<tr>
<td>6 C</td>
<td>−0.185</td>
</tr>
<tr>
<td>7 O</td>
<td>−0.607</td>
</tr>
<tr>
<td>8 H</td>
<td>0.173</td>
</tr>
<tr>
<td>9 H</td>
<td>0.187</td>
</tr>
<tr>
<td>10 H</td>
<td>0.182</td>
</tr>
<tr>
<td>11 H</td>
<td>0.187</td>
</tr>
<tr>
<td>12 H</td>
<td>0.199</td>
</tr>
<tr>
<td>13 H</td>
<td>0.357</td>
</tr>
</tbody>
</table>

hand, on the carbon atoms C₁, C₂ and C₆, and, on the other hand, on C₄ and the oxygen atom. The LUMO shape is quite different and composed of the out-of-phase overlap of the p_z AOs on the C₂, C₃, C₅ and C₆. Both HOMO and LUMO possess two nodal surfaces perpendicular to the phenolic ring. Both frontier orbitals have negative orbital energies: $\varepsilon_{\text{HOMO}} = -6.33$ eV and $\varepsilon_{\text{LUMO}} = -0.51$ eV. According to Koopmans’ theorem, the Koopmans ionization potential, which is simply the HOMO energy taken with the opposite sign, might be in general considered as a good approximation to the first vertical ionization energy. Therefore, in the case of phenol, $\varepsilon_{\text{HOMO}}$ must be interpreted as the energy required to remove a π electron from phenol to form phenol radical cation PhOH$^+$ (cf. 18 for one of its many possible resonance structures). As seen in Section 1, the experimental value of the adiabatic first ionization energy IE$_a$ of phenol is equal to 8.49 ± 0.2 eV and settled to 8.51 eV or 68639.4 cm$^{-1}$ or 68628 cm$^{-1}$. Interestingly, it is lower by nearly 71 kJ mol$^{-1}$ than IE$_a$(benzene) = 74556.58 ± 0.05 cm$^{-1}$. Summarizing, we may conclude that Koopmans’ theorem is rather inadequate for phenol, even in predicting its vertical ionization energy (for a further discussion see Reference 131, p. 128).

\[
\text{PhO}^+\text{H} \\
\text{(18)}
\]

In order to theoretically determine the ionization energy of phenol, the same method/basis should be employed for both parent and cation. Table 5 summarizes the optimized geometries and the energies (including ZPVE) of phenol and phenol radical cation calculated using the B3LYP method in conjunction with 6-31G(d,p) and 6-311++G(d,p) basis sets. It is interesting to notice a rather drastic change in the geometry of phenol radical cation compared to the parent phenol molecule (Table 5), especially in the vicinity of the carbonyl group, whereas the difference between IE_{vert} and IE_{ad} is
TABLE 5. The B3LYP data of phenol and phenol radical cationa,b

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Phenol</th>
<th>Phenol radical cation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6-31G(d,p)</td>
<td>6-311++G(d,p)</td>
</tr>
<tr>
<td>C_1-C_2</td>
<td>1.399</td>
<td>1.396</td>
</tr>
<tr>
<td>C_1-C_3</td>
<td>1.396</td>
<td>1.394</td>
</tr>
<tr>
<td>C_1-C_4</td>
<td>1.395</td>
<td>1.393</td>
</tr>
<tr>
<td>C_1-C_5</td>
<td>1.398</td>
<td>1.396</td>
</tr>
<tr>
<td>C_1-C_6</td>
<td>1.393</td>
<td>1.391</td>
</tr>
<tr>
<td>C_1-C_7</td>
<td>1.399</td>
<td>1.396</td>
</tr>
<tr>
<td>C_1-O_7</td>
<td>1.368</td>
<td>1.370</td>
</tr>
<tr>
<td>O_7-H_{13}</td>
<td>0.966</td>
<td>0.963</td>
</tr>
<tr>
<td>$C_1O_7H_{13}$</td>
<td>108.9</td>
<td>109.7</td>
</tr>
<tr>
<td>E</td>
<td>+307</td>
<td>0.478469</td>
</tr>
<tr>
<td>E_{vert}</td>
<td>+307</td>
<td>0.765</td>
</tr>
<tr>
<td>$ZPVE + 65$</td>
<td>8.016</td>
<td>7.03 HF/DZP113</td>
</tr>
<tr>
<td>IE_{ad}</td>
<td>8.209</td>
<td>8.519</td>
</tr>
<tr>
<td>IE_{vert}</td>
<td>8.209</td>
<td>8.519</td>
</tr>
</tbody>
</table>

aThe phenol radical cation have recently been studied theoretically113,138,140. See different properties in Reference 139.

bBond lengths are given in Å, bond angle in degrees, energies in hartree, ZPVE in kJ mol$^{-1}$ and ionization energy in eV. The atomic numbering is indicated in Chart 1. Deviations in the bond lengths of phenol radical cation from those of phenol are shown in parentheses.

cThe energy$_{\text{vert}}$ of phenol radical cation is determined at the corresponding geometry of the parent phenol.

rather small. The potential energy surface of the ionized phenol will be discussed in a subsequent section.

C. Atom-in-Molecule Analysis

In this subsection, we briefly review the use of the function $L(r)$ of the electronic ground-state phenol which is defined as minus the Laplacian of its electron density, $\nabla^2 \rho(r)$, fully in the context of Bader’s ‘Atoms in Molecule’ (AIM) approach141,142 (the electronic localization function is discussed below). The topology of $L(r)$ can be almost faithfully mapped onto the electron pairs of the VSEPR model143,144. The topology of the one-electron density $\rho(r)$ (see, e.g., Reference 145 and references therein for the definition) is fully understood within the AIM theory resulting in its partition which defines ‘atoms’ inside a molecule or a molecular aggregate via the gradient vector field $\nabla \rho(r)$. Such a vector field is a collection of gradient paths simply viewed as curves in the three-dimensional (3D) space following the direction of steepest ascent in $\rho(r)$. Therefore, the meaning of a gradient path is absolutely clear: it starts and ends at those points where $\nabla \rho(r)$ vanishes. These points are called critical points (CPs). The CPs of $\rho(r)$ are special and useful points of the corresponding molecule.

The classification of the critical points is the following142. There are three types of CPs: maximum, minimum or saddle point. In 3D, one has two different types of saddle points.
CPs of the 3D function $\rho(r)$ can be classified in terms of the eigenvalues λ_i ($i = 1, 2$ and 3) of the Hessian of $\rho(r)$, which is defined as $\nabla^2 \rho(r)$ and is actually a 3×3 matrix evaluated at a given CP. Therefore, a given CP is classified by an (r,s) pattern, where r is the rank of this CP equal to the number of non-zero eigenvalues of the Hessian matrix and s is the signature equal to the sum of the signs of the eigenvalues. One example is worth discussing. One type of saddle point has two non-zero negative eigenvalues and one which is strictly positive, so its rank $r = 3$ and its signature $s = (-1) + (-1) + 1 = -1$, and therefore this CP is denoted as $(3, -1)$ CP. Such a CP is called a bond critical point because it indicates the existence of a bond between two nuclei of a given molecule. The bond critical points are linked to the adjacent nuclei via an atomic interaction line. This line in fact consists of a pair of gradient paths, each of which originates at the bond CP and terminates at a nucleus. The set of all atomic interaction lines occurring in a given molecule constitutes the molecular graph.

The AIM analysis of the electron density and the Laplacian of the electron density have been performed at the B3LYP/cc-pVDZ level using the MORPHY suite of codes146. The resulting AIM charges are given in Table 6. In Figures 6 and 7, we display the molecular graph $L(r)$ from different views of the one-electron density of the electronic ground-state phenol. Thus, the regions of local charge concentration correspond to the maxima in $L(r)$ and the regions of local charge depletion to minima in $L(r)$. Figure 6 shows the geometric positions of all the critical points in the valence shell charge concentration (VSCC) graph of phenol. The graph contains 87 CPs in total, 27 $(3, -3)$ CPs, 41 $(3, -1)$ CPs and 19 $(3, +1)$ CPs. The $(3, -3)$ CPs in $L(r)$ can be separated into three subsets: the two non-bonding maxima of oxygen; the bonding maxima between two carbons, oxygen and carbon, carbon and hydrogen and oxygen and hydrogen; the nuclear maxima, each virtually coincident with the hydrogen nucleus. The $(3, -1)$ CPs in general have a function which is analogous to a bond critical point, i.e. to link maxima. We trace the gradient paths in $L(r)$ starting from the $(3, -1)$ CPs. Usually, these would be expected to connect maxima and this is the case for the overwhelming majority of $(3, -1)$ CPs for phenol but, as may be seen occasionally in $\rho(r)$142, we observe two $(3, -1)$ CPs connected in the vicinity of the oxygen atom. The presence of this unusual connectivity, generally only observed for ‘conflict’ structures, means that a planar graph cannot be drawn for the VSCC.

Figure 7 displays the geometric positions of all the CPs in the valence shell charge depletion (VSCD) graph of phenol. The graph contains 55 $(3, -1)$ CPs, 80 $(3, +1)$ CPs and 22 $(3, +3)$ CPs. The VSCD graph is considerably more complex than the VSCC one.

<table>
<thead>
<tr>
<th>TABLE 6. AIM charges of the ground-state phenol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
</tr>
<tr>
<td>C6</td>
</tr>
<tr>
<td>H8</td>
</tr>
<tr>
<td>H9</td>
</tr>
<tr>
<td>H10</td>
</tr>
<tr>
<td>H11</td>
</tr>
<tr>
<td>H12</td>
</tr>
<tr>
<td>O7</td>
</tr>
<tr>
<td>H13</td>
</tr>
</tbody>
</table>
FIGURE 6 (PLATE 1). The VSCC graph for phenol. The oxygen atom is marked in red. The green spheres therein are the CPs $(3, -3)$ (maxima) in the phenolic $L(r)$ while the violet ones determine the $(3, -1)$ CPs. The yellow spheres correspond to the $(3, +1)$ CPs. The domain interaction lines (in light gray) link two $(3, -3)$ CPs via a $(3, -1)$ CP.

and encompasses the whole molecule. In reality, of course, the separation of the VSCC and VSCD graphs is artificial; however, it allows for a much easier visual understanding of the significance of the two. The gradient paths belonging to the VSCC graph define the connectivities of the charge concentration maxima (*attractors*); the gradient paths belonging to the VSCD graph indicate the extensions of the *basins* of these attractors. Finally, the principal AIM properties of the atoms of phenol are collected in Table 7.
D. Vibrational Modes

The phenol molecule has 13 atoms, and is therefore characterized by the 33 normal vibrational modes. Their overtone and combination bands are infrared active. The proper assignment of the fundamental vibrational modes of phenol in its electronic ground state...
TABLE 7. The AIM properties of the ground-state phenol

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total volume</td>
<td>3727.90</td>
</tr>
<tr>
<td>Total molecular dipole moment</td>
<td>0.5124</td>
</tr>
<tr>
<td>Average $L(\Omega_{1,141,142})$</td>
<td>-0.34E-03</td>
</tr>
<tr>
<td>Total $K(\Omega_{1,141,142})$</td>
<td>304.76268</td>
</tr>
<tr>
<td>Total $E(\Omega_{1,141,142})$</td>
<td>-307.49493</td>
</tr>
<tr>
<td>E(wave function)</td>
<td>-307.49478</td>
</tr>
<tr>
<td>Total charge</td>
<td>-49.999416285</td>
</tr>
<tr>
<td>$Z + Q$(total)</td>
<td>0.000583715</td>
</tr>
<tr>
<td>Total dipole (in components)</td>
<td>-0.0001 0.3853 1.0577</td>
</tr>
</tbody>
</table>

has a long history that started in 1941 by assigning the observed Raman bands of phenol confined to the region above 600 cm$^{-1}$ followed by a study on the changes of its vibrational spectra under association148. The first examination of the phenol–OD infrared spectra was performed in 1954–1955149,150. In the electronic ground state S_0, the assignment of all fundamental vibrations of phenol was based on the earlier studies151–153. The lowest vibrational mode, a so-called mode 10b, had been assigned to 242 cm$^{-1}$ in 1960151 and to 241 cm$^{-1}$ one year later152 from the Raman spectra of molten phenol. In 1981, a slightly lower mode at 235 cm$^{-1}$ was observed154 by Raman spectroscopy in the gas phase. The frequency of the mode 10b in phenol and phenol-d_1 were determined155 at 225.2 and 211.5 cm$^{-1}$, respectively, and this led to the conclusion that the assignment of Reference 153 might be incorrect. Interestingly, during the last two decades, this mode and its correct value have not received much attention because the values predicted by a variety of \textit{ab initio} methods appear to be lower than the experimental ones151–155.

The vibrational modes of the ground-state phenol were examined by a number of spectroscopic techniques including UV-VIS154,156–158, IR for the vapour151,152,159,160, and the IR and Raman spectra in the solid and liquid phases151,152,159,161,162, and microwave spectroscopy105,107,163, see also References 164–166. They are collected in Table 8, where both nomenclatures by Wilson and coworkers154 and Varsányi167 are used. Recently, the vibrational modes of phenol have become a benchmark for testing \textit{ab initio} and density functional methods111,112,168–170. The Hartree–Fock calculations of the vibrational spectrum of phenol were first performed using the 6-31G(d,p) basis set122. An MP2 study with the same basis set was later carried out121. A combination112 of three methods, viz. HF, MP2 and density functional BLYP, in conjunction with the 6-31G(d,p) basis was used to study the phenol spectrum and to make the complete and clear assignment of its vibrational modes (see Table 9).

In Figure 8 we display the normal displacements and in Table 10 we provide the corresponding vibrational assignments. Let us start from the end of Table 10 and Figure 8 where the stretching ν_{OH} mode is placed and its normal displacement is shown. It is a pure localized mode111,112. Furthermore, it is a well-known mode subject to numerous studies related to the hydrogen-bonding abilities of phenol173. Its second overtone in phenol and the phenol halogen derivatives has been studied experimentally174.

The OH group of phenol participates in two additional modes, in-plane and out-of-plane bending vibrations. The latter is also called the torsional mode τ_{OH} observed near 300 cm$^{-1}$ (see Table 8) in the IR spectra of phenol vapour and of dilute solutions of phenol in n-hexane152. In the associated molecules, it appears as a rather broad featureless band in the region of 600–740 cm$^{-1}$149. It results from the hydrogen-bonded association. The spectra of liquid and solid phenol–OD also exhibit a variety of broad bands near 500 cm$^{-1}$. The first overtone of the τ_{OH} was found at 583 cm$^{-1}$ in the IR spectrum of phenol vapour152. This assignment of the torsional mode allows one to model the torsional motion of the OH group of phenol by assuming that it is described by the
<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Sym</th>
<th>IR (^{153}) Raman (^{154})</th>
<th>IR (^{171,172}) Raman (^{167})</th>
<th>IR (^{111}) Raman (^{111})</th>
<th>IR (^{169})</th>
<th>HF/6-31G(d,p) (^{112})</th>
<th>MP2/6-31G(d,p) (^{112})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vars (^{154})</td>
<td>Wilson and coworkers (^{154})</td>
<td>(11)</td>
<td>(10b)</td>
<td>(11)</td>
<td>(10b)</td>
<td>(11)</td>
<td>(10b)</td>
</tr>
<tr>
<td>(\nu_A)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
</tr>
<tr>
<td>(11)</td>
<td>(10b)</td>
<td>(244)</td>
<td>(241)</td>
<td>(242)</td>
<td>(225^a)</td>
<td>(256.2)</td>
<td>(226.8)</td>
</tr>
<tr>
<td>(\tau (\text{OH}))</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
<td>(\tau)</td>
</tr>
<tr>
<td>(16)</td>
<td>(15)</td>
<td>(16b)</td>
<td>(16)</td>
<td>(6a)</td>
<td>(6b)</td>
<td>(4)</td>
<td>(10)</td>
</tr>
<tr>
<td>(\nu (\text{OH}))</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
</tr>
<tr>
<td>(16)</td>
<td>(15)</td>
<td>(16b)</td>
<td>(16)</td>
<td>(6a)</td>
<td>(6b)</td>
<td>(4)</td>
<td>(10)</td>
</tr>
<tr>
<td>(\beta (\text{COH}))</td>
<td>(\beta)</td>
<td>(\beta)</td>
<td>(\beta)</td>
<td>(\beta)</td>
<td>(\beta)</td>
<td>(\beta)</td>
<td>(\beta)</td>
</tr>
<tr>
<td>(20)</td>
<td>(18)</td>
<td>(15)</td>
<td>(15)</td>
<td>(9a)</td>
<td>(9b)</td>
<td>(9a)</td>
<td>(9b)</td>
</tr>
<tr>
<td>(\nu (\text{OH}))</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
<td>(\nu)</td>
</tr>
</tbody>
</table>

\(^a\) Determined from the first and third overtone and the combination band with the mode 1a.

\(^b\) Calculated from the first overtone of these normal modes.

\(^c\) Present work (see page 37).

potential \(V_r(1 - \cos 2\theta)/2\). Here, \(\theta\) is the torsional angle and \(V_r\) is the corresponding barrier height. Within this model, the reduced moment of inertia can be chosen equal to 1.19 \(\times 10^{-40}\) g cm\(^2\).

The \(\beta_{\text{COH}}\) is the in-plane bending of the OH group placed at around 1175–1207 cm\(^{-1}\). It is observed at 1176.5 cm\(^{-1}\) in the IR spectrum of phenol vapour\(^{152,154}\). This band is shifted to ca 910 cm\(^{-1}\) in dilute solution under deuteration\(^{153}\) and gives rise to a broad absorption ranging from 930 to 980 cm\(^{-1}\) in the spectrum of crystal. The first HF/6-31G(d,p) calculations\(^{122}\) predicted it at 1197.3 cm\(^{-1}\) (the scaled value is 1081 cm\(^{-1}\))\(^{175}\).

Twenty-four vibrational modes of phenol are well assigned to the phenyl ring modes because they are not so sensitive to the nature of the substituent\(^{176}\). On the other hand, the six modes which involve a substantial motion of the phenyl and CO groups are rather sensitive to the isotopic substitution of OH by OD. These are the following modes\(^{152}\): 1260 (1253), 814 (808), 527 (523), 503 (503), 398 (380) and 242 (241) cm\(^{-1}\) for phenol and phenol–OD (in parentheses), respectively.
1. General and theoretical aspects of phenols

<table>
<thead>
<tr>
<th>Theor.</th>
<th>Expt.</th>
<th>Expt-Phenol-δ$_1$</th>
<th>Phenol-δ$_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IR$_{153}$</td>
<td>IR$_{153}$</td>
</tr>
<tr>
<td>v A</td>
<td>v A</td>
<td>ν$_A$ ν$_A$ ν$_A$</td>
<td>ν$_A$ ν$_A$</td>
</tr>
<tr>
<td>225.4</td>
<td>0.2</td>
<td>234 227 229.5 1</td>
<td>232 2</td>
</tr>
<tr>
<td>384.6</td>
<td>108</td>
<td>365 338 338.4 100</td>
<td>246 5 307 30</td>
</tr>
<tr>
<td>406.6</td>
<td>0.9</td>
<td>405 403 406.4 10</td>
<td>407 2</td>
</tr>
<tr>
<td>394.0</td>
<td>9</td>
<td>421 414 421.7 1</td>
<td>382 6 386 3</td>
</tr>
<tr>
<td>499.2</td>
<td>6</td>
<td>518 508 514.9 14</td>
<td>503 15 431 20</td>
</tr>
<tr>
<td>520.7</td>
<td>1</td>
<td>536 537 537.5 2</td>
<td>522 3 513 2</td>
</tr>
<tr>
<td>616.1</td>
<td>0.3</td>
<td>633 633 634.3 0</td>
<td>617</td>
</tr>
<tr>
<td>674.8</td>
<td>8</td>
<td>699 667 690.7 18</td>
<td>687 35 550 25</td>
</tr>
<tr>
<td>732.2</td>
<td>44</td>
<td>761 745 761.6 69</td>
<td>751 50 625 10</td>
</tr>
<tr>
<td>788.9</td>
<td>0.0</td>
<td>834 828 830.5 21</td>
<td>805 8 754 2</td>
</tr>
<tr>
<td>805.0</td>
<td>17</td>
<td>822 816 827.3 0</td>
<td>817</td>
</tr>
<tr>
<td>846.2</td>
<td>3</td>
<td>884 834 894.0 6</td>
<td>881</td>
</tr>
<tr>
<td>911.1</td>
<td>0.0</td>
<td>955 948 970.1 0</td>
<td>972</td>
</tr>
<tr>
<td>939.5</td>
<td>0.1</td>
<td>981 969 986.5 0</td>
<td>997 4 960</td>
</tr>
<tr>
<td>982.7</td>
<td>2</td>
<td>1013 1012 1017.6 3</td>
<td>1025 2</td>
</tr>
<tr>
<td>1017.4</td>
<td>3</td>
<td>1051 1043 1045.0 5</td>
<td>1052 2</td>
</tr>
<tr>
<td>1069.8</td>
<td>10</td>
<td>1102 1094 1095.0 14</td>
<td>1109 14</td>
</tr>
<tr>
<td>1156.6</td>
<td>8</td>
<td>1183 1177 1177.8 36</td>
<td>1150 5</td>
</tr>
<tr>
<td>1165.7</td>
<td>5</td>
<td>1197 1191 1191.9 90</td>
<td>1168 20</td>
</tr>
<tr>
<td>1173.3</td>
<td>146</td>
<td>1200 1192 1193.4 32</td>
<td>917 44 1179 802</td>
</tr>
<tr>
<td>1254.0</td>
<td>64</td>
<td>1305 1275 1280.4 89</td>
<td>1257 90 1187 75</td>
</tr>
<tr>
<td>1329.7</td>
<td>7</td>
<td>1365 1349 1347.5 7</td>
<td>1021 15</td>
</tr>
<tr>
<td>1349.3</td>
<td>29</td>
<td>1378 1369 1375.2 23</td>
<td>1309 4 1300 12</td>
</tr>
<tr>
<td>1468.8</td>
<td>28</td>
<td>1514 1500 1505.3 23</td>
<td>1465 1372 40</td>
</tr>
<tr>
<td>1495.5</td>
<td>34</td>
<td>1547 1528 1533.2 53</td>
<td>1500 65 1405 40</td>
</tr>
<tr>
<td>1589.5</td>
<td>37</td>
<td>1654 1636 1636.0 48</td>
<td>1609 1578</td>
</tr>
<tr>
<td>1602</td>
<td>32</td>
<td>1668 1646 1646.7 38</td>
<td>1603 60 1572 40</td>
</tr>
<tr>
<td>3079</td>
<td>19</td>
<td>3163 3152 3152.0 13</td>
<td>3024 2262</td>
</tr>
<tr>
<td>3100.2</td>
<td>0.2</td>
<td>3183 3069 3170.1 0</td>
<td>3051 2283</td>
</tr>
<tr>
<td>3107.9</td>
<td>27</td>
<td>3191 3178 3178.5 16</td>
<td>3060 2295</td>
</tr>
<tr>
<td>3123.9</td>
<td>27</td>
<td>3207 3192 3192.1 15</td>
<td>3073 2302</td>
</tr>
<tr>
<td>3131.4</td>
<td>7</td>
<td>3214 9198 3198.5 3</td>
<td>3087 2313</td>
</tr>
<tr>
<td>3664.2</td>
<td>25</td>
<td>3827 3839 3835.2 62</td>
<td>2699 2700 35</td>
</tr>
</tbody>
</table>

Early work on the near-IR spectra of phenol has been focused on the study of the influence of the solvent or hydrogen-bond formation on the frequency of the first overtone of the ν$_{OH}$ stretching vibration$^{177–179}$. The frequency of the ν$_{OH}$ vibration for the vibrational quantum numbers $v = 0$ to $v = 5$ has been reported, based on the photoacoustic spectroscopic measurements180. Recently, the near-IR spectrum between 4000 and 7000 cm$^{-1}$ of phenol in solution has been investigated by conventional FT-IR spectroscopy181. Vibrational transitions in this range have also been detected by non-resonant two-photon ionization spectroscopy182 and some of the transitions have been assigned to combinations involving mainly the ν$_{OH}$ vibration and other fundamental modes of phenol. The interesting problem in this area is to resolve the origin of the cluster of peaks around 6000 cm$^{-1}$ which were observed in solution and assigned to the first overtone of the ν$_{CH}$ vibrations of phenol–OH because their fundamental vibrations are placed at 3000 cm$^{-1}$ $^{181, 182}$ (Figure 9). The ν$_{CH}$ absorptions of phenol–OH and phenol–OD and their first and second overtones are studied by a deconvolution procedure and the near-IR spectra are
reassigned183. At a concentration of 0.1 M, dimers of phenol and its higher associates might be present in solution. In the fundamental region, there appears a weak band at 3485 cm\(^{-1}\) in phenol–OH and at 2584 cm\(^{-1}\) in phenol–OD which originates from the dimer111. Weaker and broader bands around 3300 and 2500 cm\(^{-1}\) are assigned to higher associates of phenol. In the near-IR spectrum, a very weak absorption band at 6714 cm\(^{-1}\) refers to the dimer.

E. Three Interesting Structures Related to Phenol

Before ending the present section, we would like to briefly discuss the following three structures closely linked to the \(S_0\)-state phenol molecule.

It is well known that aliphatic carbonyl compounds with the hydrogens on \(C_\alpha\) to the carbonyl group may undergo tautomeric transitions from the keto to the enol forms. The most stable tautomeric form of the \(S_0\)-state phenol molecule is in fact the enol form184–186. The reason why the enol form of phenol is favoured over the keto form is quite simple131.
On the one hand, due to the virtual absence of the electronic delocalization in the keto form, it has a larger intrinsic stability which can easily be accounted for in terms of the sum of the bond energies (ca 59 kJ mol$^{-1}$). On the other hand, the enol form is characterized by a larger resonance energy, by ca 126 kJ mol$^{-1}$, compared to that of the keto form. Therefore, the enol form is more stable by ca 67 kJ mol$^{-1}$. Such simple arguments are pretty well confirmed by the B3LYP/6-31+G(d,p) calculations performed in the present work (cf. also Reference 186) resulting in that the enol–keto tautomeric energy difference amounts to 69 kJ mol$^{-1}$ after ZPVE. In Figure 10 we display the most stable keto form of phenol (cyclohexa-2,5-dienone) together with its most characteristic
vibrational modes. Interestingly, the keto form possesses a total dipole moment of 5.0 D and thus it is more polar than the favourable enol form. The standard heats of formation of both cyclohexa-2,4- and -2,5-dienones have recently been re-evaluated as -31 and -34 kJ mol$^{-1}$, respectively, in better agreement with theoretical estimates.187
In Figure 11 we display two other theoretical structures. The TS$_r$ structure is the transition state governing the torsional motion of the OH group of phenol between its equi-energetical structures shown in Chart 4. The energy difference between this structure and the S_0-state phenol molecule determines the torsional barrier V_r as equal to 13 kJ mol$^{-1}$.

FIGURE 8. (continued)
FIGURE 8. (continued)
1. General and theoretical aspects of phenols

FIGURE 8. (continued)
after ZPVE at the B3LYP/6-311++G(d,p) computational level. The MP2/cc-pVTZ calculation recently performed yields 15 kJ mol$^{-1}$120. Note that the imaginary frequency characterizing this saddle point is predicted at 343 i cm$^{-1}$.

The second structure shown in Figure 11 is the saddle point of second order lying 113 kJ mol$^{-1}$ above the phenol molecule at the B3LYP/6-31+G(d,p) level taking ZPVE into account. As a second-order saddle structure, it has two imaginary frequencies, 1222 i and 1150 i cm$^{-1}$. The former describes the in-plane hindered rotation of the OH group whereas in the latter its rotation is perpendicular to the phenyl ring. We suppose that both these structures are directly linked to the gas-phase bond dissociation enthalpy (BDE) of phenol defined (see, e.g., Reference 188 and references therein) as the enthalpy change for the reaction

$$\text{C}_6\text{H}_{5}\text{O} \longrightarrow \text{H} \longrightarrow \text{C}_6\text{H}_5\text{O}^* + \text{H}^*$$ \hspace{1cm} (4)$$

where the bond indicated by the horizontal line breaks, yielding the radicals as the products. The experimental and theoretical determination of the BDE of phenol and phenol
1. General and theoretical aspects of phenols

Theoretical estimations fell within 363.2 kJ mol$^{-1}$ (NIST Standard Reference Database), 365.3 ± 6.3 kJ mol$^{-1}$, and 371.3 ± 2.3 kJ mol$^{-1}$ while the accurate theoretical estimations fell within 363.2 kJ mol$^{-1}$ (DFT) and 364.4 kJ mol$^{-1}$. Note finally that the BDE of phenol gives the reference value for all phenolic antioxidants. This property and the relevant reaction will be discussed in a subsequent section.

<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>227.8</td>
<td>1</td>
<td>A"</td>
<td>τ${rg}$(65), τ${rg}$(12)</td>
</tr>
<tr>
<td>2</td>
<td>311.4</td>
<td>111</td>
<td>A"</td>
<td>τOH(93) Expt: 310a, 310c</td>
</tr>
<tr>
<td>3</td>
<td>405.1</td>
<td>11</td>
<td>A'</td>
<td>βCO(77), β$_{rg}$(11)</td>
</tr>
<tr>
<td>4</td>
<td>416.8</td>
<td>1</td>
<td>A"</td>
<td>τ$_{rg}$(83)</td>
</tr>
<tr>
<td>5</td>
<td>508.8</td>
<td>14</td>
<td>A"</td>
<td>τ$_{rg}$(38), γCO(37), γC$_b$H(11)</td>
</tr>
<tr>
<td>6</td>
<td>536.0</td>
<td>2</td>
<td>A'</td>
<td>β$_{rg}$(77)</td>
</tr>
<tr>
<td>7</td>
<td>632.6</td>
<td>0</td>
<td>A'</td>
<td>β$_{rg}$(85)</td>
</tr>
<tr>
<td>8</td>
<td>668.5</td>
<td>10</td>
<td>A"</td>
<td>τ$_{rg}$(69), γCO(12)</td>
</tr>
<tr>
<td>9</td>
<td>749.5</td>
<td>85</td>
<td>A"</td>
<td>γC$_b$H(27), γCbH(16), γCO(15), τ${rg}$(12), γC$_b$H(11)</td>
</tr>
<tr>
<td>10</td>
<td>819.5</td>
<td>0</td>
<td>A"</td>
<td>γC$_b$H(44), γC$_b$H(25), γC$_b$H(20)</td>
</tr>
<tr>
<td>11</td>
<td>827.4</td>
<td>23</td>
<td>A'</td>
<td>νCO(26), β${rg}$(20), β${rg}$(16)</td>
</tr>
<tr>
<td>12</td>
<td>878.1</td>
<td>5</td>
<td>A"</td>
<td>γC$_b$H(33), γC$_b$H(24), γC$_b$H(17)</td>
</tr>
<tr>
<td>13</td>
<td>951.9</td>
<td>0</td>
<td>A"</td>
<td>γC$_b$H(53), γC$_b$H(18), γC$_b$H(10)</td>
</tr>
<tr>
<td>14</td>
<td>971.8</td>
<td>0</td>
<td>A"</td>
<td>γC$_b$H(54), γC$_b$H(18), γC$_b$H(16)</td>
</tr>
<tr>
<td>15</td>
<td>1012.6</td>
<td>2</td>
<td>A'</td>
<td>β$_{rg}$(65)</td>
</tr>
<tr>
<td>16</td>
<td>1043.1</td>
<td>6</td>
<td>A'</td>
<td>νC$_b$C$_b$(31), νC$_b$C$_b$(24)</td>
</tr>
<tr>
<td>17</td>
<td>1093.0</td>
<td>15</td>
<td>A'</td>
<td>νC$_b$C$_b$(18), νC$_b$C$_b$(15), βC$_b$H(12), βC$_b$H(11), νC$_b$C$_b$(11), βC$_b$H(10)</td>
</tr>
<tr>
<td>18</td>
<td>1176.5</td>
<td>26</td>
<td>A'</td>
<td>βC$_b$H(26), βC$_b$H(16), βC$_b$H(11), βC$_b$H(10)</td>
</tr>
<tr>
<td>19</td>
<td>1190.5</td>
<td>2</td>
<td>A'</td>
<td>βC$_b$H(26), βC$_b$H(17), βC$_b$H(15), βC$_b$H(11)</td>
</tr>
<tr>
<td>20</td>
<td>1192.0</td>
<td>128</td>
<td>A'</td>
<td>βOH(41), νC$_b$C$_b$(13), βC$_b$H(12), βC$_b$H(10)</td>
</tr>
<tr>
<td>21</td>
<td>1274.9</td>
<td>91</td>
<td>A'</td>
<td>νCO(52), β$_{rg}$(12)</td>
</tr>
<tr>
<td>22</td>
<td>1348.4</td>
<td>6</td>
<td>A'</td>
<td>νC$_b$C$_b$(14), νC$_b$C$_b$(14), νC$_b$C$_b$(14), νC$_b$C$_b$(13), νC$_b$C$_b$(11), νC$_b$C$_b$(10)</td>
</tr>
<tr>
<td>23</td>
<td>1368.3</td>
<td>28</td>
<td>A'</td>
<td>βC$_b$H(22), βOH(18), βC$_b$H(16), βC$_b$H(13), βC$_b$H(10)</td>
</tr>
<tr>
<td>24</td>
<td>1499.4</td>
<td>23</td>
<td>A'</td>
<td>βC$_b$H(26), βC$_b$H(13), νC$_b$C$_b$(13), νC$_b$C$_b$(12), βC$_b$H(10)</td>
</tr>
<tr>
<td>25</td>
<td>1526.8</td>
<td>59</td>
<td>A'</td>
<td>βC$_b$H(19), βC$_b$H(16), νC$_b$C$_b$(12), βC$_b$H(12)</td>
</tr>
<tr>
<td>26</td>
<td>1635.4</td>
<td>49</td>
<td>A'</td>
<td>νC$_b$C$_b$(24), νC$_b$C$_b$(21), νC$_b$C$_b$(10)</td>
</tr>
<tr>
<td>27</td>
<td>1645.9</td>
<td>39</td>
<td>A'</td>
<td>νC$_b$C$_b$(23), νC$_b$C$_b$(17), νC$_b$C$_b$(13), νC$_b$C$_b$(13)</td>
</tr>
<tr>
<td>28</td>
<td>3149.0</td>
<td>14</td>
<td>A'</td>
<td>νC$_b$H(88), νC$_b$H(10)</td>
</tr>
<tr>
<td>29</td>
<td>3167.4</td>
<td>0</td>
<td>A'</td>
<td>νC$_b$H(51), νC$_b$H(27), νC$_b$H(11)</td>
</tr>
<tr>
<td>30</td>
<td>3176.0</td>
<td>17</td>
<td>A'</td>
<td>νC$_b$H(56), νC$_b$H(26)</td>
</tr>
<tr>
<td>31</td>
<td>3190.0</td>
<td>16</td>
<td>A'</td>
<td>νC$_b$H(41), νC$_b$H(41), νC$_b$H(16)</td>
</tr>
<tr>
<td>32</td>
<td>3196.6</td>
<td>4</td>
<td>A'</td>
<td>νC$_b$H(47), νC$_b$H(24), νC$_b$H(21)</td>
</tr>
<tr>
<td>33</td>
<td>3836.0</td>
<td>62</td>
<td>A'</td>
<td>νOH(100)</td>
</tr>
</tbody>
</table>

aPresent calculations performed at B3LYP/6-311++G(d,p) computational level. Values taken from Reference 244 with permission. Frequencies in cm$^{-1}$, IR intensities in km mol$^{-1}$. Glossary of vibrational mode acronyms: ν, stretch; β, in-plane bend; γ, out-of-plane bend; τ, torsion; rg, ring; β1, β2 and β3, ring deformations and τ1, τ2 and τ3, ring torsions. PED elements \geq 10% only are included.

bThe gas-phase IR experiment171.

cThe IR experiment in solution172.

Table 10. Harmonic vibrational frequencies, IR intensities and assignments for phenola
FIGURE 9. Vibrational spectrum of jet-cooled phenol measured by the non-resonant ionization-detected IR spectroscopy fixing ν_{UV} to 34483 cm$^{-1}$. All peaks are attributed to the vibrational transitions of the phenol molecule in its ground electronic state S_0. The strongest peak at 3656 cm$^{-1}$ is assigned to the fundamental of the ν_{OH} stretch. The cluster of peaks around 6000 cm$^{-1}$ is assigned to the first overtone of the ν_{CH} modes. The sharp peaks at 7143, 10461 and 13612 cm$^{-1}$ are assigned to the first (2ν_{OH}), second (3ν_{OH}) and third (4ν_{OH}) overtones of the ν_{OH} stretch, respectively. Reproduced with permission from Reference 182

FIGURE 10. The keto tautomeric form of phenol viewed at the B3LYP/6-31+G(d,p) computational level. Bond lengths in Å, bond angles in degrees

FIGURE 11. Calculated transition structure TS\textsubscript{t} (B3LYP/6-311++G(d,p)) and the second-order saddle structure (B3LYP/6-31+G(d,p)). Bond lengths are given in Å, bond angles in degrees
III. STRUCTURES AND PROPERTIES OF SUBSTITUTED PHENOLS

During the 160 years since the discovery of phenol, thousands of studies were conducted on halophenols, partly due to their significance in the theory of hydrogen bonding; indeed their hydrogen bonding abilities can be varied nearly continuously over a wide pK_a range from 10.2 to 0.4\(^{202–211}\).

A. Intramolecular Hydrogen Bond in ortho-Halogenophenols

One of the most remarkable moments in the history of mono-halogen-substituted phenols occurred in 1936 when Pauling\(^{104,212}\) suggested the co-existence of two inequivalent rotational isomers (rotamers or conformers) of the ortho-Cl-substituted phenol in order to explain the experimental splitting of the first overtone of its ν\(_{OH}\) vibrational mode observed in the CCl\(_4\) solution\(^{213–217}\). Instead of phenol whose first overtone ν\(_{OH}^{(1)}\) is sharply peaked at 7050 cm\(^{-1}\), o-CIC\(_6\)H\(_4\)OH reveals a doublet at 7050 and 6910 cm\(^{-1}\) resulting in a band splitting Δν\(_{OH}^{(1)}\) = 140 cm\(^{-1}\) and having the former band placed at the same wavenumbers as in phenol. Almost two decades later, a splitting of the fundamental ν\(_{OH}\) mode by 83 cm\(^{-1}\) was observed in CCl\(_4\) solvent\(^{218}\). What then lies behind Pauling’s suggestion?

Let us consider Figure 12, which displays two conformers cis and trans of o-CIC\(_6\)H\(_4\)OH (computational details are given elsewhere\(^{219,220}\)). The former possesses the intramolecular hydrogen bond O–H···Cl whereas the latter does not. This makes (as long believed) the cis conformer energetically favoured, with a gain of energy Δ\(_{\text{cis–trans}}\)E\(_{\text{ortho}}\) = 12.5 kJ mol\(^{-1}\). Pauling’s estimation of the corresponding free energy difference derived from the ratio of the areas of the peaks was 5.8 kJ mol\(^{-1}\)\(^{104}\) in CCl\(_4\) solution (a more precise value is 6.1 kJ mol\(^{-1}\))^\(^{170}\); another value is 7.5 kJ mol\(^{-1}\)^\(^{221}\)). Our calculated energy difference agrees fairly well with the free energy difference of 14.2–16.3 kJ mol\(^{-1}\) in the vapour\(^{222}\) bounded by 16.3 ± 3.0 kJ mol\(^{-1}\)^\(^{1223}\) and 14.3 ± 0.6 kJ mol\(^{-1}\)^\(^{224}\). However, there is yet another feature that distinguishes cis and trans conformers from each other: the trans form is more polar (3.0 vs 1.04 D). The directions of the total dipole moments of the cis and trans conformers are shown in Figure 12. Nevertheless, the gross difference between the cis and trans conformers consists, as mentioned, in the presence of the intramolecular hydrogen bond. Hence, Δ\(_{\text{cis–trans}}\)E\(_{\text{ortho}}\) can be interpreted as the energy of its formation. Indeed, it looks rather weak for cis o-CIC\(_6\)H\(_4\)OH.

Inspection of Table 11, which gathers the harmonic vibrational modes of both conformers with the corresponding potential energy distribution patterns, reveals that the trans ν\(_{OH}\) is calculated at 3835.4 cm\(^{-1}\), which is almost identical to ν\(_{OH}\) of phenol in Table 10, while its cis partner is red-shifted (as expected according to the theory of hydrogen bonding\(^{225,226}\)) by Δ\(_{\text{cis–trans}}\)ν\(_{OH}\) = 69 cm\(^{-1}\). This calculated value lies rather close to the experimental red shifts ranging from 58\(^{227}\) to 60\(^{228}\) and 63 cm\(^{-1}\)^\(^{222,229}\), depending on the solvent. On the other hand, we note that our red shift is smaller, by 91 cm\(^{-1}\), compared to that observed by Wulf and coworkers\(^{217}\) for ν\(_{OH}\) that might be attributed to anharmonic effects\(^{230}\). After all, it is worth mentioning another indication of the rather weak intramolecular hydrogen bond in cis o-CIC\(_6\)H\(_4\)OH, namely the value of the corresponding hydrogen bridge stretching vibration ν\(_{\sigma}\) (mode 2 in Table 11) compared to mode 2 in its trans partner.

In this regard, the more than two decades following the appearance of Pauling’s work\(^{104}\) deserve to be recalled. Indeed, on the one hand, they were full of criticism\(^{227}\) of the earlier experimental results\(^{213–217}\) because it was believed that the higher frequency band appears ‘more likely due to a trace of phenol impurity than to the presence of trans isomer”\(^{218}\) and the new experiment demonstrated the ratio of the absorptions being much smaller and equal to 1/56 ≈ 17.9 x 10\(^{-3}\), which anyway is about three times larger than...
FIGURE 12. The portion of the potential energy surface of o-ClC₆H₄OH governing the cis–trans conversion is displayed at the top. Numbering of atoms follows Chart 1. Five-member sub-ring sections of the cis ortho-halogenophenols with the intramolecular hydrogen bond are shown at the bottom. Bond lengths are in Å, bond angles in degrees. Adapted from Reference 220 with permission.

our theoretical magnitude. On the other hand, these years were also characterized by a further development of the Pauling model 231, 232 and its further experimental support 217 although, alas, the ‘unsatisfactory state of affairs’ in the area of the cis–trans doublet paradigm 217 remained at that time. Paradoxically, it still remains nowadays, even widening the gap between the experiments originating at the end of the 1950s and modern high-level theoretical studies 220. This particularly concerns o-fluorophenol. In 1958, it was verified experimentally 227 that the cis–trans doublet could not be detected for o-FC₆H₄OH: the trans νOH band was suggested to be too weak to show up in IR experiments and Δ_cis–trans νOH to be too small (<20 cm⁻¹; it is estimated at 18 cm⁻¹ 222). Our prediction is Δ_cis–trans E_{ortho} = 11.4 kJ mol⁻¹, which demonstrates that indeed the intramolecular O–H⋯F hydrogen bond in o-FC₆H₄OH is weaker (by 1.09 kJ mol⁻¹) than its analogue in o-CIC₆H₄OH. Furthermore, as follows from Table 12, the theoretical splitting Δ_cis–trans νOH = 30 cm⁻¹ is larger than 20 cm⁻¹, as predicted by IR experiments. We also note that the dipole moment of trans o-FC₆H₄OH (2.95 D) exceeds that of the cis form (1.0 D) by almost a factor of three.
<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>155.6</td>
<td>0</td>
<td>A''</td>
<td>$\tau_{2r}g$(49), $\tau_{3r}g$(19), $\gamma_{CCl}(13), \tau_{1r}g$(11)</td>
<td>1</td>
<td>152.6</td>
<td>1</td>
<td>A''</td>
<td>$\tau_{2r}g$(50), $\tau_{3r}g$(19), $\tau_{1r}g$(13), $\gamma_{CCl}(10)$</td>
</tr>
<tr>
<td>2</td>
<td>249.3</td>
<td>3</td>
<td>A'</td>
<td>$\beta_{CCl}(75), \beta_{CO}(15)$</td>
<td>2</td>
<td>239.7</td>
<td>2</td>
<td>A'</td>
<td>$\beta_{CCl}(72), \beta_{CO}(17)$</td>
</tr>
<tr>
<td>3</td>
<td>262.8</td>
<td>1</td>
<td>A'</td>
<td>$\gamma_{CCl}(31), \tau_{2r}g$(29), $\gamma_{C_{6}H(11)}, \gamma_{CO}(10)$</td>
<td>3</td>
<td>260.3</td>
<td>11</td>
<td>A''</td>
<td>$\tau_{2r}g$(27), $\gamma_{CCl}(27), \tau_{3r}g$(13), $\gamma_{CO}(10)$</td>
</tr>
<tr>
<td>4</td>
<td>375.8</td>
<td>3</td>
<td>A'</td>
<td>$\nu_{CCl}(27), \beta_{1r}g$(19), $\beta_{CO}(17), \beta_{2r}g$(16)</td>
<td>4</td>
<td>317.7</td>
<td>96</td>
<td>A''</td>
<td>$\tau_{OH}(88)$</td>
</tr>
<tr>
<td>5</td>
<td>407.2</td>
<td>108</td>
<td>A''</td>
<td>$\tau_{OH}(90)$</td>
<td></td>
<td>380.8</td>
<td>3</td>
<td>A'</td>
<td>$\nu_{CCl}(26), \beta_{3r}g$(20), $\beta_{CO}(17), \beta_{2r}g$(15), $\beta_{CCl}(10)$</td>
</tr>
<tr>
<td></td>
<td>Expt: 407, 396, 396</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>380.8</td>
<td>3</td>
<td>A'</td>
<td>$\nu_{CCl}(26), \beta_{3r}g$(20), $\beta_{CO}(17), \beta_{2r}g$(15), $\beta_{CCl}(10)$</td>
</tr>
<tr>
<td>6</td>
<td>447.2</td>
<td>0</td>
<td>A''</td>
<td>$\tau_{3r}g$(60), $\gamma_{CCl}(24)$</td>
<td>6</td>
<td>445.4</td>
<td>7</td>
<td>A''</td>
<td>$\tau_{3r}g$(58), $\gamma_{CCl}(22)$</td>
</tr>
<tr>
<td>7</td>
<td>493.6</td>
<td>12</td>
<td>A'</td>
<td>$\beta_{CO}(57), \nu_{CCl}(16), \beta_{CCl}(11)$</td>
<td>7</td>
<td>492.5</td>
<td>8</td>
<td>A'</td>
<td>$\beta_{CO}(55), \nu_{CCl}(12), \beta_{CCl}(11)$</td>
</tr>
<tr>
<td>8</td>
<td>542.5</td>
<td>1</td>
<td>A''</td>
<td>$\tau_{2r}g$(39), $\gamma_{CO}(28)$</td>
<td>8</td>
<td>548.5</td>
<td>1</td>
<td>A''</td>
<td>$\tau_{2r}g$(35), $\tau_{1r}g$(20), $\gamma_{CO}(18)$</td>
</tr>
<tr>
<td>9</td>
<td>563.9</td>
<td>5</td>
<td>A'</td>
<td>$\beta_{2r}g$(61), $\beta_{1r}g$(10)</td>
<td>9</td>
<td>566.0</td>
<td>4</td>
<td>A'</td>
<td>$\beta_{2r}g$(57), $\beta_{1r}g$(12)</td>
</tr>
<tr>
<td>10</td>
<td>672.6</td>
<td>0</td>
<td>A''</td>
<td>$\tau_{1r}g$(63), $\gamma_{CO}(17), \gamma_{CCl}(10)$</td>
<td>10</td>
<td>690.8</td>
<td>19</td>
<td>A'</td>
<td>$\beta_{3r}g$(54), $\nu_{CCl}(25), \nu_{CICl}(11)$</td>
</tr>
<tr>
<td>11</td>
<td>685.1</td>
<td>25</td>
<td>A'</td>
<td>$\beta_{1r}g$(56), $\nu_{CCl}(24), \nu_{CICl}(2)(10)$</td>
<td>11</td>
<td>702.6</td>
<td>0</td>
<td>A''</td>
<td>$\tau_{1r}g$(58), $\nu_{CCl}(19), \gamma_{CCl}(13)$</td>
</tr>
<tr>
<td>12</td>
<td>758.6</td>
<td>74</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(39)}, \gamma_{C_{2}H(24)}, \gamma_{C_{2}H(20)}, \gamma_{C_{6}H(12)}$</td>
<td>12</td>
<td>751.6</td>
<td>82</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(32)}, \gamma_{C_{3}H(23)}, \gamma_{C_{6}H(22)}, \gamma_{C_{3}H(11)}$</td>
</tr>
<tr>
<td>13</td>
<td>842.7</td>
<td>13</td>
<td>A'</td>
<td>$\beta_{1r}g$(27), $\nu_{CO}(24), \beta_{2r}g$(19), $\nu_{C_{1}C_{6}}(10)$</td>
<td>13</td>
<td>835.1</td>
<td>0</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(47)}, \gamma_{CICl}(22), \gamma_{C_{2}H(12)}, \tau_{1r}g$(10)</td>
</tr>
<tr>
<td>14</td>
<td>850.2</td>
<td>1</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(45)}, \gamma_{C_{2}H(28)}$</td>
<td>14</td>
<td>841.4</td>
<td>21</td>
<td>A'</td>
<td>$\beta_{1r}g$(28), $\nu_{CO}(24), \beta_{2r}g$(19)</td>
</tr>
<tr>
<td>15</td>
<td>942.2</td>
<td>3</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(41)}, \gamma_{C_{2}H(22), \gamma_{C_{6}H(20)}$</td>
<td>15</td>
<td>929.4</td>
<td>2</td>
<td>A''</td>
<td>$\gamma_{C_{3}H(38)}, \gamma_{C_{3}H(35)}, \gamma_{C_{6}H(17)}$</td>
</tr>
<tr>
<td>16</td>
<td>974.2</td>
<td>0</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(49)}, \gamma_{C_{2}H(24)}, \gamma_{C_{6}H(13)}$</td>
<td>16</td>
<td>962.6</td>
<td>0</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(42), \gamma_{C_{2}H(24)}, \gamma_{C_{2}H(22)}$</td>
</tr>
<tr>
<td>17</td>
<td>1042.9</td>
<td>45</td>
<td>A'</td>
<td>$\beta_{1r}g$(34), $\nu_{C_{2}C_{5}(21), \nu_{C_{2}C_{6}}(13), \nu_{CCl}(11)$</td>
<td>17</td>
<td>1055.2</td>
<td>26</td>
<td>A'</td>
<td>$\nu_{C_{2}C_{5}}(29), \beta_{1r}g$(19), $\nu_{C_{2}C_{6}}(15), \nu_{C_{3}C_{4}}(11)$</td>
</tr>
<tr>
<td>18</td>
<td>1060.9</td>
<td>13</td>
<td>A'</td>
<td>$\beta_{1r}g$(29), $\nu_{C_{2}C_{3}}(16), \gamma_{CCl}(10)$</td>
<td>18</td>
<td>1071.1</td>
<td>25</td>
<td>A'</td>
<td>$\beta_{1r}g$(40), $\nu_{CCl}(13)$</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1140.7</td>
<td>5</td>
<td>A'</td>
<td>νC3C4(23), βC5H(14), νC6H(14), βC4H(12)</td>
<td>19</td>
<td>1139.9</td>
<td>75</td>
<td>A'</td>
<td>νC3C4(20), βC4H(13), νCOH(12)</td>
</tr>
<tr>
<td>20</td>
<td>1179.5</td>
<td>3</td>
<td>A'</td>
<td>βC3H(34), βC2H(28), νC6H(10), βC3H(10), νC4C(10)</td>
<td>20</td>
<td>1182.1</td>
<td>3</td>
<td>A'</td>
<td>βC3H(33), βC4H(31), βC3H(10)</td>
</tr>
<tr>
<td>21</td>
<td>1211.0</td>
<td>115</td>
<td>A'</td>
<td>βCOH(38), νC1C6(17), νC6H(12), βC3H(10)</td>
<td>21</td>
<td>1189.6</td>
<td>85</td>
<td>A'</td>
<td>βCOH(40), βC6H(15), βC3H(11), νC1C6(10)</td>
</tr>
<tr>
<td>22</td>
<td>1274.7</td>
<td>75</td>
<td>A'</td>
<td>νCO(31), νC2C3(25), βC3H(21)</td>
<td>22</td>
<td>1285.4</td>
<td>23</td>
<td>A'</td>
<td>νCO(33), νC2C3(24), βC3H(15)</td>
</tr>
<tr>
<td>23</td>
<td>1323.3</td>
<td>28</td>
<td>A'</td>
<td>νC2C6(17), νC1C2(17), νC6H(15), νCO(14)</td>
<td>23</td>
<td>1316.5</td>
<td>77</td>
<td>A'</td>
<td>βC6H(24), νCO(15), νC1C2(12), νC3C6(11)</td>
</tr>
<tr>
<td>24</td>
<td>1366.3</td>
<td>23</td>
<td>A'</td>
<td>βCOH(26), βC3H(12), νC2C3(10), νC2C4(10), νC3C4(10)</td>
<td>24</td>
<td>1353.0</td>
<td>45</td>
<td>A'</td>
<td>βCOH(17), νC2C6(14), νC1C6(13), βC3H(11), νC4C5(10), νC2C6(11)</td>
</tr>
<tr>
<td>25</td>
<td>1489.1</td>
<td>4</td>
<td>A'</td>
<td>βC3H(30), βC3H(15), νC2C3(12)</td>
<td>25</td>
<td>1477.9</td>
<td>48</td>
<td>A'</td>
<td>βC4H(26), βC4H(23), νC1C6(11), νC3C3(10)</td>
</tr>
<tr>
<td>26</td>
<td>1510.0</td>
<td>136</td>
<td>A'</td>
<td>βC3H(19), νC6H(16), νC1C2(15)</td>
<td>26</td>
<td>1524.7</td>
<td>61</td>
<td>A'</td>
<td>βC3H(18), βC6H(18), νC1C2(11), νC4C5(11)</td>
</tr>
<tr>
<td>27</td>
<td>1624.0</td>
<td>15</td>
<td>A'</td>
<td>νC4C2(22), νC1C2(18), νC6C(15), βC3C4(12)</td>
<td>27</td>
<td>1622.7</td>
<td>14</td>
<td>A'</td>
<td>νC5C4(23), νC1C6(23)</td>
</tr>
<tr>
<td>28</td>
<td>1634.5</td>
<td>38</td>
<td>A'</td>
<td>νC2C6(25), νC2C3(17), νC6C(11), βC3C2(10)</td>
<td>28</td>
<td>1635.7</td>
<td>27</td>
<td>A'</td>
<td>νC6C2(20), νC1C2(20), νC4C5(16), νC2C3(13)</td>
</tr>
<tr>
<td>29</td>
<td>3174.5</td>
<td>2</td>
<td>A'</td>
<td>νC2H(61), νC2H(24), νC3H(10)</td>
<td>29</td>
<td>3151.3</td>
<td>11</td>
<td>A'</td>
<td>νC6H(92)</td>
</tr>
<tr>
<td>30</td>
<td>3188.2</td>
<td>6</td>
<td>A'</td>
<td>νC2H(43), νC3C2(6), νC2H(17) νC6H(13)</td>
<td>30</td>
<td>3178.0</td>
<td>4</td>
<td>A'</td>
<td>νC3H(44), νC4H(43)</td>
</tr>
<tr>
<td>31</td>
<td>3196.5</td>
<td>5</td>
<td>A'</td>
<td>νC2H(63), νC2H(21), νC2H(15)</td>
<td>31</td>
<td>3190.5</td>
<td>8</td>
<td>A'</td>
<td>νC3H(40), νC3H(38), νC4H(19)</td>
</tr>
<tr>
<td>32</td>
<td>3203.5</td>
<td>4</td>
<td>A'</td>
<td>νC2H(49), νC2H(31), νC2H(10)</td>
<td>32</td>
<td>3202.2</td>
<td>5</td>
<td>A'</td>
<td>νC3H(54), νC4H(36)</td>
</tr>
<tr>
<td>33</td>
<td>3766.7</td>
<td>93</td>
<td>A'</td>
<td>νOH(100)</td>
<td>33</td>
<td>3835.4</td>
<td>73</td>
<td>A'</td>
<td>νOH(100)</td>
</tr>
</tbody>
</table>

*aSee footnote a in Table 10.
*bThe gas-phase IR experiments
*cIR experiments in solution
*dIR experiments in solution
TABLE 12. Harmonic vibrational frequencies, IR intensities and assignments for *cis* and *trans* ortho-fluorophenols\(^a\)

<table>
<thead>
<tr>
<th>No.</th>
<th>(\omega)</th>
<th>A</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>(\omega)</th>
<th>A</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>190.4</td>
<td>0</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(59), \tau_{\text{rg}}(17), \tau_{\text{rg}}(16))</td>
<td>1</td>
<td>183.1</td>
<td>0</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(59), \tau_{\text{rg}}(20), \tau_{\text{rg}}(15))</td>
</tr>
<tr>
<td>2</td>
<td>290.9</td>
<td>1</td>
<td>(A'')</td>
<td>(\gamma_{\text{CF}}(28), \tau_{\text{rg}}(24), \gamma_{\text{CO}}(18), \gamma_{\text{C}_6\text{H}(11)})</td>
<td>2</td>
<td>274.2</td>
<td>60</td>
<td>(A'')</td>
<td>(\tau_{\text{OH}}(43), \tau_{\text{rg}}(20), \gamma_{\text{CF}}(15))</td>
</tr>
<tr>
<td>3</td>
<td>296.9</td>
<td>8</td>
<td>(A')</td>
<td>(\beta_{\text{CO}}(42), \beta_{\text{CF}}(40), \beta_{\text{rg}}(10))</td>
<td>3</td>
<td>297.7</td>
<td>2</td>
<td>(A')</td>
<td>(\beta_{\text{CO}}(42), \beta_{\text{CF}}(41))</td>
</tr>
<tr>
<td>4</td>
<td>396.3</td>
<td>126</td>
<td>(A'')</td>
<td>(\tau_{\text{OH}}(90))</td>
<td>4</td>
<td>308.2</td>
<td>51</td>
<td>(A'')</td>
<td>(\tau_{\text{OH}}(41), \tau_{\text{rg}}(16), \gamma_{\text{CO}}(14), \gamma_{\text{CF}}(11))</td>
</tr>
<tr>
<td>5</td>
<td>443.3</td>
<td>1</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(29), \beta_{\text{CF}}(22), \beta_{\text{CO}}(19), \beta_{\text{rg}}(10))</td>
<td>5</td>
<td>447.1</td>
<td>6</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(29), \beta_{\text{CF}}(23), \beta_{\text{CO}}(20), \beta_{\text{rg}}(10))</td>
</tr>
<tr>
<td>6</td>
<td>454.7</td>
<td>0</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(45), \gamma_{\text{CF}}(24), \gamma_{\text{CO}}(15))</td>
<td>6</td>
<td>456.6</td>
<td>4</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(44), \gamma_{\text{CF}}(22), \gamma_{\text{CO}}(18))</td>
</tr>
<tr>
<td>7</td>
<td>555.8</td>
<td>4</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(25), \beta_{\text{CO}}(23), \beta_{\text{CF}}(21))</td>
<td>7</td>
<td>547.4</td>
<td>8</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(28), \beta_{\text{CO}}(22), \beta_{\text{CF}}(20))</td>
</tr>
<tr>
<td>8</td>
<td>557.8</td>
<td>1</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(30), \tau_{\text{rg}}(26), \gamma_{\text{CO}}(10))</td>
<td>8</td>
<td>556.8</td>
<td>0</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(36), \tau_{\text{rg}}(25))</td>
</tr>
<tr>
<td>9</td>
<td>584.4</td>
<td>5</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(50), \beta_{\text{rg}}(25))</td>
<td>9</td>
<td>587.8</td>
<td>3</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(53), \beta_{\text{rg}}(22))</td>
</tr>
<tr>
<td>10</td>
<td>683.6</td>
<td>0</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(55), \gamma_{\text{CO}}(19), \gamma_{\text{CF}}(17))</td>
<td>10</td>
<td>692.9</td>
<td>0</td>
<td>(A'')</td>
<td>(\tau_{\text{rg}}(50), \gamma_{\text{CO}}(20), \gamma_{\text{CF}}(19))</td>
</tr>
<tr>
<td>11</td>
<td>757.8</td>
<td>84</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}2\text{H}(36), \gamma{\text{C}3\text{H}(29), \gamma{\text{C}3\text{H}(18), \gamma{\text{C}_4\text{H}(12)}})</td>
<td>11</td>
<td>750.5</td>
<td>91</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}2\text{H}(32), \gamma{\text{C}4\text{H}(28), \gamma{\text{C}4\text{H}(23), \gamma{\text{C}_3\text{H}(10)}})</td>
</tr>
<tr>
<td>12</td>
<td>772.7</td>
<td>42</td>
<td>(A')</td>
<td>(\nu_{\text{C}2\text{H}(25), \nu{\text{CF}}(21), \beta_{\text{rg}}(17), \gamma_{\text{C}_2\text{H}(10)})</td>
<td>12</td>
<td>773.4</td>
<td>21</td>
<td>(A')</td>
<td>(\nu_{\text{C}2\text{H}(27), \nu{\text{CF}}(17), \beta_{\text{rg}}(15), \nu_{\text{CO}(11), \nu_{\text{C}_2\text{C}_2(11)})</td>
</tr>
<tr>
<td>13</td>
<td>847.3</td>
<td>0</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}2\text{H}(39), \gamma{\text{C}3\text{H}(31), \tau{\text{rg}}(10)})</td>
<td>13</td>
<td>829.5</td>
<td>0</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}4\text{H}(45), \gamma{\text{C}3\text{H}(24), \tau{\text{rg}}(10), \gamma_{\text{C}_4\text{H}(10)})</td>
</tr>
<tr>
<td>14</td>
<td>857.1</td>
<td>17</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(44), \nu_{\text{CO}(17), \beta_{\text{rg}}(16), \nu_{\text{CF}}(11)})</td>
<td>14</td>
<td>860.0</td>
<td>27</td>
<td>(A')</td>
<td>(\beta_{\text{rg}}(48), \nu_{\text{CO}(15), \beta_{\text{rg}}(15), \nu_{\text{CF}}(10)})</td>
</tr>
<tr>
<td>15</td>
<td>931.6</td>
<td>5</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}2\text{H}(38), \gamma{\text{C}4\text{H}(26), \gamma{\text{C}_3\text{H}(21)})</td>
<td>15</td>
<td>920.3</td>
<td>4</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}3\text{H}(37), \gamma{\text{C}3\text{H}(31), \gamma{\text{C}_4\text{H}(18)})</td>
</tr>
<tr>
<td>16</td>
<td>959.2</td>
<td>0</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}4\text{H}(52), \gamma{\text{C}2\text{H}(22), \gamma{\text{C}_3\text{H}(14)})</td>
<td>16</td>
<td>945.3</td>
<td>1</td>
<td>(A'')</td>
<td>(\gamma_{\text{C}4\text{H}(46), \gamma{\text{C}3\text{H}(27), \gamma{\text{C}_3\text{H}(17)})</td>
</tr>
<tr>
<td>17</td>
<td>1043.6</td>
<td>16</td>
<td>(A')</td>
<td>(\nu_{\text{C}_2\text{C}2(37), \nu{\text{C}_2\text{C}2(15), \beta{\text{C}3\text{H}(15), \nu{\text{C}_3\text{C}2(14), \beta{\text{C}_6\text{H}(12)})</td>
<td>17</td>
<td>1052.9</td>
<td>5</td>
<td>(A')</td>
<td>(\nu_{\text{C}_2\text{C}2(36), \nu{\text{C}_2\text{C}4(17), \beta{\text{C}3\text{H}(16), \nu{\text{C}_3\text{C}6(15), \beta{\text{C}_6\text{H}(10)})</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>No.</th>
<th>ω</th>
<th>A</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>ω</th>
<th>A</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1106.2</td>
<td>28</td>
<td>A'</td>
<td>$\beta_{1r}(27)$, $\nu C_2 C_3(10)$, $\nu CF(10)$</td>
<td>18</td>
<td>1111.2</td>
<td>64</td>
<td>A'</td>
<td>$\beta_{1r}(22)$, $\beta COH(12)$, $\nu C_3 C_4(11)$</td>
</tr>
<tr>
<td>19</td>
<td>1175.4</td>
<td>2</td>
<td>A'</td>
<td>$\beta C_2 H(34)$, $\beta C_4 H(26)$, $\beta C_6 H(12)$, $\nu C_2 C_4(12)$</td>
<td>19</td>
<td>1175.8</td>
<td>33</td>
<td>A'</td>
<td>$\beta C_3 H(31)$, $\beta C_3 H(21)$, $\beta C_5 H(17)$, $\beta COH(12)$</td>
</tr>
<tr>
<td>20</td>
<td>1182.0</td>
<td>58</td>
<td>A'</td>
<td>$\beta C_2 H(21)$, $\nu CF(17)$, $\beta COH(13)$, $\nu C_1 C_6(10)$</td>
<td>20</td>
<td>1183.4</td>
<td>33</td>
<td>A'</td>
<td>$\beta C_6 H(28)$, $\beta COH(20)$, $\beta C_5 H(20)$, $\nu C_3 C_6(10)$</td>
</tr>
<tr>
<td>21</td>
<td>1234.9</td>
<td>104</td>
<td>A'</td>
<td>$\beta COH(25)$, $\nu CF(16)$, $\nu CO(14)$, $\beta_{1r}(12)$</td>
<td>21</td>
<td>1240.1</td>
<td>124</td>
<td>A'</td>
<td>$\nu CF(40)$, $\beta_{1r}(19)$, $\beta COH(12)$</td>
</tr>
<tr>
<td>22</td>
<td>1284.3</td>
<td>130</td>
<td>A'</td>
<td>$\beta C_2 H(27)$, $\nu CO(26)$, $\nu C_2 C_3(12)$</td>
<td>22</td>
<td>1298.9</td>
<td>61</td>
<td>A'</td>
<td>$\nu CO(29)$, $\beta C_3 H(20)$, $\nu C_2 C_3(13)$</td>
</tr>
<tr>
<td>23</td>
<td>1324.0</td>
<td>21</td>
<td>A'</td>
<td>$\beta C_2 H(17)$, $\nu C_3 C_6(17)$, $\nu C_1 C_2(15)$</td>
<td>23</td>
<td>1317.4</td>
<td>78</td>
<td>A'</td>
<td>$\beta C_5 H(26)$, $\nu C_1 C_2(11)$, $\nu CO(10)$, $\nu C_3 C_6(10)$</td>
</tr>
<tr>
<td>24</td>
<td>1380.8</td>
<td>12</td>
<td>A'</td>
<td>$\beta COH(24)$, $\nu C_4 C_5(15)$, $\beta C_3 H(13)$, $\nu C_2 C_3(12)$</td>
<td>24</td>
<td>1362.0</td>
<td>49</td>
<td>A'</td>
<td>$\beta COH(15)$, $\nu C_3 C_6(15)$, $\nu C_4 C_5(14)$, $\nu C_3 C_4(11)$, $\nu C_2 C_3(11)$, $\nu C_3 C_6(10)$</td>
</tr>
<tr>
<td>25</td>
<td>1499.3</td>
<td>4</td>
<td>A'</td>
<td>$\beta C_3 H(26)$, $\beta C_5 H(20)$, $\nu C_2 C_6(13)$, $\nu C_3 C_4(11)$</td>
<td>25</td>
<td>1488.2</td>
<td>29</td>
<td>A'</td>
<td>$\beta C_3 H(27)$, $\beta C_4 H(21)$, $\nu C_3 C_6(11)$, $\nu C_1 C_6(10)$</td>
</tr>
<tr>
<td>26</td>
<td>1530.1</td>
<td>189</td>
<td>A'</td>
<td>$\beta C_2 H(16)$, $\beta C_6 H(15)$, $\nu C_1 C_2(13)$, $\nu CO(11)$</td>
<td>26</td>
<td>1545.1</td>
<td>131</td>
<td>A'</td>
<td>$\beta C_6 H(17)$, $\nu C_4 C_5(13)$, $\beta C_3 H(13)$, $\nu C_2 C_3(10)$</td>
</tr>
<tr>
<td>27</td>
<td>1640.1</td>
<td>6</td>
<td>A'</td>
<td>$\nu C_1 C_6(25)$, $\nu C_5 C_4(18)$, $\nu C_1 C_2(10)$</td>
<td>27</td>
<td>1636.0</td>
<td>19</td>
<td>A'</td>
<td>$\nu C_1 C_6(21)$, $\nu C_3 C_7(20)$, $\nu C_2 C_3(12)$</td>
</tr>
<tr>
<td>28</td>
<td>1653.7</td>
<td>47</td>
<td>A'</td>
<td>$\nu C_2 C_3(21)$, $\nu C_3 C_6(18)$, $\nu C_1 C_2(17)$, $\nu C_2 C_3(11)$</td>
<td>28</td>
<td>1655.9</td>
<td>28</td>
<td>A'</td>
<td>$\nu C_1 C_6(26)$, $\nu C_3 C_5(16)$, $\nu C_3 C_6(14)$, $\nu C_2 C_3(13)$</td>
</tr>
<tr>
<td>29</td>
<td>3176.7</td>
<td>2</td>
<td>A'</td>
<td>$\nu C_3 H(59)$, $\nu C_2 H(25)$, $\nu C_6 H(12)$</td>
<td>29</td>
<td>3152.6</td>
<td>10</td>
<td>A'</td>
<td>$\nu C_3 H(92)$</td>
</tr>
<tr>
<td>30</td>
<td>3189.4</td>
<td>8</td>
<td>A'</td>
<td>$\nu C_4 H(40)$, $\nu C_2 H(25)$, $\nu C_6 H(25)$</td>
<td>30</td>
<td>3179.6</td>
<td>4</td>
<td>A'</td>
<td>$\nu C_3 H(45)$, $\nu C_3 H(41)$</td>
</tr>
<tr>
<td>31</td>
<td>3197.1</td>
<td>5</td>
<td>A'</td>
<td>$\nu C_6 H(53)$, $\nu C_1 H(28)$, $\nu C_5 H(18)$</td>
<td>31</td>
<td>3191.4</td>
<td>9</td>
<td>A'</td>
<td>$\nu C_3 H(47)$, $\nu C_3 H(39)$, $\nu C_2 H(11)$</td>
</tr>
<tr>
<td>32</td>
<td>3204.4</td>
<td>3</td>
<td>A'</td>
<td>$\nu C_3 H(43)$, $\nu C_4 H(34)$, $\nu C_5 H(13)$</td>
<td>32</td>
<td>3202.4</td>
<td>4</td>
<td>A'</td>
<td>$\nu C_1 C_6(43)$, $\nu C_4 H(43)$, $\nu C_3 H(13)$</td>
</tr>
<tr>
<td>33</td>
<td>3807.0</td>
<td>105</td>
<td>A'</td>
<td>$\nu OH(100)$</td>
<td>33</td>
<td>3837.1</td>
<td>75</td>
<td>A'</td>
<td>$\nu OH(100)$</td>
</tr>
</tbody>
</table>

See footnote a in Table 10.
Regarding the transition state between the cis and trans isomers of o-FC₆H₄OH, we obtain that it has nearly the same slope as in the case of Cl, viz. 347 \, \text{cm}^{-1}, although its barrier \(V_e^{F} = 20.3 \, \text{kJ mol}^{-1} \) is by 2.2 \, \text{kJ mol}^{-1} smaller than \(V_e^{Cl} \). Since \(\Delta_{cis-trans} E_{ortho}^{F} < \Delta_{cis-trans} E_{ortho}^{Cl} \), we might expect that the equilibrium constant \(k_{cis-trans}^{F} \) is larger than \(k_{cis-trans}^{Cl} \), which is indeed found to be true: \(k_{cis-trans}^{F} = 10.1 \times 10^{-3} \). On the contrary, no known IR experiment has ever revealed a cis–trans transition in o-FC₆H₄OH\(^{223 - 229, 233 - 235}\). The question is: Why?

The disparity between the older IR experiments and modern high-level theory becomes even sharper if we turn to the o-Br-substituted phenols whose harmonic vibrational modes are presented in Table 13. It is then easy to obtain \(\Delta_{cis-trans} \nu_{OH}^{Br} = 94 \, \text{cm}^{-1} \), which agrees with the experimental values ranging from 74 to 93 cm\(^{-1}\)\(^{218, 224, 229}\) (Tables 1 and 5 of Reference 222). On the other hand, the calculated \(\Delta_{cis-trans} \nu_{ortho}^{Br} = 12.9 \, \text{kJ mol}^{-1} \) (the experimental free energy difference in the vapour is 13.1 ± 14.6 \, \text{kJ mol}^{-1}\(^{224}\) implies that, first, the intramolecular hydrogen bond is slightly stronger with Br than with Cl, which surely contradicts the common order of the hydrogen bond acceptors\(^{225, 155, 171, 236, 237}\), and, second, the equilibrium constant \(k_{cis-trans}^{Br} = 5.2 \times 10^{-3} < k_{cis-trans}^{Cl} \), although the experiments show the reverse trend\(^{233, 234}\). Altogether, this was dubbed as an ‘anomalous’ order in the strength of the intramolecular hydrogen bond\(^{223, 224, 229, 231, 238 - 240}\), the ‘state of affairs’ was summarized by Sandorfy and coauthors\(^{229}\) in their 1963 work: ‘Nothing emerges from our work, however, to explain this order. . . . For a more thorough treatment we shall likely have to wait until the next stage in the development of quantum chemistry’. What modern calculations might tell us in this context is briefly outlined below:

(i) Under the assumption that \(\Delta_{cis-trans} E_{ortho}^{X} \) (X = F, Cl, Br) defines the energy of formation of the intramolecular hydrogen bond in cis ortho-X-substituted phenols, the order of its strength in the gas phase (in \text{kJ mol}^{-1}) appears to be that given in equation 5.

\[
0.46 \quad \text{Br} \approx 1.09 \quad \text{Cl} \quad > \quad \text{F}
\]

The numbers in equation 5 indicate the corresponding difference (in \text{kJ mol}^{-1}) in the energies of formation of the intramolecular hydrogen bond between the left-hand complex and its right-hand one. This order is confirmed to a certain extent by the order of red shifts \(\Delta_{cis-trans} \nu_{OH}^{X} \) (in \text{cm}^{-1}) given in equation 6.

\[
\frac{\text{Br}}{\text{Cl}} \quad > \quad \frac{\text{F}}{\text{Cl}} \quad > \quad \frac{\text{F}}{\text{Br}} \quad > \quad \frac{\text{Cl}}{\text{Br}} \quad > \quad \frac{\text{F}}{\text{F}} \quad (6)
\]

By comparing equations 5 and 6 it is seen that \(\Delta_{cis-trans} \nu_{OH}^{X} \) is not proportional to \(\Delta_{cis-trans} E_{ortho}^{224} \). The order in equation 6 more likely resembles the van der Waals radii of the halogen atoms: Br(1.85Å) > Cl(1.75Å) > F(1.47Å) rather than their electronegativity trend (in Pauling units): F(3.98) > Cl(3.16) > Br(2.96), which is usually chosen to differentiate the strength of the conventional intermolecular hydrogen bonds\(^{225, 226}\).

Both equations 5 and 6 unambiguously imply that in cis ortho-XC₆H₄OH, the strength of the O–H···X intramolecular hydrogen bond decreases as Br ≈ Cl > F (cf. Table 2 in Reference 236), which is completely opposite to that widely accepted for usual intermolecular hydrogen bonds\(^{225, 226}\). Such variance was in fact a matter of numerous investigations in the past\(^{155, 236, 237}\). Here, we could offer an explanation\(^{239}\) relying on the geometrical criteria of the hydrogen bond\(^{225, 226}\) that are simply expressed in terms of the elongation of the O–H bond length and the value of the \(\angle \text{O–H···X bond angle} \): the larger they are the stronger the hydrogen bond\(^{222, 240}\). The fact that the strength of the intramolecular hydrogen bond in cis ortho-X-substituted phenols exactly follows the order of equations 5 and 6.
<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140.8</td>
<td>0</td>
<td>A"</td>
<td>(\tau_{2rg}(42), \gamma CBr(20), \tau_1{rg}(18), \tau_1{rg}(10))</td>
<td>1</td>
<td>137.7</td>
<td>2</td>
<td>A"</td>
<td>(\tau_{2rg}(44), \tau_3{rg}(19), \gamma CBr(17), \tau_1{rg}(12))</td>
</tr>
<tr>
<td>2</td>
<td>208.7</td>
<td>1</td>
<td>A'</td>
<td>(\beta CBr(83))</td>
<td>2</td>
<td>197.8</td>
<td>2</td>
<td>A'</td>
<td>(\beta CBr(78), \beta CO(11))</td>
</tr>
<tr>
<td>3</td>
<td>253.7</td>
<td>1</td>
<td>A"</td>
<td>(\tau_{2rg}(34), \gamma CBr(32), \gamma C_6H(11))</td>
<td>3</td>
<td>250.7</td>
<td>13</td>
<td>A"</td>
<td>(\tau_{2rg}(33), \gamma CBr(27))</td>
</tr>
<tr>
<td>4</td>
<td>292.8</td>
<td>1</td>
<td>A'</td>
<td>(\nu CBr(56), \beta_1{rg}(13), \beta_2{rg}(10))</td>
<td>4</td>
<td>299.2</td>
<td>0</td>
<td>A'</td>
<td>(\nu CBr(53), \beta_1{rg}(14), \beta_2{rg}(10))</td>
</tr>
<tr>
<td>5</td>
<td>417.6</td>
<td>84</td>
<td>A"</td>
<td>(\nu OH(54), \tau_3{rg}(29), \gamma CBr(11))</td>
<td>5</td>
<td>318.5</td>
<td>94</td>
<td>A"</td>
<td>(\nu OH(87)) Expt: 372b, 361c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Expt: 404b, 395c, 395d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Expt: 372b, 361c</td>
</tr>
<tr>
<td>6</td>
<td>443.4</td>
<td>13</td>
<td>A"</td>
<td>(\tau_{1rg}(55), \gamma CBr(21), \gamma OH(12))</td>
<td>6</td>
<td>441.7</td>
<td>6</td>
<td>A"</td>
<td>(\tau_3{rg}(61), \gamma CBr(21))</td>
</tr>
<tr>
<td>7</td>
<td>472.5</td>
<td>14</td>
<td>A'</td>
<td>(\beta CO(68), \nu CBr(10))</td>
<td>7</td>
<td>469.3</td>
<td>9</td>
<td>A'</td>
<td>(\beta CO(68), \beta CBr(10))</td>
</tr>
<tr>
<td>8</td>
<td>539.1</td>
<td>1</td>
<td>A"</td>
<td>(\tau_{1rg}(39), \gamma CO(30))</td>
<td>8</td>
<td>545.1</td>
<td>1</td>
<td>A"</td>
<td>(\tau_{2rg}(35), \gamma CO(20), \tau_1{rg}(18))</td>
</tr>
<tr>
<td>9</td>
<td>556.5</td>
<td>4</td>
<td>A'</td>
<td>(\beta_2{rg}(69))</td>
<td>9</td>
<td>558.0</td>
<td>4</td>
<td>A'</td>
<td>(\beta_2{rg}(67))</td>
</tr>
<tr>
<td>10</td>
<td>660.0</td>
<td>0</td>
<td>A"</td>
<td>(\tau_{1rg}(63), \gamma CO(18))</td>
<td>10</td>
<td>668.7</td>
<td>15</td>
<td>A'</td>
<td>(\beta_3{rg}(67), \nu CBr(17))</td>
</tr>
<tr>
<td>11</td>
<td>664.7</td>
<td>19</td>
<td>A'</td>
<td>(\beta_3{rg}(68), \nu CBr(17))</td>
<td>11</td>
<td>685.1</td>
<td>1</td>
<td>A"</td>
<td>(\tau_1{rg}(59), \gamma CO(19), \gamma CBr(11))</td>
</tr>
<tr>
<td>12</td>
<td>757.5</td>
<td>72</td>
<td>A"</td>
<td>(\gamma C_6H(40), \gamma C_6H(22), \gamma C_6H(21), \gamma C_6H(12))</td>
<td>12</td>
<td>751.8</td>
<td>80</td>
<td>A"</td>
<td>(\gamma C_6H(32), \gamma C_6H(23), \gamma C_6H(22), \gamma C_3H(11))</td>
</tr>
<tr>
<td>13</td>
<td>840.4</td>
<td>13</td>
<td>A'</td>
<td>(\nu CO(25), \beta_1{rg}(24), \beta_2{rg}(19), \nu C_1C_6(11), \nu C_1C_2(10))</td>
<td>13</td>
<td>834.6</td>
<td>0</td>
<td>A"</td>
<td>(\gamma C_6H(49), \gamma C_3H(21), \gamma C_2H(14))</td>
</tr>
<tr>
<td>14</td>
<td>848.7</td>
<td>1</td>
<td>A"</td>
<td>(\gamma C_6H(46), \gamma C_3H(28))</td>
<td>14</td>
<td>838.7</td>
<td>20</td>
<td>A'</td>
<td>(\nu CO(25), \beta_1{rg}(25), \beta_2{rg}(19), \nu C_1C_6(11))</td>
</tr>
<tr>
<td>15</td>
<td>941.3</td>
<td>2</td>
<td>A"</td>
<td>(\gamma C_3H(42), \gamma C_6H(24), \gamma C_6H(19))</td>
<td>15</td>
<td>932.8</td>
<td>1</td>
<td>A"</td>
<td>(\gamma C_3H(38), \gamma C_6H(36), \gamma C_6H(16))</td>
</tr>
<tr>
<td>16</td>
<td>974.6</td>
<td>0</td>
<td>A"</td>
<td>(\gamma C_3H(51), \gamma C_6H(22), \gamma C_6H(13))</td>
<td>16</td>
<td>964.3</td>
<td>0</td>
<td>A"</td>
<td>(\gamma C_3H(41), \gamma C_6H(24), \gamma C_3H(23))</td>
</tr>
<tr>
<td>17</td>
<td>1028.2</td>
<td>48</td>
<td>A'</td>
<td>(\beta_1{rg}(54), \nu CBr(13))</td>
<td>17</td>
<td>1041.7</td>
<td>43</td>
<td>A'</td>
<td>(\beta_1{rg}(50), \nu CBr(14))</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>IR</td>
<td>Assignment</td>
<td></td>
<td>Frequency</td>
<td>IR</td>
<td>Assignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1056.6</td>
<td>5</td>
<td>$\nu C_4C_3(33)$, $\beta C_6H(13)$, $\beta C_3H(11)$, $\nu C_3C_4(11)$</td>
<td></td>
<td>1064.8</td>
<td>5</td>
<td>$\nu C_4C_3(29)$, $\nu C_3C_4(14)$, $\beta_1rg(13)$, $\beta C_3H(12)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1135.5</td>
<td>2</td>
<td>$\nu C_3C_4(24)$, $\beta C_3H(14)$, $\beta C_3H(13)$, $\beta C_6H(12)$, $\nu C_3C_4(10)$</td>
<td></td>
<td>1132.1</td>
<td>69</td>
<td>$\nu C_3C_4(19)$, $\beta COH(15)$, $\beta C_4H(14)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1179.9</td>
<td>4</td>
<td>$\beta C_3H(33)$, $\beta C_3H(28)$, $\beta C_6H(12)$</td>
<td></td>
<td>1183.3</td>
<td>2</td>
<td>$\beta C_3H(35)$, $\beta C_4H(28)$, $\beta C_6H(13)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1213.7</td>
<td>117</td>
<td>$\beta COH(35)$, $\nu C_1C_6(19)$, $\beta C_6H(12)$, $\beta C_3H(11)$</td>
<td></td>
<td>1189.2</td>
<td>74</td>
<td>$\beta COH(40)$, $\beta C_3H(13)$, $\beta C_3H(12)$, $\nu C_1C_6(10)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1273.9</td>
<td>63</td>
<td>$\nu CO(31)$, $\nu C_2C_3(27)$, $\beta C_3H(20)$</td>
<td></td>
<td>1283.7</td>
<td>21</td>
<td>$\nu CO(34)$, $\nu C_2C_3(24)$, $\beta C_3H(14)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1323.7</td>
<td>27</td>
<td>$\nu C_1C_2(17)$, $\nu C_3C_4(17)$, $\beta C_6H(14)$, $\nu CO(14)$</td>
<td></td>
<td>1316.8</td>
<td>73</td>
<td>$\beta C_6H(24)$, $\nu CO(15)$, $\nu C_1C_2(12)$, $\nu C_3C_4(10)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1366.4</td>
<td>26</td>
<td>$\beta COH(29)$, $\beta C_3H(12)$, $\beta C_3H(11)$, $\nu C_3C_4(10)$</td>
<td></td>
<td>1350.5</td>
<td>49</td>
<td>$\beta COH(18)$, $\nu C_3C_4(14)$, $\nu C_1C_6(13)$, $\beta C_3H(13)$, $\nu C_3C_4(10)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1486.4</td>
<td>3</td>
<td>$\beta C_3H(30)$, $\beta C_3H(14)$, $\nu C_2C_3(12)$</td>
<td></td>
<td>1474.5</td>
<td>51</td>
<td>$\beta C_3H(26)$, $\beta C_5H(23)$, $\nu C_1C_6(11)$, $\nu C_2C_3(10)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1504.9</td>
<td>129</td>
<td>$\beta C_3H(20)$, $\beta C_3H(16)$, $\nu C_1C_2(15)$, $\nu CO(11)$</td>
<td></td>
<td>1520.3</td>
<td>49</td>
<td>$\beta C_3H(20)$, $\beta C_3H(18)$, $\nu C_1C_2(12)$, $\nu C_4C_3(11)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1618.5</td>
<td>10</td>
<td>$\nu C_2C_3(20)$, $\nu C_1C_6(19)$, $\nu C_3C_4(15)$, $\nu C_1C_2(14)$</td>
<td></td>
<td>1617.2</td>
<td>13</td>
<td>$\nu C_1C_6(23)$, $\nu C_3C_4(23)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1630.4</td>
<td>43</td>
<td>$\nu C_2C_3(27)$, $\nu C_2C_3(17)$, $\beta_{2rg}(10)$</td>
<td></td>
<td>1632.9</td>
<td>27</td>
<td>$\nu C_3C_3(21)$, $\nu C_3C_3(19)$, $\nu C_4C_3(17)$, $\nu C_2C_3(12)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3174.5</td>
<td>2</td>
<td>$\nu C_3H(57)$, $\nu C_4H(27)$, $\nu C_6H(12)$</td>
<td></td>
<td>3150.6</td>
<td>10</td>
<td>$\beta C_3H(93)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3187.6</td>
<td>7</td>
<td>$\nu C_3H(41)$, $\nu C_4H(26)$, $\nu C_2H(22)$, $\nu C_3H(11)$</td>
<td></td>
<td>3177.9</td>
<td>4</td>
<td>$\nu C_3H(46)$, $\nu C_5H(41)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3195.9</td>
<td>5</td>
<td>$\nu C_4H(55)$, $\nu C_3H(23)$, $\nu C_3H(21)$</td>
<td></td>
<td>3190.8</td>
<td>8</td>
<td>$\beta C_3H(33)$, $\nu C_3H(35)$, $\nu C_3H(19)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3203.3</td>
<td>5</td>
<td>$\nu C_3H(51)$, $\nu C_4H(31)$, $\nu C_3H(11)$</td>
<td></td>
<td>3202.3</td>
<td>5</td>
<td>$\beta C_3H(57)$, $\nu C_4H(34)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3739.7</td>
<td>97</td>
<td>$\nu OH(100)$</td>
<td></td>
<td>3833.8</td>
<td>71</td>
<td>$\nu OH(100)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes a–d are identical to those in Table 11.
is clearly seen in Figure 12: due to a larger van der Waals radius, the Br atom slightly better accommodates the intramolecular bond, even ‘overcoming the innate lower H-bonding tendency to Br’ than Cl which, in turn, does better than F. Such a conclusion is also supported by the inequalities in equation 7.

\[\text{OH bond length (Å): } \text{Br}^{0.001} > \text{Cl}^{0.002} > \text{F} \]
\[\angle \text{O–H···X(deg): } \text{Br}^{3.1} > \text{Cl}^{9.2} > \text{F} \]

(ii) The gas-phase theoretical equilibrium constants \(k_{X}^{cis \leftrightarrow trans} \) follow the order in equation 8,

\[\text{F}^{1.56} > \text{Cl}^{1.27} > \text{Br} \]

where the quantity above the inequality indicates the ratio of the equilibrium constants between the left-hand complex and the right-hand complex. Such order in the equilibrium constants is mirrored in the order of the calculated cis–trans barriers \(V_{X}^{\tau} \) (equation 9):

\[\text{F}^{0.43} < \text{Cl}^{0.15} < \text{Br} \]

It would be expected that the trans/cis ratio follows the order of equation 5 for the hydrogen bond energies, but surprisingly the opposite is known. It has even been argued that ‘the fact that both the trans/cis ratio and the \(\Delta \nu \) shift increase in the same order appears to argue against the applicability of Badger’s rule\(^{241}\) which stated that the progressive shift to lower frequencies is an indication of increasing strength of the hydrogen bond. If the rule is valid here ...’.

In order to resolve the longstanding controversy between experiment and theory, let us first suggest that the dipole moments of the cis and trans forms and their polarizability might play a key role, bearing in mind that all aforementioned experiments were conducted in a solvent although its role in theory was underestimated. This is clearly seen from the inequalities between the trans/cis ratio of the total dipole moments:

\[2.95_{\text{F}} > 2.87_{\text{Cl}} > 2.77_{\text{Br}} \]

A similar ratio was also determined elsewhere\(^{223,238}\) (for a discussion see Reference 229). By analogy, we have the corresponding trans/cis ratio for the mean polarizability \(\alpha = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3 \) (in a.u.) in equation 10.

\[\frac{92.19}{91.77} > \frac{84.63}{84.00} > \frac{71.60}{71.13} \]

The experimental data for the equilibrium constants in CCl\(_4\) solution (equation 11)\(^{233,234}\),

\[\text{Br}^{1.47} > \text{Cl} \]

are in complete disagreement with the theoretical expectations based on equations 8 and 9. In order to explain this discrepancy, one must take into account a stabilizing effect of the solvent on the trans form\(^{231}\), and we propose the following model\(^{220}\).

The presence of the ortho-halogen atom in a phenol generates two distinct cis and trans conformers and changes the shape of the torsional transition barrier \(V_{\tau} \), making it partly asymmetric. Within the cis form, the halogen atom is capable of forming an intramolecular hydrogen bond, rather bent and quite weak. Its formation has a stabilizing effect on the cis (particularly in the gas phase) over the trans form. On the other hand, due to the larger polarity and larger polarizability of the trans o-XC\(_6\)H\(_4\)OH, the latter conformer might, in some rather polar solvents, be favoured over the cis form. We suggest that solvent
TABLE 14. AM1 and SM5.4/AM1 data on ortho-XC₆H₄OH (X = F, Cl and Br) and their cis–trans transition state (TS) including the heat of formation ΔH (kJ mol$^{-1}$), free solvation energy ΔG_{solv} (kJ mol$^{-1}$) and ν_{OH} stretching frequency (in cm$^{-1}$).

<table>
<thead>
<tr>
<th></th>
<th>cis ortho-XC₆H₄OH</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_{OH} (Å)</td>
<td>$O\cdots H\cdots X$ (deg)</td>
<td>$r_{H\cdots X}$ (Å)</td>
<td></td>
</tr>
<tr>
<td>F gas phase</td>
<td>0.970</td>
<td>111.2</td>
<td>2.325</td>
<td></td>
</tr>
<tr>
<td>F solvent</td>
<td>0.979</td>
<td>110.5</td>
<td>2.335</td>
<td></td>
</tr>
<tr>
<td>Cl gas phase</td>
<td>0.970</td>
<td>117.1</td>
<td>2.506</td>
<td></td>
</tr>
<tr>
<td>Cl solvent</td>
<td>0.975</td>
<td>116.3</td>
<td>2.524</td>
<td></td>
</tr>
<tr>
<td>Br gas phase</td>
<td>0.971</td>
<td>119.8</td>
<td>2.617</td>
<td></td>
</tr>
<tr>
<td>Br solvent</td>
<td>0.975</td>
<td>119.0</td>
<td>2.634</td>
<td></td>
</tr>
</tbody>
</table>

ΔH and ΔG_{solv} are given in the Table 14. ν_{OH} values are taken from Reference 220 with permission.

$\Delta H_{cis-trans}$ stabilizes the trans more strongly than the cis and hence decreases $\Delta E_{X}^{cis-trans}_{ortho}$, thus making it more accessible than in the gas phase.

In order to describe theoretically the cis and trans ortho-XC₆H₄OH in a solvent mimicking CCl₄, we invoke a rather simple but accurate computational model. Its results are summarized in Table 14, which displays the following three key effects of the solvent. First, the solvent reduces the gas-phase $\Delta_{cis-trans}^{\nu_{OH}}$ to 7, 37 and 35 cm$^{-1}$ for F, Cl and Br, respectively. We think that this is a satisfactory explanation of why the cis–trans ν_{OH} doublet in o-FC₆H₄OH was not observed in CCl₄. Second, the solvent strongly stabilizes the trans form so that the cis–trans $E_{X}^{cis-trans}$ appears to be equal to 3.4, 2.8 and 2.0 kJ mol$^{-1}$ for F, Cl and Br, respectively. This straightforwardly implies an increase in the equilibrium constants $k_{cis\leftarrow trans}^{X}$ in the series of F, Cl and Br equal to 0.25, 0.33 and 0.45, respectively. This straightforwardly implies an increase in the equilibrium constants $k_{cis\leftarrow trans}^{X}$ in the series of F, Cl and Br equal to 0.25, 0.33 and 0.45, respectively. Third, the solvent reduces the cis–trans barrier V_{τ} to 11.8, 11.4 and 11.7 kJ mol$^{-1}$ for F, Cl and Br, respectively. Altogether, we may conclude that even a rather simple modelling of solvent is able to resolve the aforementioned controversial ‘state of affairs’ in the ortho-X-substituted phenols.

B. meta- and para-Halogenophenols

The corresponding substituted phenols are displayed symbolically in Figure 13 and their characteristic vibrational modes, showing a rather strong dependence on the X substitution,
cis–trans differences of some geometrical parameters in \(m\text{-XC}_6\text{H}_4\text{OH} \)

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \alpha) (deg)</th>
<th>(\Delta \beta) (deg)</th>
<th>(\Delta r_1) (Å)</th>
<th>(\Delta r_2) (Å)</th>
<th>(\Delta r_3) (Å)</th>
<th>(\Delta r_4) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X=F)</td>
<td>1.2</td>
<td>-1.0</td>
<td>0.002</td>
<td>-0.003</td>
<td>-0.021</td>
<td>0.004</td>
</tr>
<tr>
<td>(X=Cl)</td>
<td>1.2</td>
<td>-1.1</td>
<td>0.002</td>
<td>-0.002</td>
<td>-0.021</td>
<td>0.004</td>
</tr>
<tr>
<td>(X=Br)</td>
<td>1.1</td>
<td>-1.1</td>
<td>0.002</td>
<td>-0.002</td>
<td>-0.021</td>
<td>0.004</td>
</tr>
</tbody>
</table>

FIGURE 13. The minimum energy structures of cis and trans meta- and para-XC\(_6\)H\(_4\)OH (\(X = F, Cl \) and Br). Bond lengths are in Å, bond angles in degrees. Adapted from Reference 220 with permission.
TABLE 15. Harmonic vibrational frequencies, IR intensities and assignments for *cis* and *trans* meta-fluorophenolsa

<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.0</td>
<td>0 A''</td>
<td>τ_2,γC2H(18), τ_3,γC(14)</td>
<td>1</td>
<td>223.2</td>
<td>3 A''</td>
<td>τ_1,γC(24), τ_2,γC(23), γC2H(22), τ_3,γC(10)</td>
</tr>
<tr>
<td>2</td>
<td>239.9</td>
<td>2 A''</td>
<td>τ_2,γC(50), τ_3,γC(30)</td>
<td>2</td>
<td>238.0</td>
<td>0 A''</td>
<td>τ_2,γC(49), τ_3,γC(33)</td>
</tr>
<tr>
<td>3</td>
<td>314.0</td>
<td>111 A''</td>
<td>τOH(90)</td>
<td>3</td>
<td>320.7</td>
<td>109 A''</td>
<td>τOH(90)</td>
</tr>
<tr>
<td></td>
<td>Expt: 318.5b, 318c, 317d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>328.7</td>
<td>9 A'</td>
<td>βC(40), βC(38)</td>
<td>4</td>
<td>330.1</td>
<td>2 A'</td>
<td>βC(39), βC(39)</td>
</tr>
<tr>
<td>5</td>
<td>460.1</td>
<td>12 A''</td>
<td>τC(47), τC(13), γC(11), γC(10)</td>
<td>5</td>
<td>459.7</td>
<td>2 A''</td>
<td>τC(47), τC(12), γC(10)</td>
</tr>
<tr>
<td>6</td>
<td>480.3</td>
<td>5 A'</td>
<td>βC(43), βC(40)</td>
<td>6</td>
<td>476.4</td>
<td>11 A'</td>
<td>βC(41), βC(39)</td>
</tr>
<tr>
<td>7</td>
<td>520.5</td>
<td>8 A'</td>
<td>β_3C(40), β_2C(36), νC(30)</td>
<td>7</td>
<td>520.7</td>
<td>6 A'</td>
<td>β_3C(38), β_2C(36)</td>
</tr>
<tr>
<td>8</td>
<td>536.9</td>
<td>4 A'</td>
<td>β_1C(44), β_2C(25)</td>
<td>8</td>
<td>538.2</td>
<td>4 A'</td>
<td>β_2C(41), β_2C(28)</td>
</tr>
<tr>
<td>9</td>
<td>612.2</td>
<td>0 A''</td>
<td>γC(35), γC(33), τ_2,γC(23)</td>
<td>9</td>
<td>614.5</td>
<td>1 A''</td>
<td>γC(40), γC(27), τ_2,γC(23)</td>
</tr>
<tr>
<td>10</td>
<td>666.5</td>
<td>14 A''</td>
<td>τC(67), γC(12), γC(11)</td>
<td>10</td>
<td>657.6</td>
<td>11 A''</td>
<td>τC(65), γC(16)</td>
</tr>
<tr>
<td>11</td>
<td>750.8</td>
<td>6 A'</td>
<td>β_3C(25), β_1C(18), νC(12), νC(10)</td>
<td>11</td>
<td>748.2</td>
<td>5 A'</td>
<td>β_3C(25), β_1C(17), νC(12), νC(10)</td>
</tr>
<tr>
<td>12</td>
<td>775.9</td>
<td>38 A''</td>
<td>γC(36), γC(25), γC(21)</td>
<td>12</td>
<td>758.4</td>
<td>67 A''</td>
<td>γC(39), γC(22), γC(16), τ_1,γC(12)</td>
</tr>
<tr>
<td>13</td>
<td>827.5</td>
<td>50 A''</td>
<td>γC(58), τ_1C(19)</td>
<td>13</td>
<td>844.4</td>
<td>10 A''</td>
<td>γC(36), γC(25), γC(15)</td>
</tr>
<tr>
<td>14</td>
<td>876.6</td>
<td>0 A''</td>
<td>γC(41), γC(40)</td>
<td>14</td>
<td>862.7</td>
<td>22 A''</td>
<td>γC(38), γC(26), γC(10), τ_1,γC(10)</td>
</tr>
<tr>
<td>15</td>
<td>967.1</td>
<td>0 A''</td>
<td>γC(61), γC(18), γC(10)</td>
<td>15</td>
<td>945.2</td>
<td>0 A''</td>
<td>γC(63), γC(17)</td>
</tr>
<tr>
<td>16</td>
<td>970.3</td>
<td>54 A'</td>
<td>νC(17), νC(16), νC(14), νC(10)</td>
<td>16</td>
<td>968.6</td>
<td>88 A'</td>
<td>νC(16), νC(15), νC(15)</td>
</tr>
<tr>
<td>17</td>
<td>1014.4</td>
<td>7 A'</td>
<td>β_1C(60)</td>
<td>17</td>
<td>1013.9</td>
<td>5 A'</td>
<td>β_1C(61)</td>
</tr>
<tr>
<td>18</td>
<td>1088.0</td>
<td>13 A'</td>
<td>βC(27), νC(25), νC(18), νC(16)</td>
<td>18</td>
<td>1095.1</td>
<td>3 A'</td>
<td>βC(32), νC(24), νC(18), βC(13)</td>
</tr>
<tr>
<td>19</td>
<td>1152.2</td>
<td>94 A'</td>
<td>βC(29), νC(21), νC(42), νC(10), νC(10)</td>
<td>19</td>
<td>1141.4</td>
<td>168 A'</td>
<td>βC(38), νC(20), νC(15)</td>
</tr>
<tr>
<td>20</td>
<td>1181.4</td>
<td>17 A'</td>
<td>βC(22), βC(17), βC(13), βC(12)</td>
<td>20</td>
<td>1179.2</td>
<td>14 A'</td>
<td>βC(27), βC(23), βC(12), βC(11), βC(11)</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1192.6</td>
<td>175</td>
<td>A'</td>
<td>βCOH(38), βC₆H(19), νCO(12)</td>
<td>21</td>
<td>1209.2</td>
<td>33</td>
<td>A'</td>
<td>βCOH(42), βC₆H(16), νCF(14), νC₁C₂(11)</td>
</tr>
<tr>
<td>22</td>
<td>1299.3</td>
<td>75</td>
<td>A'</td>
<td>νCO(22), νCF(18), β₁rg(13), βC₄H(13), βC₂H(10)</td>
<td>22</td>
<td>1299.2</td>
<td>45</td>
<td>A'</td>
<td>νCO(19), νCF(18), βC₄H(14), β₁rg(13)</td>
</tr>
<tr>
<td>23</td>
<td>1334.5</td>
<td>7</td>
<td>A'</td>
<td>βC₅H(18), βC₆H(15), βCOH(14), νCO(12), βC₂H(11), βC₄H(10)</td>
<td>23</td>
<td>1322.7</td>
<td>82</td>
<td>A'</td>
<td>νCO(21), βC₆H(15), βC₅H(13), βC₇H(13), βCOH(11)</td>
</tr>
<tr>
<td>24</td>
<td>1354.7</td>
<td>11</td>
<td>A'</td>
<td>νC₂C₃(16), νC₂C₄(16), νC₂C₆(14), νC₂C₅(14), νC₁C₆(12), νC₁C₂(11)</td>
<td>24</td>
<td>1354.3</td>
<td>16</td>
<td>A'</td>
<td>νC₅C₆(15), νC₅C₇(15), νC₄C₅(15), νC₂C₃(15), νC₁C₆(13), νC₁C₂(10)</td>
</tr>
<tr>
<td>25</td>
<td>1488.5</td>
<td>44</td>
<td>A'</td>
<td>βC₄H(22), νC₁C₂(14), νC₂C₃(13), νC₂C₅(10), βC₂H(10)</td>
<td>25</td>
<td>1507.4</td>
<td>18</td>
<td>A'</td>
<td>βC₆H(19), νC₂C₃(16), βC₄H(13), νC₁C₂(11)</td>
</tr>
<tr>
<td>26</td>
<td>1529.0</td>
<td>81</td>
<td>A'</td>
<td>βC₅H(22), νC₁C₄(14), βC₂H(14), νC₁C₆(10)</td>
<td>26</td>
<td>1515.9</td>
<td>125</td>
<td>A'</td>
<td>βC₅H(26), βC₂H(12), νC₃C₄(12), νC₁C₆(10)</td>
</tr>
<tr>
<td>27</td>
<td>1637.3</td>
<td>147</td>
<td>A'</td>
<td>νC₁C₂(23), νC₂C₃(20)</td>
<td>27</td>
<td>1642.1</td>
<td>72</td>
<td>A'</td>
<td>νC₄C₅(23), νC₁C₆(21), νC₁C₂(13), νC₄C₅(10)</td>
</tr>
<tr>
<td>28</td>
<td>1657.9</td>
<td>98</td>
<td>A'</td>
<td>νC₁C₆(19), νC₂C₃(19), νC₃C₄(18), νC₂C₅(15)</td>
<td>28</td>
<td>1652.2</td>
<td>164</td>
<td>A'</td>
<td>νC₂C₃(23), νC₃C₄(19), νC₁C₂(13), β₂rg(10)</td>
</tr>
<tr>
<td>29</td>
<td>3179.8</td>
<td>8</td>
<td>A'</td>
<td>νC₃H(77)</td>
<td>29</td>
<td>3160.4</td>
<td>10</td>
<td>A'</td>
<td>νC₆H(89), νC₃H(10)</td>
</tr>
<tr>
<td>30</td>
<td>3181.5</td>
<td>1</td>
<td>A'</td>
<td>νC₂H(91)</td>
<td>30</td>
<td>3184.9</td>
<td>8</td>
<td>A'</td>
<td>νC₃H(82), νC₆H(10)</td>
</tr>
<tr>
<td>31</td>
<td>3202.7</td>
<td>4</td>
<td>A'</td>
<td>νC₆H(83), νC₄H(10)</td>
<td>31</td>
<td>3210.9</td>
<td>1</td>
<td>A'</td>
<td>νC₄H(91)</td>
</tr>
<tr>
<td>32</td>
<td>3211.1</td>
<td>1</td>
<td>A'</td>
<td>νC₂H(84)</td>
<td>32</td>
<td>3213.9</td>
<td>0</td>
<td>A'</td>
<td>νC₂H(99)</td>
</tr>
<tr>
<td>33</td>
<td>3836.4</td>
<td>70</td>
<td>A'</td>
<td>νOH(100)</td>
<td>33</td>
<td>3835.7</td>
<td>71</td>
<td>A'</td>
<td>νOH(100)</td>
</tr>
</tbody>
</table>

Footnotes a–d are identical to those in Table 11.
TABLE 16. Harmonic vibrational frequencies, IR intensities and assignments for cis and trans meta-chlorophenols

<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>180.4</td>
<td>0</td>
<td>A''</td>
<td>τ_{rg}(34), γCCl(30), γC_{2}H(13)</td>
<td>1</td>
<td>180.6</td>
<td>3</td>
<td>A''</td>
<td>τ_{rg}(33), γCCl(29), γC_{2}H(15)</td>
</tr>
<tr>
<td>2</td>
<td>228.8</td>
<td>3</td>
<td>A''</td>
<td>τ_{2rg}(69)</td>
<td>2</td>
<td>229.2</td>
<td>1</td>
<td>A''</td>
<td>τ_{rg}(68), τ_{1rg}(10)</td>
</tr>
<tr>
<td>3</td>
<td>247.6</td>
<td>2</td>
<td>A'</td>
<td>βCCl(69), βCO(16)</td>
<td>3</td>
<td>248.7</td>
<td>1</td>
<td>A'</td>
<td>βCCl(69), βCO(16)</td>
</tr>
<tr>
<td>4</td>
<td>311.9</td>
<td>110</td>
<td>A''</td>
<td>τ_{OH}(90) Expt: 312.5b, 312c, 313d</td>
<td>4</td>
<td>307.8</td>
<td>111</td>
<td>A''</td>
<td>τ_{OH}(93)</td>
</tr>
<tr>
<td>5</td>
<td>406.2</td>
<td>6</td>
<td>A'</td>
<td>νCCl(49), β_{1rg}(22)</td>
<td>5</td>
<td>407.3</td>
<td>5</td>
<td>A'</td>
<td>νCCl(50), β_{1rg}(23)</td>
</tr>
<tr>
<td>6</td>
<td>447.1</td>
<td>10</td>
<td>A'</td>
<td>βCO(59), βCCl(16), β_{3rg}(13)</td>
<td>6</td>
<td>443.8</td>
<td>9</td>
<td>A'</td>
<td>βCO(59), βCCl(16), β_{3rg}(12)</td>
</tr>
<tr>
<td>7</td>
<td>448.7</td>
<td>11</td>
<td>A''</td>
<td>τ_{1rg}(57), γCCl(13)</td>
<td>7</td>
<td>449.7</td>
<td>2</td>
<td>A''</td>
<td>τ_{1rg}(57), γCCl(12)</td>
</tr>
<tr>
<td>8</td>
<td>535.7</td>
<td>3</td>
<td>A'</td>
<td>β_{2rg}(75)</td>
<td>8</td>
<td>536.3</td>
<td>3</td>
<td>A'</td>
<td>β_{2rg}(73)</td>
</tr>
<tr>
<td>9</td>
<td>579.9</td>
<td>0</td>
<td>A''</td>
<td>γCO(34), τ_{2rg}(27), γCCl(27)</td>
<td>9</td>
<td>580.1</td>
<td>1</td>
<td>A''</td>
<td>γCO(39), τ_{2rg}(28), γCCl(24)</td>
</tr>
<tr>
<td>10</td>
<td>677.3</td>
<td>13</td>
<td>A''</td>
<td>τ_{1rg}(69), γCO(13)</td>
<td>10</td>
<td>670.7</td>
<td>11</td>
<td>A''</td>
<td>τ_{1rg}(68), γCO(11), γCCl(10), γC_{3}H(10)</td>
</tr>
<tr>
<td>11</td>
<td>697.1</td>
<td>7</td>
<td>A'</td>
<td>β_{1rg}(56), νCCl(20)</td>
<td>11</td>
<td>695.0</td>
<td>8</td>
<td>A'</td>
<td>β_{1rg}(56), νCCl(20)</td>
</tr>
<tr>
<td>12</td>
<td>780.9</td>
<td>45</td>
<td>A''</td>
<td>γC_{4}H(36), γCO(23), γC_{3}H(21), τ_{1rg}(12)</td>
<td>12</td>
<td>764.3</td>
<td>61</td>
<td>A''</td>
<td>γC_{6}H(33), γC_{6}H(25), γC_{5}H(16), τ_{1rg}(15)</td>
</tr>
<tr>
<td>13</td>
<td>835.3</td>
<td>28</td>
<td>A''</td>
<td>γC_{2}H(68), τ_{1rg}(16)</td>
<td>13</td>
<td>859.3</td>
<td>4</td>
<td>A''</td>
<td>γC_{6}H(37), γC_{6}H(27), γC_{2}H(15)</td>
</tr>
<tr>
<td>14</td>
<td>886.1</td>
<td>0</td>
<td>A''</td>
<td>γC_{6}H(46), γC_{4}H(40)</td>
<td>14</td>
<td>866.9</td>
<td>17</td>
<td>A''</td>
<td>γC_{2}H(62), γC_{4}H(12), τ_{1rg}(11)</td>
</tr>
<tr>
<td>15</td>
<td>893.7</td>
<td>82</td>
<td>A'</td>
<td>νCO(22), νCCl(22), β_{2rg}(15), β_{1rg}(11), νC_{1}C_{6}(10)</td>
<td>15</td>
<td>894.8</td>
<td>108</td>
<td>A'</td>
<td>νCO(23), νCCl(21), β_{2rg}(14), β_{1rg}(11), νC_{1}C_{6}(11)</td>
</tr>
<tr>
<td>16</td>
<td>975.6</td>
<td>0</td>
<td>A''</td>
<td>γC_{2}H(58), γC_{6}H(18), γC_{4}H(13)</td>
<td>16</td>
<td>954.1</td>
<td>0</td>
<td>A''</td>
<td>γC_{6}H(59), γC_{6}H(21)</td>
</tr>
<tr>
<td>17</td>
<td>1009.1</td>
<td>9</td>
<td>A'</td>
<td>β_{1rg}(64), νC_{6}C_{6}(11)</td>
<td>17</td>
<td>1009.5</td>
<td>6</td>
<td>A'</td>
<td>β_{1rg}(64), νC_{6}C_{2}(10)</td>
</tr>
<tr>
<td>18</td>
<td>1087.3</td>
<td>15</td>
<td>A'</td>
<td>νC_{4}C_{5}(29), β_{2}C_{6}(16), νC_{6}C_{6}(10)</td>
<td>18</td>
<td>1087.8</td>
<td>30</td>
<td>A'</td>
<td>β_{2}C_{6}(20), νC_{6}C_{6}(18), νC_{4}C_{6}(17), νCCl(13)</td>
</tr>
<tr>
<td>19</td>
<td>1107.6</td>
<td>38</td>
<td>A'</td>
<td>νC_{4}C_{5}(19), νC_{3}C_{5}(15), β_{4}C_{4}(15), β_{2}C_{3}(12)</td>
<td>19</td>
<td>1107.6</td>
<td>0</td>
<td>A'</td>
<td>β_{2}C_{6}(23), νC_{6}C_{6}(18), β_{2}C_{6}(12), νC_{6}C_{5}(10)</td>
</tr>
<tr>
<td>20</td>
<td>1180.4</td>
<td>43</td>
<td>A'</td>
<td>β_{2}C_{6}(28), β_{4}C_{3}(23), β_{2}C_{4}(14)</td>
<td>20</td>
<td>1183.8</td>
<td>27</td>
<td>A'</td>
<td>β_{2}C_{6}(23), βCO(20), β_{2}C_{4}(19), β_{2}C_{3}(10)</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1191.1</td>
<td>89</td>
<td>A’</td>
<td>$\nu COH(46), \beta C_2 H(11), \nu C_1 C_2(10)$</td>
<td>21</td>
<td>1192.3</td>
<td>111</td>
<td>A’</td>
<td>$\beta COH(38), \beta C_3 H(17), \nu C_1 C_2(13), \beta C_2 H(11)$</td>
</tr>
<tr>
<td>22</td>
<td>1271.3</td>
<td>87</td>
<td>A’</td>
<td>$\nu CO(42), \beta C_2 H(20), \beta C_2 H(12)$</td>
<td>22</td>
<td>1271.5</td>
<td>29</td>
<td>A’</td>
<td>$\nu CO(40), \beta C_1 H(12), \beta C_2 H(12)$</td>
</tr>
<tr>
<td>23</td>
<td>1333.6</td>
<td>3</td>
<td>A’</td>
<td>$\beta C_3 H(21), \beta C_4 H(17), \beta COH(16), \beta C_2 H(14)$</td>
<td>23</td>
<td>1322.3</td>
<td>81</td>
<td>A’</td>
<td>$\beta C_2 H(17), \beta COH(15), \beta C_3 H(15), \nu CO(13), \beta C_4 H(13), \beta C_6 H(10)$</td>
</tr>
<tr>
<td>24</td>
<td>1342.4</td>
<td>15</td>
<td>A’</td>
<td>$\nu C_3 C_4(16), \nu C_2 C_3(16), \nu C_3 C_6(14), \nu C_4 C_5(14), \nu C_3 C_6(11), \nu C_1 C_6(10)$</td>
<td>24</td>
<td>1342.9</td>
<td>9</td>
<td>A’</td>
<td>$\nu C_2 C_3(15), \nu C_3 C_4(15), \nu C_4 C_5(15), \nu C_3 C_6(14), \nu C_1 C_6(11), \nu C_1 C_2(10)$</td>
</tr>
<tr>
<td>25</td>
<td>1470.8</td>
<td>52</td>
<td>A’</td>
<td>$\beta C_6 H(21), \nu C_2 C_3(15), \beta C_4 H(13), \nu C_4 C_5(12), \nu C_1 C_2(11)$</td>
<td>25</td>
<td>1487.1</td>
<td>24</td>
<td>A’</td>
<td>$\nu C_2 C_3(21), \beta C_4 H(21), \beta C_6 H(14)$</td>
</tr>
<tr>
<td>26</td>
<td>1515.0</td>
<td>73</td>
<td>A’</td>
<td>$\beta C_3 H(21), \beta C_2 H(17), \nu C_3 C_4(15), \beta C_4 H(11)$</td>
<td>26</td>
<td>1504.6</td>
<td>93</td>
<td>A’</td>
<td>$\beta C_3 H(27), \nu C_3 C_2(12), \beta C_2 H(12)$</td>
</tr>
<tr>
<td>27</td>
<td>1623.7</td>
<td>117</td>
<td>A’</td>
<td>$\nu C_1 C_2(24), \nu C_4 C_5(21)$</td>
<td>27</td>
<td>1625.5</td>
<td>62</td>
<td>A’</td>
<td>$\nu C_1 C_6(27), \nu C_3 C_4(19)$</td>
</tr>
<tr>
<td>28</td>
<td>1640.5</td>
<td>81</td>
<td>A’</td>
<td>$\nu C_1 C_6(22), \nu C_2 C_3(17), \nu C_2 C_5(15), \nu C_3 C_4(14)$</td>
<td>28</td>
<td>1637.6</td>
<td>133</td>
<td>A’</td>
<td>$\nu C_1 C_2(20), \nu C_2 C_6(19), \nu C_2 C_3(15), \nu C_4 C_5(13)$</td>
</tr>
<tr>
<td>29</td>
<td>3177.4</td>
<td>9</td>
<td>A’</td>
<td>$\nu C_3 H(49), \nu C_2 H(42)$</td>
<td>29</td>
<td>3159.2</td>
<td>10</td>
<td>A’</td>
<td>$\nu C_6 H(87), \nu C_3 H(12)$</td>
</tr>
<tr>
<td>30</td>
<td>3178.5</td>
<td>1</td>
<td>A’</td>
<td>$\nu C_2 H(57), \nu C_3 H(35)$</td>
<td>30</td>
<td>3182.9</td>
<td>9</td>
<td>A’</td>
<td>$\nu C_3 H(81), \nu C_6 H(11)$</td>
</tr>
<tr>
<td>31</td>
<td>3201.6</td>
<td>3</td>
<td>A’</td>
<td>$\nu C_6 H(84)$</td>
<td>31</td>
<td>3210.6</td>
<td>1</td>
<td>A’</td>
<td>$\nu C_4 H(85)$</td>
</tr>
<tr>
<td>32</td>
<td>3210.6</td>
<td>2</td>
<td>A’</td>
<td>$\nu C_2 H(86)$</td>
<td>32</td>
<td>3212.2</td>
<td>1</td>
<td>A’</td>
<td>$\nu C_2 H(91)$</td>
</tr>
<tr>
<td>33</td>
<td>3833.7</td>
<td>68</td>
<td>A’</td>
<td>$\nu OH(100)$</td>
<td>33</td>
<td>3835.6</td>
<td>74</td>
<td>A’</td>
<td>$\nu OH(97)$</td>
</tr>
</tbody>
</table>

Footnotes a–d are identical to those in Table 11.
<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>161.0</td>
<td>0</td>
<td>A''</td>
<td>γCBr(39), τrg(30), γC_2H(11)</td>
<td>1</td>
<td>160.9</td>
<td>4</td>
<td>A''</td>
<td>γCBr(38), τrg(29), γC_2H(13)</td>
</tr>
<tr>
<td>2</td>
<td>204.0</td>
<td>1</td>
<td>A'</td>
<td>βCBr(75), βCO(11)</td>
<td>2</td>
<td>204.7</td>
<td>1</td>
<td>A'</td>
<td>βCBr(76), βCO(11)</td>
</tr>
<tr>
<td>3</td>
<td>228.0</td>
<td>2</td>
<td>A''</td>
<td>τ_2rg(68), τ_1rg(10)</td>
<td>3</td>
<td>227.8</td>
<td>1</td>
<td>A'</td>
<td>τ_2rg(68), τ_1rg(10)</td>
</tr>
<tr>
<td>4</td>
<td>307.4</td>
<td>2</td>
<td>A'</td>
<td>νCBr(65), β_1rg(16)</td>
<td>4</td>
<td>308.1</td>
<td>2</td>
<td>A'</td>
<td>νCBr(65), β_1rg(16)</td>
</tr>
<tr>
<td>5</td>
<td>314.7</td>
<td>0</td>
<td>A''</td>
<td>τOH(89) Expt: 314<sup>a</sup>, 312<sup>b</sup>, 309<sup>d</sup></td>
<td>5</td>
<td>310.4</td>
<td>110</td>
<td>A''</td>
<td>τOH(92)</td>
</tr>
<tr>
<td>6</td>
<td>438.3</td>
<td>13</td>
<td>A'</td>
<td>βCO(67), βCBr(13), β_1rg(10)</td>
<td>6</td>
<td>435.3</td>
<td>8</td>
<td>A'</td>
<td>βCO(66), βCBr(13)</td>
</tr>
<tr>
<td>7</td>
<td>443.3</td>
<td>12</td>
<td>A''</td>
<td>τ_1rg(60), γCBr(15)</td>
<td>7</td>
<td>445.0</td>
<td>2</td>
<td>A'</td>
<td>τ_1rg(61), γCBr(14)</td>
</tr>
<tr>
<td>8</td>
<td>535.6</td>
<td>2</td>
<td>A'</td>
<td>β_2rg(76)</td>
<td>8</td>
<td>535.9</td>
<td>3</td>
<td>A'</td>
<td>β_2rg(76)</td>
</tr>
<tr>
<td>9</td>
<td>564.5</td>
<td>0</td>
<td>A''</td>
<td>γCO(28), τrg(28), γCBr(26)</td>
<td>9</td>
<td>567.4</td>
<td>0</td>
<td>A''</td>
<td>γCO(31), τrg(28), γCBr(25)</td>
</tr>
<tr>
<td>10</td>
<td>668.4</td>
<td>11</td>
<td>A''</td>
<td>τ_1rg(69), γCO(16)</td>
<td>10</td>
<td>664.7</td>
<td>11</td>
<td>A'</td>
<td>τ_1rg(68), γCO(14)</td>
</tr>
<tr>
<td>11</td>
<td>679.5</td>
<td>7</td>
<td>A'</td>
<td>β_1rg(65), νCBr(17)</td>
<td>11</td>
<td>678.0</td>
<td>8</td>
<td>A'</td>
<td>β_3rg(66), νCBr(16)</td>
</tr>
<tr>
<td>12</td>
<td>779.0</td>
<td>48</td>
<td>A''</td>
<td>γC_2H(35), γC_6H(23), γC_3H(23), τ_1rg(11)</td>
<td>12</td>
<td>762.5</td>
<td>61</td>
<td>A''</td>
<td>γC_6H(32), γC_2H(26), γC_3H(18), τ_1rg(13)</td>
</tr>
<tr>
<td>13</td>
<td>832.5</td>
<td>22</td>
<td>A''</td>
<td>γC_2H(73), τ_1rg(14)</td>
<td>13</td>
<td>863.1</td>
<td>0</td>
<td>A''</td>
<td>γC_6H(45), γC_3H(38)</td>
</tr>
<tr>
<td>14</td>
<td>874.1</td>
<td>76</td>
<td>A'</td>
<td>νCO(23), νCBr(17), β_2rg(17), β_1rg(15), νC_1C_6(10)</td>
<td>14</td>
<td>866.2</td>
<td>16</td>
<td>A''</td>
<td>γC_2H(74), τ_1rg(12)</td>
</tr>
<tr>
<td>15</td>
<td>888.3</td>
<td>1</td>
<td>A''</td>
<td>γC_6H(46), γC_4H(40)</td>
<td>15</td>
<td>875.0</td>
<td>97</td>
<td>A'</td>
<td>νCO(23), νCBr(17), β_2rg(16), β_1rg(16), νC_1C_6(11)</td>
</tr>
<tr>
<td>16</td>
<td>974.5</td>
<td>0</td>
<td>A''</td>
<td>γC_2H(57), γC_6H(18), γC_4H(14)</td>
<td>16</td>
<td>953.9</td>
<td>0</td>
<td>A'</td>
<td>γC_2H(58), γC_6H(22)</td>
</tr>
<tr>
<td>17</td>
<td>1007.4</td>
<td>13</td>
<td>A'</td>
<td>β_1rg(64), νC_1C_6(11)</td>
<td>17</td>
<td>1007.9</td>
<td>9</td>
<td>A'</td>
<td>β_1rg(64), νC_1C_6(11), νC_1C_6(10)</td>
</tr>
<tr>
<td>18</td>
<td>1080.6</td>
<td>12</td>
<td>A'</td>
<td>νC_1C_6(27), νC_2C_6(13), βC_2H(11), βC_6H(11)</td>
<td>18</td>
<td>1079.4</td>
<td>18</td>
<td>A'</td>
<td>νC_1C_6(23), βC_2H(18), νC_2C_6(17)</td>
</tr>
<tr>
<td>19</td>
<td>1106.0</td>
<td>23</td>
<td>A'</td>
<td>νC_3C_4(16), βC_3H(15), νC_2C_3(14), νC_3C_6(12), βC_2H(12)</td>
<td>19</td>
<td>1108.0</td>
<td>1</td>
<td>A'</td>
<td>βC_4H(21), νC_1C_6(19), βC_6H(14), νC_2C_5(13)</td>
</tr>
<tr>
<td>20</td>
<td>1181.4</td>
<td>45</td>
<td>A'</td>
<td>βC_2H(27), βC_3H(23), βC_4H(15)</td>
<td>20</td>
<td>1184.5</td>
<td>32</td>
<td>A'</td>
<td>βC_6H(22), βCOH(20), βC_3H(18), βC_4H(10)</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>1194.0</td>
<td>91</td>
<td>A'</td>
<td>βCOH(46), βC$_2$H(10), vC$_1$C$_2$(10), vC$_1$C$_6$(10), βC$_2$H(10)</td>
<td>21</td>
<td>1192.4</td>
<td>116</td>
<td>A'</td>
<td>βCOH(34), βC$_5$H(18), βC$_2$H(13), vC$_1$C$_2$(13)</td>
</tr>
<tr>
<td>22</td>
<td>1269.1</td>
<td>86</td>
<td>A'</td>
<td>νCO(43), βC$_2$H(21), ν_1rg(12)</td>
<td>22</td>
<td>1269.2</td>
<td>26</td>
<td>A'</td>
<td>νCO(38), βC$_2$H(12), ν_1rg(12)</td>
</tr>
<tr>
<td>23</td>
<td>1334.0</td>
<td>2</td>
<td>A'</td>
<td>βC$_2$H(20), βC$_4$H(19), βC$_2$H(16), βCOH(14), βC$_6$H(10)</td>
<td>23</td>
<td>1322.3</td>
<td>83</td>
<td>A'</td>
<td>βC$_2$H(19), βC$_3$H(15), βC$_4$H(15), νCO(12), βCOH(12), βC$_6$H(10)</td>
</tr>
<tr>
<td>24</td>
<td>1339.6</td>
<td>18</td>
<td>A'</td>
<td>vC$_2$C$_3$(17), vC$_3$C$_4$(17), vC$_4$C$_5$(14), C$_5$C$_6$(14), vC$_1$C$_2$(11), vC$_1$C$_6$(10)</td>
<td>24</td>
<td>1339.9</td>
<td>10</td>
<td>A'</td>
<td>vC$_2$C$_3$(16), vC$_3$C$_4$(15), vC$_4$C$_5$(15), vC$_5$C$_6$(14), vC$_1$C$_6$(11), vC$_1$C$_2$(10)</td>
</tr>
<tr>
<td>25</td>
<td>1467.3</td>
<td>58</td>
<td>A'</td>
<td>βC$_6$H(21), vC$_2$C$_3$(15), βC$_4$H(13), vC$_4$C$_5$(12), vC$_1$C$_2$(11)</td>
<td>25</td>
<td>1483.1</td>
<td>21</td>
<td>A'</td>
<td>vC$_2$C$_3$(21), βC$_4$H(21), βC$_6$H(14), βCOH(10), vC$_4$C$_5$(10)</td>
</tr>
<tr>
<td>26</td>
<td>1511.9</td>
<td>73</td>
<td>A'</td>
<td>βC$_5$H(20), βC$_2$H(18), vC$_3$C$_4$(15), βC$_4$H(12)</td>
<td>26</td>
<td>1501.6</td>
<td>95</td>
<td>A'</td>
<td>βC$_5$H(27), vC$_3$C$_4$(13), βC$_2$H(13)</td>
</tr>
<tr>
<td>27</td>
<td>1618.5</td>
<td>123</td>
<td>A'</td>
<td>vC$_1$C$_2$(24), vC$_4$C$_4$(21)</td>
<td>27</td>
<td>1621.9</td>
<td>54</td>
<td>A'</td>
<td>vC$_1$C$_6$(28), vC$_3$C$_4$(18), vC$_4$C$_4$(10)</td>
</tr>
<tr>
<td>28</td>
<td>1637.7</td>
<td>76</td>
<td>A'</td>
<td>vC$_1$C$_6$(23), vC$_2$C$_6$(17), vC$_2$C$_5$(15), vC$_3$C$_4$(13)</td>
<td>28</td>
<td>1633.0</td>
<td>142</td>
<td>A'</td>
<td>vC$_5$C$_6$(21), vC$_1$C$_2$(17), vC$_2$C$_3$(16), vC$_4$C$_5$(11)</td>
</tr>
<tr>
<td>29</td>
<td>3176.4</td>
<td>9</td>
<td>A'</td>
<td>vC$_5$H(70), vC$_2$H(18)</td>
<td>29</td>
<td>3157.8</td>
<td>10</td>
<td>A'</td>
<td>vC$_6$H(88), vC$_2$H(11)</td>
</tr>
<tr>
<td>30</td>
<td>3177.8</td>
<td>2</td>
<td>A'</td>
<td>vC$_2$H(81), vC$_5$H(15)</td>
<td>30</td>
<td>3181.9</td>
<td>9</td>
<td>A'</td>
<td>vC$_5$H(82), vC$_6$H(11)</td>
</tr>
<tr>
<td>31</td>
<td>3200.4</td>
<td>3</td>
<td>A'</td>
<td>vC$_6$H(86)</td>
<td>31</td>
<td>3210.5</td>
<td>1</td>
<td>A'</td>
<td>vC$_4$H(85)</td>
</tr>
<tr>
<td>32</td>
<td>3211.0</td>
<td>1</td>
<td>A'</td>
<td>vC$_2$H(89)</td>
<td>32</td>
<td>3212.4</td>
<td>1</td>
<td>A'</td>
<td>vC$_2$H(91)</td>
</tr>
<tr>
<td>33</td>
<td>3834.3</td>
<td>69</td>
<td>A'</td>
<td>vOH(100)</td>
<td>33</td>
<td>3835.3</td>
<td>75</td>
<td>A'</td>
<td>vOH(100)</td>
</tr>
</tbody>
</table>

Footnotes a–d are identical to those in Table 11.
1. General and theoretical aspects of phenols

TABLE 18. Harmonic vibrational frequencies, IR intensities and assignments for para-fluorophenola

<table>
<thead>
<tr>
<th>No.</th>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>155.6</td>
<td>0</td>
<td>A''</td>
<td>$\tau_{2rg}(75)$</td>
</tr>
<tr>
<td>2</td>
<td>282.3</td>
<td>113</td>
<td>A''</td>
<td>$\tau OH(92)$, Expt: 280^c, 280^d, 283^d</td>
</tr>
<tr>
<td>3</td>
<td>343.0</td>
<td>6</td>
<td>A'</td>
<td>$\beta_{CF}(44)$, $\beta CO(40)$</td>
</tr>
<tr>
<td>4</td>
<td>366.0</td>
<td>0</td>
<td>A''</td>
<td>$\tau_{1rg}(36)$, $\gamma_{CF}(29)$, $\gamma CO(14)$</td>
</tr>
<tr>
<td>5</td>
<td>427.3</td>
<td>1</td>
<td>A''</td>
<td>$\tau_{3rg}(83)$</td>
</tr>
<tr>
<td>6</td>
<td>447.3</td>
<td>7</td>
<td>A'</td>
<td>$\beta CO(35)$, $\beta_{CF}(32)$, $\beta_{3rg(27)}$</td>
</tr>
<tr>
<td>7</td>
<td>463.0</td>
<td>1</td>
<td>A'</td>
<td>$\beta_{3rg}(76)$</td>
</tr>
<tr>
<td>8</td>
<td>512.7</td>
<td>23</td>
<td>A''</td>
<td>$\tau_{2rg}(33)$, $\gamma_{CF}(29)$, $\gamma CO(29)$</td>
</tr>
<tr>
<td>9</td>
<td>652.5</td>
<td>1</td>
<td>A'</td>
<td>$\beta_{3rg}(74)$</td>
</tr>
<tr>
<td>10</td>
<td>680.6</td>
<td>0</td>
<td>A''</td>
<td>$\tau_{1rg}(64)$, $\gamma CO(16)$, $\gamma_{CF}(14)$</td>
</tr>
<tr>
<td>11</td>
<td>751.5</td>
<td>68</td>
<td>A'</td>
<td>$\beta_{1rg}(36)$, $\nu_{CF(24)}$, $\nu CO(21)$</td>
</tr>
<tr>
<td>12</td>
<td>797.6</td>
<td>11</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(49)}$, $\gamma_{C_{3}H(27)}$, $\gamma_{C_{3}H(10)}$</td>
</tr>
<tr>
<td>13</td>
<td>836.1</td>
<td>63</td>
<td>A''</td>
<td>$\gamma_{C_{6}H(33)}$, $\gamma_{C_{5}H(24)}$, $\gamma_{C_{2}H(12)}$, $\tau_{2rg(12)}$, $\gamma CO(10)$</td>
</tr>
<tr>
<td>14</td>
<td>861.1</td>
<td>0</td>
<td>A'</td>
<td>$\beta_{3rg(22)}$, $\nu C_{1}C_{6}(13)$, $\nu C_{1}C_{5}(12)$, $\nu CF(12)$, $\nu CO(12)$</td>
</tr>
<tr>
<td>15</td>
<td>907.1</td>
<td>3</td>
<td>A''</td>
<td>$\gamma_{C_{2}H(48)}$, $\gamma_{C_{2}H(21)}$, $\tau_{1rg(14)}$</td>
</tr>
<tr>
<td>16</td>
<td>949.4</td>
<td>0</td>
<td>A''</td>
<td>$\gamma_{C_{3}H(40)}$, $\gamma_{C_{6}H(38)}$</td>
</tr>
<tr>
<td>17</td>
<td>1024.7</td>
<td>1</td>
<td>A'</td>
<td>$\beta_{1rg}(46)$, $\nu C_{4}C_{5}(10)$</td>
</tr>
<tr>
<td>18</td>
<td>1100.4</td>
<td>19</td>
<td>A'</td>
<td>$\beta_{3}C_{6}(21)$, $\beta_{3}C_{1}(17)$, $\beta C_{6}(15)$, $\nu C_{1}C_{5}(13)$, $\nu C_{2}C_{2}(12)$, $\beta C_{6}(10)$</td>
</tr>
<tr>
<td>19</td>
<td>1169.3</td>
<td>3</td>
<td>A'</td>
<td>$\beta_{3}C_{5}(27)$, $\beta C_{3}(20)$, $\beta C_{2}(15)$, $\beta C_{6}(14)$</td>
</tr>
<tr>
<td>20</td>
<td>1186.2</td>
<td>144</td>
<td>A'</td>
<td>$\beta_{OH}(52)$, $\nu C_{1}C_{6}(15)$</td>
</tr>
<tr>
<td>21</td>
<td>1229.0</td>
<td>174</td>
<td>A'</td>
<td>$\nu CF(43)$, $\beta_{1rg(20)}$</td>
</tr>
<tr>
<td>22</td>
<td>1280.1</td>
<td>26</td>
<td>A'</td>
<td>$\nu CO(49)$, $\nu C_{2}C_{5}(10)$, $\nu C_{2}C_{5}(10)$, $\nu CF(7)$</td>
</tr>
<tr>
<td>23</td>
<td>1317.3</td>
<td>3</td>
<td>A'</td>
<td>$\beta_{3}C_{2}(18)$, $\beta C_{6}(15)$, $\nu C_{3}C_{4}(14)$, $\beta C_{3}(13)$, $\nu C_{4}C_{5}(12)$, $\beta C_{5}(11)$</td>
</tr>
<tr>
<td>24</td>
<td>1355.6</td>
<td>26</td>
<td>A'</td>
<td>$\nu C_{2}C_{5}(14)$, $\beta COH(13)$, $\nu C_{3}C_{6}(12)$, $\nu C_{1}C_{2}(11)$, $\nu C_{4}C_{5}(11)$, $\nu C_{1}C_{4}(11)$</td>
</tr>
<tr>
<td>25</td>
<td>1466.9</td>
<td>29</td>
<td>A'</td>
<td>$\nu C_{2}C_{6}(19)$, $\nu C_{2}C_{5}(16)$, $\beta_{4}C_{6}(14)$, $\beta OH(11)$</td>
</tr>
<tr>
<td>26</td>
<td>1538.4</td>
<td>232</td>
<td>A'</td>
<td>$\beta_{2}C_{2}(15)$, $\nu C_{3}C_{4}(12)$, $\beta C_{6}(12)$, $\beta C_{3}(11)$</td>
</tr>
<tr>
<td>27</td>
<td>1645.3</td>
<td>4</td>
<td>A'</td>
<td>$\nu C_{4}C_{5}(25)$, $\nu C_{1}C_{2}(23)$</td>
</tr>
<tr>
<td>28</td>
<td>1655.6</td>
<td>0</td>
<td>A'</td>
<td>$\nu C_{1}C_{6}(21)$, $\nu C_{3}C_{4}(20)$, $\nu C_{3}C_{6}(13)$, $\nu C_{2}C_{3}(13)$</td>
</tr>
<tr>
<td>29</td>
<td>3159.5</td>
<td>12</td>
<td>A'</td>
<td>$\nu C_{3}H(96)$</td>
</tr>
<tr>
<td>30</td>
<td>3191.6</td>
<td>3</td>
<td>A'</td>
<td>$\nu C_{6}H(57)$, $\nu C_{4}H(42)$</td>
</tr>
<tr>
<td>31</td>
<td>3201.3</td>
<td>2</td>
<td>A'</td>
<td>$\nu C_{5}H(95)$</td>
</tr>
<tr>
<td>32</td>
<td>3205.3</td>
<td>1</td>
<td>A'</td>
<td>$\nu C_{6}H(56)$, $\nu C_{6}H(42)$</td>
</tr>
<tr>
<td>33</td>
<td>3840.2</td>
<td>66</td>
<td>A'</td>
<td>$\nu OH(100)$</td>
</tr>
</tbody>
</table>

aFootnotes a–d are identical to those in Table 11.

TABLE 19. Some harmonic vibrational frequencies, IR intensities and assignments for para-chlorophenolsa

<table>
<thead>
<tr>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300.1</td>
<td>104</td>
<td>A''</td>
<td>$\tau OH (89)$</td>
</tr>
<tr>
<td>836.0</td>
<td>2</td>
<td>A'</td>
<td>$\beta_{2rg}(23)$, $\nu CO(21)$, $\nu C_{1}C_{2}(13)$, $\nu C_{1}C_{6}(13)$, $\beta_{1rg(11)}$</td>
</tr>
<tr>
<td>1279.1</td>
<td>107</td>
<td>A'</td>
<td>$\nu CO(53)$, $\beta_{1rg(10)}$</td>
</tr>
<tr>
<td>3836.0</td>
<td>73</td>
<td>A'</td>
<td>$\nu OH(100)$</td>
</tr>
</tbody>
</table>

aSee Footnote a in Table 10.
TABLE 20. Some harmonic vibrational frequencies, IR intensities and assignments for *para*-bromophenols

<table>
<thead>
<tr>
<th>Freq.</th>
<th>IR</th>
<th>Sym.</th>
<th>Assignment, PED(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.1</td>
<td>51</td>
<td>A”</td>
<td>τOH(50), γCBr(22), τ2rg(11), τ1rg(10)</td>
</tr>
<tr>
<td>312.0</td>
<td>63</td>
<td>A”</td>
<td>τOH(43), γCBr(21), τ2rg(11), γCO(10)</td>
</tr>
<tr>
<td>831.7</td>
<td>1</td>
<td>A’</td>
<td>β2rg(22), νCO(22), β1rg(15), νC1C2(13), νC1C6(13)</td>
</tr>
<tr>
<td>1279.1</td>
<td>125</td>
<td>A’</td>
<td>νCO(53), β1rg(10)</td>
</tr>
<tr>
<td>3835.3</td>
<td>76</td>
<td>A’</td>
<td>νOH(100)</td>
</tr>
</tbody>
</table>

See Footnote a in Table 10.

parameters of these conformers are demonstrated in Figure 13. This is also manifested in the vibrational spectra.

Let us deal first with the torsional mode τOH. In both cis *m*-ClC6H4OH and cis *m*-BrC6H4OH, it is predicted to be at higher wavenumbers compared to their trans partners while in *m*-fluorophenols it is placed higher, at 320.7 cm⁻¹ (τOH = 319 cm⁻¹)[1246], in the trans conformer than in the cis one, viz. 314.0 (τOH = 311 cm⁻¹)[1246]. Due to a small difference of about 7 cm⁻¹, it would be premature to offer a theoretical explanation of such ‘misbehaviour’ of τOH in *m*-XClC6H4OH until it is fully proved or disproved experimentally, particularly in the related overtones where such a difference could be more pronounced. However, we suggest that such features are presumably related to the changes in the electrostatic repulsion between the O–H bond and its cis *ortho* C–H bond due to a different electron-withdrawing vs. electron-donating ability of the X atoms and a possible weak interaction between this *ortho* C–H bond and the halogen atom. The former repulsion might make the potential well more shallow for the planar orientation of the OH bond and thus cause a red shift of the τOH. Noteworthy is a rather strong dependence of τOH on the C1C2(6)H angle of this C–H bond which partly determines the strength of this repulsive interaction. Thus, a positive departure of this angle from the phenolic one by 3° produces a blue shift of the τOH by about 5 cm⁻¹, while a negative deviation moves it downward by nearly the same value. Interestingly, the analogous Hartree–Fock calculations lead to approximately the same frequency alterations, thus indicating the dominant electrostatic origin of the cis–trans non-similarity.

The CO stretch internal coordinate in XClC6H4OH is involved in several vibrational modes. Similarly to the parent phenol, νCO contributes dominantly to the two modes whose atomic displacements are inherent to modes 13 and 1 of benzene, according to Varsányi nomenclature[167]. While the latter characterized by a lower frequency retains its radial skeleton character and describes a ring breathing, the former can be likely interpreted as the CO stretch due to a larger contribution of νCO. In the theoretical spectrum of the parent phenol (Table 10), it is centred at 1274.8 cm⁻¹ (expt: 1259–1262 cm⁻¹[1153]) and characterized by IR intensity of 91 km mol⁻¹. The X-substitution of phenol affects both its position and the IR intensity. Analysis of Tables 11–13 and 15–20 leads to the following conclusions: (a) all cis *ortho*-substituted phenols have this mode at lower frequencies and larger IR intensities compared to their trans partners; (b) in all cis *meta*-substituted structures, it is more IR active than in the corresponding trans-substituted ones, while its frequency in each pair of conformers is nearly the same. In *ortho*-substituted forms, it develops into a rather intense band placed at 1284.3 cm⁻¹ (130 km mol⁻¹) and 1298.8 cm⁻¹ (61 km mol⁻¹) in cis and trans o-FC6H4OH, respectively, 1274.8 cm⁻¹ (75 km mol⁻¹) (expt: 1255 cm⁻¹[1167]) and 1285.6 cm⁻¹ (23 km mol⁻¹) in cis and trans o-ClC6H4OH, respectively, and 1273.9 cm⁻¹ (63 km mol⁻¹) (expt: 1247 cm⁻¹[1167]) and 1282.9 cm⁻¹ (21 km mol⁻¹) in cis and trans o-BrC6H4OH, respectively.
The ring breathing vibrational mode predicted at 1010.5 cm\(^{-1}\) (expt: 993.1 cm\(^{-1}\)) in the prototype benzene downshifts to 827.3 cm\(^{-1}\) (23 km mol\(^{-1}\)) (expt: 823 cm\(^{-1}\)) upon substitution of one hydrogen atom by the OH group. In phenol and its halo-derivatives, this mode is mixed with the stretching vibrations of the light substituents, namely \(v_{\text{CO}}\) and \(v_{\text{CF}}\). In halophenols, it is placed at higher wavenumbers compared to phenol, in particular at 861.1 cm\(^{-1}\) (expt: 854 cm\(^{-1}\)), 836.0 cm\(^{-1}\) (expt: 836 cm\(^{-1}\)) and 831.7 cm\(^{-1}\) (expt: 825 cm\(^{-1}\)) in the spectra of \(para\)-fluoro-, chloro- and bromophenols, respectively. This supports the earlier assignment of this vibrational mode in a series of \(para\)-substituted phenols\(^{251}\) (cf. also Reference 245).

Further, if in all \(para\)-substituted phenols the CO stretching vibration is mainly localized on these two fundamental modes, in some \(ortho\)- and \(meta\)-phenols it appears coupled with the mode corresponding to the fundamental three of benzene whose displacements resemble a distortion towards a ‘Catherine wheel’ type of structure. Such vibration appears to be rather sensitive to the position (i.e. either \(cis\) or \(trans\)) of the \(X\) atom, being almost independent of its nature. In all \(trans\) \(ortho\)- and \(meta\)-substituted phenols, it is placed at slightly lower wavenumbers and characterized by a consistently larger IR intensity compared to the \(cis\) conformers. Consider the following example. For all \(trans\) \(m\)-\(XC\textsubscript{6}H\textsubscript{4}OH\), it is centred at \textit{ca} 1322 cm\(^{-1}\) (81–83 km mol\(^{-1}\)) and blue shifts to \textit{ca} 1334 cm\(^{-1}\) (2–7 km mol\(^{-1}\)) for the \(cis\) conformer. In \(trans\) \(ortho\)-substituted forms, it is found at 1316–1317 cm\(^{-1}\) (73–78 km mol\(^{-1}\)), while in the \(cis\) forms it is at 1323–1324 cm\(^{-1}\) (21–28 km mol\(^{-1}\)).

We end this subsection with a surprise which is quite obsolete, since it is about twenty years old\(^{252–254}\). However, wise people always say that a forgotten surprise is often better than a new one. Anyway, we think that wrapping it within the present theoretical method is worth mentioning to complete our understanding of the stability of \(XC\textsubscript{6}H\textsubscript{4}OH\). In equation 12 we present the relative energies (in kJ mol\(^{-1}\)) of all forms of the mono-halogeno-substituted phenols.

\[
\begin{align*}
F: & \quad trans m > cis m > cis o > para > trans o \\
Cl: & \quad cis o > cis m \approx trans m > para > trans o \\
Br: & \quad cis o > cis m \approx trans m > para > trans o
\end{align*}
\] (12)

Its analysis leads to the following conclusions. First, the intramolecular hydrogen bond in the \(cis\) \(o\)-Cl- and \(cis\) \(o\)-Br-phenols is rather strong and leads all \(meta\)- and \(para\)-chloro- and bromophenols to fall energetically between their \(cis\) \(ortho\)- and \(trans\) \(ortho\)-conformers. Such order of stability breaks down for \(FC\textsubscript{6}H\textsubscript{4}OH\) where the \(trans\) \(meta\)-conformer appears to be the most stable one and reluctant to be engaged in the intramolecular hydrogen bonding and is followed by the \(cis\) \(meta\)-conformer. Surprisingly, the \(cis\) \(ortho\)-conformer occupies only the third place in the rank of the most energetically stable ones being by 4.4 kJ mol\(^{-1}\) lower than the most stable conformer. The \(para\)-conformer falls between the \(cis\) and \(trans\) \(ortho\)-conformers. Interestingly, the earlier orders of stability of \(FC\textsubscript{6}H\textsubscript{4}OH\) obtained at rather lower (from the present point of view) computational levels are given in kJ mol\(^{-1}\) in equation 13:

\[
\begin{align*}
 cis o \approx cis m \approx trans m > para > trans o^{252} \\
 cis m > trans m > para > cis o > trans o^{145} \\
 cis m > cis o > para > trans o^{146}
\end{align*}
\] (13)
In summary, although we have succeeded in explaining the order of the strength of the intramolecular hydrogen bond in ortho-\(\text{XC}_6\text{H}_4\text{OH}\) in the gas phase and in the model solvent mimicking \(\text{CCl}_4\) and reconcile the longstanding conflict between experiment and theory on the basis of a generalized solvent-including Pauling model, we still feel that our explanation looks rather incomplete. Therefore, we attempt to build such a bridge in the next subsection using the concept of the electronic localization function.

C. The Bonding Trends in Monohalogenated Phenols in Terms of the Electronic Localization Function (ELF)

1. Introduction to the ELF

Nearly a decade ago, Becke and Edgecombe in their seminal paper\(^{255}\) introduced the electron localization function (ELF) \(\eta(r)\) of an arbitrary \(N\)-electron system (equation 14) as

\[
\eta(r) = (1 + [(t - t_W)/t_{TF}]^2)^{-1}
\]

where \(t = \frac{1}{2} \sum_{i=1}^{N} |\nabla \psi_i|^2\) is the kinetic energy density of the studied system within the Hartree–Fock or Kohn–Sham approach and \(\psi_i (i=1,\ldots,N)\) are the corresponding molecular orbitals. Here, \(t_W[\rho(r)] = (\nabla \rho)^2/8\rho\) is the Weizsäcker kinetic energy density determined by the one-electron density \(\rho(r) = \sum_{i=1}^{N} |\psi_i(r)|^2\), and finally \(t_{TF}[\rho(r)] = \alpha_{TF}[\rho(r)]^{5/3}\) is the Thomas–Fermi kinetic energy density with numerical coefficient \(\alpha_{TF} = 3(6\pi^2)^{2/3}/5\) derived within the uniform electron gas approximation\(^{145}\).

The ELF \(\eta(r)\) has a rather simple normalized Lorentzian-type form and thus its domain lies in the interval \(0 \leq \eta(r) \leq 1\). The upper limit of \(\eta(r) = 1\) corresponds to the electron system whose kinetic energy density becomes identical to the Weizsäcker one. Bearing in mind that the latter was derived on the basis of the Pauli principle, \(\eta(r) = 1\) implies that all electrons are paired if \(2/N\), and there is only one unpaired electron in the opposite case. Its value \(\eta(r) = \frac{1}{2}\) determining the FWHM (\(\equiv\) full width at half maximum) describes a case when \(t = t_W[\rho(r)] \pm t_{TF}[\rho(r)]\), where the lower sign is valid if \(t_W[\rho(r)] \geq t_{TF}[\rho(r)]\).

2. Topology of the ELF

The purpose of the topological analysis of the electron localization function is to provide a sound mathematical model of the Lewis\(^{256,257}\), and VSEPR\(^{143,144,258,259}\) theories which removes the contradictions that the latter present with quantum mechanics. The ELF analysis therefore attempts to provide a mathematical bridge between chemical intuition and quantum mechanics. Since both Lewis and VSEPR phenomenological models describe the bonding within a molecule in the usual 3D space, the mathematical model should make a partition of this space into regions related to chemical properties. The theory of dynamical systems\(^{260–262}\) then provides a very convenient mathematical framework to achieve the partition of the molecular space into such regions. The simplest dynamical systems are the gradient dynamical systems in which the vector field is the gradient field of a scalar function, say \(V(r)\), called the potential function. The theory of atoms in molecules (AIM)\(^{141}\) discussed above uses the gradient dynamical field of the charge density \(\rho(r)\) to determine atomic basins. In order to provide evidence of electronic domains one has to choose another local function related to the pair-electron density. Unfortunately, the pair-electron functions depend on two space variables and therefore cannot be used directly as potential function.

The ELF defined in equation 14 is a local function which describes to what extent the Pauli repulsion is efficient at a given point of the molecular space. Originally, the ELF was derived from the Laplacian of the conditional probability \([\nabla_{r_1}^2 P_{\text{cond}}(r_1, r_2)]_{r_1=r_2}\). An
alternative interpretation was later proposed in terms of the local excess kinetic energy density due to the Pauli exclusion principle. This interpretation not only gives a deeper physical meaning to the ELF function but also allows one to generalize the ELF to any wave function, in particular to the exact one. Therefore, the ELF provides a rigorous basis for the analysis of the wave function and of the bonding in molecules and crystals. In 1994, it was proposed to use the gradient field of ELF in order to perform a topological analysis of the molecular space in the spirit of AIM theory. The attractors of ELF determine basins which are either core basin encompassing nuclei or valence basin when no nucleus except a proton lies within it. The valence basins are characterized by the number of core basins with which they share a common boundary; this number is called the valence basin synaptic order. There are therefore asynaptic, monosynaptic, disynaptic and polysynaptic valence basins. Monosynaptic basins usually correspond to the lone pair regions whereas di- and polysynaptic basins characterize chemical bonds. An advantage of such representation is that it provides a clear criterion to identify multicentric bonds. In a way, this is a complementary view to the traditional valence representation: instead of such representation is that it provides a clear criterion to identify multicentric bonds.

From a quantitative point of view a localization basin (core or valence) is characterized by its population, i.e. the integrated one-electron density $\rho(r)$ over the basin (equation 15)

$$\tilde{N}(\Omega_i) = \int_{\Omega_i} d^3r \rho(r)$$

where Ω_i is the volume of the basin. It is worthwhile to calculate the variance of the basin population by equation 16,

$$\sigma^2(\tilde{N}; \Omega_i) = \int_{\Omega_i} d^3r_1 \int_{\Omega_i} d^3r_2 P(r_1, r_2) - [\tilde{N}(\Omega_i)]^2 + N(\Omega_i)$$

where $P(r_1, r_2)$ is the spinless pair-electron density. It has been shown that the variance can readily be written as a sum of contributions arising from the other basins (covariance) (equation 17)

$$\sigma^2(\tilde{N}; \Omega_i) = \sum_{j \neq i} \tilde{N}(\Omega_i) \tilde{N}(\Omega_j) - \int_{\Omega_i} d^3r_1 \int_{\Omega_j} d^3r_2 P(r_1, r_2)$$

In equation 17, $\tilde{N}(\Omega_i) \tilde{N}(\Omega_j)$ is the number of the electron pairs classically expected from the basin population whereas $\tilde{N}(\Omega_i, \Omega_j)$ is the actual number of pairs obtained by integration of the pair-electron function over the basins Ω_i and Ω_j. The variance is then a measure of the quantum mechanical uncertainty of the basin population which can be interpreted as a consequence of the electron delocalization, whereas the pair covariance indicates how much the population fluctuations of two given basins are correlated. Within the AIM framework, the atomic localization and delocalization indices $\lambda(A)$ and $\delta(A, B)$ have been introduced and defined by equations 18 and 19:

$$\lambda(A) = \tilde{N}(\Omega_A) - \sigma^2(\tilde{N}; \Omega_A)$$

$$\delta(A, B) = 2\tilde{N}(\Omega_A)\tilde{N}(\Omega_B) - 2 \int_{\Omega_A} d^3r_1 \int_{\Omega_B} d^3r_2 P(r_1, r_2)$$

The AIM delocalization indices are sometimes referred to as bond orders. The above notation can be generalized to any partition in the direct space and therefore is adopted in the present work. Within the ELF approach, the core population variance and
the core valence delocalization indices can be used to decide if a given core contributes to the synaptic order of an adjacent valence basin. For example, in the LiF molecule, the variances of the C(Li) and C(F) basins are 0.09 and 0.38, respectively, whereas $\delta(C(Li), V(F)) = 0.16$ and $\delta(C(F), V(F)) = 0.74$, where C stands for core and V for valence.

The concept of localization domain has been introduced for graphical purposes and also in order to define a hierarchy of the localization basins which can be related to chemical properties. A localization domain is a volume limited by one or more closed isosurfaces $\eta(r) = f$. A localization domain surrounds at least one attractor—in this case it is called irreducible. If it contains more than one attractor, it is reducible. Except for atoms and linear molecules, the irreducible domains are always filled volumes whereas the reducible ones can be either filled volumes, hollow volumes or donuts. Upon the increase in the value of $\eta(r)$ defining the boundary isosurface, a reducible domain splits into several domains, each containing less attractors than the parent one. The reduction of localization occurs at the turning points, which are critical points of index 1 located on the separatrix of two basins involved in the parent domain. Ordering these turning points (localization nodes) by increasing $\eta(r)$ enables one to build tree diagrams reflecting the hierarchy of the basins. A core basin is counted in the synaptic order of valence basins if there exists a value of the localization function which gives rise to a hollow volume localization domain (containing the considered valence basin attractors) with the core domain in its hole.

Before proceeding further with bridging the ELF with the key properties of monohalophenols, we pause briefly to analyse analytically the vector gradient field of ELF.

3. Vector gradient field $\nabla_{\eta} \eta(r)$

Applying the gradient to $\eta(r)$ defined by equation 14, we derive equation 20,

$$\nabla \eta(r) = \frac{2(t - t_W)t_{TF}}{[(t - t_W)^2 + t_{TF}^2]^2} [t - t_W] \nabla t_{TF} - t_{TF} \nabla (t - t_W)$$ \hspace{1cm} (20)

where $\nabla_{\eta} \equiv \nabla$ for short. Assuming molecular orbitals to be real valued, equation 20 is then easily transformed to equation 21,

$$\rho^{1/3} \frac{[(t - t_W)^2 + t_{TF}^2]^2}{2\alpha_{TF}(t - t_W)t_{TF}} \nabla \eta(r) = \sum_{i,j,k=1}^N \left[\frac{8}{3} \nabla \psi_i \psi_j \psi_k \nabla \psi_k (\psi_i \nabla \psi_j - \psi_j \nabla \psi_i) + \psi_i \psi_j^2 \nabla \psi_k (\psi_k^2 \psi_i - \psi_i \nabla^2 \psi_k) \right]$$

$$= \frac{8}{3} \nabla \rho \sum_{i < j}^N (\psi_i \nabla \psi_j - \psi_j \nabla \psi_i)^2 - \rho \sum_{i < j}^N (\psi_i \nabla \psi_j - \psi_j \nabla \psi_i)(\psi_j \nabla^2 \psi_j - \psi_j \nabla^2 \psi_i).$$

Therefore, we finally obtain equation 22,

$$\nabla \eta(r) = -\frac{\alpha_{TF}(t - t_W)t_{TF}}{[(t - t_W)^2 + t_{TF}^2]^2} \rho^{10/3} \nabla (J^2/\rho^8/3)$$ \hspace{1cm} (22)

where J^2 is given by equation 23,

$$J^2 = \frac{1}{4} \sum_{i < j}^N (\psi_i \nabla \psi_j - \psi_j \nabla \psi_i)^2$$ \hspace{1cm} (23)
1. General and theoretical aspects of phenols

Summarizing, the vector field $\nabla \eta(r)$ of the ELF vanishes at those $r \in \mathbb{R}^3$ which obey the condition $t(r) = t_w[\rho(r)]$ or equation 24,

$$J^2(r) = C \rho^{8/3}(r)$$

where C is a constant in \mathbb{R}^3.

For one purpose let us rewrite equation 23 as equation 25,

$$J^2 = \sum_{i<j} |j_{ij}|^2$$

where $j_{ij} = (\psi_i \nabla \psi_j - \psi_j \nabla \psi_i)/2$ is the real time-independent electron transition current density between the ith and jth molecular orbitals. Hence, J^2 determines the square of the net charge transferred between all occupied molecular orbitals. Thus, the zero-flux surfaces of the ELF are defined by the condition that net charge or, in other words, the electron transition current density $Q_{tr}(r) \equiv \sqrt{J^2(r)}$ associated with the transitions between all occupied molecular orbitals, is proportional to the electron density to the four-thirds power. This is the key difference in the vector gradient fields of $\rho(r)$ underlying the AIM theory and the ELF.272,273

4. The bonding in benzene, phenol and phenyl halides

In order to get some insight on how ELF works, we will analyse a number of parent molecules C_6H_5X ($X = H, OH, F, Cl, Br$ and I). Their localization domains are displayed in Figure 14. Except for the substituent itself, all these molecules have 6 $V(C, C)$, 5 $V(C, H)$ and one $V(C, X)$ basins. The differences are to be found in the hierarchy of the $V(C, C)$ basins which is ruled by the nature of the substituent. In benzene, all the $V(C, C)$ basins are equivalent and therefore the six critical points of index 1 between these basins have the same value, i.e. $\eta(r_c) = 0.659$. In the phenyl halides where the molecular symmetry is lowered from D_{6h} to C_{2v}, the former critical points are then distributed in four sets according to the common carbon position: ipso, ortho, meta and para. In phenol with a C_s symmetry, the two ortho and the two meta positions are not totally equivalent. In all studied molecules, the $\eta(r_c)$ values are enhanced in the ipso, ortho and para positions and decreased in the meta position. It has been remarked that the electrophilic substitution sites correspond to the carbon for which $\eta(r_c)$ is enhanced274. Moreover, it is worthwhile to introduce electrophilic substitution positional indices defined by equation 26,

$$RI_c(S) = \eta(C_i; S) - \eta(C_i; H)$$

where the subscript c denotes the position of the carbon labeled by i, i.e. ortho, meta or para. Interestingly, there exists a rather good correlation between the $RI_c(S)$ indices and the Hammett constants. Moreover, the positional indices are additive, enabling one to predict their values in a di-substituted molecule from the mono-substituted data.

The $V(C_i, C_j)$ basin populations, their variance and the electrophilic substitution positional indices of the studied C_6H_5X molecules are listed in Table 21. The $V(C, X)$ populations and their variance are close to their values in the CH_3X series. As expected the $V(C, C)$ basin populations are intermediate between those inherent to a single and a double $C-C$ bond and subject to a large fluctuation of the charge density. The classical meaning of the variance is the square of the standard deviation; though the standard deviation cannot be defined for a quantum system, the classical limit provides at least qualitative information about the delocalization. In the present case $\sigma \sim 1.16$, which is consistent with the resonance picture involving the Kekulé structures.
FIGURE 14 (PLATE 3). Localization domains of mono-X-substituted benzenes C_6H_5X (from left to right top $X = H, OH, F$, bottom $X = Cl, Br, I$). The ELF value defining the boundary isosurface, $\eta(r) = 0.659$ corresponds to the critical point of index 1 on the separatrix between adjacent $V(C, C)$ basins of benzene. Colour code: magenta = core, orange = monosynaptic, blue = protonated disynaptic, green = disynaptic. Adapted from Reference 220 with permission.
In phenol we reveal a noticeable increase in the $\bar{N}(V(C_o,C_m))$ population with respect to benzene (0.11 e) whereas the populations of the other basins remain almost unchanged. Indeed, the net charge transfer towards the aromatic ring amounts to 0.20 e. The halogen atoms induce a larger net charge transfer: 0.34, 0.32, 0.32 and 0.30 for F, Cl, Br and I, respectively. However, this transfer is charged by all basins although the $\bar{N}(V(C_o,C_m))$ populations are more enhanced than the $\bar{N}(V(C_i,C_o))$ and $\bar{N}(V(C_m,C_p))$ ones. The RI^c's are positive in the ipso, ortho and para positions and negative (except for I) in the meta ones.

In the halogen series F–Br, the RI^c absolute values decrease with the electronegativity.

5. Monohalogenated phenols: the bonding in terms of ELF

The substitution of the CH group by the CX one (X = F, Cl, Br, I) in phenol is expected to be felt by the aromatic ring as a rather weak perturbation which would enhance the electron donation and modify the electrophilic substitutional indices according to the additive law.\(^{274}\) As we have shown in Subsections III.A and III.B, in the ortho and meta substituted phenols the orientation of the OH bond in the molecular plane permits the existence of two conformers (Figures 12 and 13).

a. The ortho-substituted phenols

The localization domains of the ortho-substituted species are displayed in Figure 15: the cis conformers with the intramolecular hydrogen bond O–H···X are represented in the bottom row, the trans ones in the top row. Their basin populations and electrophilic substitution positional indices are given in Table 22.

Let us consider first the trans conformers in which the halogen substituent is not perturbed by an extra intramolecular interaction. In all molecules the $\bar{N}(V(C_1,O))$ basin population is slightly increased with respect to phenol: the largest effect occurs for X = Cl, whereas for X = Br and I this effect is weaker than for the fluorinated species. The
Localization domains of ortho-X-substituted phenols (from left to right $X = F, Cl, Br, I$; top—trans conformer, bottom—cis conformer). The ELF value defining the boundary isosurface, $\eta(r) = 0.659$ corresponds to the critical point of index 1 on the separatrix between adjacent $V(C, C)$ basins of benzene. Colour code: magenta = core, orange = monosynaptic, blue = protonated disynaptic, green = disynaptic. Adapted from Reference 220 with permission.
1. General and theoretical aspects of phenols

TABLE 22. Basin populations $\tilde{N}(V)$ and electrophilic substitution positional indices RI_c of ortho-substituted phenols

<table>
<thead>
<tr>
<th></th>
<th>trans conformation</th>
<th>cis conformation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Cl</td>
</tr>
<tr>
<td>Populations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(C₁, O)</td>
<td>1.54</td>
<td>1.54</td>
</tr>
<tr>
<td>V(C₂, X)</td>
<td>1.05</td>
<td>1.49</td>
</tr>
<tr>
<td>V(C₁, C₆)</td>
<td>2.82</td>
<td>2.87</td>
</tr>
<tr>
<td>V(C₁, C₂)</td>
<td>2.92</td>
<td>2.78</td>
</tr>
<tr>
<td>V(C₆, C₃)</td>
<td>2.90</td>
<td>2.96</td>
</tr>
<tr>
<td>V(C₅, C₄)</td>
<td>2.97</td>
<td>2.86</td>
</tr>
<tr>
<td>V(C₄, C₁)</td>
<td>2.76</td>
<td>2.86</td>
</tr>
<tr>
<td>V(C₃, C₂)</td>
<td>2.98</td>
<td>3.05</td>
</tr>
<tr>
<td>Net transfer</td>
<td>0.43</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Positional indices								
RI_1	0.047	0.040	0.039	0.043	0.044	0.036	0.035	0.039
RI_2	0.100	0.082	0.076	0.072	0.113	0.099	0.094	0.092
RI_3	0.010	0.0	−0.001	0.002	0.009	0.0	−0.001	0.013
RI_4	0.010	0.012	0.013	0.018	0.011	0.013	0.014	0.009
RI_5	0.0	−0.006	−0.007	−0.003	0.0	−0.007	−0.008	−0.004
RI_6	0.035	0.037	0.037	0.042	0.020	0.022	0.023	0.028

Values taken from Reference 220 with permission.

V(C₆, X) populations are close to their values in the corresponding halobenzene; however, there is a small electron transfer towards this basin for X = F, whereas the iodine atom undergoes an opposite effect. With respect to phenol, the regioselectivity of the electrophilic substitution is softened because as the OH and X = F, Cl, Br groups are both ortho–para directors, they contribute in opposite directions. As all the positional indices of C₆H₅I are positive, they are enhanced in the trans ortho-iodophenol. The additive rule works satisfactorily for all positions as the largest discrepancy between estimated and calculated value does not exceed 0.002.

In the cis conformer, the charge transfer towards the V(C₁, O) basin is close to that calculated for the trans partner, as the population difference between the two conformers is of the order of the precision of the employed integration procedure. Within the OH group, the formation of the intramolecular hydrogen bond yields a small decrease of ca 0.005 e, whereas the V(O) basin population is increased by almost the same amount of electron density. The V(C₆, X) populations are always significantly lower for the cis conformer than in the trans one; the difference increases from F to Br. This should be due to the formation of the intramolecular hydrogen bond which enhances the electron donation towards the V(X) basins. With respect to the basin population criterion, the V(C₆, X) basin appears to be more perturbed than the V(C₁, O) one, and we could therefore expect that the additivity of the reactivity indices no longer holds for the cis conformer because the halogen atom is perturbed in this case. Indeed, the maximum deviation between the estimated and calculated indices does not exceed 0.002 in the trans case while it is ten times larger for the cis conformer. The overall charge transfer towards the aromatic ring is always less than the sum of the substituent contributions arising from phenol and benzene halides, and it is larger for the cis conformer.

The strength of the intramolecular hydrogen bond can be estimated within the ELF analysis by the core valence bifurcation index ϑ_{AHB}. This index is defined as the
difference between the values of \(\text{ELF} \) calculated at the index 1 critical point of the separatrix of the \(\text{V}(\text{A, H}) \) and \(\text{V}(\text{B}) \) basin and at the core valence boundary of the proton donor moiety. It is nicely correlated with the proton donor stretching frequency, namely negative values indicate a weak hydrogen bonding such as in the \(\text{FH} \cdots \text{N}_2 \) complex whereas positive values indicate stronger hydrogen bonds such as in \(\text{FH} \cdots \text{NH}_3 \). For the \textit{cis ortho-}fluoro-, chloro- and bromo-phenols, we find the following values of the core valence bifurcation index: \(-0.06\), \(-0.02\) and \(-0.01\), respectively. These values correspond to very weak or weak hydrogen bonds. On the other hand, they show that the hydrogen bond strength increases from F to Br, which is counterintuitive if one considers the halogen electronegativity. However, it completely explains the order reported in equation 5. This also indicates that the strength of the intramolecular hydrogen bond is driven by geometrical strains which hamper the formation of these bonds with the lightest halogens. A similar conclusion is drawn in Subsection III.A (see also Figure 12) although from a different point of view.

\textbf{b. The meta-substituted phenols.} Figure 16 displays the localization domains of the \textit{trans} and \textit{cis meta}-substituted phenols whereas quantitative information is provided by Table 23. In these derivatives the interaction of the two substituents is expected to be weaker than in the \textit{ortho} case. The \(\text{V}(\text{C}_1, \text{O}) \) basin population is smaller than its value in phenol for all molecules except \textit{cis} iodophenol. In the latter case the discrepancy could be due to the use of a large core pseudopotential on the iodine atom (in practice, the \textit{ELF} analysis requires the explicit presence of core basins, at least determined by a small core pseudopotential). On the halogen side, the \(\text{V}(\text{C}_4, \text{X}) \) basin populations are also smaller (except for iodine) than in halobenzene. There is a net enhancement of the electron donation towards the ring which is evidenced by the calculated charge transfer which is larger than the value given by an additive assumption.

Except for iodine, the additivity of the electrophilic positional indices is nicely verified. With respect to phenol, the indices of the carbon in \textit{ortho} and \textit{para} positions are noticeably increased whereas that of carbon \textit{C}_3 is more negative, because it corresponds to a \textit{meta} position for both substituents.

\textbf{c. The para-substituted phenols.} In the \textit{para}-substituted phenols presented in Figure 17, the two substituents act in the opposite directions. From Table 24 it becomes clear that the substitution of the hydrogen atom by a \textit{para}-halogen induces a small increase in the \(\text{V}(\text{C}, \text{O}) \) basin population with respect to phenol as well as in the \(\text{V}(\text{C}, \text{X}) \) populations with respect to halobenzene. The additive estimate of the electrophilic substitution positional indices is verified (except in some cases for iodine). As expected, the orientational effects are smoothed.

The population of the \(\text{V}(\text{C}, \text{H}) \) basins are all close to 2.10 within the accuracy of the integration scheme, and therefore it is not possible to draw any conclusion about their behaviour.

The \textit{ELF} population analysis enables one to show the following cooperative trends, which are in agreement with chemical intuition:

(i) In the \textit{ortho}- and \textit{para}-substituted species, the \(\text{V}(\text{C}, \text{O}) \) population is increased with respect to phenol.

(ii) In the \textit{ortho}- and \textit{para}-substituted species, the orientational effects are weakened except for \textit{ipso} positions.

(iii) In the \textit{meta}-substituted species, the \(\text{V}(\text{C}, \text{O}) \) and the orientational effects are enhanced.

(iv) The formation of the intramolecular hydrogen bond in the \textit{ortho} species softens the additivity of the orientational effects.
1. General and theoretical aspects of phenols

FIGURE 16 (PLATE 5). Localization domains of meta-X-substituted phenols (from left to right X = F, Cl, Br, I; top — trans conformer, bottom — cis conformer). The ELF value defining the boundary isosurface, \(\eta(r) = 0.659 \) corresponds to the critical point of index 1 on the separatrix between adjacent V(C, C) basins of benzene. Colour code: magenta = core, orange = monosynaptic, blue = protonated disynaptic, green = disynaptic. Adapted from Reference 220 with permission.
TABLE 23. Basin populations $\tilde{N}(V)$ and electrophilic substitution positional indices RI_e of meta-substituted phenols

<table>
<thead>
<tr>
<th>Chemical Structure</th>
<th>POPULATIONS</th>
<th>POSITIONAL INDICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V(\text{C}_1, \text{O})$</td>
<td>1.44, 1.46, 1.47, 1.49</td>
<td>RI_1: 0.027, 0.028, 0.029, 0.035</td>
</tr>
<tr>
<td>$V(\text{C}_3, \text{X})$</td>
<td>0.97, 1.45, 1.45, 1.40</td>
<td>RI_2: 0.044, 0.035, 0.034, 0.050</td>
</tr>
<tr>
<td>$V(\text{C}_1, \text{C}_2)$</td>
<td>2.72, 2.84, 2.84, 3.05</td>
<td>RI_3: 0.069, 0.051, 0.044, 0.041</td>
</tr>
<tr>
<td>$V(\text{C}_6, \text{C}_3)$</td>
<td>2.95, 2.95, 2.93, 3.05</td>
<td>RI_4: 0.033, 0.023, 0.023, 0.026</td>
</tr>
<tr>
<td>$V(\text{C}_4, \text{C}_3)$</td>
<td>2.85, 2.80, 2.74, 2.77</td>
<td>RI_5: -0.012, -0.010, -0.010, -0.005</td>
</tr>
<tr>
<td>$V(\text{C}_3, \text{C}_2)$</td>
<td>3.16, 2.98, 3.01, 2.91</td>
<td>RI_6: 0.047, 0.042, 0.040, 0.029</td>
</tr>
</tbody>
</table>

Net transfer: 0.61, 0.38, 0.34, 0.34

Values taken from Reference 220 with permission.

Finally, some of the unexpected results revealed for iodophenols warn against the use of large core pseudopotentials in the ELF analysis. It is noteworthy that the analysis of the topology of the ELF enables us to predict favoured protonation sites with the help of a ‘least topological change principle’ which will be discussed in a following section.

D. Some Representatives of Substituted Phenols

We conclude this Section with a few words on nitrophenols and cyanophenols (CP or NCC$_6$H$_4$OH). For instance, the experimental K_a value for the proton separation of p-NCC$_6$H$_4$OH in both the ground and excited electronic states measured in solution is higher than that of phenol by one order of magnitude. This implies that cyanophenols may form much stronger hydrogen bonds. And this fact has been particularly confirmed by an observation of sharp vibronic bands in the R2PI spectrum with the electronic origin at ca. 35410 cm$^{-1}$ of the complex of p-NCC$_6$H$_4$OH with two water molecules. Cyanophenols are also rather convenient compounds for ultrafast experimental studies.

Figure 18 displays the optimized geometries of cyanophenols where it is seen particularly that the cis ortho-CP has a relatively weak intramolecular hydrogen bond. Similar...
1. General and theoretical aspects of phenols

FIGURE 17 (PLATE 6). Localization domains of para-X-substituted phenols (from left to right X = F, Cl, Br, I). The ELF value defining the boundary isosurface, $\eta(r) = 0.659$ corresponds to the critical point of index 1 on the separatrix between adjacent V(C, C) basins of benzene. Colour code: magenta = core, orange = monosynaptic, blue = protonated disynaptic, green = disynaptic. Adapted from Reference 220 with permission

to Subsection III.A, we can estimate its energy of formation as the energy difference between the *cis* ortho- and *trans* ortho-CPs which, at the present computational level, is 10.0 kJ mol$^{-1}$ after including ZPVE corrections. It is worthwhile to deduce the order of stability of cyanophenols similar to that given in equation 12. We thus obtain equation 27, where the values are given in kJ mol$^{-1}$:

$$
cis o > p > cis m \approx trans m > trans o
$$

(27)

It shows that, energetically, all cyanophenols fall into the interval of stability between the *cis* ortho- and *trans* ortho-CPs. Some characteristic vibrational modes are collected in Table 25 accompanied by their assignments based on the PEDs.
TABLE 24. Basin populations $\tilde{N}(V)$ and electrophilic substitution positional indices RI_c of para-substituted phenols

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>Cl</th>
<th>Br</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V(C_1, O)$</td>
<td>1.52</td>
<td>1.60</td>
<td>1.56</td>
<td>1.62</td>
</tr>
<tr>
<td>$V(C_4, X)$</td>
<td>1.0</td>
<td>1.53</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>$V(C_1, C_3)$</td>
<td>2.98</td>
<td>2.87</td>
<td>2.85</td>
<td>2.74</td>
</tr>
<tr>
<td>$V(C_1, C_6)$</td>
<td>2.68</td>
<td>2.66</td>
<td>2.68</td>
<td>2.80</td>
</tr>
<tr>
<td>$V(C_2, C_3)$</td>
<td>2.96</td>
<td>3.01</td>
<td>3.0</td>
<td>3.02</td>
</tr>
<tr>
<td>$V(C_3, C_6)$</td>
<td>3.0</td>
<td>3.0</td>
<td>2.99</td>
<td>2.69</td>
</tr>
<tr>
<td>$V(C_5, C_6)$</td>
<td>3.06</td>
<td>3.13</td>
<td>3.10</td>
<td>3.02</td>
</tr>
<tr>
<td>Net transfer</td>
<td>0.57</td>
<td>0.48</td>
<td>0.43</td>
<td>0.35</td>
</tr>
<tr>
<td>Positional indices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI_1</td>
<td>0.040</td>
<td>0.033</td>
<td>0.032</td>
<td>0.036</td>
</tr>
<tr>
<td>RI_2</td>
<td>0.035</td>
<td>0.037</td>
<td>0.037</td>
<td>0.027</td>
</tr>
<tr>
<td>RI_3</td>
<td>0.010</td>
<td>0.001</td>
<td>0.0</td>
<td>0.002</td>
</tr>
<tr>
<td>RI_4</td>
<td>0.090</td>
<td>0.075</td>
<td>0.071</td>
<td>0.066</td>
</tr>
<tr>
<td>RI_5</td>
<td>0.008</td>
<td>0.0</td>
<td>−0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>RI_6</td>
<td>0.020</td>
<td>0.022</td>
<td>0.022</td>
<td>0.042</td>
</tr>
</tbody>
</table>

Values taken from Reference 220 with permission.

FIGURE 18. The B3LYP/6-31+G(d,p) geometries of cyanophenols in the ground electronic state. Bond lengths are in Å, bond angles in degrees.
1. General and theoretical aspects of phenols

TABLE 25. Characteristic vibrational modes of cyanophenols, \(p \)-nitrophenol and pentachlorophenol. Frequencies are given in cm\(^{-1}\) and IR activities in km mol\(^{-1}\)

<table>
<thead>
<tr>
<th></th>
<th>(\nu_{\text{OH}})</th>
<th>IR</th>
<th>(\tau_{\text{OH}})</th>
<th>PED, %</th>
<th>(\nu_{\text{CO}})</th>
<th>PED, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>para-cyanophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_{\text{OH}})</td>
<td>3823</td>
<td>87</td>
<td>(\nu_{\text{OH}})</td>
<td>(100)</td>
<td>1303</td>
<td>(55)</td>
</tr>
<tr>
<td>(\tau_{\text{OH}})</td>
<td>366</td>
<td>118</td>
<td>(\tau_{\text{OH}})</td>
<td>(95)</td>
<td>1303</td>
<td>(55)</td>
</tr>
<tr>
<td>cis ortho-cyanophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_{\text{OH}})</td>
<td>3764</td>
<td>81</td>
<td>(\nu_{\text{OH}})</td>
<td>(100)</td>
<td>1281</td>
<td>49</td>
</tr>
<tr>
<td>(\tau_{\text{OH}})</td>
<td>438</td>
<td>112</td>
<td>(\tau_{\text{OH}})</td>
<td>(91)</td>
<td>1341</td>
<td>11</td>
</tr>
<tr>
<td>trans ortho-cyanophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_{\text{OH}})</td>
<td>3826</td>
<td>81</td>
<td>(\nu_{\text{OH}})</td>
<td>(100)</td>
<td>351</td>
<td>117</td>
</tr>
<tr>
<td>(\tau_{\text{OH}})</td>
<td>315</td>
<td>117</td>
<td>(\tau_{\text{OH}})</td>
<td>(94)</td>
<td>1294</td>
<td>27</td>
</tr>
<tr>
<td>cis meta-cyanophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_{\text{OH}})</td>
<td>3826</td>
<td>70</td>
<td>(\nu_{\text{OH}})</td>
<td>(100)</td>
<td>1309</td>
<td>95</td>
</tr>
<tr>
<td>(\tau_{\text{OH}})</td>
<td>339</td>
<td>118</td>
<td>(\tau_{\text{OH}})</td>
<td>(92)</td>
<td>954</td>
<td>16</td>
</tr>
<tr>
<td>trans meta-cyanophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_{\text{OH}})</td>
<td>3828</td>
<td>75</td>
<td>(\nu_{\text{OH}})</td>
<td>(100)</td>
<td>1306</td>
<td>57</td>
</tr>
<tr>
<td>(\tau_{\text{OH}})</td>
<td>332</td>
<td>118</td>
<td>(\tau_{\text{OH}})</td>
<td>(93)</td>
<td>953</td>
<td>46</td>
</tr>
<tr>
<td>para-nitrophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_{\text{OH}})</td>
<td>3821</td>
<td>96</td>
<td>(\nu_{\text{OH}})</td>
<td>(100)</td>
<td>1305</td>
<td>188</td>
</tr>
<tr>
<td>(\tau_{\text{OH}})</td>
<td>382</td>
<td>119</td>
<td>(\tau_{\text{OH}})</td>
<td>(94)</td>
<td>1305</td>
<td>188</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_{\text{OH}})</td>
<td>3688</td>
<td>96</td>
<td>(\nu_{\text{OH}})</td>
<td>(100)</td>
<td>1454</td>
<td>149</td>
</tr>
<tr>
<td>(\tau_{\text{OH}})</td>
<td>429</td>
<td>108</td>
<td>(\tau_{\text{OH}})</td>
<td>(93)</td>
<td>1454</td>
<td>149</td>
</tr>
</tbody>
</table>
Figure 19 displays another representative of substituted phenols, namely \textit{p}-nitrophenol, whose history of discovery was mentioned in Section I. A knowledge of its structure and IR spectrum is important for the study of inter- and intra-molecular interactions via a variety of spectroscopic methods.

To our knowledge, the first theoretical study of \textit{p}-nitrophenol, at HF/3-21G computational level, was conducted in 1988283. The molecular structure of \textit{o}-nitrophenol284,285 and its IR spectra in the gas phase, solution and solid286 were reported. For \textit{p}-nitrophenol, only the IR spectrum was available in the solid state287. Recently, a thorough study288 of \textit{p}- and \textit{o}-nitrophenols using B3LYP/6-31G(d,p) calculations has been reported which consists, first, in obtaining their geometries and, second, in calculating the harmonic vibrational frequencies and making their assignments for \textit{p}-nitrophenol. In Table 25, we collect the key harmonic vibrational modes of \textit{p}-nitrophenol together with their PED analysis.

Finally, we briefly mention pentachlorophenol (PCP), which is the most complex substituted phenol whose structure is reported so far in the present review and which is widely used in studies on the hydrogen bonding abilities of phenols. Its optimized geometry is demonstrated in Figure 20 and Table 25 lists its characteristic vibrational modes (cf. Reference 289). Except for the vibrations involving the OH and OD bonds, agreement between experimental and calculated values exists for the fundamental wavenumbers between 3600 and 400 cm-1. The infrared spectra between 3600 and 10000 cm-1 have also been studied and the overtones or combination bands were assigned by comparing the spectra of both isotopomers PCP-OH and PCP-OD. The anharmonicities of the OH
and OD stretching modes were determined and the binary or ternary combinations characterized by the highest coupling constants, and the highest intensities are those involving the OH and CO vibrations.

IV. ENERGETICS OF SOME FUNDAMENTAL PROCESSES

A. Protonation

Protonation is a simple but important chemical process. The primary protonated form is usually a pivotal intermediate that guides the subsequent steps of an entire chemical transformation. Biomolecules such as DNA and proteins can often exist in numerous protonated forms. In a molecular system having several basic sites, the protonation usually turns out to be regioselective yielding predominantly one protonated species. The attachment of proton to a molecule A is quantified by its proton affinity, PA(A), which is defined as the negative standard enthalpy (ΔH°) of the reaction $A + H^+ \rightarrow AH^+$. The PA is a measure of the basicity of the molecule which is one of the fundamental concepts in chemistry. In the most general sense, basicity is the ability of a substance to accept a positive charge. In the Lewis definition, the charge is transferred by gain or loss of an electron pair. In the Brønsted definition, the charge is transferred by gain or loss of a proton; therefore, the basicity is conventionally defined as the negative standard free energy (ΔG°) of the protonation reaction. Although the PA of a functional group is definitely influenced by the presence of substituents, any given functional group is more or less characterized by a certain range of proton affinities and a simple comparison of their values could often allow the most favoured protonation site of a polyfunctional substrate to be determined.

Let us consider in some detail the protonation of the parent phenol, a series of monohalogenated phenols (XC_6H_4OH, $X=H, F, Cl, Br, I$), and for a further control, the fluoroanisoles, $FC_6H_4OCH_3$. The interaction of the alkali metal cations including Li$^+$, Na$^+$ and K$^+$ is also probed. In what follows, only the processes taking place in the gaseous phase are considered.

1. Protonation of phenol

Phenol contains both phenyl and hydroxyl functional groups. While the PA of the phenyl moiety could be estimated from that of benzene, the PA of water provides an estimate for that of the hydroxyl group. The experimental PA(H$_2$O)291 is well established at 697 ± 4 kJ mol$^{-1}$ whereas the PA of benzene292 is experimentally evaluated as 753 kJ mol$^{-1}$. In other words, the PA(C_6H_6) exceeds the PA(H$_2$O) by as much as 56 kJ mol$^{-1}$. Such a difference suggests that the preferential protonation of phenol should occur on the ring moiety, even though it is not always true293. In reality, the experimental gas-phase PA(PhOH) of 816–818 kJ mol$^{-1}$, as determined by either pulsed ion cyclotron resonance equilibrium experiments294 or high pressure mass spectrometry295 (for a recent compilation, see Reference 296), turns out to be substantially larger than those mentioned above, implying that the OH group markedly affects the protonation of the phenyl moiety. In fact, it was demonstrated experimentally that the gas-phase phenol protonation occurs predominantly on the ring, and the oxygen PA is about 55–84 kJ mol$^{-1}$ smaller than the carbon PA297. These findings were subsequently supported by \textit{ab initio} MO calculations298,299. The O-protonated form was calculated to lie 81 kJ mol$^{-1}$ higher in energy than its para-C-protonated isomer299. Recently, the existence of at least two protonated phenol isomers corresponding to proton attachment at oxygen and at the aromatic ring has been confirmed convincingly by using IR spectroscopy300.
In contrast to these gas-phase findings, the oxygen protonation was found to be favoured in various solutions297. The influence of the solvent is known to be a crucial factor determining the strength of bases. In some cases, the relative basicity ordering is even reversed by external effects.

The presence of a hydroxyl group induces four different positions on the ring susceptible for an electrophilic attack, namely the \textit{ipso}-C\textsubscript{1}, \textit{ortho}-C\textsubscript{2}, \textit{meta}-C\textsubscript{3} and \textit{para}-C\textsubscript{4} carbons, relative to the hydroxyl position, and one of these carbon centres will show the largest attraction for the proton. For the sake of convenience, the term ‘ortho-protonation’ stands hereafter for a protonation occurring at the carbon C\textsubscript{2} etc. All theoretical methods agreed with each other in predicting the \textit{para}-position as the most favourable protonation site298–300 followed by the \textit{ortho} position with a rather small difference of ca 10 kJ mol−1. The \textit{meta}-protonated phenol is placed ca 60 kJ mol−1 above the \textit{para}-counterpart, whereas the \textit{ipso}-protonated species lies consistently much higher in energy. The difference between the PAs of both \textit{meta}-C\textsubscript{3}- and O-protonated forms is calculated to be small, approximately 15 kJ mol−1298–300.

At the B3LYP/6-311++G(d,p) + ZPE level of theory, the local PAs of phenol at different sites are evaluated in kJ mol−1 as follows: 820 for \textit{para}-C\textsubscript{4}, 809 for \textit{ortho}-C\textsubscript{2}, 757 for \textit{meta}-C\textsubscript{3}, 699 for \textit{ipso}-C\textsubscript{1} and 743 for oxygen299. The coupled-cluster CCSD(T) approach in conjunction with the 6-311++G(d,p) basis set yields a PA(C\textsubscript{4}) of 819 kJ mol−1. When using an appropriate basis set, the calculated PAs thus compare reasonably well with the experimental value quoted above.

The potential energy surface (PES) of the protonated phenol species possesses seven local energy minima all displayed in Figure 21, which vividly illustrates the migration of the excess proton between the adjacent heavy atoms. This portion of the energy surface also includes four transition structures (TS) for 1,2-hydrogen migrations. Starting from the highest-energy \textit{ipso}-protonated form, the excess H+ almost freely migrates to the \textit{ortho}-protonated form passing through a small barrier of 8 kJ mol−1 described by TS\textsubscript{3}. The barriers for proton migration between the other adjacent carbon atoms are substantially larger, viz. 31 kJ mol−1 for the \textit{meta}-to-\textit{para} (TS\textsubscript{1}) and 45 kJ mol−1 for the \textit{meta}-to-\textit{ortho} migration (TS\textsubscript{2}). The activation barrier governing the \textit{ipso}-to-oxygen migration amounts to 121 kJ mol−1 (TS\textsubscript{4}). The corresponding transition frequencies of 773\textit{i}, 869\textit{i}, 960\textit{i} and 1599\textit{i} cm−1, respectively, are assigned to the vibrational modes of the excess migrating proton. The large energy separation between the \textit{para}-C\textsubscript{4} and O-protonations clearly demonstrated in Figure 21 constitutes a key difference from the protonation process in aniline (C\textsubscript{6}H\textsubscript{5}NH\textsubscript{2}) where both the \textit{para}-C\textsubscript{4} and N-protonated species have comparable energy content301–303. Nevertheless, a substantial energy barrier of 159 kJ mol−1 for H-shift has been found separating the O-protonated phenol from its nearest C-isomers. This result provides us with a rationalization for the recent experimental observations using IR spectroscopic techniques300. It appears that in this experiment, protonation initially occurs at several positions, but eventually only the O- and one C-protonated form were stabilized and spectroscopically detected. Due to the ease with which the proton scrambled around the ring, it is rather difficult to observe, for example, a \textit{meta}-form even though it is thermodynamically more stable than the O-isomer. In contrast, the latter was able to resist unimolecular rearrangements, thanks to the more difficult oxygen-to-carbon proton migration (Figure 21), and thus it lived long enough to be detectable within the time frame of an IR experiment.

The regioselectivity of the gas-phase protonation of phenol can be understood in simple terms of its resonance structures. Drawing them, we may figure out that a positive \pi-charge of the protonated form is mainly localized in the \textit{para} and \textit{ortho}-positions with respect to the protonation site. If the OH group is attached to one of these positions, the relevant molecule is then described by four resonance structures, resulting in the positive \pi-charge...
1. General and theoretical aspects of phenols

Phenol $+ \text{H}^+$

FIGURE 21. Portion of the potential energy surface of the protonated phenol showing the proton migration between the adjacent heavy atoms. Values given in kJ mol$^{-1}$ were obtained from B3LYP/6-31+G(d,p)+ZPE computations299. Adapted from Reference 299 with permission

to be distributed over all atoms. Otherwise, only three structures are allowed. The presence of a positive charge in direct conjugation with the oxygen atom favours the electron density shift from the oxygen lone pairs to the ring and strengthens a stabilization of the arenium ion. Spectroscopically, it is manifested in a blue-shifting $\Delta \nu_{CO}$ of the fundamental mode 13 with the dominant contribution of the ν_{CO} stretching vibration which accompanies a shortening of the CO bond (Δr). In particular, the calculated Δr and $\Delta \nu_{CO}$ take the following values: 0.06 Å and 112 cm$^{-1}$ in para-, 0.06 Å and 46 cm$^{-1}$ in ortho- and 0.03 Å and 27 cm$^{-1}$ in meta-protonated phenol. The other indicative frequency shifts showing the contribution of the resonance structures with the doubly-bonded oxygen atom, i.e., 19 and 20, are associated with the OH stretching and torsional vibrations. The contribution of both structures 19 and 20 is expected to weaken the OH bond and shift the corresponding ν_{OH} mode to lower frequencies. Also, it likely determines the torsional barrier describing the rotation of the OH group around the single conjugated CO bond304,305 and therefore increases the τ_{OH} frequency. The low-energy para- and ortho-protonated structures reveal the most pronounced and rather similar red shifts of the ν_{OH} mode by 89 cm$^{-1}$ and 93 cm$^{-1}$, and also the blue shifts of the τ_{OH} mode by 281 cm$^{-1}$ and 277 cm$^{-1}$, respectively. This implies participation of the lone pairs of oxygen in stabilizing the arenium ion that leads to increase in the PA of the phenyl moiety. The meta-protonation shifts the corresponding vibrations by only 30 cm$^{-1}$ and 69 cm$^{-1}$ compared to those in the neutral molecule. A similarity in frequency shifts of the ν_{CO} and τ_{OH} modes in both para- and ortho-protonated structures and also in their relative energies suggests that the regiosel ectivity of the protonation of phenol is primarily governed by resonance factors.
2. Proton affinities of halophenols

The calculated PAs for mono-fluorinated phenols listed in Table 26, obtained by using the B3LYP/6-31+G(d,p)+ZPE level, are found to be in reasonable agreement with the recent ion cyclotron resonance data306, namely 797 kJ mol−1 (expt. 788 kJ mol−1) for 2-fluorophenol, 813 kJ mol−1 (expt. 802 kJ mol−1) for 3-fluorophenol and 787 (expt. 776 kJ mol−1) for 4-fluorophenol, and thus approach the experimental PA with a quasi-systematic overestimation of ca 10–12 kJ mol−1. To our knowledge, no experimental PAs of Cl-, Br- and I-substituted phenols have been available so far.

For the 2- and 3-halophenols, the \textit{para}-position remains the most attractive protonation site, irrespective of the nature of the X-atom, followed by two \textit{ortho}-positions, C\textsubscript{6} and C\textsubscript{2}, respectively. All structures protonated at these sites lie within 20 kJ mol−1 above the corresponding global C\textsubscript{4} minima (Table 26). The other sites are less accessible for protonation. As envisaged by the classical resonance model, the lower-energy protonated structures always have the OH and X groups in the \textit{para}- and \textit{ortho}-positions relative to the protonation site. Among them, the structures where the OH group is attached in \textit{para} and the X atom in \textit{ortho} reach the global minimum on the PES of a given X-substituted protonated phenol, featuring the largest PAs in the whole series, viz. 813 kJ mol−1 in 3-fluorophenol,

\begin{table}[h]
\centering
\caption{The B3LYP/6-31+G(d,p) proton affinities (kJ mol−1) of halogenated phenolsa}
\begin{tabular}{cccccccc}
\hline
Protonation site & C\textsubscript{1} & C\textsubscript{2} & C\textsubscript{3} & C\textsubscript{4} & C\textsubscript{5} & C\textsubscript{6} & O \\
Substitution & & & & & & & \\
\hline
2-F & 711 & 749 & 764 & 797 & 761 & 784 & 731 \\
3-F & 672 & 802 & 683 & 813 & 732 & 804 & 721 \\
4-F & 709 & 787 & 753 & 756 & — & — & 729 \\
2-Cl & 700 & 756 & 757 & 801 & 760 & 790 & 715 \\
3-Cl & 679 & 798 & 699 & 815 & 735 & 811 & 724 \\
4-Cl & 709 & 789 & 756 & 771 & — & — & 727 \\
2-Br & 702 & 763 & 760 & 806 & 763 & 795 & 736 \\
3-Br & 683 & 801 & 716 & 818 & 738 & 815 & 727 \\
4-Br & 713 & 792 & 759 & 784 & — & — & 728 \\
2-I & 710 & 791 & 767 & 813 & 769 & 803 & 743 \\
3-I & 691 & 807 & — & 823 & 746 & 820 & 730 \\
4-I & 719 & 791 & 765 & 816 & — & — & 731 \\
\hline
\end{tabular}
aAtoms numbering is shown in Chart 1. In \textit{meta}-fluorophenols, the OH bond is leaned away from the substituent, and in all other \textit{meta}-substituted phenols, towards it, providing the most stable neutral structures. In case of \textit{para}-X-phenols, two pairs of structures with the protonation sites on C\textsubscript{2}–C\textsubscript{6} and C\textsubscript{3}–C\textsubscript{5} atoms, respectively, are energetically close. Values taken from Reference 299.
815 kJ mol\(^{-1}\) in 3-chlorophenol, 818 kJ mol\(^{-1}\) in 3-bromophenol, and 823 kJ mol\(^{-1}\) in 3-iodophenol. Such behaviour can in part be accounted for by a better conjugation of the oxygen lone pairs with the ring compared to those of the X groups.

The 3-X-phenols (X=Cl, Br, I) protonated at the C\(_6\) and C\(_6\) positions are nearly isoenergetic; their PAs are equal to 815 and 811 kJ mol\(^{-1}\) in 3-chlorophenol, 818 and 815 kJ mol\(^{-1}\) in 3-bromophenol, and 823 and 820 kJ mol\(^{-1}\) in 3-iodophenol, whereas the C\(_2\)-protonated species lie slightly higher in energy due to a steric repulsion with the OH group.

In 4-halophenols (X =F, Cl, Br), the excess proton tends to reside in \textit{ortho}-positions. On the other hand, in \textit{para}-iodophenol, the protonated structure with both I and the excess H\(^+\) residing in the \textit{para}-site has the lowest energy.

As for a correlation between PAs and molecular properties, Table 27 lists the characteristic frequencies of the hydroxyl torsional \(\tau_{\text{OH}}\) and stretching \(\nu_{\text{OH}}\) vibrational modes in the neutral and protonated fluorophenols. The \(\tau_{\text{OH}}\) vibration is directly related to distortions in the \(\pi\)-electron system which was demonstrated experimentally for a wide variety of substituted phenols\(^{307}\). The \(\pi\)-electron donor substituents at the \textit{para}-position lower the \(\tau_{\text{OH}}\) frequency compared to unsubstituted phenol, while the \(\pi\)-electron acceptor substituents act in the opposite way. In neutral fluorophenols, the \(\tau_{\text{OH}}\) mode is centred at 304 cm\(^{-1}\) for \textit{para}-fluorophenol, 330 cm\(^{-1}\) for \textit{meta}-fluorophenol and is blue-shifted to 411 cm\(^{-1}\) for \textit{ortho}-fluorophenol due to the hydrogen bonding (see Table 27; 330 cm\(^{-1}\) in unsubstituted phenol). The \(\tau_{\text{OH}}\) frequency is blue-shifted upon protonation depending on the protonation site. In \textit{para}- and \textit{ortho}-protonated phenols which are resonance-stabilized via the structures with the doubly-bonded oxygen atom of the types 19 and 20 exhibiting the highest PA, these shifts are very pronounced and yield values of 317 cm\(^{-1}\) in the C\(_6\)-protonated \textit{para}-fluorophenol, 283 cm\(^{-1}\) in C\(_2\)-protonated, 264 cm\(^{-1}\) in C\(_4\)-protonated and 231 cm\(^{-1}\) in C\(_6\)-protonated \textit{meta}-fluorophenols. In \textit{meta}-protonated structures, the blue shift of the \(\tau_{\text{OH}}\) becomes smaller, viz. 2 cm\(^{-1}\) in \textit{para}-fluorophenol and 70 cm\(^{-1}\) in \textit{meta}-fluorophenol. In \textit{ortho}-fluorophenols, the effect of the protonation site on \(\tau_{\text{OH}}\) is less evident due to its interplay with the effects of hydrogen bonding.

The \(\nu_{\text{OH}}\) frequency behaves in a similar manner with respect to the protonation site, although shifts are in the opposite direction. By analogy with the torsional frequency, the maximal shifts are found in \textit{para}- and \textit{ortho}-protonated structures, viz. 98 cm\(^{-1}\) in C\(_6\)-protonated \textit{para}-fluorophenol, 93 cm\(^{-1}\) in C\(_2\)-protonated, 84 cm\(^{-1}\) in C\(_4\)-protonated and 76 cm\(^{-1}\) in C\(_6\)-protonated \textit{meta}-fluorophenols. In the hydrogen-bonded systems, both the hydrogen bonding and the distortions in the \(\pi\)-electron system caused by protonation behave coherently in weakening of the OH bond and thus shifting the \(\nu_{\text{OH}}\) to lower frequencies. The predicted red shifts of the \(\nu_{\text{OH}}\) mode in these systems become even more pronounced: 116 cm\(^{-1}\) in C\(_4\)-protonated and 110 cm\(^{-1}\) in C\(_6\)-protonated 2-fluorophenols.

In the case of 3-X-phenols, the X-protonated structures are local minima, but they are consistently above the high-energy \textit{ipso}-protonated phenols, except for 3-iodophenol in which an \textit{ipso}-protonation is less favourable by 13 kJ mol\(^{-1}\) than an I-protonation. The calculated PAs for the X-protonated 3-halophenols are the following: 613 kJ mol\(^{-1}\) for 3-fluorophenol, 676 kJ mol\(^{-1}\) for 3-chlorophenol, 680 kJ mol\(^{-1}\) for 3-Br-phenol and 704 kJ mol\(^{-1}\) for 3-iodophenol, using the same level of theory.

It is well known that in halobenzenes, the \textit{para}-position relative to the halogen is the more basic site and the \textit{meta}-position the least basic\(^{308}\). The higher activity for the \textit{para}-position in fluoro benzene results from the need to add a proton to a position that is not disfavoured by the \(\sigma\)-electron withdrawal by fluorine atom, due to its strong inductive effect. The effect is smaller for chlorine, bromine and iodine. Thus when there is competition between the hydroxy group and a halogen atom in directing the ring protonation,
as in the case of halophenols, the outcome turns out to be in favour of the hydroxy group which, as discussed above, consistently leads to a C₄-protonation (Table 26).

3. Proton affinities of anisole and fluoroanisoles

Anisoles are phenol derivatives in which the OH is replaced by the OCH₃ group. As expected, anisole reveals the same protonation pattern as phenol, although all of its local PAs appear to be larger, namely 845 kJ mol⁻¹ in para-C₄-protonation, 836 kJ mol⁻¹ in ortho-C₆-protonation and 780 kJ mol⁻¹ in meta-C₃-protonation. Similarly, a correlation
1. General and theoretical aspects of phenols

has been observed between the local PAs and the C−O bond shortening (Δr) and the blue-shifting (ΔνCO) of the fundamental mode with the dominant contribution of νCO vibration. The Δr and ΔνCO changes take the following values: 0.03 Å and 28 cm⁻¹ in C₃-protonated anisole, 0.07 Å and 103 cm⁻¹ in C₄-protonated anisole, 0.03 Å and 29 cm⁻¹ in C₅-protonated anisole and finally 0.07 Å and 81 cm⁻¹ in C₆-protonated anisole.²⁹⁹

The PAs of fluoroanisoles are equal to 820 kJ mol⁻¹ (expt. 807³⁰⁶) for 2-fluoroanisole, 835 kJ mol⁻¹ (expt. 826³⁰⁶) for 3-fluoroanisole and 809 kJ mol⁻¹ (expt. 796³⁰⁶) for 4-fluoroanisole. An average overestimation of ca 12 kJ mol⁻¹ by the B3LYP/6-31+G(d,p)+ZPE calculations can again be noted.²⁹⁹

4. Two views on the protonation regioselectivity

It is now legitimate to pose the question as to whether there exists a clear-cut but simple theoretical approach to predicting the protonation regioselectivity solely on the basis of molecular properties of the neutral substrate. Theoretical chemists persist in their continuing endeavour to search for such a reactivity index. The relative gas-phase acidity and basicity data collected in the last several decades have been analysed and correlated with a variety of atomic and molecular parameters. Examples include the atomic charges, charge-induced dipole field or polarizabilities, electrostatic potentials surrounding a base, core ionization energies or 1s-orbital energies, electronegativities, hybridization, bond energies, electron affinities etc. The main idea is to design a way of partitioning the molecular charge distribution into atomic properties that show acceptable correlations with PA.³⁰⁹–³¹⁵ The most representative approach is the atom-in-molecule theory.³⁰⁹ Use of the components of wave functions constructed by either multi-configurational or spin-coupled methods was also put forward in support of an interpretation in terms of resonance structures. However, all these approaches to identifying the protonation sites either were not quite successful or could not be extended to a larger sample of compounds.³¹⁵ We will consider two of the most recent attempts including the use of the topological analysis based on the electron localization function (ELF),²⁷², ²⁷³, ³¹⁶, ³¹⁷, discussed in Section III.C, and the density functional theory-based reactivity descriptors, in both a global and a local sense.³⁰¹, ³⁰², ³¹⁸–³⁴⁰

As seen above, the topology of the ELF suggests that the most favoured protonation site can be found by using a ‘least topological change principle’ which states that:

(i) the protonation occurs in the most populated, accessible valence basin for which there is the least topological change of the electron localization function, and

(ii) in the protonated base, the V(B,H) population cannot be noticeably larger than 2.5 electrons.

In all cases, except for ortho-Cl and ortho-Br phenols, it is the V(O,H) basin which is favoured over the V(X) basin. In the two aforementioned molecules, the intramolecular hydrogen bond is strong enough to perturb the topology of the halogen valence shell having three basins, and the ELF predicts that the favoured protonation site is one of the most populated V(X) halogen basins. In other words, the ELF could correlate the relative basicities between heteroatoms but is apparently unable to account for the preference of the ring para-C₄ carbon in the protonation process.²²⁰

We now turn to the reactivity indices defined within the framework of density functional theory (DFT). The validity and applicability of these indices have been discussed in several recent studies by different groups.³⁰¹, ³⁰², ³¹⁸–³⁴⁰ This is a different way of decomposing a molecular electronic distribution into global and/or local indices coupled with an account of the frontier molecular orbitals. Starting from the electronegativity equalization principle,³¹⁸ the global descriptors such as ‘group hardness’ and ‘group electronegativity’
were defined319 and correlated with PAs. Nevertheless, their scope of applicability was quite limited. More recently, the more local descriptors, including the Fukui function, local atomic softness or even orbital softness, have been employed in order to interpret the protonation sites209, 301, 302. The definitions320, 321 and evaluations322–325 of DFT-based reactivity indices are well established.

The condensed Fukui functions f_k of a kth atom in a molecule with N electrons are defined by equations 27a and 27b:

\[
\begin{align*}
 f_k^+ &= [q_k(N+1) - q_k(N)] \quad \text{for nucleophilic attack} & (27a) \\
 f_k^- &= [q_k(N) - q_k(N-1)] \quad \text{for electrophilic attack} & (27b)
\end{align*}
\]

where q_k is the electronic population of atom k in the molecule under consideration. The local softness parameter can then be defined as $s_i^\pm = f_k^\pm \times S$ in which i stands for $+$ or $–$. Within the finite difference approximation322, the global softness, S, can be approximated by

\[
S = 1/(\text{IE} - \text{EA})
\]

where IE and EA are the first vertical ionization energy and electron affinity of the molecule, respectively.

The local softness has been applied with much success in interpreting and predicting the regio-selectivities of different types of organic reactions including radical additions326, nucleophilic additions327–329, pericyclic $[2 + 1]^{330–333}$, $[2 + 2]^{334}$ and $[3 + 2]^{335–341}$ additions, hydrogen shifts342 and internal rotations.343, 344

In the parent phenol for which the local indices are summarized in Table 28, the values for the C\textsubscript{5} and C\textsubscript{6} atoms are also close to those for C\textsubscript{3} and C\textsubscript{2}, respectively, and

<table>
<thead>
<tr>
<th>Property</th>
<th>B3LYP/cc-pVTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>vert-IE (eV)</td>
<td>8.45</td>
</tr>
<tr>
<td>vert-EA (eV)</td>
<td>−1.66</td>
</tr>
<tr>
<td>S^\pm</td>
<td>2.69</td>
</tr>
<tr>
<td>s_k^\pm</td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{1}</td>
<td>0.04</td>
</tr>
<tr>
<td>C\textsubscript{2}</td>
<td>0.39</td>
</tr>
<tr>
<td>C\textsubscript{3}</td>
<td>0.25</td>
</tr>
<tr>
<td>C\textsubscript{4}</td>
<td>0.31</td>
</tr>
<tr>
<td>O</td>
<td>0.12</td>
</tr>
<tr>
<td>s_k^\mp</td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{1}</td>
<td>0.08</td>
</tr>
<tr>
<td>C\textsubscript{2}</td>
<td>0.36</td>
</tr>
<tr>
<td>C\textsubscript{3}</td>
<td>−0.04</td>
</tr>
<tr>
<td>C\textsubscript{4}</td>
<td>0.83</td>
</tr>
<tr>
<td>O</td>
<td>0.48</td>
</tr>
<tr>
<td>s_k^\pm / s_k^\mp ratio</td>
<td></td>
</tr>
<tr>
<td>C\textsubscript{1}</td>
<td>1.94</td>
</tr>
<tr>
<td>C\textsubscript{2}</td>
<td>0.92</td>
</tr>
<tr>
<td>C\textsubscript{3}</td>
<td>−0.17</td>
</tr>
<tr>
<td>C\textsubscript{4}</td>
<td>2.64</td>
</tr>
<tr>
<td>O</td>
<td>3.91</td>
</tr>
</tbody>
</table>

aS is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.

322 S is the global softness. The Fukui functions f_k can be obtained using $s_k = f_k \cdot S$.
1. General and theoretical aspects of phenols

thus omitted for the sake of simplification. In the present case, the local softness for electrophilic attack s^- is to be used to probe the protonation mechanism, that is, the larger the local softness, the more basic the site. It is clear that the C$_4$ carbon atom bears the largest softness ($s^- = 0.83$), a value much larger than that of oxygen ($s^- = 0.48$). While the C$_2$ carbon has a significant softness ($s^- = 0.36$), the C$_1$ and C$_3$ atoms do not show much affinity for electrophiles. These observations are in accord with the proton affinities discussed above which unambiguously indicate the preferential protonation at the C$_4$ carbon of phenol, followed by that at C$_2$ carbon and oxygen. Table 28 lists the s_k values and the quantities s_k^-/s_k^+ and shows that the latter ratio also does not hold true for phenol protonation. In fact, the oxygen atom is characterized by the largest ratio followed by C$_4$. Among the ring carbon atoms, while C$_4$ has the largest ratio (which is correct), C$_1$ has a larger ratio than C$_2$ (which is not correct according to the calculated PAs).

The calculated local softnesses and Fukui functions of the fluoro- and chloro-substituted phenols (values of s_k^-) suggest the following protonation ordering (versus the real ordering found from calculated proton affinities).

(a) Fluorophenols: 2-F: O > C$_4$ > C$_6$ versus C$_4$ > C$_6$ > C$_3$ > C$_5$ > C$_2$ > O,

3-F: C$_4$ > C$_6$ > O versus C$_4$ > C$_6$ > C$_2$ > C$_5$ > O,

and 4-F: O > C$_4$ > C$_6$ > C$_2$ versus C$_2$ > C$_4$ > C$_3$ > O.

(b) Chlorophenols: 2-Cl: C$_4$ > O > C$_6$ versus C$_4$ > C$_6$ > C$_3$ > C$_5$ > C$_2$ > O,

3-Cl: C$_4$ > C$_6$ > O versus C$_4$ > C$_6$ > C$_2$ > C$_5$ > O,

and 4-Cl: O > C$_6$ > C$_2$ versus C$_2$ > C$_4$ > C$_3$ > O.

In comparison with the calculated PAs mentioned above, a few points are worth noting:

(i) The local softnesses of atoms having different atomic numbers cannot be compared to each other (for example, a comparison of a carbon and an oxygen atom is not relevant). Similarly to the shortcomings of net atomic charges or electrostatic potentials, this local descriptor is apparently unable to differentiate the relative basicities of heteroatoms. A comparable conclusion was drawn from an analysis of the orbital local softnesses. Such behaviour differs somewhat from that of the ELF discussed in Section III.C.

(ii) The local softness behaves more regularly among the ring carbon atoms. In fact, for both 2-X and 3-X phenols, the local softness points towards a para protonation in agreement with explicit computations of PAs. While for 4-Cl the local softness correctly predicts the preference of C$_6$ and C$_2$, the situation is more confusing in 4-F where the s^- values of all carbons are similar to each other, with a marginally larger value for C$_4$ followed by C$_6$ and C$_2$ (if oxygen is omitted).

(iii) The s_k^-/s_k^+ ratio is nowhere able to unravel the preferable protonation site.

(iv) There is no correlation between the absolute values of local softnesses with the PAs at the ring carbon centres.

These drawbacks of either ELF or DFT-based indices raise the question as to whether it is meaningful to use the local properties of reactants in distinguishing the protonation of atoms of different nature. Similar to the case of two different atoms, such as O and C, when a X-substituent strongly modifies the electronic environment of the carbon, a perturbative treatment could also no longer be applied to the C(H) and C(X) centres. Although the local softness includes, by definition, both the differences of frontier orbitals of the neutral substrate and the differential electron densities between the neutral and ionized states, as expressed in the global softness and Fukui functions, the actual computations of these quantities suffer from some severe practical limitations.
In summary, neither the ELF nor the DFT-based reactivity indices are capable of accurately predicting the most preferably protonated sites of phenols as well as the order of the local PAs. Similar to the many well-known static indices, their performance is expected to be limited in other classes of compounds as well. Thus the discovery of a good protonation index remains a formidable challenge for theoretical chemists. The difficulty lies in the fact that any quantitative correlation between a molecular property and the PAs of a series of compounds is based on the assumption that the relaxation energy involved should practically be constant for the entire series. After all, the proton is strongly electrophilic and very hard, and its approach polarizes the whole medium due to its small size and basically modifies the molecular and electronic structure of the substrate. As the local indices are usually defined at unperturbed neutral substrates, it is obvious that they are not sensitive enough to predict the realistic situations characterized by drastic changes following the protonation process.

5. Interaction of phenol with Li$^+$, Na$^+$ and K$^+$

Properties of the complexes of alkali metal cations with various bases are important in understanding ion–molecule interactions, solvation effects, biomedical and physiological phenomena related to ion channels and relevant in medical treatments. Reliable experimental bond dissociation enthalpies, and thereby gas-phase alkali ion affinities, could now be obtained using various mass spectrometry techniques such as the Fourier-transform ion cyclotron resonance (FT-ICR), collision-induced dissociation and photodissociation methods. However, these methods do not provide direct information on the adduct structures.

The Li$^+$ cation exhibits a vacant p-orbital and its interaction with benzene occurs with the π-electrons giving rise to a symmetrical bridging complex in which the cation is placed on the C$_6$ axis, about 2.0–2.1 Å from the centre of the ring. When approaching phenol, the cation could thus associate either with the ring or the oxygen lone pair. It has been argued that both the ion–dipole and polarizability interactions would strongly favour an alignment of the cation along the dipole axis of the compound. Indeed, calculations point out that, in contrast to the protonation, the lithiation occurs preferentially at the position of the oxygen lone pair of phenol. The heavier alkali cations Na$^+$ and K$^+$ show a similar behaviour. The resulting complexes are nearly planar with a marginal torsion of the hydroxyl hydrogen atom. Some selected geometrical parameters are displayed in Figure 22. Significant lengthening of the C–O bond (up to 0.05 Å) is found upon complexation. The oxygen–cation distances are longer in the ring complexes. At the B3LYP/6-311++G(d,p)+ZPE level of theory, the alkali cation affinities of phenol amount to 149, 101 and 68 kJ mol$^{-1}$ for Li$^+$, Na$^+$ and K$^+$, respectively. Thus, the heavier the cation, the smaller the binding energy and the weaker the ion–phenol complex becomes.

There is only a small charge transfer in the complexes in which the alkali metal retains from 0.75 to 0.95 electronic unit of its original positive charge. This supports the general view that ion–molecule bonding is due to a predominantly electrostatic interaction with a large contribution from the bond dipole.

B. Deprotonation

The Brønsted acidity of a molecule is its capacity to give up a proton. It can be expressed either by the equilibrium constant, the pK_a value, the change of standard free energy (ΔG°_T) or simply the energy of the deprotonation reaction: $\text{AH} \rightarrow \text{A}^- + \text{H}^+$. The acidities of phenols were measured experimentally$^{349-351}$, including a series of 38 meta-
and para-substituted phenols using the ion cyclotron resonance (ICR) equilibrium constant method351. Theoretical evaluations of acidity usually involve energy calculations of both the neutral substrates and conjugate anions.

1. Phenolate anion

Geometries and vibrational frequencies of phenolate anion (PhO−) in the ground, triplet and excited states were analysed in details115,352–361. Figure 23 displays selected optimized geometrical parameters of the free PhO− in both lowest-lying singlet and triplet electronic states. Although several crystal structures of phenolates have been reported362–364, different degrees of aggregation and solvation prevent a direct comparison. The geometry of PhO− is quite close to that of the benzyl anion (PhCH\textsubscript{2}−). In both cases the
p-π delocalization apparently causes a small bond alternation (up to 0.06—0.07 Å) in the anion ring. On this simple basis, PhO− has thus ca 60% of the aromatic character of PhOH. The C−O distance of 1.27 Å of the anion lies between those of 1.37 Å in PhOH and 1.22 Å in para-benzoquinone, giving the CO bond of PhO− a partial double-bond character which could be understood in terms of simple resonance structures (Chart 4). Considering the geometry, a quinoidal resonance form c with alternating double and single CC bonds may well be a depiction of PhO−.

Since the charges on oxygen are −0.9 electron and on the ipso-carbon C1 +0.5 electron, the dipolar forms are also expected to contribute significantly to the electronic structure of the anion. A certain similarity exists between the phenolate and enolate anions regarding the C−O distances. Quantum chemical calculations of vibrational frequencies for free PhO− in the ground state did show some discrepancies with experimental data. While IR frequencies determined using DFT methods compare reasonably with the FTIR results in the case of the modes ν4 and ν5, the frequency of the C−O stretching mode is overestimated in all calculations. In addition, large deviations were also found for most modes on isotopic 13C and 18O shifts, as well as on relative IR intensities. Using appropriate scaling factors on computed frequencies at different levels of theory led to the estimated values of 1594, 1495 and 1353 cm−1 for the modes ν4, ν5 and ν6, respectively. While the former two are close to the IR absorption peaks at 1585 (or 1592) and 1483 cm−1, the latter deviates from the observed ν6 value of 1273 cm−1 by a larger amount of 80 cm−1. Multi-reference CASSCF(10,10) calculations resulted equally in a CO bond distance of 1.285 Å and a ν6 frequency of 1450 cm−1. Thus, the discrepancy between experiment and theory cannot be attributed to a failure of quantum chemical methods, but presumably results from the formation of a complex of PhO− with either solvent molecules or counterions, weakening the CO bond and inducing a down shift of the corresponding stretching mode. This point will be considered in a subsequent paragraph.

The delocalization of the negative charge from the oxygen to the ring affects the aromaticity of the latter. The magnetic properties of the ring carbons show in fact some marked changes upon deprotonation. Using the GIAO-HF/6-311+G(d,p) method, the
13C NMR chemical shifts (δ in ppm) of phenol and phenolate anion are calculated as follows352:

$$
\begin{align*}
C_1: & 156 \text{ (PhOH)/182 (PhO$^-$)}, & C_2: & 111/115, & C_3: & 131/132, & C_4: & 118/91, \\
C_5: & 133/132 & \text{and } C_6: & 115/115.
\end{align*}
$$

The C_1 (shielded) and C_4 (deshielded) atoms obviously experience the largest variations. The proton chemical shifts remain almost unchanged, varying by less than 2 ppm.

The nucleus-independent chemical shifts (NICS)367, calculated as the negative of the absolute magnetic shieldings at ring centres, could be used as a probe for aromaticity. While the phenol in-plane NICS(0) value of -10.8 is greater than that of benzene (-9.7), the NICS value for PhO$^-$ is much smaller (-6.3), only about 58% of the phenol value. This reduction in aromaticity is apparently due to the predominance of the quinoidal structure having alternate CC distances c (Chart IV). It is worth noting that while the PhOH NICS(1) of -11.3 is only slightly larger than the corresponding NICS(0), the PhO$^-$ NICS(1) of -7.6 is larger than its NICS(0) counterpart. This indicates a larger concentration of π-electrons in the anion.

The decreasing aromaticity in the anion is also manifested in a smaller magnetic susceptibility exaltation (Δ)368, which is defined as the difference between the bulk magnetic susceptibility (χ_M) of a compound and the susceptibility (χ_M^*) estimated from an increment system for the same structure without cyclic conjugation ($\Delta = \chi_M - \chi_M^*$ in units of ppm cgs). Thus, the value $\Delta = -9.1$ for PhOH$^-$ is equal to only 59% of the $\Lambda = -15.5$ for phenol. The computed values for the diamagnetic susceptibility anisotropy (χ_{axis}) follow the same trend, indicating that PhO$^-$ has actually about 60% of the aromaticity of PhOH352.

It is perhaps interesting to examine here the NICS values for a series of halogenophenols. The influence of one halogen atom on the PhOH NICS is already noticeable: F increases it by 0.2 (-11.0 in ortho-F-phenol) whereas Cl reduces it by 1.3 (-9.6 in ortho-Cl-phenol) and Br reduces it further by 1.5 (-9.3 in ortho-Br-phenol). The effect of multiple X-substituents is appreciable in increasing the NICS to -13.0 in 2,4-di-F- and -14.6 in 2,4,6-tri-F-phenol. The 2,4-di-Cl and 2,4,6-tri-Br species have NICS values approaching that of PhOH. Although the halogen effect is quantitatively more important in phenolates, the trend of the variations is parallel to that in the neutral series, suggesting a significant effect of fluorine.

The electron affinity of the phenoxy radical has received considerable attention. Experimentally, a 2.36 eV upper limit was obtained in 1975369. Later, the UV photoelectron spectroscopy of PhO$^-$ was recorded370 from which an adiabatic ionization energy IE_a(PhO$^-$) = 2.253 ± 0.006 eV was determined. This low value implies that the valence excited states of phenolate are autoionizing. Evidence for an autoionizing state was found at about 3.5 eV in the photoelectron experiment370 and at 3.65 eV (340 nm) in the photodetachment spectrum369. In other words, there is no evidence for singlet excited states of PhO$^-$ below the ionization threshold. The S_1 and S_2 states belong to the A_1 and B_1 irreducible representations of the C_{2v} symmetry group and can be labelled as 1L_a and 1L_b, respectively. Both S_1 and S_2 excited states of PhO$^-$ were calculated to have comparable vertical energies$^{115, 356, 361}$. Recent large CASPT2 computations$^{357, 371, 372}$ suggested an adiabatic $S_1 \leftarrow S_0$ energy gap of about 3.69 eV357. The latter is further increased to 4.2 eV in aqueous medium, thus corresponding to a blue shift of 1817 cm$^{-1}$. Experimentally, the first two peaks in the phenolate UV absorption spectrum in aqueous solution are located at 4.32 and 5.30 eV373. Molecular dynamics simulations on excited states in solvents were also carried out371. A comparison of the oscillator strengths of both states
seems to indicate that the 1A_1 state, which enjoys a much larger stabilization following geometry relaxation, actually corresponds to the lower-lying state (at least in aqueous solution) of the anion. There is thus a reversed ordering of excited singlet 1L_a and 1L_b states in going from phenol to its conjugate anion. The inversion of singlet states is further confirmed in cyanophenols, irrespective of the substitution position.\(^{115}\)

While the S_0 and S_2 (1B_1) states are characterized by a similar charge distribution, they strongly differ from the S_1 (1A_1). A large amount of negative charge (0.45 e) was estimated to be transferred from the oxygen to the ring centre upon the $S_1 \rightarrow S_0$ transition corresponding to a $\pi^* \leftrightarrow n$ character. This fact allows for the qualitative deprotonation behaviour of both diabatic states 1L_a and 1L_b to be understood in terms of electrostatic interactions when the O–H distance becomes sufficiently large. The approach of the positive charge to the anion does not modify the transition energy of 1L_b due to the small difference in both ground and excited state dipole moments. In contrast, the 1L_a transition energy changes, due to a significant charge transfer in the anion, reducing the negative charge on oxygen. At a certain O–H distance, both states eventually cross each other implying that, in a reduced symmetry, namely C_r rather than C_{2v}, along the proton dissociation coordinate, a conical intersection in the excited states of phenol becomes possible. The centre of such a conical intersection, if it exists, should be located on the C–O axis at a distance of ca 2.6 Å from the oxygen atom. Although these features need to be confirmed by more accurate calculations than those reported,\(^{115}\) it seems that the presence of an avoided crossing along the physically relevant O–H direction, and a conical intersection along the C–O approach of the proton, is of importance per se, as well as, more generally, in the dynamics of the excited state proton transfer reaction from phenol to, for example, water.

The lowest-lying PhO\(^-\) triplet state shows marginal deviations from planarity. Some important geometrical features of the T_1 state of the parent are also shown in Figure 23. It is of particular importance that the C–O distance remains almost unchanged with respect to the corresponding singlet state, and that the ring keeps the quinoidal shape (Figure 23). At the B3LYP/6-311++G(d,p)+ZPE level, the $T_1 \rightarrow S_0$ energy gaps are calculated to be around 2.4–2.5 eV for PhO\(^-\) and the p-XC\(_6\)H\(_4\)O\(^-\) anions. These values are slightly larger than the corresponding ionization energies. The triplet anion has not yet been experimentally observed. The T_1 state is readily formed with a dominant configuration arising from a single excitation from the ground state, and rapidly undergoes autodetachment.

The lower-lying singlet and triplet excited states of PhO\(^-\) in the environment of photoactive yellow proteins (PYP) were recently simulated by placing point charges to represent the electrostatic field of the seven amino acids and explicit interaction of the anion with two water molecules to account for the hydrogen bonds.\(^{357}\) The most interesting results are that while the hydrogen bonds were found to exert a minor influence for the lower-excited states of the embedded PhO\(^-\), the electrostatic environment of the PYP protein is essential in providing the dominant stabilization, shifting the lowest singlet excited state below the first ionization energy of the system. This effect is also reinforced by a substantial increase of about 4 eV in the anion ionization energy, on passing from the free PhO\(^-\) to the protein-bound anion, and then further increasing by up to 0.9 eV for the protein-bound anion–water complex. This feature is significant as it approaches more closely the spectral data for biological chromophores in their native environments.

In halophenolate anions, the meta isomers (Figure 24) turn out to be consistently the more stable ones followed by the ortho and para derivatives, irrespective of the nature of the substituents. The effect is more pronounced in fluoro-anions where the meta isomer is about 16 kJ mol\(^{-1}\) more stable than the ortho counterpart (Figure 25). This energy gap is reduced to 7 and 6 kJ mol\(^{-1}\) in chlorinated and brominated phenolate anions, respectively. The energy differences between the ortho- and para-anions are rather small (ca 2 kJ mol\(^{-1}\)). On the other hand, the phenolate anion (charge at oxygen) is calculated...
to be remarkably more stable than the ring carbon anions by a large amount ranging from 150 to 200 kJ mol$^{-1}$.

Within the series of ring carbanions (Figure 25), the ortho-anions situated at the C$_2$ positions relative to the hydroxy group (except for o-FC$_6$H$_4$OH where the anion is on C$_6$) are found to be favoured regardless of halogen position. This is no doubt due to the strong interaction between the OH-hydrogen and the negatively charged carbon centre. This implies that the ortho-carbon is the most acidic atom within the ring, and this fact has also been verified even in the case of the electron-donating methyl group374. Bearing in mind that the para-carbon constitutes the most basic ring centre (cf. the preceding section), the difference can be understood by the fact that a ring deprotonation is foreshadowed by its σ-electron skeleton whereas a ring protonation is rather directed by its π-electron distribution. Overall, the deprotonation energies (DPE) of polysubstituted benzenes apparently follow a simple and transparent additivity of the independent substituent effects, implying these DPEs could be deduced using the pre-determined increments of monosubstituents374.

Regarding the ionization energies of phenolate ions, or conversely the electron affinities of phenoxy radicals (XPhO$^-$), calculated results of some simple substituted species are summarized in Table 29. Density functional theory, in particular when using the hybrid B3LYP functionals, could reproduce the EAs of aromatic radicals with an absolute error of 0.03 eV with respect to the experimental estimates358,359. As substituents on the ring, the halogen atoms tend to increase this quantity by up to 0.4 eV, in the decreasing order: meta $>$ ortho $>$ para position, relative to the value for the parent radical. In contrast, OH and NH$_2$ groups on the para-C$_4$ position of the phenolate ion consistently reduce the ionization energy by 0.25 and 0.50 eV, respectively359.

2. Gas-phase acidities

A convenient measure of the gas-phase acidity is the proton affinity (PA) of the anion, or conversely, the deprotonation energy (DPE) of the acid. For the parent phenol, the experimental value can be deduced from equation 28 for the PA of phenolate,

$$PA(\text{PhO}^-) = IE(\text{H}) + D(\text{PhO-H}) - EA(\text{PhO}^+) \quad (28)$$
FIGURE 25. Relative energies (in kJ mol$^{-1}$) obtained from B3LYP/6-311++G(d,p)+ZPE calculations of different isomers of fluorophenolate ions

where $\text{IE}(\text{H}) = 13.606$ eV is the ionization energy of the hydrogen atom and $\text{EA}(\text{PhO}^+) = 2.253$ eV is the electron affinity of the phenoxy radical370. The PA is thus dependent on $D(\text{PhO}−\text{H})$, being the PhO−H bond energy. Taking the most recent recommended value of $D(\text{PhO}−\text{H}) = 3.838$ eV375, we obtain $\text{PA}(\text{PhO}^-) = \text{DPE}(\text{PhOH}) = 15.191$ eV, which is slightly larger than the value of 15.169 eV in an earlier compilation376. Indeed,
1. General and theoretical aspects of phenols

TABLE 29. Ionization energies of halophenolate anions

<table>
<thead>
<tr>
<th>Phenolate anion</th>
<th>IE<sub>a</sub> (eV)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolate</td>
<td>2.23 (2.25)</td>
</tr>
<tr>
<td>o-Fluorophenolate</td>
<td>2.40</td>
</tr>
<tr>
<td>m-Fluorophenolate</td>
<td>2.52</td>
</tr>
<tr>
<td>p-Fluorophenolate</td>
<td>2.27</td>
</tr>
<tr>
<td>o-Chlorophenolate</td>
<td>2.52</td>
</tr>
<tr>
<td>m-Chlorophenolate</td>
<td>2.61</td>
</tr>
<tr>
<td>p-Chlorophenolate</td>
<td>2.45</td>
</tr>
<tr>
<td>o-Bromophenolate</td>
<td>2.57</td>
</tr>
<tr>
<td>m-Bromophenolate</td>
<td>2.64</td>
</tr>
<tr>
<td>p-Bromophenolate</td>
<td>2.50</td>
</tr>
</tbody>
</table>

^aValues were obtained from B3LYP/6-311++G(d,p)+ZPE. In parentheses is the experimental value taken from Reference 370.

TABLE 30. Deprotonation energy (DPE)^b of phenol derived from various levels of the calculation method

<table>
<thead>
<tr>
<th>Level of theory<sup>b</sup></th>
<th>DPE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP/6-311++G(d,p)</td>
<td>14.98</td>
</tr>
<tr>
<td>B3LYP/6-311++G(3df,2p)</td>
<td>14.90</td>
</tr>
<tr>
<td>MP2/6-311++G(d,p)</td>
<td>15.05</td>
</tr>
<tr>
<td>MP2/6-311++G(3df,2p)</td>
<td>14.94</td>
</tr>
<tr>
<td>CCSD(T)/6-311++G(d,p)</td>
<td>15.17</td>
</tr>
<tr>
<td>CCSD(T)/6-311++G(3df,2p)</td>
<td>15.10</td>
</tr>
<tr>
<td>Experiment<sup>c</sup></td>
<td>15.20</td>
</tr>
</tbody>
</table>

^bIncluding zero-point energies (ZPE).
^bGeometries were optimized at B3LYP/6-311++G(d,p) level.
^cExperimental value, see text.

calculated values in Table 30 provide a support for this estimate with the DPE of phenol lying in the range of 15.1 – 15.2 eV. In the gas phase, phenol is thus far more acidic than water (DPE = 16.95 eV) and methanol (16.50 eV), but slightly less acidic than formic acid (14.97 eV) and acetic acid (15.11 eV). Phenol also has a greater acidity than vinyl alcohol (DPE = 15.51 eV) thanks to a more extensive delocalization of the negative charge in the phenolate ion and a greater polarizability of the larger phenyl group.

Results derived from coupled-cluster calculations for halophenols are summarized in Table 31. It is remarkable that even the small variations due to substituents (as detected by experiments³⁵¹) are correctly reproduced by the calculations. Accordingly, the meta-halophenols are consistently more acidic than the para-counterparts, in contrast to the pattern found for the cyano (CN) group, another strong electron-withdrawing one which tends to reduce the DPE to 14.56, 14.64 and 14.48 eV for ortho-, meta- and para-cyanophenols. The gas-phase acidity scale of cyanophenols is thus para > ortho > meta.

The effect of fluorine substitution on phenol acidities was examined in detail^{351,377,378}. Through a charge analysis, the F-effect could classically be explained by invoking both resonance and induction effects. In the meta position, the halogen tends to stabilize preferentially the phenolate anion due to the resonance effects, resulting in a smaller
TABLE 31. Deprotonation energies of halophenols

<table>
<thead>
<tr>
<th>Phenol</th>
<th>DPE (calc, eV)</th>
<th>DPE (expt, eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>15.10</td>
<td>15.20</td>
</tr>
<tr>
<td>o-Fluorophenol</td>
<td>14.98</td>
<td></td>
</tr>
<tr>
<td>m-Fluorophenol</td>
<td>14.85</td>
<td>14.97</td>
</tr>
<tr>
<td>p-Fluorophenol</td>
<td>15.00</td>
<td>15.10</td>
</tr>
<tr>
<td>o-Chlorophenol</td>
<td>14.88</td>
<td></td>
</tr>
<tr>
<td>m-Chlorophenol</td>
<td>14.80</td>
<td>14.89</td>
</tr>
<tr>
<td>p-Chlorophenol</td>
<td>14.84</td>
<td>14.94</td>
</tr>
<tr>
<td>o-Bromophenol</td>
<td>14.85</td>
<td></td>
</tr>
<tr>
<td>m-Bromophenol</td>
<td>14.74</td>
<td></td>
</tr>
<tr>
<td>p-Bromophenol</td>
<td>14.80</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Calculated values from CCSD(T)/6-311++G(3df,2p)+ZPE based on B3LYP/6-311++G(d,p) geometries and frequencies.

\(^b\) Based on the DPE(phenol) = 15.2 eV and relative acidities given in Reference 351.

DPE and a greater acidity. This pattern is confirmed by the energies of fluorophenolate anions shown in Figure 24 pointing towards a greater stability of the meta-derivatives.

The characteristics emphasized above for the halogens and the cyano group are actually relevant to other substituents as well. Indeed, it has been shown\(^{377}\) that the effects of substituents on acidities are largely dominated by those occurring in the phenolate anion and only marginally by those in neutral phenol. Substituents which interact favourably in the meta position of phenol act unfavourably in the para position (the halogens), and vice versa (the cyano group). Both \(\pi\) and \(\sigma\) charge transfers are important in determining interaction energies. The \(\sigma\) acceptance by a substituent stabilizes OH and O\(^-\) more effectively at the para position than at the meta position, due to a \(\pi\)-inductive mechanism. Stabilization by \(\pi\) acceptors and destabilization by \(\pi\) donors are the results of direct \(\pi\) delocalization, which is inherent of the para substituents (see also Reference 380). On the one hand, groups exhibiting a competition of both \(\pi\)-donating and \(\sigma\)-accepting effects, such as NH\(_2\), OH and F, cause an increase in acidity at the meta position and a decrease at the para one (except for F). On the other hand, accepting groups such as CN, CHO, NO\(_2\) and CF\(_3\) provide an enhanced acidity following either meta or para substitution, with a preference for the para position\(^{377}\). There is also little evidence for direct steric strain in the series of ortho-phenols\(^{379}\).

Overall, the acidities of the substituted phenols are largely determined by the stabilization of the corresponding phenolate ions, i.e. the energies of the phenolate HOMOs. There is a similarity between the substituent effect on the latter and the LUMOs of substituted benzenes; both can be understood by simple perturbative PMO treatment\(^{381}\).

From a more quantitative point of view, it is more difficult to achieve accurate computations for DPEs than for PAs of neutral substrates, because molecular anions are involved in the former case. However, when using second-order perturbation theory (MP2), a coupled-cluster theory (CCSD(T)) or a density functional theory (DFT/B3LYP), in conjunction with a moderate atomic basis set including a set of diffuse and polarization functions, such as the 6-311++G(d,p) or cc-aug-pVDZ sets, the resulting DPE errors appear to be fairly systematic. To some extent, the accuracy rests on a partial but uniform cancellation of errors between the acid and its conjugate base. Therefore, use of appropriate linear regressions between experimental and calculated values allows the DPEs for new members of the series to be evaluated within the ‘chemical accuracy’ of \(\pm 0.1\) eV or \(\pm 10\) kJ mol\(^{-1}\).
3. Acidity in solution

The situation is more complex for the acidities in condensed phases. The relevant quantities are rather estimated using a thermodynamic cycle involving the experimental gas-phase PAs and solvation free energies for the neutral species along with the observed aqueous pK\textsubscript{a} values. Using this approach, the experimental hydration free energy of the phenoxide ion was estimated to be -301 kJ mol-1, which is far larger than the corresponding value of -28 kJ mol-1 found for phenol. On the other hand, while the basic features of neutral solvation energies could, in general, be fairly well reproduced by continuum solvent models, similar treatments of the anions are less successful. Theoretical approaches to the solvation usually involve a combination of quantum and classical mechanical methods. The molecular responses in the presence of solvent are often handled classically. The most important ingredients in determining solvation energies are the charge distribution and dipole moment of the solute. Evaluation of the electron distribution and dipole moments of charged species is quite troublesome, as they are also quite sensitive to the polarity of the environment.

As a consequence, the errors committed on predicted solvation energies for most of the anions are significantly larger than for the neutrals, and this makes quantitative prediction for pK\textsubscript{a} values a more difficult task. Similar to the treatment of electron correlation in polyatomic systems, modelling of the impact of the surrounding medium on different entities could hardly be carried out in a balanced way. A small error in the electrostatic terms for long-range interactions easily leads to a large variation in the relative scale. In addition, the difficulties associated with modelling also arise from the account for non-electrostatic interactions, that include among others the cavitation, dispersion and repulsion terms. In practice, a good fit between experimental and theoretical estimates for a category of acids could be established and the predicted values might be useful in establishing, in particular, the acidity order.

These general remarks could be applied to the phenol acidities in the aqueous phase that were studied using different combined theoretical methods for evaluating free energies of solvation. In fact, the relative acidities were reproduced with variable success. For example, while excellent agreement was obtained for the ortho-fluorophenol, a larger error of 12 kJ mol-1 was seen for the para isomer. Similarly, experimental acidity trends of both ground and excited singlet states were found for phenol and cyanophenols, but the calculated differences between the ground and excited state pK\textsubscript{a} values were only in qualitative agreement with experimental results, with errors up to 4 pK\textsubscript{a} units.

Nevertheless, the analysis of the charge distribution and hydration behaviour revealed some interesting features. The effect of fluorine substitution on the charge density was found to be not greatly perturbed by the presence of an aqueous solution. The changes in the charge distribution upon substitution are found to be similar in both gaseous and aqueous phases. Thus the observed attenuation of the F-effect on phenol acidities in solution is likely to arise from a hydrophobic shift introduced by the substituent, which finally balances the effects on the hydration free energies of phenol and its conjugate anion.

The enhanced phenol acidity in excited states will be discussed in a subsequent section.

4. Correlation between intrinsic acidities and molecular properties

Understanding substituent effects on molecular properties in a quantitative way has long been a goal of physical organic chemistry and dates back to the 1930s with the introduction of the Hammett σ constants. For phenol derivatives, a variety of correlations have in fact been established between their physical properties in different forms. The general-purpose Hammett constants yield a reasonable representation of the acidities. A decreasing value of DPE corresponds to an increasing acidity, and hence an increasing...
value of σ_p^-. We consider here in particular the correlations involving the intrinsic phenol acidities with quantum chemical reactivity descriptors.

The most obvious property related to acidity is the atomic charge on the acidic hydrogen of the neutrals$^{389-391}$ and on the deprotonated oxygen of the anions$^{390, 391}$. Use of the atomic charges derived from either the simple Mulliken population analyses, $Q_M(\text{H})$ and $Q_M(\text{O}^-)$, or the more advanced natural orbital population analyses, $Q_N(\text{H})$ and $Q_N(\text{O}^-)$, leads to linear regression equations with acidities391, expressed in terms of pK_a, of the type shown in equations 29a and 29b,

$$pK_a = -aQ(\text{H}) + b \quad (29a)$$
$$pK_a = -cQ(\text{O}^-) + d \quad (29b)$$

where Q is either Q_M or Q_N. A more positively charged hydrogen corresponds to a more acidic hydrogen and is arguably associated with lower pK_a values. In the same manner, delocalization of the negative charge of the phenolate oxygen tends to impart stability to the anion, favouring its formation and increasing the acidity. It is crucial to have a consistent atomic charge definition in order to describe the acid–base properties of the hydroxy group. Correlations between relative acidities and changes in the dipole moments were also attempted387, but the regression was not very good.

For a given family of compounds, there exists a certain relationship between the proton affinity and the core ionization energy of the atom which is protonated$^{392-395}$. The latter could be approximated by the 1s-orbital energy, $\varepsilon(1s)$, of the relevant atom of the conjugate anion, which is relatively stable with respect to the small variations in the basis sets. Calculations389 demonstrated that for phenol derivatives, a linear relationship (equation 30) equally exists:

$$\text{PA}(\text{X} - \text{C}_6\text{H}_4\text{O}^-) = -A \cdot \varepsilon(\text{O}_{1s}) + B \quad (30)$$

in which $\varepsilon(\text{O}_{1s})$ are the oxygen core orbital energies.

The acidity is expressed above in terms of the PA of the anion. The basicity of the anion somehow describes the ease with which core electrons are removed. In fact, both quantities depend on two terms, namely the electrostatic potential at the site to which the proton is to be attached, and the ease with which the positive charge can be delocalized over the entire substrate by rearrangement of valence electrons.

The first term is known as the inductive effect and is determined by the charge distribution of the initial base. The electrostatic potential minima around the basic centres, V_{min}, needs to be considered. In view of the reasonable behaviour of atomic charges for a series of simple $\text{XCC}_6\text{H}_4\text{OH}$, a good correlation was found between V_{min}(oxygen) and σ_p^-, and thereby the acidities. This was verified with $\text{X} = \text{H}, \text{F}, \text{CH}_3, \text{NH}_2, \text{CN}, \text{CF}_3, \text{NO}$ and $\text{NO}_2$381. Because the experimental σ_p^- were determined in aqueous solutions or in water/alcohol mixtures, their good correlation points out again that the substituent effects in phenolate ions in the gas phase and solution are linearly related. Good interpolations could therefore be made without using solvent models to evaluate unknown or uncertain σ_p^- values.

The second term, known as the relaxation or polarization, depends on the polarizability of the surrounding entity. An inductive effect which favours removal of an electron is expected to hinder the removal of a proton. It is thus logical that there is a negative correlation between the PA of the anion and the core-ionization energy. The higher the core-ionization energy, the lower the PA and the stronger the acid. This view points out the importance of considering both electrostatic and relaxation terms when evaluating the PAs.
1. General and theoretical aspects of phenols

In the same vein, the acidity could equally be related to the first ionization energy (IE), which can be estimated from the HOMO energy given by Hartree–Fock wavefunctions. Good linear relationships (equation 31) have been obtained between acidities and frontier orbital energies,

\[pK_a = C \cdot \varepsilon(\text{HOMO}) + D \]

(31)

No strong correlations could be found for either the \(\varepsilon(\text{LUMO})\) or the absolute hardness (\(\eta\)), or the absolute electronegativity (\(\chi\)) defined in the previous section. The poor result for the LUMO energies is probably due to their incorrect evaluation using the Hartree–Fock wavefunctions. Calculations revealed that when the acidity of a para-substituted phenol decreases, its electronegativity (\(\chi\)) decreases and its global hardness (\(\eta\)) increases. Conversely, an increasing basicity of the phenolate anion induces an increasing global hardness. This is in line with the original proposal that basicity bears a direct relationship to the hardness of a base. Nevertheless, because the hardness is a global property, it cannot fully account for the changes in basicity/acidity, which is rather a site-specific problem. In fact, the changes in the hardness do not follow a regular pattern and the regression coefficients are lower than those involving other parameters.

The local descriptors for the oxygen centre, including the Fukui function \((f^-_O)\) and local softness \((s^-_O)\) whose definitions are given in the preceding section (equation 27), are expected to perform better for this purpose. Both indices tend to increase upon increasing basicity of the anion. Linear relationships were obtained for both indices with \(pK_a\) with higher correlation coefficients. This supports the view that the basicity of phenolate ions depends on how the oxygen negative charge could be delocalized into the ring. If the charge cannot be delocalized, the base is getting destabilized and becomes more basic, and vice versa. As a consequence of an increasing oxygen charge, its nucleophilic Fukui function \((f^-_O\) always positive) and condensed softness \((s^-_O)\) also increase, implying that the oxygen centre becomes more polarizable and softer, in the sense of the original softness definition.

A more direct measure of changes in acidity could be determined using the relative proton transfer between substituted phenolate ions and phenol (equation 32).

\[\text{C}_6\text{H}_5\text{O}^- + \text{XC}_6\text{H}_4\text{OH} \rightarrow \text{XC}_6\text{H}_4\text{O}^- + \text{C}_6\text{H}_5\text{OH} \] \[\Delta E_{\text{prot}}\]

(32)

A positive value of \(\Delta E_{\text{prot}}\) indicates that the substituted phenol is less acidic than phenol itself, and vice versa. As a correlation descriptor, \(\Delta E_{\text{prot}}\) performs quite well, giving again a linear relationship with \(pK_a\).

5. Alkali metal phenolates

The structures, energies and reactivities of polar organometallic species are often determined by the metal counterions. Solvation and aggregation also influence their stability and mechanism in condensed phases. The largely dominating electrostatic interactions of both ions outweigh the other modes of stabilization of the anions such as \(\pi\)-delocalization, hyperconjugation, polarization and inductive effects, and basically modify the behaviour of the ion pair relative to the free anion. Phenolate ions with different alkali metal gege-nions also show varying reactivity, which has been attributed to the structural changes in the presence of the metal. A case in point is the Kolbe–Schmitt reaction in which sodium phenolate is carboxylated by CO\(_2\) mostly in the \(\text{o}r\text{tho}\)-position whereas potassium phenolate yields predominantly a \(\text{pa}r\text{a}\)-carboxylation product. Charge localization due to the metal ion tends to reduce the stabilization energies of phenolate ion. The metallation reactions (equation 33)

\[\text{PhO}^- + \text{H} + \text{MOH} \rightarrow \text{PhO}^- + \text{M} + \text{H}_2\text{O} \]

(33)
are much less exothermic than those involving OH\(^{-}/\text{PhO}^{-}\), amounting to \(-34, -51, -54, -59\) and \(-52\) kJ mol\(^{-1}\) for \(M = \text{Li, Na, K, Rb and Cs}\), respectively (values obtained at B3LYP/6-311++G(d,p)+ZPE\(^{352}\) as compared with that of \(-173\) kJ mol\(^{-1}\) for free \text{PhO}^{-}\. This emphasizes that the presence of the metal cation in a contact pair counteracts the stabilization of the free anion\(^{398}\). Similar behaviour was observed for the analogous enolate anions\(^{352}\). The metal ions in the ion pair retain a near unit positive charge \((+0.97\) to \(+0.99)\) pointing towards the pure ionic \(\text{M}--\text{O}\) bonds. Such electrostatic charge localization is no doubt responsible for a higher oxygen charge in the ion-paired species\(^{399}\).

The geometrical parameters of the \text{PhO}--\text{M} species are displayed in Figure 26. The C--O--M moiety is actually linear. The C--C distance is shortest in phenol, longest in free phenolate anion and intermediate in metallated compounds. The bond angle around the \textit{ipso}-carbon, \(\text{C}_6\text{C}_1\text{C}_2\), is smallest in free phenolate ion \([114°, \text{charge } q(\text{C}_1) = 0.50]\) and largest in phenol \([120°, q(\text{C}_1) = 0.38]\). The corresponding angles in \text{PhO}--\text{M} lie in between, ranging from \(118°\) for \(M = \text{Li} [q(\text{C}_1) = 0.43]\) to \(116°\) for Rb \([q(\text{C}_1) = 0.46]\). Both the angle and charge at the \textit{ipso}-\text{C}_1 atom are somehow related to each other. Even at large \text{M}--\text{O} distances, the charge localizing effect remains effective because the electrostatic interaction energies decrease with the inverse of the distance, \(d(\text{M}--\text{O})^{-1}\). Even at a distance \(d = 4\) Å, the negative charge on oxygen is already increasing \((-0.97)\), suggesting that the counterion effect is significant in solvent-separated ion pairs.

The magnetic properties of \(\text{C}_1\) and \(\text{C}_4\) ring atoms are most affected by ion pairing. The calculated \(\delta(\text{13C})\) chemical shifts in ppm [obtained from GIAO-HF/6-311+G(d,p) calculations] in \text{PhO}--\text{M} vary as follows:

\[
\begin{align*}
\delta(\text{C}_1): M = \text{Li: } 167 \text{ (expt: 168), Na: 171, K: 180, Rb: 180, Cs: 179 and free anion: 182.}
\delta(\text{C}_4): M = \text{Li: } 111 \text{ (expt: 115), Na: 108, K: 106, Rb: 106, Cs: 107 and free anion: 91.}
\end{align*}
\]

Deshielding of the atom \(\text{C}_4\) in the ion-paired structures is thus obvious. The chemical shifts of other carbon atoms remain almost unchanged upon deprotonation or ion pairing.
The NICS(0) values of the alkali phenolates increase down the group from -9.9 in Li, -9.2 in Na, -8.8 in K, -8.0 in Rb, -7.5 in Cs and -6.3 for free phenolate anion. Thus the charge localization is still effective for cesium phenolate, which has a more aromatic character than the free anion. The other criteria yield a similar pattern352. The loss of aromaticity in the free phenolate anion, 60% of the neutral phenol, due to a p–π delocalization discussed above, could largely be restored by ion pair formation with alkali metal cations, thanks to a charge localization effect of the latter.

We now turn back to the C=O stretching frequency (ν_6), where there is a discrepancy between observed and computed values (Section IV.B.1). Calculations353 indicated that the C=O bond length is only slightly elongated by 0.012 Å upon complexation of PhO$^-$ with a water molecule. Such anion–molecule interactions induce only a weak downshift of at most 13 cm$^{-1}$ for modes containing significant CO character. In contrast, as seen in Figure 26, the C=O distances are lengthened to a larger extent (up to 0.047 Å) following interaction with Li$^+$, Na$^+$ and K$^+$, and now have a more significant single-bond character (1.31–1.32 Å). The scaled frequencies of the mode ν_6 are calculated at 1310, 1306 and 1290 cm$^{-1}$ in PhOLi, PhONA and PhOK, respectively [B3LYP/6-311++G(d,p) values]. Complexation with the heavier ion induces a larger downshift of the C=O stretching ν_6 mode, up to 53 cm$^{-1}$ with the K$^+$ counterion. The latter values thus become closer to the experimental value365,366 of 1273 cm$^{-1}$ than that derived from free PhO$^-$. More important perhaps is the fact that the ν_6 frequency is now associated with the most intense IR absorption in this region, in agreement with the FTIR data366. However, the theoretical overestimation of the C=O stretching mode frequencies remains significant, and some of the 13C and 6Li isotope shifts are still large353. This suggests that an oligomer of the complex may actually be formed in solution and is responsible for the larger frequency downshift. Dimers and tetramers of lithium enolates400 and lithium phenolates401 have in fact been found experimentally.

Finally, it is noteworthy that, along with phenol, phenolate anion has been used as the simplest model to mimic the active site of the tyrosine protein residues. Its interaction with thiol (CH$_3$SH), a model of the cysteine side chain of glutathione, was studied using ab initio calculations402 in order to examine the role of active site tyrosine in glutathione S-transferases. The location of the key proton of the enzyme–glutathione binary complex, O–H–S, was predicted to be near the phenolic oxygen, and this proton position could be manipulated by changing the acidity of the tyrosine. This could be accomplished either by introducing a substituent, such as a fluorine atom, on the phenol moiety, or by changing the protein environment. The hydrogen bond between phenolate anion and thiol is very strong (up to 80 kJ mol$^{-1}$) and the phenol OH group in the residue of the enzyme complexed by a water molecule in a mutant is related to the notion of substrate-assisted catalysis403. In conclusion, the use of PhOM species in order to initiate polymerization and/or to catalyse the chain growth in polycarbonates has been studied354.

C. Electronic Excitation

Although the valence π–π* excitation spectra of benzene derivatives have been extensively studied over the past 65 years both experimentally and theoretically, much less is known about that of phenol, apart from its lowest excited state. In general, absorption and fluorescence spectroscopy of a benzene ring can be used to detect its presence in a larger compound and to probe its environment. While the relative constancy of the valence π–π* excitation spectrum allows a qualitative identification of spectral bands by a correspondence with those in free benzene, detailed quantitative differences could indicate the nature of substituents, ligands or medium. Key information on substituted benzene includes the excitation energies, transition moments and their direction, and electrostatic
properties of the excited states. Although experimental transition dipole directions could be determined by aligning the molecule in a crystal or stretched film, their interpretation is not straightforward and needs the help of accurate calculations.

Thus, knowledge of the transition moment direction of a phenol band could help in interpreting the fluorescence spectrum of a tyrosine chromophore in a protein in terms of orientation and dynamics. The absorption spectrum of the first excited state of phenol was observed around 275 nm with a fluorescence peak around 298 nm in water. The tyrosine absorption was reported at 277 nm and the fluorescence near 303 nm. Fluorescent efficiency is about 0.21 for both molecules. The fluorescent shift of phenol between protic and aprotic solvents is small, compared to indole, a model for tryptophan-based protein, due to the larger gap between its first and second excited states, which results in negligible coupling.404

A mono-substituted benzene has traditionally a number of singlet excited valence states, or pairs of states, of $\pi^* \leftrightarrow \pi$ type. The valence $\sigma^* \leftrightarrow \pi$ or $\pi^* \leftrightarrow \sigma$ excitations require much larger energies. Below the first ionization level, a number of Rydberg $\pi^* \leftrightarrow \pi$ and $\sigma^* \leftrightarrow \pi$ states could also be expected. Each open-shell singlet state also has a triplet companion situated at slightly lower energy. The corresponding vacuum UV singlet spectrum can be subdivided into three bands, the first denoted as 1L_b centered at about 2600 Å, the second 1L_a at ca 2050 Å and the third 1B band at ca 1850 Å.405 Note that the notations 1L_b and 1L_a mean that their dipole transition moment are approximately perpendicular and parallel, respectively, to the main axis.

The lower-lying singlet states of phenol exhibit a $^1A'$ symmetry. As mentioned above, the lowest 1L_b band of phenol was well established experimentally to have an origin at 4.507 eV (275 nm or 36349 cm$^{-1}$ with an oscillator strength $f = 0.02$)118. This first singlet excited state S_1 closely corresponds to the covalent $^1B_{2u}$ state of benzene and has a transition dipole in the x direction. The vertical 1L_a absorption due to the second excited state S_2 was found at 5.82 eV, whereas the corresponding adiabatic value was estimated at 5.77 eV (with $f = 0.13$)119 and is correlated to the more ionic $^1B_{1u}$ state of benzene. The identity of the third excited state of phenol inducing the appearance of its 1B band was more problematic119,406, but it now appears that the observed band, centred at ca 6.66 eV, arises from the lower component of a splitting of the degenerate benzene $^1E_{1u}$ state and is associated with a fairly large transition moment ($f = 1.1$)119. A small and static splitting of this band is usually found in most mono-substituted benzenes with approximately equal intensities. As for the benzene $^1E_{2g}$ band, CASSCF/CASPT2 calculations119,407,408 revealed a significantly larger splitting giving two components centred now at 7.14 and 7.72 eV. Although the E_{2g} states are formally characterized as covalent, they are in reality strongly mixed with a multiplicity of higher states.

The Rydberg states have not yet been detected experimentally, but CASPT2 calculations119,408 indicated the existence of at least six $\pi^* \leftrightarrow \pi$ Rydberg states that range from 6.3 to 7.6 eV and arise from the promotion of 3π and 4π electrons to $3p$ and $3d$ orbitals. There are also no less than twelve $\sigma^* \leftrightarrow \pi$ Rydberg states ranging from 5.8 to 7.8 eV.

The measured rotational constants of the first excited S_1 state127 suggested rather moderate changes of the geometrical parameters upon electronic excitation. The $S_1 \leftrightarrow S_0$ excitation tends to enlarge the carbon ring and reduce the C–H and C–O bond lengths. The O–H bond length and the C–O–H bond angle are almost invariant upon excitation. The constants vary as follows: S_0/S_1 (in MHz): A; 5650/5314; B; 2619/2620; and C; 1782/1756. Multi-reference CASSCF computations reproduced these quantities reasonably well and suggest a planar structure.114,115,126,139,356,372,407,408 In particular, the CASSCF(8,7)407 study provided the rotational constants of $A = 5338$, $B = 2572$ and $C = 1736$ MHz for phenol S_1. The changes in rotational constants could be understood as arising from a deformation of the molecule in the S_1 state along the in-plane mode
6a or mode 8a. CASSCF geometry optimizations126, 372, 407, 408 showed a rather modest shortening of 0.006 Å of the CO distance and a somewhat more important lengthening of 0.03 Å of all CC bonds. Nevertheless, a comparison between the dispersed fluorescence spectrum of phenol and its Franck–Condon simulation114 indicated that the CC bond length actually increases on average by 0.02 Å, whereas the CO bond distance decreases by 0.023 Å upon excitation. The most significant geometrical relaxation could also be deduced from the experimentally observed intensity pattern.

For the second excited S_2 state of phenol, a quite different geometry was found with larger variations of up to 0.11 Å for the CC bond lengths and the COH bond angle (opening by 10°), and a non-negligible shortening of 0.02 Å of the CO bond (relative to phenol S_0). This suggests a considerable charge delocalization from the oxygen into the ring.

The S_1 vibrational frequencies were also observed153, 156, 169, 409 and analysed in detail by means of quantum chemical computations114, 115, 126, 139, 356, 372, 407, 408. Frequency shifts up to 100 cm$^{-1}$ were detected for in-plane modes. While the σ(OH) mode decreases from 3656 to 3581 cm$^{-1}$, the CH-stretching modes 20a and 20b increase from 3087 and 3070 to 3186 and 3136 cm$^{-1}$, respectively, following excitation. Out-of-plane modes show much more scrambling in going from S_0 to S_1, and several original modes409 needed to be re-assigned114. In particular, the Kekule mode 14 should have a larger wave number in the S_1 state (1572 cm$^{-1}$) than in the S_0 state (1343 cm$^{-1}$). This mode has CH-bending and CC-stretching character in the ground state but becomes a CC-stretching plus a small component of the OH-bending mode in the excited state. The relaxation of the OH-stretching vibrations in the S_1→S_0 transition could also be followed in examining the IR-UV double resonance spectra recorded after pumping to the OH stretching level410. These techniques provided us with valuable information on the intramolecular vibrational redistribution (IVR) of the corresponding vibrations.

The phenol dipole moment remains almost unchanged upon excitation to S_1 but shows a marked variation in S_2, in line with a more ionic character of the latter. The ratio of oscillator strengths for both S_2 and S_1 transitions amounts to 6.6 and, as evidenced by the $\langle z^2 \rangle$ values, both valence excited states have no relevant mixing with Rydberg states. Cyanophenols show a similar behaviour where the S_1 charge distribution is close to the ground state and the S_2 counterpart appears to have an appreciable charge transfer from the oxygen115.

Solvent effects were found to have minimal influence on the excitation energies of phenol in aqueous solution using a quantum Monte Carlo simulation372, which is in line with experimental observations on its absorption spectra411. Reaction field calculations of the excitation energy also showed a small shift in a solution continuum, in qualitative agreement with fluorescent studies of clusters of phenol with increasing number of water molecules412a. The largest fluorescent shift of 2100 cm$^{-1}$ was observed in cyclohexane.

In substituted phenols, the excited S_1 states are again dominated by the LUMO ← HOMO and LUMO + 1 ← HOMO − 1 transitions and the corresponding excitation energies apparently differ from that of phenol by, at most, 0.6 eV. Results obtained using time-dependent density functional theory computations in conjunction with a systematic empirical correction are recorded in Table 32. CASSCF(8,7) calculations on both S_0 and S_1 of monochlorophenols412b also point to a similar trend. The frontier orbital energies are only weakly but uniformly stabilized by the halogens or the cyano group, or else they are destabilized by electron-donor groups such as methyl. While the fluorine atoms do not exert any significant effect, multiple substitutions by chlorine and bromine induce a significant decrease in the transition energies412b. The chlorine atom makes the C−O bond shorter and the methyl group makes a marginal modification; the cyano shows a detectable effect when introduced at the 2-ortho position.
The acidities of phenols were found to be greatly increased upon electronic excitation. Due to a change of about 40 kJ mol\(^{-1}\) in the free energy of deprotonation, phenol is intrinsically 7 \(pK_a\) units more acidic in the \(S_1\) than in the \(S_0\) state in the gas phase. Similarly, intermolecular proton transfer in solution from an \(S_1\) excited phenol to, e.g., a solvent base is typically characterized by a \(pK_a\) value of some 6–7 units less than that of the corresponding ground state. In aqueous solution, the \(pK_a\) of phenol amounts to 10.0 in the ground state and 3.6 in the \(S_1\) state.
It is natural to ask whether the enhanced acidity in the excited state arises from an electronic effect of the neutral acid or from the product anion. As seen in Section IV.B above, it has been shown in various ways377,413 that the changes in ground-state acidity resulting from several substitutions are due to the corresponding phenolate anions. The same argument could equally be applied to the difference between ground- and excited-state acidities. The pK_a modification could be understood by the fact that the gas-phase proton affinity of the phenolate anion, a measure of the phenol acidity, amounts to 15.2 eV in the ground state but decreases to 14.3 eV in the S_1 state414. This anion also has a large blue shift of the vertical excitation energy (1800 cm$^{-1}$) in solution. Monte Carlo simulations372 demonstrated that the excited states of phenol and phenolate anion are better solvated than the ground states by ca -2 and -11 kJ mol$^{-1}$ in water, respectively. The experimental value $pK_a = 3.6$ of phenol in the S_1 state in solution is likely to arise from a cancellation of the intrinsic energy difference (ca 50 kJ mol$^{-1}$) of the excitation energy of phenol and phenolate anion, and by the differential solvent spectral shift (ca 25 kJ mol$^{-1}$). The energetic outcome leads to a change of -5 in the pK_a value, which is roughly in accord with the experimental estimate373.

It has been observed that the magnitude of the electrostatic potential (V_{min}) around the oxygen atom undergoes a much larger reduction for the anions than for the neutrals in going from S_0 to $S_1$115. In other words, from a purely electrostatic point of view, the increase in S_1 phenol acidity can better be understood by the fluctuations of the phenolate anions.

Relatively little is known about the phosphorescent phenol415. The experimental $T_1 - S_0$ transition energy was found at 28500 cm$^{-1}$, confirming that the triplet state is, in general, lower in energy than its singlet counterpart356. The selected optimized geometrical parameters of the lowest triplet T_1 state of phenol is displayed in Figure 27. The molecule is no longer planar but shows a small ring deformation with stretched and compressed CC distances, and a marginal out-of-plane OH torsion.

The quenching mechanism of the first excited states of phenol and phenolate anion differ significantly from each other. The fluorescent neutral S_1 state lies substantially higher in energy than T_1 and could be inhibited from quenching by the energy gap (ca 8000 cm$^{-1}$) as well as the small one-electron spin–orbit coupling. At the anion-S_1 geometry, both

![FIGURE 27. Selected UB3LYP/6-311++G(d,p) optimized parameters of the lowest triplet state of phenol. Bond lengths are in Å, bond angles in deg](image-url)
singlet and triplet states of the anion are shown to be dominated by the same electronic configuration, thus allowing for a direct spin–orbit coupling356. As a consequence, the lifetime for fluorescence is short in the anion.

At the neutral–S_0 geometry, the spin–orbit coupling is expected to increase, but there was no evidence of a change in the fluorescence efficiency as a function of the excitation energy in the first singlet excited band416. Quenching in the singlet S_1 state to the T_1 triplet was reported417. The weak spin–orbit coupling is likely to account for an observation of the neutral triplet. In this case the corresponding anion triplet is not observed, due to the fact that its energy is larger than the electron affinity of the phenoxy radical and it is readily autodetached.

Finally, the phenol super-excited states, which are electronic states of neutral species with energy above the first ionization energy, were also identified at about 9 eV above the ground state418, 419. Some of these super-excited states could be mapped spectroscopically out on a picosecond and femtosecond time scale.

D. Ionization

Owing to their relatively low ionization energies (IE) of ca 8.0–8.5 eV, phenols are also good electron donor solutes. Recent experimental studies of phenols in non-protic solvents420–423 showed that ionized solvent molecules react with phenol to yield not only phenol radical cations by electron transfer, but also phenoxy radicals by hydrogen transfer. An obvious question is whether, under these conditions, the latter radicals were formed from ionized phenols rather than by direct hydrogen abstraction, because proton transfer reactions could be facilitated upon ionization. This also raises a question about the influence of solvent properties, both by specific and non-specific interactions, on the mechanism and kinetics of deprotonation processes424, 425.

Gas-phase properties of a molecule have, by definition, an intrinsic character and they could be modified by the environment. Although the formation and reactions of gaseous ionized phenol 21 (cf. Chart 5) and its cyclohexa-2,4-dienone isomer 22 have been studied in numerous ionization and mass spectrometric studies182, 426–438, thermochemical parameters of these isomers439–447 as well as information on other non-conventional isomers, such as the distonic ion 23, were rather scarce. Conventional cations of analogous aromatic systems (X–C_6H_5)$^{+}$ and their distonic isomers generated by simple 1,2-hydrogen shifts within the ring were demonstrated to be observable gas-phase species448–451. In addition, the mechanism of the CO-loss upon phenol ionization has only recently been unraveled452.

\begin{align*}
\text{OH} & \quad \text{O} \quad \text{H} \\
& \quad \text{O} \quad \text{H} \\
& \quad \text{O} \quad \text{H} \\
& \quad \text{H} \\
\end{align*}

\begin{align*}
\text{(21)} & \quad \leftrightarrow \quad \text{(21a)} \\
& \quad \text{(22)} \\
& \quad \text{(23)} \\
\end{align*}

CHART 5. Two isomers of phenol radical cation
1. Molecular and electronic structure of phenol radical cation

The molecular structure, vibrational frequencies and spin densities of ionized phenol 21 in its ground and lower-lying excited electronic states have been investigated intensively using different MO and DFT methods138, 168, 182, 425, 426, 453. For the purpose of comparison, Figure 28 shows again a selection of (U)B3LYP/6-311++G(d,p) geometrical parameters of both neutral and ionized structures (c.f. Table 5). The lowest-energy electronic state of 21 exhibits a planar geometry and a $^2A''$ symmetry arising from removal of an electron from the π-system; therefore, its ground state can be qualified as a $^2\Pi$-state. Following such an ionization, the quasi-equal C–C bond (1.40 Å) framework in the neutral phenyl ring becomes longer (1.43 Å) and shorter (1.37 Å) bonds. The latter distance becomes now closer to that of a typical C=C double bond (1.35 Å). Although the absolute changes in the bond lengths vary with the methods employed, they consistently point out that the C–O bond is shortened in going from 1.37 Å in the neutral to 1.31 Å in the ionized phenol, but it remains longer than that of a typical C=O double bond (1.22 Å)138. Such distance changes can be understood from the shape of the HOMO of neutral phenol as displayed in Figure 5. Accordingly, the C–O bond is characterized by antibonding orbital 2p-lobes; therefore, electron removal is expected to shorten the C–O distance. The same argument could be applied to the changes in the ring C–C distances. In fact, electron removal from the bonding C6–C1–C2 and C3–C4–C5 components leads to bond stretching, whereas a decrease in the antibonding C2–C3 and C4–C5 components results in bond compression. Because the unpaired electron occupies a π-orbital and exerts a marginal effect on the σ framework, the C–H and OH distances are not significantly affected and the COH bond angle opens by only 4° upon ionization (cf. Figure 28). Although the changes in geometry are a clear-cut manifestation of the oxidation, it is not possible to correlate these alterations completely with all the accompanying intramolecular reorganization energies454. This reorganization is global rather than a local phenomenon.

To some extent, the geometry confers on the phenol ion a quinone-like distonic character as seen in 21a (Chart 5) in which the charge and radical centres are located at two different sites. This picture is supported by the charge distribution according to the Mulliken population analysis suggesting that the para-C$_4$ carbon of the ring bears the largest

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure28.png}
\caption{Selected (U)B3LYP/6-311++G(d,p) bond distances (Å) and angles (deg) of the neutral ($^1A'$, upper values) and ionized ($^2A''$, lower values) phenol. See also Table 5}
\end{figure}
part of the excess electron spin (ca 0.5 e). The positive charge is, as expected, delocalized over the entire ring skeleton but with a substantial part on the oxygen region.138, 168

Bear in mind that the HOMO-1 is equally a phenyl orbital with the 2p(π)-lobes centred on the ortho and meta carbon atoms (Figure 5). As a consequence, ejection of an electron from this orbital is expected to yield a 2Π excited state of phenol ion in which the C2–C3 and C5–C6 distances likely become longer than the corresponding values in neutral phenol whereas the C–O distance likely remains unchanged. Removal of an electron from the HOMO-2 again leads to a 2Π excited state. The HOMO-3 of phenol is the first in-plane orbital (a′) thus leading to a 2A′ excited state of phenol ion.

The recorded He(I) and He(II) photoelectron spectra of phenol443–447 contain several peaks ranging from 8.56 to 22.67 eV. It appears that the reported value of 8.56 eV is actually the first phenol vertical IE whereas that of 8.47 eV corresponds to its first adiabatic IEa. Geometry relaxation of the vertical ion results in a small stabilization. For comparison, note that the IEa(phenol) is computed to be 8.37 and 8.42 eV using B3LYP and CCSD(T), respectively, in conjunction with the aug-cc-pVTZ basis set. This leads to a standard heat of formation of ∆Hf(21) = 724 ± 6 kJ mol−1.441.

The vertical lowest-lying excited state A′A′ of phenol radical cation 21 lies only 0.72 eV above the ground X2A′′ state whereas the vertical B2A′′ state is identified at 2.96 eV from the photoelectron spectrum.443 MCSCF/FOCI computations yielded a value of 3.32 eV (373 nm) for this vertical transition. A recent photoinduced Rydberg ionization spectroscopic study420 revealed a gap of 2.62 eV (21129 cm−1), which is assigned to the B-state of 21. Electronic spectra of the phenol cation–water complex also suggested a certain transition in this region.456

Coupled-cluster CCSD(T)/6-311++G(d,p) electronic energy computations of the 2A′ state using the 2A′′ ground-state geometry leads to an estimation of 3.6 eV for the vertical C2A′ ← X2A′′ transition, which compares reasonably well with the PE of 3.37 eV.443 The lowest-lying quartet state of phenol ion was found to be a dissociative state giving a triplet phenyl cation plus OH radical that lie about 5.3 eV above the ground-state 2A′. Overall, the calculated results point towards the following energy ordering of electronic states of 21: X2A′′(0.0) < A2A′′(0.5) < B2A′′(2.6) < C2A′′(3.1), where values given in parentheses are energy gaps in eV.

A deprotonation of the phenol ion giving the phenoxo radical 21 → C6H5O−(C2B1) + H+ is a barrier-free endothermic scission. Due to the small size of the proton, the stabilizing through-bond delocalization during the cleavage, if any, is likely to be small.441 The process is characterized by a DPE of 857 kJ mol−1 (at 0 K) and 863 kJ mol−1 (at 298 K) derived from B3LYP computations. The latter value compares well with the experimental proton affinity of 860 kJ mol−1 previously determined for the phenol radical.442 This is by far smaller than the corresponding value of neutral phenol, DPE(PhOH) = 1464 kJ mol−1 (15.16 eV), discussed above. Electron removal from a neutral system tends to facilitate effectively its deprotonation. For the sake of comparison, remember that the PAs (0 K) of phenol and anisole amount to PA(phenol) = 820 kJ mol−1 and PA(anisole) = 842 kJ mol−1 (cf. Section IV.A). From a technical point of view, the hybrid density functional B3LYP method appears to provide the most accurate DPE values.138

The effect of substituents on the DPE and IE also depends on their nature and position. For a series of mono-halophenol ions, the DPEs (in kJ mol−1) calculated using the B3LYP/6-311++G(d,p)+ZPE level are as follows:

Cl: ortho: 852; meta: 848; para: 861.
Br: ortho: 858; meta: 853; para: 867.
Relative to the value of 857 kJ mol$^{-1}$ for 21, fluorine consistently tends to reduce the DPE up to 17 kJ mol$^{-1}$, whereas chlorine and bromine could either enhance or reduce it by ca 10 kJ mol$^{-1}$. The meta-C$_5$ position is peculiar in having the smallest DPE, irrespective of the nature of the halogen. This is due to the fact that the meta-X-phenol radical cation corresponds to the least stable isomer within each series, lying up to 20 kJ mol$^{-1}$ above the most stable para-C$_4$ counterpart. In the ortho position, the cis-C$_2$ conformer is more stable than trans-C$_6$ and energetically close to the para-C$_4$ one. A direct consequence of the lower stability of the meta-X-phenol ions is the higher IE$_a$ of the corresponding neutral molecules whereas the para-X-phenols, on the contrary, exhibit the smallest IE$_a$. The IE$_a$s of the series of mono-halophenols are evaluated as follows (bearing in mind that the relevant value for the parent phenol is actually 8.48 eV):

\[
\begin{align*}
F: & \quad \text{ortho}: 8.68; \quad \text{meta}: 8.70; \quad \text{para}: 8.48. \\
Cl: & \quad \text{ortho}: 8.61; \quad \text{meta}: 8.63; \quad \text{para}: 8.39. \\
Br: & \quad \text{ortho}: 8.55; \quad \text{meta}: 8.57; \quad \text{para}: 8.32. \\
\end{align*}
\]

The observed changes in both quantities could partly be rationalized in classical terms of electron-donating and electron-withdrawing effects.439,440 We now turn to the hyperfine coupling constants (hfcc) of 21 that were determined using EPR spectroscopy techniques.457 It is believed that these properties could be used with enough accuracy to distinguish phenol radical cations from phenol radicals in tyrosine-derived species.138 Isotropic hfcc values are a sensitive measure of the electronic spin distribution, as they are directly proportional to the spin density at the position of nucleus N, $\rho(N)$. According to the McConnell relation,458 the spin density at the H nucleus is well known to depend on the spin polarization of the $\sigma(C-H)$ electrons by virtue of the unpaired carbon π-electron density. Therefore, it suggests the repartition of the excess electron among the ring carbon atoms. Measured hfcc values included 5.3, 0.8 and 10.7 Gauss for the protons at the C$_2$, C$_3$ and C$_4$, respectively. This agrees qualitatively with the spin distribution from simple resonance terms, where the highest spin density is on the para-C$_4$, followed by the ortho C$_2$ and C$_3$ carbons. The values for the hydroxyl proton, 13C and 17O hfcc values, as well as the sign of spin polarization at each proton were not reported.457

Table 33 lists the hfcc values calculated at the UB3LYP/6-311++G(d,p) level for both phenol radical cation and phenoxy radical. A few points are noteworthy.

(i) There are significant differences between the hfcc values of both doublet species which are perfectly distinguishable on the basis of this spectroscopic parameter. Protonation of the symmetrical phenoxy radical induces some large shifts on the 13C constants, in particular the ipso-carbon, and to a lesser extent the ortho-carbons. The odd-alternate pattern of spin densities is thus more pronounced in the radical cation than in the radical.

(ii) A large asymmetry is manifested in the hfcc values of ion 21.

(iii) Calculated hfcc values for 21 agree qualitatively with the EPR results mentioned above. Thus the calculated $a(H_1) = -9.9$ G, $a(H_2) = -4.1$ G and $a(H_3) = 0.7$ G are close to the experimental magnitude of 10.7, 5.3 and 0.8 G, respectively.

(iv) Calculations reveal a substantial hfcc for the hydroxyl proton (-6.9 G).

The difference in structural and bonding properties of both neutral and ionized species also manifests itself strongly in their vibrational motions. Most of the 11 experimentally measured vibrational frequencies for 21 and 10 frequencies for its deuteriated analogue 21–d$_5$ correspond to the CH bending, CC and CO stretching.125 The highest frequency observed at 1669 cm$^{-1}$ was assigned to a CC stretching mode (the Wilson 8a mode) and the lowest frequency of 169 cm$^{-1}$ describes an out-of-plane ring torsion. No surprises were noted in the measured isotopic frequency shifts; all modes of 21 shift to lower frequencies.
TABLE 33. Hyperfine coupling constants (G) of phenoxy radical and phenol radical cationa

<table>
<thead>
<tr>
<th>Atom</th>
<th>Phenoxy radical</th>
<th>Phenol radical cation 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isotropic Fermi</td>
<td>Isotropic Fermi Contact</td>
</tr>
<tr>
<td></td>
<td>Contact Couplings</td>
<td>Couplings</td>
</tr>
<tr>
<td>C-1</td>
<td>-12.5</td>
<td>-2.5</td>
</tr>
<tr>
<td>C-2</td>
<td>6.6</td>
<td>1.6</td>
</tr>
<tr>
<td>C-3</td>
<td>-8.8</td>
<td>-6.4</td>
</tr>
<tr>
<td>C-4</td>
<td>10.3</td>
<td>10.0</td>
</tr>
<tr>
<td>C-5</td>
<td>-8.8</td>
<td>-7.4</td>
</tr>
<tr>
<td>C-6</td>
<td>6.6</td>
<td>2.8</td>
</tr>
<tr>
<td>O</td>
<td>-7.3</td>
<td>-6.9</td>
</tr>
<tr>
<td>H(C-2)</td>
<td>-6.7</td>
<td>-4.1 (5.3)b</td>
</tr>
<tr>
<td>H(C-3)</td>
<td>2.6</td>
<td>0.7 (0.8)</td>
</tr>
<tr>
<td>H(C-4)</td>
<td>-8.8</td>
<td>-9.9 (10.7)</td>
</tr>
<tr>
<td>H(C-5)</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>H(C-6)</td>
<td>-6.8</td>
<td>-5.0</td>
</tr>
<tr>
<td>H(O)</td>
<td></td>
<td>-6.9</td>
</tr>
</tbody>
</table>

*aResults obtained from UB3LYP/6-311++G(d,p).
bIn parentheses are experimental values from Reference 424.

upon deuteration and the largest observed frequency shift of -359 cm^{-1} appears for a CH bending motion. Calculations138 have helped to reassign several observed bands425. Most importantly, the band observed at 1500 cm$^{-1}$ is due to the CO stretching (rather than a CC stretching as originally assigned) and the band at 1395 cm$^{-1}$ to a CH bending (rather than a CO stretching).

Although the atomic masses remain unchanged, the force constants, frequencies and normal modes are modified significantly upon electron loss. We note that the most important shifts arise from the C–O–H torsion mode (upshift of 256 cm$^{-1}$), the C–O–H bending (downshift of 57 cm$^{-1}$) and the CO stretching (upshift of 101 cm$^{-1}$). It is possible not only to identify these changes, but also to quantify them in terms of the percentage of a neutral mode present in that of the ion by making use of a vibrational projection analysis technique168. Figure 29 displays a qualitative graphic representation of the hydrogen displacements in the C–H stretching normal modes calculated for both neutral and ionized phenol. While the highest and lowest C–H stretching modes of 21 are clearly assignable to the respective modes of phenol, the middle three modes show a higher degree of changes and mixing.

2. Relative energies of the (C$_6$H$_4$O)$^{++}$ radical cations

There are obviously a large number of possible isomers of phenol ion. Let us consider only the isomers where the six-membered ring framework is preserved. Starting from 21, one hydrogen atom could be displaced from either O or one C atom to another atom and this exercise results in the creation of the various isomeric groups presented in Figure 30: group 1 includes ions having a CH$_2$ group at the para (C$_4$) position, group 2 at the meta (C$_3$), group 3 at the ortho (C$_2$) and group 4 at the ipso (C$_1$) and oxygen positions.

Calculated energies relative to the phenol ion given in Figure 30 indicate that 21 represents the most stable form among the six-membered ring group of isomers. Keto-forms 22 and 24 are low-lying isomers which are situated 146 and 133 kJ mol$^{-1}$, respectively, above 21. This energy ordering within the pair 21 and 22 (or 24) is reminiscent of that encountered for simple keto–enol tautomers459,460. For example, ionized vinyl alcohol
is significantly more stable (about 60 kJ mol\(^{-1}\)) than its keto ion counterpart\(^{461,462}\). The difference in energy observed here between ionized phenol and its keto tautomers is, however, more pronounced; this point will be examined below. The distonic oxonium species 23 (Chart 5) belongs to the high-energy group of isomers; its energy, relative to 21, equals 241 kJ mol\(^{-1}\). The distonic species 25 (Figure 30) turns out to be the lowest lying isomer of group 2. This situation is opposite to the situation met in the ionized aniline system in which the ammonium distonic ion is found to be only 80 kJ mol\(^{-1}\) above ionized aniline\(^{303}\). The other meta- and ortho-distonic ions have similar energy and are separated from each other by high-energy barriers for 1,2-hydrogen shifts (Chart 6).

In order to evaluate the effect of ionization on the relative stabilities of phenol isomers, a selected set of neutral species is considered whose relative energies are displayed in Figure 31. It is remarkable that, in the neutral state, only three six-membered ring structures are in a \(ca\) 70 kJ mol\(^{-1}\) energy range, namely phenol 26 and its keto-forms 27 and 28. The carbene, allene or biradical isomeric forms are strongly destabilized and lie more than 200 kJ mol\(^{-1}\) above 26. In contrast, the five-membered ring containing a ketene or a ketone moiety are only 90 to 140 kJ mol\(^{-1}\) above phenol. As expected, phenol 26 is more stable than its tautomers 27 and 28, and this is partly at the origin of the large difference in stability of the corresponding ionized species. In fact, in the phenol series, the aromaticity renders the enol tautomer more stable; this situation is opposite to that observed in the aliphatic series. For example, neutral acetaldehyde is \(ca\) 40 kJ mol\(^{-1}\) below its enol form, namely the vinyl alcohol\(^{459,461}\). After removal of one electron, the enol structure becomes more stable than the keto form by 60 kJ mol\(^{-1}\) as recalled above\(^{462}\). This stability reversal is due to the large difference in IE\(_a\) values between the two structures, namely 9.14 eV for vinyl alcohol and 10.23 eV for the acetaldehyde, in keeping with the fact that it consists of a \(\pi_{C=\text{C}}\) ionization in the former case and an ionization of an oxygen lone pair in the latter. A comparable situation arises for the phenol (IE = 8.5 eV) and its keto tautomers 27 and 28 (IE = 10.8 eV). This difference, added to the difference in energy between the neutral molecules (in favour of the phenol molecule), explains the large energy gaps of 22 and 24 with respect to 21.
3. The \((C_6H_6O)^+\) potential energy surface (PES)

The essential features of the portion of the \((C_6H_6O)^+\) PES starting from 21 were constructed and illustrated schematically in Figure 32. The shape of the most interesting intermediates are defined in Figure 33 and X/Y denotes a transition structure (TS) linking two equilibrium radical cation structures X and Y. The ion fragments \(C_5H_6^+\) resulting from elimination of CO, labelled as 31, 33, 38, 40 and 43 in Figure 32, are omitted for the sake of simplicity. Their actual shape can easily be deduced from the structures of

Group 1

\[\text{OH}^+\]
\[\text{OH}^+\]

166

161

(24)

133

Group 2

\[\text{OH}^+\]
\[\text{OH}^+\]

225

227

221

\[\text{OH}^+\]
\[\text{OH}^+\]

246

(25)

167

FIGURE 30. Relative energies of selected isomers of phenol radical cation containing a six-membered ring. Values given in kJ mol\(^{-1}\) relative to 21 were obtained from UB3LYP/6-311++G(d,p)+ZPE calculations. Adapted from Reference 452 with permission.
1. General and theoretical aspects of phenols

Group 3

![Chemical structures of Group 3 phenols](image)

Group 4

![Chemical structures of Group 4 phenols](image)

FIGURE 30. (continued)

![Chart of oxonium distonic isomers and transition structures](image)

CHART 6. B3LYP/6-311++G(d,p)+ZPE energies (in kJ mol\(^{-1}\)) of the oxonium distonic isomers and the transition structures connecting them relative to phenol ion 21. Adapted from Reference 452 with permission.
FIGURE 31. Relative energies of selected isomers of neutral phenol. Values given in kJ mol$^{-1}$ were obtained from B3LYP/6-311++G(d,p)+ZPE calculations. Adapted from Reference 452 with permission.
the corresponding radical cations 30, 32, 37, 39 and 11, respectively. The phenoxy cation 44, results from hydrogen loss from the phenol radical cation 21.

The numerous reaction pathways found in Figure 32 invariably lead to an elimination of CO giving (C₅H₆O)⁺⁺ ion fragments (m/z 66). The PES can be divided into two distinct parts: while the first part involves the three cyclohexanone ion isomers 22, 24 and 25, the second consists in the conversion of the cyclic keto-ions into either the various open-chain distonic forms 34 (or its conformers 35 and 36), 37 and 39, or the five-membered cyclic derivatives 29, 30 and 41. There are also some weak hydrogen bond complexes between CO and the CH bond of ionized cyclopentadienes such as 32 and 42.

The first step thus corresponds to a 1,3-hydrogen shift via the transition structure (TS) 21/22 which is associated with a rather high energy barrier of 276 kJ mol⁻¹ relative to the phenol radical cation 21. The corresponding energy barrier for the neutral system amounts to 278 kJ mol⁻¹. Thus, there is practically no reduction in the barrier height following ionization, in contrast to the case of the propene ion 463. It appears that, once formed, the keto ion 22 easily undergoes a ring opening via TS 22/34 yielding the open-chain distonic ketene radical cation 34. The successive 1,2-hydrogen shifts within the ring can also give 25 and finally the most stable keto form 24. From here, the six-membered cyclic framework could be converted into the five-membered ring 29 lying 189 kJ mol⁻¹ above

FIGURE 32. Schematic representation of the (C₆H₆O)⁺⁺ potential energy surface showing the rearrangements of phenol radical cation leading to a CO loss. Relative energies given in kJ mol⁻¹ were obtained from B3LYP/6-311++G(d,p)+ZPE calculations. Adapted from Reference 452 with permission.
21 by direct one-step rearrangements via the TSs 24/29 and 25/29. From 29, an almost spontaneous CO loss with an energy barrier of only 18 kJ mol$^{-1}$ could thus occur, giving the complex 32, which dissociates to the fragment products CO+ cyclopentadiene ion 33, 116 kJ mol$^{-1}$ less stable than phenol ion 21.

Although the ketene ring 30 is found to be only 53 kJ mol$^{-1}$ above 21 and by far more stable than acetyl ion 29, it turns out that the CO loss from an indirect process, finally giving the five-membered ion 31, namely 29 → 30 → (CO + 31), constitutes a substantially more difficult route. It is apparent from Figure 32 that the cyclic isomer 29 could be a possible intermediate in the CO-eliminative process of phenol cation 21. Nevertheless,
the high energy content of both TSs $24/29$ and $25/29$ at 293 and 300 kJ mol$^{-1}$, respectively, above 21 but actually 20 kJ mol$^{-1}$ above the TS $21/22$ for the initial 1,3-hydrogen shift, makes the rearrangement through 29 less competitive than other routes. The latter is, however, more favoured than a hydrogen atom elimination characterized by a dissociation energy of 374 kJ mol$^{-1}$ for a direct O–H bond cleavage (Figure 32).

The alternative route comprises the open-chain ketene ion 34 and its conformers 35 and 36 formed by ring opening of the ketone ion 22. From here, the super-system could either rearrange to the open-chain acetyl cations 37 and 39 or undergo a cyclization, forming back the five-membered ring 41 which is significantly more stable than 37 and 39 (137, 240 and 306 kJ mol$^{-1}$ above 21, respectively). Figure 32 clearly points out that the CO loss via 41 is beyond any doubt the lowest energy route452.

Figure 34 illustrates the lowest energy rearrangement path for the CO-loss process of ionized phenol. It involves, in a first step, the enol–keto conversion 21–22. Starting from 22, a ring opening leads to structure 34 which, in turn, by ring closure produces ion 41. A direct and concerted isomerization 22 → 41 was not found428. The CO loss from 41 involves the slightly stabilized ion/neutral intermediate 42. The rate-determining step of the overall process 21 → 22 → 34 → 41 → 42 → (CO + C$_5$H$_6^+$) is the 1,3-hydrogen shift 21/22.

The processes suggested by calculations are in good agreement with experimental mass spectrometric studies$^{429−435}$ which demonstrated that the CO loss (m/z 66) corresponds to the least energy demanding fragmentation. Furthermore, it was found earlier that the kinetic energy released during the CO loss from the keto ion 22 was less than that involved during the dissociation of the phenol ion 21 itself434. This is clearly in keeping with the potential energy profile presented in Figure 34. The appearance energy of the [M–CO]$^+$ ions has been determined by time-resolved electron impact435 and photoionization436 experiments and by photoelectron photoion coincidence444.

From a comparison of the data and after consideration of the kinetic shift, an energy threshold of 11.4 ± 0.1 eV at 298 K has been deduced. Considering an adiabatic ionization energy value of 8.47 ± 0.02 eV444,464 and a correction for the 298 K enthalpy of ca 0.1 eV for the phenol, the energy barrier separating 21 from its fragments is thus ca 3.0 ± 0.15 eV, i.e. 290 ± 15 kJ mol$^{-1}$. This value is in excellent agreement with the calculated 0 K energy barrier 21 → 22 of 276 kJ mol$^{-1}$.

It may be noted that the energy amount involved in the CO-loss process is by far smaller than that needed for a deprotonation of phenol cation as mentioned above, namely 857 kJ mol$^{-1}$. This suggests that the ease with which a deprotonation of phenol radical cations occurs in different solutions419,423,424 was likely to arise from either a specific participation of the solvent molecules in the supermolecule or a strong continuum effect.

4. Mass spectrometric experiments

The state-of-the-art mass spectrometric experiments described below were designed to search for a possible production of (C$_6$H$_5$O)$_2^+$ isomers, such as dehydrophenyloxonium ions or cyclohexadienone ions. They were performed on a large-scale tandem mass spectrometer of E$_1$B$_1$E$_2$qcE$_3$B$_2$E$_4$ geometry (E stands for electric sector, B for magnetic sector, q for a radio-frequency-only quadrupole collision cell and c for the ‘conventional’ collision cell)465,466. The following three MS experiments have been carried out:

(a) First, both 4-bromophenol (45) and 4-bromoanisole (46) were protonated in the chemical ionization ion source. It was expected that collisional debromination of protonated 4-bromophenol (47) could be an interesting source of a distonic isomer of ionized phenol if protonation takes place at oxygen. Alternatively, phenol ions should be produced in the case of ring protonation. The same behaviour was expected for protonated 4-bromoanisole (48).
The high-energy collisional activation (CA) spectra of the C₆H₆O⁺⁺ ions (m/z 94) or C₇H₈O⁺⁺ ions (m/z 108) were recorded and the resulting spectra depicted in Figure 35 were found identical to the corresponding spectra of ionized phenol or anisole, respectively.

This observation is in line with the preferential protonation at the ring, not at the oxygen atom, of phenol or anisole (cf. Section IV.A). Distonic dehydro-oxonium ions 50 are therefore not generated in these chemical ionization experiments, in line with the fact that they are more than 200 kJ mol⁻¹ less stable than ions 49 (Chart 7). A major fragmentation of ions 50 should be a loss of HOH or ROH with the production of benzyne ions (m/z 76), but the relative intensity of this peak is not increased, thus confirming that ions 50 are not produced to a significant extent in the protonation–debrmination sequence.
Such behaviour clearly contrasts with the case of 4-iodoaniline, where protonation in a chemical ionization source occurred not only on the ring but also on the nitrogen atom450. Nitrogen protonation was indicated by ion–molecule reactions with dimethyl disulphide consecutive to collisional dehalogenation (FT-ICR experiments)467 or by an increase in the intensity of the peak at \(m/z \) 76 following high-energy collisional activation450.

(b) Given the fact that a ring protonation was identified in the preceding experiment, unsubstituted anisole was also protonated under methane chemical ionization conditions with the expectation that if the methyl group could subsequently be expelled collisionally
within the quadrupole collision cell, a cyclohexadienone radical ion (ortho 22 and/or para 24) should be produced. The protonation occurs on the ring as indicated by the experiments described above on 4-bromoanisole and a demethylation was indeed a prominent fragmentation of the protonated anisole (Figure 36a), but the CA spectrum of the re-accelerated m/z 94 ions (Figure 36b) was found identical to the CA spectrum of the phenol radical cations, not to that of cyclohexadienone ions.

A similar observation has also been made using another MS/MS/MS experiment, where the demethylation step was realized in the high kinetic energy regime. Demethylation of protonated anisole is evaluated to be less endothermic by about 146 kJ mol\(^{-1}\) if ionized phenol 21 was formed rather than ionized cyclohexadienone 22 (cf. Chart 8, where values given are estimated heats of formation).

Computations on the interconversion of protonated anisoles indicate that the demethylation of the latter invariably involves formation of its O-protonated form and ends up with the production of 21. The O-protonation is about 57 kJ mol\(^{-1}\) less favoured than the ring para-C\(_4\) protonation and the entire process is associated with an energy barrier of 232 kJ mol\(^{-1}\) relative to the most stable protonated form, a value comparable to that required for a direct C–O bond cleavage of O-protonated anisole.

(c) In the last experiment, 2-hydroxybenzaldehyde (salicylaldehyde) was submitted to electron ionization. Due to an ortho effect, carbon monoxide is, inter alia, expelled from the metastable molecular ions (MIKE spectrum, the concerned field-free region being the quadrupole cell, Figure 37a). The CA spectrum of the m/z 94 ions detected in the mass spectrum (Figure 37b) is depicted in Figure 37c. This spectrum indicates that these ions are actually not phenol ions. Moreover, when the m/z 94 ions are generated collisionally in the quadrupole, the CA spectrum is very significantly modified (Figure 37d) with the appearance of an intense signal at m/z 76, corresponding to a loss of water.

In summary, a debromination of protonated 4-bromophenol and 4-bromoanisole essentially produces phenol and anisole radical cations, respectively; no less conventional molecular ions were detected. Similarly, collisional demethylation of protonated anisole gives rise to ionized phenol. Only an electron ionization of salicylaldehyde appears to produce an ortho-oxonium distonic isomer of the phenol ion. Quantum chemical calculations suggest predominant stability of 21 lying at least 130 kJ mol\(^{-1}\) below the other six-membered isomers. Its preponderant fragmentation is a CO loss occurring via different intermediates, namely its keto six-membered ring, open-chain ketene and five-membered cyclopentadiene isomers. The rate-determining step corresponds to the enol–ketone interconversion of the phenol ion with a barrier height of 276 kJ mol\(^{-1}\) relative to phenol ion,
FIGURE 36. (a) MIKE spectrum of protonated anisole m/z 109 and (b) CA (nitrogen) spectrum of the m/z 94 ions. Adapted from Reference 452 with permission
CHART 8. Protonation of anisole

FIGURE 37. (a) MIKE and (b) CA spectra of the m/z 122 ions of ionized salicylaldehyde (peaks at m/z 121, ca 5 x more intense, not shown), and (c) and (d) CA (nitrogen) spectra of the m/z 94 ions produced in these conditions. Adapted from Reference 452 with permission
which is markedly smaller than that required for hydrogen atom loss or deprotonation. This suggests that the solvent plays an important role in assisting the deprotonation of phenol ions in non-polar media.

5. Keto–enol interconversion

As discussed in a previous section, thanks to the aromatic stabilization, the phenol–cyclohexadienone pair thus represents a specific case in which the enol form is actually more stable than its keto tautomers. Hydrogen transfer from oxygen to carbon indeed disrupts the phenyl ring and this disfavours the ketone form. However, the latter intervene as crucial intermediates during the phenol decomposition, in the oxidative metabolism of aromatic compounds (the ‘NIH-shift’), in the reactions of arene oxides, the photo-Fries rearrangement, the Kolbe–Schmitt and the Reimer–Tiemann reactions. Both cyclohexa-2,4-dien-1-one and cyclohexa-2,5-dien-1-one have been generated experimentally by flash photolysis of appropriate precursors in aqueous solution. Based on kinetic results, logarithms of the equilibrium constants for the enolization have been evaluated to be $pK_E(27, 25^\circ C) = -12.73$ and $pK_E(28, 25^\circ C) = -10.98$. Combination with the acidity constant of phenol also defines the acidity of both ketones which are characterized as strong carbon acids with $pK_a(27) = -2.89$ and $pK_a(28) = -1.14$, all with errors of ±0.15. The common conjugate base is the phenolate anion discussed in a preceding section. Both ketone forms disappeared by proton transfer to the solvent with estimated lifetimes of $\tau(27) = 260 \mu s$ and $\tau(28) = 13 \mu s$.

Let us remember that the energy difference between phenol and both keto isomers amount to 73 and 69 kJ mol$^{-1}$, respectively (Figure 31). The contribution of entropy is small, amounting to $\Delta S = -9$ and -1 J mol$^{-1}$K$^{-1}$, for both ketonization reactions, respectively, and this also leads to an estimate for the equilibrium constant of the enolization, pK_E, ranging from -12 to -13, of the same order of magnitude as the experimental results in aqueous solution. It should be stressed that such similarity of values in both gaseous and condensed phases should not be considered as an ‘agreement’ and need to be treated with much caution, due to the fact that the solvent effect on the equilibrium has not been taken into account.

The results discussed above clearly demonstrate that the keto–enol energy difference is further enlarged upon ionization at the expense of the keto form (Figure 34), due to the higher IE_a of the latter, namely 804 kJ mol$^{-1}$ for 26 and 878 kJ mol$^{-1}$ for 27. Figure 38a shows a remarkable effect of the methyl substituent on the energy differences. Although the group placed either at the meta or para position does not induce large changes in the relative energies of the neutral species (a reduction of 3–5 kJ mol$^{-1}$), it strongly modifies those in the ionized state, in particular in the para-substituted system: the IE_a of phenol is effectively reduced whereas the IE_a of cyclohexadienone has increased. This results in a further destabilization of 18 kJ mol$^{-1}$ of the ionized ketones.

The phenomenon is also manifested, albeit to a lesser extent, in the amino-substituted pairs as illustrated in Figure 38b. In this system, the IE_aS are substantially decreased due to the presence of the amino group, which confers an ‘aniline’ character to the ionized species.

It is also well known that the keto–enol equilibrium is modified fundamentally in aqueous solution due to the specific interaction of solvent molecules with the substrates through hydrogen bonds. Calculated results summarized in Figure 39a indicate that the keto–enol equilibrium is markedly modified in the bimolecular neutral systems in which each tautomer interacts with one water molecule. In particular, the energy barrier for hydrogen transfer from oxygen to carbon is reduced appreciably, in going from
FIGURE 38. Relative and ionization energies of meta- and para-X-substituted phenol and cyclohexa-2,4-dienone: (a) X = methyl and (b) X = NH₂. Values given in kJ mol⁻¹ were obtained from B3LYP/6-311++G(d,p)+ZPE computations.
175 kJ mol$^{-1}$ in the unimolecular system to 76 kJ mol$^{-1}$ in the water-assisted hydrogen transfer. The displacement of the equilibrium in favour of the enol form is further accentuated in the ionized counterparts in which the ionized keto form virtually disappears. The relevant calculated results are illustrated in Figure 39b.

We also mention that the ionized phenol–water complex has been observed and examined in depth$^{113, 455, 473–476}$. Complexes of phenol radical cation with ammonia477 and molecular nitrogen478 have also been produced. The existence of an intramolecular hydrogen bond in ortho-substituted phenol radical cations has also been demonstrated479.

E. The O–H Bond Dissociation

1. Phenoxy radicals

Owing to the relatively facile oxidation of phenols, phenoxy radical (PhO*) and their substituted derivatives occur widely in nature and are involved in many biological and industrial processes as crucial intermediates480. The phenoxy radical is a simple prototype of a substituted aromatic radical and a model for tyrosyl radicals [TyrO$^* =$ p–(H$_2$N)(CO$_2$H)CH$_2$C$_6$H$_4$O*$] in oxidized proteins. Tyrosyl radicals were found as stable cofactors in several metalloenzyme active sites including ribonucleotide reductase R2 protein481, cytochrome c peroxidase, prostaglandin synthase482, and the oxygen evolving complex of photosystem II483. Covalently modified analogues of TyrO* were detected in galactose oxidase484 and amine oxidase485. While the biological function of these radicals is not always well established, they are believed to form covalent cross-links between DNA and proteins486, to be involved in the catalytic cycles of a number of biosynthetic reactions and to serve as an electron transfer intermediate in photosynthesis483.

Phenoxy derivatives also play a primordial role in the antioxidant activities of the phenolic components of Vitamin E456. Because phenols are produced in the early stage of high temperature oxidation of benzenes, phenoxy radicals are again postulated as key intermediates in the combustion of many aromatic compounds that are used as additives in lead-free fuels due to their high octane value487. In spite of their highly reactive nature which precluded direct structure determinations, a plethora of careful spectroscopic studies of phenoxy radicals have been scattered throughout the literature. A considerable amount of information on the structure and properties of PhO* has thus been gained from numerous experimental electron paramagnetic resonance (EPR)$^{457–459, 488, 489}$, vibrational (IR, resonance Raman)$^{473–476}$ and absorption (UV, visible)$^{490–498}$ spectroscopy studies.

a. Electronic structure. The unsubstituted PhO* radical exhibits a C$_{2v}$ point group symmetry. The unpaired electron is expected to reside in a π-orbital which is anti-symmetric with respect to the two-fold axis and the reflection in the molecular plane. In this case, the notation of the corresponding irreducible representations depends on the choice of axes. Depending on whether the molecular plane is taken to be the first or the second plane of reflection, the ground state is denoted 2B_2 or 2B_1. In the literature both labels $^2B_{2v}^{359, 455, 507–514}$ and $^2B_{2v}^{359, 455, 507–514}$ have been used equally. Although this is a simple symmetry notation problem, it might cause a certain confusion!

We adopt here an axis convention in which the ground state of the phenolate anion (PhO$^-$) is described by the following basic orbital configuration: $(1a_1)^2(1b_1)^2(1b_2)^2(2b_1)^2 (2b_2)^2$. The reference configurations for the 2A_2, 2B_1 and 2B_2 electronic states of the neutral radical can hence be formed from this, making an electron hole in the $1a_2$, $3b_1$, and $8b_2$ orbitals, respectively. The shapes of the singly-occupied orbitals b_1, b_2 and a_2 are displayed in Figure 40. Numerous ab initio calculations$^{509, 510, 514}$ have indicated that, within this notation, the ground state π radical has 2B_1 symmetry. We are mainly concerned with the nature of the electronic states.
FIGURE 39. Schematic potential energy profiles showing the interconversion between phenol and cyclohexa-2,4-dienone in free and water-assisted systems: (a) in the neutral state and (b) in the ionized state. Values given in kJ mol$^{-1}$ were obtained from B3LYP/6-31G(d,p)+ZPE computations.
Several electronic excitations have been identified experimentally. The early gas-phase absorption spectra\(^{499, 500}\) showed bands with \(\lambda_{\text{max}}\) at 395 nm (3.1 eV) and 292 nm (4.2 eV). A subsequent experimental study in a nitrogen matrix observed the analogues of these bands and an additional higher energy band with \(\lambda_{\text{max}}\) at 240 nm (5.2 eV)\(^{501}\). A weak and broad band was detected in the 600 nm region with a peak centred at 611 nm (2.0 eV) and several other regularly spaced peaks whose spacings of about 500 cm\(^{-1}\) were presumably due to a vibrational progression\(^{416, 502-506}\). An ultraviolet photoelectron spectroscopy study\(^{370}\) suggested, however, that the first excited state of phenoxyl radical appears rather at 1200 nm (1.06 eV). The identity of the 600 nm absorption band of PhO\(^+\) and some of its derivatives was the subject of a subsequent study\(^{507}\) which also used the calculated transition energies and oscillator strengths to help the assignments.

When comparing all the available observed absorption bands and the energies calculated using the multi-reference CASSCF methods with large active space\(^{510, 515}\), the following assignments of the observed transitions can be proposed: (i) the band at 1200 nm is due to the \(1^2B_2 \leftarrow X^2B_1\) transition, (ii) 611 nm to \(1^2A_2 \leftarrow X^2B_1\), (iii) 395 nm to \(2^2B_1 \leftarrow X^2B_1\), (iv) 292 nm to \(2^2B_2 \leftarrow X^2B_1\) and finally (v) 240 nm to \(2^2A_2 \leftarrow X^2B_1\).

A possible problem concerns the transition \(2^2B_2 \leftarrow 2^2B_1\), which is symmetry forbidden under \(C_{2v}\) symmetry and might cast doubt on the assignment of the 292 nm band. Experimentally, this band was observed to be weak and the relevant peak is almost completely obscured by the strong peak centred at 240 nm\(^{503}\). The CASSCF excitation energies were found to be overestimated by up to 0.5 eV, indicating the importance of dynamic electron correlation for a reasonable description of the excited states. Calculations on PhO\(^+\) using small atomic basis sets turned out to give incorrect results.
b. Geometry and vibrational frequencies. There has been a persistent disagreement over the CO bond length of PhO* and its stretching frequency$^{353, 358–360, 370, 455, 508–519}$. Indeed, values ranging from 1.22 Å to 1.38 Å were reported for the CO distance from a variety of wave functions. While both CASSCF(9,8)510 and UMP2515 treatments, in conjunction with various basis sets, resulted in a short distance of 1.22–1.23 Å, density functional methods yielded a consistently longer distance of 1.25–1.28 Å$^{358, 359}$ (cf. Figure 41). Despite a variance between CASSCF and DFT results which might be due to the choice of the active spaces in CAS computations, it seems reasonable to admit that the CO distance in the radical is close to the length typical of a double bond (1.23 Å in p-benzoquinone), which is also in line with the inference from the observed CO stretching frequency498. As in the phenolate anion, PhO* possesses a quinoidal structure with alternating long (1.45 and 1.40 Å) and shorter (1.37 Å) CC distances (Figure 41). The geometries of the neutral and the anion are in fact quite similar, with a noticeable difference being an increase in the C6C1C2 angle of about 3° from the anion to the radical (cf. Figure 23, Section IV.B.1). The geometrical parameters remain almost unchanged upon halogenation, irrespective of the substitution position of the halogen (Figure 2). Even the p-amino$^{509, 512}$ or p-methoxy517 phenoxyl radicals, having a strong π-donor group, also do not represent a special case; their structure is found to be similar to that of the parent radical with very small modifications of the parameters.

In the lower-lying excited states, the molecular frame remains planar (Figure 42). The 2B_2 state has a longer CO distance, stretched up to 0.13 Å, becoming close to that of a single bond. In going from the ground state to the 2A_2 state, the C2C3 distance also increases by 0.09 Å whereas the change of the CO remains small. This could be understood in examining the shape of the corresponding singly-occupied orbitals involved in the electronic transition509. In both excited states, the CCC bond angles deviate significantly

![Figure 41](image-url)

FIGURE 41. A comparison of the distances in (Å) for the phenoxyl radical and its para-halogenated derivatives. The entries are X = H (upper), F, Cl and Br (lower). Values were obtained from UB3LYP/6-311++G(d,p) optimizations.
FIGURE 42. Comparison of the bond distances (Å) and angles (deg) of three lowest-lying electronic states of phenoxyl radical. Values obtained from UMP2/6-31G(d,p) optimizations

from the benzene value of 120°. Remarkably, all the CC distances of the 2B_2 state are close to 1.4 Å. All these changes suggest that the aromaticity of the benzene ring is probably preserved in 2B_2 but not in either 2B_1 or 2A_2 states.

The C_{2v} symmetry of PhO* leads to 21 in-plane modes ($11 \alpha_1$ and $10 \beta_2$) and 9 out-of-plane modes ($3 \alpha_2$ and $6 b_1$). The assignment of the associated frequencies was also the subject of considerable discussion among experimental chemists, in particular as regards the location of the CO stretching frequency. The resonance Raman spectra were observed for the phenoxyl-h_s, phenoxyl-2,4,6-d_3 and phenoxyl-d_5 isotopomers. Thus, ten in-plane fundamental vibrations including eight totally symmetric α_1 modes and two non-symmetric β_2 modes were observed and now assigned. These fundamental vibrations are sketched in Figure 43 along with the experimental frequencies. High level calculation agreed on the identity and absolute values of most of these modes. There is now a large consensus that the band observed near 1505 cm$^{-1}$, characterized by the strongest intensity in the resonance Raman spectra, should be assigned to a primary CO stretching, whereas the band centred at 1398 cm$^{-1}$, which was assigned earlier to the CO stretch, corresponds rather to the CC stretch. The observed band near 1552 cm$^{-1}$ is confirmed to arise from the C=C stretching vibration. These assignments were further supported by the downshifts upon deuteration and the larger shift of the C=C stretch relative to the CO stretch (the CO stretch occurs at 1487 cm$^{-1}$ in phenoxyl-2,4,6-d_3 and 1489 cm$^{-1}$ in phenoxyl-d_5). In addition, it was found that the resonance Raman spectrum for near-resonance with the excited 2B_1 state is dominated by the CO stretch mode. As mentioned above, the latter state is responsible for the absorption band centred at 400 nm. This finding was believed to lend further support for the assignment of the CO stretch band at 1505 cm$^{-1}$.

A correlation between the CO bond properties in the closed-shell molecules (single and double bonds) was proposed to estimate the bond lengths and stretching frequencies of open-shell phenoxyl radicals. Nevertheless, while it is possible to estimate the CO force constants using the Badger-type relations, it is difficult to relate them to the experimental frequencies that do not represent the stretching of a single bond.

The CC and CO vibrations are also sensitive to the molecular environment by virtue of electrostatic and hydrogen bonding interactions. The frequencies of phenoxyl and tyrosyl radicals complexed by macrocyclic ligands and generated in vivo were measured by resonance Raman and FTIR techniques. Thus a selective enhancement of the vibrational CC and CO stretch modes of the phenoxyl chromophores in metal-coordinated radical
FIGURE 43. In-plane vibrational modes of phenoxyl radical and the experimental frequencies (values in cm\(^{-1}\))
1. General and theoretical aspects of phenols

Complexes was achieved upon excitation in resonance with the transition at 410 nm. The CO stretch mode is found at 1505 cm$^{-1}$ in aqueous alkaline solution, but at 1518 cm$^{-1}$ for neutral pH, which indicates a certain H-bonding interaction with water molecules. These CC and CO modes are of special interest in as much as they could be used as sensitive spectral indicators for the semi-quinoidal structural and electronic properties of the coordinated phenoxyl radicals. Accordingly, an upshift of these frequencies should reflect an increased double bond character of the bonds, which in turn is paralleled by a contraction of the bond distance and also by a decrease in the spin density at the oxygen atom. For example, the C=C frequency increases in the order: PhO$^-$ (1562 cm$^{-1}$) < p-CH$_3$C$_6$H$_4$O$^-$ (1578 cm$^{-1}$) < p-CH$_3$OC$_6$H$_4$O$^-$ (1595 cm$^{-1}$).

It is remarkable that the CO stretch frequencies calculated using DFT methods for free substituted phenoxyl radicals are invariably underestimated by 25–45 cm$^{-1}$ with respect to the experimental values observed in vivo or in metal-coordinated complexes. This led to a proposition that the phenoxyl and related tyrosyl radicals exist as ion complexes in vitro. Computations on model systems such as PhO$^-M^+$ or PhO$^-$(H$_2$O)$_2$ provide some support for this view. In spite of the fact that the CO distance is somewhat lengthened following complexation with an alkali metal cation (M = Li$^+$, Na$^+$, K$^+$; see geometrical parameters displayed in Figure 44), the resulting CO stretching frequency turns out to be enhanced by 60–70 cm$^{-1}$ relative to the uncomplexed system, likely due to the underlying electrostatic interaction. Specific H-bonding interaction of the radical with water molecules also induces an enhanced CO stretching, but to a lesser extent, by about 30 cm$^{-1}$.

c. Spin densities. The EPR spectrum of PhO$^-$ has been studied in considerable detail, and the different sets of experimental hyperfine splitting constants (hfcc values) obtained for hydrogen atoms consistently offered the following picture: a(ortho-H$_2$) = 6.6 – 6.9 G, a(meta-H$_3$) = 1.8–1.9 G, and a(para-H$_4$) = 10.1 – 10.2 G.

In general, density functional methods in conjunction with the unrestricted formalism could satisfactorily reproduce the characteristics of the spin distribution and the

![Figure 44](image-url)

FIGURE 44. Comparison of the distances (Å) in phenoxy radical—alkali cation complexes. The entries are X = Li$^+$ (upper), Na$^+$ and K$^+$ (lower), UB3LYP/6-311++G(d,p) values.
experimental values within the errors of at most ±15%, depending on the basis set employed. For example, the popular UB3LYP/6-311++G(d,p) method provides the following values, including the occurrence of negative spin densities on both ortho and para hydrogens: \(a(H_2) = -6.8 \text{ G}, a(H_3) = 2.6 \text{ G} \) and \(a(H_4) = -8.8 \text{ G} \). This constitutes a good performance bearing in mind that the spin densities at nuclei (Fermi contact terms) are known to be difficult to determine from molecular orbital wave functions (due to the cusp problem and spin contamination in UHF references). Calculations\(^{518}\) showed that the corrections for vibrational averaging and polarization by the solvent are rather small. While a negligible correction (<0.1G) was estimated for the vibrational effect, a slight reduction of at most 0.6G is due to the effect of a bulk solvent.

The spin density on oxygen \(a(O) \) is calculated to vary from \(-8\) to \(-10 \text{ G}\). Nevertheless, the lack of a significant coupling at the oxygen site in radical–radical reactions is consistent with a dominant odd-alternate cyclic resonance structure in which the radical centre is displaced into the ring. The absolute hfcc values are only moderately changed upon the introduction of a halogen substituent into the benzene ring. The largest effects are found for a fluorine substitution at the meta position, which induces a decrease of 0.7 G on \(a(H_2) \) and an increase of 0.4 G on \(a(H_4) \). The methyl substituent also induces a marginal effect. As a consequence, spin densities of the phenoxyl side-chain in TyrO radicals are very close to those of free PhO\(^*\). There is thus no evidence for a spin delocalization onto the tyrosyl peptide chain.

The general trend found earlier\(^{519}\) for the aromatic hydrogen hfcc values is confirmed, namely \(a(H_4) > a(H_2) > a(H_3) \). In view of the empirical McConnell relationship, the spin population on the adjacent carbon atoms could be taken to be proportional to the hfcc values of hydrogen atoms bound to them. Thus, the experimental hfcc values of phenoxyl radicals show much larger spin density on the para and ortho carbons (\(\rho_{para} / \rho_{ortho} = 1.5 \)) than on the meta carbon (\(\rho_{para} / \rho_{meta} = 5.3 \)). While calculations are able to account for the ratio of para and ortho carbons, the trend for the meta carbon spin densities is not consistent with that suggested by the McConnell relationship.

As for a possible reason for this disagreement, we consider the spin densities in terms of different components. In general, the spin densities can be decomposed into three contributions: (i) a delocalization, or direct term which is always positive, (ii) a spin polarization or indirect term, arising from the singly-excited configurations and (iii) a correlation term originating from the contribution of higher excitations. The spin polarization term arises from the fact that the unpaired electron interacts differently with the two electrons of a spin-paired bond; the exchange interaction is only operative for electrons with parallel spins. The shorter average distance between parallel spins than between antiparallel spins leads to a spin polarization illustrated by the map of spin densities in the molecular plane (Figure 45) whose sign is governed by some general rules. Because the molecular plane is actually the nodal plane of the SOMO, the only contribution to spin density at nuclei should come from indirect spin polarization terms. The latter can again be decomposed into different first-order and second-order components. As the SOMO (\(b_1 \)) is mainly localized on ortho and para carbon atoms leading to large \(\pi \)-spin populations on these atoms, large positive spin densities are thus induced at the corresponding nuclei and negative short-range hfcc values at ortho and para hydrogens. The positive spin population at an ortho carbon induces for its part a negative spin population at the meta carbon (first-order effect) and thereby a positive but weak (of second-order character) spin density at the meta hydrogen. The same mechanism is operative for the para carbon, yielding an additional contribution to the meta hydrogen. Overall, the meta hydrogens receive non-negligible positive spin densities resulting from cumulative second-order effects. If the oxygen atom was replaced by a more electronegative group, the hfcc values of ortho and para hydrogens would increase whereas the hfcc values of meta hydrogen would remain roughly unchanged due to cancellation of effects.
The McConnell relationship520 basically converts spin population due to delocalization (direct term) into spin polarization (indirect term). It could strictly be applied to the first-order spin polarization effects and thus correctly account for the ortho and para carbon ratio spin densities of phenoxy radical from hydrogen hfcc values. On the contrary, it could hardly be applied to more subtle second-order mechanism such as is the case of meta carbon and hydrogen atoms, and this is the probable reason for the disagreement revealed above. In the unrestricted spin formalism (UHF, UB3LYP), the spin polarization is directly included in the wave function together with delocalization. As a consequence of the unavoidable spin contamination by higher spin states, unrestricted methods tend to overestimate the spin polarization terms. That is the likely reason for a larger calculated value of the hfcc of the meta hydrogen compared with the observed values.

\textit{d. Decomposition of phenoxy radical.} Under combustion conditions, this radical undergoes a thermal decomposition whose primary products are found to be cyclopentadiene radical (C$_5$H$_5$) and carbon monoxide487. Two mechanisms have been proposed21,522 to rationalize the decarbonylation. Results of kinetic measurements, thermochemical considerations21 and quantum chemical computations of the potential energy surfaces523,524 concur with each other and point towards the dominance of the molecular mechanism depicted in Figure 46. In brief, this involves the formation of the bicyclic intermediate A via the transition structure TS-A, followed by an \(\sigma \)-CC bond cleavage via TS-B yielding the five-membered ring B. Finally, the elimination of the CO moiety from B through TS-C, producing the main products C, is an obvious
FIGURE 46. A schematic potential energy profile showing the CO elimination from phenoxyl radical. Relative energies, given in kJ mol$^{-1}$, were obtained from CASPT2/CASSCF(8,7)/6-311G(d,p)+ZPE computations. Adapted from Reference 524 with permission

step with low energy barrier. The rate-determining step corresponds to the formation of the five-membered cycle B. Using a modified G2M scheme based on coupled-cluster energies524, the transformation is associated with an energy barrier of 218 kJ mol$^{-1}$, which is significantly larger than the experimental estimate of 184 kJ mol$^{-1}$. Note that the first step PhO$^+$ → A is a symmetry-forbidden process, which could take place either via a non-symmetrical transition structure or through an avoided crossing mechanism. The energy barrier in both cases are close to each other (205 kJ mol$^{-1}$) and slightly smaller than for the rate-controlling step. The mechanism found for the PhO$^+$ decomposition is thus comparable to, but simpler than, the decarbonylation of the phenol radical cation discussed in a previous section. The key intermediate in both cases is in fact a high-energy five-membered cyclic species. Kinetic evaluations using the RRKM method in conjunction with the computed energetic and geometric parameters yielded rate constants close to the experimental values, especially for temperatures below 1200 K.

Let us also mention that interest in atmospheric chemistry and combustion chemistry of PhO$^+$ led to a number of theoretical studies of its reactions with simple radicals such as atomic oxygen525, HOO* radical526, NO and NO$_2$ radicals527,528 and molecular oxygen528. In all cases, computation of the potential energy surfaces has helped a great
deal in the interpretation of reaction mechanisms and/or provided necessary parameters for appropriate kinetic analyses.

2. Antioxidant activity of phenols

a. The O–H bond dissociation energies. As discussed in previous sections, the adiabatic electron affinity and the proton affinity of phenoxy radical were determined quite reliably and they amount to $\text{EA}_a(\text{PhO}^+) = 2.25 \text{ eV}^{370}$ and $\text{PA}(\text{PhO}^+) = 860 \text{ kJ mol}^{-1}\text{EA}^{442}$, respectively. The substituent effect on the PAs has been examined in a previous section. Note also that a para-methyl group induces an increase of 20 kJ mol$^{-1}$ on the proton affinity of phenoxy radicals529. Concerning the adiabatic ionization energy, a tentative value of 8.56 eV was suggested529. Nevertheless, our high-level coupled-cluster computations revealed that this value is likely somewhat too low and suggested a higher value of $\text{IE}_a(\text{PhO}^+) = 8.8 \pm 0.2 \text{ eV}^{530}$.

Combination of the phenol acidity $\Delta H_{\text{acid}}(\text{PhOH}) = 1458 \pm 8$ kJ mol$^{-1}$ and the EA value given above yields the gas-phase bond dissociation energy of phenol $\text{BDE}(\text{PhO}–\text{H}) = 362 \pm 8$ kJ mol$^{-1}\text{EA}^{124,370}$. Photoacoustic calorimetry studies in various solvents having different hydrogen-bond accepting properties provided values ranging from 360 to 369 kJ mol$^{-1}$.191,531 A spectroscopic ESR equilibrium method for measuring differences in BDEs of substituted phenols yielding transient phenoxy radicals led to a value of 369 kJ mol$^{-1}\text{EA}^{191}$. The BDE is thus not very sensitive to the environmental properties.

Use of the above values together with the standard heats of formation $\Delta H_f(\text{PhOH}) = -96 \pm 1$ kJ mol$^{-1}$ and $\Delta H_f^{\text{neutral}}(\text{H}) = 218$ kJ mol$^{-1}$ leads to the heats of formation $\Delta H_f^{\text{PhO}^+}(\text{PhO}^+) = 48 \pm 8$ kJ mol$^{-1}$ for the neutral radical, and $\Delta H_f^{\text{PhO}^+}(\text{PhO}^+) = 897 \pm 8$ kJ mol$^{-1}$ for the cation.

The quantity $\text{BDE}(\text{PhO}–\text{H})$, which constitutes a measure of the O–H bond strength, is by far smaller than $\text{BDE}(\text{HO}–\text{H}) = 498$ kJ mol$^{-1}$, which is well established for water. Its magnitude is closer to that of $\text{BDE}(\text{C–O})$ in phenyl ethers.533 Electron donor groups such as CH$_3$ and CH$_3$O tend to cause destabilization in phenols, but stabilization in the corresponding phenoxy radicals and the combined effect usually lead to a markedly reduced $\text{BDE}(\text{O–H})$. An electron-withdrawing group has the opposite effect. Use of a multiple substitution of electron donor groups results in substantial O–H bond weakening due to the radical stabilizing effect. The BDE of α-tocopherol, the major and bioactive component of vitamin E, was measured by photoacoustic calorimetry to be 40 kJ mol$^{-1}$ lower than that of phenol obtained by the same technique.191 Similarly, the value for δ-tocopherol, which is the minor and least bioactive component, was measured to be 10 kJ mol$^{-1}$ larger than that of the α-component. Thus, a small difference of 10 kJ mol$^{-1}$ on the BDEs of the phenolic bond already makes a marked variation on the bioactivity.191 Amino groups in the ortho position appear to induce a large O–H bond weakening of more than 59 kJ mol$^{-1}$ and thus represent a peculiar group.

In general, the effect that a substituent exerts on the phenoxy radical is by far more important than that on the corresponding phenol. An empirical equation534 relating the differences in phenolic O–H strengths (in kJ mol$^{-1}$) to the sums of the σ^2-constants for all the ring substituents has been proposed (equation 34),

$$\Delta \text{BDE}(\text{O–H}) = 30 \left[\sum (\sigma^+_{\text{ortho}} + \sigma^+_{\text{meta}} + \sigma^+_{\text{para}}) \right] - 2 \quad (34)$$

where the relationship $\sigma^+_{\text{ortho}} = 0.66\sigma^+_{\text{para}}$ is presupposed. A simple group additivity scheme also allowed the BDE to be evaluated with high accuracy.116,192 This quantitative consideration confirms the ease with which substituted phenols lose their phenolic hydrogens.
and points towards the main reason for their inherent antioxidant activities. The BDEs should thus be used as a reliable primary indicator in the search for novel antioxidants more active than vitamin E.116, 140, 192, 198, 201

The radical stabilization energies (RSE) in a compound of the type ROH can be defined as

\[
\text{RSE(ROH)} = \text{BDE(O–H)}_{\text{ref}} - \text{BDE(O–H)}_{\text{ROH}}
\]

When taking the value \(\text{BDE(O–H)}_{\text{ref}}\) of 440 kJ mol\(^{-1}\) in a saturated alcohol as reference, RSE(PhOH) is found to be 80 kJ mol\(^{-1}\), which is in line with the view that in PhO\(^*\) is rather a resonance-stabilized radical in which the radical center is not fully centered on the oxygen atom. Regarding the substituent effects, a few general remarks can be noted: (i) In substituted radicals, the stability is influenced not only by the polar effect but also by the spin delocalization. While the polar contribution is related to the ability of the substituent to delocalize the lone pair on the phenolic oxygen, the spin delocalization is more characteristic of the radical stabilization. (ii) There are various approaches for estimating both effects using isodesmic reactions or charge distributions (electrostatic potentials, spin densities).125, 193 It has been found that the polar contribution is more important than the spin delocalization. (iii) For electron donor groups, both effects tend to stabilize the radical. (iv) In contrast, electron-withdrawing groups considerably destabilize the radical by virtue of the polar effect; although the spin delocalization tends to stabilize it, the destabilizing polar effect remains dominant. In this regard, the difference in reactivity between the isoelectronic phenoxyl (PhO\(^*\)) and benzyl (PhCH\(_2\)) radicals resides in the fact that oxygen is a strong \(\pi\)-acceptor whereas methylene is a poor electron-withdrawing group. As a result, the stability of the benzyl radicals is less sensitive to the polar effect of a substituent.

b. Antioxidant activities. The reaction of molecular oxygen with organic molecules under mild conditions is usually referred to as autooxidation. It can be represented by the following simplified reaction scheme (equations 35–39).

\[
\begin{align*}
\text{initiation:} & \quad \text{production of RO}^* \\
\text{propagation:} & \quad \text{R}^* + \text{O}_2 \rightarrow \text{ROO}^* \\
& \quad \text{ROO}^* + \text{RH} \rightarrow \text{ROOH} + \text{R}^* \\
\text{termination:} & \quad \text{ROO}^* + \text{RO}^* \rightarrow \text{products} \\
& \quad \text{RO}^* + \text{PhOH} \rightarrow \text{ROOH} + \text{PhO}^*
\end{align*}
\]

While reaction 36 is very fast, having a rate constant of \(\text{ca} \ 10^9 \text{ M}^{-1} \text{ s}^{-1}\), reaction 38 is much slower at \(10^1 \text{ M}^{-1} \text{ s}^{-1}\). All organic materials exposed to the air undergo oxidative degradation. Reduction of the rate of such degradation utilizing low concentrations of ‘antioxidants’ is important for all aerobic organisms and for many commercial products. In this respect, phenols turn out to represent a primordial family of antioxidants. Their activity arises from their ability to trap chain-carrying peroxy radicals by donating the phenolic hydrogen atom (reaction 39), which is a much faster reaction than the attack of the peroxy radicals on the organic substrate (reaction 37), thanks to the smaller BDE(PhO–H) values as discussed above.

The idea that autooxidation affects humans (and other mammals) was put forward in the mid-1950s by the so-called free-radical theory of ageing.535 It was suggested that ageing is the result of endogenous oxygen radicals generated in cells during the normal course
of metabolism, disrupting the structure of biopolymers and resulting in cellular damage. This theory provided a mechanistic link between the metabolic rate and ageing. This link was noticed nearly a century before, when it was observed that animals with higher metabolic rates often have a shorter life span. A careful analysis further demonstrated that production of free radical species rather than metabolic rates provides the strongest correlation with longevity.536

The relevant free radicals can be either produced endogenously as a consequence of metabolic activities or generated from different environmental sources such as ionizing radiation, ultraviolet light, chemotherapeutics, inflammatory cytokines or environmental toxins.537 The balance of free-radical production and antioxidant defence determines the degree of oxidative stress. When the stress is severe, survival depends on the ability of the cell to resist the stress and to repair or replace the damaged molecules. If the oxidative stress and the ability to respond appropriately is important for ageing, then it follows that factors that increase resistance to stress should have anti-ageing benefits and lead to enhanced life span. After many years of research, it has been shown that mammalian maximum life span cannot be significantly increased with antioxidants, but the mean life span for mammals can be increased. In the light of these results, a ‘disease-specific free-radical theory of ageing’537 has been formulated, in which free radicals are involved in the etiology and development of many of the chronic diseases that contribute to shorten the (maximum) life span potential for a species. For humans, these chronic diseases particularly include atherosclerosis, emphysema and cancer.

At this point the antioxidants which are expected to protect key cell components from damage intervene by scavenging free radicals and are therefore to attenuate—in part—the diseases. Much progress has been achieved in our understanding of the role played by antioxidants in the maintenance of optimal health. It is now well established that vitamin E is the major lipid soluble, peroxyl radical-trapping chain-breaking antioxidant in human blood plasma76, 538, 539 and in normal and cancerous tissues.540

The naturally occurring vitamin E consists of four components, namely α, β, γ and δ tocopherols (TOH). These four molecules, which differ from each other by the number and position of methyl groups attached to the phenol ring, reveal a rather different antioxidant activity. The following results show that the ordering of antioxidant activity of the tocopherols \textit{in vitro}541 is \(\alpha > \beta > \gamma > \delta \), which is almost the same order as their \textit{in vivo} activities (\(k_4 \) values in M\(^{-1}\) s\(^{-1}\) are 320 for \(\alpha \)-TOH, 130 for \(\beta \)-TOH, 140 for \(\gamma \)-TOH and 44 for \(\delta \)-TOH).

In other words, the \(\alpha \)-TOH is the most active component of the vitamin E, responsible for its high antioxidant activity. The reason for this phenomenon could be found in the difference in BDE(O—H) values discussed above.

\textit{c. Features of hydrogen atom abstraction from phenols}. In order to have a deeper appreciation of the remarkable aptitude of vitamin E as antioxidant541, the details of the mechanism of reaction 39 will be examined.

Let us consider Figure 47, which vividly shows the reaction profile of the hydrogen atom abstraction (reaction 39) from structurally related model compounds—phenols with various numbers of methyl groups in the ring—by the simplest peroxyl radical \(\text{^\textit{OOCH}}_3 \). In the case of the parent phenol \(\text{I} \), the classical reaction barrier separating the reactant and product H-bonded complexes amounts to 28 kJ mol\(^{-1}\), whereas the two minima of the corresponding H-atom double-well potential are nearly isoenergetic. The presence of methyl groups in the phenol ring stabilizes the phenoxyl radicals, lowers the barrier and makes the reaction certainly exothermic. In particular, substitution of two methyl groups in the \textit{ortho} positions reduces the reaction barrier by about 8 kJ mol\(^{-1}\), whereas a third \(\text{CH}_3 \) group in the \textit{meta} position decreases it further by ca 3.0 kJ mol\(^{-1}\). Invoking the Hammond
postulate, one can in fact relate the stability of the phenoxy radical to the stability of the transition state structure. In the case of 2,6-dimethylphenol II, the corresponding phenoxy radical is stabilized with respect to the parent molecule by 20 kJ mol\(^{-1}\) and the transition state structure is more reactant-like than the counterpart of the unsubstituted phenol and occurs at the phenolic C–O and O–H distances of 1.321 Å and 1.135 Å (cf. 1.309 Å and 1.175 Å in phenol I, respectively).

What makes other structural factors of α-TOH such a good antioxidant? Extensive investigation on the effect of various substituents on the \(k\) values for reaction 39 in simple phenols\(^{542}\) led to the conclusion that the ‘best pattern’ of substituents in the phenol ring required to facilitate this reaction is optimally the methoxy group residing in the \(para\) and four methyl groups in the remaining positions. Many years later, it was found that 4-methoxy-2,3,5,6-tetramethylphenol, which structurally approximates α-TOH, is actually a much less active compound than all tocopherols\(^{76,538}\). A clue that helps us to rationalize this marked difference is provided by the X-ray structures of related molecules\(^{76}\). The oxygen’s \(\pi\)-type lone pair of the methoxy group can stabilize the phenoxy radical by resonance overlap with its singly-occupied molecular orbital and the degree of such interaction depends on the angle (\(\theta\)) between this pair and aromatic \(\pi\)-orbitals.
Knowing the extremely important role of phenolic antioxidants in both biological and commercial systems, extensive experimental and theoretical studies have been conducted in the past on these species. However, an unambiguous understanding of the physical mechanism of the reaction of phenols with free radicals was hindered by insufficient knowledge about the potential energy surface of reaction 39. By analyzing the geometries displayed in Figure 47, one can easily see that while the minimum-energy hydrogen-bonded complexes are characterized by a planar orientation of the phenol OH group, in transition state structures this bond is twisted out-of-plane. Such twisting occurs due to the fact that the TSs for such reactions are formed by the avoided crossing of two lower-lying electronic states of phenoxyl radical, which takes place at some angle τ between the OH bond and the aromatic ring plane, while the in-plane reaction pathway ($\tau = 0$) is characterized by the intersection of these surfaces. In view of this fact, it is interesting to note that the barrier to internal rotation of the OH group (V_τ) which partly contributes to the activation barrier of reaction 39 is also influenced by a stereoelectronic effect of the lone pair of the para-alkoxy oxygens. When the latter is oriented perpendicular to the ring, the overlap is maximal and resonance structures with the doubly bound methoxyl oxygen prohibit a simultaneous conjugation of phenolic OH group with the ring, which results in decreasing V_τ. Correlations of V_τ and k values for reaction 39 with known or expected θ were established experimentally.

V. HYDROGEN BONDING ABILITIES OF PHENOLS

A. Introductory Survey

Molecular design requires detailed knowledge of hydrogen bond strengths, at least as much as knowledge of the polar atoms participating in such bonding. Phenol is rather specific in this respect because it involves the phenolic oxygen atom which is usually regarded as a major hydrogen acceptor due to its lone pairs. However, on comparison, for example, with furan, the hydrogen bond ability of phenol is determined by the degree of delocalization of the oxygen lone pair electrons into the π-system of the phenol ring.

On the other hand, phenols as proton donors actually occupy a very particular position among organic acids due to the well-known fact that by changing the substituents in the phenyl ring, we can readily regulate, almost continuously pK_a values from 10 to 0. For example, 4-CH$_3$OC$_6$H$_4$OH is characterized by a pK_a equal to 10.21. Furthermore, we are also able to record readily the extent of proton transfer because it evokes a change in the electronic spectrum of phenol. The long-wavelength 1L_b phenolic band is rather sensitive to the hydrogen bond formation. The stronger the hydrogen bond, the stronger the bathochromic shift and hyperchromic effects, and after the proton transfer, a further bathochromic shift and increase in intensity take place on increasing the charge separation. The largest bathochromic shifts of the 1L_b bands are observed for free phenolic anions. The UV-VIS spectra of hydrogen-bonded complexes with phenols reflect not only the proton transfer process, but also a continuous displacement of the proton along the hydrogen bond bridge.

The literature on the hydrogen-bonded complexes of phenols with various proton acceptors and the corresponding proton transfer equilibria covers literally thousands of papers. First of all, it is worth mentioning the monograph by Davies, the reviews by Zeegers-Huyskens and Huyskens, and by Müller and coworkers. Several groups made important contributions to elucidate the nature of the hydrogen bonding and proton transfer in complexes with phenols. Hydrogen-bonded complexes with phenol have been the subject of numerous studies at both experimental (e.g. molecular beam spectroscopy) and theoretical levels.

Surveying briefly the achievements in this area, we would like to mention that the
hydrogen-bonded complexes of phenol with proton-accepting molecules such as ethers and alcohols are known to shift the spectra to longer wavelengths from that of the parent phenol by 200–400 cm$^{-1}$, depending on the proton-accepting strength of the bases. Clusters of phenols with ammonia and amines have been studied using BLYP/6-31G(d,p) calculations on complexes of ammonia with phenol, and its p-nitro, pentafluoro-, 2,6-difluoro-, 4-nitro- and 2-fluoro-4,6-dinitro derivatives. Under complexation with ammonia, these phenol derivatives show a growing acidity which, as expected, may lead to proton transfer in the gas phase, but which was observed in solution and the condensed phase. Alas, contrary to the growing acidity due to the pK_a change from 9.95 to 2, no proton transfer along the hydrogen bond $O\cdots H\cdots N$ towards ammonia has been predicted. Interestingly, the interaction between the very strong proton sponge bases and phenols was studied in non-aqueous solutions using UV-VIS and IR spectroscopy. The present survey continues in Table 34.

Mannich bases formed from formaldehyde, secondary amines and ortho-derivatives of phenol and Schiff bases derived from aromatic ortho-hydroxyaldehydes are treated as rather convenient model systems to study intramolecular proton transfer. The hydrogen bonded clusters of phenol with water and methanol have been investigated rather thoroughly, both experimentally and theoretically, for several reasons. The key reason is that they can be considered as model systems for larger aggregates. We will discuss phenol–water clusters in Section V.B while the discussion of the phenol–methanol clusters will only be confined to listing the corresponding references (note that the complex between PhOH and the NH$_2$ radical has recently been studied). We will tell a more exciting story about hydrogen bonding between phenol and acetonitrile, and two brief stories about a very short $O\cdots H\cdots N$ hydrogen bond recently determined in the 1:1 crystalline adduct of 2-methylpyridine and pentachlorophenol and about the hydrogen-bonded complex of phenol and benzonitrile. Before doing so, let us start with some interesting observations.

Phenol may also interact with some molecules directly via its aromatic ring due to a so-called π-bonding. For instance, spectroscopic measurements have revealed that phenols form π-bonded complexes in their ground electronic states with rare gas atoms (Rg) and methane. On the other hand, phenols form only hydrogen bonds with ligands such as, CO and N$_2$ which have nonvanishing dipole and/or quadrupole moment. As shown recently in IR experiments and ab initio calculations, phenol cation may form two stable complexes with Ar: one is hydrogen bonded whereas the other is π-bonded. The former occupies the global minimum. A similar situation occurs with the phenol–N$_2$ complex.

If phenol forms hydrogen-bonded complexes with some molecules, it is natural to study proton transfer along these hydrogen bonds if the proton transfer PES has a double-well character. However, it has been stressed that an enhanced pK_a of the hydrogen-bonded complex upon electron transfer favours a concerted proton-coupled electron-transfer mechanism. It implies that after electron transfer, a double-well proton potential is converted to a single minimum potential corresponding to proton transfer. For instance, recent ab initio studies of the radical cation complexes of phenol with water and molecular nitrogen gave group distances which are substantially shorter compared to those in neutral complexes. This suggests that the proton PES might have a vanishing or rather small barrier. Adding more water molecules to the phenol–water cation radical complexes leads to the stabilization of the proton-transferred forms. Regarding hydrogen-bonded complexes of phenol with ammonia, only the proton-transferred structures were found to be stable.
1. General and theoretical aspects of phenols

<table>
<thead>
<tr>
<th>Phenol</th>
<th>Hydrogen bond partner</th>
<th>Method of study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol (9.94)</td>
<td>(N,N,9)-Trimethyladenine</td>
<td>IR</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>1,10-Phenanthroline derivatives</td>
<td>IR</td>
<td>611</td>
</tr>
<tr>
<td>Pyridine, 3-l-pyridine</td>
<td>IR</td>
<td>611, 612^b</td>
<td></td>
</tr>
<tr>
<td>Conjugated imines</td>
<td>IR</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>BIPA</td>
<td>IR</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>IR</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>(N)-Heterocyclic bases</td>
<td>IR</td>
<td>616</td>
<td></td>
</tr>
<tr>
<td>Triethyl thiophosphate</td>
<td>IR</td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>Caffeine, 1,3-dimethyluracil</td>
<td>IR</td>
<td>618</td>
<td></td>
</tr>
<tr>
<td>Pyridazine, pyrimidine, pyrazine</td>
<td>IR</td>
<td>619, 620</td>
<td></td>
</tr>
<tr>
<td>(N,N)-DMBA, (N)-BMA</td>
<td>IR</td>
<td>621</td>
<td></td>
</tr>
<tr>
<td>Dioxane, water, methanol, dimethyl ether, cyclohexene, benzene, tetrahydrofuran</td>
<td>Fluorescence excitation spectra</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>((\text{HCOOH})_n) (n = 1, 2)</td>
<td>R2PI, IR-UV, DF</td>
<td>622</td>
<td></td>
</tr>
<tr>
<td>((\text{CH}_3\text{COOH})_n) (n = 1-4)</td>
<td>R2PI, IR-UV, DF</td>
<td>623</td>
<td></td>
</tr>
<tr>
<td>Phenoxides, TMA oxide</td>
<td>IR</td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>DF</td>
<td>33, 574</td>
<td></td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>IR</td>
<td>612</td>
<td></td>
</tr>
<tr>
<td>TMA</td>
<td>IR, B3LYP/6-31G(d,p)</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>IR</td>
<td>626, 627</td>
<td></td>
</tr>
<tr>
<td>Quinuclidine</td>
<td>IR, NMR</td>
<td>628</td>
<td></td>
</tr>
<tr>
<td>(N)-Mono- and (N,N)'-dioxides</td>
<td>IR</td>
<td>629–631</td>
<td></td>
</tr>
<tr>
<td>TMA (N)-oxide</td>
<td>IR</td>
<td>632, 633</td>
<td></td>
</tr>
<tr>
<td>TMA acetate</td>
<td>IR</td>
<td>634, 635</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhOH rotational coherence spectroscopy + B3LYP/6-31G(d)</td>
<td>636</td>
<td></td>
</tr>
</tbody>
</table>

4-F-Phenol

<table>
<thead>
<tr>
<th>Phenol</th>
<th>Method of study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathocuproine</td>
<td>IR</td>
<td>611</td>
</tr>
<tr>
<td>Triethyl thiophosphate</td>
<td>IR</td>
<td>617</td>
</tr>
<tr>
<td>Pyridazine, pyrimidine, pyrazine</td>
<td>IR</td>
<td>619</td>
</tr>
</tbody>
</table>

4-Cl-Phenol

<table>
<thead>
<tr>
<th>Phenol</th>
<th>Method of study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)-Heterocyclic bases</td>
<td>IR</td>
<td>616</td>
</tr>
<tr>
<td>Triethyl thiophosphate</td>
<td>IR</td>
<td>617</td>
</tr>
<tr>
<td>(N,N)-DMBA, (N)-BMA</td>
<td>IR</td>
<td>621</td>
</tr>
<tr>
<td>(n)-Propylamine</td>
<td>IR</td>
<td>637^c</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>Phenol</th>
<th>Hydrogen bond partner</th>
<th>Method of study</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Br-Phenol (9.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Br-Phenol (9.03)</td>
<td>(N,N,9)-trimethyladenine</td>
<td>IR</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Conjugated imines</td>
<td>IR</td>
<td>613</td>
</tr>
<tr>
<td></td>
<td>BIPA</td>
<td>IR</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>IR</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>Caffeine, 1,3-dimethyluracil</td>
<td>IR</td>
<td>618</td>
</tr>
<tr>
<td></td>
<td>Pyridazine, pyrimidine, pyrazine</td>
<td>IR</td>
<td>619</td>
</tr>
<tr>
<td>4-Br-Phenol (9.34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Br-Phenol (9.34)</td>
<td>(N,N,9)-trimethyladenine</td>
<td>IR</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>1,10-Phenanthroline derivatives</td>
<td>IR</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>Conjugated imines</td>
<td>IR</td>
<td>613</td>
</tr>
<tr>
<td></td>
<td>BIPA</td>
<td>IR</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>IR</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>Triethyl thiophosphate</td>
<td>IR</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Caffeine, 1,3-dimethyluracil</td>
<td>IR</td>
<td>618</td>
</tr>
<tr>
<td></td>
<td>(N,N)-DMBA, (N)-BMA</td>
<td>IR</td>
<td>621</td>
</tr>
<tr>
<td>3,4-di-Cl-Phenol (8.58)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-di-Cl-Phenol (8.58)</td>
<td>(N,N,9)-trimethyladenine</td>
<td>IR</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Bathocuproine</td>
<td>IR</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>Conjugated imines</td>
<td>IR</td>
<td>613</td>
</tr>
<tr>
<td></td>
<td>BIPA</td>
<td>IR</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>IR</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>Triethyl thiophosphate</td>
<td>IR</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Caffeine, 1,3-dimethyluracil</td>
<td>IR</td>
<td>618</td>
</tr>
<tr>
<td></td>
<td>pyridazine, pyrimidine, pyrazine</td>
<td>IR</td>
<td>619</td>
</tr>
<tr>
<td>3,5-di-Cl-Phenol (8.18)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5-di-Cl-Phenol (8.18)</td>
<td>(N,N,9)-Trimethyladenine</td>
<td>IR</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Bathocuproine</td>
<td>IR</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>BIPA</td>
<td>IR</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>IR</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>Triethyl thiophosphate</td>
<td>IR</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Caffeine, 1,3-dimethyluracil</td>
<td>IR</td>
<td>618</td>
</tr>
<tr>
<td>3,4,5-tri-Cl-Phenol (7.75)</td>
<td>(N,N,9)-Trimethyladenine</td>
<td>IR</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Bathocuproine</td>
<td>IR</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>BIPA</td>
<td>IR</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>IR</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>Triethyl thiophosphate</td>
<td>IR</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Caffeine, 1,3-dimethyluracil</td>
<td>IR</td>
<td>618</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>Pyridine betaine</td>
<td>X-ray, FTIR</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>4-Methylpyrididine</td>
<td>MNDO, PM3</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>4-Acetylpyridine</td>
<td>AM1, PM3</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Formaldehyde</td>
<td>NMR</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>Pyrimidine derivatives</td>
<td>IR</td>
<td>642</td>
</tr>
</tbody>
</table>
Ba. Phenol–(Water)\(_n\), 1 ≤ n ≤ 4 Complexes

1. Introduction

Knowledge of the potential energy surface of a molecular complex is always a key goal in the study of its vibrational pattern and dynamics. The PES of the interaction of water clusters with phenol is rather particular for several reasons. The prime reason is that phenol–water complexes are formed via hydrogen bonds and can thus be treated as prototypes for hydrogen-bonded aromatic systems and models of diverse important chemical and biological processes such as, e.g., solute–solvent interactions involving a participation of hydrogen bonds.

Hydrogen-bonded phenol–water complexes PhOH(H\(_2\)O)\(_n\) (≡ PhOH–\(w_n\)) have been thoroughly studied experimentally\(^{122, 164, 175, 412, 574, 578, 580, 585–587, 590, 596, 692–719}\) by standard spectroscopic methods, particularly by laser-induced fluorescence, resonance-enhanced multiphoton ionization, high-resolution UV spectroscopy, single vibronic level dispersed fluorescence and hole burning spectroscopy. The mass-selected multiphoton ionization studies\(^{585–587, 693, 694}\) of these complexes with \(n ≤ 4\) suggested that the ground-state global minimum structure of PhOH(H\(_2\)O)\(_2\) is realized when water molecules form a ring (defined hereafter as \(S_2\))\(^{164, 412, 574, 578, 585–587, 590, 596, 692–702}\). A comparison of the spectra of the PhOH(H\(_2\)O)\(_1–3\) complexes led to the conclusion that these three complexes should not be treated as a sequence of additive derivatives and, moreover, that they might even have different geometries\(^{585–587}\). Two-colour photoionization and cluster ion dip spectroscopy of PhOH(H\(_2\)O)\(_n\)\(_{n≤4}\) were carried out\(^{590, 708}\) showing the existence of two isomers of PhOH(H\(_2\)O)\(_4\). The Raman spectrum of PhOH(H\(_2\)O)\(_1\) was also observed\(^{164}\).

The infrared (IR) and Raman UV double-resonance spectroscopy of PhOH(H\(_2\)O)\(_n\)\(_{n≤4}\) in the OH-stretching vibration region was also studied\(^{580, 703–705}\). These studies led to the conclusion that, on the one hand, the symmetric water \(\nu_1\) and phenolic OH-stretching (\(\nu_{OH}\)) vibrations are downshifted considerably upon the formation of phenol–water complexes (compared with those inherent for bare water and phenol molecules). On the other hand, the antisymmetric \(\nu_3\) vibration of the water molecule is only weakly affected. This results in the appearance of a transparent ‘window’ region\(^{704}\) in the IR spectrum.
148

Minh Tho Nguyen, Eugene S. Kryachko and Luc G. Vanquickenborne

of PhOH(H2 O)n=2 – 4 which widens as n increases, having a width of ca 280 cm−1 for
n = 4, and disappears in the spectrum of the PhOH(H2 O)5 complex203 . An explanation
was proposed704 for the origin of the ‘window’ region by the presence of the cyclic
Sn arrangements of water molecules in these complexes with n  4. Interestingly, these
authors also observed a completely different IR pattern for PhOH(H2 O)4 in the region
of the OH-stretching vibrations where four bands fall into the ‘window’ region704, 705 . It
has been particularly suggested that such a pattern is attributed to the second isomer of
PhOH(H2 O)4 590 which might have a substantially different structure of water molecules
compared to the cyclic structure705 . A recent resonant two-photon ionization study697 of
PhOH(H2 O)2 – 5 and PhOH-d-(D2 O)2 – 5 -d1 complexes led to the conclusion that this second isomer of PhOH(H2 O)4 might have a non-cyclic, more compact water arrangement
that can only be expected for cage-, prism-, boat- and book-like structures of water clusters around PhOH (for the nomenclature of water cluster structures see, e.g., References
720–723 and references therein). This is somewhat similar to the book-like structure of
water molecules in the global-minimum PhOH(H2 O)5 complex, where one water molecule
forms an anchor-type π H-bond with the aromatic ring700, 702 .
The first ab initio calculations of PhOH(H2 O)1 were performed at the Hartree–Fock
(HF) level699, 701 and the second-order correlated Møller–Plessett (MP2) level121
with the 6-31G(d,p) basis set within a frozen core (≡ fc) approximation404, 724 – 726 .
Density functional B3LYP calculation of PhOH(H2 O)n was recently carried out by
different groups473, 727 . The ground-state PhOH(H2 O)2 complex was first optimized in
1994–1995696, 710 (see also References 113 and 725–728). The structure and vibrations
of PhOH(H2 O)3 in the singlet ground and its first excited state, and the lowest triplet
state were investigated by two groups695, 711 at the HF/6-31G(d,p) computational level
who reported that several local minima on the ground-state PES of PhOH(H2 O)3 are
situated above the global-minimum structure with the cyclic S3 water arrangement by
33.5–58.5 kJ mol−1 .
Theoretical study of the PhOH(H2 O)n complexes calculated preliminarily at the HF/631G(d) computational level729 suggested that the ‘window’ region originates from the
spectra of the PhOH(H2 O)4 isomer with the cyclic water structure S4 . Another, experimentally observed IR pattern of PhOH(H2 O)4 does not fit the theoretical spectra of
any complex found in the study and may probably be attributed to a mixture of certain
complexes with more compact water arrangements. The proton-transferred PhOH(H2 O)4
complex suggested earlier704, 705 as a possible candidate for the second isomer was subsequently rejected697, 701, 730 . This problem remains unsolved.
We performed a rather thorough search of the ground-state PES of the PhOH(H2 O)n=3,4
complexes in the vicinity of the global minimum. We describe here the lower-energy
minimum structures and offer a new, hopefully sound explanation of the origin of two
different ‘window’ patterns in the IR spectra of the PhOH(H2 O)4 complex731 . Actually,
the ‘window’ region measures the strength of hydrogen bonding: the larger the ‘window’,
the stronger the bonding732 . We also use a canonical indication of the strength of hydrogen
bonding in terms of the stretching vibration νσ of the hydrogen-bond bridge266 although
the blue-shifted torsion vibration τOH of phenol can be applied for this purpose as well.
The present section is organized in the following manner. Computational methodology is outlined elsewhere733, 734 . In Section V.B.3, we briefly report two lowest-energy
structures of PhOH(H2 O)n=1,2 and their theoretical spectra. Section V.B.4 demonstrates
the existence of five lower-energy structures on the PES of PhOH(H2 O)3 lying above
the global minimum by less than 12.5 kJ mol−1 . On the one hand, this shows a rather
rich landscape of the PES of PhOH(H2 O)3 in comparison to the reported PES711 and the
three lower-energy structures found later729 at the same computational level and located
within 27.8 kJ mol−1 above the PES bottom. On the other hand, it also reveals a novel


structure where one of the water molecules forms a so-called π hydrogen bond with the π-electrons of the phenol ring. Such a structure partly resembles the analogous structure named as Leg2 type and found for the benzene–water complex. Section V.B.5 considers ten lower-energy local minimum structures of the PhOH(H$_2$O)$_4$ complex compared with the five reported in Reference 729 and located in nearly the same interval of energies, 15.9 kJ mol$^{-1}$, above the global energy minimum. This section provides a novel interpretation of the experiments on the existence of two different IR patterns in the IR spectra of this complex and confirms other observations.

2. Interaction of phenol with water

We know already that the chosen computational methods accurately describe the properties of phenol, particularly its vibrational spectrum. The frequencies of the OH stretching vibrations of phenol and water molecule are collected in Table 35. It is interesting to note that the HF/A frequency of 4118 cm$^{-1}$ assigned to the ν_{OH} stretching vibration of bare phenol corresponds to its highest frequency. Therefore, it can be treated as the most accepting mode of phenol. Moreover, this frequency lies between the frequencies of the ν_1 (4070 cm$^{-1}$) and ν_3 (4188 cm$^{-1}$) OH-stretching vibrational modes of water molecules (equation 40),

\[
\nu_1 < \nu_{OH} < \nu_3
\]

Here, a value above the inequality sign indicates the corresponding frequency difference in cm$^{-1}$ between its left- and right-hand side quantities. Notice that the first difference $\Delta \nu = \nu_{OH} - \nu_1$ is 48 cm$^{-1}$.

3. The most stable complexes of mono- and dihydrated phenol

Phenol is certainly more acidic than water and, for this reason, the energetically most favourable binding site of phenol is with its OH group acting as a hydrogen bond donor. Such a phenol donor–water acceptor structure, hereafter designated as PhOH-w$_1$-1 and shown in Figure 48, lies at the bottom of the PES of PhOH(H$_2$O)$_1$. Its binding energy of 30.8 kJ mol$^{-1}$ calculated at the HF/A level rises to 39.9 kJ mol$^{-1}$ when the MP2(sp)/A calculation is carried out (see Table 36). Note that the latter value agrees with the binding energy of 38.9 kJ mol$^{-1}$ obtained at the MP2 level in conjunction with the D95* Dunning basis set. Due to the donor function of the phenolic O–H group in PhOH-w$_1$-1, its bond length is slightly elongated by 0.006 Å compared to that in bare phenol. The oxygen atoms are calculated to be 2.901 Å apart from each other, which correlates rather well with the experimental separation of 2.93 ± 0.02 Å or 2.88 Å, and also with the HF/6-31G(d,p) result of 2.90 Å. The O–H···O$_1$ hydrogen bond is practically linear: the corresponding angle \angleOHO$_1$ is 174.1° (the MP2/A value is 175.3°). The phenolic hydrogen donation to the water molecule only affects the geometries of the composing partners.

However, a major effect of the hydrogen bond in the PhOH-w$_1$-1 complex is anticipated to occur in its vibrational spectrum. It is primarily manifested by a significant red shift of ca 109 cm$^{-1}$ as compared with ν_{OH} of bare phenol. Furthermore, the IR intensity of ν_{OH} gradually increases by a factor of 6.6. The HF/A red shift agrees rather satisfactorily with the experimental results, showing a red shift of 133 cm$^{-1}$. Notice that the MP2/6-31G red shift amounts to 186 cm$^{-1}$ whereas its B3LYP/DZP value is larger and equal to 244 cm$^{-1}$. The stretching vibrations of water are predicted to be much less affected. More specifically, its ν_1 and ν_3 frequencies are changed by only 1 and
TABLE 35. The OH-stretching frequencies (in cm$^{-1}$) of water and phenol, and phenol–water$_{1,2}$ complexes calculated via the HF/A and MP2/A (in parentheses) computational methods. Infrared intensity is in km mol$^{-1}$, Raman (R) activity in Å4 amu$^{-1}$.

	v_1			v_3			v_{OH}					
	Frequency	IR	R	Frequency	IR	R	Frequency	IR	R			
H$_2$O	4070.0	3658a	18	76	4188.2	3756a	58	39	4118.1	3657b	81	79
PhOH	4068.6 (3764.1)	22 (18)	69	4182.0 (3897.4)	102 (81)	54	4197.2 (3881.8)c	84 (53)	144			
PhOH-w_{1-1}	3650b	3748b	4170.2	134	41	4008.9 (3597.8)	537 (645)	144				
PhOH-w_{1-2}	4057.2	94	89	4021.7 (3662.7)	237 (282)	58	4114.3	94	73			
PhOH-w_{2-1}	3973.2 (3560.7)	308 (419)	47	4147.1 (3846.9)	121 (99)	81	3916.6 (3420.9)	393 (501)	156			

aExperimental frequencies of water are taken from Reference 738.

bExperimental frequencies for phenol and phenol–water clusters are taken from References 704 and 705. See also Table 10 for the phenol vibrational modes.

cCalculated frequency at the HF/6-31G(d,p) and MP2/6-31G(d,p) (in parentheses) levels (cf. Table 10).
FIGURE 48. Two lower-energy structures of the phenol–water\textsubscript{1} complex. The HF/A bond lengths are in Å. The geometrical parameters of the global minimum structure are paired: the first value corresponds to the HF/A level while the MP2/A value is given in parentheses. The HF/A relative energy with respect to the global-minimum structure PhOH-\textsubscript{w1-1} is given in kJ mol-1. Its MP2(sp)/A analogue is followed in parentheses. Numbering of the carbon atoms of phenol is as in Chart 1. Adapted from Reference 731 with permission.
TABLE 36. Relative energies, ZPVEs, enthalpies (in kJ mol\(^{-1}\)) and entropies (in cal mol\(^{-1}\) K\(^{-1}\)) of PhOH(H\(_2\)O\(_n\)) complexes. Relative energy of PhOH(H\(_2\)O\(_n\)) is defined as \(-[\text{E(PhOH(H\(_2\)O\(_n\)))} - \text{E(PhOH)} - n \times \text{E(H\(_2\)O)}]\). The relative energies with respect to structure 1 of the phenol–water\(_n\) complex are also given\(^a,b,c\).

<table>
<thead>
<tr>
<th>PhOH(H(_2)O(_n))</th>
<th>(\Delta\text{Energy}_{HF})</th>
<th>(\Delta\text{Energy}_{MP2}^{(sp)})</th>
<th>ZPVE</th>
<th>(\Delta\text{Enthalpy})</th>
<th>(\Delta\text{Entropy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhOH-w(_1)-1</td>
<td>30.75</td>
<td>39.92</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PhOH-w(_1)-2</td>
<td>19.66</td>
<td>28.70</td>
<td>-0.13</td>
<td>10.84</td>
<td>3.26</td>
</tr>
<tr>
<td>PhOH-w(_2)-1,2</td>
<td>43.64</td>
<td>61.92</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PhOH-w(_3)-1,2</td>
<td>48.74</td>
<td>63.81</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PhOH-w(_3)-3,4</td>
<td>46.57</td>
<td>61.25</td>
<td>-0.63</td>
<td>1.88</td>
<td>-6.02</td>
</tr>
<tr>
<td>PhOH-w(_3)-5</td>
<td>45.06</td>
<td>59.45</td>
<td>-0.46</td>
<td>3.14</td>
<td>-11.97</td>
</tr>
<tr>
<td>PhOH-w(_3)-6</td>
<td>37.70</td>
<td>51.38 (10.296(^a))</td>
<td>-2.34</td>
<td>9.62</td>
<td>-12.18</td>
</tr>
<tr>
<td>PhOH-w(_4)-1</td>
<td>40.04</td>
<td>51.71</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PhOH-w(_4)-2</td>
<td>33.81</td>
<td>52.17 (-4.56(^a); -4.92(^b); -0.29(^c))</td>
<td>-2.22 (4.48(^c))</td>
<td>7.24</td>
<td>-26.69</td>
</tr>
<tr>
<td>PhOH-w(_4)-3</td>
<td>33.52</td>
<td>53.56 (-3.72(^a); 1.88(^\circ))</td>
<td>-2.18 (4.56(^c))</td>
<td>5.36</td>
<td>-30.08</td>
</tr>
<tr>
<td>PhOH-w(_4)-4</td>
<td>33.68</td>
<td>51.25 (-2.30(^a); 2.80(^b); 3.89(^c))</td>
<td>-0.08 (1.38(^c))</td>
<td>6.52</td>
<td>-15.94</td>
</tr>
<tr>
<td>PhOH-w(_4)-5</td>
<td>33.26</td>
<td>50.38</td>
<td>0.33</td>
<td>6.82</td>
<td>-12.38</td>
</tr>
<tr>
<td>PhOH-w(_4)-6</td>
<td>36.11</td>
<td>49.87</td>
<td>-0.96</td>
<td>4.56</td>
<td>-8.91</td>
</tr>
<tr>
<td>PhOH-w(_4)-7</td>
<td>35.56</td>
<td>49.87</td>
<td>0.42</td>
<td>5.27</td>
<td>-7.28</td>
</tr>
<tr>
<td>PhOH-w(_4)-8</td>
<td>34.73</td>
<td>49.33</td>
<td>-1.17</td>
<td>5.77</td>
<td>-12.76</td>
</tr>
<tr>
<td>PhOH-w(_4)-9</td>
<td>37.66</td>
<td>48.12</td>
<td>1.05</td>
<td>1.97</td>
<td>10.96</td>
</tr>
<tr>
<td>PhOH-w(_4)-10</td>
<td>28.62</td>
<td>38.99</td>
<td>0.42</td>
<td>11.30</td>
<td>8.62</td>
</tr>
<tr>
<td>PhOH-w(_4)-11</td>
<td>21.55</td>
<td>36.02</td>
<td>1.46</td>
<td>17.99</td>
<td>4.60</td>
</tr>
</tbody>
</table>

\(^a\)MP2/A.
\(^b\)MP2/A\(^\dagger\).
\(^c\)B3LYP/A. Values taken from Reference 731 with permission.
1. General and theoretical aspects of phenols

OH stretching vibration is characterized by a lower wavenumber than ν_1 (equation 41),

$$
\text{Expt: } \nu_{\text{OH}}^{126} < \nu_1^{a} < \nu_3^{a} \\
\text{HF/A: } \nu_{\text{OH}}^{60} < \nu_1^{a} < \nu_3^{a} \\
\text{MP2/A: } \nu_{\text{OH}}^{166} < \nu_1^{a} < \nu_3^{a}
$$

where the superscript a stands for an acceptor of hydrogen bonding, emphasizing the role of the water molecule. This merges into a ‘window’ region of ca 113–133 cm$^{-1}$ width. The hydrogen bonding between phenol and the water molecule also gives rise to the hydrogen bond stretching ν_o mounting at 158.5 (182.2) cm$^{-1}$ (the experimental value ranges between 151 and 163 cm$^{-1}$; see in particular Table 2 in Reference 473). Interestingly, the torsional mode τ_{OH} of phenol is blue-shifted substantially to 719.3 (775.5) cm$^{-1}$ (the B3LYP/D95* value473 is 447 cm$^{-1}$).

The next lowest energy local minimum on the PES of PhOH(H$_2$O)$_1$ is occupied by the PhOH-w_1-2 structure shown in Figure 48. Here, phenol acts as an acceptor of the hydrogen bond and, compared to the hydrogen bond donor structure, it is less favourable, by 1.11 kJ mol$^{-1}$ at the HF/A level729. The energy gap between PhOH-w_1-1 and PhOH-w_1-2 decreases slightly to 10.8 kJ mol$^{-1}$ after ZPVE correction and increases to 11.2 kJ mol$^{-1}$ when both structures are recalculated at the MP2(sp)/A level.

It is particularly unfavourable that the O–H···O$_1$ bond length elongates by 0.12 Å in PhOH-w_1-2 compared to that in PhOH-w_1-1, and appears more bent by 13.2°. The hydrogen bond in this case also causes the elongation of the C–O bond by ca 0.1 Å compared to its value in bare phenol. In both mentioned structures, there is a very weak interaction between the oxygen atom of the water molecule and the ortho hydrogen atom of the phenol ring that is indicated by the corresponding distances of 2.875 Å and 2.727 Å for PhOH-w_1-1 and PhOH-w_1-2, respectively. The rotational constants and the total dipole moment of both reported PhOH-w_1 structures are gathered in Table 37. As seen there, the hydrogen-bond donor structure is more polar than the hydrogen-bond acceptor structure.

There is still another feature which distinguishes the two studied structures of phenol with a water molecule from each other: if, in the global minimum energy structure, the oxygen atom of a water molecule resides in the phenol plane, in PhOH-w_1-2, on the contrary, it lies out-of-plane forming a dihedral angle of 95.0°. We explain this by the directionality of the lone pair of the phenolic oxygen. It implies that there are actually two isomers of PhOH-w_1-2: one where the oxygen atom of a water molecule is placed above the phenol ring and the other where it lies below it. Such a feature remains if more water molecules interact with phenol. We consider this as one of the reasons for the appearance of π hydrogen bonding after adding a sufficient number of water molecules to phenol: the cyclic arrangement of water molecules becomes exhausted and the energetic favour turns to 3D water patterns.

Compared with PhOH-w_1-1, the symmetric ν_1 and asymmetric ν_3 vibrations in PhOH-w_1-2 are red shifted by 13 and 18 cm$^{-1}$ while the phenol ν_{OH} stretching vibration is downshifted by only 4 cm$^{-1}$. Therefore, the stretching IR pattern of PhOH-w_1-2 appears to be that given in equation 42

$$
\nu_1^{d} < \nu_{\text{OH}}^{57} < \nu_3^{d}
$$

Notice that the IR pattern inherent for isolated phenol and water molecules (equation 40) is nearly retained in the PhOH-w_1-2 structure. The H-bond vibrational mode $\nu_o = 125.5$ cm$^{-1}$ is lower than in PhOH-w_1-1, implying that the hydrogen bonding in the PhOH-w_1-1 structure is stronger.
154 Minh Tho Nguyen, Eugene S. Kryachko and Luc G. Vanquickenborne

<table>
<thead>
<tr>
<th>PhOH(H$_2$O)$_n$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Dipole</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhOH-w$_1$-1</td>
<td>4.38507</td>
<td>1.08337</td>
<td>0.87222</td>
<td>3.92</td>
</tr>
<tr>
<td>PhOH-w$_1$-2</td>
<td>4.25523a</td>
<td>1.11400a</td>
<td>0.88657a</td>
<td>3.89a</td>
</tr>
<tr>
<td>PhOH-w$_2$-1</td>
<td>4.09796</td>
<td>1.11817</td>
<td>0.88142</td>
<td>3.56</td>
</tr>
<tr>
<td>PhOH-w$_2$-2</td>
<td>2.70968</td>
<td>0.73097</td>
<td>0.63654</td>
<td>1.15</td>
</tr>
<tr>
<td>PhOH-w$_3$-1</td>
<td>2.53870a</td>
<td>0.83238a</td>
<td>0.75134a</td>
<td>1.10a</td>
</tr>
<tr>
<td>PhOH-w$_3$-2</td>
<td>1.94209</td>
<td>0.50448</td>
<td>0.46247</td>
<td>1.16</td>
</tr>
<tr>
<td>PhOH-w$_3$-3</td>
<td>1.89925a</td>
<td>0.54336a</td>
<td>0.46239a</td>
<td>1.14a</td>
</tr>
<tr>
<td>PhOH-w$_3$-4</td>
<td>1.91922</td>
<td>0.51563</td>
<td>0.44259</td>
<td>1.13</td>
</tr>
<tr>
<td>PhOH-w$_3$-5</td>
<td>1.86586</td>
<td>0.52443</td>
<td>0.45787</td>
<td>1.52</td>
</tr>
<tr>
<td>PhOH-w$_3$-6</td>
<td>1.45663</td>
<td>0.69364</td>
<td>0.59343</td>
<td>1.98</td>
</tr>
<tr>
<td>PhOH-w$_3$-7</td>
<td>1.46994a</td>
<td>0.78406a</td>
<td>0.66417a</td>
<td>1.94a</td>
</tr>
<tr>
<td>PhOH-w$_3$-8</td>
<td>1.31037</td>
<td>0.37687</td>
<td>0.31183</td>
<td>0.96</td>
</tr>
<tr>
<td>PhOH-w$_3$-9</td>
<td>1.21338a</td>
<td>0.44044a</td>
<td>0.36928a</td>
<td>1.17a</td>
</tr>
<tr>
<td>PhOH-w$_3$-10</td>
<td>1.15262</td>
<td>0.50260</td>
<td>0.43300</td>
<td>1.25</td>
</tr>
<tr>
<td>PhOH-w$_4$-1</td>
<td>1.14775</td>
<td>0.53379</td>
<td>0.47190</td>
<td>2.58</td>
</tr>
<tr>
<td>PhOH-w$_4$-2</td>
<td>1.11526</td>
<td>0.70260</td>
<td>0.61283a</td>
<td>2.34a</td>
</tr>
<tr>
<td>PhOH-w$_4$-3</td>
<td>1.12147b</td>
<td>0.57219b</td>
<td>0.49779b</td>
<td>2.55b</td>
</tr>
<tr>
<td>PhOH-w$_4$-4</td>
<td>1.51720</td>
<td>0.43861</td>
<td>0.41398</td>
<td>3.55</td>
</tr>
<tr>
<td>PhOH-w$_4$-5</td>
<td>1.55673a</td>
<td>0.49177a</td>
<td>0.46151a</td>
<td>3.82a</td>
</tr>
<tr>
<td>PhOH-w$_4$-6</td>
<td>1.59183b</td>
<td>0.49647b</td>
<td>0.44238b</td>
<td>3.69b</td>
</tr>
<tr>
<td>PhOH-w$_4$-7</td>
<td>1.21216</td>
<td>0.51396</td>
<td>0.45024</td>
<td>2.48</td>
</tr>
<tr>
<td>PhOH-w$_4$-8</td>
<td>1.25108a</td>
<td>0.56229a</td>
<td>0.50145a</td>
<td>2.92a</td>
</tr>
<tr>
<td>PhOH-w$_4$-9</td>
<td>1.29591b</td>
<td>0.54344b</td>
<td>0.48837b</td>
<td>2.42b</td>
</tr>
<tr>
<td>PhOH-w$_4$-10</td>
<td>1.18647</td>
<td>0.52433</td>
<td>0.45296</td>
<td>1.73</td>
</tr>
<tr>
<td>PhOH-w$_4$-11</td>
<td>1.58475</td>
<td>0.34963</td>
<td>0.30846</td>
<td>3.23</td>
</tr>
<tr>
<td>PhOH-w$_4$-12</td>
<td>1.10390</td>
<td>0.52807</td>
<td>0.49604</td>
<td>1.11</td>
</tr>
<tr>
<td>PhOH-w$_4$-13</td>
<td>1.14855</td>
<td>0.47892</td>
<td>0.40965</td>
<td>2.35</td>
</tr>
<tr>
<td>PhOH-w$_4$-14</td>
<td>1.26070</td>
<td>0.37569</td>
<td>0.31008</td>
<td>0.92</td>
</tr>
<tr>
<td>PhOH-w$_4$-15</td>
<td>1.26692</td>
<td>0.35619</td>
<td>0.31544</td>
<td>2.37</td>
</tr>
<tr>
<td>PhOH-w$_4$-16</td>
<td>1.13115</td>
<td>0.49384</td>
<td>0.47181</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Values taken from Reference 731 with permission.

Let us now proceed to the PES of PhOH(H$_2$O)$_2$ whose lower-energy portion is displayed in Figure 49. Two ring isomers, PhOH-w$_2$-1 and PhOH-w$_2$-2, reside at its global energy minimum. They are equivalent because PhOH-w$_2$-2 is obtained from PhOH-w$_2$-1 by applying the reflection relative to the phenol plane. In these structures, the OH group of phenol acts bifunctionally, both as the hydrogen-bond donor and acceptor. The three hydrogen bonds in PhOH-w$_2$-1 are rather bent, as indicated by the values of the corresponding O−H⋯O angles: 143.59°, 149.66° and 156.14° taken clockwise. The hydrogen bond formed between the phenol hydrogen-bond acceptor and the water molecule donor (w$_{ad1}$) is quite long and comprises 2.138 Å, although the corresponding oxygen–oxygen separation of 2.96 Å is reasonable and shorter than in PhOH-w$_1$-2. The other O–O distances are typical for such hydrogen bonds: r(O$_1$−O$_2$) = 2.813 Å and r(O$_2$−O$_3$) = 2.848 Å.

Five calculated OH-stretching vibrations of the PhOH-w$_2$-1 structure are presented in Table 35. By analogy with the PhOH-w$_1$-1 complex, the hydrogen-bonded phenolic νOH vibration is red-shifted significantly by 202 cm$^{-1}$ and its IR intensity is enhanced by a factor of 4.9 while its Raman activity only doubles. The other four vibrations are simply assigned to the ν_1 and ν_3 of water molecules w$_{ad1}$ and w$_{ad2}$, although their collective nature (essential for larger water clusters) should be noted. One pair of them, ν_1^{ad1} and
1. General and theoretical aspects of phenols

PhOH

\[\text{H}_2 \]

\[\text{O}_2 \]

\[\text{H}_2' \]

\[\text{O}_2' \]

\[\text{H}_1' \]

\[\text{H}_1 \]

\[\text{O}_1 \]

FIGURE 49. The lowest-energy structure of the phenol–water\textsubscript{2} complex. Bond lengths are in Å. The geometrical parameters are paired: the former value corresponds to the HF/A level while the MP2/A value is given in parentheses. Adapted from Reference 731 with permission

\[\nu^\text{ad}_1, \text{ at } 3973.2 \text{ and } 4147.1 \text{ cm}^{-1}, \text{ corresponds to symmetric and asymmetric stretchings of the water molecule } w_\text{ad1}, \text{ accepting the phenolic hydrogen bond and donating the hydrogen bond to water dimer. The other one, } \nu^\text{ad2}_1 \text{ and } \nu^\text{ad2}_3, \text{ centred at } 4021.7 \text{ and } 4154.7 \text{ cm}^{-1}, \text{ describes the symmetric and asymmetric OH-stretching vibrations of the water molecule } w_\text{ad2}, \text{ donating the hydrogen bond to phenol and accepting the other one from } w_\text{ad1}. \text{ Altogether, they are red-shifted and considerably enhanced compared with the similar vibrations in water and monohydrated phenol. Summarizing, the IR stretching region assumes the pattern shown in equation 43,}

\[\begin{align*}
\text{Expt: } & \nu_{\text{OH}} < \nu_{\text{ad1}}^\text{48} < \nu_{\text{ad2}}^\text{169} < \nu_{\text{ad1}}^\text{3} < \nu_{\text{ad2}}^\text{3} \\
\text{HF/A: } & \nu_{\text{OH}} < \nu_{\text{ad1}}^\text{57} < \nu_{\text{ad2}}^\text{125} < \nu_{\text{ad1}}^\text{6} < \nu_{\text{ad2}}^\text{3} \\
\text{MP2(fc)/A: } & \nu_{\text{OH}} < \nu_{\text{ad1}}^\text{140} < \nu_{\text{ad2}}^\text{102} < \nu_{\text{ad2}}^\text{184} < \nu_{\text{ad1}}^\text{3} < \nu_{\text{ad2}}^\text{3} \\
\end{align*} \]

(43)

Here, we thus observe the MP2/A ‘window’ region of 184 cm-1 width. Compared to the value reported above for the phenol–water\textsubscript{1} complex and demonstrated in equation 41, it is extended by 51 cm-1. It is clearly seen from Table 35 that its extension follows, first, from a further red shift by 177 cm-1 of the phenolic OH-stretching compared to PhOH-w\textsubscript{1}-1 as a result of a stronger hydrogen-bonding donation of the OH group of phenol to water dimer. Despite the fact that the corresponding \(\nu_\sigma \) frequency is less by 21 cm-1 than in PhOH-w\textsubscript{1}-1, the hydrogen bonding is stronger since the phenolic O–H
bond keeps elongating by 0.009 Å. Second, the ‘window’ extension also follows from a rather substantial red shift of 203 cm\(^{-1}\) in the water dimer, where the corresponding hydrogen-bridge stretching frequency reaches the value of 245.2 cm\(^{-1}\). And finally, third, it stems from a strengthening of the hydrogen-bonding donation of water dimer to the lone pair electrons of the phenolic OH group as indicated particularly by the \(v_\sigma\) frequency of 201.2 cm\(^{-1}\), which exceeds the analogous one in PhOH-\(w_2\)-1 by a factor of 1.8. Note in conclusion that the \(v_1\) mode of the water molecule \(w_{ad}\) (as donor of a hydrogen bond to phenol) borders the left-hand side edge of the ‘window’ region. This is a typical feature for the cyclic arrangements of water molecules bonded to phenol. We will observe it also for the PhOH(H\(_2\)O)_3 complex in the following subsection.

4. Lower-energy structures of PhOH(H\(_2\)O)_3

Adding a third water molecule to the PhOH(H\(_2\)O)_2 complex significantly enriches the PES landscape of PhOH(H\(_2\)O)_3. This is clearly seen in Figure 50, which displays six lower-energy structures of phenol bonded to three water molecules. The global minimum is occupied by two isoenergetic structures, PhOH-\(w_3\)-1 and PhOH-\(w_3\)-2, converting into each other via the plane containing the CO group, and perpendicular to the phenol ring. These structures possess a closed cyclic water pattern \(S_3\) to which the phenolic OH group simultaneously donates and accepts hydrogen bonds. A similar water pattern is inherent for the other three structures PhOH-\(w_3\)-3, PhOH-\(w_3\)-4 (actually the isomer of PhOH-\(w_3\)-3) and PhOH-\(w_3\)-5 lying within ca 4.2 kJ mol\(^{-1}\) above the global minimum and reported in the present work for the first time. Their difference from the global minimum isomers originates from the flippings of the free OH groups of water molecules which can be classified by the \(u\) and \(d\) symbols\(^{702}\). In this regard it is worth mentioning that the structure reported as the most energetically close to the global minimum\(^{729}\) is misplaced by 10.8 kJ mol\(^{-1}\). By analogy with the existence of two isoenergetic global-minimum structures, there are actually three additional structures deduced from PhOH-\(w_3\)-3, PhOH-\(w_3\)-4 and PhOH-\(w_3\)-5 by applying the same reflection operation of bare phenol.

Analysis of the global minimum structures in Figures 48, 49 and 50 reveals a tendency towards systematic shortening of the phenol–water hydrogen bonds upon adding an extra water molecule. The length of the phenol donor–water acceptor hydrogen bond varies from 1.95 Å in PhOH-\(w_1\) to 1.91 Å in PhOH-\(w_2\) and, finally, to 1.83 Å in PhOH-\(w_3\). This correlates fairly with recent experimental findings\(^{636}\). On the other hand, passing from PhOH-\(w_2\) to PhOH-\(w_3\), the water donor–phenol acceptor phenol–water hydrogen bond decreases by 0.18 Å.

Table 38 collects seven theoretical OH-stretching vibrations of the five relevant lower-energy PhOH-\(w_3\) structures to discuss a ‘window’ region. Inspection of Table 38 shows that they are actually gathered in two rather well separated groups. Considering the PhOH-\(w_3\)-1 structure as an example, we find that the first group consists of four highly intense IR vibrations placed between 3835 and 3983 cm\(^{-1}\) and describing cooperative stretching vibrations of the intra-ring OH bonds. The first two are predominantly assigned to the coupled OH-stretching vibration of phenol and its nearest-neighbour OH bond \(O_1-H_1\) (see Figure 50). The lower of these two, corresponding to the symmetric stretch of these OH bonds, is rather Raman active and red-shifted by 283 cm\(^{-1}\) with respect to the OH-stretching frequency of bare phenol. The other one is less red-shifted, by 223 cm\(^{-1}\). The second group of vibrations consists of three vibrations lying between 4142 and 4148 cm\(^{-1}\). The OH-stretching vibrations of three free OH groups of water molecules contribute predominantly to this group. They are shifted to lower wavenumbers relative to the \(\nu_3\) vibration of the water molecule by approximately 40 cm\(^{-1}\). The separation between these
groups which determines a width of the ‘window’ region amounts to 307 cm$^{-1}$ at the HF/A level and decreases to 267 cm$^{-1}$ after performing the MP2/A calculation. In other words, the stretching IR pattern of the PhOH-w_3-1 structure are those in equation 44,

$$\nu_{\text{OH}}^{\text{MP2/A}} < \nu_{1}^{\text{MP2/A}} < \nu_{2}^{\text{MP2/A}} < \nu_{3}^{\text{MP2/A}} < \nu_{3}^{\text{MP2/A}} < \nu_{3}^{\text{MP2/A}}$$

where the experimental spacings 705 are given in parentheses.

The sixth structure of the PhOH-w_3 complex reported in the present work for the first time and displayed in Figure 50 is rather peculiar in the following sense. As shown in Figure 50, one of its water molecules accepts the phenolic OH group. Another one, $O_3H_2H_5'$, lies above the phenol ring. It forms a so-called π hydrogen bond with the

![Chemical structures](image-url)

FIGURE 50. Six lower-energy structures of the phenol–water$_3$ complex. Bond lengths are in Å. The geometrical parameters are paired for some particular structures; the former value corresponds to the HF/A level while the MP2/A value is presented in parentheses. The HF/A [MP2(sp)/A] relative energy with respect to the global-minimum structure PhOH-w_3-1 is given in kJ mol$^{-1}$. Adapted from Reference 731 with permission
π cloud of this ring, partly similar to the Leg2-type benzene–water structure discussed elsewhere. The shortest MP2/A distance of 2.441 Å is predicted between the H' 3 and the carbon atom C3 (see Figure 50). The other one, r(H' 3−C6) = 2.909 Å, almost coincides with the sum of van der Waals radii of the corresponding atoms. Compared to a free water molecule, both O−H bond lengths undergo tiny elongations, about 0.003–0.006 Å, although, contrary to the other water molecules belonging to this structure as well as to all water molecules in the aforementioned structures, the water molecule participating in the π hydrogen bonding with phenol ring has its bond angle ∠OH decreases by 1.3°. This is in turn manifested in the scissor vibrations of water molecules. If two of them, w1 and w2, are characterized by the scissor frequencies ν2 centred at 1762 and 1788 cm−1, which are red-shifted by 27 and 52 cm−1 compared to that in water monomer, the third water molecule w3 possesses the scissor frequency at 1742 cm−1, resulting in a blue shift of 7 cm−1.

The novel PhOH-w3-6 structure has the largest total dipole moment (1.98 D) among all reported lower-energy PhOH-w3 structures. It is also a more compact structure, as follows from a comparison of the rotational constants of all PhOH-w3 structures. Energetically speaking, PhOH-w3-6 is 11.0 kJ mol⁻¹ (HF/A) and 10.3 kJ mol⁻¹ (MP2/A) above the global minimum structure PhOH-w3-1. These values are modified to 8.7 and
TABLE 38. The OH-stretch frequencies (in cm$^{-1}$) of phenol–water$_3$ complexes calculated at the HF/A and MP2/A (in parentheses) computational levels. Infrared intensity is in km mol$^{-1}$, Raman (R) activity in Å3 auu$^{-1}$. Partial contributions are evaluated as the ratio of total displacements. The contribution of the first reported mode is referred to 100%

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhOH-w_3-1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3834.7 (3273.4)</td>
<td>537 (821)</td>
<td>213</td>
<td>$v_{OH} \cdot v_{OH}$ (33.8%)</td>
</tr>
<tr>
<td>3895.4 (3418.8)</td>
<td>602 (755)</td>
<td>50</td>
<td>$v_{O_1H_1} \cdot v_{OH}$ (99.9%), $v_{O_2H_2} (56.3%)$</td>
</tr>
<tr>
<td>3929.3 (3496.1)</td>
<td>571 (973)</td>
<td>43</td>
<td>$v_{O_1H_1} \cdot v_{O_2H_2} (52.7%)$, $v_{O_3H_3} (10.1%)$</td>
</tr>
<tr>
<td>3982.8 (3578.9)</td>
<td>418 (616)</td>
<td>114</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4142.2 (3845.4)</td>
<td>136 (85)</td>
<td>64</td>
<td>$v_{O_1H_1'} \cdot v_{O_2H_2'} (11.9%)$</td>
</tr>
<tr>
<td>4143.8 (3850.8)</td>
<td>81 (80)</td>
<td>65</td>
<td>$v_{O_2H_2'} \cdot v_{O_3H_3'} (12.8%)$</td>
</tr>
<tr>
<td>4148.3 (3853.3)</td>
<td>171 (107)</td>
<td>53</td>
<td>$v_{O_3H_3'}$</td>
</tr>
<tr>
<td>PhOH-w_3-3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3840.2</td>
<td>531</td>
<td>219</td>
<td>$v_{OH} \cdot v_{O_1H_1} (24.5%)$, $v_{O_2H_2} (6.4%)$</td>
</tr>
<tr>
<td>3901.4</td>
<td>629</td>
<td>49</td>
<td>$v_{O_1H_1} \cdot v_{O_2H_2} (93.1%)$, $v_{OH} (66.5%)$</td>
</tr>
<tr>
<td>3931.0</td>
<td>553</td>
<td>38</td>
<td>$v_{O_2H_2} \cdot v_{O_3H_3} (82.7%)$</td>
</tr>
<tr>
<td>3983.5</td>
<td>362</td>
<td>82</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4144.3</td>
<td>99</td>
<td>55</td>
<td>$v_{O_1H_1'} \cdot v_{O_2H_2'} (57.9%)$</td>
</tr>
<tr>
<td>4145.2</td>
<td>110</td>
<td>47</td>
<td>$v_{O_2H_2'} \cdot v_{O_3H_3'} (60.3%)$</td>
</tr>
<tr>
<td>4146.2</td>
<td>129</td>
<td>88</td>
<td>$v_{O_3H_3'}$</td>
</tr>
<tr>
<td>PhOH-w_3-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3854.9</td>
<td>382</td>
<td>215</td>
<td>$v_{OH} \cdot v_{O_1H_1} (67.2%)$, $v_{O_2H_2} (19.4%)$</td>
</tr>
<tr>
<td>3903.9</td>
<td>739</td>
<td>30</td>
<td>$v_{OH} \cdot v_{O_1H_1} (63.4%)$, $v_{O_2H_2} (46.2%)$</td>
</tr>
<tr>
<td>3932.0</td>
<td>533</td>
<td>48</td>
<td>$v_{O_2H_2} \cdot v_{O_3H_3} (55.9%)$</td>
</tr>
<tr>
<td>3988.9</td>
<td>333</td>
<td>66</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4141.5</td>
<td>115</td>
<td>66</td>
<td>$v_{O_1H_1'} \cdot v_{O_2H_2'} (57.9%)$</td>
</tr>
<tr>
<td>4145.8</td>
<td>112</td>
<td>44</td>
<td>$v_{O_2H_2'} \cdot v_{O_3H_3'} (55.9%)$</td>
</tr>
<tr>
<td>4152.5</td>
<td>107</td>
<td>52</td>
<td>$v_{O_3H_3'}$</td>
</tr>
<tr>
<td>PhOH-w_3-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3870.2 (3351.5)</td>
<td>459 (683)</td>
<td>188</td>
<td>$v_{OH} \cdot v_{O_1H_1} (74.1%)$</td>
</tr>
<tr>
<td>3919.8 (3467.4)</td>
<td>773 (994)</td>
<td>33</td>
<td>$v_{OH} \cdot v_{O_1H_1} (80.3%)$, $v_{O_2H_2} (31.2%)$</td>
</tr>
<tr>
<td>3950.9 (3549.4)</td>
<td>305 (462)</td>
<td>58</td>
<td>$v_{O_2H_2} \cdot v_{O_3H_3} (25.7%)$</td>
</tr>
<tr>
<td>4054.8 (3732.9)</td>
<td>91 (104)</td>
<td>56</td>
<td>$v_{O_1H_1'} \cdot v_{O_2H_2'} (56.0%)$</td>
</tr>
<tr>
<td>4142.2 (3841.9)</td>
<td>108 (72)</td>
<td>94</td>
<td>$v_{O_1H_1'} \cdot v_{O_2H_2'} (55.3%)$</td>
</tr>
<tr>
<td>4147.9 (3858.4)</td>
<td>115 (76)</td>
<td>57</td>
<td>$v_{O_2H_2'} \cdot v_{O_3H_3'} (55.3%)$</td>
</tr>
<tr>
<td>4156.6 (3852.0)</td>
<td>99 (73)</td>
<td>34</td>
<td>$v_{O_3H_3'}$</td>
</tr>
</tbody>
</table>

Values taken from Reference 731 with permission.

7.7 kJ mol$^{-1}$, respectively, after taking the ZPVE corrections into account. Comparing the free energies of the lower-lying PhOH-w_3 structures determined by their enthalpies and entropies listed in Table 36, we conclude that at $T \geq 262.8$ K, PhOH-w_3-5 becomes energetically the most favourable structure. In terms of free energy, it also lies below the PhOH-w_3-3,4 structures when $T \geq 209.7$ K. The latter becomes more favourable than PhOH-w_3-1,2 at $T \geq 315.3$ K. At room temperature (298.15 K), the PhOH-w_3-6 structure is only 6.4 kJ mol$^{-1}$ higher than PhOH-w_3-3,4.

Regarding the novel PhOH-w_3-6 structure, its seven OH-stretching vibrations are not separable into two distinct groups. It is also worth mentioning that, in contrast to the IR
stretching pattern of PhOH-\(w_3\)-1 which spans over a region of 580 wavenumbers, the IR pattern of PhOH-\(w_3\)-6 is somewhat narrower, about 500 wavenumbers. Its most red-shifted vibration predicted at 3870 (3352) \(\text{cm}^{-1}\) is mainly attributed to the collective stretching vibration of the phenolic OH group and the OH group of the water molecule, which plays the role of hydrogen-bond acceptor of phenol (see Table 38). This feature looks drastically different from what we have already observed for the PhOH-\(w_3\)-1 complex, where the most red-shifted stretching vibration is essentially localized on the OH group of phenol. The second vibration of PhOH-\(w_3\)-6, placed at ca 3920 (3467) \(\text{cm}^{-1}\), is characterized by the most intense IR absorption, equal to 773 (994) \(\text{km mol}^{-1}\), among all reported PhOH-\(w_3\) structures. Together with the third vibration at 3951 (3549) \(\text{cm}^{-1}\), these vibrations describe the coupled stretchings of phenolic and water OH bonds. The fourth vibrational mode with the frequency of 4055 (3733) \(\text{cm}^{-1}\) is assigned to the symmetric \(\pi\)-OH stretching mode of the \(\pi\) hydrogen-bonded \(O_3H_3\) and \(O_3H_3''\) groups, whereas the corresponding \(\pi\)-OH asymmetric stretch amount to 4157 (3852) \(\text{cm}^{-1}\). Their MP2/A red shifts are rather small and amount to, respectively, 41 and 63 \(\text{cm}^{-1}\) compared to a free water molecule. This is a typical feature of weak hydrogen bonds, such as we consider here as \(\pi\) bonds. The other vibrations of PhOH-\(w_3\)-6 found at 4142 (3842) and 4147 (3858) \(\text{cm}^{-1}\) describe, as usual, the stretching vibrations of free OH groups of water molecules. Altogether, these seven OH-stretching vibrations give rise to the IR pattern in equation 45.

\[
\text{MP2/A: } v_{\text{OH}} < v_{\text{ad}1}^{116} < v_{\text{sym}}^{\pi} < v_{\text{asym}}^{\pi} < v_{\text{ad}2}^{99} < v_{\text{ad}2}^{6} < v_{\text{ad}1}^{82} < v_{\text{ad}2}^{184} < v_{\text{asym}}^{\pi} < v_{\text{sym}}^{\pi} < v_{\text{sym}}^{\pi} (45)
\]

On inspecting equations 44 and 45, we note a narrowing of the ‘window’ region for the \(\pi\) hydrogen-bonded structure PhOH-\(w_3\)-6 compared to the conventional one with the \(S_3\) arrangement of water molecules. This implies that some modes of the former structure might fall in the ‘window’ region of the latter. In the present case, these are two modes: one corresponds to \(v_{\text{sym}}^{\pi}\) and the other to \(v_{\text{sym}}^{\pi}\).

In concluding this subsection, it appears that all global minimum energy structures involve water molecule(s) arranged in a ring manner. Nevertheless, it seems that such a structure for PhOH(\(H_2O)\) becomes somewhat exhausted in the sense that a more compact arrangement of water molecules emerges. We believe that the primary reason for this is that when \(n \geq 3\), the hydrogen-bond acceptor ability of the phenolic OH group becomes competitive with the \(\pi\) hydrogen-bond acceptor ability of the phenol ring. This is seen more transparently in the next subsection for \(n = 4\) which, in a certain sense, can be treated as a border between the global minimum energy structures where water molecules are arranged into a ring (\(n \leq 3\)) and those where water molecules form a 3D one with \(\pi\) hydrogen bonding (\(n \geq 5\)).

5. At the bottom of PES of PhOH(\(H_2O)\)

Analysis of the PES of the interaction of phenol with four water molecules reveals eleven lower-energy structures lying within an interval of less than 15.7 \(\text{kJ mol}^{-1}\) (MP2(sp)/A) above the global minimum. They are displayed in Figure 51. The landscape of the lower-energy portion of the PES of PhOH(\(H_2O)\) is the following.

At the HF/A level, we find that the global minimum is occupied by the PhOH-\(w_4\)-1 structure with water molecules forming a ring \(S_4\) via five typical hydrogen bonds. This is in fact a conventional structure already reported in the literature\(^{729,730}\). It is characterized by a rather small total dipole moment of 0.96 D. Moving upward on this PES, we arrive at two energetically close structures, PhOH-\(w_4\)-3 and PhOH-\(w_4\)-2, which are placed above the global minimum one by 4.5 and 6.3 \(\text{kJ mol}^{-1}\), respectively, after ZPVE correction. In PhOH-\(w_4\)-3, water molecules are arranged in a sort of cage-like pattern\(^{720-723}\) having
six typical hydrogen bonds O–H···O and the additional O–H···π directed downward to the phenol ring. In PhOH-\textsubscript{4}-2, water molecules form a S_4-like pattern with seven hydrogen bonds characterized by the following properties: first, the water molecule w_2 participates in three hydrogen bonds and, second, w_3 also takes part in π hydrogen bonding. One of the most interesting features of these structures is the appearance of double-donor water molecules, such as w_2 in PhOH-\textsubscript{4}-2 and w_3 in PhOH-\textsubscript{4}-3. Furthermore, the PhOH-\textsubscript{4}-3 structure has a rather peculiar pair of non-bonded oxygen atoms of water molecules, O_1 and O_3, separated from each other by 3.426 Å, a distance which is

![FIGURE 51. Eleven lower-energy structures of the phenol–water\textsubscript{4} complex. Bond lengths are in Å. The geometrical parameters are tripled for the lowest-energy structures in the following order (from the bottom to the top): the HF/A, MP2/A and B3LYP/A values. The HF/A relative energy with respect to the global-minimum structure PhOH-\textsubscript{4}-1 is given in kJ mol−1. Its MP2(sp)/A analogue is followed in parentheses. Adapted from Reference 731 with permission.](image-url)
smaller by about 0.2 Å than the first minimum of the radial oxygen–oxygen distribution function g_{oo} of liquid water widely used to define its first coordination shell723.

The next, energetically less stable structures are PhOH-w_4-4 and PhOH-w_4-5. They are quite remarkably different from those studied above. Three water molecules are arranged in a cyclic structure whereas the fourth one forms two π hydrogen bonds of Leg1-type with the π-electrons of the phenol ring. This water molecule resides above the phenol ring with the distances $r(O_4-C_2) = 3.35$ Å and $r(O_4-C_3) = 3.32$ Å. The energy separations of PhOH-w_4-4 and PhOH-w_4-5 from the global minimum are 6.4 and 6.8 kJ mol$^{-1}$, respectively. The remainder of the lower-energy portion of the PES of the PhOH-w_4 complex is the following. The PhOH-w_4-6 structure has six hydrogen bonds and a total dipole moment of 3.23 D; it is 3.9 kJ mol$^{-1}$ above the global minimum. Its water pattern also partly resembles a book. A similar structure is also inherent for PhOH-w_4-7 at 1.5 kJ mol$^{-1}$ above PhOH-w_4-6. The next structure, PhOH-w_4-8, is quite particular in that its OH phenolic group functions only as a hydrogen bond donor, in contrast to all other reported PhOH-w_4 structures. The PhOH-w_4-9 structure is separated from the global minimum by 2.4 kJ mol$^{-1}$. Its four water molecules form a ring similar to the PhOH-w_4-1 structure and differs from the latter by flippings of free OH groups of water molecules. A similar water pattern is seen for PhOH-w_4-10 whereas PhOH-w_4-11 partly mimics the PhOH-w_4-3 structure.
Compared to HF/A, the MP2 and B3LYP/A PESs of PhOH(H$_2$O)$_4$ have somewhat different topologies, which is reflected in the geometries of the phenol–water$_4$ complexes. For example, the MP2/A level reverses the order between the PhOH-w$_4$-1–3 structures in such a way that PhOH-w$_4$-2 becomes the global minimum; PhOH-w$_4$-3 is only 0.8 kJ mol$^{-1}$ higher, and PhOH-w$_4$-2 is 4.6 kJ mol$^{-1}$ higher (neglecting ZPVE). As for the B3LYP/A geometries, we may note that, for instance, in PhOH-w$_4$-3 the oxygen atom O$_4$ is separated from the carbon atom C$_2$ of phenol by 3.410 Å whereas r(H$_4'$−C$_2$) = 2.661 Å. In PhOH-w$_4$-2, the distances r(O$_4$−C$_3$) = 3.345 Å and r(H$_4'$−C$_2$) = 2.627 Å. The latter is smaller by about 0.3 Å than the sum of van der Waals radii of the corresponding atoms. Summarizing and taking into account that the expected margin error of the computational methods employed in the present work is ca \pm8 kJ mol$^{-1}$, we conclude that these four structures PhOH-w$_4$-1–4 are placed at the very bottom of the PES of PhOH(H$_2$O)$_4$ and are actually nearly isoenergetic. In order to interpret the experimentally determined IR pattern of phenol interacting with four water molecules, we now consider theoretical OH-stretching modes of the PhOH-w$_4$-1–4 structures (Table 39). Contrary to the PhOH-w$_4$-1 and PhOH-w$_4$-2 structures studied above, the vibrational assignments are particular for each structure of the PhOH-w$_4$ complex. The most red-shifted OH-stretching vibration at 3772 (2970.1) cm$^{-1}$ is predicted for the PhOH-w$_4$-2 structure. It is predominantly assigned to the hydrogen-stretching vibration of the O$_1$−H$_1$−⋯O$_2$ bond and is significantly enhanced by a factor.
of 24 in comparison with the IR intensity of the ν_1 vibration of the water molecule. The analogous OH-stretching vibration of PhOH-w_4-3 is placed at 3798 (3008.4) cm$^{-1}$. It is also predominantly assigned to the symmetric hydrogen-stretching vibration of the $O_1-H_1 \cdots O_2$ and $O_2-H_2 \cdots O_3$ bonds. The corresponding asymmetric vibrational mode is found at 3874 (3201.8) cm$^{-1}$. Its IR intensity exceeds that of the ν_3 vibrations of the water molecule by a factor of 12. Interestingly, the phenolic OH-stretching vibration contributes only to the fourth, 3988 (3476.8) cm$^{-1}$, and to the third, 3958 (3394.4) cm$^{-1}$, vibrations of PhOH-w_4-2 and PhOH-w_4-3, respectively. It is therefore red-shifted by ca 230 and 160 cm$^{-1}$, respectively, from that of bare phenol and their IR intensities are increased by ca 4-fold.

It follows from Table 38 that the quintessential feature of OH-stretching vibrations of the PhOH-w_4-3 and PhOH-w_4-2 is that they are not separable into groups of vibrations. For example, in the case of PhOH-w_4-3, the inter-vibrational separations take the following values: 75 (192), 84 (192), 26 (67), 41 (133), 71 (76), 41 (101), 6 (11) and 4 (7) cm$^{-1}$. We suggest that such vibrational non-separability occurs due to the cage-type arrangements of water molecules and the existence of π hydrogen bonding between one of the water molecules and the phenol ring. Such π hydrogen bonding results in that the corresponding π-OH stretching vibrations of this particular water molecule for the PhOH-w_4-3 structure at 4024.8 (3593.9) (symmetric) and 4146.9 (3771.1) (asymmetric) cm$^{-1}$. Compared with the ν_1 and ν_3 stretching vibrations of the water molecule, the former is red-shifted by 45 (180) cm$^{-1}$ whereas the latter is red shifted by 41 (144) cm$^{-1}$.
TABLE 39. The OH-stretch frequencies (in cm$^{-1}$) of phenol–water$_4$ complexes calculated at the HF/A and B3LYP/A (in parentheses) computational levels. Infrared intensity is in km mol$^{-1}$ and Raman (R) activity in Å4 amu$^{-1}$. The partial contributions are evaluated as the ratio of the total displacements. The contribution of the first reported mode is referred to 100%.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhOH-w_4-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3811.6 (3077.8)</td>
<td>724 (1260)</td>
<td>261</td>
<td>v_{OH}, $v_{O_1H_1}$ (31.4%)</td>
</tr>
<tr>
<td>3869.0 (3217.1)</td>
<td>849 (1442)</td>
<td>68</td>
<td>$v_{O_2H_1}$, $v_{O_3H_1}$ (81.1%), $v_{O_1H_1}$ (60.6%), $v_{O_4H_1}$ (32.5%)</td>
</tr>
<tr>
<td>3898.5 (3287.7)</td>
<td>854 (1521)</td>
<td>39</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (78.0%), $v_{O_3H_1}$ (21.8%)</td>
</tr>
<tr>
<td>3926.8 (3354.0)</td>
<td>330 (683)</td>
<td>73</td>
<td>$v_{O_3H_1}$, $v_{O_4H_1}$ (87.6%), $v_{O_2H_1}$ (16.1%)</td>
</tr>
<tr>
<td>3976.6 (3468.8)</td>
<td>314 (551)</td>
<td>77</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$</td>
</tr>
<tr>
<td>4140.7 (3796.0)</td>
<td>112 (42)</td>
<td>67</td>
<td>$v_{O_2H_1}$, $v_{O_3H_1}$ (19.1%)</td>
</tr>
<tr>
<td>4143.4 (3797.5)</td>
<td>105 (46)</td>
<td>56</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4143.8 (3798.7)</td>
<td>114 (40)</td>
<td>39</td>
<td>$v_{O_4H_1}$</td>
</tr>
<tr>
<td>4144.8 (3800.3)</td>
<td>92 (44)</td>
<td>70</td>
<td>$v_{O_2H_1}$, $v_{O_3H_1}$ (16.3%)</td>
</tr>
<tr>
<td>PhOH-w_4-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3771.8 (2970.1)</td>
<td>431 (772)</td>
<td>91</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>3915.1 (3299.0)</td>
<td>309 (544)</td>
<td>52</td>
<td>$v_{O_2H_1}$</td>
</tr>
<tr>
<td>3961.7 (3429.8)</td>
<td>277 (315)</td>
<td>37</td>
<td>$v_{O_1H_1}$, $v_{O_3H_1}$ (90.4%)</td>
</tr>
<tr>
<td>3987.7 (3476.8)</td>
<td>308 (987)</td>
<td>55</td>
<td>$v_{O_1H_1}$, $v_{O_3H_1}$ (88.7%), v_{OH} (22.7%)</td>
</tr>
<tr>
<td>4005.6 (3515.8)</td>
<td>416 (373)</td>
<td>110</td>
<td>$v_{O_3H_1}$</td>
</tr>
<tr>
<td>4109.6 (3721.9)</td>
<td>130 (80)</td>
<td>33</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4132.7 (3763.5)</td>
<td>164 (115)</td>
<td>47</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4133.6 (3794.8)</td>
<td>96 (51)</td>
<td>95</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4151.9 (3802.8)</td>
<td>126 (51)</td>
<td>80</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>PhOH-w_4-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3798.4 (3008.4)</td>
<td>448 (77)</td>
<td>153</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (22.9%)</td>
</tr>
<tr>
<td>3873.6 (3201.8)</td>
<td>719 (1309)</td>
<td>36</td>
<td>$v_{O_2H_1}$, $v_{O_3H_1}$ (23.8%)</td>
</tr>
<tr>
<td>3957.6 (3394.4)</td>
<td>361 (572)</td>
<td>73</td>
<td>v_{OH}</td>
</tr>
<tr>
<td>3983.7 (3461.4)</td>
<td>244 (402)</td>
<td>54</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (16.8%)</td>
</tr>
<tr>
<td>4024.8 (3593.9)</td>
<td>163 (300)</td>
<td>54</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (30.5%)</td>
</tr>
<tr>
<td>4095.7 (3670.3)</td>
<td>218 (247)</td>
<td>56</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (17.9%)</td>
</tr>
<tr>
<td>4136.5 (3792.2)</td>
<td>111 (38)</td>
<td>77</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4142.9 (3800.7)</td>
<td>112 (42)</td>
<td>63</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4146.9 (3771.1)</td>
<td>122 (104)</td>
<td>42</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (28.4%)</td>
</tr>
<tr>
<td>PhOH-w_4-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3814.1 (3064.2)</td>
<td>468 (815)</td>
<td>214</td>
<td>v_{OH}, $v_{O_1H_1}$ (53.2%), $v_{O_2H_2}$ (21.8%)</td>
</tr>
<tr>
<td>3866.3 (3198.2)</td>
<td>1022 (1708)</td>
<td>24</td>
<td>$v_{O_2H_2}$, v_{OH} (77.3%), $v_{O_1H_1}$ (28.1%)</td>
</tr>
<tr>
<td>3899.5 (3270.9)</td>
<td>379 (760)</td>
<td>53</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (63.4%), v_{OH} (12.0%)</td>
</tr>
<tr>
<td>3991.0 (3516.8)</td>
<td>225 (342)</td>
<td>54</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (23.8%)</td>
</tr>
<tr>
<td>4058.1 (3691.8)</td>
<td>27 (156)</td>
<td>38</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (69.6%)</td>
</tr>
<tr>
<td>4095.0 (3648.2)</td>
<td>218 (180)</td>
<td>53</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (25.5%)</td>
</tr>
<tr>
<td>4139.4 (3795.8)</td>
<td>114 (50)</td>
<td>85</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4145.3 (3796.9)</td>
<td>89 (29)</td>
<td>61</td>
<td>$v_{O_1H_1}$</td>
</tr>
<tr>
<td>4163.4 (3804.6)</td>
<td>79 (47)</td>
<td>29</td>
<td>$v_{O_1H_1}$, $v_{O_2H_1}$ (62.2%)</td>
</tr>
<tr>
<td>PhOH-w_4-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3822.5</td>
<td>288</td>
<td>234</td>
<td>v_{OH}, $v_{O_1H_1}$ (78.8%), $v_{O_2H_2}$ (46.2%)</td>
</tr>
</tbody>
</table>

(continued overleaf)
Table 39. (continued)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3865.8</td>
<td>1227</td>
<td>7</td>
<td>$v_{\text{O}-\text{H}2}$, $v{\text{OH}}$(73.5%)</td>
</tr>
<tr>
<td>3902.7</td>
<td>346</td>
<td>54</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}2}$ (26.1%), $v{\text{OH}}$(17.1%)</td>
</tr>
<tr>
<td>3988.7</td>
<td>228</td>
<td>49</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (23.9%)</td>
</tr>
<tr>
<td>4060.3</td>
<td>19</td>
<td>28</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}2}$ (76.0%), $v{\text{O}-\text{H}_1}$ (10.3%)</td>
</tr>
<tr>
<td>4090.7</td>
<td>229</td>
<td>58</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (26.6%)</td>
</tr>
<tr>
<td>4144.8</td>
<td>79</td>
<td>68</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (56.8%)</td>
</tr>
<tr>
<td>4146.1</td>
<td>126</td>
<td>99</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (59.6%)</td>
</tr>
<tr>
<td>4163.5</td>
<td>69</td>
<td>25</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (76.7%)</td>
</tr>
</tbody>
</table>

PhOH-w4-6

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3815.7</td>
<td>534</td>
<td>211</td>
<td>v_{OH}</td>
</tr>
<tr>
<td>3866.0</td>
<td>906</td>
<td>59</td>
<td>$v_{\text{O}-\text{H}_2}$</td>
</tr>
<tr>
<td>3972.1</td>
<td>514</td>
<td>110</td>
<td>$v_{\text{O}-\text{H}_1}$</td>
</tr>
<tr>
<td>3992.4</td>
<td>145</td>
<td>108</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (32.9%)</td>
</tr>
<tr>
<td>4007.3</td>
<td>190</td>
<td>27</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}2}$ (48.3%), $v{\text{O}-\text{H}_3}$ (34.5%)</td>
</tr>
<tr>
<td>4088.7</td>
<td>252</td>
<td>45</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (33.3%)</td>
</tr>
<tr>
<td>4140.6</td>
<td>112</td>
<td>69</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (12.4%)</td>
</tr>
<tr>
<td>4141.4</td>
<td>165</td>
<td>54</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (14.6%)</td>
</tr>
<tr>
<td>4154.8</td>
<td>128</td>
<td>60</td>
<td>$v_{\text{O}-\text{H}_1}$</td>
</tr>
</tbody>
</table>

PhOH-w4-7

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3899.1</td>
<td>571</td>
<td>188</td>
<td>v_{OH}, $v_{\text{O}-\text{H}_1}$ (28.9%)</td>
</tr>
<tr>
<td>3869.4</td>
<td>894</td>
<td>46</td>
<td>$v_{\text{O}-\text{H}2}$, $v{\text{O}-\text{H}3}$ (68.2%), $v{\text{OH}}$(55.6%)</td>
</tr>
<tr>
<td>3905.6</td>
<td>440</td>
<td>51</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (84.0%)</td>
</tr>
<tr>
<td>3954.8</td>
<td>227</td>
<td>50</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}2}$ (11.5%), $v{\text{O}-\text{H}_3}$ (11.4%)</td>
</tr>
<tr>
<td>3999.4</td>
<td>263</td>
<td>51</td>
<td>$v_{\text{O}-\text{H}_1}$</td>
</tr>
<tr>
<td>4126.9</td>
<td>117</td>
<td>60</td>
<td>$v_{\text{O}-\text{H}_1}$</td>
</tr>
<tr>
<td>4143.1</td>
<td>111</td>
<td>95</td>
<td>$v_{\text{O}-\text{H}_1}$</td>
</tr>
<tr>
<td>4148.4</td>
<td>101</td>
<td>60</td>
<td>$v_{\text{O}-\text{H}_1}$</td>
</tr>
<tr>
<td>4155.5</td>
<td>126</td>
<td>42</td>
<td>$v_{\text{O}-\text{H}_1}$</td>
</tr>
</tbody>
</table>

PhOH-w4-8

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3824.3</td>
<td>302</td>
<td>147</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (26.6%)</td>
</tr>
<tr>
<td>3884.9</td>
<td>765</td>
<td>40</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}2}$ (83.4%), $v{\text{O}-\text{H}_3}$ (61.5%)</td>
</tr>
<tr>
<td>3919.1</td>
<td>434</td>
<td>46</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (94.9%)</td>
</tr>
<tr>
<td>3977.9</td>
<td>334</td>
<td>63</td>
<td>v_{OH}, $v_{\text{O}-\text{H}_3}$ (26.9%)</td>
</tr>
<tr>
<td>4003.4</td>
<td>300</td>
<td>90</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{OH}}$(35.9%)</td>
</tr>
<tr>
<td>4131.9</td>
<td>202</td>
<td>39</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (14.9%)</td>
</tr>
<tr>
<td>4135.9</td>
<td>81</td>
<td>91</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (11.0%)</td>
</tr>
<tr>
<td>4142.9</td>
<td>130</td>
<td>47</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (14.5%)</td>
</tr>
<tr>
<td>4144.4</td>
<td>84</td>
<td>83</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}_2}$ (16.1%)</td>
</tr>
</tbody>
</table>

PhOH-w4-9

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3817.5</td>
<td>732</td>
<td>243</td>
<td>v_{OH}, $v_{\text{O}-\text{H}_1}$ (33.8%)</td>
</tr>
<tr>
<td>3876.7</td>
<td>693</td>
<td>84</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{OH}}$(94.2%), $v_{\text{O}-\text{H}2}$ (93.9%), $v{\text{O}-\text{H}_3}$ (34.2%)</td>
</tr>
<tr>
<td>3903.3</td>
<td>941</td>
<td>38</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}2}$ (81.5%), $v{\text{O}-\text{H}_3}$ (22.7%)</td>
</tr>
<tr>
<td>3932.0</td>
<td>302</td>
<td>60</td>
<td>$v_{\text{O}-\text{H}1}$, $v{\text{O}-\text{H}2}$ (57.0%), $v{\text{O}-\text{H}_3}$ (15.3%)</td>
</tr>
</tbody>
</table>
The PhOH-\(w_4\)-4 structure also has a rather peculiar and non-separable OH-stretching vibrational pattern. Its three most red-shifted vibrations are located at 3814 (3064.2), 3866 (3198.2) and 3900 (3270.9) cm\(^{-1}\). Altogether, they describe the coupled OH-stretching vibrations of the trimeric water ring and the phenolic OH group. The second one is the most IR active among all OH-stretching vibrations of all reported PhOH-\(w_4\) structures. Its IR intensity is 13 (18) times larger that of the OH-stretching vibration of bare phenol (\(v_3\) of the water molecule). The symmetric and asymmetric stretches of the water molecule connecting the water ring with the terminated water molecule placed above the phenol ring are found at 3991 (3516.8) and 4095 (3648.2) cm\(^{-1}\). Between them, at 4058 (3691.8) cm\(^{-1}\), there exists the symmetric \(\pi\) OH stretch whose asymmetric vibration has the highest frequency of 4163 (3804.6) cm\(^{-1}\). These two vibrations are separated by the OH stretches at 4139 (3795.8) and 4145 (3796.9) cm\(^{-1}\), assigned to free OH groups of water molecules.

As we would expect, the pattern of the OH-stretching vibrations of PhOH-\(w_4\)-1 is absolutely different from those of PhOH-\(w_4\)-2, PhOH-\(w_4\)-3 and PhOH-\(w_4\)-4 and resembles the typical \(S_4\) pattern of the PhOH-\(w_1\), PhOH-\(w_2\) and PhOH-\(w_3\)-1–5 structures. It is clearly seen from Table 39 that the nine OH-stretching vibrations of the PhOH-\(w_4\)-1 structure are well separated into two groups in that way forming the ‘window’ region of width about 164 (327) cm\(^{-1}\). Note that the B3LYP/A width agrees satisfactorily with the experimental one\(^705\). The former group spans the region between 3812 (3077.8; expt: ca 3135\(^705\)) and 3977 (3468.8; expt: 3430\(^705\)) cm\(^{-1}\) and consists of five rather IR and Raman active OH-stretching vibrations assigned to the coupled stretches of the water ring and phenolic OH groups. Its highest OH-stretching vibration is dominantly composed of the hydrogen stretch of the water molecule donating the hydrogen bond to phenol. The latter group is rather narrow with a width of only 4 (4) cm\(^{-1}\). The OH-stretching vibrations of free water OH groups contribute to this group. Its lowest wavenumber stretch at 4141 (3796.0) cm\(^{-1}\) corresponds to the free OH group of the water molecule which accepts the phenolic hydrogen bond.

Summarizing the B3LYP/A IR patterns in the stretching region of the four most energetically stable structures PhOH-\(w_4\)-1, PhOH-\(w_4\)-2, PhOH-\(w_4\)-3 and PhOH-\(w_4\)-4, we illustrate them in equation 46.

Table 39. (continued)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>IR</th>
<th>Raman</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3975.6</td>
<td>382</td>
<td>107</td>
<td>(v_1, v_2 (11.6%))</td>
</tr>
<tr>
<td>4142.1</td>
<td>105</td>
<td>69</td>
<td>(v_3, v_4 (17.9%))</td>
</tr>
<tr>
<td>4146.2</td>
<td>116</td>
<td>67</td>
<td>(v_5, v_6 (62.9%), v_7 (37.1%))</td>
</tr>
<tr>
<td>4146.6</td>
<td>128</td>
<td>27</td>
<td>(v_8, v_9 (55.8%))</td>
</tr>
<tr>
<td>4147.5</td>
<td>118</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>

Values taken from Reference 731 with permission.

PhOH-\(w_4\)-1:

\[
\begin{align*}
\text{v}_{3975.6} & < \text{v}_{4142.1} \quad \text{v}_{3975.6} \text{IR intensity is 13 (18) times larger that of the OH-stretching vibration of bare phenol (v3 of the water molecule). The symmetric and asymmetric stretches of the water molecule connecting the water ring with the terminated water molecule placed above the phenol ring are found at 3991 (3516.8) and 4095 (3648.2) cm}^{-1}. \text{Between them, at 4058 (3691.8) cm}^{-1}, \text{there exists the symmetric \(\pi\) OH stretch whose asymmetric vibration has the highest frequency of 4163 (3804.6) cm}^{-1}. \text{These two vibrations are separated by the OH stretches at 4139 (3795.8) and 4145 (3796.9) cm}^{-1}, \text{assigned to free OH groups of water molecules.}
\end{align*}
\]

As we would expect, the pattern of the OH-stretching vibrations of PhOH-\(w_4\)-1 is absolutely different from those of PhOH-\(w_4\)-2, PhOH-\(w_4\)-3 and PhOH-\(w_4\)-4 and resembles the typical \(S_4\) pattern of the PhOH-\(w_1\), PhOH-\(w_2\) and PhOH-\(w_3\)-1–5 structures. It is clearly seen from Table 39 that the nine OH-stretching vibrations of the PhOH-\(w_4\)-1 structure are well separated into two groups in that way forming the ‘window’ region of width about 164 (327) cm\(^{-1}\). Note that the B3LYP/A width agrees satisfactorily with the experimental one\(^705\). The former group spans the region between 3812 (3077.8; expt: ca 3135\(^705\)) and 3977 (3468.8; expt: 3430\(^705\)) cm\(^{-1}\) and consists of five rather IR and Raman active OH-stretching vibrations assigned to the coupled stretches of the water ring and phenolic OH groups. Its highest OH-stretching vibration is dominantly composed of the hydrogen stretch of the water molecule donating the hydrogen bond to phenol. The latter group is rather narrow with a width of only 4 (4) cm\(^{-1}\). The OH-stretching vibrations of free water OH groups contribute to this group. Its lowest wavenumber stretch at 4141 (3796.0) cm\(^{-1}\) corresponds to the free OH group of the water molecule which accepts the phenolic hydrogen bond.

Summarizing the B3LYP/A IR patterns in the stretching region of the four most energetically stable structures PhOH-\(w_4\)-1, PhOH-\(w_4\)-2, PhOH-\(w_4\)-3 and PhOH-\(w_4\)-4, we illustrate them in equation 46.
The ‘window’ region of the PhOH-w_4-1 structure spreads from 3468.8 to 3796.0 cm$^{-1}$ and covers an area of 327 cm$^{-1}$ (the experimental value is 281 cm$^{-1}$). It follows from equation 46 that, the isomer PhOH-w_4-4 has four OH-stretching modes placed at 3516.8, 3648.2, 3691.8 and 3795.8 cm$^{-1}$. PhOH-w_4-3 also has four OH-stretching modes there, i.e. 3593.9, 3670.3, 3771.1 and 3792.2 cm$^{-1}$, whereas PhOH-w_4-2 exhibits five modes: 3476.8, 3515.8, 3721.9, 3763.5 and 3794.8 cm$^{-1}$. In other words, the PhOH-w_4-3 and PhOH-w_4-4 have precisely that number of vibrational modes which was revealed experimentally. Due to theoretical and experimental uncertainties, the structure PhOH-w_4-2 might also be included into this class. Therefore, these three lower-energy structures of phenol with four water molecules characterized by the formation of the π hydrogen bond are likely referred to as the class of structures revealed in Reference 590. It is worth mentioning that the lowest stretching mode of the non-ring structure of PhOH(H$_2$O)$_4$ is calculated 73 cm$^{-1}$ below the analogous mode in the ring S_4 structure PhOH-w_4-1. It then follows from equation 46 that PhOH-w_4-2 and PhOH-w_4-3 have a similar feature, i.e. 108 and 69 cm$^{-1}$, respectively.

In order to obtain some insight into the formation of the π hydrogen bonding in the PhOH-w_4-2–PhOH-w_4-4 structures in terms of the molecular orbital (MO) or electron density patterns, we draw in Figure 52 the lowest unoccupied molecular orbital (LUMO), the highest one (HOMO) and HOMO-1 of the PhOH-w_4-4 structure. As seen vividly there, the π hydrogen bonding between the π cloud of the phenol ring and the water molecule w_4 reshapes the HOMO-1, HOMO and LUMO of bare phenol and slightly lowers the HOMO-1 orbital energy but, on the contrary, raises the orbital energies of the HOMO and LUMO by ca 0.2 eV. For example, we observe a small portion of the charge transfer from the HOMO-1 to the s orbital of the hydrogen atoms of this water molecule and to the lone pairs of the oxygen atom. This raises their population to 0.06 for H and to 0.15 for O and results in the appearance of a small hollow in the HOMO-1 of bare phenol precisely in the front of the water molecule w_4. A slightly smaller charge, ca 0.13, is transferred from the π-HOMO of phenol to the lone pair MO of the oxygen atom, whereas a substantial charge transfer from the LUMO to the s MO of the oxygen atom of the water molecule is predicted by the present B3LYP/A level.

What are the essential conclusions of the present subsection? As we have already mentioned above, the last decade was unprecedentedly successful, primarily from the experimental point of view, in studying the interaction between phenol and water molecules. In particular, it was discovered that phenol favours a 2D ring type of arrangement of water molecules if there are less than three water molecules and, on the contrary, the 3D ring type if these are five or more water molecules. It was therefore thought that four looks like the ‘magic’ number for the phenol–water$_r$ interaction, and this was really a sort of exclusive number thanks, first of all, to the experimental work by different groups who revealed experimentally the existence of the phenol–water$_r$ isomer with a 3D arrangement.
of water molecules. They showed that it was only one particular isomer which is capable of explaining the puzzling ‘window’ region in the IR stretching spectra. Logically, the ‘magic’ of the number four stems from the fact that this is just the borderline where the 2D water pattern \((n \leq three)\) meets the 3D pattern \((n \geq five)\). The analysis of the potential energy surface of the phenol–water\(_4\) complex conducted above and its juxtaposition with the PESs of the phenol–water\(_{1–3}\) complexes demonstrates vividly this point of view.
C. Hydrogen Bonding between Phenol and Acetonitrile

1. Introductory foreground

Acetonitrile (ACN) possesses some unique properties, such as a high dielectric constant (35.95) and the solubilization of many inorganic and organic materials738, 739. It is actually one of the few simple aprotic solvents miscible in water at any ratio. X-ray diffraction studies of pure acetonitrile revealed that ACN molecules do not strongly interact with themselves and are only weakly associated via dipole–dipole interaction740. The IR spectrum of pure acetonitrile includes two major bands placed at 2257 and 2295 cm-1740. The former, called \(\nu_1\), originates from the C≡N stretching mode while the latter is a combination band composed of the CCH bend \(\nu_3\) and C–C stretch \(\nu_4\) modes741.

For the last forty years the acetonitrile molecule was, and still is, a ‘work horse’ in many laboratories worldwide, in experimental studies of the hydrogen bonding with nitriles. It is obvious that ACN possesses two sites for accepting a hydrogen bond: the one on the lone-pair electrons of the nitrogen atom (\(\sigma\)-bonding) and the other on the C≡N triple bond (\(\pi\)-bonding). The hydrogen bond formation in phenol–nitrile systems was initially examined by several authors742–745 in inert solvents such as CCl\(_4\) or C\(_2\)Cl\(_4\)746–750 who all recorded that their IR spectra contain an additional band placed on the low-frequency side of the free phenol O–H stretching band \(\nu(\text{OH})\) as the concentration of the nitrile increases. The \(\Delta \nu(\text{OH})\) shift varies from 148.5 cm-1 at 0.119 M of ACN to 156.5 cm-1 when the ACN concentration reaches 0.687 M742. These authors then suggested that this new band results from the O–H stretching mode of a hydrogen-bonded complex involving the OH group of phenol and the nitrogen atom of the nitrile. It was at that time when the existence of a 1:1 complex between phenol and nitrile in inert solvents was postulated743, 744. The appearance of an unusual blue shift of the C≡N stretching vibration by about 12.5 cm-1 was noted742 when the nitrogen atom of the nitrile group is complexed with the OH group of phenol, implying a \(\sigma\)-type hydrogen bonding between the nitrogen lone pair and the phenol OH. The increased frequency of the C≡N stretching vibration in the complex gave rise to a shoulder on the high-frequency side of the C≡N peak.

At nearly the same time, on the basis of the well-known Buckingham formula describing the frequency shift in a medium751, it was deduced752, 753 that if the fundamental stretching mode \(\nu'(\text{OH})\) of free phenol in the gas phase is fitted at 3655 cm-1, it must be extrapolated in the phenol–acetonitrile complex to 3540 cm-1, and therefore the red shift due to complexation becomes equal to 115 cm-1. This value looks much smaller than expected709 although, as we have already mentioned, a red shift of 148.5–156.5 cm-1 was found742 and similar red shifts of 152745 and 160746 cm-1 were also detected. The origin of the frequency shift of the \(\nu(\text{OH})\) mode of phenol was also noted754 in the phenol–ACN complex from 3460 to 3409 cm-1 on increasing the concentration of acetonitrile from 0.19 to 100% in CCl\(_4\) (interestingly, the change proceeds stepwise: between 0.19 and 0.39% no shift was detected, between 0.78 and 1.8% it is equal to \(-5\) cm-1, a further dilution to 4% results in \(-10\) cm-1 etc.). It is not entirely clear and suggests a possible formation of 2:1 phenol–acetonitrile complexes due to the increased basicity of the oxygen atom of phenol. A similar trend was recently observed755 for the pentachlorophenol–acetonitrile complex. Such a puzzling effect has not been so well appreciated by theoreticians despite the fact that it still annoys the experimentalists, although it is worth recollecting the mid-1980’s theoretical work756 (see also References 757–759) which suggested that the most favourable hydrogen bond formation with nitriles occurs via \(\sigma\)-type hydrogen bonding. However, this is not the case with the hydrogen-bonded complexes of water with benzonitrile, where the \(\pi\)-bonding is slightly superior over the \(\sigma\)-type729—we could actually agree with some authors743 that ‘benzonitrile... is found to be anomalous’. Nevertheless, other
1. General and theoretical aspects of phenols

Authors concluded that this is just the case for hydrogen bonding with nitriles746, 757–759, and also a quite recent B3LYP/6-31G(d,p) study612 of the phenol–acetonitrile and phenol–pyridine complexes mainly focused on the anharmonicity contribution to their dipole moments.

Summarizing, what else we can tell the reader from a theoretical point of view? There are certainly some as yet unclear points related to routine use of quantum chemical programs for obtaining the optimized structure of the 1:1 complex between phenol and acetonitrile and somehow exploring the calculated frequencies to discuss, again routinely, agreement between experiment and theory. It seems as if what remains is the existence of the 2:1 complex and its structure and the puzzling dependence of the shift of the ν(OH) mode of phenol on the ACN concentration although, impressed by the rampant experimentalists arguments, this was likely a way to almost nowhere and does not deserve to be published at all. Nevertheless, we have performed a rather exhaustive search760 of the PES of the phenol–acetonitrile interaction and its results and the consequent attempt to explain the experiments is presented below761.

2. Phenol–acetonitrile complex

The PES of the interaction of the phenol and acetonitrile molecules consists of two lower-energy minimum structures761 displayed in Figure 53. The first, named PhOH-ACN-1, is the conventional structure which has been explored by experimentalists for four decades. It occupies the global minimum on that PES and is characterized by a binding energy $E_{HB}^{(1)}$(PhOH–ACN) of 22.3 kJ mol−1 (see Table 40). It agrees fairly with the experimental value of 18.8 kJ mol−1 for the reported enthalpy of formation746, 757. The BSSE correction comprises only 0.7 kJ mol−1 and is hereafter neglected. The second minimum-energy structure, PhOH-ACN-2, is reported here for the first time and placed higher by 16.5 kJ mol−1, and therefore has a binding energy $E_{HB}^{(2)}$(PhOH–ACN) of 5.8 kJ mol−1.

If the conventional structure is formed due to the typical medium-strength hydrogen bond between the OH group of phenol and the lone pair of the nitrogen atom of acetonitrile, respecting all canonical though still somewhat loosely defined rules173 which will be later thoroughly discussed, the structure PhOH–ACN-2 is quite peculiar in the sense that its formation is provided by two weaker bonds which could also be referred to with some caution as some sort of hydrogen bonds. One of them is a C–H···O hydrogen bond between the methyl group of acetonitrile and the oxygen atom of phenol, while the other seems to be much weaker and is formed between the π-electrons of the C≡N bond of acetonitrile and the CH group of phenol. The fact that this is affirmatively a π hydrogen bond is confirmed by the value of the bonding angle \angleC–H–N = 79.1°.

Let us first analyse by a routine procedure what are the substantial changes in the geometries of the precursors762 and their characteristic vibrational modes which accompany the formation of the σ-type O–H···N hydrogen bond between phenol and acetonitrile. Obviously, this is primarily the elongation of the O–H bond length by 0.008 Å as manifested in a red shift of the ν(OH) stretching vibration by 158 cm−1 (in fair agreement with the experimental values742, 745) and a significant enhancement of its IR activity, viz. from 57 km mol−1 in phenol to 873 km mol−1 in PhOH–ACN-1 (Table 41). The formed hydrogen bond has a typical length of 1.997 Å and is rather linear with a bond angle \angleOHN of 171.6°. The hydrogen-bond stretching vibration ν_{σ}(O–H···N) appears at 111.7 cm−1. It is also worth mentioning two lower-frequency modes centred at 59.0 and 69.5 cm−1, referring to the hydrogen-bond bending motions and originating due to the molecular dipole rotation, by analogy with the band at 90 cm−1 in the phenol–pyridine complex612.
FIGURE 53. Complexes of phenol with acetonitrile. The bond lengths are in Å. Values in parentheses correspond to the optimized geometries of the free phenol and acetonitrile molecules. Adapted from Reference 761 with permission.
TABLE 40. Some key features of 1:1 phenol–acetonitrile complexes

<table>
<thead>
<tr>
<th>Feature</th>
<th>PhOH-ACN-1</th>
<th>PhOH-ACN-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>−Energy + 440, hartree</td>
<td>0.269694</td>
<td>0.262872</td>
</tr>
<tr>
<td>ZPVE + kJ mol⁻¹</td>
<td>396.83</td>
<td>395.46</td>
</tr>
<tr>
<td>E_{HB}, kJ mol⁻¹</td>
<td>22.3 (21.6)²</td>
<td>5.77 (5.65)²</td>
</tr>
<tr>
<td>Dipole moment, D</td>
<td>6.77</td>
<td>4.86</td>
</tr>
<tr>
<td>Frequencies, cm⁻¹ and IR intensities, km mol⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_σ (N···H−C)</td>
<td>—</td>
<td>35 (7)</td>
</tr>
<tr>
<td>ν_σ (O···H−C)</td>
<td>—</td>
<td>81 (13)</td>
</tr>
<tr>
<td>ν_σ (N···H−O)</td>
<td>112 (4) [117 (4)]²</td>
<td>—</td>
</tr>
<tr>
<td>τ(OH) 330 (115)ᵇ</td>
<td>645 (98) [596 (106)]²</td>
<td>323 (108)</td>
</tr>
<tr>
<td>ν(C−O) 1284 (95)ᵇ</td>
<td>1300 (94) [1397(68)]²</td>
<td>1270 (96)</td>
</tr>
<tr>
<td>ν(C≡N) 2364 (12)ᵇ</td>
<td>2378 (32)</td>
<td>2359 (13)</td>
</tr>
<tr>
<td>ν(C−H···O) 3137 (1)ᵇ</td>
<td>—</td>
<td>3135 (3)</td>
</tr>
<tr>
<td>ν(C−H···N) 3213 (5)ᵇ</td>
<td>—</td>
<td>3217 (3)</td>
</tr>
<tr>
<td>ν(OH) 3831(57)ᵇ</td>
<td>3673 (873) [3679 (850)]²</td>
<td>3826 (53)</td>
</tr>
</tbody>
</table>

²BSSE corrected.
ᵇIn the free phenol and acetonitrile molecules.
ᶜThe theoretical B3LYP/6-31G(d,p) results.

TABLE 41. Some key features of the stable complexes of phenol with two acetonitrile molecules

<table>
<thead>
<tr>
<th>Feature</th>
<th>PhOH-ACN₂-1</th>
<th>PhOH-ACN₂-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>−Energy + 573, hartree</td>
<td>0.045325</td>
<td>0.039648</td>
</tr>
<tr>
<td>ZPVE + kJ mol⁻¹</td>
<td>519.20</td>
<td>518.12</td>
</tr>
<tr>
<td>−Enthalpy + 572, hartree</td>
<td>0.832155</td>
<td>0.825477</td>
</tr>
<tr>
<td>Entropy, kJ mol⁻¹</td>
<td>559.6</td>
<td>645.5</td>
</tr>
<tr>
<td>E_{HB}, kJ mol⁻¹</td>
<td>44.60</td>
<td>30.75</td>
</tr>
<tr>
<td>Dipole moment, D</td>
<td>1.97</td>
<td>10.89</td>
</tr>
<tr>
<td>Quadrupole, DÅ</td>
<td>75.9 61.5 81.2</td>
<td>71.0 56.6 81.2</td>
</tr>
<tr>
<td>Polarizability, au</td>
<td>178.3 134.5 82.0</td>
<td>170.8 139.8 82.8</td>
</tr>
<tr>
<td>Frequencies, cm⁻¹ and IR intensities, km mol⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_σ (O···H−C)ᵃ</td>
<td>96 (3)</td>
<td>91 (12)</td>
</tr>
<tr>
<td>ν_σ (N···H−O)ᵃ</td>
<td>138 (12)</td>
<td>121 (5)</td>
</tr>
<tr>
<td>τ(OH)</td>
<td>681 (58)</td>
<td>660 (83)</td>
</tr>
<tr>
<td>ν(C−O)</td>
<td>1293 (90)</td>
<td>1289 (85)</td>
</tr>
<tr>
<td>ν(C≡N)</td>
<td>2357 (27) 2370 (47)</td>
<td>2358 (15) 2378 (36)</td>
</tr>
<tr>
<td>ν(C−H···O)</td>
<td>3048 (13) 3128 (37)</td>
<td>3047 (31) 3129 (32)</td>
</tr>
<tr>
<td>ν(OH)</td>
<td>3587 (958)</td>
<td>3658 (905)</td>
</tr>
</tbody>
</table>

ᵃBoth modes are coupled to each other.

The out-of-plane bending mode mimicking the τ(OH) of phenol is characterized by a frequency at 645 cm⁻¹. Less substantial changes are predicted by the present ab initio method in the phenol geometrical patterns in the vicinity of the OH group. The COH angle increases slightly, by 2.2°. The elongation of the C=O bond by 0.009 Å makes it weaker and causes a blue shift of the tackled ν(C=O) stretching mode by 16 cm⁻¹. Interestingly, about the same elongation is predicted for a much lighter O–H bond. No significant
changes occur in the phenol bonded counterpart, except perhaps the blue-shifted $\nu(CN)$ mode by 14 cm$^{-1}$, related to a shortening of the C≡N triple bond by 0.002 Å. The present value fairly matches the experimentally detected blue shift of 12.5 cm$^{-1}$.

As we mentioned earlier, two weak hydrogen bonds play a major role in the formation of the PhOH–ACN-2 structure. Figure 53 shows the bond lengths of 2.433 and 2.973 Å for the C–H⋯O and C–H⋯N bonds, respectively. Naturally, their stretching modes are characterized by lower frequencies, i.e. 81 and 35 cm$^{-1}$. If the C–H bond participating in the former bond is slightly lengthened by 0.0004 Å, the opposite is observed for the other one for which the C–H bond becomes shorter by 0.0002 Å. This involves the stretching mode placed at 3135 cm$^{-1}$ (see Table 41). Participating in the π hydrogen bonding, the C≡N bond slightly elongates by 0.001 Å and its stretching mode $\nu(CN)$ is red-shifted by about 5 cm$^{-1}$.

3. Phenol bonding with two acetonitrile molecules

After discovering above the existence of two lower-energy structures of phenol and acetonitrile (there are certainly more structures via formation of C–H⋯N on the periphery of the OH group, although a π complex between the methyl group of acetonitrile and the phenol ring should be firmly ruled out), we shall explain the experimental results via modelling microscopically an increase in the acetonitrile concentration. Before doing so, it is worthwhile briefly discussing the acetonitrile dimer because it may be anticipated that combining the locations of acetonitrile molecules in the PhOH–ACN-1 and PhOH–ACN-2 structures leads to their partial dimerization whenever another acetonitrile molecule is added to either PhOH–ACN-1 or PhOH–ACN-2. The two possible structures of the acetonitrile dimer are a cyclic one whereas the other is built in a ‘head-to-tail’ manner. The latter ACN dimer structure seems not to be very important (it plays a role beyond the second solvation shell) and nearly twice as weak as the cyclic dimer. This is why we confine the present study to the cyclic dimer. Its optimized structure given in Figure 54 looks similar to that in Figure 2 of Reference 765 and in Figure 7 of Reference 763. Its binding energy is 17.1 kJ mol$^{-1}$ and 14.1 kJ mol$^{-1}$ after ZPVE corrections, and agrees satisfactorily with the MP2/cc-pVDZ and MP2/6-311+G(d) values.

![FIGURE 54. The acetonitrile dimer. Bond lengths are in Å. Adapted from Reference 761 with permission](image-url)
The cyclic ACN dimer is formed thanks to two weak C–H···N hydrogen bonds characterized by N···H bond lengths of 2.633 Å and a bond angle of 137.6°. They are manifested spectroscopically by the appearance of two far-IR bands $\nu_{\text{sym}}(\text{C–H···N})$ and $\nu_{\text{asym}}(\text{C–H···N})$ at 87 and 89 cm$^{-1}$, respectively. Two CN stretching vibrations are also organized into the symmetric and asymmetric bands placed very close to each other, at 2358.1 and 2358.9 cm$^{-1}$. Consequently, we conclude that the formation of the cyclic ACN dimer leads to a red shift of $\nu(\text{C≡N})$ of the free acetonitrile molecule by 5–6 cm$^{-1}$.

Let us now consider the lower-energy stable structures, PhOH–ACN$_2$-1 and PhOH–ACN$_2$-2, of phenol with two acetonitrile molecules. Both are displayed in Figure 55 and, when supplied by the optimized geometrical parameters, PhOH–ACN$_2$-1 possesses a partially dimerized acetonitrile moiety (see Figure 54). The former appears to be the most stable at OH with a binding energy $E^{(1)}_{\text{HB}}$(PhOH–ACN$_2$) = 44.6 kJ mol$^{-1}$ compared to the latter whose binding energy is only 30.8 kJ mol$^{-1}$. Increasing the temperature reverses their order due to an entropy effect, because the entropy of PhOH–ACN$_2$-2 exceeds that of PhOH–ACN$_2$-1 by 85.8 J mol$^{-1}$. When $T > 204$ K, the temperature at which their enthalpy difference is precisely cancelled by their entropy difference, complex PhOH–ACN$_2$-2 becomes more favourable and, at room temperature, the free-energy difference between the former and latter complexes comprises

\[\text{PhOH-ACN}_2-1 \]

![Diagram showing the complexes of phenol with two acetonitrile molecules.](image-url)
Another effect conferring a higher stability on the complex PhOH–ACN$_2$-2 mostly plays a role in polar solvents such as acetonitrile, since this complex has a huge total dipole moment of 10.89 D, 5.5-fold larger than for PhOH–ACN$_2$-1 (their polarizabilities and quadrupole moments are nearly the same, as shown in Table 41). After clearing up the role which the complex PhOH–ACN$_2$-2 might play in modelling an experimental setup with increasing concentration of the acetonitrile, let us consider whether it looks somewhat peculiar in comparison to the other complex of phenol with two acetonitrile molecules. Surprisingly, it has precisely what we are looking for. It follows from Table 41 that the ν(OH) stretch of phenol shifts further by 173 cm$^{-1}$ towards lower wavenumbers compared with the free phenol and by -15 cm$^{-1}$ compared to its frequency in PhOH–ACN$_2$-1. This is in line with a stepwise effect of dilution on the shift noted in the Introduction. What would also be interesting and deserves experimental verification is that the same stretch mode in PhOH–ACN$_2$-1 is red-shifting more strongly, by 244 cm$^{-1}$ compared to that in PhOH and by 86 cm$^{-1}$ compared to PhOH–ACN$_2$-1. Both red shifts could be ascribed to a somewhat stronger C–H···O bond formed between the methyl group of acetonitrile and the lone-pair of the phenolic oxygen in PhOH–ACN$_2$-1 than in PhOH–ACN$_2$-2. This effect weakens more the O–H bond in PhOH–ACN$_2$-1 which participates in the other hydrogen bonding, and it is seen in Figure 55 that the O–H bond in PhOH–ACN$_2$-1 is longer by 0.003 Å than that in PhOH–AC$_2$-2. However, why has such a tremendous shift not yet been detected experimentally? We think that the reason is that the complex PhOH–ACN$_2$-1 is not favourable at room temperatures and in polar solvents, and therefore an increase in the acetonitrile concentration primarily leads to the formation of the complex PhOH–ACN$_2$-2. Our suggestion can readily be verified by determining the location of the ν(CN) bands in both complexes. As mentioned above, such mode shifts by 12 cm$^{-1}$ to higher frequencies in the complex PhOH–ACN$_2$-1 is in
perfect agreement with the experimental shift of 12.5 cm$^{-1}$1553. A similar shift of 13 cm$^{-1}$ is predicted in the complex PhOH–ACN$_2$-2, where it appears at the lower-frequency wing with the red shift of 7 cm$^{-1}$, mimicking that found in the complex PhOH–ACN-2. On the contrary, in complex PhOH–ACN$_2$-1, the higher frequency band is placed by only 5 cm$^{-1}$ aside that in the free acetonitrile molecule. Apparently, the other characteristic frequencies gathered in Table 41 might be of use to differentiate both complexes of phenol with two acetonitrile molecules.

4. A rather concise discussion

We have found the novel structure by which phenol complexes with the acetonitrile molecule. Such a structure has an absolutely different hydrogen bonding pattern, which certainly makes it less favourable on comparison with the conventional one attributed to the σ-type hydrogen bonding. A phenol–acetonitrile complex formation via π hydrogen bonding between the OH group of phenol and the C≡N bond should be ruled out affirmatively.

However, we have shown that the novel bond formation between phenol and acetonitrile plays a role on increasing the concentration of the acetonitrile. By postulating its existence under conditions in which phenol interacts with two acetonitrile molecules, we were able to explain the experimental data that have seemed to be rather unclear during the last four decades. Moreover, we have predicted the existence of another structure formed from phenol and two molecules of acetonitrile, which is characterized by a significant downshift by 244 cm$^{-1}$ of the ν(OH) stretching mode of phenol, never observed experimentally in phenol–acetonitrile complexes. We have suggested that it is likely to exist in the gas phase and non-polar solvents at lower temperatures and showed its ‘fingerprints’ in order to facilitate its possible experimental detection.

D. Phenol–Benzonitrile Hydrogen-bonded Complex

The complex between phenol and benzonitrile is another, structurally speaking, rather complicated representative of the class of phenol–nitrile systems which are always associated by means of the π-electrons of the CN triple bond732. Note that the IR spectra of a variety of phenol–nitrile systems have been reported767. Experiments on the vibrational relaxation of benzonitrile in solutions were also studied by different groups759, 768, 769.

In Figure 56, we display the B3LYP/6-31+G(d,p) structure of the phenol–benzonitrile associate. It undoubtedly shows that its formation is due to a σ-type bonding between the triple bond of benzonitrile and the OH group of phenol. The energy of formation of the bond is 22.8 kJ mol$^{-1}$ after ZPVE corrections. Noteworthy are the vibrational features of

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{phenol_benzonitrile.png}
\caption{The complex of phenol with benzonitrile. Bond lengths are in Å, bond angles in deg}
\end{figure}
the studied complex. First, the ν_{CN} stretch undergoes a blue shift by 10 cm$^{-1}$ whereas the ν_{OH} stretch of phenol is downshifted by 162 cm$^{-1}$. Second, the torsional mode τ_{OH} of phenol nearly doubles its frequency: 330 vs. 648 cm$^{-1}$.

E. A Very Short O—H···N Hydrogen Bond

Recently, neutron diffraction experiments770 have demonstrated the existence of a very short O—H···N hydrogen bond in the crystalline adduct of 2-methylpyridine and pentachlorophenol which is discussed in Subsection 4.5: the O—H bond length is equal to 1.068(7) Å, the H···N bond length to 1.535(7) Å.

Figure 57 shows the complex of 2-methylpyridine and pentachlorophenol obtained at the B3LYP/6-31G(d) computational level. It is formed due to the O—H···N hydrogen bond whose O—H bond length is 1.004 Å, the H···N bond length is 1.795 Å and the O—H···N bond angle is 153.0(8)$^\circ$. We also note that these two molecules in the formed complex are twisted with respect to each other by an angle of 63.3$^\circ$, which resembles the experimental structure shown in Figure 1 of Reference 770. It is clear that the discrepancy between the geometry of the O—H···N hydrogen bond in the studied complex and in the calculation is due to the difference between the gas phase and the crystal phase.

VI. OPEN THEORETICAL PROBLEMS

In spite of the great effort made in the last several decades, a large number of problems concerning the chemistry of phenols remain open wide for theoretical studies.

The significance of the reaction of phenol with hydrogen has a number of important facets. First, the selective hydrogenation of phenol yields cyclohexanone, which is a key raw material in the production of both caprolactam for nylon 6 and adipic acid for nylon 6771. Second, due to the fact that phenol is an environmental toxin772 and phenolic waste has a variety of origins from industrial sources including oil refineries, petrochemical units, polymeric resin manufacturing and plastic units773, catalytic hydrogenation of phenol is nowadays the best practicable environmental option774.

![Figure 57](image_url)

FIGURE 57. The complex of pentachlorophenol with 2-methylpyridine optimized at the B3LYP/6-31G(d) computational level. Bond lengths are in Å, bond angles in deg
The behaviour of the tyrosyl radicals involved in different processes and environments is not yet well understood.191, 546, 775 Relatively little is known about the structure and selectivity of aryloxylium cations (Ar$^-$O$^+$) that are produced in the phenolic oxidation reactions and implicated in biological processes such as isoflavone synthesis.776 The thermochemistry197 which is relevant to the antioxidant properties of phenols as well as the solvent effects on their reactivity777–780 remain also a largely under-explored topic. Finally, the structure of phenol dimers and oligomers781 or even of some specific phenols782 also deserve more attention. We expect that these problems will be subjects for theoretical research in the coming years.

VII. ACKNOWLEDGEMENTS

The authors gratefully thank Therese Zeegers-Huyskens, Asit Chandra, Sergei Bureiko, Kiran Boggavarapu, Alexander Koll, Zdislaw Latajka, Noj Malcolm, Bernard Silvi, Lucjan Sobczyk, Raman Sumathy and Georg Zundel for warm and useful discussions and suggestions. We also thank Oksana Tishchenko, Le Thanh Hung, Alexei Arbuznikov, Nguyen Thanh Loc, Alk Dransfeld, Robert Flammang, Pham-Tran Nguyen-Nguyen, Guy Bouchoux, Pham-Cam Nam and Nguyen Thi Minh Hue for their great help in the preparation of this chapter at all its stages. We are indebted to the KU Leuven Research Council for financial support through the Program for Concerted Research Action (GOA). E. S. Kryachko also thanks the “Bijzonder Onderzoeksfunds” of the Limburgs Universitair Centrum.

VIII. REFERENCES AND NOTES

1. General and theoretical aspects of phenols

146. N. Malcolm, Private communication, May–June, 2001. All calculations were performed using the program MORPHY 98, a topological analysis program written by P. L. A. Popelier with a contribution from R. G. A. Bone (UMIST, Manchester, U.K.).
163. See also different rotational studies in references 164–166.
184 Minh Tho Nguyen, Eugene S. Kryachko and Luc G. Vanquickenborne

219. All computations were performed at the density functional hybrid B3LYP potential in conjunction with the split-valence 6-311++G(d,p) basis set using a GAUSSIAN 98 suit of packages. The tight convergence criterion was employed in all geometrical optimizations. Harmonic vibrational frequencies were kept unscaled. ZPVEs and thermodynamic quantities were also calculated at $T = 298.15$ K. Throughout the present section, the energy comparison was made in terms of the total energy $+ ZPVE$.
225. See various chapters in Reference 173.
1. General and theoretical aspects of phenols

1. General and theoretical aspects of phenols 189

1. General and theoretical aspects of phenols

We distinguish five computational levels of the ory/basis sets used for geometry optimizations although a 6-31G(d) basis set denoted throughout the present work as A plays a key role. The ground level corresponds to the common HF/A one, which is also employed for calculating harmonic frequencies, ZPVE, and thermodynamic properties. Empirical scaling factor of 0.8907 employed in Reference 729 was not used in the present work. Single-point (sp) energy calculations of the lower-energy PhOH(H_2O_n)_n complexes were then performed at the MP2(sp)/A level in order to investigate the effect of correlation on their energy differences. The most stable PhOH(H_2O)_4 structures as the key structures in the present study were further refined at the MP2(fc)/A (fc is hereafter omitted) and, besides, the four lowest-energy PhOH(H_2O)_4 structures were also reoptimized at the MP2/6-31+G(d) (≡MP2/A_+) and B3LYP/A levels. The latter one was also used to recalculate their harmonic frequencies.

By analogy with the earlier studies (Reference 729), the PES search of the phenol–(water)_n complexes was initially performed by using a split-valence double-zeta 6-31G(d) basis set via a GAUSSIAN 98 suit of packages.

We distinguish five computational levels of theory/basis sets used for geometry optimizations although a 6-31G(d) basis set denoted throughout the present work as A plays a key role. The ground level corresponds to the common HF/A one, which is also employed for calculating harmonic frequencies, ZPVE, and thermodynamic properties. Empirical scaling factor of 0.8907 employed in Reference 729 was not used in the present work. Single-point (sp) energy calculations of the lower-energy PhOH(H_2O_n)_n complexes were then performed at the MP2(sp)/A level in order to investigate the effect of correlation on their energy differences. The most stable PhOH(H_2O)_4 structures as the key structures in the present study were further refined at the MP2(fc)/A (fc is hereafter omitted) and, besides, the four lowest-energy PhOH(H_2O)_4 structures were also reoptimized at the MP2/6-31+G(d) (≡MP2/A_+) and B3LYP/A levels. The latter one was also used to recalculate their harmonic frequencies.

By analogy with the earlier studies (Reference 729), the PES search of the phenol–(water)_n complexes was initially performed by using a split-valence double-zeta 6-31G(d) basis set via a GAUSSIAN 98 suit of packages.

We distinguish five computational levels of theory/basis sets used for geometry optimizations although a 6-31G(d) basis set denoted throughout the present work as A plays a key role. The ground level corresponds to the common HF/A one, which is also employed for calculating harmonic frequencies, ZPVE, and thermodynamic properties. Empirical scaling factor of 0.8907 employed in Reference 729 was not used in the present work. Single-point (sp) energy calculations of the lower-energy PhOH(H_2O_n)_n complexes were then performed at the MP2(sp)/A level in order to investigate the effect of correlation on their energy differences. The most stable PhOH(H_2O)_4 structures as the key structures in the present study were further refined at the MP2(fc)/A (fc is hereafter omitted) and, besides, the four lowest-energy PhOH(H_2O)_4 structures were also reoptimized at the MP2/6-31+G(d) (≡MP2/A_+) and B3LYP/A levels. The latter one was also used to recalculate their harmonic frequencies.
1. General and theoretical aspects of phenols

760. It was not actually our intention to explore the PES using a large basis set and more sophisticated computational level, so we have confined our PES search to the use of a rather simple density functional hybrid B3LYP computational level in conjunction with a split-valence double-zeta 6-31+G(d,p) basis set with the help of a GAUSSIAN 98 suite of packages. The chosen computational level, which by no means could not be considered as rather inaccurate, was further employed for calculating harmonic frequencies and, therefore, for identifying the stationary points on the studied PES and also obtaining zero-point vibrational energy (ZPVE) in order to deduce the binding energy of the hydrogen-bonded complex AB as $E_{\text{HB}}(\text{AB}) = -[(E(\text{AB}) - \text{ZPVE(AB)}) - (E(\text{A}) - \text{ZPVE(A)}) + (E(\text{B}) - \text{ZPVE(B)})]$ expressed throughout the present work in kJ mol$^{-1}$. The effect of the basis set superposition error (BSSE) was only tested for the phenol-acetonitrile complexes using the standard counterpoise procedure.
762. The B3LYP/6-31+G(d,p) optimized geometry of the acetonitrile molecule shown parenthetically in Figure 6 is fairly consistent with the microwave data [J. Demaisou, A. Dubrelle, D. Boucher, J. Burie and V. Tyanke, J. Mol. Spectrosc., 76, 1 (1979) and C. Costain, J. Chem. Phys., 29, 864 (1958)]: $r(\text{C}--\text{N}) = 1.157 \text{ Å}$, $r(\text{C}--\text{C}) = 1.462 (1.458) \text{ Å}$, $r(\text{C}--\text{H}) = 1.095 (1.102) \text{ Å}$, and $\angle \text{C}--\text{C}--\text{H} = 109.8^\circ (109.5^\circ)$ and appears to be more accurate than that obtained at the B3LYP/DZVP2 level [D. H. Barich, T. Xu, W. Song, Z. Wang, F. Deng and J. F. Haw, J. Phys. Chem. B, 102, 7163 (1998)]. See also J. R. Reimers, J. Zeng and N. S. Hush, J. Phys. Chem. A, 100, 1498 (1996) and compare with the values in Table 1 in Reference 763. It becomes evident there that the MP2/6-311+G(d,p) level (Reference 763) overestimates the C--N and C--C bond lengths by ca 0.005–0.017 Å and underestimates the C--H one by 0.010 Å.
766. According to the MP2/cc-pVdZ calculations (Reference 765), the cyclic dimer has the binding energy of 18.7 kJ mol$^{-1}$ whereas the ‘head-to-tail’ one is 8.7 kJ mol$^{-1}$. The HF STO-3G computational level substantially underestimates the former value by a factor of 2.6 as quoted by A. Wakisaka, Y. Shimizu, N. Nishi, K. Tokumaru and H. Sakuragi, J. Chem. Soc., Faraday Trans., 88, 1129 (1992) based on the incorrect Reference 209.
I. INTRODUCTION

Phenols are organic compounds that contain a hydroxyl group (−OH) bound directly to carbon atom in a benzene ring. The structural moiety of phenols in the context of the present chapter is given by structure 1.
where \(R^2 - R^6 \) are H, C, N, O, S, F, Cl, Br

(1)

93,460 publications can be found in one of the databases for scientific references under the word ‘phenols’; when adding the words ‘structural chemistry’ the number of publications drops dramatically to 732. None of these publications summarizes or discusses the molecular geometry and intermolecular geometry of solid phenols. However, in a chapter entitled ‘Solid state chemistry of phenols and possible industrial applications’ the geometries of phenols are described. In the present chapter we summarize the molecular structure of phenols mostly with regard to the geometry at the hydroxyl group. The best source of structural data is the Cambridge Crystallographic Structural Data Centre. The analysis was conducted using geometrical data from crystal structures that were refined to \(R < 0.075 \), omitting organometallic compounds. Statistical analysis was executed in most cases for the relevant geometric parameters. The statistical analysis was performed with the Origin Program; an average value of a geometric parameter and its standard deviation (s.d.) were calculated according to equations 1 and 2:

\[
\begin{align*}
 d(\text{mean}) &= \frac{1}{N} \sum d_i \\
 \text{s.d.} &= \left\{ \frac{1}{N-1} \sum [d_i - d(\text{mean})]^2 \right\}^{1/2}
\end{align*}
\]

where \(d(\text{mean}) \) is the calculated average, \(N \) is the number of data points, the sum is taken over all data points and \(d_i \) is the experimental value;

II. STRUCTURAL CHEMISTRY OF MONO- AND POLYHYDROXYBENZENES

Before we discuss the structural chemistry of phenols it is important to describe the geometry of mono- and polyhydroxyphenols compounds (2–13) as observed in their crystal structures. Careful examination of the crystal structures of 2–6 shows that hydrogen bonding is not only an important factor in controlling the packing arrangement of phenols but also affects the molecular geometry. Although the crystal structure of 1,2,3-trihydroxybenzene (7) is known both in its pure solid state and in its complex with two molecules of 8-hydroxyquinoline, no geometrical details have been published. The crystal structures of 1,2,4-trihydroxybenzene (8) and of tetra-, penta- and hexahydroxybenzenes (9–13) are unknown. In five compounds (2–6), hydrogen bonding is the dominant factor in determining the molecular packing in the crystals. Hydrogen bonds also affect the molecular geometry, especially the HO–C bond lengths and the bond
angles involving this bond. Therefore, we start our discussion with a description of the hydrogen bonding in these compounds.

Figure 1 shows the hydrogen bonding in the five compounds. The hydrogen bond geometry is given in Table 1. With the exception of 3, each hydroxyl oxygen atom plays the roles of both an acceptor and a donor for hydrogens. The hydrogen bonding schemes of 2 and 4 are very similar. Three crystallographically independent molecules of 2 form an infinite one-dimensional hydrogen-bond pattern (see Table 1 for the geometry of the hydrogen bonding); 4 forms a two-dimensional hydrogen-bonding pattern by using the two hydroxyl groups. The crystal structure of 6 shows that each molecule is hydrogen bonded to six neighbors. Molecules of 5 form an infinite arrangement of hexagons made up of six molecules.

The bond distances (Å) and bond angles in compounds 2–6 are shown in Figure 2 and their average values are given in Table 2. It is clearly seen that the averages of all bond lengths within the aromatic ring are practically equal and that the average C–OH bond is 1.371(2) Å. The outer-ring bond angles a_1 and a_2, on the other hand, are very sensitive
FIGURE 1. Hydrogen bonding in the crystal structures of 2–6 (O1j in (5) appears as O2 in Table 1.)
2. The structural chemistry of phenols

TABLE 1. Hydrogen bond geometry (Å, deg) in 2–6

<table>
<thead>
<tr>
<th>Compound</th>
<th>D–H A</th>
<th>D–H</th>
<th>H ⋯ A</th>
<th>D ⋯ A</th>
<th>D–H ⋯ A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>O1–H1 O3</td>
<td>0.82</td>
<td>1.89</td>
<td>2.655</td>
<td>156.0</td>
</tr>
<tr>
<td></td>
<td>O3–H3 O2</td>
<td>0.74</td>
<td>1.74</td>
<td>2.693</td>
<td>164.7</td>
</tr>
<tr>
<td></td>
<td>O2–H2 O1</td>
<td>0.91</td>
<td>1.81</td>
<td>2.664</td>
<td>157.2</td>
</tr>
<tr>
<td>3</td>
<td>O1–H1 O2</td>
<td>0.81</td>
<td>1.99</td>
<td>2.796</td>
<td>169.7</td>
</tr>
<tr>
<td>4</td>
<td>O1–H1 O2</td>
<td>0.98</td>
<td>1.73</td>
<td>2.714</td>
<td>175.9</td>
</tr>
<tr>
<td></td>
<td>O2–H2 O1</td>
<td>0.98</td>
<td>1.76</td>
<td>2.718</td>
<td>165.6</td>
</tr>
<tr>
<td>5</td>
<td>O1–H1 O2</td>
<td>0.78</td>
<td>1.91</td>
<td>2.678</td>
<td>167.4</td>
</tr>
<tr>
<td>6</td>
<td>O7–H7 O9</td>
<td>0.97</td>
<td>1.83</td>
<td>2.763</td>
<td>158.4</td>
</tr>
<tr>
<td></td>
<td>O8–H8 O7</td>
<td>1.27</td>
<td>1.49</td>
<td>2.750</td>
<td>170.8</td>
</tr>
<tr>
<td></td>
<td>O9–H8 O8</td>
<td>0.85</td>
<td>1.92</td>
<td>2.730</td>
<td>160.1</td>
</tr>
</tbody>
</table>

aD and A are the donor and acceptor for hydrogen, respectively.

FIGURE 2. Average bond lengths (Å) (top) and bond angles (deg) (bottom) in 2–6
TABLE 2. Average bond distances (d in Å) and bond angles (a in deg) and their standard deviations (s.d.) and standard errors (s.e.)

<table>
<thead>
<tr>
<th></th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>d7</th>
<th>d8</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>1.371</td>
<td>1.385</td>
<td>1.384</td>
<td>1.385</td>
<td>1.385</td>
<td>1.382</td>
<td>1.383</td>
<td>1.370</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.005</td>
<td>0.006</td>
<td>0.006</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.003</td>
<td>0.164</td>
</tr>
<tr>
<td>s.e.</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>a5</th>
<th>a6</th>
<th>a7</th>
<th>a8</th>
<th>a9</th>
<th>a10</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>120.7</td>
<td>119.0</td>
<td>120.2</td>
<td>119.6</td>
<td>119.6</td>
<td>120.4</td>
<td>120.5</td>
<td>119.6</td>
<td>119.4</td>
<td>120.2</td>
</tr>
<tr>
<td>s.d.</td>
<td>2.6</td>
<td>2.4</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>s.e.</td>
<td>1.2</td>
<td>1.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

to the position of the hydrogen atom relative to the ring. The bond angle C−C−O (a1 or a2) syn to the C−O−H bond angle is in all five compounds larger than the bond angle anti to the C−O−H bond angle. Therefore, there is a significant scattering of a1 and a2 as seen in Figure 2 (bottom), and expressed by the large standard deviation in the mean values shown in Table 2.

The O−H bond is practically co-planar with the aromatic ring. The range of the absolute values of the rotation angle (expressed by H−O−C−C torsion angle) is $0.2−12.9^\circ$ with the exception of 1,3,5-trihydroxybenzene (6), where a larger torsion angle was found (38.7°).

III. STRUCTURAL CHEMISTRY OF SUBSTITUTED PHENOLS (2–13)

It is interesting to compare the structures of the parent compounds 2–13 with their substituted analogues. The geometry data were obtained for the analogues where the substituents are H, C, O, N, F, Cl or Br. The structural chemistry of the most interesting systems is given below.

A. Substituted 1,2-Dihydroxybenzene (3)

The mean value of the C−OH bond length (d1) (see notation in Figure 2) calculated from 144 experimental values is 1.365 Å (s.d. = 0.014, s.e. = 0.001). The mean value of the HOC−COH bond length (d3) is 1.396 Å (s.d. = 0.015, s.e. = 0.001). The mean value of d2 and d5, which are chemically symmetry-related bonds, is 1.381 Å (s.d. = 0.016, s.e. = 0.0009). The mean bond length of d6 is 1.398 Å (s.d. = 0.020, s.e. = 0.002). While the histogram of the above bond lengths shows clearly a single maximum, the histogram of bond lengths d4 and d7 shows a double maximum (see Figure 3).

It turned out that d4 and d7 are longer in 31 compounds, all consisting of 1,2-dihydroxynaphthalene skeleton such as 149 and 1510. The mean value of d4 and d7 bonds in the 1,2-dihydroxybenzenes is 1.395 Å (s.d. = 0.014, s.e. = 0.001) while the mean value of d4 and d7 in the naphthalene analogue is 1.440 Å (s.d. = 0.020, s.e. = 0.003). The most interesting bond angles are the outer-ring angles involved with the hydroxyl group. The four bond angles a1, a2, a9 and a10 (O1−C1−C2, O1−C1−C6, O2−C6−C1 and O2−C6−C5, respectively, as shown in 16) are strongly dependent on the local conformation of the O−H bond relative to the ring plane. In most of the 1,2-dihydroxybenzenes, the O−H bond is coplanar with the ring as expressed by the conformations shown in 16 and 17. In the conformation presented by 16...
2. The structural chemistry of phenols

FIGURE 3. Histogram of d4 and d7 bond lengths (Å) in substituted 3

the expected torsion angles are 0° and 180° for H1—O1—C1—C6 and H2—O2—C6—C1, respectively. The conformation presented by 17 is characterized by a single torsion angle of 180°. In the conformation of 18, on the other hand, one of the torsion angles is 0° and the other is 90°. Figure 4 shows the conformation map of 1,2-dihydroxybenzenes
FIGURE 4. Conformation map in 1,2-dihydroxybenzenes

expressed by the two torsion angles mentioned above. There are 145 data points, which were expanded to 590 data points by the use of symmetry considerations.

As shown in Figure 4, most of the compounds adopt the conformation shown schematically by 16 (0° and 180°). There are only few compounds that adopt the conformation shown in 17 (180° and 180°) and 18 (0° and 90°). The conformation presented by 16 is dominant, due to the ability to form intramolecular hydrogen bonds. All three conformations are observed in the crystal structure of 10,15-dihydro-2,3,7,8,12,13-hexahydroxy-5H-tribenzo(a,d,g)cyclonane dipropanolate clathrate (19).

The effect of the conformation is best seen when comparing bond angles a1, a2, a9 and a10 of compounds adopting the conformations presented by 16 and 17 (see Table 3 calculated from 52 and 18 data points, respectively). The bond angles at C1 (a1 and a2) or at C6 (a9 and a10) are larger at the side of the hydrogen due to steric congestion with
TABLE 3. Average bond distances (d in Å) and bond angles (a in deg) and their standard deviations in two different conformations of 1,2-dihydroxybenzenes

<table>
<thead>
<tr>
<th>Conformation</th>
<th>d1(C1-O1)</th>
<th>d2(C6-O2)</th>
<th>a1</th>
<th>a2</th>
<th>a9</th>
<th>a10</th>
<th>No. of data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>syn-anti (16)</td>
<td>1.370(10)</td>
<td>1.359(15)</td>
<td>119.6(1.3)</td>
<td>119.8(2.2)</td>
<td>116.1(1.6)</td>
<td>123.3(1.3)</td>
<td>52</td>
</tr>
<tr>
<td>anti-anti (17)</td>
<td>1.365(13)</td>
<td>1.364(10)</td>
<td>123.1(9)</td>
<td>116.9(8)</td>
<td>117.1(1.4)</td>
<td>123.1(8)</td>
<td>18</td>
</tr>
</tbody>
</table>

a neighboring hydrogen atom. Therefore, it is expected that a1 and a10 (see Table 3) in compounds adopting the anti-anti (with respect to bond C1–C6) conformation of 17 will be larger than a2 and a9. In compounds adopting the syn-anti (with respect to bond C1–C6) conformation of 16, a10 is indeed larger than a9; however, a1 is practically equal to a2. This finding is attributed to the intramolecular hydrogen bond formed between the two hydroxyl groups. It is also important to notice the difference between the two C–OH bond lengths in compounds having the syn-anti conformation. This bond is longer whenever the oxygen atom plays the role of acceptor for hydrogen [1.370(10) Å compared with 1.359(15) Å].

B. Substituted 1,3-Dihydroxybenzene (4)

The majority of substituted 1,3-dihydroxybenzenes adopt either syn-anti (with respect to atom C6, with torsion angles of 0° and 180° at the C1–O and C5–O bonds, respectively) or anti-anti (with respect to atom C6, with torsion angles of 180° at the C1–O and C5–O bonds, respectively) conformation as shown by the conformation map in Figure 5. The syn-syn conformation (with respect to atom C6, with torsion angles of 0° at C1–O and C5–O, respectively) was observed for 23 compounds.

As in substituted 1,2-dihydroxybenzenes, the bond angles involved with the OH group are larger at the side of the hydrogen atom, therefore a2 and a9 (see notation in Figure 2) are larger than their counterparts a1 and a10 in compounds having the syn-anti conformation. In the compounds adopting the anti-anti conformation, a1 and a10 are larger than a2 and a9 (Table 4).

2,6-Dihydroxybenzoic acid crystallizes in two polymorphic forms12,13, monoclinic and orthorhombic. The molecule in the monoclinic form adopts the syn-anti conformation (20) while it adopts the syn-syn conformation in the orthorhombic form (21).

In the crystal structure of 2,2′,4,4′-tetrahydroxybenzophenone14 there are two crystallographically independent molecules in the asymmetric unit, each adopting a different conformation as shown in 22 and 23. Intermolecular hydrogen bonds determine the conformations of the two compounds.
FIGURE 5. Conformation map in 1,3-dihydroxybenzenes

TABLE 4. Average bond distances (d in Å) and bond angles (a in deg) and their standard deviations in three different conformations of 1,2-dihydroxybenzenes

<table>
<thead>
<tr>
<th>Conformation</th>
<th>d1</th>
<th>d2</th>
<th>a1</th>
<th>a2</th>
<th>a9</th>
<th>a10</th>
<th>No. of data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>syn-anti</td>
<td>1.362(14)</td>
<td>1.360(13)</td>
<td>117.2(1.1)</td>
<td>121.7(1.4)</td>
<td>118.7(2.5)</td>
<td>121.8(1.4)</td>
<td>87</td>
</tr>
<tr>
<td>anti-anti</td>
<td>1.356(14)</td>
<td>1.354(16)</td>
<td>121.6(1.6)</td>
<td>117.0(1.1)</td>
<td>117.7(1.5)</td>
<td>121.4(1.8)</td>
<td>50</td>
</tr>
<tr>
<td>syn-syn</td>
<td>1.367(17)</td>
<td>1.361(15)</td>
<td>117.7(1.7)</td>
<td>121.6(1.8)</td>
<td>117.5(1.0)</td>
<td>121.5(1.5)</td>
<td>23</td>
</tr>
</tbody>
</table>
C. Substituted 1,4-Dihydroxybenzene (5)

Statistical analysis of the bond lengths in substituted 1,4-dihydroxybenzenes shows that it has C_{2v} symmetry. The histograms are given in Figure 6, using the notation given in Figure 2. The mean value of the C−OH bond distance is 1.365 Å (s.d. = 0.018, s.e. = 0.001, $N = 296$). The mean bond length of d4 and d5 is 1.392 Å (s.d. = 0.019, s.e. = 0.001, $N = 296$), and the mean bond length of d2, d3, d6 and d7 is 1.392 Å (s.d. = 0.013, s.e. = 0.001, $N = 592$).

FIGURE 6. Histogram of bond lengths (Å) in substituted 5
Five different conformations (24–28) might be expected to be observed in substituted 1,4-dihydroxybenzenes. The rotation of the O–H bond relative to the ring plane is expressed by the torsion angles shown in Figure 7.

![Conformation map in 1,4-dihydroxybenzenes](image)

It is clearly shown that, as in the previously mentioned substituted dihydroxybenzenes, most of the compounds adopt the two conformations 24 and 25 (expressed by torsion angles of 0° and 180°). There are, however, compounds that adopt conformation 28. In most cases the conformation is determined by the substituents. For example, in the crystal structure of tris(hydroquinone) methyl isocyanide clathrate the hydroquinone adopts the conformation of 25 with the expected opening of the bond angle at the side of the hydrogen atom (a2 in 16), as a result of the steric repulsion by the neighboring hydrogen atom and a closing of the other bond angle (a1 in 16) (123.4° and 116.6°, respectively).
However, although the same conformation was found also in the structure of chloranilic acid (29) with pyrazine16, the difference between the bond angles is reversed, namely a_1 (122.3$^\circ$) is larger than a_2 (117.7$^\circ$) as a result of the attractive hydrogen bonding with the carbonyl oxygen and the repulsion between the hydroxyl oxygen and the electronegative chlorine atom.

The parent compound adopts a different conformation when another intramolecular hydrogen bonding is available, such as in 3017, and yet another conformation when intermolecular hydrogen bonds are available, such as in the crystal structure of 2,5-dibromohydroquinone18 (31).

\begin{center}
\makebox[extwidth][c]{
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{image1.png}
\caption{(29)}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{image2.png}
\caption{(30)}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{image3.png}
\caption{(31)}
\end{subfigure}
}
\end{center}

\textbf{D. Substituted 1,3,5-Trihydroxybenzene (6)}

The crystal structures of only seven compounds of substituted 1,3,5-trihydroxybenzene (including the nonsubstituted parent compound) are known. The mean value of the C–OH bond length is 1.358(20) Å. Five of these compounds adopt the conformation represented by macrocarpal19 (32) and by 2,4,6-trinitro-1,3,5-benzenetriol (33)20. In the complex between 1,3,5-trihydroxybenzene and 4-methylpyridine21 the conformation is different, as shown in 34.

\begin{center}
\makebox[extwidth][c]{
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{image4.png}
\caption{(32)}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{image5.png}
\caption{(33)}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{image6.png}
\caption{(34)}
\end{subfigure}
}
\end{center}

\textbf{E. Substituted 1,2,3-Trihydroxybenzene (7)}

The crystal structures of seven substituted 1,2,3-trihydroxybenzenes are known. The average C–OH bond length is 1.367(11) Å. The two different conformations observed
among this class of compounds are represented by 3,4,5-trihydroxybenzoic acid (35) monohydrate, and by 3,4,5-trihydroxybenzohydroxamic acid (36) monohydrate and 2,3,4-trihydroxyacetophenone (37). There is severe steric congestion in 1,2,3-trihydroxybenzenes caused by the neighboring hydroxyl groups. One of the hydroxyl groups is rotated from the ring plane to minimize this steric hindrance. Therefore, the central C—OH bond is rotated by 24.5° in 35 and by 29.0° in 37.

![Chemical structures](image)

F. Substituted 1,2,4-Trihydroxybenzene (8)

The crystal structures of only three substituted 1,2,4-trihydroxybenzenes are known. All three have the same conformation, determined by intramolecular hydrogen bonding such as in (2'S,4'aS)-4,4'a-dihydro-5,6,8-trihydroxy-7-(2'-hydroxypropyl)-1,2,4'a-trimethylphenanthrene-3,9-dione (38).

![Chemical structure](image)

IV. STERIC AND ELECTRONIC EFFECTS ON THE STRUCTURAL CHEMISTRY OF PHENOLS

The structural chemistry, namely bond lengths and bond angles, are subject to electronic and congestion effects. In this paragraph we compare the structural parameters in compounds of type 39–41 where R², R³ and R⁴ are N, O or C atoms.
2. The structural chemistry of phenols

A. ortho-Substituted Phenols (39)

The effect on the geometry of substituted phenol is most pronounced upon substitution at the next-neighboring carbon to the hydroxyl group (i.e. in the ortho position) such as in 39. The bond angles a_1, a_2 and a_3 are highly dependent on the orientation of the $O-H$ (expressed by the torsion angle $H-O-C_1-C_6$). When $R^2 = N$ there are 8 compounds with $H-O-C_1-C_6$ torsion angle of 0° (or close to 0°) (cis conformation) and 19 with torsion angle close to 180° (trans conformation). The average d_1 is not significantly longer (1.362 Å, s.d. 0.008) in the former than in the latter (1.358 Å, s.d. 0.011). The position of the hydrogen atom with respect to the nitrogen atom has a major effect on the bond angles a_1 and a_2. Therefore, the average bond angle a_1 is smaller than the average of the bond angle a_2 [$118.4(1.1)^\circ$ and $121.8(1.7)^\circ$, respectively] when $H-O-C_1-C_6$ is close to 0°, but the average bond angle a_1 is larger than the average bond angle a_2 when this torsion angle is close to 180° [$123.5(0.7)^\circ$ and $117.1(1.0)^\circ$, respectively]. Very similar geometry was found in compounds where $R^2 = O$. The average bond length of d_1 is practically equal and is not affected by the position of the hydrogen atom [1.369(6) Å]. The average bond angles a_1 [$118.9(5)^\circ$ for 7 data points] is smaller than the average of the bond angle a_2 [$121.4(1.0)^\circ$ for 6 data points] when the conformation is cis, and the average of a_1 is larger than the average of a_2 [$123.9(6)^\circ$ and $116.5(8)^\circ$, respectively] when the conformation is trans.

There are 176 reference codes in the Cambridge Crystallographic Structural Database of phenols of type 39 where $R^2 = C$. The histograms of the $C-O$ bond length (d_1) and bond angles a_1 and a_2 are shown in Figures 8a and 8b, respectively. The average of d_1 bond length is 1.355(9) Å for 135 data points when the conformation is cis, and 1.362(9) Å for 65 data points when the conformation is trans. The average bond angles a_1 and a_2 are 117.9(1.2)$^\circ$ and 121.9(1.0)$^\circ$, respectively, for the cis conformation and 121.9(9)$^\circ$ and 117.7(9)$^\circ$, respectively, for the trans conformation.

B. meta-Substituted Phenols (40)

The small number of known crystal structures of phenols of type 40 does not provide meaningful statistical averaging of structural parameters and their dependence on the substituent R^3 and on the conformation with regard to the O–H bond. The average bond length d_1 is 1.367(9) Å for 29 observations.

C. para-Substituted Phenols (41)

There are over 200 crystal structures of substituted phenols of type 41 in the CCSD. In 23 of them, $R^4 = N$. The C1–OH bond length (d_1) is somewhat shorter [1.356(14) Å] than
FIGURE 8a. Histogram of d1 in compounds of type 39 where R² = C and the conformation is cis (left) and trans (right).

FIGURE 8b. Histogram of bond angles a1 (top) and a2 (bottom) in compounds of type 39 where R² = C and the conformation is cis (left) and trans (right).
2. The structural chemistry of phenols

FIGURE 9. Histogram of d_1 in compounds of type 41 where $R^4 = C$

FIGURE 10. Histogram of bond angles a_1 (top), a_2 (middle) and a_3 (bottom) in compounds of type 41 when $R^3 = C$
for the compounds with different substituents such as O [1.376(9) Å for 31 observations] and C [1.371(10) Å for 171 observations]; see also Figure 9. The average bond angles a_1, a_2 and a_3 are very similar and independent of the substituent R^4. The averages of a_1 are 122.5(6)$^\circ$, 122.4(7)$^\circ$ and 122.5(8)$^\circ$, the averages of a_2 are 117.8(6)$^\circ$, 117.9(5)$^\circ$ and 117.8(7)$^\circ$, and the averages of a_3 are 119.7(4)$^\circ$, 119.6(5)$^\circ$ and 119.6(7)$^\circ$ for phenols of type 41 with $R^4 = N$, O and C, respectively. Histograms of the bond lengths and bond angles when $R^4 = C$ are shown in Figures 9 and 10.

V. SPECIAL SUBSTITUTED PHENOLS

The effect of special substituents, such as nitro groups and halogens, on the geometry of phenols deserves special attention.

A. Nitrophenols

The presence of an acceptor for protons (the nitro group) and a donor for protons (the OH group) on the same molecule may affect the structure of the molecule as well as the molecular arrangement in the solid state. It can adopt either an intramolecular hydrogen bond as shown for o-nitrophenol26 (see Figure 11, top left) or intermolecular hydrogen bonds as shown for m-nitrophenol27 (see Figure 11, top right) and in the two polymorphs of p-nitrophenol28. The geometrical parameters of the hydrogen bonding in m-nitrophenol are: the OH···O distance is 2.181 Å, the O···O distance is 2.935 Å, the O−H···O angle is 178.5$^\circ$. There are small but significant differences in the relative geometry of molecules connected by intermolecular hydrogen bonds in the two polymorphs of p-nitrophenol. In the β-phase the two molecules are coplanar (see Figure 11, bottom left), the OH···O distance is 1.908 Å, the O···O distance is 2.831 Å and the O−H···O angle is 160.6$^\circ$. In the α-phase the two molecules are inclined to each other (see Figure 11, bottom right), the hydrogen bond is much weaker, and the geometrical parameters are: OH···O distance is 2.461 Å, O···O distance is 3.196 Å, O−H···O angle is 133.2$^\circ$.

2,4,6-Trinitrophenol (picric acid) and its substituents are good examples to demonstrate the effect of intramolecular hydrogen bonding on the molecular structures of the compounds. The molecular structures of five compounds possessing different substituents: 2,4,6-trinitrophenol (picric acid)29 (Figure 12a), 3,5-dimethylpicric acid30 (Figure 12b), 3,5-dichloropicric acid31 (Figure 12c), 2,4,6-trinitro-1,3,5-benzenetriol20 (Figure 12d) and 3,5-diaminopicric acid32 (Figure 12e), are shown in Figure 12. An intramolecular hydrogen bond between the hydroxyl and one of the o-nitro groups exists in all five compounds, therefore the H−O bond and the hydrogen-bonded nitro group are coplanar with the aryl ring. The second o-nitro group that is not involved in the hydrogen bonding is rotated with respect to the ring plane. The rotation angles are 50.8, 52.8, 73.6, 60.8 and 52.5$^\circ$ for the five compounds, respectively.

While the nitro group in the p-position is coplanar with the ring in picric acid, it is rotated whenever the neighboring carbon atom is substituted by a bulky group, such as methyl in 3,5-dimethylpicric acid and chlorine in 3,5-dichloropicric acid (83.3$^\circ$ and 83.7$^\circ$). In 2,4,6-trinitro-1,3,5-benzenetriol, all the donors are involved with intramolecular hydrogen bonding. In 3,5-diaminopicric acid, on the other hand, one of the NH groups is not hydrogen bonded to the neighboring nitro group that is rotated out of the ring plane by 52.5$^\circ$.
FIGURE 11. Intramolecular hydrogen bonding in o-nitrophenol (top left), and intermolecular hydrogen bonding in m-nitrophenol (top right), p-nitrophenol (bottom left) and p-nitrophenol (bottom right)
FIGURE 12. Intramolecular hydrogen bonding in 2,4,6-trinitrophenols
TABLE 5. Comparison of the average bond length (Å) and bond angle (deg) at the hydroxyl group in nitro-substituted phenols (the notation is given in 42)

<table>
<thead>
<tr>
<th></th>
<th>2-Nitro</th>
<th>3-Nitro</th>
<th>4-Nitro</th>
<th>2,4,6-Trinitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>1.343(8)</td>
<td>1.352(13)</td>
<td>1.346(9)</td>
<td>1.323(10)</td>
</tr>
<tr>
<td>a1</td>
<td>118.7(2.9)</td>
<td>116.9(6)</td>
<td>117.0(1.1)</td>
<td>118.3(1.3)</td>
</tr>
<tr>
<td>a2</td>
<td>123.8(2.8)</td>
<td>123.4(8)</td>
<td>123.0(1.9)</td>
<td>125.1(1.1)</td>
</tr>
<tr>
<td>a3</td>
<td>117.5(1.4)</td>
<td>119.7(7)</td>
<td>120.0(1.5)</td>
<td>116.6(1.3)</td>
</tr>
<tr>
<td>No. of data points</td>
<td>24</td>
<td>8</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

Comparison of the C—OH bond length and the bond angles at C1 in nitro-substituted phenols is given in Table 5. The presence of a nitro group as a substituent causes a dramatic decrease in the C—OH bond length. In all the compounds discussed in previous paragraphs, the range of the C—OH bond lengths was 1.356–1.371 Å, while this bond decreases to 1.323 for 2,4,6-trinitrophenols. It also seems that the bond angles at the hydroxyl group (a1, a2 and a3) are affected by the positions of the nitro groups. The most significant effect is observed for 2,4,6-trinitrophenols, where a3 is the smallest angle [116.6(1.3)°] and a2 is the largest [125.1(1.2)°].

B. Fluoro, Chloro and Bromo Phenols

Shortening of the C—OH bond length is also observed in halogen-substituted phenols. An average bond length of 1.343(6) Å was obtained from seven complexes, such as bis(pentafluorophenol) dioxane. The average of the inner bond angle (a3) is 117.6(1.6)°. However, the crystal structure of five of these compounds has been solved with data collected at liquid nitrogen temperature, which might be the reason for the shortening of the C—OH bond. In 3,5-difluorophenol and 2,3,5,6-tetrafluorohydroquinone these bond lengths are 1.375 and 1.362 Å, respectively.

The crystal structures of many o- and p-chlorophenols, but only of a few m-chlorophenols, are known. Representative examples are 1,5-dichloro-2,6-dihydroxynaphthalene, a complex between 3,5-dichlorophenol and 2,6-dimethylphenol, and a complex of p-chlorophenol with 1,4-phenylenediamine. The C—OH bond lengths in 45 and 47 are normal (1.364 and 1.361 Å, respectively). The same bond in 46 is significantly longer (1.387 Å) for unknown reasons.

Comparison of the average geometrical parameters in o- and p-chloro and bromophenols is given in Table 6. The average bond angles in o-chlorophenols and o-bromophenols as well as the average bond angles in p-chlorophenols and p-bromophenols are the same.
TABLE 6. Comparison of the average bond length (Å) and bond angle (deg) at the hydroxyl group in o- and p-chloro and bromophenols (the notation is given in [48]):

<table>
<thead>
<tr>
<th></th>
<th>o-Chloro</th>
<th>p-Chloro</th>
<th>o-Bromo</th>
<th>p-Bromo</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>1.349(14)</td>
<td>1.358(19)</td>
<td>1.356(14)</td>
<td>1.362(20)</td>
</tr>
<tr>
<td>a1</td>
<td>118.7(1.1)</td>
<td>117.6(1.8)</td>
<td>118.5(1.2)</td>
<td>117.8(2.0)</td>
</tr>
<tr>
<td>a2</td>
<td>123.3(1.4)</td>
<td>121.9(1.8)</td>
<td>123.7(1.3)</td>
<td>121.5(1.1)</td>
</tr>
<tr>
<td>a3</td>
<td>118.0(1.1)</td>
<td>120.5(1.7)</td>
<td>117.8(1.3)</td>
<td>120.7(1.9)</td>
</tr>
<tr>
<td>No. of data points</td>
<td>32</td>
<td>74</td>
<td>29</td>
<td>23</td>
</tr>
</tbody>
</table>

As expected, substituents at the o-position will affect the bond angles. Therefore, a2 in both o-chlorophenols and o-bromophenols is larger than in the p-substituted phenols. The other bond angles are adjusted accordingly.

VI. REFERENCES

2. CCSD, Cambridge Crystallographic Structural Data Centre, Cambridge, U.K.
3. Origin, software for technical graphics and data analysis, Microcal Software Inc.
2. The structural chemistry of phenols

Thermochemistry of phenols and related arenols

SUZANNE W. SLAYDEN

Department of Chemistry, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, USA
Phone: (+1)703-993-1071; Fax: (+1)703-993-1055; e-mail: sslayden@gmu.edu

and

JOEL F. LIEBMAN

Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
Phone: (+1)520-455-2549; Fax: (+1)410-455-2608; e-mail: jliebman@umbc.edu

I. INTRODUCTION: SCOPE AND DEFINITIONS

A. Thermochemistry

B. Definition of Phenols and Arenols: Comparisons with Related Compounds

II. ARENOLS

A. Unsubstituted Arenols

1. The OH/H increment exchange energies: $\delta(OH/H)$ and $\delta^e(OH/H)$

2. Comparison of phenol with alkanols

3. Naphthols and anthrols

B. Carbon-bonded Substituents

1. Monoalkylated phenols: methyl and tert-butyl substituents

2. The amino acid tyrosine and its derivatives

3. Carboxylic acids and their derivatives

4. Acylphenols and their derivatives

5. Cyanophenols

C. Nitrogen-bonded Substituents

1. Aminophenols

2. Nitrosophenols
I. INTRODUCTION: SCOPE AND DEFINITIONS

A. Thermochemistry

As has been the approach for most of the authors’ other reviews on organic thermochemistry, the current chapter is primarily devoted to the relatively restricted property, the ‘molar standard enthalpy of formation’, $\Delta_f H_m^{\circ}$, often called the ‘heat of formation’, ΔH_f or ΔH_f°. This chapter foregoes discussion of other thermochemical properties such as Gibbs energy, entropy, heat capacity and excess enthalpy. We also avoid discussion of bond dissociation energies (e.g. of the phenolic O–H bond) and gas phase clustering energies (e.g. with halide or metal ions). Likewise, we ignore questions of acid strength (in either solution or gas phase) or of any intermolecular complexation energies except for hydrogen bonding in the pure condensed phase. The temperature and pressure are assumed to be 25°C (‘298 K’) and 1 atmosphere or one bar (101,325 or 100,000 Pa) respectively. The energy units are kJ mol$^{-1}$ (where 4.184 kJ \equiv 1 kcal).

Unreferenced enthalpies of formation are taken from the now ‘classic’ thermochemical archive by Pedley and his coworkers. These thermochemical numbers are usually for comparatively simple and well understood species where we benefit from the data evaluation performed by these authors, rather than using the raw, but much more complete, set of data found in a recent, evolving, on-line data base. Where there are more recently published values in the literature, we include those as well.

Again following our earlier chapters as precedent, we continue to emphasize gas phase species in the discussions. Condensed phases in general are complicated, and phenols the more so because these solids may be intra- or intermolecularly hydrogen bonded, and the resulting thermochemical results are often idiosyncratic. For example, under the thermochemical idealized conditions, 3-methylphenol (m-cresol) is a liquid while its isomers,
2- and 4-methylphenol (o- and p-cresols), are solids. No answer is apparent as to why the phases are not the same other than to note that had the standard temperature been 5° or 35°C instead of 25°C (i.e. closer to the water/ice divide and ‘normal’ human body temperature, respectively), all three isomers would be solids or liquids, respectively.

Enthalpies of vaporization (Δ_H_vap) and of sublimation (Δ_H_sub) are necessary to inter-relate gas phase data with those for the liquid or solid state that characterizes most organic compounds as they are customarily synthesized, reacted, purified and thermochemically investigated. These are defined by equations 1 and 2,

\[
\Delta_{\text{vap}}H \equiv \Delta_f H_m^\circ(g) - \Delta_f H_m^\circ(lq) \\
\Delta_{\text{sub}}H \equiv \Delta_f H_m^\circ(g) - \Delta_f H_m^\circ(s)
\]

where g, lq and s refer to gas, liquid and solid, respectively. While we accept the values of these quantities at any temperature, we endeavor to choose those that correspond to the above idealized conditions. Experimentally measured enthalpies of vaporization and/or sublimation of phenols are affected by the diminished vapor pressure by Raoult’s law. More importantly, the enthalpy of formation of most gas phase species is found by summing the enthalpy of formation of the liquid or solid phase compound with the appropriate phase change enthalpy. It is very rare that enthalpies of formation of gas phase species are obtained by measuring the enthalpy of combustion of the gas.

It is occasionally necessary to use data for a species as liquid when the compound is ‘normally’ a solid, or as a solid when it is ‘normally’ a liquid. These two phases are numerically interrelated by the enthalpy of fusion as defined by equation 3.

\[
\Delta_{\text{fus}}H \equiv \Delta_f H_m^\circ(lq) - \Delta_f H_m^\circ(s)
\]

This last quantity is quite temperature independent and so values most conveniently and most often measured at the melting point are used without correction.

Finally, phenols have a tendency to autooxidize and so form quinones and thereby condense to form ill-defined polymers. The ‘label on the bottle’ and the stoichiometry and structure do not completely correspond. Thus, the measured enthalpy of combustion and the derived enthalpy of formation are for an impure sample.

B. Definition of Phenols and Arenols: Comparisons with Related Compounds

In this chapter an arenol is taken to be any carbocyclic aromatic species in which one or more C–H units have been replaced by C–OH. The aromatic species is most generally a benzene ring, in which case the compound is a phenol. Phenols dominate the discussion because benzene derivatives of any type are more prevalent than derivatives of any other type of aromatic species. Only occasionally are there thermochemical data for derivatives of naphthalene and still rarer are derivatives of other benzenoid hydrocarbons. We discuss the parent and substituted phenols, naphthols, anthrols, arenepolyols and tautomerically ambiguous species. The substituent groups encompass carbon-bonded (e.g. alkyl, carboxy, carbonyl), nitrogen-bonded (e.g. amino, nitro, nitroso, azo), oxygen-bonded, sulfur-bonded and the halogens. Although our earlier review published in 1993 lists over 100 phenols and arenols, the focus there was on alcohols. We deemed it desirable in this chapter to analyze and compare the data with an intent to provide insights and interrelations along with enthalpies.
Arenols, and phenols in particular, are not best understood as ordinary alcohols, any more than carboxylic acids are understood as either alcohols or ketones. As such, the change in enthalpy of formation on oxygenating benzene to phenol is not the same as, for example, oxygenating butane to n- or sec-butyl alcohol. The hydroxyl group affects the enthalpies of formation differently when attached to saturated vs. unsaturated carbon. When attached to saturated carbon, the oxygen is σ-electron withdrawing; when attached to unsaturated carbon the oxygen is simultaneously σ-electron withdrawing and π-electron donating. The three classical zwitterionic/dipolar resonance structures for phenol portray the π-donation and provide a ‘textbook’ rationalization for the preferred ortho, para proclivity that no doubt accounts for so many of the isomer ‘choices’ in the thermochemical literature. Calorimetrists are rarely synthetic chemists.

We would like to compare phenols with the corresponding isoelectronic methyl, amino and fluoro aromatic derivatives, as well as with the corresponding valence isoelectronic aromatic thiols and chloro derivatives in order to probe the steric and electronic properties of substituents. However, although many substituted phenols have been thermochemically investigated, such ancillary comparisons are almost never possible because of the absence of thermochemical data for most of the desired nonphenolic compounds. Indeed, it is only for phenol itself that all of these comparisons can be made. As such, we generally limit comparisons of the phenol with the corresponding deoxygenated species and to isomers formed by relocating the $-OH$ group and/or whatever other substituents there are already on the aromatic ring. That is, we discuss the enthalpy of the formal reactions 4 and 5.

\[
\text{Ar} \xrightarrow{\text{H}} \text{Ar} \xrightarrow{-\text{OH}} \quad (4)
\]

\[
\text{Ar'} \xrightarrow{-\text{OH}} \text{Ar} \xrightarrow{-\text{OH}} \quad (5)
\]

The experimental enthalpies of formation for the phenol and arenol compounds appear in tables within the section in which they are discussed. Because we make extensive use of their deoxygenated counterparts, as in equation 4, these species appear in Table 1 below in the order in which they are introduced in the text.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Referencea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>39.1b</td>
<td>49.0 ± 0.6</td>
<td>82.6 ± 0.7</td>
<td>—</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>77.9 ± 1.2</td>
<td>—</td>
<td>150.3 ± 1.5</td>
<td>—</td>
</tr>
<tr>
<td>Anthracene</td>
<td>129.2 ± 1.8</td>
<td>—</td>
<td>230.9 ± 2.2</td>
<td>—</td>
</tr>
<tr>
<td>Toluene</td>
<td>5.8b</td>
<td>12.4 ± 0.6</td>
<td>50.4 ± 0.6</td>
<td>—</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>-79.1^b</td>
<td>$-70.7 ± 1.2$</td>
<td>$-22.6 ± 1.2$</td>
<td>—</td>
</tr>
<tr>
<td>tert-Butyltoluene</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>m^-</td>
<td>—</td>
<td>—</td>
<td>$-54 ± 2$</td>
<td>6</td>
</tr>
<tr>
<td>p^-</td>
<td>—</td>
<td>—</td>
<td>$-57 ± 2$</td>
<td>6</td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>$-466.9 ± 0.9$</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3-Benzyl-2,5-piperazinedione</td>
<td>$-345.4 ± 1.7$</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(cycloglycylphenylalanyl)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>$-385.2 ± 0.5$</td>
<td>—</td>
<td>$-294.1 ± 2.2$</td>
<td>—</td>
</tr>
<tr>
<td>Phenyl benzoate</td>
<td>$-241.6 ± 2.1$</td>
<td>—</td>
<td>$-142.6 ± 2.2$</td>
<td>—</td>
</tr>
<tr>
<td>Benzamide</td>
<td>$-202.1 ± 0.6$</td>
<td>—</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td>Benzanilide</td>
<td>-93</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
</tbody>
</table>

(N-Phenylbenzamidine)
TABLE 1. (continued)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Referencea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzaldehyde</td>
<td>−97.2b</td>
<td>−87.0 ± 2.1</td>
<td>−36.7 ± 2.9</td>
<td>—</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>−158c</td>
<td>−142.5 ± 1.0</td>
<td>−86.7 ± 1.6</td>
<td>—</td>
</tr>
<tr>
<td>Benzaldoxime</td>
<td>25</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Benzalaniline N-oxide (N- (phenylmethylene)benzenamine-N-oxide)</td>
<td>148.0 ± 2.0</td>
<td>—</td>
<td>263.0 ± 2.1</td>
<td>10</td>
</tr>
<tr>
<td>Benzonitrile</td>
<td>152.2 ± 1.3b</td>
<td>163.2 ± 1.3</td>
<td>215.7 ± 2.1</td>
<td>—</td>
</tr>
<tr>
<td>Aniline</td>
<td>20.8b</td>
<td>31.3 ± 1.0</td>
<td>87.1 ± 1.0</td>
<td>—</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>−0.5b</td>
<td>12.5 ± 0.5</td>
<td>67.5 ± 0.6</td>
<td>—</td>
</tr>
<tr>
<td>m-Dinitrobenzene</td>
<td>−27.4 ± 0.5</td>
<td>−6.9 ± 0.7</td>
<td>53.8 ± 1.8</td>
<td>—</td>
</tr>
<tr>
<td>1,3,5-Trinitrobenzene</td>
<td>−37.2 ± 0.5</td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Fluorobenzene</td>
<td>—</td>
<td>−150.6 ± 1.4</td>
<td>−116.0 ± 1.4</td>
<td>—</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.4b</td>
<td>11.0 ± 1.3</td>
<td>52.0 ± 1.3</td>
<td>—</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>—</td>
<td>60.9 ± 4.1</td>
<td>105.4 ± 4.1</td>
<td>—</td>
</tr>
<tr>
<td>Iodobenzene</td>
<td>—</td>
<td>117.2 ± 4.2</td>
<td>164.9 ± 5.9</td>
<td>—</td>
</tr>
<tr>
<td>Dichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>α-</td>
<td>−30.4b</td>
<td>−17.5 ± 1.3</td>
<td>30.2 ± 2.1</td>
<td>—</td>
</tr>
<tr>
<td>m-</td>
<td>−33.3b</td>
<td>−20.7 ± 1.3</td>
<td>25.7 ± 2.1</td>
<td>—</td>
</tr>
<tr>
<td>p-</td>
<td>−42.3 ± 1.3</td>
<td>—</td>
<td>22.5 ± 1.5</td>
<td>—</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>−852.7 ± 1.6</td>
<td>−841.8 ± 1.6</td>
<td>−806.5 ± 1.7</td>
<td>—</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>−127 ± 9d</td>
<td>—</td>
<td>−40.0 ± 8.7</td>
<td>11, 12</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>—</td>
<td>—</td>
<td>4.0 ± 1.0</td>
<td>—</td>
</tr>
<tr>
<td>p-Cymene</td>
<td>—</td>
<td>—</td>
<td>−28e</td>
<td>—</td>
</tr>
<tr>
<td>1,3-Di-tert-butylbenzene</td>
<td>—</td>
<td>—</td>
<td>−125.6c</td>
<td>—</td>
</tr>
<tr>
<td>Anisole</td>
<td>—</td>
<td>−114.8 ± 1.8</td>
<td>−67.9 ± 0.9</td>
<td>—</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>113.0 ± 2.1f</td>
<td>—</td>
<td>204.7 ± 2.9f</td>
<td>7</td>
</tr>
<tr>
<td>Naphthoquinone</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>1,2-</td>
<td>−163.5</td>
<td>—</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>1,4-</td>
<td>−188.5 ± 1.7</td>
<td>−97.9 ± 1.9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>−186.9</td>
<td>—</td>
<td>—</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>9,10-Anthraquinone</td>
<td>−188.5 ± 2.8</td>
<td>−75.7 ± 2.9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>129.2 ± 1.8</td>
<td>230.9 ± 2.2</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>(E-) Azobenzene</td>
<td>310.2 ± 3.4g</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

aData are from Reference 2 unless otherwise stated.
bThe enthalpy of formation of the solid was obtained from the enthalpy of formation of the liquid and the enthalpy of fusion from Reference 5.
cThe solid phase enthalpy of formation was derived using the parameters suggested in Reference 1.
dThe solid phase enthalpy of formation was derived from the enthalpy of formation of the gas and the sublimation enthalpy of 87.1 ± 0.4 kJ mol−1 from Reference 12.
eThe gaseous enthalpy of formation was derived from the liquid phase enthalpy of formation and an estimated enthalpy of vaporization from Reference 4.
fThe solid phase enthalpy of formation is the mean of the two most recent values, 109.8 ± 1.6 kJ mol−1 from Reference 7 and 116.2 ± 1.3 kJ mol−1 as found in Reference 2. The enthalpy of sublimation is the mean of the values given in Reference 2. 91.7 ± 2.0 kJ mol−1.
gThis compound is mislabeled as the (Z-) stereoisomer in Reference 2.

II. ARENOLS

A. Unsubstituted Arenols

The enthalpies of formation of the unsubstituted arenols, phenol, 1- and 2-naphthol and 9-anthrol appear in Table 2.
TABLE 2. Enthalpies of formation of unsubstituted arenols (kJ mol$^{-1}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>-165.1 ± 0.8</td>
<td>-153.6</td>
<td>-96.4 ± 0.9</td>
<td>2</td>
</tr>
<tr>
<td>Naphthol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-</td>
<td>-121.0 ± 1.0</td>
<td>—</td>
<td>-29.9 ± 1.1</td>
<td>16</td>
</tr>
<tr>
<td>2-</td>
<td>-124.2 ± 1.0</td>
<td>—</td>
<td>-30.0 ± 1.1</td>
<td>16</td>
</tr>
<tr>
<td>9-Anthrol</td>
<td>—</td>
<td>—</td>
<td>45</td>
<td>a</td>
</tr>
</tbody>
</table>

*aSee discussion in text.

1. The OH/H increment exchange energies: δ(OH/H) and δ^k(OH/H)

The enthalpy of formal reaction 4 is the difference between the enthalpies of formation of the two substances, $\delta \Delta H$, where * denotes the chosen phase of interest (s, lq or g):

$$\delta \Delta H(^*; \text{Ar}) \equiv \Delta f H_m(^*, \text{ArOH}) - \Delta f H_m(^*, \text{ArH}) \quad (6)$$

The difference quantity for benzene and phenol, $\delta \Delta H(g; \text{Ph})$, is -179.0 ± 1.2 kJ mol$^{-1}$. This value figures prominently in this review and so we rewrite $\delta \Delta H(g; \text{Ph})$ as the more streamlined and simple δ(OH/H) to reflect its seminal importance in the current context. The corresponding liquid and solid phase differences, $\delta \Delta H(lq; \text{Ph})$ and $\delta \Delta H(s; \text{Ph})$, are the nearly identical -202.6 and -204.2 kJ mol$^{-1}$. It is quite fortuitous as well as fortunate that the enthalpies of fusion of benzene and phenol are so close. The consensus value of -203.4 for the condensed phase difference is denoted by δ^k(OH/H), where the ‘&’ was chosen to convey it is for liquids & solids. From these data alone, an error bar of ± 0.8 may seem appropriate. However, for the general use of this quantity, given the vagaries of condensed phases (the idiosyncrasies of crystal packing and the difficulties of describing hydrogen bonded liquids), it seems unequivocal that a larger uncertainty should be appended but we have an inadequate sense of how big. These two quantities, also known as the OH/H increment exchange energies, are used throughout the current study as simple additive constants.

The enthalpy of reaction 7 is mathematically equivalent to generating any deviations for other aromatic nuclei from the previously calculated -179.0 and -203.4 kJ mol$^{-1}$ derived for benzene itself.

$$\text{ArH} + \text{PhOH} \quad \longrightarrow \quad \text{ArOH} + \text{PhH} \quad (7)$$

The difference between experimental results and the simplistic estimates, that is, the deviations from δ(OH/H) and δ^k(OH/H), will generally be rationalized or reconciled by acknowledging steric and/or electronic interactions.

2. Comparison of phenol with alkanols

If phenols were alcohols, would they be like methanol? Or would they be more like primary, secondary or tertiary alcohols? Said differently, is there a simple alkyl group that most resembles phenyl? The gas phase OH/H increment exchange energies for R = methyl, ethyl, isopropyl or tert-butyl, derived analogously to equation 6, are respectively -126.0 ± 0.5, -151.4 ± 0.6, -168.1 ± 0.7 and -178.3 ± 1.1 kJ mol$^{-1}$. Numerically, the answer appears to be tert-butyl alcohol. Structurally, tert-butyl alcohol resembles phenol only in that the substituted carbon has its remaining bonds to other carbons. Is this a coincidence?
As employed in Reference 1, consider the formal exchange reaction 8 and the enthalpy of reaction 9.

$$\text{RMe} \rightarrow \text{ROH}$$ \hspace{1cm} (8)

$$\delta \Delta H(g; \text{R}) = \Delta_f H_m^\circ(g, \text{ROH}) - \Delta_f H_m^\circ(g, \text{RMe})$$ \hspace{1cm} (9)

For R = phenyl, the difference is -146.8 ± 1.1 kJ mol$^{-1}$. For R = methyl, ethyl, isopropyl and tert-butyl, the differences are -117.7 ± 0.6, -130.5 ± 0.6, -138.6 ± 0.9 and -144.3 ± 1.1 kJ mol$^{-1}$. Again, tert-butyl and phenyl correspond. Is this significant? Perhaps it is. Is it useful? The OH/H increment exchange energy is clearly so because it compares phenols and the related deoxygenated arene. In principle, the OH/Me increment exchange energy also should be useful because this probes the unique interactions of OH with other substituents by comparing, where possible, substituted phenols with correspondingly substituted, and also isoelectronic and isostructural, toluenes. This interrelation, however, is rarely employed in the current chapter because of the paucity of data for the requisite methylated species.

3. Naphthols and anthrols

The enthalpies of formation for both isomeric naphthols are nearly identical from either of two modern sources16,17. From the archival values for the enthalpy of formation of the parent naphthalene and the difference enthalpies, δ(OH/H) and δ(OH/H), we would have predicted values for the solid and gaseous forms of either naphthol of -125.6 and -28.7 kJ mol$^{-1}$, respectively, in wonderful agreement.

Of the three isomeric anthrols, thermochemical data are available only for 9-anthrol. While more discussion will appear in Section VI (vide infra), from the average of the literature values for the enthalpy of formation of gaseous 9-anthrone18,19 of 22.2 ± 2.6 kJ mol$^{-1}$ and a recommended 9-anthrol/9-anthrone enthalpy of formation difference20 of 23 ± 8 kJ mol$^{-1}$, the enthalpy of formation of gaseous 9-anthol is deduced to be ca 45 kJ mol$^{-1}$. Using the OH/H exchange increment value of 179 kJ mol$^{-1}$ for gaseous phenols and hence arens, together with the enthalpy of formation of anthracene, the estimated value would be 51 kJ mol$^{-1}$, in very good agreement with our derived value.

B. Carbon-bonded Substituents

The enthalpies of formation for phenols with carbon-bonded substituents appear in Table 3.

1. Monoalkylated phenols: methyl and tert-butyl substituents

There are enthalpy of formation data for numerous alkylated phenols—some 40 are found in Reference 23 alone. Rather than either archiving all of them or discussing all of them, we limit our attention to a subset of species, those with the smallest and those with almost the largest substituent groups, the methyl and tert-butylated phenols32. Of the three isomeric methylphenols (cresols), the m-isomer is the most stable, and in the gas phase, by considerably more than for the isoelectronic isomeric xylenes for which the enthalpy of formation difference spans less than 2 kJ mol$^{-1}$. The variation in these three cresol values is at least partly due to the larger partial negative charge on the ring
TABLE 3. Enthalpies of formation of phenols with carbon-bonded substituents (kJ mol\(^{-1}\))

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Reference(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylphenol (cresol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−204.6 ± 1.0</td>
<td>−188.8(^b)</td>
<td>−128.6 ± 1.3</td>
<td>−</td>
</tr>
<tr>
<td>(m)-</td>
<td>−205.4(^c)</td>
<td>−194.0 ± 0.7</td>
<td>−132.3 ± 1.3</td>
<td>−</td>
</tr>
<tr>
<td>(p)-</td>
<td>−199.3 ± 0.8</td>
<td>−188.6(^d)</td>
<td>−125.4 ± 1.6</td>
<td>−</td>
</tr>
<tr>
<td>tert-Butylphenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−258.9 ± 2.0</td>
<td>−254.8 ± 1.6</td>
<td>−191.6 ± 1.6</td>
<td>21</td>
</tr>
<tr>
<td>(m)-</td>
<td>−286.5 ± 1.4</td>
<td>−272.0</td>
<td>−200.5 ± 1.5</td>
<td>22</td>
</tr>
<tr>
<td>(p)-</td>
<td>−370</td>
<td>−270.6</td>
<td>−203.8 ± 1.6</td>
<td>22</td>
</tr>
<tr>
<td>tert-Butylmethylphenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-</td>
<td>−304.9</td>
<td>−293.0 ± 1.7</td>
<td>−225.9 ± 1.7</td>
<td>22</td>
</tr>
<tr>
<td>2,5-</td>
<td></td>
<td>−305.7 ± 1.5</td>
<td>−233.6 ± 1.6</td>
<td>22</td>
</tr>
<tr>
<td>4,2-</td>
<td></td>
<td>−307.5 ± 1.5</td>
<td>−233.6 ± 1.6</td>
<td>22</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>685.1 ± 1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-(4-Hydroxybenzyl)-2,5-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>piperazinedione</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cycloglycyltyrosyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxybenzoic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−589.7 ± 1.1</td>
<td>−494.6 ± 1.8(^d)</td>
<td>−</td>
<td>25</td>
</tr>
<tr>
<td>(m)-</td>
<td>−592.1 ± 1.3</td>
<td>−496.4 ± 1.8(^d)</td>
<td>−</td>
<td>26</td>
</tr>
<tr>
<td>(p)-</td>
<td>−590.6 ± 1.0</td>
<td>−475.3 ± 1.7(^d)</td>
<td>−</td>
<td>26</td>
</tr>
<tr>
<td>Phenyl salicylate</td>
<td>−436.6 ± 4.6</td>
<td>−344.5 ± 6.2</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>2-Hydroxybenzamide</td>
<td>−402.7 ± 2.2</td>
<td>−</td>
<td>−</td>
<td>27</td>
</tr>
<tr>
<td>2-Hydroxybenzanilide</td>
<td>−308.2 ± 3.0</td>
<td>−</td>
<td>−</td>
<td>27</td>
</tr>
<tr>
<td>Hydroxybenzaldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−606.5 ± 2.1</td>
<td>−486.5 ± 2.4(^d)</td>
<td>−</td>
<td>26</td>
</tr>
<tr>
<td>(p)-</td>
<td>−506.5 ± 2.1</td>
<td>−486.5 ± 2.4(^d)</td>
<td>−</td>
<td>26</td>
</tr>
<tr>
<td>Hydroxyacetophenone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−357.6 ± 3.8</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>(m)-</td>
<td>−370.6 ± 4.2</td>
<td>−</td>
<td>−</td>
<td>28</td>
</tr>
<tr>
<td>(p)-</td>
<td>−364.3 ± 4.2</td>
<td>−</td>
<td>−</td>
<td>28, 29</td>
</tr>
<tr>
<td>2-Hydroxybenzaldoxime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183.7 ± 0.8</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>2-Hydroxybenzalalmine</td>
<td>−62.6 ± 2.0</td>
<td>−53.9 ± 2.4</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>N-oxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−56.5 ± 1.8</td>
<td>−32.8 ± 2.1</td>
<td>−</td>
<td>30</td>
</tr>
<tr>
<td>(m)-</td>
<td>−56.5 ± 2.0</td>
<td>−37.8 ± 2.2</td>
<td>−</td>
<td>30</td>
</tr>
<tr>
<td>(p)-</td>
<td>−59.1 ± 1.2</td>
<td>−35.1 ± 2.5</td>
<td>−</td>
<td>30</td>
</tr>
</tbody>
</table>

\(^a\)Data are from Reference 2 unless otherwise stated.

\(^b\)The enthalpy of formation of the liquid was obtained from the enthalpy of formation of the solid and the enthalpy of fusion from Reference 5.

\(^c\)The enthalpy of formation of the solid was obtained from the enthalpy of formation of the liquid and the enthalpy of fusion from Reference 5.

\(^d\)The gas phase enthalpy of formation was derived from the average of the solid phase enthalpies of formation and the enthalpy of sublimation from Reference 26.
3. Thermochemistry of phenols and related arenols

3-benzyl-2,5-piperazinedione (cycloglycylphenylalanyl) is hydroxybenzyl)-2,5-piperazinedione (cycloglycyltyrosyl) and its deoxygenated analog, sites unavailable to phenylalanine. However, in the solid phase, tyrosine may be stabilized by additional hydrogen bonding as phenol is related to benzene. The enthalpy difference between the amino acids is 2. The amino acid tyrosine and its derivatives benzene. Said differently, the \(\delta \) tert butylation of phenol is seen in the enthalpies of formation of variously substituted tert-butylmethylphenols shown in Table 3, and indeed the difference between the enthalpies of formation of xylene, 18.1 ± 0.9 kJ mol\(^{-1}\), and the OH/CH\(_3\) exchange increment from equation 9 of 146 \(\delta \) tert and \(\sigma \) tert, the enthalpy of formation of any cresol is predicted to be \(-128.8\) kJ mol\(^{-1}\), a result identical to that above. Moreover, the OH frequencies of the cresols in the infrared are very close to that of free phenol\(^{33}\) (3657 cm\(^{-1}\)), suggesting that the methyl substitution results in a negligible perturbation of the force field of the hydroxyl group.

The solid phase enthalpies of formation of the \(m \)- and \(p \)-tert-butylphenols from the various sources range from nearly identical to discordant. Reference 22 suggests that the hygroscopic nature of the compounds accounts for the discrepancies. From the average enthalpies of formation of each isomer in the gaseous phase, the stability order is \(p \gg m \gg o \). The \(o \)-tert-butylphenol is less stable than its isomers, presumably because of steric interference between the two substituent groups. In the liquid and solid phases, the \(para \) and \(meta \) isomers are again of comparable stability\(^{34}\), but the enthalpy difference between them and the \(ortho \) isomer in the liquid phase has approximately doubled, which is suggestive of hindrance of intermolecular hydrogen bonding as well. That the \(ortho \)-substituted phenol is liquid under standard conditions while its \(meta \) and \(para \) counterparts are solid is also corroborative of weakened hydrogen bonding. From the archival values for the enthalpies of formation of \(tert \)-butylbenzene and the increment exchange energies, the enthalpy of formation of any of the gaseous tert-butylphenols is \(-202\) kJ mol\(^{-1}\), for any liquid phase species it is \(-274\) kJ mol\(^{-1}\) and for any solid phase species it is \(-283\) kJ mol\(^{-1}\). These predicted values are nearly the same as for the \(meta \) and \(para \) isomers in the respective phases while the \(ortho \) isomer is relatively destabilized from prediction.

Very nearly the same 10 kJ mol\(^{-1}\) destabilization for gas phase \(ortho \)- vs. \(para \)-tert-butylation of phenol is seen in the enthalpies of formation of variously substituted tert-butylmethylphenols shown in Table 3, and indeed the difference between the enthalpies of formation of these species and their demethylated counterparts, \(ca \) 30 kJ mol\(^{-1}\), reflects the 33 kJ mol\(^{-1}\) difference between the enthalpies of formation of gaseous toluene and benzene. Said differently, the \(\delta \) (OH/H) increment satisfactorily reproduces the enthalpy of formation of the tert-butylmethylphenols when acknowledgment is made for the \(ca \) 10 kJ mol\(^{-1}\) destabilization or strain associated with tert-Bu and OH \(ortho \) to each other\(^{35}\).

2. The amino acid tyrosine and its derivatives

The amino acid tyrosine is related to the amino acid phenylalanine in the same way as phenol is related to benzene. The enthalpy difference between the amino acids is \(-219 \pm 1.8\) kJ mol\(^{-1}\), somewhat larger than the \(\delta \delta \) (OH/H) increment of \(-203\) kJ mol\(^{-1}\). However, in the solid phase, tyrosine may be stabilized by additional hydrogen bonding sites unavailable to phenylalanine.

The enthalpy of formation difference for the solid phenolic cyclic dipeptides, 3-(4-hydroxybenzyl)-2,5-piperazinedione (cycloglycyltyrosyl) and its deoxygenated analog, 3-benzyl-2,5-piperazinedione (cycloglycylphenylalanlanyl) is \(-166.9 \pm 1.8\) kJ mol\(^{-1}\), much
smaller than either the above difference for the monopeptides or the difference for simple arenols. Either the numerical values and/or our understanding of the tyrosine/phenylalanine difference is suspect.

3. Carboxylic acids and their derivatives

The three isomeric hydroxybenzoic acids represent a well-defined set of phenols: the o-isomer, long recognized as salicylic acid, is one of the oldest and best known organic compounds. We might not expect the solid phase OH/H exchange increment of \(-203.4 \text{ kJ mol}^{-1}\) to be of much value here because of additional hydrogen bonding sites available in the solid phase compared to those in benzoic acid itself. Nonetheless, from the enthalpy of formation of benzoic acid, the predicted value for any hydroxybenzoic acid of \(-588.6 \text{ kJ mol}^{-1}\) shows that the ortho and meta isomers are very slightly stabilized. The para isomer average value is ca 12 kJ mol\(^{-1}\) more negative than predicted, which could reflect stabilization in the solid phase from the ordered cyclic hydrogen-bonded dimers which are linked together through hydrogen-bonded phenolic groups\(^{36}\).

The stability order of the isomers in the gas phase is clearly \(o > p > m\). Using \(\delta(\text{OH/H})\), the predicted enthalpy of formation for any gaseous hydroxybenzoic acid is \(-473.1 \text{ kJ mol}^{-1}\), close to the experimental value for the \(m\)-isomer which has no stabilizing resonance structures. The large 22 kJ mol\(^{-1}\) difference for the o-isomer could be ascribed to stabilization by intramolecular hydrogen bonding of the type \([\text{HO}–\text{C}=\text{O} \cdots \text{HO}]\) or \([\text{O}=\text{COH} \cdots \text{OH}]\). However, the difference between the predicted and experimental values for the para isomer is about the same in the gas as in the solid phase. We don’t expect any intermolecular hydrogen bonding in the gas phase. It is tempting to suggest a dipolar resonance structure for the \(p\)-isomer not found in the \(m\)-, analogous to \(p\)-vs. \(m\)-nitroaniline, and so provide a mechanism for considerable stabilization for only one isomer. However, for the gaseous \(m\)- and \(p\)-substituted anilines\(^{37}\), the difference between the enthalpies of formation is 7.3 \(\pm\) 2.5 kJ mol\(^{-1}\), very similar to the difference between \(m\)- and \(p\)-methoxybenzoic acids\(^{38}\) of 5.8 \(\pm\) 1.5 kJ mol\(^{-1}\).

An ester and its deoxygenated analog for which there are enthalpies of formation are phenyl salicylate and phenyl benzoate. From their enthalpies of formation and the OH/H increment exchange energies, the predicted enthalpies of formation of phenyl salicylate are \((s) -445.0\) and \((g) -321.6 \text{ kJ mol}^{-1}\). The difference between the predicted and experimental values for the solid is very slightly greater than for \(o\)-cresol but less than for salicylic acid. There is undoubtedly much less opportunity for intermolecular hydrogen bonding for the salicylate. The gas phase enthalpy difference shows a stabilization of ca 23 kJ mol\(^{-1}\) for the salicylate which is comparable to that for salicylic acid, ca 22 kJ mol\(^{-1}\), and so we can postulate intramolecular hydrogen bonding in the ester as well. The hydrogen bonding in the ester would necessarily be a \([\text{C}=\text{O} \cdots \text{HO}]\) interaction.

There is a recently determined value for the enthalpy of formation of solid \(2\)-hydroxybenzamide which is identical to the \(-405.5 \text{ kJ mol}^{-1}\) derived from the enthalpy of formation of the parent benzamide and \(\delta(\text{OH/H})\). The recently reported value for solid \(2\)-hydroxybenzanilide is also in satisfactory accord with the \(-296 \text{ kJ mol}^{-1}\) derived from the ancient value\(^{8}\) of \(-93 \text{ kJ mol}^{-1}\) for the parent benzanilide. It is unfortunate that there are no gas phase measurements to test our supposition about intramolecular hydrogen bonding.

4. Acylphenols and their derivatives

The simplest members of the acylphenols are the isomeric hydroxybenzaldehydes (formylphenols). Using the OH/H exchange increments and the enthalpy of formation
3. Thermochemistry of phenols and related arenols

and of fusion for liquid benzaldehyde, the predicted enthalpies of formation for any hydroxybenzaldehyde would be \((lq) -291.3\) and \((s) -300.6\) kJ mol\(^{-1}\), respectively. A slight destabilization is indicated in the liquid phase for the \(o\)-isomer. There is a negligible difference between the measured and predicted enthalpies for the solid \(p\)-isomer. It is unfortunate there are no thermochemical data for the \(m\)-isomer which is known to form infinite hydrogen-bonded chains in the solid state\(^{39}\). Solid 2,4-dihydroxybenzaldehyde exhibits intramolecular hydrogen bonding\(^{40}\).

From \(\delta(OH/H)\) and the gas phase enthalpy of formation of benzaldehyde, the predicted enthalpy of formation of the gas phase hydroxy derivative is \(-215.7\) kJ mol\(^{-1}\). It is not clear how to account for the 17 kJ mol\(^{-1}\) estimated destabilization in a compound where the \(para\) substituents should produce favorable resonance contributions.

Archival enthalpies of formation are available for all three acetylphenols as solids. The derived enthalpy of formation is \(-361 \pm 8\) kJ mol\(^{-1}\), in good agreement with experiment. It is very surprising that there is no measured enthalpy of fusion for acetylphenone and so we estimated this quantity using the parameters suggested in Reference 1. Because of the large uncertainty, it is impossible to state which of the acetylphenols are stabilized or destabilized relative to the model compound. However, the relative instability of the \(o\)-isomer is most likely due to steric hindrance in the solid phase. Akin to the situation with the hydroxybenzaldehydes, it is surprising the \(para\) compound is not more stable compared to its isomers.

Among the classical derivatives of aldehydes and ketones are oximes. We are fortunate to be able to compare the archival enthalpy of formation of solid 2-hydroxybenzaldoxime with the ancient measurement of the solid parent benzaldoxime. The difference is 208 kJ mol\(^{-1}\), comfortably close to \(\delta(OH/H)\) derived for benzene and phenol.

Other carbonyl derivatives are imines and their N-oxide derivatives, the so-called nitrones. One relevant example involves benzalaniline N-oxide and its 2-hydroxy derivative. From the appropriate \(OH/H\) exchange increments, we would have predicted enthalpies of formation of the phenol nitrone of \((s) -55.4\) and \((g) 84.0\) kJ mol\(^{-1}\), respectively. We lack understanding as to why the measured and predicted values for the gas are so disparate except to note that the benzalaniline N-oxide and its 2-hydroxy derivative have very nearly identical enthalpies of sublimation, 116.5 \pm 1.4 and 115.0 \pm 0.8 kJ mol\(^{-1}\), as do benzoic acid and salicylic acid.

5. Cyanophenols

The enthalpies of combustion and of sublimation of the three isomeric solid cyanophenols have been measured very recently, together with a theoretical study\(^{30}\). The stability order of the isomers in the gas phase is the same as for the related hydroxybenzoic acids although the enthalpy of formation differences between them are much smaller. Using the \(OH/H\) exchange increments for condensed and gas phases, the predicted enthalpies of formation for any cyanophenol are \((s) -51.2\) and \((g) 36.7\) kJ mol\(^{-1}\). That the experimental enthalpies for the solids are all more exothermic by \(ca 5 -8\) kJ mol\(^{-1}\) may suggest intermolecular hydrogen bonding. At least for \(o\)-cyanophenol, \([O-H \cdot \cdot \cdot NC]\) hydrogen bonds connect the individual molecules into infinite chains\(^{41}\). From the small 4 kJ mol\(^{-1}\) discrepancy for the gaseous \(ortho\) isomer, intramolecular hydrogen bonding would not seem to be indicated. However, the theoretical estimate from Reference 30 for such an interaction is \(ca 11.5\) kJ mol\(^{-1}\) which agrees with the IR spectroscopic experimental value of 7.2 kJ mol\(^{-1}\).\(^{142}\)

C. Nitrogen-bonded Substituents

The enthalpies of formation of phenols with nitrogen-bonded substituents appear in Table 4.
Before presenting the experimentally measured enthalpies of formation, we first ask what intuition suggests. We expect competing resonance-derived destabilization when the π-electron-donating hydroxy and amino groups are ortho or para to each other. The o-isomer has the possibility of weakly stabilizing intramolecular [O—H···N] hydrogen bonding which could mitigate the destabilization, although IR spectroscopic analysis indicated its absence. The m-isomer has neither of these means for stabilization or destabilization.

In 1986, Pilcher and his coworkers measured the enthalpies of combustion and of sublimation of all three isomers. The ortho and para isomers are less stable and, most probably, the meta is more stable. For the gas phase, both ortho and para amino substitution is destabilizing relative to meta. However, there are two other sets of measurements. The first consists of a value from early in the last century for the p-isomer, -168 kJ mol^{-1}. This value is so discordant from the others, as well as so ancient, that it is easily disqualified. However, such early values are the only ones available for some phenols and other interesting and important compounds. Late in the last century, another thermochemical study also reported the enthalpies of formation for all three isomers from measured enthalpies of combustion and of sublimation. From this source it is much more decisive that in the gas phase the o-isomer is the most stable and the p- is the least. The individual enthalpies of formation and of sublimation from the two contemporary sources for the solid phenols differ by 4–17 kJ mol$^{-1}$ with no apparent explanation for the large isomeric disparities. If there were no interaction between the amino and hydroxy substituents, the exchange reaction 10 would be nearly thermoneutral, and the gas phase enthalpy of formation of the three aminophenols would be -92 kJ mol^{-1}, a value close

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-</td>
<td>-191.0 ± 0.9</td>
<td>—</td>
<td>-87.1 ± 1.3</td>
<td>43</td>
</tr>
<tr>
<td>m-</td>
<td>-201.3 ± 1.5</td>
<td>—</td>
<td>-104.4 ± 1.7</td>
<td>44</td>
</tr>
<tr>
<td>p-</td>
<td>-194.1 ± 1.9</td>
<td>—</td>
<td>-89.4 ± 1.6</td>
<td>43</td>
</tr>
<tr>
<td>Nitrophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-</td>
<td>-204.6 ± 1.4</td>
<td>—</td>
<td>-132.3 ± 1.4</td>
<td>33</td>
</tr>
<tr>
<td>m-</td>
<td>-202.4 ± 1.0</td>
<td>—</td>
<td>-128.8 ± 1.6</td>
<td>45</td>
</tr>
<tr>
<td>p-</td>
<td>-200.5 ± 1.0</td>
<td>—</td>
<td>-109.3 ± 1.1</td>
<td>45</td>
</tr>
<tr>
<td>Dinitrophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-</td>
<td>-232.7 ± 3.1</td>
<td>—</td>
<td>-128.1 ± 5.2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>-235.5</td>
<td>$-211.3b$</td>
<td>-130.9 ± 4.2</td>
<td>47, 48</td>
</tr>
<tr>
<td>2,6-</td>
<td>-209.9 ± 2.7</td>
<td>—</td>
<td>-97.8 ± 5.0</td>
<td>—</td>
</tr>
<tr>
<td>2,4,6-Trinitrophenol (picric acid)</td>
<td>-209.6 ± 3.3</td>
<td>—</td>
<td>$-190.0 \pm 3.3b$</td>
<td>47, 48</td>
</tr>
<tr>
<td></td>
<td>-214.3 ± 1.4</td>
<td>—</td>
<td>-97.5 ± 5.3</td>
<td>—</td>
</tr>
</tbody>
</table>

aData are from Reference 2 unless otherwise stated.
bThe enthalpy of formation of the liquid was obtained from the enthalpy of formation of the solid and the enthalpy of fusion from Reference 5.

1. Aminophenols

Before presenting the experimentally measured enthalpies of formation, we first ask what intuition suggests. We expect competing resonance-derived destabilization when the π-electron-donating hydroxy and amino groups are ortho or para to each other. The o-isomer has the possibility of weakly stabilizing intramolecular [O—H···N] hydrogen bonding which could mitigate the destabilization, although IR spectroscopic analysis indicated its absence. The m-isomer has neither of these means for stabilization or destabilization.

In 1986, Pilcher and his coworkers measured the enthalpies of combustion and of sublimation of all three isomers. The ortho and para isomers are less stable and, most probably, the meta is more stable. For the gas phase, both ortho and para amino substitution is destabilizing relative to meta. However, there are two other sets of measurements. The first consists of a value from early in the last century for the p-isomer, -168 kJ mol^{-1}. This value is so discordant from the others, as well as so ancient, that it is easily disqualified. However, such early values are the only ones available for some phenols and other interesting and important compounds. Late in the last century, another thermochemical study also reported the enthalpies of formation for all three isomers from measured enthalpies of combustion and of sublimation. From this source it is much more decisive that in the gas phase the o-isomer is the most stable and the p- is the least. The individual enthalpies of formation and of sublimation from the two contemporary sources for the solid phenols differ by 4–17 kJ mol$^{-1}$ with no apparent explanation for the large isomeric disparities. If there were no interaction between the amino and hydroxy substituents, the exchange reaction 10 would be nearly thermoneutral, and the gas phase enthalpy of formation of the three aminophenols would be -92 kJ mol^{-1}, a value close
3. Thermochemistry of phenols and related arenols

to but still discrepant to both sets of contemporary results.

\[\text{PhNH}_2 + \text{PhOH} \rightarrow \text{C}_6\text{H}_6 + \text{NH}_2\text{C}_6\text{H}_4\text{OH} \]

Part of the above discrepancies may arise from problems with sample purity. Aminophenols autooxidize even more readily than most other classes of phenols. They readily form quinones and quinonimines and then these combine, polymerize, dehydrate and otherwise contaminate samples and confound chemists. Or, at least, that is how we understand the over 40 kJ mol\(^{-1}\) difference between the enthalpies of formation of solid phase 3,3'-diamino-4,4'-dihydroxydiphenylmethane and its isomer in which the locations for the amino and hydroxy groups are exchanged\(^51\).

2. Nitrosophenols

The \(\text{o}\)- and \(\text{p}\)-nitrosophenols enjoy the possibility of resonance stabilization by \(\pi\)-electron donation from the phenolic hydroxyl group to the nitroso group, and the \(\text{o}\)-isomer could also be stabilized by an intramolecular hydrogen bond. These species are also tautomeric with benzoquinone oximes. All of this could confound interpretation of enthalpy of formation values if only they were available—there are seemingly no measured enthalpy of formation values for \(\text{o}\)-nitrosophenol. The value for \(\text{p}\)-nitrosophenol will be discussed later in Section VI because of tautomeric ambiguity. The \(\text{m}\)-species lacks the stabilizing conjugate NO/OH interaction, and so the monomer–dimer equilibrium as found in other nitroso compounds becomes problematic—should the measurement of enthalpy of combustion be available.

3. Nitrophenols

Unlike the aminophenols, the \(\text{o}\)- and \(\text{p}\)-nitrophenols should reflect the expected strong resonance stabilization by \(\pi\)-electron donation from the phenolic hydroxyl group to the strongly \(\pi\)-electron-withdrawing nitro group with additional stabilization in the \(\text{o}\)-isomer from intramolecular hydrogen bonding. All three nitrophenols have been thermochemically investigated with two contemporary calorimetric measurements for each of the isomers. The order of gas phase stability is decidedly \(\text{o} > \text{p} > \text{m}\). From the archival enthalpy of formation of gaseous nitrobenzene and \(\delta(\text{OH}/\text{H})\), a gas phase enthalpy of formation of any nitrophenol of \(-111.5\) kJ mol\(^{-1}\) can be derived. The gas phase enthalpy of formation of the \(\text{m}\)-isomer shows this species to be a little destabilized and the \(\text{p}\)-isomer likewise stabilized compared to the predicted value. If the \(\text{o}\)-isomer is stabilized by dipolar resonance by about the same amount, then the \(\text{ca} 14\) kJ mol\(^{-1}\) stabilization for the \text{ortho} isomer suggests intramolecular hydrogen bonding. The same conclusion is reached by taking the difference between the enthalpies of formation of the \(\text{o}\)- and \(\text{p}\)-isomers. This value is much smaller than a theoretical hydrogen-bond strength of \(\text{ca} 53\) kJ mol\(^{-1}\) in \(\text{o}\)-nitrophenol found as the difference between the energies of the \text{cis} and \text{trans} O–H conformers\(^52\). The enthalpy difference between the \text{meta} and \text{para} isomers is very close to the corresponding difference for the nitroanilines mentioned earlier.

That all three isomers have very nearly the same value for the solid phase enthalpy of formation indicates that intermolecular hydrogen bonding in the \(\text{o}\)-isomer is approximately the same strength as for the other two isomers. The predicted enthalpy of formation of any solid nitrophenol is \(-203\) kJ mol\(^{-1}\), identical to the values observed for the \(\text{o}\)- and \(\text{m}\)-isomers. This, of course, does not imply that \(\text{o}\)- and \(\text{m}\)-nitrophenols lack hydrogen bonding in the condensed phase but rather the hydrogen bonding in the various nitrophenols is not particularly different from that found in the parent phenol. The \(\text{p}\)-isomer is stabilized by \(\text{ca} 7\) kJ mol\(^{-1}\), only slightly more than in the gas phase.
Of the six isomeric dinitrophenols, there are thermochemical data for only two, the 2,4- and 2,6-species. Both are related to the same deoxygenated parent, m-dinitrobenzene, and so, in the absence of hydrogen bonding or steric effects, the two dinitrophenols should have the same enthalpy of formation. From the enthalpies of formation of m-dinitrobenzene, δ^8(OH/H) and δ(OH/H), the predicted enthalpy values for any dinitrophenol are (s) -227.8 and (g) -125.2 kJ mol$^{-1}$. The large discrepancies for the 2,6-isomer would seem to be due to steric interference by one or both nitro groups with the hydroxyl. However, all of the mononitrophenols as well as 2,4- and 2,6-dinitrophenol have been found to be planar by ab initio and density functional theory53 with substantial intramolecular hydrogen bonding, consistent with experimental data. The stabilization of the 2,4-isomer is only ca 4 kJ mol$^{-1}$ in the gas phase, very different from the large stabilization observed for o-nitrophenol which it should resemble. Comparing related compounds, the difference between the solid phase enthalpies of formation of 2,4-and 2,6-dinitroaniline54 is 15 kJ mol$^{-1}$, of 2,4- and 2,6-dinitrotoluene55 is 22 kJ mol$^{-1}$, and of 2,4- and 2,6-dinitrophenol is 25 kJ mol$^{-1}$.

We now turn to the trinitrophenols, of which only one of the six isomers has been thermochemically characterized. This is the 2,4,6-species, most commonly known as picric acid. Again, there is significant destabilization: from the enthalpy of formation of solid 1,3,5-trinitrobenzene and δ^8(OH/H), the predicted enthalpy of formation is -240.6 kJ mol$^{-1}$. The calculated destabilization is nearly 27 kJ mol$^{-1}$. From the point of view of steric hindrance at C2−C1−C6, this compound should not be any worse than 2,6-dinitrophenol. However, it is calculated to be a nonplanar compound with intramolecular hydrogen bonding53.

D. Oxygen-bonded Substituents

The enthalpies of formation of phenols with oxygen-bonded substituents appear in Table 5.

1. Hydroxy derivatives

The three monohydroxy derivatives of phenol are all well-known compounds, the o-, m- and p-species with the long-established, trivial names catechol, resorcinol and hydroquinone. These compounds are all benzenediols and, as such, they and their substituted derivatives will be discussed later in this text.

2. Alkoxy derivatives

For reasons to be discussed later, we are doubtful of the enthalpy of formation measurement56 of solid 2,6-dimethoxyphenol, -518.4 kJ mol$^{-1}$. Another species which

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6-Dimethoxyphenol</td>
<td>-518.4</td>
<td>—</td>
<td>—</td>
<td>56</td>
</tr>
<tr>
<td>2-Methoxy-4-methylphenol</td>
<td></td>
<td>-291.9</td>
<td>-362.8 ± 2.2</td>
<td>57</td>
</tr>
<tr>
<td>4-Allyl-2-methoxyphenol</td>
<td>-659.2</td>
<td>—</td>
<td>—</td>
<td>58</td>
</tr>
<tr>
<td>4-(1-Propenyl)-2-methoxyphenol</td>
<td>-696.8</td>
<td>—</td>
<td>—</td>
<td>58</td>
</tr>
<tr>
<td>Morphine hydrate</td>
<td>-711</td>
<td>—</td>
<td>—</td>
<td>59</td>
</tr>
</tbody>
</table>
has been studied57 is 2-methoxy-4-methylphenol. An immediate question is the extent of the interaction, if any, between the two oxygens. One probe is the thermicity of the gas phase substituent exchange reaction

\[
\text{PhOH} \rightleftharpoons \text{PhOMe}
\]

(11)

which is endothermic by 28.5 kJ mol\(^{-1}\). As will be discussed later in the benzenediol section, this formal increment is somewhat more positive when both hydroxyl groups in 1,2-dihydroxybenzene are converted to 1,2-dimethoxybenzene. It does not seem credible, therefore, that the formal increment converting 4-methyl-1,2-dihydroxybenzene (\(\Delta H_f = -298.4 \pm 1.6 \text{ kJ mol}^{-1}\))60 to 2-methoxy-4-methylphenol is only +6.5 kJ mol\(^{-1}\). We view the literature enthalpy of formation of 2-methoxy-4-methylphenol as suspect.

Two other alkoxyphenols are the isomeric 4-allyl- and 4-(1-propenyl)-2-methoxyphenols with the ancient58 enthalpies of combustion of 5384.4 and 5346.8 kJ mol\(^{-1}\). We are automatically troubled by these values. The 38 kJ mol\(^{-1}\) derived difference between the enthalpies of formation of the two isomers is rather much larger than the \(ca\) 22 kJ mol\(^{-1}\) derived64 for their oxygen-defunctionalized counterparts allyl and 1-propenylbenzene.

Another species that qualifies as an alkoxy derivatized phenol is morphine. Because of the multifunctional complexity and solid phase of the compound, as well as the dates of the literature citations59 (1899, 1900) the result is essentially without use in our thermochemical context.

E. Sulfur-bonded Substituents

Neither sulfur-substituted phenols nor benzenethiols have been much studied by the thermochemist. The only thermochemical data for a sulfur-derivatized phenol that is known to the authors is ‘sulfosalicylic acid’ (2-hydroxy-5-sulfobenzoic acid dihydrate) and some of its salts62. The difference between the solid phase enthalpies of formation of sulfosalicylic acid dihydrate (\(-1982 \pm 3 \text{ kJ mol}^{-1}\)) and salicylic acid is \(ca\) –1392 kJ mol\(^{-1}\). Correcting for two molecules of water (–286 kJ mol\(^{-1}\), assumed uncomplexed liquid) changes the value to –820 kJ mol\(^{-1}\), while assuming Handrick’s universal hydrate correction65 of \(ca\) 19 kJ mol\(^{-1}\) per water suggests a value of \(ca\) –780 kJ mol\(^{-1}\) for the free acid. This last value has been suggested as problematic64.

F. Halogen Substituents

The enthalpies of formation of halogenated phenols appear in Table 6.

1. Monohalophenols

The four halogens F, Cl, Br, I form an interesting and well-ordered set of substituents. Along with hydrogen, they change monotonically in many key properties: in size \(H < F < Cl < Br < I\); in polarizability \(H < F < Cl < Br < I\); in electronegativity, \(H \approx I < Br < Cl \ll F\); in hydrogen bonding ability \(H < I < Br < Cl < F\). How do their enthalpies of formation depend on the halogen and its position on the ring relative to OH?

We begin with fluorophenols. Disappointingly, the data are old65, and because the calorimeter was not a rotating bomb and the products were not analyzed, the results are not particularly to be trusted70. In any case, the enthalpies of formation are only for the condensed phase. That the enthalpy of fusion is always endothermic means the enthalpy of formation of a liquid must be less negative than the corresponding solid.
TABLE 6. Enthalpies of formation of halogenated phenols (kJ mol\(^{-1}\))

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Reference(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−302</td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>(m)-</td>
<td></td>
<td>−340</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>(p)-</td>
<td>−334</td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Chlorophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m)-</td>
<td>−206.5 ± 8.4</td>
<td>−189.3 ± 8.4</td>
<td>−153.3 ± 8.7</td>
<td>—</td>
</tr>
<tr>
<td>(p)-</td>
<td>−197.7 ± 8.4</td>
<td>−181.3 ± 8.4</td>
<td>−145.5 ± 8.7</td>
<td>—</td>
</tr>
<tr>
<td>Iodophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)-</td>
<td>−95.8 ± 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m)-</td>
<td>−94.5 ± 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p)-</td>
<td>−95.4 ± 4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Iodosalicylic acid</td>
<td>−512.5</td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Dichlorophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,3-</td>
<td>−223.3 ± 1.1</td>
<td></td>
<td>−151.6 ± 2.5</td>
<td>67</td>
</tr>
<tr>
<td>2,4-</td>
<td>−226.4 ± 1.5</td>
<td></td>
<td>−156.3 ± 1.9</td>
<td>67</td>
</tr>
<tr>
<td>2,5-</td>
<td>−232.0 ± 1.2</td>
<td></td>
<td>−158.4 ± 2.4</td>
<td>67</td>
</tr>
<tr>
<td>2,6-</td>
<td>−222.1 ± 1.1</td>
<td></td>
<td>−146.3 ± 1.5</td>
<td>67</td>
</tr>
<tr>
<td>3,4-</td>
<td>−231.6 ± 1.1</td>
<td></td>
<td>−150.3 ± 2.5</td>
<td>67</td>
</tr>
<tr>
<td>3,5-</td>
<td>−231.0 ± 1.0</td>
<td></td>
<td>−150.3 ± 2.3</td>
<td>67</td>
</tr>
<tr>
<td>2,4-Dibromo-6-methylphenol</td>
<td>−159 ± 6</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>3,5-Diiodosalicylic acid</td>
<td>−397.1</td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>Pentfluorophenol</td>
<td>−1024.1 ± 2.1</td>
<td>−1007.7 ± 2.1</td>
<td>−956.8 ± 2.7</td>
<td>—</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>−292.5 ± 3.0</td>
<td></td>
<td>−225.1 ± 3.6</td>
<td>—</td>
</tr>
<tr>
<td>2,4,6-Tribromophenol</td>
<td>−100 ± 5</td>
<td></td>
<td>−0.9 ± 2.5</td>
<td>68, 69</td>
</tr>
<tr>
<td>2,4,6-Tribromo-3-methylphenol</td>
<td>−131 ± 5</td>
<td></td>
<td></td>
<td>68</td>
</tr>
</tbody>
</table>

\(^a\)Data are from Reference 2 unless otherwise stated.

And so the enthalpy of formation of liquid \(p\)-fluorophenol is less negative than the solid phase value of \(-334\) kJ mol\(^{-1}\), and the enthalpy of formation of solid \(m\)-fluorophenol is more negative than \(-340\) kJ mol\(^{-1}\), the value for its liquid phase. Equivalently, the \(m\)-isomer is more stable than the \(p\)- in both phases. This result is consistent with the thermochemistry of amino and methyl phenols which are also species containing \(\pi\) or \(\sigma\)-electron donating substituents. It is surprising that the \(o\)-isomer is seemingly so much less stable than the \(m\)-isomer. \(Ab\ initio\) computations\(^71\) indicate weak intramolecular hydrogen bonding in the ortho isomer which supported observations from IR\(^72\) and gas electron diffraction\(^73\) measurements. The experimentally-determined energy difference between the intramolecular hydrogen-bonded syn conformer and the anti conformer was 6.8 ± 0.3 kJ mol\(^{-1}\) by the former method and 2 kJ mol\(^{-1}\) by the latter. From \(\delta^c\)(OH/H) and the archival (and trusted) enthalpy of formation of liquid fluorobenzene, we derive an enthalpy of formation of ca \(-354\) kJ mol\(^{-1}\) for any of the three isomers. If the thermochemical measurements are reasonably accurate, it seems they are all less stable than predicted.

There are apparently no data for the \(o\)-isomer of chlorophenol. Disregarding the error bars, it appears the \(m\)-isomer is more stable than the \(p\)- by \(ca\) 9 kJ mol\(^{-1}\), the stability order predicted for a \(\pi\)-donating substituent on a phenolic ring. Including the error bars allows for the possibility that the relative stability of the two isomers is reversed. Again using the OH/H exchange increments and the enthalpies of formation of chlorobenzene, any chlorophenol would have an enthalpy of formation of (s) \(-202.0\), (lq) \(-192.4\) and (g) \(-127.0\) kJ mol\(^{-1}\). In the solid phase, the apparent stabilization of the meta isomer and
3. Thermochemistry of phenols and related arenols

the apparent destabilization of the para isomer are very small and within the experimental uncertainties. In the liquid phase, the para isomer is also seemingly stabilized. Even considering the experimental uncertainty, the gaseous chlorophenols are apparently much more stable than predicted. While the meta isomer has more favorable resonance structures and its stabilization is understandable, it is not clear why the para isomer, with its less favorable resonance structures, should be so apparently stabilized. Given the importance of chlorinated aromatics, we eagerly await new and more precise measurements for both isomers, as well as for the o-isomer.

There are no thermochemical data for the bromophenols. For the iodophenols, there are enthalpy data only for the solid phases. Our estimation procedure, using the enthalpy of formation of iodobenzene and the OH/H exchange increment, predicts -86 kJ mol^{-1}. How the iodophenols could be stabilized by ca 10 kJ mol^{-1} is not clear, except that the experimental uncertainty is somewhat large and we know very little about the solid phase.

2. Dihalophenols

There are no reported enthalpies of formation of any of the isomeric difluorophenols. In contrast, the enthalpies of formation of all six of the dichlorophenols are available. Assuming the general applicability of the exchange energies, from the archival enthalpies of formation of the three dichlorobenzenes we would predict values of -234 and -149 kJ mol^{-1} for the solid and gaseous states of both the 2,3- and 3,4-dichlorophenol; -237 and -153 kJ mol^{-1} for the solid and gaseous states of the 2,4-, 2,6- and 3,5-dichlorophenol and -246 and -157 kJ mol^{-1} for solid and gaseous 2,5-dichlorophenol. The enthalpies of formation of the gaseous phenols are predicted somewhat more reliably than those of the solids which are all $2-15 \text{ kJ mol}^{-1}$ less stable than predicted. We are neither surprised nor disappointed—the intricacies of solids usually are problematic and we have no handle on the vagaries of intermolecular hydrogen bonding. The exception to reliable gas phase prediction is for 2,6-dichlorophenol which presumably suffers from adverse steric effects of the hydroxyl group buttressed between two chlorine atoms, an effect not present in the similarly substituted 2,3-dichlorophenol.

The only enthalpy of formation data for any dibromophenol is that of solid phase 2,4-dibromo-6-methylphenol. In the absence of an experimental enthalpy of formation of m-dibromobenzene, we must assess the reliability of the phenol derivative in another way. The reaction in equation 12 for estimating the enthalpy of formation of the deoxygenated 3,5-dibromotoluene might be approximately thermoneutral for all phases, assuming no steric or electronic interactions between substituents:

$$2\text{PhBr} + \text{PhMe} \rightarrow 1,3,5\text{-C}_6\text{H}_3\text{MeBr}_2 + 2\text{C}_6\text{H}_6 \quad (12)$$

From archival enthalpies of formation and of fusion, the estimated enthalpy of formation of solid 3,5-dibromotoluene is $28 \pm 9 \text{ kJ mol}^{-1}$. This value, combined with $\delta^\circ(\text{OH/H})$, gives a predicted enthalpy of formation of the corresponding phenol of -175 kJ mol^{-1}. A bromine atom and methyl group crowd the intervening OH, which could account for at least some of the ca 16 kJ mol^{-1} difference between the predicted and experimental values, and we don’t expect 2,4-dibromo-6-methylphenol to participate in intermolecular hydrogen bonding. The remainder of the difference is accounted for by the error bars. Altogether, the value is plausible.

Diiodophenols are represented only by one very old study of solid 3,5-diiodosalicylic acid. Lacking an enthalpy of formation for the deoxygenated parent to make a prediction, we calculate the enthalpy of the reaction involving this diiodo species and the
corresponding monoiodo66 and parent acid from equation 13.

\[
2[\text{iodosalicylic acid}] \rightarrow \text{diiodosalicylic acid} + \text{salicylic acid} \quad (13)
\]

This reaction is found to be \textit{ca} 36 kJ mol-1 endothermic. Intuition suggests that the iodine in iodosalicylic acid is \textit{p}- to the OH and in the diiodo compound they are \textit{o}- and \textit{p}-.

While we acknowledge that (a) the thermochemistry of organoiodine compounds is often problematic, (b) there is considerable crowding by the adjacent carboxyl, hydroxyl and iodo groups in the diiodo species and (c) predictions of the enthalpy of formation of solids remain precarious, nonetheless, we recommend the remeasurement of the enthalpy of combustion of the iodosalicylic acids, and for that matter, of iodophenols in general.

3. Polyhalophenols

The polyhalogenated phenols are species with three or more halogen atoms. The first such species is pentafluorophenol. The enthalpies of formation predicted from the related pentafluorobenzene are (s) \(-1056.1\), (lq) \(-1045.2\) and (g) \(-985.5\) kJ mol-1. These values are some 30–40 kJ mol-1 more negative than the measured values, the largest destabilization observed so far. Before questioning the reliability of the data, consider the thermochemical differences for the gas phase reaction 14 where \(X = \text{CH}_3, \text{OH}, \text{F}, \text{Cl}, \text{Br}\) and I:

\[
\text{C}_6\text{H}_5X + \text{C}_6\text{HF}_5 \rightarrow \text{C}_6\text{H}_6 + \text{C}_6\text{F}_5X \quad (14)
\]

The endothermic enthalpies of reaction indicate that the \(\text{C}_6\text{F}_5X\) species are destabilized from prediction by 4, 30, 50, 20, 72 and 175 kJ mol-1, respectively.

Based on the above experience with pentafluorophenol, we would expect some destabilization for pentachlorophenol. However, the calculated enthalpies of formation for this species using the appropriate OH/H increment exchange energies are (s) \(-330\) and (g) \(-219\) kJ mol-1. We are surprised that the values from ‘the literature’ and our estimate for the gas are so close and those for the solid are so disparate, respectively.

We close this discussion with two tribrominated phenols, the 2,4,6-tribromo derivatives of phenol and 3-methylphenol. We might expect equation 15 for estimating the enthalpy of formation of the deoxygenated 1,3,5-tribromobenzene to be approximately thermoneutral for all phases, assuming no interactions among substituents.

\[
3\text{PhBr} \rightarrow 1,3,5-\text{C}_6\text{H}_3\text{Br}_3 + 2\text{C}_6\text{H}_6 \quad (15)
\]

From the archival enthalpies of formation and of fusion for benzene and bromobenzene, the estimated enthalpies of formation of 1,3,5-tribromobenzene are (s) 72 kJ mol-1 and (g) 151 kJ mol-1. From these values and the appropriate OH/H exchange increments, we would predict enthalpies of formation for 2,4,6-tribromophenol of \(-131\) kJ mol-1 for the solid and \(-28\) kJ mol-1 for the gas phase species. The predicted results are both \textit{ca} 30 kJ mol-1 more exothermic than the experimental ones. Since we don’t expect the solid tribromophenol to participate in intermolecular hydrogen bonding in the same way as solid phenol does, on that basis the estimated values are seemingly too negative.

Comparing 2,4,6-tribromophenol with its 3-methylated derivative, methylation decreases the solid phase enthalpy of formation by some 31 kJ mol-1. This can be compared to the decrease of 40 kJ mol-1 for the parent solid phenol when it is methylated to 3-methylphenol (\(m\)-cresol). Given the uncertainties in many of the measured quantities as well as derived values, and lack of quantitation of buttressing effects, we consider these last differences to be consistent.
III. ARENEDIOLS

The enthalpies of formation for a variety of arenediols and arenetriols (triols to be discussed in Section IV) appear in Table 7.

TABLE 7. Enthalpies of formation of arenediols and arenetriols (kJ mol\(^{-1}\))

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solid</th>
<th>Gas</th>
<th>Reference(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzenediol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)-</td>
<td>(-353.1 \pm 1.1)</td>
<td>(-271.6 \pm 2.0)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(-354.1 \pm 1.1)</td>
<td>(-267.5 \pm 1.9)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(-362.3 \pm 1.1)</td>
<td>(-274.8 \pm 1.2)</td>
<td>74</td>
</tr>
<tr>
<td>(m)-</td>
<td>(-370.7 \pm 1.1)</td>
<td>(-284.7 \pm 1.2)</td>
<td>74</td>
</tr>
<tr>
<td>(p)-</td>
<td>(-368.0 \pm 0.5)</td>
<td>(-275)</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>(-371.1 \pm 1.3)</td>
<td>(-277.0 \pm 1.4)</td>
<td>74</td>
</tr>
<tr>
<td>1,2-Benzenediol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-methyl</td>
<td>(-392.5 \pm 1.1)</td>
<td>(-299.3 \pm 1.6)</td>
<td>60</td>
</tr>
<tr>
<td>4-methyl</td>
<td>(-393.3 \pm 1.2)</td>
<td>(-298.4 \pm 1.6)</td>
<td>60</td>
</tr>
<tr>
<td>3-isopropyl</td>
<td>(-447.8 \pm 1.6)</td>
<td>(-350.0 \pm 2.3)</td>
<td>60</td>
</tr>
<tr>
<td>3-isopropyl,6-methyl</td>
<td>(-475.7 \pm 1.6)</td>
<td>(-379.1 \pm 1.8)</td>
<td>60</td>
</tr>
<tr>
<td>4-tert-butyl</td>
<td>(-474.0 \pm 1.6)</td>
<td>(-375.7 \pm 2.1)</td>
<td>60</td>
</tr>
<tr>
<td>3,5-((\text{tert-butyl})_2)</td>
<td>(-570.6 \pm 2.6)</td>
<td>(-470.5 \pm 2.7)</td>
<td>60</td>
</tr>
<tr>
<td>4-nitro</td>
<td>(-411.1 \pm 1.1)</td>
<td>(-290.0 \pm 1.8)</td>
<td>76</td>
</tr>
<tr>
<td>3-methoxy</td>
<td>(-510.2 \pm 1.2)</td>
<td>(-418.5 \pm 1.4)</td>
<td>76</td>
</tr>
<tr>
<td>1,3-Benzenediol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-dinitro</td>
<td>(-422.8 \pm 2.7)</td>
<td>—</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>(-415.6 \pm 2.5)</td>
<td>—</td>
<td>78</td>
</tr>
<tr>
<td>4,6-dinitro</td>
<td>(-443.4 \pm 2.7)</td>
<td>—</td>
<td>77</td>
</tr>
<tr>
<td>4-acetyl</td>
<td>(-439.5 \pm 2.5)</td>
<td>—</td>
<td>78</td>
</tr>
<tr>
<td>1,4-Benzenediol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-chloro</td>
<td>(-383.0 \pm 8.4)</td>
<td>(-314.0 \pm 11.8)</td>
<td>—</td>
</tr>
<tr>
<td>2,3-dichloro</td>
<td>(-416.0 \pm 8.4)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,5-dichloro</td>
<td>(-427.3 \pm 8.4)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2,6-dichloro</td>
<td>(-423.4 \pm 8.4)</td>
<td>(-331.5 \pm 11.8)</td>
<td>—</td>
</tr>
<tr>
<td>2,3,5-trichloro</td>
<td>(-440.7 \pm 8.4)</td>
<td>(-339.4 \pm 11.8)</td>
<td>—</td>
</tr>
<tr>
<td>2,3,5,6-tetrachloro</td>
<td>(-453.6 \pm 8.4)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Naphthalenediols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-</td>
<td>(-309.8 \pm 1.6)</td>
<td>(-200.5 \pm 2.8)</td>
<td>17</td>
</tr>
<tr>
<td>1,3-</td>
<td>(-327.2 \pm 1.4)</td>
<td>(-211.2 \pm 1.9)</td>
<td>17</td>
</tr>
<tr>
<td>1,4-</td>
<td>(-317.4 \pm 1.5)</td>
<td>(-197.0 \pm 1.8)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(-339.4 \pm 7)</td>
<td>—</td>
<td>79</td>
</tr>
<tr>
<td>2,3-</td>
<td>(-302.4 \pm 1.7)</td>
<td>(-192.8 \pm 2.0)</td>
<td>17</td>
</tr>
<tr>
<td>2,7-</td>
<td>(-316.4 \pm 1.5)</td>
<td>(-207.0 \pm 1.6)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(-326.1 \pm 1.7)</td>
<td>—</td>
<td>80</td>
</tr>
<tr>
<td>Phenanthe-9,10-diol</td>
<td>(-243.5)</td>
<td>—</td>
<td>14</td>
</tr>
<tr>
<td>Benzenetriol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-</td>
<td>(-551.1 \pm 0.9)</td>
<td>(-434.2 \pm 1.1)</td>
<td>76</td>
</tr>
<tr>
<td>1,2,4-</td>
<td>(-563.8 \pm 1.1)</td>
<td>(-444.0 \pm 1.6)</td>
<td>76</td>
</tr>
<tr>
<td>1,3,5-</td>
<td>(-584.6 \pm 1.1)</td>
<td>(-452.9 \pm 1.5)</td>
<td>76</td>
</tr>
<tr>
<td>5-Carboxy-1,2,3-benzenetriol</td>
<td>(-1013 \pm 5.0)</td>
<td>—</td>
<td>81</td>
</tr>
</tbody>
</table>

\(^a\)Data are from Reference 2 unless otherwise stated.
A. Unsubstituted Benzenediols

The unsubstituted 1,2-, 1,3- and 1,4-benzenediols are historically and trivially known as catechol, resorcinol and hydroquinone. The individual experimental enthalpy of formation values for both the solid catechol and the gaseous resorcinol are rather disparate. Assuming no interaction between the two hydroxyl groups, we would have anticipated an enthalpy of formation for any benzenediol of \(-368\) kJ mol\(^{-1}\) for the solid and \(-275\) kJ mol\(^{-1}\) for the gas. The solid meta and para diols exhibit no significant deviation from prediction while for the solid o-diol enthalpies indicate \(6-15\) kJ mol\(^{-1}\) destabilization. Presumably, the solid meta- and para-diols engage in hydrogen bonding of the same type and strength as phenol itself, although we might have expected some stabilization due to a more ordered array with additional hydrogen-bonding sites. The destabilization of solid catechol may be a combination of less stable resonance structures and sterically hindered intermolecular hydrogen bonding.

The experimental values for the gas phase diols are roughly comparable to the predicted enthalpy of formation. We expect some stabilization due to the more stable resonance structures for meta hydroxyl groups compared to ortho and para, but only one of the measured enthalpy of formation values for the meta isomer is more exothermic than either the predicted or the para values. From comparison with \(m\)-cresol and \(m\)-chlorophenol, examples of other compounds with electron-donating substituents meta to the hydroxyl group, we would expect stabilization comparable to theirs, \(4-26\) kJ mol\(^{-1}\). The seeming absence of hydrogen-bond-derived stabilization for the gaseous ortho-diol is somewhat surprising, unless there is a compensating destabilization that is ascribed to the less favorable resonance structures of ortho hydroxyl substituents. We would then expect destabilization in the gaseous para-isomer also. The situation here resembles that of the cresols where the \(o\)- and \(p\)-isomer enthalpies of formation did not deviate significantly from the prediction, while the \(m\)-isomer, with its more favorable resonance structures, is most stable. For reasons to be described in more detail at the end of this section, the best enthalpy of formation values for the \(o\)- and \(m\)-benzenediols are probably the average values.

In order to better understand the hydroxyl interactions in the diols, we can compare them with their methylated counterparts, the dimethoxybenzenes. Consider the exchange reaction 16 for the \(o\)-, \(m\)- and \(p\)-substituted compounds:

\[
\text{C}_6\text{H}_4(\text{OH})_2 + 2\text{PhOMe} \rightarrow \text{C}_6\text{H}_4(\text{OMe})_2 + 2\text{PhOH} \quad (16)
\]

Using the dimethoxybenzene enthalpies of formation from Reference 83, the enthalpies of reaction 16 are \((o\)-\() 11.9, \((m\)-\) 1.1 and \((p\)-\) 8.5 kJ mol\(^{-1}\) in the gas phase and \((o\)-\) 11.2, \((m\)-\) 11.3 and \((p\)-\) 0.7 kJ mol\(^{-1}\) in the solid phase. The normalized enthalpy of methylation is one-half of the overall reaction enthalpy. Ab initio geometry optimizations indicate that the \(m\)- and \(p\)-dimethoxybenzenes are planar and the \(o\)-dimethoxybenzene is nonplanar\(^{83}\). For the meta isomer, the exchange of hydroxy for methoxy in the gas phase is essentially thermoneutral which indicates, because there are no steric effects or hydrogen bonding, that the electronic effects of hydroxy and methoxy substituent groups on the aromatic ring are comparable. The gas phase endothermicities for the ortho and para isomers are not very large and may reflect the increased electron donation by methoxy compared to hydroxy. At least for the ortho isomer, that the methylation reaction also introduces substituent steric effects is reflected in its greater endothermicity.

B. Alkylated Benzenediols

The differences between the predicted and experimental enthalpies of formation for the various alkylated benzenediols are in the range of \(4-13\) kJ mol\(^{-1}\) destabilization for
the real compound. The derived destabilization for catechol itself is $ca\ 4\ \text{kJ mol}^{-1}$ and so we might expect substitution at C-3 to cause steric strain, which is manifested in a larger destabilization, and substitution at C-4 to have minimal effect. However, the results are not straightforward: a methyl group at either C-3 or C-4 increases the destabilization to $ca\ 8–9\ \text{kJ mol}^{-1}$ while the larger isopropyl substituent at C-3 has hardly any effect. The effect of a large tert-butyl group at C-4 is less than that of the methyl group in the same position. The electronic effects of the various alkyl groups are not expected to differ very much, except that they are o-, p- or m- to a hydroxyl group. However, the calculated effects are small and experimental error bars accumulate in these calculations. Overall, the enthalpies of formation of any alkyalted 1,2-benzenediol can be derived satisfactorily from its totally deoxygenated parent hydrocarbon.

C. Otherwise Substituted Benzenediols

From the parent nitrobenzene and the OH/H increment exchange energy, the predicted enthalpy of formation for 4-nitro-1,2-benzenediol is $−290.5\ \text{kJ mol}^{-1}$ which is identical to the experimental value. By comparison with the m- and p-nitrophenols from a previous section, this is not a surprising result. p-Nitrophenol is $8.8\pm5\ \text{kJ mol}^{-1}$ more stable than its m-isomer. Taking into account the $ca\ 4\ \text{kJ mol}^{-1}$ destabilization due to placing the two hydroxyls ortho to each other and the large error bar for the isomer stability difference, the favorable resonance effect of the para substituents is nearly nullified. For the solid phase, the predicted enthalpy of formation is $−407.2\ \text{kJ mol}^{-1}$ which differs from the experimental value by only $3.9\ \text{kJ mol}^{-1}$. The experimental para/meta isomer enthalpy of formation difference for the solid nitrophenols was $ca\ 7\ \text{kJ mol}^{-1}$. Again, because of the experimental uncertainty and/or destabilization caused by the ortho hydroxyls, the effects seemingly cancel.

There are enthalpy of formation data for the 2,4- and 4,6-dinitro-1,3-benzenediols. From the archival enthalpy of formation of solid m-dinitrobenzene and $δ^{k}\text{(OH/H)}$, the enthalpy of formation of either dinitrobenzenediol isomer is predicted to be $−434.2\ \text{kJ mol}^{-1}$. Compared to this estimated value, the 2,4-isomer is $ca\ 11\ \text{kJ mol}^{-1}$ destabilized and the 4,6-isomer is $ca\ 9\ \text{kJ mol}^{-1}$ stabilized. Each of these compounds has a pair of meta hydroxy groups, a pair of meta nitro groups and two pairs of ortho hydroxy/nitro groups. The 2,4-isomer has an additional ortho hydroxy/nitro interaction.

The solid o-nitrophenol was neither stabilized nor destabilized relative to prediction; neither is $ca\ 9\ \text{kJ mol}^{-1}$ a very large stabilization for two possible pairs of hydrogen-bonding hydroxy/nitro substituents in 4,6-dinitro-1,3-benzenediol. Accordingly, the reaction depicted in equation 17 is only $3.6\ \text{kJ mol}^{-1}$ endothermic.

$$\text{OH}$$

$$\text{NO}_2$$

2

$$\text{OH}$$

$$\text{NO}_2$$

$$\text{OH}$$

$$\text{O}_2\text{N}$$

(17)

2,4-Dinitrophenol was only $6\ \text{kJ mol}^{-1}$ more stable than predicted and the related reaction of equation 18
is only 4.2 kJ mol\(^{-1}\) exothermic. The reactions corresponding to equations 17 and 18 to produce 2,4-dinitro-1,3-benzenediol have enthalpies of +24.2 and +16.4 kJ mol\(^{-1}\), respectively. The related reaction 19

\[
\begin{align*}
\text{OH} & + \text{NO}_2 \rightarrow \text{OH} + \text{NO}_2 + \text{H}_2\text{O} \\
\text{NO}_2 & + \text{OH} \rightarrow \text{NO}_2 + \text{OH} + \text{H}_2\text{O}
\end{align*}
\]

is 8.1 ± 4.3 kJ mol\(^{-1}\) exothermic. The enthalpy of this reaction, about the same as that for reaction 18, demonstrates that most of the destabilization is due to the presumed steric effect of the two nitro groups flanking the hydroxy group. Recall that 2,6-dinitrophenol was destabilized from prediction by ca 18 kJ mol\(^{-1}\). Introduction of the second hydroxy group appears to be slightly stabilizing. It is unfortunate that the gas phase enthalpy of formation is not available so that we can compare the thermochemical data with theoretical\(^{84,85}\) and experimental\(^{86,87}\) gas phase studies of intramolecular hydrogen bonding in 2-nitroresorcinol and 4,6-dinitroresorcinol.

The enthalpy of formation of solid 4-acetyl-1,3-benzenediol may be estimated from the enthalpy of formation of solid acetophenone and twice the OH/H exchange increment to be −565 kJ mol\(^{-1}\). The destabilization of less than 10 kJ mol\(^{-1}\) may be due to uncertainty in the estimation of the enthalpy of formation of acetophenone and experimental uncertainty in the measurement of the diol. We would have expected resonance stabilization by the favorably situated acetyl and hydroxyl groups. The experimental enthalpy of formation is consistent with those of the acetylphenols, discussed in an earlier section. Their predicted values, estimated now by deoxygenating the diol, are both −370 kJ mol\(^{-1}\), close to the −361 kJ mol\(^{-1}\) found as the average of the 2- and 4-hydroxy species.

Finally, we consider the numerous chlorinated benzene-1,4-diols. Just as with benzene-1,4-diol itself, introducing a second hydroxy group para to the first in m-chlorophenol
should not appreciably affect the stability. Since there are no \(o \)-chlorophenol data to compare, we are unsure of the effect of introducing the second hydroxy group \(ortho \) to the chlorine. Qualitatively, we expect the predicted and experimental enthalpies of formation of 2-chloro-1,4-benzenediol to be comparable. The predicted gas phase enthalpy of formation for this compound is \(-306.0 \text{ kJ mol}^{-1}\) calculated from chlorobenzene which is \(8 \text{ kJ mol}^{-1}\) less exothermic than the experimental value. However, the experimental uncertainty is larger than the difference. In contrast, the estimated solid phase enthalpy of formation, \(-405.4 \text{ kJ mol}^{-1}\), is \(22.4 \text{ kJ mol}^{-1}\) more exothermic than the measured enthalpy, indicating an extremely large destabilization for the real compound. Recall that the difference between the predicted (from chlorobenzene) and experimental enthalpies of formation of \(m \)-chlorophenol was the very large stabilization of \(-26.3 \text{ kJ mol}^{-1}\).

Among the dichloro derivatives, the 2,5-dichloro isomer is seemingly the most stable, avoiding the substituent crowding which is present in its isomers. However, the experimental uncertainties are quite large and so the actual isomer stability order is not known. Predicting the enthalpies of formation from dichlorobenzene and the \(\text{OH}/\text{H} \) increment exchange energies gives a gas phase value of \(-306.0 \text{ kJ mol}^{-1}\) and solid phase value of \(-405.4 \text{ kJ mol}^{-1}\). The gas phase predicted and experimental enthalpies are indistinguishable for the 2,6-isomer, the only one for which a measured value is available. All of the solid enthalpies of formation are much more endothermic than predicted, \(ca 22–33 \text{ kJ mol}^{-1}\). In addition to the two \(ortho \) chloro/hydroxyl interactions, there are two \(meta \) chloro/hydroxyl and one each of dihydroxyl and dichloro interactions between the substituents on the ring in 2,5-dichlorobenzene-1,4-diol. Can we state which of these interactions are important to the predicted instability of this compound in the solid phase, despite the lack of solid phase enthalpy of formation of \(o \)-chlorophenol? Reaction 20, which redistributes the hydroxyl and chloro substituents, is \(52.1 \text{ kJ mol}^{-1}\) endothermic in the gas phase but thermoneutral (\(-0.4 \text{ kJ mol}^{-1}\)) in the solid phase:

\[
\begin{align*}
\text{Cl} + \text{OH} & \rightarrow \text{Cl} + \text{OH} \\
(20)
\end{align*}
\]

Accordingly, in the solid phase, the enthalpies of reactions 21 and 22 are the same and equal \(ca 26 \text{ kJ mol}^{-1}\).
The derived instability seemingly comes from the ortho relationship of two OH/Cl pairs of substituents. The ca 11 kJ mol\(^{-1}\) instability of 2,3-dichlorobenzene-1,4-diol, relative to the 2,5-isomer, is due to the additional crowding of substituents on the aromatic ring and whatever difference there may be between the electronic effects of ortho vs. para chlorines. For comparison, the stability difference between solid o- and p-dichlorobenzene is ca 9 kJ mol\(^{-1}\). The stability of the 2,6-isomer is intermediate between its other two isomers. Relative to the 2,5-isomer, it is less stable by ca 4 kJ mol\(^{-1}\), the same as the difference between m- and p-dichlorobenzene. Evidently, but surprisingly, additional steric effects are unimportant here.

There are no trichloro- or tetrachlorobenzenes to compare with 2,3,5-trichloro- or 2,3,5,6-tetrachlorobenzene-1,4-diol. Neither are there any completely satisfactory isodesmic reactions for which there are the necessary data to disentangle the myriad steric and electronic effects in these highly substituted aromatic rings.

3-Methoxycatechol, also considered as a derivative of benzenetriol, will be discussed in a later section.

D. Naphthalenediols and Other Arenediols

Although there are ten isomeric naphthalenediols, there are enthalpy of formation data for only five of them. The enthalpy of formation data for the 1,4-isomer from two sources are disparate, as are the data from the two sources for the 2,3-isomer. The 1,3-naphthalenediol is more stable than either the 1,2- or the 1,4-diols for the same reason that the m-benzenediol, resorcinol, is more stable than its isomers: more stable resonance structures for 1,3-dihydroxy substitution on an aromatic ring. From the appropriate OH/H increment exchange energies and the enthalpy of formation of naphthalene, we would have predicted a value of \(-329\) kJ mol\(^{-1}\) and \(-208\) kJ mol\(^{-1}\) for any solid and gaseous naphthalenediol, respectively. Only for 1,3- and 2,7-naphthalenediol is the expectation confirmed: the others with their less stable ortho- and para-type substitution are less negative.

Both the 1,2- and the 2,3-isomers contain adjacent hydroxyl groups, analogous to the o-benzenediol, catechol. However, the 1,2-diol might experience a small destabilization relative to the 2,3-isomer because of a peri substituent interaction in the former. For comparison, the enthalpies of formation of 1-naphthol are (s) \(-121.0 \pm 1.0\) and (g) \(-29.9 \pm 1.0\) and of 2-naphthol are (s) \(-124.2 \pm 1.0\) and (g) \(-30.0 \pm 1.1\) kJ mol\(^{-1}\). The destabilization seemingly exists, at least in the solid phase. Of the two sets of data for the 2,3-isomer, one corresponds to greater stability and the other to lesser stability relative to the 1,2-isomer. One method of testing the data for both the naphthalenediols and the benzenediols, at least for consistency if not accuracy, is to compare the enthalpies of the two exchange reactions in equations 23 and 24,

\[C_6H_6 + C_{10}H_7OH \rightarrow C_6H_5OH + C_{10}H_8 \quad (23)\]
3. Thermochemistry of phenols and related arenols

\[C_6H_6 + C_{10}H_6(OH)_2 \rightarrow C_6H_4(OH)_2 + C_{10}H_8 \] \hspace{1cm} (24)

in their various isomeric combinations. The enthalpy of reaction 23 for 1-naphthol is (s) -5.3 and (g) 1.2 kJ mol$^{-1}$, and for 2-naphthol is (s) -2.1 and (g) 1.3 kJ mol$^{-1}$. That is, in the gas phase, the reactions are essentially thermoneutral and only slightly less so for 1-naphthol in the solid phase. For the similarly disubstituted 2,3-naphthalenediol and catechol in reaction 24, the enthalpy of reaction should also be thermoneutral. After calculating all 6 combinations for which there are data, the enthalpies of reaction which most closely fit the criterion are (s) 2.1 and (g) 3.1 kJ mol$^{-1}$ using the enthalpy of formation data for the naphthalenediol from Reference 80 and for the benzenediol from Reference 33. Using the averages of the catechol enthalpies gives an almost identical enthalpy of reaction for the gas phase (3.4 kJ mol$^{-1}$) and a slightly negative enthalpy of reaction (−1.3 kJ mol$^{-1}$) for the solid phase. The enthalpies of reaction 24 for 1,2-naphthalenediol and the catechol average are -7.9 (s) and -3.1 (g) kJ mol$^{-1}$, slightly more negative than predicted. These results are consistent with our expectation that 2,3-naphthalenediol is more stable than 1,2-naphthalenediol.

The sole other arenediol we know of, phenanthrene-9,10-diol, has an enthalpy of formation derived from the ancient calorimetric results in Reference 88. Acknowledging that there has been some dispute about the enthalpy of formation of the parent hydrocarbon, we adopt the value of 113.0 ± 2.1 kJ mol$^{-1}$ for phenanthrene89. The estimated enthalpy of formation of the phenanthrenediol, based on twice the OH/H increment exchange energy, is -293.8 kJ mol$^{-1}$, ca 50 kJ mol$^{-1}$ more negative than the actual measurement. The apparent destabilization of the real diol is considerably greater than that for the related vicinally dihydroxylated naphthalenes or for catechol.

IV. ARENETRIOLS

The only thermochemically characterized arenetriols known to the authors are the benzenetriols listed in Table 7: 1,2,3-(pyrogallol), 1,2,4- and 1,3,5-(phloroglucinol) and the 5-carboxy derivative of pyrogallol (gallic acid). For the three parent triols, an enthalpy of formation of -571 kJ mol$^{-1}$ would have been expected for the solids and -454 kJ mol$^{-1}$ in the gas phase by combining the appropriate OH/H increment exchange energy and the enthalpy of formation of benzene. Good agreement is found for the gas phase for the 1,3,5-isomer in which there are no unfavorable resonance structures or interhydroxylic interactions. The decreased stability for triols with o-hydroxyl groups (as also observed in the parent diols) is shown by the ca 10 kJ mol$^{-1}$ successive increase in enthalpies of formation of gaseous 1,2,4- and 1,2,3-benzenetriol.

In order to better understand the hydroxyl interactions in the triols, they can be compared with their methylated counterparts, the trimethoxybenzenes (equation 25).

\[C_6H_3(OH)_3 + 3 \text{PhOMe} \rightarrow C_6H_3(\text{OMe})_3 + 3 \text{PhOH} \] \hspace{1cm} (25)

The reaction should be thermoneutral if there is no net difference, steric or electronic, upon replacing the phenolic hydrogen with a methyl group. From the enthalpies of formation of gas and solid phase trimethoxybenzenes83, the enthalpies of reaction are 9.7 kJ mol$^{-1}$ for the 1,2,3- and -4.0 kJ mol$^{-1}$ for the 1,3,5-benzenetriol in the gas phase. The solid phase reaction enthalpies are 1.9 kJ mol$^{-1}$ for the 1,2,3- and 0.4 kJ mol$^{-1}$ for the 1,3,5-isomer. The enthalpies of reaction per methyl replacement are one-third these values. All
of these, except for the gas phase value for 1,2,3-trimethoxybenzene, are indistinguishable from thermoneutrality once the experimental uncertainties are considered. From \textit{ab initio} geometry optimizations, the 1,3,5-trimethoxybenzene is shown to be a planar molecule, while its 1,2,3-isomer is nonplanar33. The slight endothermicity for the latter’s reaction suggests a planar triol converted to a nonplanar triether.

3-Methoxycatechol, after exchanging two hydrogens of methoxybenzene (anisole) for hydroxyls, would be expected to have enthalpies of formation of (s) -534.5 and (g) -425.9 kJ mol$^{-1}$. The estimated destabilization in the gas phase of \textit{ca} 7 kJ mol$^{-1}$ is almost twice that for catechol itself, as might be expected for two \textit{ortho} interactions in the tri-oxygenated derivative. The \textit{ca} 24 kJ mol$^{-1}$ calculated destabilization in the solid phase is also about twice that for catechol. Although the doubled destabilization of 3-methoxycatechol is not unreasonable, consider equation 26, now written for replacement of only one hydrogen with a methyl group:

\begin{equation}
C_6H_3(OH)_3 + \text{PhOMe} \rightarrow C_6H_3(OH)\text{OMe} + \text{PhOH} \quad (26)
\end{equation}

The enthalpies of reaction are (s) 3.5 kJ mol$^{-1}$ and (g) -12.8 kJ mol$^{-1}$. Although the solid phase reaction enthalpy is reasonable, the gas phase reaction enthalpy seems too exothermic, i.e. the gaseous enthalpy of formation of this compound, determined from its enthalpy of sublimation, is at least 13 kJ mol$^{-1}$ too negative.

A similar assessment can be made for 2,6-dimethoxyphenol and its methyl exchange reaction (equation 27):

\begin{equation}
C_6H_3(OH)_3 + 2 \text{PhOMe} \rightarrow C_6H_3(OH)(\text{OMe})_2 + 2 \text{PhOH} \quad (27)
\end{equation}

There are data only for the solid phase, but the enthalpy of reaction, -42.1 kJ mol$^{-1}$, shows that the measurement56 of -518.4 kJ mol$^{-1}$ for 2,6-dimethoxyphenol must be inaccurate.

With regard to gallic acid, the expected enthalpy of formation value is -995 kJ mol$^{-1}$. The difference between its measured and estimated enthalpy of formation is similar to the difference for \textit{p}-hydroxybenzoic acid.

\textbf{V. ARENOLQUINONES}

The enthalpies of formation of arenolquinones appear in Table 8. In reviewing the data there and in Table 1, note the identical solid phase enthalpies of formation of 1,4-naphthoquinone and 9,10-anthraquinone and the identical solid phase enthalpies of formation of 5,8-dihydroxy-1,4-naphthoquinone and 1,4-dihydroxy-9,10-anthraquinone. These

\begin{table}[h]
\centering
\caption{Enthalpies of formation of arenolquinones (kJ mol$^{-1}$)}
\begin{tabular}{llll}
\hline
Compound & Solid & Gas & Reference \\
\hline
5,8-Dihydroxy-1,4-naphthoquinone & -595.8 ± 2.1 & -499.1 ± 3.2 & 15 \\
9,10-Anthraquinone & & & \\
2-hydroxy & -453.1 & — & 14 \\
1,2-dihydroxy (alizarin) & -590.3 & — & 14 \\
1,4-dihydroxy & -595.1 ± 2.1 & -471.0 ± 2.3 & 15 \\
1,2,4-trihydroxy & -786.1 & — & 14 \\
1,2,3,5,6,7-hexahydroxy & -1426.3 & — & 14 \\
\hline
\end{tabular}
\end{table}
values have been recalculated from the original enthalpy of combustion data from the sources cited. We are confident the data are accurate as reported in the most recent reference cited in Tables 1 and 8, because the enthalpy values of combustion data for these compounds are virtually identical to the results reported for the identical compounds in Reference 14 from 1925.

The simplest compounds which are both quinones and arenols are the hydroxynaphtoquinones. However, the only one of the many possible isomers which has been thermochemically characterized is 5,8-dihydroxy-1,4-naphthoquinone. OH/H increment exchange energies calculated for 1,4-dihydroxynaphthalene, rather than the OH/H increment exchange energies derived from phenol, are used to assess the relative stability of the dihydroxyquinone so that any hydroxyl substituent interactions on the aromatic ring parents cancel. Reaction 28 is mathematically equivalent to generating an increment exchange energy for two \(p \)-hydroxyl groups substituted on naphthalene as from equation 6, and then adding the increment to the enthalpy of formation of the naphthoquinone parent.

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{O} & \quad \text{O} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

\[
\text{O} \quad \text{O} \\
\text{O} \quad \text{O}
\]

(28)

In the solid phase, the enthalpy of reaction 28 is a modest \(-12 \text{ kJ mol}^{-1}\), but in the gaseous phase it is the extremely large \(-53.9 \text{ kJ mol}^{-1}\), indicating significant stabilization. There may be dipolar resonance contributing structures and strong intramolecular hydrogen bonding between each pair of OH/C=O substituents on the peri positions which stabilize the \(p \)-hydroxylated \(p \)-quinone.

There are various hydroxy-9,10-anthraquinones for which thermochemical data exist, mainly in the solid phase. The 1,2- and 1,4-dihydroxy isomers have nearly identical enthalpies of formation. The difference between their enthalpies of formation, and the fact that the 1,4-isomer is more stable, is consistent with the enthalpy differences and relative stabilities of the similarly substituted 1,2- and 1,4-naphthalenediols. Although there are no hydroxy anthracenes with which to compare any of these compounds, we can estimate their enthalpies of formation by adding the OH/H increment exchange energy from a correspondingly substituted naphthalene to the enthalpy of formation of anthracene. The estimated enthalpies of formation for the mono- and di-substituted anthracenes are: 2-hydroxy (s), \(-72.9\); 1,2-dihydroxy (s), \(-258.5\); 1,4-dihydroxy (s), \(-266.1\); and 1,4-dihydroxy (g), \(-116.4 \text{ kJ mol}^{-1}\). The 1,2,4-trihydroxyanthracene solid enthalpy of formation \((-458 \text{ kJ mol}^{-1})\) is estimated from a 1,2,4-(OH/H) increment generated as the average of two increments obtained either by summing the para-OH/H increment and one-half
the ortho-OH/H increment or by summing the ortho-OH/H increment and one-half the para-OH/H increment. The 1,2,3,5,6,7-hexahydroanthracene solid enthalpy of formation (−1034 kJ mol\(^{-1}\)) is derived from 2(1.5) ortho-OH/H increments. The enthalpies of reaction 28, recast for the anthracenes instead of the naphthalene, are now discussed in order of increasing ‘perplexity’.

The 1,4-dihydroxy-9,10-anthraquinone is the only compound for which there are both solid and gaseous enthalpies of formation and for which the solid enthalpy of formation has been independently measured twice and the results found to be indistinguishable. The enthalpies of the recast reaction 28 are \(-11.3\) (s) and \(-48\) kJ mol\(^{-1}\) (g) which are essentially identical to the correspondingly substituted naphthalenes. The enthalpy of the recast reaction 28 for solid 1,2-dihydroxy-9,10-anthraquinone is \(-14.1\) kJ mol\(^{-1}\), a result which is consistent with the two previously derived. The stabilization in the solid phase exhibited by these three compounds evidently is not solely dependent on two [OH ••• C=O] intramolecular hydrogen bonds, since the 1,2-dihydroxy derivative has only one such interaction. The enthalpy of reaction 28 for solid 1,2,4-trihydroxy-9,10-anthraquinone is \(-10.4\) kJ mol\(^{-1}\), again consistent with the others in the solid phase. The solid enthalpies of reaction 28 for 2-hydroxy-9,10-anthraquinone and 1,2,3,5,6,7-hexahydroxy-9,10-anthraquinone are \(-62.5\) and \(-74.6\) kJ mol\(^{-1}\), respectively. While these values are compatible with each other, they resemble the gas phase reaction enthalpies, not the solid phase ones. This excessive calculated stabilization in the solid phase is inexplicable, regardless of the method of generating increment exchange energies. The enthalpies of formation of the two quinones are 40–60 kJ mol\(^{-1}\) more negative than we would expect.

VI. TAUTOMIC ARENOLS

A. Obstacles and Opportunities

Clarifying the subsection title, we say ‘obstacles’ because any significant presence of tautomers complicates the interpretation of the measured values. We say ‘opportunities’ because two substances may be understood for the experimentally measured price of one. The enthalpies of formation of the tautomeric arenols appear in Table 9.

B. Unsubstituted Arenols

The archetypal arenol, phenol, has two cyclohexadienone tautomers. Although interesting in their own right, we ignore the latter two species and the difference between their enthalpies of formation and that of the more stable and isolable phenol. We likewise ignore the various tautomers of 1- and 2-naphthol because only these arenols, and not their keto isomers, are isolable. The anthrols and their corresponding anthrone tautomers are of interest, however, because for the 9-isomer, both tautomers are isolable. From this earliest study, it has been known that 9-anthrone is the more stable tautomer and perhaps because of its greater stability, it alone has had its enthalpy of formation determined calorimetrically. Through the decades, solvent effects on the enthalpy of formation difference between 9-anthrene and 9-anthrol have been measured. Derived as a limiting result from the solvated species, it has been suggested that the 9-anthrene tautomer is favored by \(23 \pm 8\) kJ mol\(^{-1}\). We thus obtain the enthalpy of formation of gaseous 9-anthol as \(45\) kJ mol\(^{-1}\) as discussed in Section II. From the discussion of the isomeric naphthalenes, their gas phase enthalpies of formation are nearly equal and the hydroxy exchange reaction is almost thermoneutral. Thus the OH/H increment exchange reaction
between anthracene and either benzene (equation 29) or naphthalene (equation 30) should be nearly thermoneutral as well:

\[
\begin{align*}
C_{14}H_{10} + \text{PhOH} & \rightarrow 9-C_{14}H_{9}OH + C_6H_6 \\
C_{14}H_{10} + 2-\text{NpOH} & \rightarrow 9-C_{14}H_{9}OH + C_{10}H_8
\end{align*}
\] (29) (30)

From these, we conclude that the gas phase enthalpy of formation of 9-anthrol should be 52 kJ mol\(^{-1}\) and 51 kJ mol\(^{-1}\), respectively, in good agreement with the estimation above, and far less negative than that measured for the tautomeric 9-anthrone.

C. Nitrosophenols and Nitrosonaphthols (Quinone Oximes)

The \(o\)- and \(p\)-nitrosophenols are tautomeric with \(o\)- and \(p\)-benzoquinone oxime, respectively. Some of the nitrosonaphthols are tautomers of naphthoquinone oximes. A recent publication summarizes the current knowledge of tautomeric equilibria in solution, the composition of the solid phase and the results of theoretical studies\(^\text{92}\). While tautomeric composition in solution is very much dependent on compound structure and solvent polarity, various nitrosophenols, 2-nitrosonaphthol, 1-nitroso-2-naphthol and 4-nitrosonaphthol exist exclusively as quinone oximes in the solid state.

Of the nitrosophenols/benzoquinone oximes, only one compound has been thermochemically studied and in only one phase, solid 4-nitrosophenol/\(p\)-benzoquinone oxime\(^\text{14}\). We welcome a new thermochemical investigation of this species, the 2-nitrosophenol, as well as of the \(m\)-isomer for which no oxime ‘contamination’ or ambiguity is possible because of the absence of stable \(m\)-benzoquinones and related derivatives.

The archival enthalpies of combustion for three nitrosonaphthol (naphthoquinone oxime) isomers are from a rather contemporary paper\(^\text{93}\), while the earlier ones (reported
over 40 years before14 are not referenced in our archival source. In the solid phase, the differences between the reported solid phase enthalpies of formation range from 5–40 kJ mol−1. Two of the three results are roughly consistent between the two references and the third is considerably dissonant. For comparison, the enthalpy of formation difference between the solid \(\alpha \)- and \(\rho \)-naphthoquinone parent isomers is \(\text{ca} \) 24 kJ mol−1194. The stability order is \(1,4 > 2,1 > 1,2 \)-naphthoquinone oxime. At least for the \(\rho \)-vs. the \(\alpha \)-isomers, the substituents are more accessible for intermolecular hydrogen bonding.

The solid phase enthalpies of formation are quite similar for the 2,1- and 1,2-compounds, but they have very different enthalpies in the gaseous phase due to the nearly 30 kJ mol−1 difference in their enthalpies of sublimation. The enthalpies of sublimation for 1-nitroso-2-naphthol, 4-nitroso-1-naphthol and 1,4-naphthoquinone are nearly the same. Recent \textit{ab initio} calculations92 show that the phenolic form is favored. The energy increase is in the order 2-nitrosonaphthol < 1-nitrosonaphthol < 4-nitrosonaphthol with a corresponding increase in the energy difference between the nitrosophenol and quinone oxime tautomers. However, there was no significant calculated difference between the 2-nitrosonaphthol/quinone oxime tautomers. Whatever the tautomeric form of these species, we would have expected the experimental measurements to show the gaseous 2,1- and 1,2-compounds as more stable than their 1,4-isomer because of the presence of an intramolecular hydrogen bond found solely in the first two. The measurement of the enthalpies of formation of some tautomerically frozen nitrosoarenols and their quinone oxime counterparts (e.g. O-methyl ethers) would be most welcome95.

D. Arylazo Derivatives of Phenol and the Naphthols

We now turn to arylazophenols and naphthols which may alternatively be described as benzo- and naphthoquinone phenylhydrazones. The structural ambiguities and resultant thermochemical problems which plagued us for nitrosoarenols return here but in a different way. We start with one of the archetypal species, \(\rho \)-phenylazophenol90. We have no isomer with which to compare the result, although based on earlier results in this study by the same author we are suspicious. The predicted enthalpy of formation using the condensed phase OH/H increment exchange enthalpy is \(\text{ca} \) 107 kJ mol−1, very different from the published value. From the same source we find the enthalpy of formation of 1-phenylazo-2-naphthol and 4-phenylazo-1-naphthol. These values are some 70 (±10) kJ mol−1 higher than that of the azophenol while the difference between the unsubstituted naphthols and phenol is \(\text{ca} \) 42 kJ mol−1 and between the benzo- and naphthoquinone, indistinguishable. Again from the same source we find a value for the enthalpy of formation of 1-\([\text{(2,4-dimethylphenyl)azo}]\)-2-naphthol which is 39 kJ mol−1 less than for the demethylated species. This difference is plausible in that the difference between the enthalpies of formation of solid benzene and the related dimethyl species, \(m \)-xylene, is 25 kJ mol−1. However, our comfort is marred because we know of another, highly disparate, calorimetric measurement for this same azonaphthol81.

With regard to the question of tautomers, the 1-phenylazo-2-naphthol/1,2-naphthoquinone phenylhydrazone equilibrium has been studied for a variety of substituted phenyl groups96. At least in CDCl\textsubscript{3} solution, the difference in stability is small (the parent compound favors the hydrazone by but 4.0 ± 0.3 kJ mol−1).

E. Ambiguous Arenepolyols

We close this section with a brief mention of 2,4-dinitrosobenzene-1,3-diol or 5-cyclohexene-1,2,3,4-tetrone-1,3-dioxime or yet some other tautomer studied as a solid
almost 100 years ago. Is the cited enthalpy of formation plausible? Equation 31 is exothermic by 15 kJ mol$^{-1}$.

![Chemical diagram](image)

Equation 31

Admitting considerable ambiguity as to the nature of the phenol and the diol and to an understanding of solid phase reactions, and doubting that the substituents are independent of each other, the result is not unreasonable. For comparison, the related ‘nitro’ reaction 32 is endothermic by 36 kJ mol$^{-1}$.

![Chemical diagram](image)

Equation 32

We do not know how endothermic or exothermic the deoxygenated dinitroso reaction 33 is because the enthalpies of formation of nitrosobenzene (as solid monomer) and 1,3-dinitrosobenzene are not available.

![Chemical diagram](image)

Equation 33

However, the corresponding dinitro reaction is endothermic by 13 kJ mol$^{-1}$. And yes, this is our phenol answer for this chapter as well as section therein.
VII. REFERENCES AND NOTES

4. In the few cases where enthalpies of vaporization are needed, but not available from experiment, we use the estimation approach given in J. S. Chickos, D. G. Hesse and J. F. Liebman, J. Org. Chem., 54, 5250 (1989).

5. Where needed, the enthalpy of fusion will be obtained from J. S. Chickos, W. E. Acree, Jr. and J. F. Liebman, J. Phys. Chem. Ref. Data, 28, 1535 (1999). Strictly, use of these fusion enthalpies are estimates. The quantities should be corrected to 298 K from the melting point. However, the error is generally small because changes in heat capacities of solids and liquids as functions of temperature are generally small.

3. Thermochemistry of phenols and related arenols

34. Reaction calorimetry provides useful insights here even if direct enthalpy of formation measurements are absent. Liquid phase isomerization of the o- to p-tert-butylphenol has been shown to be exothermic by 16.9 ± 1.6 kJ mol⁻¹ [T. N. Nesterova, S. P. Verevkin, T. N. Malova and V. A. Pı’ıșchikov, *Zh. Prikl. Khim.*, 58, 827 (1985); *Chem. Abstr.*, 103, 159918x (1985)] while the p- to m-isomerization in both the liquid and gas phase is exothermic by ca 1 kJ mol⁻¹ [cf. V. A. Pı’ıșchikov, T. N. Nesterova and A. M. Rozhnov, *J. Appl. Chem. USSR*, 54, 1765 (1981); *Chem. Abstr.*, 96, 68487b (1982) and S. P. Verevkin, *Termođin. Organ. Soedin.*, 67 (1982); *Chem. Abstr.*, 99, 157694k (1983), respectively]. The only disquieting note is that the enthalpies of formation (cf. Reference 6) of *m*- and *p*-tert-butyltoluene are −54 ± 2 and −57 ± 2 kJ mol⁻¹, which suggests the para-isomer is more stable, unlike the case for most other dialkylated benzenes.

48. The enthalpies of sublimation are from H. Hoyer and W. Peperle, *Z. Electrochem.*, 64, 772 (1906).

61. We find $-23.3 \pm 0.5 \text{kJ mol}^{-1}$ from direct measurement of isomerization enthalpy, from E. Taskinen and N. Lindholm, *J. Phys. Org. Chem.,* 7, 256 (1994), and 20.1 $\pm 1.9 \text{kJ mol}^{-1}$ from the difference between enthalpies of hydrogenation of allyl benzene, $-126.0 \pm 0.8 \text{kJ mol}^{-1}$, from D. W. Rogers and F. J. McLafferty, *Tetrahedron,* 27, 3765 (1971) and (E)-1-propenylbenzene, $-105.9 \pm 1.7 \text{kJ mol}^{-1}$, from J.-L. M. Abboud, P. Jiménez, M. V. Roux, C. Turrión, C. Lopez-Mardomingo, A. Podosenin, D. W. Rogers and J. F. Liebman, *J. Phys. Org. Chem.,* 8, 15 (1995).
64. This was discussed earlier in a ‘Patai’ chapter on general sulfonic acid thermochemistry, J. F. Liebman, in *The Chemistry of the Sulphonic Acids, Esters and their Derivatives* (Eds. S. Patai and Z. Rappoport), Wiley, Chichester, 1991, p. 283.
70. See the discussion of the difficulties of enthalpy of formation measurements of fluorinated species in A. J. Head and W. D. Good, in *Combustion Calorimetry* (Eds. S. Sunner and M. Mansson), Pergamon, Oxford, 1979. Complications include corrosion of the calorimeter, inadequate mixing of the solution formed from combustion (a uniform final aqueous solution of HF is required) and the formation of any perfluorocarbon during combustion.
83. M. A. R. Matos, M. S. Miranda and V. M. F. Morais, *J. Phys. Chem. A,* 104, 9260 (2000). The gas phase dimethoxybenzene enthalpy of formation values are (kJ mol$^{-1}$): -202.4 ± 3.4 (o-), -221.8 ± 2.4 (m-), -211.5 ± 3.0 (p-).
3. Thermochemistry of phenols and related arenols

94. This number is derived from the measurements found in Reference 14. The value for the 1,4-isomer is within 2 kJ mol$^{-1}$ from that found in contemporary Reference 15.
CHAPTER 4

Mass spectrometry and gas-phase ion chemistry of phenols

DIETMAR KUCK

Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
e-mail: dietmar.kuck@uni-bielefeld.de

I. INTRODUCTION 260

II. GASEOUS RADICAL CATIONS DERIVED FROM PHENOLS:
THERMOCHEMISTRY OF SOME TYPICAL SPECIES AND
REACTIONS .. 261

III. UNIMOLECULAR FRAGMENTATION REACTIONS OF PHENOL
RADICAL CATIONS 263
A. Loss of CO from Simple Phenol Radical Cations 263
B. Fragmentation of Alkylphenols 265
C. Fragmentation of Di- and Trihydroxylated Benzenes and Alkylbenzenes 270
D. The Phenoxy Cation (‘Phenoxenium Ion’) and the Hydroxyphenyl
Cations .. 273

IV. THE EFFECT OF THE HYDROXYL GROUP ON THE REVERSIBLE
INTRAMOLECULAR HYDROGEN TRANSFER IN IONIZED PHENOLS 277

V. ORTHO EFFECTS IN SUBSTITUTED PHENOLS 280

VI. SECONDARY FRAGMENTATION REACTIONS OF PHENOL
RADICAL CATIONS 289

VII. MISCELLANEOUS FRAGMENTATIONS OF PHENOL RADICAL
CATIONS ... 290

VIII. CHEMICAL IONIZATION MASS SPECTROMETRY OF PHENOLS 291

IX. IONIZED PHENOL AND CYCLOHEXA-1,3-DIEN-5-ONE
(ortho-ISOPHENOL) GENERATED BY FRAGMENTATION
OF PRECURSOR IONS 298
A. The Radical Cations of ortho-Isophenol 298
B. Phenol Ions Generated within Transient Ion/Neutral Complexes during
Mass Spectrometric Fragmentation of Alkyl Aryl Ethers 300
C. Allylphenols and Allyl Phenyl Ethers 301

The Chemistry of Phenols. Edited by Z. Rappoport

259
I. INTRODUCTION

Phenols are electron-rich, polar, and acidic aromatic compounds. Therefore, the chemical behaviour of phenolic ions in the gas phase, and the mass spectrometric information resulting from it, are characterized by the relatively facile formation of stable but nevertheless reactive radical cations, protonated and cationized molecules, and more complex ionic adducts. For the same reasons, the gas-phase chemistry of phenolate anions and other negative ions derived from phenols is multifold and negative ion mass spectrometry is more extended for phenols than for many other classes of organic compounds. Phenols are important compounds in the chemistry of natural compounds but also in applied chemistry, including lignins and polyesters. Phenolic compounds, including chlorinated derivatives, represent omnipresent environmental pollutants. Design and synthesis of phenol-based compounds for supramolecular chemistry, such as the calixarenes, has recently inspired researchers to investigate the chemistry of gaseous ionic complexes and clusters of various types.

Remarkably, however, textbooks on mass spectrometry hardly comprise the multifaceted aspects of the gas-phase ion chemistry of phenols and of their consequences for the characteristics of the mass spectra of phenolic compounds\(^1,2\). A great many insights into the fundamentals and developments for analytical applications have been collected during the past four decades or so, and research is actively continued in this field. As a special circumstance, a number of phenolic compounds play a crucial—and yet not completely understood—role as energy-transferring media and protonating reagents in an extremely important, ‘modern’ ionization method of mass spectrometry, viz. matrix-assisted laser desorption/ionization (MALDI)\(^3,4\).

This review article is intended to cover the above-mentioned topics by presenting and discussing selected examples of each of them. Although—or maybe because—mass spectrometry is mainly considered an analytical tool, emphasis is put on the gas-phase ion chemistry of phenolic species occurring in the mass spectrometer and in the dilute gas phase\(^5\). The archetypical fragmentation behaviour of phenol derivatives under electron ionization (EI) will be explained with respect to its chemical origins as will be the reactions of protonated and deprotonated phenols under the conditions of chemical ionization (CI) and related techniques. Bimolecular reactions of positively and of negatively charged phenolic ions will also be treated in some detail. Selected examples for analytical applications will be illustrated and the discussion on the role of phenolic matrices in MALDI mass spectrometry will be briefly highlighted in the final section of this review.
II. GASEOUS RADICAL CATIONS DERIVED FROM PHENOLS:
THERMOCHEMISTRY OF SOME TYPICAL SPECIES AND REACTIONS

Ionization of phenol (IE = 8.5 eV) and simple alkylphenols by removal of a single electron leads to the corresponding radical cations and requires energies in the range of 8.5–7.8 eV (i.e. 195–180 kcal mol\(^{-1}\) \(\approx\) 820–750 kJ mol\(^{-1}\))\(^7\). The presence of the hydroxyl group at the benzene or a simple alkylbenzene ring decreases its ionization energy by \(\Delta I E = -(0.75–0.5)\) eV and the second OH group in the dihydroxybenzenes still contributes another \(\Delta I E\) of \(-(0.5–0.3)\) eV. In the presence of an electron-withdrawing ring substituent, such as NO\(_2\), the effect of the OH group is equally strong as in benzene itself (\(\Delta I E \approx -0.75\) eV). Thus, in the absence of other electron-rich or electropositive substituents or structural units, the molecular ions of phenolic compounds will bear the positive charge preferentially at the oxygenated arene nucleus.

The ease of addition of a hydrogen atom by, say, an intramolecular hydrogen rearrangement from an H\(^+\) donor group to a phenolic radical cation depends on the position of the acceptor site on the ring, since a protonated phenol results (Scheme 1). Thus, the local hydrogen atom affinities (HA) of the ring positions of phenolic radical cations influence their reactivity. The local HA values can be calculated from the thermochemistry of the corresponding ions, e.g. \(1^{++}\) and \(1 + H^+\). The thermochemical relations between the (gaseous) neutral molecule, \(1\), its molecular cation \(1^{++}\) and its most important tautomer, \(\sigma^2^{++}\), as well as of the various protonated conjugate \(1 + H^+\) ions, are displayed in Scheme 1. A ladder of heats of formation (\(\Delta H_f\)) is also included. From these data, it is evident that, for example, if \(H^+\) to the radical cation \(1^{++}\) at its \(\sigma^2\) position is exothermic by \(-HA_{(\sigma)} = -78\) kcal mol\(^{-1}\) but only by \(-HA_{(\sigma)} = -65\) kcal mol\(^{-1}\) at the hydroxy group.

Protonation of phenols is governed by the relative energy-rich highest occupied molecular orbitals. The electronic structure of phenols gives rise to increased gas-phase basicities (GB) and proton affinities (PA) as compared to benzene. The experimentally determined gas-phase basicity of the parent compound is \(GB(1) = 188\) kcal mol\(^{-1}\) = 786 kJ mol\(^{-1}\), that is, by \(\Delta GB = +14.5\) kcal mol\(^{-1}\) = +61 kJ mol\(^{-1}\) higher than that of the hydrocarbon (Table 1)\(^7\). The first experimentally determined value for the proton affinity of phenol was found to be \(PA(1) = 195.0\) kcal mol\(^{-1}\)\(^10\). However, it is important to note that protonation of phenol in the gas phase occurs with a strong preference at the ring positions para to the hydroxy functionality, rather than on the oxygen atom\(^10,11\). Early \(ab\) initio calculations already suggested a good correlation of the stabilizing or destabilizing effect of electron-releasing and electron-withdrawing substituents on a protonated benzene ring (benzenium ion) with \(\sigma^+\) values\(^11\). An OH group para to the protonation site was calculated to render the ion more stable by \(\Delta PA = 16.0\) kcal mol\(^{-1}\) than the parent benzienium ion, whereas a meta-OH group was suggested to destabilize the ion by \(\Delta PA = -5.3\) kcal mol\(^{-1}\). However, the calculated gas-phase stabilization by the \(p\)- and \(m\)-OH groups was found to fall somewhat short of the value predicted on the basis of a linear free-energy correlation for protonation in solution, pointing to the additional stabilization gained by hydrogen bonding of the OH proton(s) to solvent molecules in the condensed phase\(^11,12\).

Phenols are lucid examples for aromatic compounds displaying several protonation sites with individual ‘local’ proton affinities and gas-phase basicities. To date, an impressively large set of local \(PA\)’s has been determined for simple aromatic compounds by combined experimental and computational\(^10,13\) and, more recently, purely computational techniques\(^14,1\)\(^5\), and selected examples for simple phenol derivatives are collected in Table 1. For example, \(PA(1) = 195.5\) kcal mol\(^{-1}\) = 817 kJ mol\(^{-1}\) reflects the negative enthalpy change associated with the addition of a proton to the para position. The other ring sites of phenol display significantly lower proton affinities, e.g. the meta
\[\text{OH} \quad (\text{I}) \quad \xrightarrow{-e^-} \quad \text{+IE} = 8.47 \text{ eV} \quad \xrightarrow{\Delta H_{\text{iso}}} \quad \text{O} \quad (\text{I}^{*+}) \]

\[\Delta H_f [\text{kcal mol}^{-1}] \]

\[+200 \quad o-2^{*+} \quad (\sim +198)\]

\[+180 \quad [\text{I} + \text{H}_2^+]_{(o)} \quad (+181)\]

\[+160 \quad [\text{I} + \text{H}_2^+]_{(m)} \quad (+163)\]

\[+140 \quad [\text{I} + \text{H}_2^+]_{(o)} \quad (+160)\]

\[-20 \quad [\text{I} + \text{H}_2^+]_{(i)} \quad (+149)\]

\[-180 \quad [\text{I} + \text{H}_2^+]_{(p)} \quad (+147)\]

\[\Delta H_{\text{iso}} \]

\[\text{HO} \quad \xrightarrow{\text{OH}} \quad \text{H}_2\text{O}\]

\[\text{PH} \quad \xrightarrow{\text{PA}} \quad \text{PA} \quad \Delta H_{\text{iso}} \]

\[\text{SCHEME 1}\]

TABLE 1. Proton affinities (PA), gas-phase basicities (GB) and local proton affinities of phenol, toluene and para-cresol (in kcal mol\(^{-1}\))

<table>
<thead>
<tr>
<th>Compound</th>
<th>Position of H(^+)</th>
<th>Phenol PA (GB)</th>
<th>Toluene PA ((\Delta PA)) vs. benzene</th>
<th>para-Cresol PA ((\Sigma \Delta PA)) vs. benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>(experimental)</td>
<td>195.3 (187.9)</td>
<td>+16.0</td>
<td>187.4 (+8.1)</td>
<td>(unknown)</td>
</tr>
<tr>
<td>para</td>
<td>195.5</td>
<td>+16.1</td>
<td>187.3 (+8.0)</td>
<td>195.1 (+15.8)</td>
</tr>
<tr>
<td>meta</td>
<td>179.9</td>
<td>+0.6</td>
<td>182.9 (+3.6)</td>
<td>185.4 (+7.5)</td>
</tr>
<tr>
<td>ortho</td>
<td>193.0</td>
<td>+13.7</td>
<td>186.2 (+6.9)</td>
<td>195.6 (+17.3)</td>
</tr>
<tr>
<td>ipso</td>
<td>162.2</td>
<td>−17.1</td>
<td>179.9 (+0.6)</td>
<td>—</td>
</tr>
<tr>
<td>OH</td>
<td>182.7</td>
<td>+3.4</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

\[a\] For references, see text.
positions and the OH group are by $\Delta PA(1)_{\text{meta}} = -15.6$ kcal mol$^{-1}$ and by $\Delta PA(1)_{O} = -12.8$ kcal mol$^{-1}$, respectively, less strong H$^+$ binding sites, as calculated by ab initio methods14,15. Notably, early ICR mass spectrometric experiments using the ‘bracketing’ technique had already shown that the hydroxyl group is by 13–20 kcal mol$^{-1}$ less strong a base than the ring13.

A remarkable feature of the local proton affinities scales of simple arenes is the additivity of the substituent effects on the local PA values, as revealed for the first time by experiment for the methylbenzenes16. Computational approaches have confirmed the additivity rules. Thus, the ‘overall’ PA values and also the local PA values of the isomeric cresols and dihydroxybenzenes have been predicted by ab initio methods. The case of para-cresol is included in Table 1. Protonation ortho to the hydroxyl group (and meta to methyl) is calculated to be most favourable and protonation para to the hydroxy group (and ipso to methyl) is almost as favourable, in accordance with the additivity of the incremental contributions of an OH and a CH$_3$ substituent to $PA(1)$. Protonation of para-cresol meta to the hydroxy and ortho to the methyl group is less favourable by ca 10 kcal mol$^{-1}$, again in agreement with incremental additivity (Table 1). Remarkably, and again in line with its negligible effect in ipso-protonated toluene, the methyl substituent of para-cresol does not affect the proton affinity of the methyl-substituted site: Protonation para to the OH group is still very favourable. Within the same scheme, the most basic sites of ortho-cresol and meta-cresol are predicted to be C-4 in each case: PA (o-cresol) \approx 198 kcal mol$^{-1}$ and PA (m-cresol) \approx 201 kcal mol$^{-1}$. Hence, although the proton affinities (and gas-phase basicities) of the cresols and related simple phenols are not known experimentally to date, the available data allow us to estimate these important thermodynamic properties for these and many other phenol derivatives.

It may be also mentioned here that, in contrast to protonated benzene and the protonated alkylbenzenes6,17, the 1,2-shift of protons (H$^+$ ring walk) in protonated phenols is rather energy demanding. This is due to the large differences between the thermochemical stabilities of the tautomeric forms of ions [1 + H]$^+$. Thus, both intramolecular and intermolecular protonation of phenolic rings mostly occurs with high regioselectivity. As a consequence, the unimolecular fragmentation of alkylphenols is subject to pronounced substituent effects, and the bimolecular H/D exchange with deuteriated acids in the gas phase may be used to determine the number of basic ring positions and thus the position of the substituents at the ring (see below).

III. UNIMOLECULAR FRAGMENTATION REACTIONS OF PHENOL RADICAL CATIONS

A. Loss of CO from Simple Phenol Radical Cations

The hydroxyl group in the radical cations of phenols strongly facilitates the formation of transient intermediates and fragment ions whose structures correspond to ionized or protonated cyclohexadienones, quinomethanes or quinones. This is already evident for the most characteristic fragmentation path of the parent phenol radical cation 1$^+$, viz. the expulsion of carbon monoxide, producing C$_5$H$_6$$^+$ ions with m/z 66 (Scheme 2). Very early, this reaction was found to release significant amount of the ions’ internal energy as kinetic energy (‘kinetic energy release’, T_{kin}), as indicated by a broadened, flat-topped signal for the dissociation of the metastable ions18,19. Although the cyclic form 3 is generally assumed to be the product, it has been found by charge stripping (CS) mass spectrometry that C$_5$H$_6$$^+$ ions formed from 1 within the ion source, i.e. from short-lived, high-energy ions 1$^+$, consist of a mixture of ions containing mainly acyclic isomers20. By contrast, long-lived, metastable ions 1$^+$ generate exclusively the cyclic isomer, ionized cyclopentadiene 3$^+$. Subsequent loss of H$^+$ giving C$_5$H$_5$$^+$ ions 4 is a common secondary fragmentation.
The observation of the [M – 28]⁺⁺ ions and the accompanying fragments [M – 29]⁺⁺ is typical for 1⁺⁺ and ionized phenols, naphthols etc., which bear additional functional groups attached directly at the ring, provided that less energy-demanding channels are absent.

Loss of CO from the parent ions 1⁺⁺ is the least energy-demanding fragmentation path but it requires as much as 3.1 eV to occur fast enough to contribute to the normal EI mass spectrum, i.e. to ion formation within the ion source, and still ca 2.4 eV to occur after acceleration, i.e. in the metastable ions. (The difference reflects a large part of the so-called kinetic shift of the fragmentation.) Thermochemically, however, the overall process is endothermic by only 1.3 eV (29.6 kcal mol⁻¹); hence the formal 1,3-H shift in ions 1⁺⁺, generating ionized cyclohexadienone o-2⁺⁺, is considered the energy- (and rate-) determining step. Ions o-2⁺⁺ lie in an energy minimum which has been estimated to be by ΔHᵤₒₓ ≈ 25 kcal mol⁻¹ above that of ions 1⁺⁺ (Scheme 1). Ring contraction to the distonic ions 6 and/or the eventual expulsion from those involve another relatively high activation barrier. This is reflected in part by the release of kinetic energy during the expulsion of CO (ca 120 meV ≈ 2.8 kcal mol⁻¹). In fact, the reverse reaction, i.e. the addition of CO to the cyclopentadiene radical cation 3⁺⁺, should be

SCHEME 2

associated with a considerable activation barrier. In fact, the reverse activation energy of the CO loss from ions 1^{++} has been experimentally determined to be as high as 1.64 eV (37.8 kcal mol$^{-1}$)23,24. The formation of the \textit{ortho}-isophenol ions $o\text{-}2^{++}$ in competition to that of ions 1^{++} will be discussed in Section IX.

More details of the multistep mechanism leading to loss of CO deserve notice. For example, it appears questionable whether the ring contraction to ions 6 occurs in a concerted manner or via the intermediate ring-opened form 5^{+}. In contrast, a stepwise mechanism via the ipso tautomer of 1^{++}, viz. ions $i\text{-}2^{+}$, involving two sequential 1,2-H shifts appears unlikely in view of the remarkably low thermochemical stability of the protonated ipso-tautomer $[1 + \text{H}]^+$ (Table 1). The gas-phase ion chemistry of ions $o\text{-}2^{++}$, representing ionized \textit{ortho}-isophenol in analogy to \textit{ortho}-isotoluene25, the corresponding \textit{ortho}-tautomer of ionized toluene in the C$_7$H$_8^{++}$ series, has been explored in much detail (Section IX.A).

\section*{B. Fragmentation of Alkylphenols}

If an aliphatic or alicyclic group is attached to the phenol ring, another typical, and in fact extremely frequent fragmentation channel is opened, viz. the benzylic cleavage (Scheme 3)26,27. This is particularly facile when the aliphatic group is positioned \textit{ortho} or \textit{para} to the phenolic hydroxyl group, allowing for the formation of thermodynamically stable \textit{para}- and \textit{ortho}-hydroxybenzylic cations $p\text{-}9$ and $o\text{-}9$. In the simplest case, loss of H$^+$ occurs from the molecular ions of \textit{para}-cresol ($p\text{-}7^{+}$) and \textit{ortho}-cresol ($o\text{-}7^{+}$) with particular ease giving ions $p\text{-}9$ and $o\text{-}9$, respectively, which represent the [M + H]$^+$ ions of \textit{para}- and \textit{ortho}-quinomethane. Correspondingly, the radical cations of higher alkylphenols and the related functionalized hydroxybenzyl derivatives8 lose the alkyl radical R’ or the functional group (e.g. a carboxyl radical) generating the stable hydroxybenzyl ions 9. Among these, the \textit{meta}-isomer $m\text{-}9$ is significantly less stable and the tendency to generate the ring-expanded hydroxytropylium ion 10 during the fragmentation is increased.

Phenols containing α-branched side chains undergo the benzylic cleavage reaction with particular ease, since secondary benzylic ions $\alpha\text{-}\text{HOC}_6\text{H}_5\text{CH}_2\text{R}$ and $p\text{-HOC}_6\text{H}_4\text{CH}_2\text{R}$, representing β-protonated hydroxystyrenes, are even more stable than primary ones. This allows reliable structural assignments, as shown for the mixture of six isomeric 2- and 4-(sec-octyl)phenols generated by octylation of phenol28. The same holds for tert-alkylphenols, which generate $\text{HOC}_6\text{H}_4\text{C}^+\text{RR}^\prime$ ions. However, note that ionized higher \textit{meta}-alkylphenols frequently undergo another, quite characteristic fragmentation reaction involving unimolecular hydrogen migration (see below).

For the reasons outlined above, the mass spectrometric fragmentation of cycloalkyl-substituted phenols, such as 2- and 4-hydroxyphenylcyclohexane $o\text{-}11$ and $p\text{-}11$29, is also governed by the favourable benzylic cleavage. However, this initial rupture of a benzylic C–C bond in ions $p\text{-}11^{++}$ does not give rise to the direct formation of fragments. Rather, the isomeric distonic ion $p\text{-}12$ thus formed suffers subsequent isomerization, such as 1,5-H$^+$ transfer processes generating the conventional radical-cations $p\text{-}13b^{+}$ and $p\text{-}13a^{+}$ which, eventually, dissociate by benzylic and vinylogous benzylic C–C bond cleavages to give $p\text{-}9$ and 14, respectively (Scheme 4). The corresponding peaks at m/z 107 and m/z 133 reflect the major part of the in-source fragmentation of $p\text{-}11$ under EI conditions. The formation of ionized hydroxystyrene (C$_9$H$_8$O$^+$, m/z 120) by loss of 56 Th represents another characteristic path starting from ions $p\text{-}12$. Owing to similar electronic factors, the same fragmentation pathways operate in the radical ions of the \textit{ortho}-isomer $o\text{-}11^{++}$ and its mass spectrum is similar to that of $p\text{-}11^{++}$ (Scheme 5).
The facile, albeit hidden, benzylic cleavage is more important than generally recognized and potentially relevant in the fragmentation of many benzoannelated alicyclic compounds bearing phenolic hydroxyl groups. Estrogenic steroids, which contain a phenolic A ring, are prone to undergo this type of isomerization prior to fragmentation. Thus, the major primary fragmentation of ionized estradiol $^{15+}$, that is, dismantling of the D ring by loss of $C_3H_7O^+$, may be triggered by initial benzylic cleavage giving the distonic ion 16, which opens a multistep isomerization path via 17 to 18, rather than by remote cleavage occurring in non-aromatic steroids (Scheme 6). Admittedly, it may be difficult to differentiate between the two valence-isomeric fragmentation ions 19 and 20.

Alkylphenols containing the alkyl group in the meta position to the hydroxy functionality exhibit a highly characteristic fragmentation behaviour under EI conditions, which allows us to distinguish them easily from their para- and ortho-isomers. The reaction represents a special case of the McLafferty reaction, giving rise to the elimination of an alkene (or analogous unsaturated neutrals) through rearrangement of a hydrogen atom from the γ position relative to the aromatic nucleus (Scheme 7). In the case of the radical ions of 3-alkylphenols, such as $^{21+}$ bearing at least one γ-H atom, the radical cations of...
SCHEME 4
3-hydroxy- and 1-hydroxy-substituted 5-methylene-1,3-cyclohexadiene, \(m\)-\(22a^{+} \) and \(m\)-\(22b^{+} \) (C\(_7\)H\(_8\)O\(^+\), \(m/z \) 108), are formed with high relative abundances. The corresponding \(p\)-isotoluene isomer, viz. ionized 1-hydroxy-3-methylene-1,4-cyclohexadiene, cannot be formed due to steric restrictions by the alkyl chain. The McLafferty reaction is much more dominant in the standard EI mass spectra than the more energy-demanding benzylic cleavage leading to ions \(m\)-\(9 \) (C\(_7\)H\(_7\)O\(^+\) \(m/z \) 107). As a consequence, the spectra of metastable (less excited, long-lived) alkylphenol ions often exhibit exclusively the signals due to this rearrangement reaction.

A concrete example for the competition between the rearrangement reaction and the simple benzylic cleavage is shown in Scheme 8. In the EI mass spectrum of 3-(\(n\)-butyl)phenol \(m\)-\(23 \), the McLafferty reaction of \(m\)-\(23^{+} \) gives rise to the base peak at \(m/z \) 108 (C\(_7\)H\(_8\)O\(^+\)), whereas the intensity of the \(m/z \) 107 peak (C\(_7\)H\(_7\)O\(^+\)) is only 55% of that of the base peak\(^{27,29a,30} \). (Such relative intensity data are denoted as ‘%B’.) The \([m/z \ 108]: [m/z \ 107]\) ratio increases with increasing length of the chain, e.g. to 100:49 for 3-(\(n\)-pentadecyl)phenol\(^{31} \). This chain-length dependence is typical for alkylarenes in general but also subject to the ion source conditions\(^{25,32,33} \). By contrast to the \(meta\)-isomer, both the EI
4. Mass spectrometry and gas-phase ion chemistry of phenols

Scheme 6

The mass spectra of 4-(n-butyl)phenol \(p-23 \) and 2-(n-butyl)phenol \(o-23 \) are dominated by the base peak at \(m/z \) 107 and the peaks at \(m/z \) 108 are only in the range corresponding to the naturally occurring \(^{13}\)C contribution of the \(C_7H_7O^+ \) ions\(^{27,29a} \). The same drastic difference was found with more complex alkylphenols, such as the 2-(hydroxybenzyl)indanes (see below). A linear free-energy relationship connecting the log ratio \([C_7H_7X^+] / [C_7H_6X^+]\) and the Hammett parameter \(\sigma_x \) was unraveled from the mass spectra of a series of ortho-, meta- and para-\(n \)-alkylphenols (\(X = \text{OH} \)) and \(n \)-alkyl)anisoles (\(X = \text{OCH}_3 \)) with three different chain lengths\(^{34} \).

The McLafferty reaction in alkylphenols occurs stepwise: The migration of a \(\gamma \)-H\(^+ \) to one of the ortho positions generates distonic ions 24 en route to the fragmentation products (Scheme 8). It has been shown that the relative stability of these reactive intermediates governs the competition between the McLafferty reaction and the benzylic cleavage in the EI source and that its influence is more important than the relative stability of the...
final fragmentation products 2225,35,36. The 1,5-H+ transfer is reversible (see below) and energetically much more favourable in the case of the meta-alkylphenols, such as m-23+, than for the other isomers, in analogy to the related alkylanisoles25,35. This is a consequence of particular stability of the \(\sigma\)-complex units formed, within the distonic ions, by addition of the H+ atom para or ortho relative to the hydroxyl group, such as in the conversion m-23+ \(\rightarrow\) m-24. Since mass spectrometric fragmentation occurs under kinetic rather than under thermodynamic control, the more facile formation of the distonic ions from the ionized meta-alkylphenols leads to an enhanced relative rate of the McLafferty reaction.

The close relations between odd- and even-electron cations is shown in Scheme 9. Viewed in a retrosynthetic manner, the protonated cresols [7 + H]+, representing parent species for the ionic part of the distonic ions 24, can be generated by addition of an H atom to the radical cations 7+ as well as by addition of a proton to the neutral arenes 7. In the same way, the radical cations 22a, representing the ionic fragments of the McLafferty reaction, can be formed both by addition of H+ to the benzylic cations 9 and by addition of H+ to the benzylic radicals 25.

C. Fragmentation of Di- and Trihydroxylated Benzenes and Alkylbenzenes

The two characteristic reaction channels of ionized monophenols dominate the EI-induced fragmentation of dihydroxyalkylbenzenes as well. Some examples are collected
4. Mass spectrometry and gas-phase ion chemistry of phenols

meta-Alkylphenols

\[
\begin{align*}
\text{(m-23)} & \rightarrow \text{1,5-H}^* \text{ transfer} \\
\text{(m-24a)} & \leftarrow \\
\text{meta-} & \\
\end{align*}
\]

para- and ortho-Alkylphenols

\[
\begin{align*}
\text{(p-23)} & \rightarrow \text{1,5-H}^* \text{ transfer} \\
\text{(p-24)} & \leftarrow \\
\text{para-} & \\
\end{align*}
\]

Scheme 8
in Scheme 10. As can be expected from the above discussion on the role of the \(\sigma \)-complex
intermediates, the two meta-hydroxyl groups in ionized 5-n-heptylresorcinol, \(m,m\cdot 26^{+} \), render
the dominance of the McLafferty reaction even more pronounced, and an ortho/para
combination in ionized 6-(n-hexyl)resorcinol, \(o,p\cdot 27^{+} \), suppresses
the rearrangement reaction completely in favour of the simple benzylic cleavage\(^{29a} \). Similar
to the EI mass spectrum of \(m,m\cdot 26 \), ions \(C_7H_8O_2^{+} \) (\(m/z \) 124) give also rise to
the base peaks in 5-(n-pentadecyl)- and 5-(n-pentadec-10-ene-1-yl)resorcinols, with the
ratios \([C_7H_8O_2^{+}] / [C_7H_7O_2^{+}] \approx 100 : 17^{29} \). (The abundances ratios given here and in
the following are corrected for the natural occurrence of \(^{13}C \)).

What happens if both a meta- and a para- (or ortho-) hydroxyl group are present at
the same aromatic nucleus, such as in the catechols and the hydroquinones? The two reaction
pathways are followed in competition, albeit with a slight preference for the benzylic
cleavage. For example, the radical cations of the two isomeric long-chain catechols
\(m,p\cdot 28 \) and \(o,m\cdot 28 \) give nearly the same EI mass spectra with a ratio
\([C_7H_8O_2^{+}] / [C_7H_7O_2^{+}] \approx 45 : 100 \) (Scheme 10). Thus, in spite of the particular length of the pentadecyl chain,
which enhances the relative rate of the McLafferty reaction, the simple benzylic cleavage
dominate in these cases. The rearrangement is even more attenuated in unsaturated
analogues: The mass spectra of the isomeric 7(\(Z \)),10(\(Z \))-heptadecadiene-1-ylcatechols
\(m,p\cdot 29 \) and \(o,m\cdot 29 \) exhibit even smaller peaks at \(m/z \) 124, with the intensity ratio
\([C_7H_8O_2^{+}] / [C_7H_7O_2^{+}] \approx 17 : 100 \) (Scheme 11). However, a competing rearrangement
takes place here quite significantly, namely the elimination of a \(C_{15}H_{28} \) neutral, leaving
very probably, the radical ions of the dihydroxystyrenes \(m,p\cdot 30^{+} \) and \(o,m\cdot 30^{+} \)
\((C_8H_8O_2^{+}, m/z 136) \) as the ionic fragments.

Interestingly, the presence of an \(\omega \)-phenyl ring at the aliphatic chain affects the ratio
\([C_7H_8O_2^{+}] / [C_7H_7O_2^{+}] \) quite differently for electronically similar isomers. In the case
of the radical ions derived from 4-(\(\omega \)-phenylalkyl)catechols \(m,p\cdot 31 \) and \(m,p\cdot 32 \), the EI
mass spectra exhibit intensity ratios of 31 : 100 and 40 : 100, respectively. However, in the
spectra of the isomeric 3-(\(\omega \)-phenylalkyl)catechols \(o,m\cdot 31 \) and \(o,m\cdot 32 \), ratios of 84 : 92
(as % B, i.e., 91 : 100) and 97 : 100, respectively, were reported (Scheme 12).\(^{37} \) It appears
likely that the attractive interactions known to operate between the two aromatic rings of

SCHEME 9
ionized \(\alpha, \omega \)-diarylalkanes\(^{25,38} \) are enhanced by the presence of a hydroxyl group in the 3-phenylalkylcatechol ions.

D. The Phenoxy Cation (‘Phenoxenium Ion’) and the Hydroxyphenyl Cations

As already indicated in Scheme 2, fragmentation of ionized phenol and its simple derivatives is quite complex, certainly more complex than that of higher alkylphenols under EI-MS conditions. Therefore, the gas-phase ion chemistry of simple phenolic cations is of major importance for a sound understanding of mass spectrometry of phenols. A
group of simple and ubiquitous phenol-derived, even-electron cations are the $\text{C}_6\text{H}_5\text{O}^+$ ions (m/z 93), the properties of which have interested gas-phase ion chemists during four decades because of their fundamental importance39,40. Clearly, the stability and reactivity of the phenoxy (‘phenoxenium’) cation (34, Scheme 13) should be quite distinct from that of the isomeric hydroxyphenyl cations, $[\text{C}_6\text{H}_4\text{OH}]^+$ (38), but difficult to predict by intuition.

Most of the previous papers on the properties of gaseous $\text{C}_6\text{H}_5\text{O}^+$ ions dealt with their heats of formation, relative stabilities and unimolecular and collision-induced fragmentation characteristics. An extended study on the trapping of the three isomeric hydroxyphenyl cations α-, m- and p-38 in both the liquid and the gas phase has appeared recently41. In the liquid phase, α-38 was found to isomerize rapidly to the relatively stable phenoxenium ion 34 within the hydrogen-bonded complex with methanol. In the gas phase, both methanol and chloromethane react as quenching reagents, affording the respective methoxyphe-
nols and chlorophenols. 1,2-Hydride shifts in the hydroxyphenyl cations were invoked to explain deviations from the isomer distribution expected on statistical grounds. \textit{Ab initio} calculations suggested the thermochemical stability order to be α-$38 < p$-$38 < m$-38 and $\ll 34$, the latter isomer being by $\Delta E = -20.3$ kcal mol$^{-1}$ more stable than m-38. The calculations also indicated the particularly high gas-phase acidity of isomer m-38 in spite of its relatively high thermochemical stability. Two further recent papers have
also contributed substantially to the knowledge on gaseous \(\text{C}_6\text{H}_5\text{O}^+ \) ions\(^{42,43} \), involving extended experimental work and semi-empirical computation. In agreement with the above-mentioned \textit{ab initio} results, but again in contrast to previous work on the heats of formation of \(\text{C}_6\text{H}_5\text{O}^+ \) ions\(^{44} \), the phenoxy cation \(\text{C}_9\text{H}_18\text{Ph} \) was calculated to be more stable by \(\text{ca} \) 13 kcal mol\(^{-1} \) than the \textit{meta}- and \textit{para}-hydroxyphenyl cations \(\text{C}_7\text{H}_7\text{O}^+ \) and \(\text{C}_9\text{H}_18\text{Ph} \) and the \textit{ortho}-isomer was estimated to be by some 5–10 kcal mol\(^{-1} \) less stable than the other two isomers, a result which had not been predicted by early \textit{ab initio} calculations\(^{45} \). Thus, it appears that conjugation of the electron-deficient oxygen atom in \(\text{C}_9\text{H}_18\text{Ph} \) relieves much of the unfavourable situation, generating much double bond character. In contrast, the hydroxy group in ions \(\text{C}_9\text{H}_18\text{Ph} \) cannot contribute significantly to stabilization.

The four isomeric \(\text{C}_6\text{H}_5\text{O}^+ \) ions were generated by electron-impact induced methyl loss from anisole \(\text{C}_7\text{H}_8\text{O}^+ \) and bromine loss from the isomeric bromophenols \(\text{C}_7\text{H}_8\text{O}^+ \) (Scheme 13). Experimental determination of the heats of formation of ions \(\text{C}_9\text{H}_18\text{Ph} \) by appearance energy measurements gave a value of 207 kcal mol\(^{-1} \) but only estimations of the upper limits for ions \(\text{C}_7\text{H}_8\text{O}^+ \) in the range of 221–233 kcal mol\(^{-1} \) due to the interference of large kinetic shifts\(^{42} \). The unimolecular fragmentation of the isomers, being governed by CO loss in each case, revealed significant differences except for \(\text{m-p-38} \) and \(\text{p-38} \), whose unimolecular (‘metastable’ fragmentation), collision-induced dissociation (CID) and neutralization/re-ionization (NR) mass spectra were also found to be identical. However, the \textit{ortho}-isomer \(\text{o-p-38} \) and ion \(\text{C}_9\text{H}_18\text{Ph} \) could be readily distinguished by these methods. Also, charge-stripping (CS) mass spectrometry showed different behaviour of some isomers.
Scheme 13
From the previous and the recent results it appears obvious that CO loss from the ‘phenolic’ \(C_6H_5O^+ \) ions takes place via the \textit{ortho}-isomer \(o-38 \), which undergoes further rearrangement to the phenoxy cation \(34 \), all these steps involving rather energy-demanding hydride shifts. The \(C_6H_5O^+ \) species from which CO is eventually expelled has been suggested to be (non-conjugated) cyclopentadienyl-5-carbonyl ion, \(cyclo-C_5H_5CO^+ \), whose heat of formation was calculated to be similar to that of ion \(34 \). The thermochemical minimum of the \(C_6H_5O^+ \) hypersurface was assigned to the conjugated cyclopentadienyl-1-carbonyl ion which was estimated to be far more stable than all the other isomers\(^{42} \).

Partial distinction of the isomeric phenoxy and hydroxyphenyl cations was also achieved by reacting these ions with a variety of neutral reagents in the rf-only zone of a triple quadrupole mass spectrometer\(^{43} \). The bimolecular reactivity of the hydroxyphenyl cations \(38 \) turned out to be similar but clearly distinct from that of the phenoxy cation \(34 \) (Scheme 13). The reaction of ion \(34 \) with methanol is unproductive but the hydroxyphenyl ions \(38 \) reacted by formal transfer of a hydroxyl group, producing the dihydroxybenzene radical cations \(39^+ \). Acetone was found to form adducts which also react distinctly. In both cases, covalent \(C_6H_5O^+ \) species were formed but the intermediate formed from ion \(34 \) expels water, whereas those formed from ions \(38 \) eliminate allene (or propyne). Obviously, deep-seated rearrangement occur in these species, giving rise to fission of the acetone molecule by the highly reactive \(C_6H_5O^+ \) ions into its constituents, \(H_2O \) and \(C_3H_4 \). In contrast to these positive probe reactions, addition of benzene and hexadeuteriobenzene to ions \(34 \) and \(38 \) give rise to the same products. The reaction with \(C_6D_6 \) is particularly interesting in that the primary adducts, deuteronated \([\text{ring}-D_3]\) labelled diphenyl ether \([35 + D]^+ \) and hydroxybiphenyls \([36 + D]^+ \) both expel the three possible water isotopomers in a ratio close to that calculated for the complete scrambling of five hydrogen and six deuterium atoms. A review on related scrambling phenomena has appeared very recently\(^{46} \). Comparisons with the behaviour of the authentic deuteriated precursors suggests that ions \([36 + D]^+ \) are the species from which water is eventually expelled.

IV. THE EFFECT OF THE HYDROXYL GROUP ON THE REVERSIBLE INTRAMOLECULAR HYDROGEN TRANSFER IN IONIZED PHENOLS

The proof for the reversibility of the 1,5-H\(^+ \) transfer in \(n \)-alkylphenols originates from site-selective deuterium labelling experiments\(^{46} \). It has been shown that ionized \(n \)-alkylbenzenes, in general, suffer H/D exchange between the \(\gamma \)-position of the chain and (exclusively) the \textit{ortho} positions of the ring, which can reach the ‘statistical’ distribution prior to fragmentation under favourable conditions. Whereas complete scrambling is generally not achieved in the ions fragmenting in the ion source, long-lived metastable ions have a chance to reach the statistical distribution of the H and D atoms over the sites involved. In such a situation, all ions must necessarily have undergone a certain minimum of 1,5-H\(^+ \) transfer cycles, each of which involving a \(\gamma \rightarrow \text{ortho} \) transfer and a reverse \textit{ortho} \(\rightarrow \gamma \) migration. As mentioned above, the stability of the distonic ion generated by the 1,5-H\(^+ \) transfer relative to that of the conventional molecular ion plays a decisive role in the overall fragmentation and this is also reflected by the relative rate of the intermolecular H/D exchange in suitably labelled isotopomers.

The radical cations of \(n \)-alkylphenols are special because of the strongly different local hydrogen atom (or proton) affinities of the ring positions (Section II). A particularly telling case is presented here\(^{46-48} \). The molecular ions \(p-40^+ \) and \(m-40^+ \) generated from the corresponding isomeric 2-(hydroxybenzyl)indanes give drastically different EI mass spectra (Scheme 14). The peak at \(m/z \) 107 caused by the benzylic cleavage giving ions \(p-9 \) dominates in the spectrum of the \textit{para}-isomer and that at \(m/z \) 108 caused by the McLafferty
SCHEME 14
\((m-40_{1})^{+}\)

\((m-40_{2})^{+}\)

\((m-40_{3})^{+}\)

\((m-41_{1})\)

\((m-41_{2})\)

\((m-22a_{1})\)
\[\text{m/z 111 (50\%)}\]

\((m-40_{4})^{+}\)

\((p-40_{1})^{+}\)

\((m-22a_{2})\)
\[\text{m/z 110 (50\%)}\]

\[\text{SCHEME 15}\]
reaction giving ions m_{-22a} governs the spectrum of the meta-isomer. With decreasing internal energy of the ions, the ratio $[C_7H_7O^+]/[C_7H_6O^+]$ strongly increases, since the less energy-demanding but slow rearrangement reaction gains importance. Metastable ions $p-40^{+}$ and $m-40^{+}$ dissociate exclusively by McLafferty reaction.

Extensive synthetical deuterium labelling of the neutral precursors of ions $m-40^{+}$ and $p-40^{+}$ was performed by using, in part, the different basicities of the phenolic ring positions in solution. The results confirmed that only the two (benzylic) cis-H atoms at C-1 and C-3 of the indane ring and the two ortho-H atoms of the phenol ring are ‘mobilized’ during the McLafferty reaction. Thus, only four hydrogen atoms are involved in the intramolecular exchange process preceding the fragmentation. In the case of the trideuteriated radical cations $m-40_{12}^{+}$, for example, this leads to the formation of the isotopomers $m-40_{2}^{+}$ and $m-40_{4}^{+}$ via the corresponding distonic ions $m-41_{1}$ and $m-41_{2}$ (Scheme 15). The overall fragmentation of metastable ions $m-40_{12}^{+}$ leads to the fragment ions $m-22a_{1}$ (m/z 111) and $m-22a_{2}$ (m/z 110) in the ratio of 53:47, i.e. close to unity, indicating complete equilibration of the four H and D atoms. However, in the short-lived ions fragmenting already in the ion source, the ratio [m/z 111] / [m/z 110] is higher, e.g. 85:15 at 70 eV and 62:38 at 12 eV ionization energy. The parallel experiments with the corresponding labelled para-isomers, e.g. $p-40_{12}^{++}$, reveal that the exchange between the cis- and ortho-H atoms is much slower and proceeds only slightly with increasing lifetime of the ions. For example, metastable ions $p-40_{1}^{+}$ produce ions $C_7H_7DO^{+}$ (m/z 109) and $C_7H_6D_2O^{+}$ (m/z 110) in a ratio of 85:15 only.

V. ORTHO EFFECTS IN SUBSTITUTED PHENOLS

In many cases, the EI mass spectra of ortho-substituted phenols differ from those of the meta- and para-isomers by a dominant peak corresponding to the elimination of water or other stable molecules that incorporate elements of the phenolic hydroxy functionality. The reactive neighbouring group interaction in ionized 1,2-disubstituted arenes (‘ortho effect’) is often analytically valuable and has been studied mechanistically in much detail. However, the effect is not always as pronounced as stated in textbooks and the structural assignment is not unambiguous if comparison with the spectra of the isomers is not possible. This holds in particular if the phenolic OH group in the molecular ion 42^{+} represents the hydrogen acceptor site (Scheme 16, path a) and has to be eliminated as water. In this case, in contrast to the alternative case (Scheme 16, path 6), in which 1,5-H transfer leads to fragile distonic ions 44^{+} (see below), dissociation of the intermediate distonic ion 43^{+} formed by 1,4-H transfer generates an incipient, energetically unfavourable phenyl cation, which may undergo subsequent isomerization. In addition, isomerization of the molecular ion 42^{+} by ring expansion to ionized hydroxycycloheptatrienes may obscure structure-specific fragmentation and thus attenuate the ortho effect.

For example, ionized ortho-cresol o-7+ expels water by formal 1,4-H transfer from the methyl group, a reaction which should be largely suppressed in the meta- and para-cresol ions (Scheme 17). However, the $[M-18]^+$ peak in the EI mass spectrum of o-7 is only marginally larger (27%B) than the corresponding signals in the spectra of m-7 (11%B) and p-7 (8%B). The dominant fragmentation path is loss of H^+ in all three cases (90, 80 and 100%B, respectively). It can be argued that the OH$_2$ group in the distonic ion intermediate 45 is too poor a leaving group to act as a sink for the dissociating H atom, in spite of the subsequent formation of ionized cyclopropabenzene 46 (m/z 90). Interestingly, the ortho effect registered for loss of H$_2$O from the isomeric cresol ions parallels the trend of the isomeric ions to expel CO: The relative intensity of the $[M-28]^+$ peak in the EI mass spectrum of o-7 is 21%B but only 6–8%B in the spectra of the other isomers. Note that this special ‘ortho effect’ is not initiated by transfer of an α-H atom from the
orthomethyl substituent; rather, it is in line with the mechanism outlined in Scheme 2,
in that the ring fission should be facilitated by the presence of an ortho-methyl group.

The cresols and other lower alkylphenols have been studied by multiphoton ionization
mass spectrometry (MPI) with the aim of distinguishing positional isomers. Only slight
differences were found in some cases, mainly concerning the low-mass region. Remark-
ably, the MPI mass spectrum of ortho-cresol was again distinct because water loss, i.e.
a primary fragmentation reaction, from ions o-7+ was found to be significantly more
frequent than with the other isomers51.

The ionized dihydroxybenzenes 39+ behave similarly (Scheme 17). Note that, in this
series, one of the phenolic hydroxyl groups acts as a hydrogen acceptor and the other as
an H donor. The EI mass spectrum of catechol (o-39) exhibits a significant ortho effect.
While the intensity of the [M − H2O]2+ peak in the EI spectrum of o-39 is no greater than
c.15% B, the spectra of resorcinol (m-39) and hydroquinone (p-39) both show negligibly
small [M − H2O]2+ peaks (≤2% B). It is likely that water loss from the intermediate 47
generates again bicyclic [M − H2O]2+ ions, i.e. ionized benzoxirene 48. And, notably, the
CO losses does not parallel the ortho effect of the water elimination in this series, as it is
the most pronounced the case of m-39.

Much more impressive, and analytically more reliable, ortho effects can be encountered
in molecular radical cations where the phenolic hydroxyl group acts as an H acceptor instead
of an H donor (Scheme 16, path b). In these cases, 1,4-shift of the phenolic H atom
(or proton) in the molecular ions 42+ to a benzylic, sp3-hybridized atom or group (X)
within the ortho substituent generates a good leaving group (XH) in the distonic ion 44+.
Numerous examples have been found for this situation, including the radical cations and
[M + H]+ ions of the dihydroxybenzoic acids (see below). It is also noted here that the
fragmentation of peri-oriented groups falls into this category.

The fragmentation of the radical cations of the isomeric (hydroxymethyl)phenols 49
provides good examples for the ortho effect (Scheme 18). Loss of water via ion 50
generates a 30% B peak at m/z 106, due to ions 51, in the EI mass spectrum of the ortho-isomer
o-49+ and the secondary fragmentation of ions 51, viz. expulsion of carbon monoxide,
gives rise to the base peak at m/z 78. Thus, the overall fragmentation of ions o-49+
is induced by the initial 1,5-H transfer from the phenolic hydroxyl group. Successive
losses of H+ and CO represent very minor pathways only. However, in order to assess the
significance of ortho-specific fragmentation reactions, the behaviour of the isomeric ions
A weak ortho effect: The isomeric radical cations of ortho-cresol also eliminate water but to lesser extents.

A weak and reliable ortho effect: The isomeric radical cations of catechol eliminate water to negligible extents.

SCHEME 17

have to be checked also. This is strikingly evident from the EI mass spectra of m-49 and, in particular, of p-49 (Scheme 18). In fact, the variety of fragmentation channels is much broader in both cases, rendering the mass spectrum of o-49⁺⁺ rather ‘ortho-specific’. The moderate loss of water from the meta-isomer m-49⁺⁺ (20%B) indicates skeletal rearrangements. Protonated phenol, C₆H₅O⁺ (m/z 95, 90%B), is the second dominant fragment ion, whereas ions C₆H₅⁺ (m/z 77) give rise to the base peak. Completely unexpected, however, is the base peak in the EI mass spectrum of the para-isomer p-49, which corresponds to water loss! Although the competing fragmentations are again quite pronounced, this example demonstrates that interpretation of the EI mass spectra can be misleading. A reasonable explanation for the water loss from ions p-49⁺⁺ lies again in the favourable formation of a particularly stable hydroxybenzenium ion by 1,2-H⁺ shift (p-49⁺⁺ → 52)
which, in a sequence of ring-walk isomerizations involving bicyclic isomers, e.g. 53, may rearrange to the ortho-isomer \(o-49^{++} \) (Scheme 18). The role of such rearrangements has recently been determined in methoxymethyl-substituted naphthalenes\(^{52}\). The formation of ions \(C_6H_7O^+ \) (\(m/z \) 95) from the meta-isomer \(m-49^{++} \) may also be initiated by hydrogen rearrangement to the transient isomers 54 (Scheme 18).
The phenolic H atom can also be transferred to another aromatic ring, which is then expelled as neutral benzene. Loss of benzene constitutes a characteristic fragmentation channel for many arylaliphatic radical cations and a major one for protonated alkylbenzenes17,25,46,53,54. A simple example, which again demonstrates an only moderately strong ortho effect, is shown in Scheme 19. The EI mass spectrum of ortho-benzylphenol \textit{o}-55 exhibits loss of benzene as a medium-size peak at \textit{m/z} 106 (42\%B), due to ions 51, presumably via the distonic ion 56a. The competing sequential losses of H+ and H\textsubscript{2}O leading to fluorenyl cations (C\textsubscript{13}H\textsubscript{9}+, \textit{m/z} 165), give rise to similarly high peaks. Notably, the mass spectrum of the \textit{para}-isomer \textit{p}-55 exhibits the same peaks but the relative abundance of the [M − C\textsubscript{6}H\textsubscript{6}]+ ions is somewhat decreased. It is known that ionized diphenylmethanes undergo cyclization processes and extensive subsequent hydrogen scrambling prior to fragmentation25,55. In the case of the electron-rich hydroxy
derivatives 55, formation of protonated phenol intermediates, such as the distonic ion 56b, appears again to be likely as an initial step. The only quantitatively different fragmentation of the isomers o-55+ and p-55+ points to the interplay of complex isomerization.

Particularly strong ortho effects are found in the EI mass spectra of salicylic acids and more highly hydroxylated benzoic acids (Schemes 20 and 21) and their derivatives, such as the benzamides. Throughout, the ortho-specificity of the fragmentation of the molecular radical cations of these compounds is much higher than in the cases discussed above.

1,5-H transfer in ionized salicylic acid o-58+ from the phenolic OH group to the carboxyl functionality can take place in two ways (Scheme 20). In contrast to migration to the carbonyl group, generating the stable distonic ion 59, transfer of the hydroxyl group generates a highly fragile distonic ion, viz. 60, which readily loses water to produce ion 61 (m/z 120) giving rise to the base peak in the spectrum. Subsequent loss of CO produces another significant fraction (75%B) of the total ion current. The otherwise ubiquitous fragmentation of carboxylic acids, viz. the successive losses of OH+ and CO, is almost completely suppressed by the ortho interaction. In contrast, the EI mass spectra of the meta- and para-isomers of salicylic acid reflect a complementary fragmentation behaviour of the molecular ions, which react very similarly to each other. Thus, losses of H2O and CO from the meta isomer m-58+ are almost negligible but the [M – OH]⁺ ions give rise to the dominating fragment ion peaks at m/z 121 (77 and 100%B, respectively). Subsequent expulsion of CO still occurs to ca 25% in both cases.

2,6-Dihydroxybenzoic acid 63 and 3,4,5-trihydroxybenzoic acid 67 behave accordingly, with one remarkable exception (Scheme 21). Whereas the fragmentation of ionized gallic acid 67+ is again dominated by the successive losses of OH⁺ and CO, generating ions 68 and 69, that of ionized γ-resorcylic acid 63+++ is strongly governed by loss of water and then CO, a sequence involving the distonic ion 64 and the ortho-quinonoid ion 65. In addition, however, ions 63+++ suffer decarboxylation, giving ions m-39 (17%B). Obviously, the increased proton affinity of the meta-dihydroxy-substituted aromatic nucleus gives rise to a relatively facile transfer of the carboxylic proton to the ring, generating transient ions 66.

There are many further examples for the specific effects of ortho-hydroxy substituents on the EI-induced fragmentation of phenolic compounds. Conceptually, many of them can be traced to either the increased acidity of the O–H bond in the radical cations or, more often, to the increased proton affinity or hydrogen atom affinity of the ring at positions ortho (and para) to the OH group. A last example concerns the strikingly distinct fragmentation behaviour of ortho-hydroxycinnamic acid o-70 as compared to its meta- and para-isomers, m-70 and p-70 (Scheme 22). In this case, not only the specific behaviour of the ortho-isomer deserves notice but also that of the other isomers56. The EI mass spectrum of o-70 exhibits a relatively small molecular ion peak but strong signals corresponding to the ions generated by loss of water (m/z 146) and subsequent single and double loss of CO (m/z 118 and m/z 90). Without any doubt, H2O elimination yields ionized coumarin 71+, possibly, or rather necessarily involving an oxygen atom from the carboxylic group (see below), and CO expulsion from this ion can be safely assumed to give ionized benzofuran 72++. Loss of H+ and OH+, being typical reactions of the parent ionized cinnamic acid, do not occur. By contrast, these two processes give rise to characteristic peaks at m/z 163 and m/z 147 in the EI mass spectra of m-70 and p-70, while the molecular ions generate the base peaks in both cases. Loss of H+ takes place after the cyclization of the molecular ions to their isomers m-74 and p-74, which represent the radical cations of electron-rich 1,3,5,7-octadiene derivatives57. The ionic products of the H+ loss from ions m-70+ and p-70+ are the dihydroxy benzo[η]pyrylium ions m-75 and p-75, respectively. Loss of OH+ from m-70+ and p-70+ may occur, at least in part, in a straightforward manner, i.e. from the carboxyl group with concomitant cyclization to the [M – OH]+ ions m-73 and p-73, respectively, again followed by single and two-fold expulsion of CO. In fact,
Scheme 20
ionized cinnamic acid and many of its derivatives do lose a hydroxyl radical (Scheme 22). However, arguments have been invoked, in analogy to the EI-induced isomerization and fragmentation of other cinnamic acids and of benzylideneacetones, which point to the loss of the arene substituent, viz. the phenolic hydroxyl group in the case of \(m-70^{++} \) and \(p-70^{++} \). This requires a series of 1,2-H shifts, or even a sufficiently fast hydrogen ring walk, by which ions \(m-74 \) and \(p-74 \) are converted into their respective tautomers, \(m^{-}-a n d \ p^{-}-74a \) and \(m^{-} a n d \ p^{-}-74b \). It should be noted that not only the 1,2-H shift in the radical cationic \(\pi \)-systems of ions \(74 \) is unusual (cf. its non-occurrence in the distonic ions \(41 \), Scheme 15) but also the loss of a phenolic OH\(^{+} \) radical, which leads to the benzopyrylium ions \(m-76 \) and \(p-76 \). Different from even-electron species, where \(ipso \) protonation of phenol nuclei was found to be extremely unfavourable as compared to \(para \) and \(ortho \) protonation (cf. Scheme 1), both the formation and homolytic dissociation of odd-electron quinoid species bearing an \(sp^3 \)-hybridized carbinol centre appear to be energetically reasonable.
Finally, ortho effects involving the radical cations of various nitro-substituted alkylphenols are mentioned here. In these cases, two sequential ortho effects have been observed. For example, the EI mass spectra of 2-ethyl-4,6-dinitrophenol and its 2-cyclohexyl analogue exhibit pronounced peaks for the formation of $[M - H_2O]^{+}$ and $[M - H_2O - OH]^{+}$ ions and the spectrum of 2-isopropyl-4,6-dinitrophenol even indicates that the secondary fragmentation step is faster than the primary one, because an ion abundance ratio $[M - H_2O - OH]^{+}/[M - H_2O]^{+} = 25$ was found\(^5\).

Scheme 22
VI. SECONDARY FRAGMENTATION REACTIONS OF PHENOL RADICAL CATIONS

As mentioned earlier (Section III.A), the radical cations of simple phenols undergo the characteristic expulsion of carbon monoxide. The shift of a hydrogen atom is necessary to allow this elimination reaction to occur (Scheme 2). However, most of the CO losses observed in the mass spectra of the hydroxycinnamic acids (Scheme 22) have other origins and are mechanistically different from the behaviour of phenolic radical cations. In fact, many decarbonylation processes observed in the EI mass spectra of phenols derivatives take place from even-electron (closed-shell) primary fragment ions, which themselves are formed by loss of a radical from the open-shell precursor ion. Thus, while CO loss as a primary fragmentation of the molecular ions is often suppressed by less energy-demanding fragmentation channels, CO elimination as a secondary fragmentation is quite frequent—albeit analytically less obvious. Only a few examples will be given in the following, in part with respect to the notable prototype character of the reacting ions involved.

The EI mass spectra of the monomethyl ethers of catechol and hydroquinone, \(o-77 \) and \(p-77 \), are very similar and exhibit two major fragment ion peaks at \(m/z 109 \) and \(m/z 81 \), indicating the sequential loss of \(\text{CH}_3 \) and CO, respectively (Scheme 23). The most logical structures of the \([M - \text{CH}_3]^+\) ions are protonated ortho- and para-benzoquinone, \([o-78 + H]^+\) and \([p-78 + H]^+\), and the \(\text{C}_5\text{H}_5\text{O}^+ \) ions formed as secondary fragments by subsequent expulsion of CO should have the energetically favourable pyranylium structure 80, rather than that of a protonated cyclopentadienone. Much in contrast to \(o-77 \) and \(p-77 \), the EI mass spectrum of resorcinol monomethyl ether \(m-77 \) exhibits almost no \([M - \text{CH}_3]^+\) signal but again a significant \([M - \text{CH}_3 - \text{CO}]^+\) peak. Major competing fragmentation channels (not shown in Scheme 23) are the loss of 29 Th (probably H and CO) and 30 Th (possibly \(\text{CH}_2\text{O} \)) via ring protonation. The apparent suppression of the methyl loss from ions \(m-77^+ \) is attributed to the energetically unfavourable structure of ion 79 which, in contrast to their isomers \([o-78 + H]^+\) and \([p-78 + H]^+\), represents an electronically destabilized phenoxy cation (or \(O\)-protonated benzene-1,3-dioxyl). As a consequence, the vanishingly low relative abundance of the \([M - \text{CH}_3]^+\) ions from 79 is attributed to its fast decomposition by CO loss to give ions 80.

\[
\begin{align*}
\text{Om} \quad \text{OH} & \quad \text{O} \quad \text{H} \\
(m-77^+) & \quad [o-78 + H]^+ & \quad [p-78 + H]^+ \\
m/z 124, 100\% & \quad m/z 109, 75\% & \quad m/z 109, 100\%
\end{align*}
\]

\[
\begin{align*}
\text{MeO} \quad \text{OH} & \quad \text{O} \quad \text{H} \\
(o-77^+) & \quad (p-77^+) \\
m/z 124, 88\% & \quad m/z 109, 100\%
\end{align*}
\]

\[
\begin{align*}
\text{MeO} \quad \text{OH} & \quad \text{O} \quad \text{H} \\
(m-77^+) & \quad (79) & \quad (80) \\
m/z 124, 100\% & \quad m/z 109, 3\% & \quad m/z 81
\end{align*}
\]

SCHEME 23
VII. MISCELLANEOUS FRAGMENTATIONS OF PHENOL RADICAL CATIONS

The \([\text{M} - \text{NO}]^+\) ions of para-nitrophenol were found to show kinetic energy release \((T_{50}, \text{evaluated from the strong peak broadening at half peak height})\) for the expulsion of \(\text{CO}\) from the metastable ions \((T_{50} = 0.52 \text{ eV})\) as do the \([\text{M} - \text{CH}_3]^+\) ions of hydroquinone monomethyl ether \(p-77\) \((T_{50} = 0.50 \text{ eV})\)^{59,60}. Thus, the structure of the primary fragment ions is likely to be that of protonated para-benzoquinone \([p-78 + \text{H}]^+\) in both cases. The role of electron-withdrawing and electron-releasing substituent, including the hydroxyl group, in para-substituted nitrobenzenes on the kinetic energy release during \(\text{NO}^*\) loss was studied in more detail^{61}. The EI mass spectra of several ortho-nitrosophenols have been studied with respect to the tautomerism in the molecular radical cations prior to fragmentation^{62}.

The EI-induced fragmentation of the \(\alpha,\alpha,\alpha\)-trifluorocresols 81 has been studied in detail and in comparison to the cresols 7 (Scheme 24). A pronounced ortho effect was observed.
for the radical cations of the ortho-isomer $^\alpha_{81}1^+$, which gives rise to the elimination of HF, presumably via 82, along with some F$^+$ loss in the standard ion-source EI mass spectra and exclusive elimination of HF from the metastable ions63. Investigation of the $[O-D]$ isotopomer of $^\alpha_{81}1^+$ revealed that the phenolic proton is transferred exclusively to the trifluoromethyl group prior to the primary fragmentation process. Subsequent fragmentation of the $[M - HF]^+$ ions consists of loss of CO. The meta-isomer $^\beta_{81}1^+$ was found to undergo loss of F$^+$ rather than elimination of HF. In a related paper, the mass spectrometric behaviour of meta- and para-(α,α,α-trifluoro)cresol $^\gamma_{81}1^+$ and $^\gamma_{81}1^+$ was studied in view of the remarkable elimination of difluorocarbene, CF$_2$, which gives rise to intense peaks in the EI mass spectra of these two isomers, whereas the process does not occur in the spectrum of the ortho-isomer $^\alpha_{81}1^+$. The pronounced directing effect of the hydroxyl group on migrating protons, which has been discussed above in several respects, is mirrored here for migrating fluorine atoms. The trifluoromethyl substituent in ionized para-(α,α,α-trifluoro)cresol $^\gamma_{81}1^+$ disintegrates by leaving one of the fluorine atoms at the original ipso position (i.e. at the para position with respect to the hydroxy substituent), generating the radical cations of para-fluorophenol $^\beta_{85}1^+$ via 84. Thus, the transition state is stabilized by the electron-donating OH group, similar to the stabilization of ions $[1 + H]_{(p)}^+$. The identity of the $[M - CF_2]^+$ ion was demonstrated by energy-dependent CID mass spectrometry. Similarly, ionized meta-(α,α,α-trifluoro)cresol $^\beta_{81}1^+$ was found to react by 1,3-F$^+$ shift, producing mainly ionized para-fluorophenol $^\beta_{85}1^+$ via ions $86a$ and $86b$ and minor amounts of ionized ortho-fluorophenol $^\alpha_{85}1^+$ via ion $86c$. The intermediates $86a$ and $86c$ represent special cases of ionized para and ortho-isotoluene, respectively (cf. 107^+, Scheme 29). In these cases, the hydroxyl group directs the migrating fluorine atom either to the para or to the ortho position with respect to its own64.

VIII. CHEMICAL IONIZATION MASS SPECTROMETRY OF PHENOLS

Chemical ionization (CI) mass spectrometry of phenol and phenol derivatives has been studied using a number of reagent gases. In most cases, positive ion CI mass spectrometry was found to be governed by the different response of isomeric phenols toward proton addition and/or electrophilic attack by reactant ions of the CI plasma. In addition, intermolecular H$^+$/D$^+$ exchange was found to be a useful probe for structure elucidation, depending on the relative acidity of the proton-transferring reactant ions. The phenolic OH group undergoes fast proton exchange; however, those ring positions which have sufficiently high local proton affinities can also be subject to H$^+$/D$^+$ exchange. In several cases, this allows us to identify isomeric arenes which are indistinguishable by other mass spectrometric methods, such as EI. Whereas this effect was demonstrated for the first time by using ion cyclotron resonance (ICR) mass spectrometry of a number of substituted benzenes excluding phenols65, systematic studies using water chemical ionization, CI(H$_2$O) and CI(D$_2$O), were performed with a variety of arenes66,67, including phenols68. The results of the latter work were discussed in detail in view of the site of protonation and pointed to the preferred coordination of the water molecule to protonated phenolic OH group. Significant but only partial exchange was found to occur.

It appears that the tendency of the arenes to undergo intermolecular exchange of the ring hydrogens depends on the structure and relative stability of the cluster ions, such as $[{1 + H}]_{(p)}^+ + HX$ and $[{1 + H}]_{(o)}^+ + HX$ (cf. Scheme 1), with X = OH, OMe, NH$_2$ etc. Preferred coordination at polar groups, in particular the phenolic OH group, may suppress the H$^+$/D$^+$ exchange between otherwise reactive ring positions. On the other hand, the polar group may facilitate the formation of stable cluster ions. This point was discussed
for \(\text{CI}(\text{NH}_3) \) of arenes including phenol which, interestingly, was found to be reluctant to formation of \([1 + \text{NH}_4]^+\) ions\(^{69}\). Fragmentation of protonated or cationized phenols occurs easily under CI-MS conditions if a good leaving group is formed in the \([M + \text{H}]^+\) or \([M + \text{HX}]^+\) ion. This is not the case when the phenolic OH group itself is protonated but this substituent can strongly influence the fragility of other groups attached to the aromatic nucleus, in accordance with the thermodynamic stability of phenolic ions in the gas phase. This can be used favourably for analytical purposes. For example, meta- and para-hydroxybenzyl alcohol show drastically different \(\text{CI}(\text{NH}_3) \) mass spectra, with the abundance ratios \([M + \text{NH}_4 - \text{H}_2\text{O}]^+ / [M + \text{NH}_4]^+ = 14.5\) for the para-isomer but close to zero for the meta-isomer. Clearly, the phenolic OH group facilitates the heterolytic cleavage of the benzylic C–O bond in the former case but not in the latter\(^{69}\).

Similarly drastic differences have been observed in the CI(\(\text{MeOH}\)) mass spectra of various oxygen-containing aromatic compounds, including phenols, naphthols and indanols (Scheme 25)\(^{70}\). Whereas benzylic alcohols of the same elemental composition, e.g. 1-indanol \(87\), undergo facile loss of water from the \([M + \text{H}]^+\) ions, giving rise to intense \([M + \text{H} - \text{H}_2\text{O}]^+\) peaks, the corresponding phenolic isomers, e.g. 4- and 5-indanol \(89\), gave characteristically strong \([M + \text{H}]^+\) signals. When perdeuteriated methanol was used as the reagent gas, the CI(\(\text{CD}_3\text{OD}\)) mass spectra exhibited clean mass shifts of 3 Th for the quasi-molecular ions in the case of the phenolic isomers. By contrast, the rather fragile quasi-molecular ions formed by deuteration of the benzylic alcohols, e.g. \([87 + \text{D}]^+\), readily generate abundant indanyl fragment ions with the same \(m/z\) values as observed in the CI(\(\text{MeOH}\)) spectra, e.g. \(88\). Clearly, the phenolic isomers are subject not only to deuteration, giving ions \([89 + \text{D}]^+\), but also to a subsequent single H\(^+\)/D\(^+\) exchange of the phenolic proton, yielding ions \([89_1 + \text{D}]^+\) and giving rise to the diagnostic \([M + 3]^+\) peaks at \(m/z\) 137. (These ions may eventually exist in both the O- and ring-deuterated forms.) The analytical usefulness of the combined CI(\(\text{CH}_3\text{OH}\)
and CI(CD$_3$OD) mass spectrometry was demonstrated by GC/MS characterization of a complex, neutral-polar subfraction of coal-derived liquids70.

In a related extensive study, application of CI(NH$_3$), CI(ND$_3$) and even CI(15NH$_3$) mass spectrometry to the analysis of phenylpropanoids and substituted phenylalkyl ethers containing phenolic OH groups was demonstrated with the aim to model pyrolysis mass spectrometric experiments of lignin71. Similar to the indanols discussed above, hydroxyxinnamyl alcohols and α-hydroxy-substituted phenylalkyl ethers containing para-hydroxybenzyl alcohol units showed intense peaks for the [M + H - H$_2$O]$^+$ and also for the [M + NH$_4$ - H$_2$O]$^+$ fragments. In contrast to the earlier report mentioned above69, the CI(NH$_3$) spectra of these more complex phenol derivatives exhibited also cluster ions [M + NH$_4$]$^+$ which, in accordance with general expectation, gained relative abundance with increasing pressure of the CI reagent gas. It is evident that the [M + NH$_4$ - H$_2$O]$^+$ fragment ions are isobaric with the molecular radical cations M$^+$ generated by residual EI and/or charge transfer processes; however, use of CI(ND$_3$) helps a lot to remove any ambiguities in this respect.

Various other reagent gases have also been used in CI mass spectrometry of phenols. These include chloromethanes, CH$_{x+y}$Cl$_{3-x}$ (x = 0 - 2), tetramethylsilane, nitric oxide and acrylonitrile. Methylene chloride was used in negative ion chemical ionization (NCI) and found to produce abundant cluster ions [M + CI]$^-$ and [2 M + CI]$^-$ with phenol (Section XI.B). The formation of [M - Cl]$^-$ ions was not observed72. In the positive ion mode, CI(CH$_2$Cl$_2$) was studied with phenol 1 and its [ring-D$_3$] and the [D$_6$] isotopomer73. Besides the signals for M$^+$ and [2 M]$^{++}$ ions, which are probably due to charge transfer processes, the mass spectra of these compounds are dominated by the peaks for [M + 13]$^+$ and [2 M + 13]$^+$ ions. These ions are formed by substitution of a hydrogen by a methylene group, thus corresponding to the net attachment of a methine (CH) group to the ring. Similarly to other carbenium ions, e.g. benzyl cations25, CH$_2$Cl$^+$ ions attack electron-rich arenes like phenol quite readily, generating the σ-complexes, such as [90 + H]$^+$, which contains mobile protons17,25,46,74. Subsequent elimination of HCl leaves the corresponding hydroxybenzyl cations, probably mainly p-Φ and o-Φ (Scheme 26). A competing, minor fragmentation path allows the [M + CHCl$_2$]$^+$ adduct ions to expel dihydrogen, presumably generating the related α-chlorohydroxybenzyl cations (not shown in Scheme 26). Loss of H$_2$ is an ubiquitous reaction channel of protonated methylbenzenes75. The CI(CH$_2$Cl$_2$) mass spectra of the two labelled analogues of 1 are similar and show exclusive elimination of DCl and HD, as expected for an electrophilic substitution of phenols73. Notably, the CI(CH$_2$Cl$_2$) mass spectrum of 1 does not reflect the structure of the stable ions, i.e. of those which do not dissociate before detection. This follows from collision-induced dissociation (CID) measurements performed with the [M + CH$_2$Cl]$^+$ ions76. The CID mass spectrum indicates only little formation of the hydroxybenzyl cations 9 (m/z 107) but a strong signal for phenyl cations 93 (m/z 77). Thus, it has been argued that the stable adduct ions may have adopted a structure different from that formed by electrophilic attack at the ring. Scheme 26 offers a possible explanation for the predominant formation of C$_6$H$_4$ ions 93 as structure-specific fragmentation path of the putative adduct ions [91 + H]$^+$ via the intermediate ions 92. Notably, CID fragmentation of the [M + CHCl$_2$]$^+$ ions generated by CI(CH$_2$Cl$_2$) of 1 and also the [M + CCl$_3$]$^+$ ions generated by CI(CHCl$_3$) of 1 provide positive evidence for the occurrence of electrophilic attack of the corresponding, more highly chlorinated reactant ions76.

Among the more rare CI reagent gases, acrylonitrile was studied and found to produce particularly abundant adduct ions [M + C$_3$H$_4$N]$^+$ with many aliphatic alcohols, along with the corresponding [M + C$_3$H$_2$N - H$_2$O]$^+$ and [M + H - H$_2$O]$^+$ fragment ions77. The CI(CH$_2$=CHCN) mass spectra of phenol were found to be special in that the [M + H]$^+$ ions gave rise to the base peak, the [M + C$_3$H$_2$N]$^+$ peak being only moderately intense.
Use of tetramethylsilane (TMS) as a reagent gas in CI mass spectrometry enables the gas-phase trimethylsilylation of aromatic compounds, including phenol. The Me₃Si⁺ ions generated in the CI plasma give rise to abundant adduct ions [M + 73]⁺. However, charge transfer processes lead also to the formation of large amounts of molecular radical cations 1⁺, whereas the protonated phenol [1 + H]⁺ ion is formed only in minor relative abundance. Comparison of the CID mass spectra of the adduct ions [1 + Me₃Si]⁺ (m/z 167) with those of protonated trimethylsilyl phenyl ether [Me₃SiOC₆H₅ + H]⁺ and protonated para-(trimethylsilyl)phenol [p-Me₃SiC₆H₄OH + H]⁺, generated by CI(MeOH) of the corresponding neutral precursors, suggests that the stable adduct ions [1 + Me₃Si]⁺ obtained by CI(TMS) are formed exclusively by attack at the phenolic OH group. It has been shown that the efficient addition of Me₃Si⁺ ions to various organic molecules can be used to detect compounds of low volatility under so-called direct chemical ionization (DCI) conditions. For example, the DCI(TMS/N₂) and/or DCI(TMS/i-C₄H₁₀) mass spectra of estradiol and estrone were reported. The recognition of the [M + Me₃Si⁺] adduct ions and their fragment ions was shown to be facilitated by using mixtures of [D₀]-TMS and [D₁₂]-TMS as additives to the reagent gas, thus giving rise to adduct ion peaks and [M + (CX)₃Si - H₂O]⁺(X = H or D) fragment ion peaks as ‘twin signals’ being 9 Th apart. In contrast to the use of pure TMS as CI reagent gas, abundant [M + H]⁺ and [M + H - H₂O]⁺ ions were formed along with the silylated derivatives under DCI(TMS/N₂) conditions. Mechanistic aspects of the formation of the adduct ions under related CI(TMS/He) conditions, at least with aliphatic alcohols, and of the origin of the protons used to generate the [M + H]⁺ quasi-molecular ions in the CI plasma have been discussed.

Several interesting papers have dealt with the use of nitric oxide as the reagent gas in chemical ionization mass spectrometry. Phenol derivatives are prone to show a strong response to electrophilic attack by NO⁺ ions, yielding abundant [M + NO]⁺ peaks, but charge transfer with electron-rich phenol derivatives giving rise to M⁺ ions is also frequent. Thus, the CI(NO) mass spectrum of the parent compound 1 exhibits the [M + NO]⁺ and M⁺ peaks in ratios of ca 1:2.5. A linear correlation was found between this ratio and the σₚ⁺ parameter comprising six orders of magnitude. Moreover, CI(NO) mass spectrometry was found to be highly diagnostic with respect to the substituent pattern of arenes. For example, the three cresols give structure-specific spectra owing to the
individual relative abundances of \([M + NO]^+\), \(M^+\) and also \([M - H]^+\) ions. Again, in accordance with the relative stabilities of the hydroxybenzyl cations 9 (cf. Scheme 3), hydride abstraction by NO\(^+\) is most pronounced in the CI(NO) mass spectrum of para-cresol \(p\)-7 and least pronounced in that of the meta-isomer. The spectra of aminophenols exhibit only small differences since the charge transfer process dominates strongly here; however, the \([M + NO]^+\) peak is most intense, albeit only 0.4% B, with the ortho-isomer, probably owing to an ortho effect (see below). The CI(NO) mass spectra of the nitrophenols are surprising because of the significant occurrence of \([M - H]^+\) ions for the ortho- and para-isomers and the strong predominance of the \([M + NO]^+\) ions giving rise to the base peaks in all three cases\(^{82}\). In view of the protonation of nitrobenzenes (see below), it appears reasonable to assume that the NO\(^+\) ion is attached to the nitro group of nitrophenols, rather than to the hydroxyl group or to the ring.

A detailed study on the protonation site and the fragmentation of nitrobenzene derivatives in CI(CH\(_4\)) mass spectrometry included phenol and the three nitrophenols\(^{83}\). The pronounced ortho effect observed for the ortho-isomer 94, that is, strongly dominating water loss from the \([94 + H]^+\) ions (Scheme 27), and the far suppressed reactivity of other substituents, which would normally accept the proton from the highly acidic CI plasma ions, indicate that the nitrophenols, as well as other nitrobenzene derivatives, are preferably protonated at an oxygen atom of the nitro functionality, at least in the reactive form \([94 + H]_{(NO_2)}^+\). Note that the proton affinity of nitrobenzene, PA(C\(_6\)H\(_5\)NO\(_2\)) = 193.4 kcal mol\(^{-1}\), is only slightly (by 2–3 kcal mol\(^{-1}\)) lower than PA(1). According to the additivity rule

\[
\begin{align*}
\text{[94 + H]}_{(m)}^+ & \quad \text{[94 + H]}_{(OH)}^+ \\
\text{(94)} & \quad \text{(95) m/z 122} \\
\text{[94 + H]}_{(NO_2)}^+ & \quad \text{(96) m/z 122}
\end{align*}
\]

SCHEME 27
of the local PA increments, the C-4 position of ortho-nitrophenol can be estimated to have PA(94, C13) ≈ 178.3 kcal mol⁻¹ only [cf. PA(benzene) = 180.0 kcal mol⁻¹], being the most basic ring site (cf. ion [94 + H]⁺). The characteristic [M + H – H₂O]⁺ peak at m/z 122 in the CI(CH₄) mass spectrum of 94 is as intense as the [M + H]⁺ peak, whereas it is negligibly small in the spectra of the other isomers and in that of phenol itself. Again, a quinoid structure (2-nitrosophenoxenium ion 95) is ascribed to the [M + H – H₂O]⁺ ions and its formation has been attributed to the proton transfer from the hydroxyl group to the protonated nitro group in [94 + H]⁺(NO₂). However, it has been shown that ortho-nitroanisole also exhibits a pronounced ortho effect under the same CI conditions, and the [M + H – MeOH]⁺ ions produced therein were shown to be structurally identical. Therefore, the alternative path of water elimination, i.e. via intermediate ions [94 + H]⁺(OH) and 96, which has been suggested analogously for methanol loss from the methyl ether, may be followed in the case of ortho-nitrophenol as well.

Related ortho effects were studied by collision-induced dissociation (CID) of the [M + H]⁺ ions and the [M + CH]⁺ and [M + CH₂]⁺ adduct ions generated by CI(Me₂O) or CI(oxirane) of the isomeric methoxyphenols 77, hydroxybenzaldehydes 97 and hydroxyacetophenones 100. The spectra of the protonated meta- and para-isomers were found to be qualitatively indistinguishable. As the most remarkable result, which was corroborated by some deuterium labelling experiments, the products of methine transfer, [M + 13]⁺ ions (see above), were found to provide different CI/CID spectra for the ortho-isomers. Thus, [o-77 + CH]⁺ ions react by sequential loss of CH₄ and CO, whereas the respective ions generated from m-77 and p-77 expel predominantly CO and CH₂O in competing pathways. In contrast to the [M + H]⁺ ions of o-97, adduct ions [o-97 + CH]⁺ generated from ortho-hydroxybenzaldehyde o-97 behave in a specific manner: They expel CO but do not undergo successive elimination of H₂ and CO, as do the respective isomers. Again in contrast, protonated ortho-hydroxyacetophenone [o-100 + H]⁺ exhibits a specific sequence of water and CO losses. CI(Me₂O) mass spectrometry performed in a quadrupole ion trap mass spectrometer (ITMS) revealed competitive formation of the [M + 13]⁺ and [M + 15]⁺ adduct ions of the isomeric hydroxybenzaldehydes 97 and hydroxyacetophenones 100, which pertained also to vanillin p-105 and ortho-vanillin o-105 (Scheme 28). Thus, while all compounds formed abundant [M + H]⁺ ions, only m-97, p-97, m-100 and p-100 showed [M + CH₃]⁺ but no [M + CH]⁺ peaks, whereas o-97 and o-100 both exhibited the opposite behaviour. It appears reasonable to assume that the CH₂OCH₃ reactant ion generated in the CI(Me₂O) plasma transfers a CH₃⁺ ion to the carbonyl oxygen atom generating the [M + 15]⁺ ions m- and p-104, respectively. In contrast, the methine group transfer giving rise to ions [M + 13]⁺, viz. o-99 and o-102, occurs by electrophilic aromatic substitution (cf. Scheme 26) if a sufficiently nucleophilic ring position is available to enable formation of the intermediate ions o-98 and o-101.

The examples discussed above refer to adduct ion formation, where covalent bonds are formed in the CI plasma. However, with the increasing importance of alternative ionization techniques, such as thermospray (TSI) and, in particular, electrospray ionization (ESI), a wealth of non-covalent ion/molecule adduct ions can be generated and studied nowadays. One recent example concerns the formation of ion/solvent adducts, [M + So]⁺, with M including 3-aminophenol, 3-(methylamino)phenol and 3-(dimethylamino)phenol, and several hydroxypyrimidines, among other aromatic molecules. The relative abundances of ions [M + H]⁺, [M + So + H]⁺ and [M + 2 So + H]⁺ were studied as a function of the temperature and the pH, with the solvents being mixtures of methanol/water and acetonitrile/water which may contain ammonium acetate as an additive. Quite in contrast to this empirical study on proton-bound ion/molecule complexes, the non-covalent, open-shell adduct ions [I⁺ + NH₃] were investigated with respect to their intrinsic reactivity. These adduct ions were generated from phenol and ammonia by laser ionization of a
mixture of the neutral components and studied by photoelectron spectroscopy (PES) to estimate the height of the isomerization barrier to ions \([C_6H_5O\cdot + NH_4^+]^{88}\).

IX. IONIZED PHENOL AND CYCLOHEXA-1,3-DIEN-5-ONE (ortho-ISOPHENOL) GENERATED BY FRAGMENTATION OF PRECURSOR IONS

A. The Radical Cations of ortho-Isophenol

The role of ionized cyclohexa-1,3-dien-5-one (ortho-isophenol), 0\(-2\)^\(+\), as a crucial intermediate in the expulsion of CO from ionized phenol, 1\(^{+}\), has been discussed above (Section III). The formation and properties of the radical cations of the ‘ortho-tautomers’ of simple arenes such as toluene, phenol and aniline (Scheme 29) has been investigated in much detail. Briefly, ionized ortho-isotoluene 107\(^{+}\) was found to be a stable species exhibiting fragmentation characteristics which are distinct from those of ionized toluene 106\(^{+}\). These ions can be generated by McLafferty reaction of ionized \(n\)-alkylbenzenes and related \(\alpha, \omega\)-diphenylalkanes (Scheme 29, \(X = CH_2, R = alkyl, aryl\), in the course of which a \(\gamma\)-H atom is transferred from the aliphatic chain to one of the ortho positions of the benzene ring, in analogy to the elimination of olefins from the corresponding ionized \(n\)-alkylphenols discussed above (cf. Scheme 7). When the benzylic (\(\alpha\)-) methylene group is replaced by an oxygen atom, the molecular radical cations of the respective

![Scheme 29](image-url)
n-alkyl phenyl ethers apparently undergo the same olefin elimination; however, all evidence has documented the formation of the phenol radical cation, 1^{+}, rather than of the isophenol radical cation, $o-2^{+}$. Similarly, the EI-induced fragmentation of phenyl esters, such as phenyl acetate, gives rise to ions 1^{+} by H$^+$ rearrangement followed by loss of the corresponding ketene. Thus, the migrating hydrogen atom is accepted by the heteroatom rather than by one of the carbon atoms of the aromatic ring. A similar behaviour was found for the EI-induced fragmentation of aniline derivatives, such as N-alkylanilines and aliphatic anilides, which generates ionized aniline 108^{+}, rather than ionized ortho-isoaniline 109^{+}. Again, the heteroatom acts as the preferential H$^+$ acceptor site.

The characteristic features of the keto–enol tautomers 1^{+} and $o-2^{+}$ have been studied by a variety of mass spectrometric methods. Whereas the discovery of the formation of C$_6$H$_5$O$^{+}$ ions (m/z 94) from ionized alkyl phenyl ethers dates back to 1959, a wealth of papers have been published since, showing that the ‘aromatic’ tautomer 1^{+}—actually being a 5π electron system only—is generated as a stable species likewise by EI of phenol 1 and of phenyl ether precursors, such as phenetole. These ions exhibit the same unimolecular and collision-induced fragmentation characteristics and also the same bimolecular reactivity, as studied by ion cyclotron resonance mass spectrometry (ICR-MS). The formation of the tautomeric ions $o-2^{+}$ was achieved by starting from a neutral precursor which is prone to undergo a facile (formal) retro-Diels–Alder reaction, viz. bicyclo[2.2.2]oct-2-en-5,7-dione 111. In fact, C$_6$H$_5$O$^{+}$ ions (m/z 94) generated by elimination of ketene from ions 111$^{+}$ (Scheme 30) were found to behave in a manner distinct from ions 1^{+} in many ways. For example, the collision-induced dissociation (CID) mass spectra of ions $[111 - C_2H_2O]^{+}$ are clearly different from those of the ions C$_6$H$_5$O$^{+}$ generated from the aromatic precursors. However, as pointed out in a critical discussion of ion/molecule reactions as a probe for ion structures, identical bimolecular reactivity of the presumably tautomeric forms of C$_6$H$_5$O$^{+}$ was also encountered. In fact,

![Scheme 30](image)
C₆H₅O⁺ ions of both tautomeric forms could lose their structural identity by catalysed 1,3-H shift within an ion/molecule complex, as they can interconvert prior to CO loss. Even photodissociation spectroscopy making use of the CO expulsion as the probe reaction revealed that, in contrast to 1 and phenetole 110, from which almost pure 1⁺ ions can be produced (Scheme 30), the C₆H₅O⁺ ions generated from 111 consist in fact of a mixture of the tautomers o-2⁺ and 1⁺. According to these results, a similar mixture is formed even from β-chlorophenetole 112 as the neutral precursor.

B. Phenol Ions Generated within Transient Ion/Neutral Complexes during Mass Spectrometric Fragmentation of Alkyl Aryl Ethers

Extensive studies of the formation of ions 1⁺ and the radical cations of related hydroxyarenes have been performed with respect to the formation of ion/molecule complexes in the course of unimolecular fragmentation of organic ions in a mass spectrometer. Transient ion/molecule and ion/radical complexes ("ion/neutral" complexes) have both analytical and fundamental importance. Owing to the fact that the ionic and the neutral fragment formed by the primary dissociation can move relatively freely with respect to each other, they behave like a (formally equivalent) aggregate generated by bimolecular encounter, and secondary processes may occur between the constituents of the complex, e.g. proton transfer, hydrogen atom abstraction and hydride transfer. If these processes take place between groupings which, in the original molecular structure, were far apart from each other, the intermediary of reactive ion/neutral complexes during mass spectrometric fragmentation may open unexpected reaction paths and give rise to unusual (if not 'irritating') peaks in the mass spectrum.

One of the most studied reactions occurring via ion/neutral complexes is the elimination of alkenes from the radical cations of alkyl phenyl ethers. As shown in Scheme 29, a primary ion/radical complex [C₆H₅O⁺C₂H₅R⁺]⁺ is formed by cleavage of the O−Cα bond. It has been argued that the alkyl cation bound to the phenoxy radical by mainly ion/dipole and ion/induced dipole interactions transfers a hydrogen atom, rather than a proton, in a nearly thermoneutral reaction to the oxygen atom, thus generating a second ion/neutral complex, [C₆H₅OH C₂H₅R⁺⁺], from which the olefin is eventually released after charge transfer, giving rise to ions 1⁺ (m/z 94). Competitively, the latter ion/molecule complex may undergo another intra-complex reaction, this time a proton transfer, generating another ion/molecule complex, {[C₆H₅OH + H]⁺ C₂H₅R⁺⁺}, which gives rise to protonated phenol ions [1 + H]⁺ (m/z 95) with the concomitant elimination of an allylic neutral fragment. In general, these products of double hydrogen transfer have only very low relative abundance. However, if the relative proton and hydrogen atom affinities allow, as in the case of ionized alkyl pyridyl ethers, the double hydrogen transfer reaction may become the dominating channel. A most remarkable example in this respect is ionized 4-pyridyl cyclooctyl ether, which undergoes mainly or exclusively double hydrogen transfer, giving rise to protonated 4-pyridone (m/z 96) and C₆H₅⁺, presumably being the cycloocten-3-yl radical. Labelling experiments indicated symmetrization of the cyclooctyl ion associated to the pyridyl-4-oxy radical in the primary ion/neutral complex, in accordance with the non-classical structure of the cyclo-C₈H₅⁺ ion. The mechanistic details of the reactivity of ionized aryl alkyl ethers and the ion/neutral complexes containing phenolic constituents have been described in great detail.

Interestingly, there is no evidence for intra-complex protonation of the relatively basic ortho and para positions of the phenoxy radical or phenol.

Related fragmentation and isomerization behaviour was unraveled for the unimolecular fragmentation of protonated alkyl phenyl ethers, [C₆H₅OC₂H₄R + H]⁺. These closed-shell, even-electron analogues of ionized alkyl phenyl ethers also form ion/molecule
complexes, in this case \{[1 + H]^+ \text{C}_2\text{H}_3\text{R}\} as the primary and, after intra-complex proton transfer, \{1 \text{C}_2\text{H}_4\text{R}^+\} as the secondary complex. Again, detailed studies have been carried out with regard to the origin of the rearranged hydrogens and the isomerization of the alkyl cations within the latter complex. However, as the most remarkable result with respect to the gas-phase ion chemistry of phenols, proton exchange with ring hydrons and, thus, protonation of the electron-rich phenol ring, was excluded by experimental evidence\(^\text{128}\). Similar to the behaviour of the ion/neutral complexes generated during the fragmentation of the open-shell, odd-electron analogues, protonation or H\(^+\) transfer within the complexes is restricted to the oxygen atom. However, although never proven in this case, thermodynamic reasons suggest that the actual fragment ions, \text{C}_6\text{H}_7\text{O}^+ \text{(m/z 95)}, formed by alkene elimination from protonated allyl phenyl ethers via ion/molecule complexes \{1 \text{C}_2\text{H}_4\text{R}^+\}, should be a ring-protonated phenol, e.g. \{1 + \text{H}\}^+_\text{(p)}.

C. Allylphenols and Allyl Phenyl Ethers

Whereas the fragmentation of ionized and protonated alkyl phenyl ethers generate phenolic ions, such as \text{I}^+\text{ and \{1 + \text{H}\}^+}, together with neutral alkenes, ionized and protonated allyl phenyl ethers and related unsaturated analogues do not fragment via reactive ion/molecule complexes. The EI-induced fragmentation of a number of allyl phenyl ethers and the isomeric ortho-allylphenols and ortho-propenylphenols have been studied\(^\text{130}\). These ions undergo several competing fragmentation reactions, including the loss of the allylic side chain as \text{C}_3\text{H}_4, generating ions \text{C}_6\text{H}_6\text{O}^+\text{ (m/z 94)}, ionized phenol \text{I}^+, and the loss of \text{C}_2\text{H}_3\text{, generating ions \text{C}_7\text{H}_7\text{O}^+ \text{(m/z 107)}, probably \text{o}^\text{-9}^+.\text{ It has been suggested from these findings that a part of the allyl aryl ether ions undergo Claisen rearrangement prior to fragmentation}\(^\text{130}\). A later photoionization study suggested the occurrence of multistep skeletal and hydrogen rearrangement processes prior to fragmentation of ionized allyl phenyl ethers, mainly initiated by the particularly facile electrophilic attack of the \text{ω-CH}_2\text{ group at an ortho position of the electron-rich aromatic ring}\(^\text{131}\). Claisen rearrangement was also reported to precede the fragmentation of ionized allenyl phenyl ether and phenyl propargyl ether\(^\text{132,133}\). Again, the EI mass spectra of these compounds exhibit intense m/z 94 peaks indicating the formation of ionized phenol \text{I}^+.\text{ Similarly, \text{C}_6\text{H}_2\text{O}^+\text{ ions give rise to the base peak in the EI mass spectrum of allenylmethyl phenyl ether \{buta-2,3-dien-1-yl\} phenyl ether, which has been traced to the elimination of butatriene. Interestingly, ionized 2-(buta-1,3-dien-2-yl)phenol reacts quite differently in that the m/z 94 peak is only 20–25\%\(^\text{134}\).}

Phenolic radical cations can also be generated in the absence of mobile hydrogens in the initial step of the fragmentation. Different from aliphatic anilides (see above), Claisen-type rearrangement represents also a major fragmentation route of ionized aroylanilides, \text{ArCONHAr}^+\text{, generating ionized phenols, \text{Ar}^OH^+ along with neutral arylisocyanides, \text{ArNC}. For example, the EI mass spectrum of \text{N-(4-methoxyphenyl)benzamide (i.e., \text{Ar}^\prime = p-anisy}, exhibits a significant peak at m/z 124, indicating the formation of ions 4-MeO\text{C}_6\text{H}_4\text{OH}^+, the structure of which has been proven by CID mass spectrometry\(^\text{135}\). The relative rate of this fragmentation channel is strongly affected by the electronic nature of the aroyl nuclei\(^\text{136}\).

The fragmentation of protonated allyl phenyl ethers, and their phenolic isomers, such as ortho-allylphenol \text{113}, is much simpler than that of their open-shell congeners generated by EI mass spectrometry. Under Cl(CH\text{4}) conditions, both the protonated phenol, \text{[113 + H]^+}, and the protonated parent ether, \text{[115 + H]^+}, behave very similarly (Scheme 31)\(^\text{137}\). The by far major fragmentation path of these closed-shell ions is the elimination of ethene, generating ions \text{o-9 (m/z 107, see below). Ionized or protonated phenol (m/z 94 and 95) are formed in negligible amounts only. Nevertheless, Claisen rearrangement induced by
O-protonation in $[115 + H]^+$ is the dominant reaction path, giving rise to an intramolecular CH-group transfer (Scheme 31, cf. $[M + 13]^+$ ions discussed in Section VIII). Ethene loss has been suggested to occur via the olefin-protonated tautomer $[113 + H]^+_{(all)}$; however, a cycloreversion of the O-protonated dihydrobenzopyrane $[114 + H]^+_{(O)}$ could also be envisaged. The structure of the $[M + H - C_2H_4]^+$ ions from both 113 and 115 has been identified by collision-induced dissociation and by ion/molecule reactions as ortho-hydroxybenzyl ions, o-$9^{137,138}$. This study is a lucid example for the need of the rigorous application of the instrumental tools of fundamental mass spectrometry139: Similar to an experience of the author of this review in a mass spectrometric study of a completely different class of oxygen-containing compounds, viz. 1,3-indanediones140, the loss of 28 Th from protonated ortho-allylphenol $[113 + H]^+$ could be attributed, at first glance, to the loss of carbon monoxide, instead of ethene. In fact, ions $[113 + H]^+$ and also ions $[115 + H]^+$ were found to eliminate C_2H_4 and only minor amounts of CO. In contrast, protonated phenyl propargyl ether expels CO, rather than C_2H_4, after Claisen rearrangement138.

D. Lignin Model Compounds: Eugenol, Dehydrodieugenol and Related Compounds

The complex polyclic molecular frameworks of lignin comprise phenol and alkyl phenyl ether derivatives as major structural units. Chemical degradation and more or less
undirected decomposition of lignin releases such relatively simple aromatic compounds, which can be identified by GC/MS or pyrolysis/gas chromatography/mass spectrometry (Py/GC/MS) and related methodologies. Recent examples concern the identification of various phenylpropanoid compounds of the guaiacyl and syringyl series in wood smoke141 and in samples from wood casks used for wine ageing142. Using photoionization (PI) for improving the reproducibility, Curie-point Py/GC/PI-MS analysis of beech milled wood lignin led to the identification of more than forty phenols as pyrolysis products143. A method for the quantification of lignins in paper mill waste water by Curie-point Py/GC/MS was presented recently144. Furthermore, a Curie-point carbon-isotope-ratio (Py/GC/MS-C-IRMS) study on the turnover rate of specific organic compounds in plant soil was published recently, including lignins which were traced by the detected phenols145.

For several decades, monomeric and dimeric building blocks of lignin have been studied with respect to their mass spectrometric fragmentation. The fragmentation of the molecular radical cations was found to be rather complicated but some of the major reaction channels reflect the fundamental gas-phase ion chemistry of phenols.

5-Propylguaiacol 116, eugenol 117 and isoeugenol 118 are amongst the simplest pyrolysis degradation products of lignins and their fragmentation under EI-MS conditions is straightforward (Scheme 32). Owing to the presence of the para-hydroxy group, the saturated side chain in ions 116++ cleaves preferentially by loss of the ethyl group giving rise to the base peak at \textit{m/z} 137. Accordingly, the elimination of ethene by McLafferty reaction is largely suppressed (only 7\%B after correction for the contribution of 13C\textsubscript{12}C\textsubscript{7}H\textsubscript{5}O\textsubscript{2}+ ions to the peak at \textit{m/z} 138), in spite of the presence of a meta-methoxy substituent (cf. Section III.C). The high hydrogen atom affinity of the guaiacol nucleus in ions 116++ is reflected by the elimination of C\textsubscript{2}H\textsubscript{6} giving ionized guaiacol (\textit{m/z} 124, 9\%B), which necessarily involves a hydrogen rearrangement to the ring position para to the hydroxyl group. EI mass spectra of the unsaturated analogues, 117 and 118, are much distinct from that of 116, but rather similar among each other. Benzylic cleavage of ionized eugenol 117++ by loss of a vinyl radical is energetically much less favourable than the corresponding loss of the ethyl radical from ions 116++ and cleavage of the methoxy group by loss of CH\textsubscript{3}* can compete, as is evident from the peak at \textit{m/z} 149 (35\%B). Subsequent expulsion of CO from the \textit{[117–CH\textsubscript{3}]+} ions leads to ions C\textsubscript{8}H\textsubscript{5}O\textsubscript{+} (\textit{m/z} 121, 15\%B). Cleavage of the propenyl group in ionized isoeugenol 118++ is even more difficult, and the relative abundance of ions [118–C\textsubscript{2}H\textsubscript{3}]+ is further reduced. It is very likely that the allyl and propenyl side chains in ions 117++ and 118++ undergo not only partial interconversion but also cyclization with the adjacent phenol nucleus (see below). Cyclization of alkenylbenzene ions to indane-type isomers is a common isomerization channel155.

The fragmentation of the two ‘dimeric’ derivatives, dehydrodiisoeugenol 119 and dehydrodiisoferyl alcohol 120, under EI conditions is again governed by the characteristic reactivity of the phenolic moieties. However, the spectra are very different in that ions 119++ are much more stable than ions 120++ (Scheme 32). Again, hydrogen rearrangement to the pending guaiacyl group initiates the formation of an intact guaiacol molecule which, different from ions 116++, is eliminated as a neutral fragment to give ions at \textit{m/z} 202 (8\%B). Elimination of neutral arenes is a major reaction channel of many ionized arylindanes and related aryl-substituted benzocycloalkanes25,54. The more highly hydroxylated congener 120++ dissociates much more readily than ions 119++ to generate the abundant (probably) benzylic fragment ions at \textit{m/z} 137, similar to the fragmentation of ions 116++ but necessarily involving an additional hydrogen rearrangement. It is reasonable to assume benzylic cleavage of the benzofuran unit of 120++ as a first step of the isomerization cascade preceding the eventual fragmentation.
(116) m/z 166 (30%) [M]$^{+}$
m/z 138 (7%) [M - C$_2$H$_4$]$^+$
m/z 137 (100%) [M - C$_2$H$_4$]$^+$
m/z 124 (9%) [M - C$_3$H$_6$]$^{++}$

(117) m/z 164 (100%) [M]$^{+}$
m/z 149 (35%) [M - CH$_3$]$^+$
m/z 137 (19%) [M - C$_2$H$_5$]$^+$
m/z 121 (15%) [M - CH$_3$ - CO]$^+$

(118) m/z 164 (30%) [M]$^{+}$
m/z 149 (35%) [M - CH$_3$]$^+$
m/z 137 (7%) [M - C$_2$H$_5$]$^+$
m/z 121 (15%) [M - CH$_3$ - CO]$^+$

(119) $R = CH_3$
m/z 326 (100%) [M]$^{+}$
m/z 311 (10%) [M - CH$_3$]$^+$
m/z 202 (8%) [M - guajacol]$^{++}$

(120) $R = CH_2OH$
m/z 358 (13%) [M]$^{+}$
m/z 151 (43%) [M - H]$^+$
m/z 137 (100%) [M - H - CO]$^+$

(121) $R = CHO$
m/z 326 (100%) [M]$^{+}$
m/z 311 (7%) [M - CH$_3$]$^+$
m/z 299 (10%) [M - C$_2$H$_5$]$^+$

(122) $R = CH_2CHCH_2$
m/z 326 (100%) [M]$^{+}$
m/z 311 (7%) [M - CH$_3$]$^+$
m/z 299 (10%) [M - C$_2$H$_5$]$^+$

SCHEME 32
A particularly interesting case was found for the biaryl-type dehydrodieugenol 122 (Schemes 32 and 33). Whereas the EI mass spectrum of the related dehydrodivanillin 121 is dominated by the molecular ion peak, as expected, showing the typical fragmentation of ionized benzaldehydes, viz. loss of H⁺ and CO, the mass spectrum of 122 exhibits an intense peak at m/z 164 as a unique feature. It has been suggested that this signal is due to the formation of ionized eugenol, again corresponding to the pronounced tendency of ionized phenols to initiate hydrogen rearrangement. Notably, deuterium labelling of the phenolic hydroxyl groups confirmed that the hydrogen atom being transferred between the two aromatic moieties originates from an allyl side chain. This finding again reflects the ability of ionized phenols to isomerize to distonic ions containing a protonated phenol ring.

A more detailed interpretation in view of the multifaceted reactivity of phenol radical cations is depicted in Scheme 33. It is well conceivable that ions 122⁺ fragment by formation of ionized eugenol 117⁺ (or ionized isoeugenol 118⁺), with the first step of this path being a 1,2-H shift from a benzylic methylene group to the basic ipso position of the same guaiacol ring. Subsequent ring walk to the biaryl junction with concomitant shift of a phenolic hydrogen of the same guaiacol ring could then effect the cleavage of the biaryl bond. In this case, a quinomethane-type neutral would be expelled as the neutral fragment during the generation of ions 117⁺.

An alternative and much more likely, albeit also quite complicated, isomerization path is also depicted in Scheme 33. While tautomerization of the eugenyl to the isoeugenyl moieties may occur independently, cyclization of one of them (or even both) should also take place. The distonic ion 123⁺ thus formed contains a protonated guaiacol ring bearing mobile protons and isomer 124⁺ should be readily accessible by proton ring walk. At this stage, at latest, the C—H bonds of the formerly remote methylene group become sufficiently acidic to transfer a proton to the other guaiacol ring, generating the next distonic ion 125⁺. Another proton ring walk opens an access to the highly fragile isomer 126⁺, from which ionized eugenol and/or isoeugenol are formed together with an energetically favourable hydroxymethoxyindene as the neutral fragment. This example of a (yet hypothetical) EI-induced fragmentation mechanism demonstrates the ability of hydroxy- (as well as methoxy-) substituted arenes to undergo complex isomerization reactions prior to fragmentation, owing to the fact that phenol (and anisole) rings are easily attacked by electrophiles, leading to unimolecular cyclization and protonation.

Mass spectrometric analysis of lignin building blocks, oligomers and polymers represents a challenge for future research efforts. It is important to note, in this context, that methods developed during the past two decades offer promising prospects for the generation and analysis of ions from highly polar and high-mass compounds. Progress has been made in many instances, even for the investigation of entire lignin polymers, by using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Electrospray mass ionization (ESI) mass spectrometry has been applied, and will be developed further, for the analysis of phenolic derivatives of lignin building blocks and adducts. This comprises both positive ESI mass spectrometry of various catechin/histidine adducts and dopamine derivatives and also negative ion ESI mass spectrometry of oligophenols of this sort. For example, the collision-induced fragmentation of electrospray-generated oligophenolate ions (ESI-MS/MS) was shown to be highly structure-specific. Thus, the three dihydroxyphenols o-39, m-39 and p-39 give even qualitatively distinct CID mass spectra, which points to the fact that the reactivity of gaseous phenolate anions depends strongly on the electronic influence of the ring substituents. Thus, catechols from green tea were identified recently by using negative ion LC/ESI-MS/MS techniques.
SCHEME 33
X. ION/MOLECULE REACTIONS OF PHENOLS IN THE GAS PHASE

Various bimolecular reactions of phenolic species occur in the CI plasma and in the condensed environment present in the ion sources operating under fast-atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) conditions. As shown above, bimolecular ion/molecule reactions can be studied in the reactive complexes generated during unimolecular fragmentation of many even- and odd-electron phenol derivatives. In this section, a number of bimolecular reactions of phenols with cationic electrophiles in the gas phase are discussed. Similar to many processes occurring in positive ion mass spectrometry of phenols, the relevance of the attack of gaseous cations on electron-rich ambiphiles, such as phenols and anisoles, to our understanding of the fundamentals of electrophilic arene substitution is obvious. Notably, significantly less studies have been published concerning the gas-phase attack of Lewis acids on phenol than studies concerning the electronically related anisole. For example, early two-stage ion beam mass spectrometric work investigating the reactions of acetyl and nitronium cations on various arenes lacks phenol among the aromatic precursors but includes its methyl ether152.

An early ion cyclotron resonance (ICR) study demonstrated the steric hindrance of bulky alkyl groups at the ortho positions of phenols153. While 3,5-di(tert-butyl)phenol underwent addition of an acetyl cation, 2,6-di(tert-butyl)phenol did not. In a subsequent work154, it was demonstrated that encounter of acetyl cations with phenol in the highly diluted gas phase of an ICR mass spectrometer is not productive but that CH$_3$CO$^+$-transferring ions, such as O-acetylated acetone and O-acetylated butane-2,3-dione, give an acetylation product [C$_6$H$_5$O + CH$_3$CO]$^+$ in relatively high rates. It is clear that the exothermicity of the reaction requires a third body, e.g. acetone or butane-2,3-dione in this case, to take over a fraction of the energy released on acetylation. In fact, acetylation of phenol, the cresols and the xylenols under high-pressure conditions (380–760 Torr) by radiolysis of CH$_3$F/CO mixtures gave arenium ions which were sufficiently long-lived to undergo deprotonation, yielding the neutral acetylation products155. Competition between ‘n-attack’ and ‘π-attack’ at oxygen and the ring was found to be highly pressure-dependent but in all regimes to strongly favour O-acetylation. Under relatively low pressures, i.e. under increased thermodynamic control, ortho-acetylation gained importance over para-acetylation, whereas meta-attack proved to be of minor importance as expected for electrophilic substitution of electron-rich arenes155.

Different from acetylation, benzoylation of phenol under gas-phase radiolysis conditions was found to occur exclusively at the functional group156. Owing to the experimental setup, by which the C$_6$H$_5$CO$^+$ ions were generated from primarily formed C$_6$H$_5$+ ions and excess CO, the relative rates of the competing attacks of both electrophiles could be assessed. While this competition turned out to be the same for phenol and anisole ($k_{\text{phenyl}}/k_{\text{benzoyl}} = 0.12$ and 0.13, respectively), anisole was found to undergo considerable ring benzoylation, in contrast to phenol (and aniline, too). In any case, it has become clear from these studies that the benzoyl cation is much softer an electrophile than the acetyl ion, as reflected by its pronounced regioselectivity156.

More recent work focused on the use of the benzoyl cation as a chemoselective reagent for the detection of various aliphatic and alkylaromatic alcohols in ion-trap mass spectrometry (IT-MS)157. Different from purely aliphatic alcohols, benzyl alcohol and benzydrol, phenol was found to be completely non-productive. This finding may again be viewed as reflecting the mildness of the C$_6$H$_5$CO$^+$ electrophile; however, it has to be traced to the good leaving group ability of the protonated phenoxy group in the primarily formed adduct, C$_6$H$_5$(OH$^+$)(COC$_6$H$_5$), which suffers multiple collisional excitation with the bath gas within the reaction time (100 ms at 10$^{-3}$ Torr He). Accordingly, even milder benzoyl cations, such as 4-CH$_3$C$_6$H$_4$CO$^+$ and 4-t-C$_6$H$_9$C$_6$H$_2$CO$^+$ ions, did not react either158.
However, the pentafluorobenzoyl cation, C$_6$F$_5$CO$^+$, was found to convert phenol into the corresponding primary adduct, C$_6$H$_5$(OH$^+$)-(COC$_6$F$_5$), whose relatively stronger ‘intraester’ C–O bond apparently withstands the collisional excitation in the ion trap. The utility of this method in the selective detection of various (notably, mostly non-phenolic) hydroxy-functionalized compounds by GC/IT-MS has been demonstrated158.

The electrophilic attack of C$_3$H$_5^+$ ions generated from EI-induced fragmentation of several C$_3$H$_7$Br precursors on phenol under low and high pressure conditions was studied with respect to the use of the neutral arene, in turn, as a probe for the structure of the reactant cation159. It was suggested that either pure allyl cations, pure 2-propenyl cations or mixtures of both isomers were generated. In fact, the C$_9$H$_{11}$O$^+$ (m/z 133) adduct ions formed on electrophilic attack on phenol were found to exhibit distinct CID spectra, depending in part on the pressure regime. Comparison with the CID spectra of C$_9$H$_{11}$O$^+$ model ions obtained by protonation of ortho-allylphenol and allyl phenyl ether indicated that allyl cations react with phenol preferentially by attack on the ring rather than on oxygen. It is obvious that allylation and propenylation of phenol produce C$_9$H$_{11}$O$^+$ ions which are structurally distinct from those generated by ion/molecule reaction of phenoxy and hydroxyphenyl cations with acetone (Section III.D). The differences in comparison with the unimolecular fragmentation of protonated allyl phenyl ether under CI-MS conditions are also remarkable.

The ion/molecule reactions between neutral phenol and various small reactant ions were also studied both in a conventional CI-MS source and in an ion-trap (IT) mass spectrometer160. Ethene, ethylene oxide and dimethyl ether were used and produced the products of formal methylene transfer, viz. [M + 13]$^+$ ions, along with the [M + H]$^+$ ions. Vanillin and 2- and 4-hydroxyacetophenones were found to behave similarly. Phenol formed also [M + 27]$^+$ ions with C$_2$H$_4$, but not with oxirane, as the reagent gas. CID spectra of the [M + 13]$^+$ ions were found to be indistinguishable, i.e. independent of the reagent gas. Notably, [M + 41]$^+$ ions were formed neither with phenol nor with one of its derivatives, whereas anisole did react by addition of C$_3$H$_5^+$. It is reasonable to assume that the [M + C$_5$H$_5$]$^+$ ions formed with phenol are more labile than those formed with anisole because the phenol adduct can easily expel C$_2$H$_4$ (cf. Scheme 31), generating C$_7$H$_5$O$^+$, i.e. [M + 13]$^+$ ions. Using dimethyl ether as the reagent gas, phenol was found to produce also [M + 45]$^+$ and [M + 47]$^+$ ions which, on the basis of their CID spectra, were interpreted as the covalent adducts of phenol and H$_2$C=O$^+$—CH$_3$ and proton-bound ‘heterodimers’ [C$_6$H$_5$OH H$^+$ OMe$_2$]$^+$160. In a subsequent work, the competitive reactions of the reactant ions formed from dimethyl ether in an IT mass spectrometer with various phenols were evaluated with respect to steric and substituents effects161.

As discussed in the first section of this chapter, the site of protonation of phenol is fundamental to its reactivity under many mass spectrometric conditions. Global and local alkyl cation affinities of aromatic compounds follow similar trends as do proton affinities, including the additivity rule, as shown in a recent \textit{ab initio} computational work including phenols162. CID mass spectrometry was used to determine not only the site of protonation but also of methylation and ethylation under CI-MS conditions163. Whereas exclusive ring protonation was confirmed in agreement with the large local PA differences, alkylolation of phenol was found to take place preferentially at the ring, but to occur also at the hydroxyl group. Aniline and thiophenol exhibited distinct behaviour. In a later work, charge-stripping (CS) mass spectrometry was used to deduce the sites of protonation and alklylation of phenol, aniline and thiophenol164. The results obtained by CID and CS were fully consistent and, in addition, the formation of doubly charged species was found to be favoured when the precursor phenolic ions were generated by ring- rather than by O-alkylation.

As may be expected, gas-phase methylation of the dihydroxybenzenes 39 in the plasma of a CI(CH$_3$F) or CI(CH$_3$Cl) source occurs also preferentially on the ring165. In most
cases, methyl cation transfer from the reactant ions, \((\text{CH}_3)_2\text{F}^+\) and \((\text{CH}_3)_2\text{Cl}^+\), to the arenes gives ca 3:1 mixtures of the corresponding dihydroxytoluenium ions and the hydroxymethoxybenzenium ions \([77 + \text{H}]^+\), as reflected by the CID mass spectra of the methylation products and the protonated dihydroxytoluenes and hydroxyanisoles. For example, collision-induced dissociation of the protonated monomethyl ethers \([77 + \text{H}]^+\) yields abundant ions \([77 + \text{H} - \text{CH}_3]^+\) ions (m/z 110), whereas the protonated dihydroxytoluenes produce, in addition, ions \([\text{M} + \text{H} - \text{H}_2\text{O}]^+\) (m/z 107). In line with the synergetic effect of its mutually meta-oriented substituents, resorcinol (m/z 39) was found to undergo almost exclusively methylation at the ring, with the less reactive reactant ion, \((\text{CH}_3)_2\text{Cl}^+\), being most selective. Halomethylation of the dihydroxybenzenes by electrophilic attack of \(\text{CH}_3\text{F}^+\) and \(\text{CH}_3\text{Cl}^+\) was found to occur in competition with alklylation, again followed by elimination of the respective hydrogen halide, generating abundant \([\text{M} + 13]^+\) ions by net transfer of a \(\text{CH}^+\) unit to the arenes.\(^{165}\) Chloromethylation followed by loss of \(\text{HCl}\) was studied subsequently in detail with phenol and some cresols and dimethyphenols in an ion trap (IT) mass spectrometer.\(^{166}\)

Gas-phase methylation of phenol, benzene and anisole with dimethylhalonium ions \((\text{CH}_3)_2\text{X}^+\) (X = F, Cl, Br) was also performed under \(\gamma\)-radiolysis in the pressure range of 100–760 Torr in the presence of ammonia used as the quenching base.\(^{167,168}\) With the most chemoselective electrophile, \((\text{CH}_3)_2\text{Br}^+\), phenol was found to react up to 40 times faster than benzene. The competition of \(O^-\) and ring-methylation was found to be biased under kinetic control in favour of the former process. At low pressures and in the absence of \(\text{NH}_3\), \(ortho\)-attack was found to dominate over \(para\)-attack. The formation of an intermediate chelate complex \([\text{M} + (\text{CH}_3)_2\text{X}]^+\) involving non-covalent bonding between a methyl group and the hydroxyl substituent, on one hand, and the second methyl group and the \(\pi\)-electron system of the arene ring, on the other, was suggested.\(^{168}\) Predominant \(O\)-alkylation of phenol and anisole was also found previously when the radiolysis was performed with neopentane, giving rise to the transfer of a \(t\)-\(\text{C}_4\text{H}_9^+\) ion preferentially to the hydroxyl group.\(^{169}\) As expected, \(tert\)-butylation of the ring took place with high regioselectivity in favour of the \(ortho\) and \(para\) positions but without preference of the \(ortho\)-attack in the case of phenol.\(^{170}\) In contrast to the \(tert\)-butylation of phenol, isopropylation under radiolytic conditions occurs with relatively low selectivity and in favour of the ring-substituted products in all pressure regimes (22–320 Torr). Further, \(ortho\)-alkylation was found to be dominant both at high and low pressures. The results were interpreted in terms of kinetically controlled \(O\)-attack in competition with dealkylation and skeletal isomerization of the protonated isopropyl phenyl ether to the protonated isopropyphenols.\(^{171}\)

In another series of investigations, the products of the ion/molecule reactions occurring in the plasma of a GC ion-trap mass spectrometer (GC/IT-MS) were studied with the particular aim to distinguish the reactivity of phenol, benzyl alcohol and the phenylethanol. In particular, ethylation and alkylation of these substrates were studied under CI (CH\(_4\)) conditions in the ion trap and, not unexpectedly, phenol turned out to be distinct from the arylaliphatic alcohols in that it gave abundant \([\text{M} + \text{H}]^+\) but no \([\text{M} + \text{H} - \text{H}_2\text{O}]^+\) ions.\(^{172}\) A previous work dealt with the ion/molecule reactions of \(\text{CF}_3^+\) ions with the same arenes, but using an ion-beam apparatus instead of an ion-trap mass spectrometer.\(^{173}\) Under these conditions, phenol was found to undergo dissociative addition reactions involving attack at both the hydroxyl functionality and the aromatic ring. Thus, \(O\)-attack led to \(\text{C}_6\text{H}_3\text{O}^+(\text{H})\text{CF}_3\) ions, which then eliminate mainly \(\text{CF}_3\text{OH}\) and some \(\text{CF}_2\text{O}\), giving phenyl cations and protonated fluorobenzene. Loss of \(\text{HF}\) is another major fragmentation channel of the adduct ions and, whereas \(O\)- and \(ring\)-attack were calculated to be similarly exothermic, this fragmentation appeared to be much more thermochemically favourable from the intermediates formed by electrophilic attack on the ring. Deuterium labelling experiments, which would help to determine the origin of the hydrogen lost in the HF.
fragment, and thus confirm the course of the CF$_3^+$ attack, have not been performed. Charge transfer from phenol to the electrophile was another channel observed173. Anisole was found to undergo similar reactions with CF$_3^+$ ions as does phenol, with electrophilic attack on the ring being the dominating reaction channel174.

XI. GASEOUS PHENOL ANIONS

Different from many other classes of organic compounds, phenols can be particularly easily converted to gaseous anions under various mass spectrometric conditions. In addition to the classical technique for generating phenolate ions, i.e. chemical ionization using NH$_3$, CH$_4$/O$_2$ mixtures, CF$_4$, NF$_3$ and other reagent gases, deprotonation of phenols occurs in fast atom bombardment (FAB), or liquid secondary ion mass spectrometry (LSIMS), matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry. Therefore, the number of studies, in both fundamental and applied mass spectrometry, has increased with the advent of new and alternative ionization methodologies. Moreover, electron-capture (EC) mass spectrometry, generating radical anions in appropriate cases, represents a classical but still important technique for the mass spectrometric identification of phenols. Several reviews on negative ion chemical ionization (NICI or NCI) mass spectrometry and the gas-phase chemistry of anions have appeared175 – 180. In this section, some fundamental aspects of the gas-phase chemistry of phenolate ions will be presented together with selected examples for the application of negative ion mass spectrometry to analytical problems. Some additional examples will be mentioned in the last section of this chapter.

A. Gas-phase Acidities of Phenols

Similar to the intrinsic, gas-phase thermodynamic properties of phenolic cations discussed in the first section, the gas-phase properties of phenolic anions, in particular the heats of formation of phenolate ions, have been compiled and can be easily accessed nowadays8 and new data are being determined frequently by using various mass spectrometric techniques. Although not driven as far as for the gas-phase chemistry of phenolic cations and radical cations, the intrinsic reactivity of phenolic anions and radical anions has also been traced to the ‘local parameters’, such as to the acidity of the ArO–H functionality or to the charge localization of proton acceptor sites. One such example concerns the loss of OH$^-$ from the radical anions of ortho-nitrophenol and related nitrobenzenes181—a case of ortho effects in anionic species derived from simple phenols. Also, the formation and reactivity of intermediate ion/neutral complexes generated during the fragmentation of the [M – H]$^-$ ions of fatty acid esters of hydroxybenzyl alcohols and even estradiols is governed by such local thermodynamic properties (see below).

The absolute gas-phase acidity of molecular species is defined as $\Delta H^0_{\text{acid}}(M) = \Delta H_f([M – H]^-) + \Delta H_f(H^+) – \Delta H_f(M)$182. In the case of the phenols, it can be calculated from the (homolytic) bond dissociation energies of the phenolic O–H bond, $BDE($ArO–H$)$, the ionization energy of the hydrogen atom, $I E($H$^+$), and the electron affinity of the phenoxy radical, $E A($ArO*) (Scheme 34)182,183. The relative gas-phase acidities $\Delta G^0_{\text{acid}}(M) = \Delta H^0_{\text{acid}}(M) – T \Delta S^0_{\text{acid}}(M) = –RT \ln K$ are accessible from equilibrium and kinetic measurements of ion/molecule reactions in the gas phase and fall short of the $\Delta H^0_{\text{acid}}(M)$ values by ca 7.0 kcal mol$^{-1}$ (29 kJ mol$^{-1}$) in the case of simple phenols. The gas-phase acidity scale of phenols (as any class of molecular compounds) spreads over a much wider range than the acidities measured in solution184,185. From a recent empirical-theoretical treatment of the origins of the acidities of various compounds containing OH groups, it follows that the high intrinsic acidity
4. Mass spectrometry and gas-phase ion chemistry of phenols

\[
\Delta H^0_{\text{acid}(\text{ArOH})} = \text{BDE(Ar-O-H)} - \text{EA(ArO}^+\text{)} + \text{IE(H}^+\text{)}
\]

SCHEME 34

of phenol, as compared to that of cyclohexanol \([\Delta G^0_{\text{acid}}(1) - \Delta G^0_{\text{acid}}(c-C_6H_{11}OH) \approx -24 \text{ kcal mol}^{-1}\]
and also to field/inductive effects \((ca - 7 \text{ kcal mol}^{-1})\), but not to enhanced polarizability\(^{186}\). A theoretical study using semiempirical methods to
determine the acidities of various monosubstituted phenols, \(\Delta H^0_{\text{acid}}(M)\)—taken there as proton
affinities of the corresponding phenolate ions, \(PA([M - H]^-)\)—demonstrated good
agreement with experimental data, particularly when the AM1 method was used\(^{187}\). An
in-depth \textit{ab initio} investigation on the structure and aromaticity of the parent
phenolate ion \([1 - H]^-\) was shown to reproduce the experimental gas-phase data very well and
also suggested a considerable degree of quinoid character of the highly delocalized
\(\pi\)-electron system. In addition, the effect of the counterions on charge localization has
been discussed\(^{188}\).

Most of the dissociation energies of the phenolic O–H bond are in the range of 90 ± 5 kcal mol\(^{-1}\)\(^{189,190}\). Electron-withdrawing groups increase the \(\text{BDE(Ar-O-H)}\)
values and moderately electron-releasing groups decrease them within this range. Only
strongly electron-releasing substituents, such as amino groups, weaken the ArO–H bond,
e.g. \(\text{BDE}(p-\text{H}_2\text{NC}_6\text{H}_4\text{O} - \text{H}) \approx 76 \text{ kcal mol}^{-1}\). The electron affinity of the phenoxy
radical has the by far greatest effect on the gas-phase acidity of the phenols. The
electron affinities of the parent radical and its simple alkyl derivatives are in a narrow
range, e.g. \(EA(C_6\text{H}_5O^+) = 2.21 \text{ eV} \cong 51.0 \text{ kcal mol}^{-1}\) and \(EA(p-\text{CH}_3\text{C}_6\text{H}_4O^+) =
2.16 \text{ eV} \cong 49.8 \text{ kcal mol}^{-1}\), but nitro-substituted congeners have strongly increased
electron affinities, e.g. \(EA(m-\text{O}_2\text{NC}_6\text{H}_4O^+) = 2.85 \text{ eV} \cong 65.7 \text{ kcal mol}^{-1}\). In contrast,
amino groups are electronically indifferent, e.g. \(EA(m-\text{H}_2\text{NC}_6\text{H}_4O^+) = 2.15 \text{ eV} \cong 49.6 \text{ kcal mol}^{-1}\).

The gas-phase acidity of phenol is \(\Delta H^0_{\text{acid}}(1) = 349.2 \text{ kcal mol}^{-1}\), \textit{ca} 42 kcal mol\(^{-1}\)
‘higher’, i.e. stronger, than that of the aliphatic alcohols and of water \([\Delta H^0_{\text{acid}}(\text{H}_2\text{O}) =
\]
390.8 kcal mol\(^{-1}\) and very close to those of acetic acid \([\Delta H^0_{\text{acid}}(\text{CH}_3\text{COOH}) = 348.7\text{ kcal mol}^{-1}\) and \(\alpha,\alpha,\alpha\text{-trifluorocacetone} \,[\Delta H^0_{\text{acid}}(\text{CF}_3\text{COCH}_3) = 350.4\text{ kcal mol}^{-1}]\). The gas-phase acidities of many simple phenol derivatives reflect the role of the \(BDE\) and, in particular, the \(EA\) values and were found to be quite different. For example, the three cresols all have the same gas-phase acidities as phenol within experimental error \([\Delta H^0_{\text{acid}}(\text{T}) = 349.4 - 350.4(\pm 3)\text{ kcal mol}^{-1}\]). Higher alkyl substituents decrease the gas-phase basicity only marginally, as does an amino group [e.g. \(\Delta H^0_{\text{acid}}(\text{m-H}_2\text{NC}_6\text{H}_5\text{OH}) = 350.6\text{ kcal mol}^{-1}\)]. However, strongly electron-withdrawing substituents significantly increase the gas-phase acidities of phenols, thus lowering the \(\Delta H^0_{\text{acid}}(\text{M})\) values. For example, \(\alpha\)-trifluoromethyl-, \(\alpha\)-cyano- and \(\alpha\)-nitrophenol (125) have \(\Delta H^0_{\text{acid}}(\text{p-F}_3\text{CC}_6\text{H}_4\text{OH}) = 337.0\text{ kcal mol}^{-1}\), \(\Delta H^0_{\text{acid}}(\text{p-NCC}6\text{H}_4\text{OH}) = 332.2\text{ kcal mol}^{-1}\) and \(\Delta H^0_{\text{acid}}(\text{p-O}_2\text{NC}_6\text{H}_4\text{OH}) = 327.9\text{ kcal mol}^{-1}\). An early ICR mass spectrometric study had revealed a good linear free-energy relationship between the gas-phase and aqueous-phase acidities of substituted phenols and demonstrated that the intrinsic effect of the substituents in the gaseous phenolate ions is greatly attenuated in the solvent medium\(^{102}\).

The gas-phase acidities of extremely strong neutral Brønsted acids have been determined recently by equilibrium measurements in an FT-ICR mass spectrometer, including several phenols\(^{103}\). On this extended scale, which fits very well to that comprising the numerous previous data\(^7\), \(\alpha\)-nitrophenol 128 represents only a moderately strong Brønsted acid (Scheme 35). 3,5-Bis(trifluoromethyl)phenol 127 is similarly acidic and, notably, has a very high electron affinity, \(EA(127) = 3.05\text{ eV} \pm 70.3\text{ kcal mol}^{-1}\). 2-Chloro-4-nitrophenol 129 is more acidic than 128 by almost 5 kcal mol\(^{-1}\), but a single trifluorosulfonyl substituent \(\alpha\) to the hydroxyl group in 130 exerts at least the same strong acidification. Beyond 4-trifluorosulfonylphenol 130, the benzologue of triflic acid, three considerably more acidic phenols, 131–133, have been identified, including picric acid 132. It is remarkable that 2,4-dinitrophenol 130 is far more acidic than its singly substituted congener 128 (\(\Delta \Delta G^0_{\text{acid}} = 12.3\text{ kcal mol}^{-1}\)) and that another \(\alpha\)-\(\alpha\)-nitro substituent in picric acid 132 pushes the acidity further by only half of this difference (\(\Delta \Delta G^0_{\text{acid}} = 5.8\text{ kcal mol}^{-1}\)). The bond dissociation energy and electron affinity of the latter compound were estimated to be \(BDE(132) = 88.3\text{ kcal mol}^{-1}\) and \(EA(132) < 88.3\text{ kcal mol}^{-1}\) (3.8 eV)\(^{104}\). The record gas-phase acidity is held by 2,4,6-tris(trifluoromethyl)phenol, for which \(\Delta G^0_{\text{acid}}(133) = 291.8\text{ kcal mol}^{-1}\) has been determined by experiment. Thus, the absolute gas-phase acidity should be \(\Delta H^0_{\text{acid}}(133) = 298.8\text{ kcal mol}^{-1}\) and, assuming a similar \(BDE\) value as in 128, the electron affinity can be estimated to exceed that of 128 by 31 kcal mol\(^{-1}\) and thus to be \(EA(133) \approx 4.4\text{ eV} \pm 101\text{ kcal mol}^{-1}\)!

B. Phenolic Anion/Molecule Adducts [ArO-H X\(^{-}\)] and [ArO-\(^{-}\) H-X]

A topic related to that of the gas-phase acidities of phenols is the quest for quantitative data on the thermodynamic stability of hydrogen-bonded complexes, or ‘clusters’, [\(\alpha\)-aryl-H X\(^{-}\)] and [\(\alpha\)-aryl-H-X] between phenols and various anions derived from other Brønsted acids. The thermodynamics of cluster formation of the phenolate ion [1-H\(^{-}\) with water, ethanol and acetic acid have been determined by using a pulsed electron-beam mass spectrometer and their stability \(\Delta H^0_{\text{P}}\) was found to increase with the gas-phase acidity of the Brønsted acid. For example, association of [1-H\(^{-}\) with \(\text{H}_2\text{O}\) is much weaker, \(\Delta H^0 = -15.4\text{ kcal mol}^{-1}\), than that of [1-H\(^{-}\) with \(\text{CH}_3\text{COOH}\), \(\Delta H^0 = -27.4\text{ kcal mol}^{-1}\)\(^{105}\). The association enthalpy of the complex of phenol and fluoride ion, [1 F\(^{-}\)], has been measured to be \(\Delta H^0 = -41.3\text{ kcal mol}^{-1}\), much stronger than
that of the complex $[\text{I} \text{Cl}^{-}]$, which is only $\Delta H^0 = -26$ kcal mol$^{-1}$196,197. Several para-substituted phenols were included in this study. The stabilities of the gaseous complexes formed from various substituted benzenes and Br^- ions in pulsed-electron high-pressure equilibrium measurements were determined and, different from the other singly substituted benzene derivatives, phenol and also aniline were found to form much more stable complexes than expected from the correlation of the $\Delta \Delta G^0$ values and the dipole moments198. This indicates that the bonding between phenols and halide anions is governed by the hydrogen bond, in contrast to arenes which do not bear a highly acidic OH functionality. This is confirmed by an extended work focusing on the effects of the arene substituents on the stability of the complexes of, in total, twenty-six phenols with F^-, Br^- and I^- ions199,200. Within this large group of phenols, the $\Delta \Delta G^0$ values measured furnished a very good correlation with the Taft σ_R and σ_F parameters. Again, the more acidic the phenol,
C. Negative Chemical Ionization Mass Spectrometry of Phenols

The facile attachment of halide ions to polar organic compounds, and in particular of compounds containing hydrogen donor functionalities, can be utilized to generate quasi-molecular [M + X]− ions under negative ion chemical ionization (NCI) conditions. Similar to the use of halogen-containing reagent gases in positive ion CI mass spectrometry (Section VIII), gases such as dichloromethane can serve as a source of chlorine-containing reactant ions in the CI plasma. Electron bombardment of CH2Cl2 under relatively high pressure (ca 1 Torr) generates Cl− ions, which are attached to the reagent molecules to give CH2Cl3− ions, which in turn may dissociate to HCl2− ions and monochlorocarbene.

Owing to the relatively strong bonding interaction between the constituents, the NCI mass spectra of phenol, hydroquinone and other polar analytes exhibit the signals for the adduct ions [ArO-H Cl−] as the base peaks, along with peaks due to the anion-bound dimers, [ArO-H Cl− H-OAr], in varying intensities. Similarly, the NCI(CBr2Cl2) mass spectra of phenol, para-nitrophenol and meta-chlorophenol were found to exhibit the base peaks due to the [ArO-H Br−] ions, along with intense peaks for the dimeric adducts. The NCI mass spectra of phenol and several phenol derivatives generated with 1 : 4 mixtures of iodomethane/methane as the reagent gas were governed by the peak for the I− reactant ions. However, they also exhibited intense signals for the simple [ArO-H I−] adduct ions, whereas only weak signals were found for the dimeric aggregates.

The attachment of halide ions to phenolic compounds affords abundant adduct ions which are valuable for selective detection and molecular mass determination of analyte compounds. For example, Cl− attachment has proven suitable for the GC/MS recognition of various phenols and naphthols in the acidic fractions of coal-derived liquids. However, structure-specific fragmentation by mass spectrometry is hardly accessible with these quasi-molecular anions. To obtain analytically useful fragmentation in NCI mass spectrometry of phenolic compounds, in particular, deprotonation has to be performed in the NCI plasma, e.g. by NH2− ions generated in the CI(NH3) plasma. The [ArOH − H]+ ions formed in this manner can then be subjected to collision-induced dissociation (CID), giving rise to characteristic negatively charged fragment ions, or to charge-stripping (CS), yielding positively charged fragment ions.

In a fundamental study, the CID mass spectra of the parent phenolate anion was investigated by using exhaustive deuterium labelling. Mechanisms for the formation of the C6H3−, C5H5− and C2H3O− fragment ions were suggested. Formation of the C6H3− ions (m/z 75) is induced by isomerization of the conventional [I − H]− ion to the ortho-hydroxyphenyl anion, from which water is eliminated via an ion/molecule complex [c-C6H4 OH−] containing 1,2-benzylene. Loss of CO from ions [I − H]− is the most important fragmentation, generating C5H2− ions (m/z 65). A previous 13C-labelling study on β-phenoxyethoxide ions, which yield [I − H]− ions by elimination of oxirane, had shown that the ipso carbon atom is lost with the neutral fragment. Expulsion of CO was proposed...
to occur via the bicyclo[3.1.0]hex-2-en-6-one-4-yl anion. The \(\text{C}_2\text{H}_4\text{O}\) \((m/z\ 41)\) fragment ion from \([1-H]^-\) was suggested to be generated via a Dewar benzene-type isomer of the phenolate anion, from which two molecules of acetylene are expelled sequentially\(^{210}\).

In a related study, the CID mass spectra of several isomeric \(\text{C}_7\text{H}_7\text{O}^-\) ions, including the \([M-H]^-\) ion of benzyl alcohol, deprotonated bicyclo[2.2.1]hept-2-en-5-one and the three cresolate ions, were studied\(^{10}\). Whereas the former anion was found to expel \(\text{CH}_2\text{O}\) through the major fragmentation channel, and the bicyclic isomer suffers a retro-Diels–Alder reaction to yield abundant \(\text{C}_2\text{H}_4\text{O}^-\), viz. ethynolate ions \((m/z\ 41,\) see above), the isomeric cresolate ions underwent a manifold of less characteristic collision-induced fragmentations, e.g. loss of \(\text{CH}_3\text{O}, \text{CH}_4, \text{CO}, \text{CHO}^+\) and \(\text{CH}_2\text{O}\). Notably, however, the three CID spectra of the cresolate ions were found to be distinct from each other in the relative weights of the individual fragmentation processes, and a similar behaviour was observed for the CS mass spectra of these \(\text{C}_7\text{H}_7\text{O}^-\) isomers\(^{210}\).

Besides deprotonation and anion addition in the CI plasma, which generate stable \([M-H]^-\) and \([M+X]^-\) ions, respectively, the use of electron capture into low-lying \(\pi^*\) orbitals represents a principal approach to generate radical anions. However, if these \(M^{\bullet^-}\) ions are relatively small, they are too short-lived and decay within \(\tau < 10^{-13}\) s by ejection of an electron, thus suppressing any structure-specific fragmentation reaction. Larger radical anions, however, in which the excitation energy can be distributed over many internal degrees of freedom, may be sufficiently long-lived \((\tau \geq 10^{-6}\) s\) to enable their mass spectrometric detection\(^{176}\). Electron transmission spectroscopy was used to determine the electron affinities of benzene and several of its derivatives containing electron-withdrawing substituents\(^{211}\). The electron affinity of phenol is strongly negative, \(EA(I) = -1.01\) eV, only slightly less negative than that of benzene, \(EA(C_6\text{H}_6) = -1.15\) eV, whereas chlorobenzene and bromobenzene are better electron acceptors \(EA(C_6\text{H}_5\text{Cl}) = -0.75\) eV and \(EA(C_6\text{H}_5\text{Br}) = -0.70\) eV\(^{212}\). In fact, chlorophenols can be detected by electron-capture negative-ion (EC-NI) mass spectrometry\(^{212}\), but favourably in the presence of a moderating gas\(^{213}\) and/or after suitable esterification or etherification with an acid or alcohol, respectively, the electron affinity of which is positive, such as pentafluorobenzoic acid or pentafluorobenzyl alcohol\(^{214}\).

When argon or other inert gases are used to decelerate the electrons, the efficiency of the overall electron capture process is much enhanced\(^{176,178,213}\). Under these conditions, chlorine-substituted phenols were found to undergo significant condensation reactions involving the molecular radical anions \(M^{\bullet^-}\), or the corresponding \([M-H]^-\) ions, and the neutral precursor molecules. This reaction furnishes condensation products reminiscent of those formed from polychlorodibenzodioxins (PCDDs) under energetic neutral reaction conditions\(^{215,216}\).

A recent study on the condensation of the monochloro- and dichlorophenols under NCI condition using argon as the moderating gas (‘argon-enhanced NI-MS’) revealed characteristically different reactivities of the isomers\(^{217}\). Whereas all of the monochlorophenols formed abundant \([M+\text{Cl}]^-\) ions, giving rise to the base peaks, and minor signals for the dimeric \([2\ M-H]^-\) and \([2\ M+\text{Cl}]^-\) adducts, only the \textit{ortho}-isomer generated significant signals at \(m/z\ 220\) and 222 for the condensation products, \([2\ M-H-\text{Cl}]^-\), obviously being the \(M^{\bullet^-}\) ion of 2-chlorophenyl \(2^\prime\)-hydroxyphenyl ether. Evidently, an intermolecular nucleophilic attack of a phenolate ion occurs, followed by loss of \(\text{Cl}\) and assisted by the adjacent \textit{ortho}-hydroxy group. Similarly, the dichlorophenols gave abundant peaks for the products of intermolecular condensation, probably again \([2\ M-H-\text{Cl}]^{\bullet^-}\) ions—rather than the products of HCl loss from \([2\ M]^{\bullet^-}\) ions, as postulated\(^{217}\). In addition, the EC-NCI mass spectra of the 2,3- and the 2,5-isomer specifically gave significant peak clusters at \(m/z\ 252, 254\) and 256, indicating a subsequent intramolecular cyclocondensation in the radical anion \([2\ M-H-\text{Cl}]^{\bullet^-}\). From these ions, the radical
anions \([2 \text{ M} - \text{H} - \text{Cl} - \text{HCl}]^{-}\) are generated, to which the structure of the corresponding dichlorodibenzodioxins has been assigned. The occurrence of the Smiles rearrangement has been invoked to account for a putative formation of positional isomers of the initially formed dichlorodibenzodioxins\(^{180,209,217}\).

D. Ion/Molecule Complexes Formed during the Unimolecular Fragmentation of Phenolic Anions

Returning to the gas-phase chemistry of phenolic steroids allows us to consider further examples for the formation of reactive ion/neutral complexes during the fragmentation of gaseous organic ions. Similar to the behaviour of positively charged ions of bifunctional steroids (and many other classes of organic compounds), negatively charged ions bearing a rigid steroid skeleton and two functional groups (or more) can be converted into ion/neutral complexes, which subsequently undergo intra-complex proton transfer or other processes that could never occur in the intact framework of the original molecular structure.

When 17β-estradiol C(17) fatty acid esters such as 134 are deprotonated under NCI(NH\(_3\)) conditions, two tautomeric \([\text{M} - \text{H}]^{-}\) ions are generated, one being the 3-phenolate form \([134 - \text{H}]_{(OH)}^{-}\) and the other the ester enolate \([134 - \text{H}]_{(CH)}^{-}\) (Scheme 36)\(^{218,219}\). Deuterium labelling of the starting steroid allows one to distinguish the two forms and determine their fragmentation by CID mass spectrometry. The enolate ion \([134 - \text{H}]_{(CH)}^{-}\) fragments by heterolysis of the ester bond to generate the complex 135, which initially contains the C(17)-alcoholate and a neutral ketene. However, owing to its high basicity, the alcoholate group abstracts the acyl proton from the ketene to give complex 136, and the corresponding propynolate ion may be released from the latter. Still, in a further intra-complex step, the acidic 3-OH group transfers its proton to the propynolate generating a third complex, 137, and the phenolate fragment ion is liberated from that complex. The relative yields of the two tautomeric forms of the \([\text{M} - \text{H}]^{-}\) ions were found to depend strongly on the ionization conditions. Under FAB conditions, deprotonation appears to occur mostly at the phenolic OH group, whereas NCI(NH\(_3\)) conditions give rise to deprotonation in the ester group.

Further investigation of the complex fragmentation behaviour of the steroid \([\text{M} - \text{H}]^{-}\) ions led to the study of simpler model systems, viz. fatty acid esters containing a para-hydroxybenzyl (cf. 138, Scheme 37) or β-(para-hydroxy)phenethyl moiety\(^{220}\). Again, the formation of intermediate anion/molecule complexes was demonstrated by the course of collision-induced dissociation of various deuterium-labelled \([\text{M} - \text{H}]_{(CH)}^{-}\) ions, where deprotonation had occurred at the α-position of the acyl methylene group, cf. \([138 - \text{H}]_{(CH)}^{-}\). The tautomerics \([138 - \text{H}]_{(OH)}^{-}\) generated by deprotonation of the phenolic OH group may be assumed to form the anion/molecule complex 139 which, however, is non-reactive with respect to further tautomerization. Rather, this complex loses the entire carboxylate residue as the fragment ion (\(m/z\) 255), leaving the phenolic unit as a quinoid neutral fragment (Scheme 37)\(^{220}\). In a further work, 3,4-dihydroxybenzyl carboxylates derived from stearic acid (cf. 140), dihydrocinnamic acid and phenylacetic acid were studied under NCI(NH\(_3\))-MS/MS conditions. In these cases, deprotonation was found to take place exclusively at the phenolic sites, owing to the increased acidity of hydroxyl groups in a catechol nucleus, in contrast to simple phenols. Heterolysis of the benzylic C−O bond, e.g. in ions \([140 - \text{H}]_{(OH)}^{-}\), gives rise to reactive anion/molecule complexes, such as 141. Here, the carboxylate ion is able to react with the second OH group in the quinoid neutral formed from the original catechol unit, giving complex 142. Owing to its high acidity, this 2-hydroxyquinomethane component transfers a proton to the carboxylate to release, eventually, the neutral acid and produce the stable C\(_7\)H\(_5\)O\(^{-}\) anion with \(m/z\) 121 (Scheme 37)\(^{221}\).
4. Mass spectrometry and gas-phase ion chemistry of phenols

\[
\text{(134) } R = n-(\text{CH}_2)_{12}\text{CH}_3 \text{ or } n-(\text{CH}_2)_{14}\text{CH}_3
\]

\[
\text{[134 - H]}_{(OH)}^-
\]

\[
\text{NCI(NH}_3\text{) or FAB} \quad -\text{H}^+
\]

\[
\text{[134 - H]}_{(CH)}^-
\]

\[
\text{(135)}
\]

\[
\text{(136)}
\]

\[
\text{(137)}
\]

\[
\text{RCH}_2\text{C}==\text{C}==\text{O}^-
\]

\[
\text{estradiol} \quad mlz \text{ 237 or mlz 265}
\]

\[
\text{estradiol-3-ate} \quad mlz \text{ 271}
\]

SCHEME 36
SCHEME 37
XII. MISCELLANEOUS ANALYTICAL EXAMPLES

As mentioned above in the context of the analysis of lignin degradation products, gas chromatography/mass spectrometry and related methods have been developed as extremely powerful tools for the identification of phenolic compounds. Use of high-pressure liquid chromatography in combination with mass spectrometry adds to the analytical arsenal with respect to the detection of polar, non-volatile compounds but, in particular, the advent of modern ionization techniques, such as ESI and MALDI mass spectrometry, have continued to broaden the analytically governable field of organic chemistry. The latter methods diminish the need of derivatization of polar phenolics to increase the volatility of the analyte. In this section, a more or less arbitrary selection of examples for the application of mass spectrometric techniques in analytical chemistry is added to the cases already discussed above in the context of gas-phase ion chemistry.

Mixtures of alkylphenols are frequently obtained by electrophilic substitution of phenol and phenol derivatives, and GC/MS analysis of these mixtures can be highly useful. The products of octylation of phenols and of tert-butylation of cresols were analysed by GC/MS. An example for the successful (and essential) use of derivatization for the GC/MS identification of trace phenolic compounds in waste water was published recently. In that case, on-column benzylation of the sample constituents was performed by using 3,5-bis(trifluoromethyl)benzyl(dimethylphenyl ammonium fluoride (BTBDMAF), followed by negative ion CI-MS. Another recent study demonstrated the detection of more than fifty phenol derivatives, including six phenolic pesticides, by conventional (positive ion) EI-MS after conversion to their tert-butyldimethylsilyl ethers using N-(tert-butyldimethylsilyl)-N-methyl trifluoroacetamide (MTBSTFA). A method for the quantitative determination of phenolic compounds in cigarette smoke condensates without using derivatization was developed recently. Further, the discrimination of isomeric mono-, di- and trichlorophenols in aqeous samples by GC/MS using both positive ion (EI) and negative ion (NCI) mass spectrometry was studied recently. The tetrachlorophenols and pentachlorophenol were also included. A systematic comparison was reported of the sensitivities of GC/MS analysis of various phenols using both EI and positive and negative ion CI methods. The trace detection of halophenols in the presence of the related haloanisoles was investigated by use of deuteriodiazomethane derivatization prior to GC/MS analysis. Three spray techniques, viz. thermospray (TSP), atmospheric pressure chemical ionization (APCI) and ion spray (ISP), were compared when applied to the identification of phenolic compounds by LC/MS analysis run in the negative ion mode. As a further extension of the analytical manifold, the use of gas chromatography combined with both Fourier transform infrared spectroscopy and mass spectrometry (GC/FT-IR/MS) was demonstrated with fifty different phenolic compounds. In this case, with another ‘orthogonal’ instrumental methodology being added to mass spectrometry, simple positive-ion EI-MS turned out to be sufficient to manage this analytical challenge.

LC/ESI-MS has been used to determine trans-resveratrol (trans-3,5,4′-trihydroxystilbene) in wines. The identification of several hydroxylated polycyclic aromatic hydrocarbons was elaborated using LC/APCI mass spectrometry run in both the positive and negative ion modes. Although not carrying far in the case of the phenols, in-source fragmentation was applied to increase the analytical specificity.

The combination of chromatography/mass spectrometry with MS/MS methods can in fact markedly enhance the analytical performance of the identification of phenols. This was demonstrated in the case of hydroxyaromatic components in coal-derived liquids. The analytical performance can be further improved by using chemical derivatization, as also shown in an MS/MS study of some methylphenols and methylnaphthols. In the course of GC/MS/MS analytical studies on nonylphenol in biological tissues, derivatization proved to be favourable in an indirect way: The EI mass spectrum of nonylphenol
shows a moderately intense molecular ion peak at \(m/z \) 220, whereas the spectrum of the related acetate lacks a molecular ion signal. Loss of ketene from the ionized phenyl acetate, known to generate the corresponding phenol radical cations, having \(m/z \) 220, again (cf. Section IX.A), is surprisingly fast here but nevertheless leads to a markedly increased relative intensity of the \(m/z \) 220 peak. This increase was exploited to improve the performance of the MS/MS analysis of nonylphenol in tissue samples.\(^{235}\)

Finally, the importance of GC/MS techniques for the analysis of hydroxyaromatic compounds generated during microsomal hydroxylation of benzene derivatives is mentioned here. Using various partially ring-deuteriated substituted benzenes, including biphenyl, evidence for direct aromatic hydroxylation was gained from the careful mass spectrometric tracing of the fate of the label in the various silyl-derivatized hydroxylation products.\(^{236}\)

XIII. MASS SPECTROMETRY OF CALIXARENES

Calixarenes are polycyclic organic compounds with pronounced convex–concave, albeit flexible molecular shape, a property which renders them highly interesting molecular hosts.\(^{237–240}\) Owing to the synthetic access to the \([1,1,1,1]\)metacyclophane skeleton of calixarenes by oligocyclocondensation of several molecules of a phenol with the same number of aldehyde molecules, calix[n]arenes and resorc[n]arenes contain four or more (\(n \)) phenolic subunits within the macrocyclic framework (Scheme 38). The four hydroxyl groups in the 5,11,17,23-tetrais(tert-butyl)calix[4]arene 143 can develop cooperative reactivity because of their mutual proximity at the ‘lower rim’ of the macrocyclic framework. The phenolic hydroxyl groups, or some of them, may be converted by etherification or esterification. Starting with resorcinols or pyrogallols instead of phenols, a variant of the same aufbau principle affords the related resorc[n]arenes and pyrogallo[n]arenes, such as the 2,8,14,20-tetra-(\(n \)-alkyl)resorc[4]arenes 144 and 145 and the 2,8,14,20-tetra-(\(n \)-alkyl)pyrogallo[4]arenes 146 and 147, respectively, which bear \(2n \) or even \(3n \) phenolic hydroxyl groups at the ‘upper rim’ of the skeleton. The strong capability of calixarene-type compounds to form various host–guest complexes and multiple adducts in the condensed phase renders them interesting objects for the investigation of the intrinsic properties of such aggregates in the gas phase. In this section, a brief introduction is given to some aspects which combine mass spectrometry and the gas-phase ion chemistry of calixarenes.

The unimolecular fragmentation of calixarene-derived ions will not be treated here, especially as studies on this topic are much restricted due to the fact that classical EI and CI techniques cannot be applied to these involatile and often quite polar polyphenols. Rather, mass spectrometric analysis is limited to the detection of positively or negatively charged quasi-molecular ions, such as \([M + H]^+\) and \([M − H]^−\), or molecular adduct ions, such as \([M + NR_4]^+\) and \([M + \text{metal}]^+\). In general, these ions can be readily generated by using matrix-assisted laser desorption (MALDI) and/or electrospray ionization (ESI) mass spectrometry.

In this context, it is noteworthy that calixarenes have been found to be suitable for mass calibration in ESI mass spectrometry, owing to their ability to form cluster ions in both the positive and negative ion mode.\(^{241}\) In particular, a calix[4]arene derived from 4-\(n \)-octylypyrogallol, \(rccc−2,8,14,20\)-tetra-(\(n \)-octyl)-5,11,17,23-tetrahydroxresorc[4]arene 146 (C\(_{60}\)H\(_{88}\)O\(_{12}\), MW 1001), containing twelve phenolic hydroxyl groups, was shown recently to generate cluster cations of the series \([xM + Na]^+(x = 1−5)\) and \([x'M + 2Na]^2+(x' = 7, 9, 11)\) and also cluster anions of the series \([yM − H]^- (y = 1−5)\) and \([y'M − 2H]^- (y' = 1−5)\). Different from other, conventional calibrants, compound 146 allows one to extend the ‘mass’ scale of the ESI mass spectrometer to mass-to-charge ratios as high as \(m/z = 6000 \) with notably abundant cluster ions, whose relative abundances do not drop off significantly.
(143)

(144) R = n-octyl
(145) R = n-undecyl

(146) R = n-octyl
(147) R = n-undecyl
with increasing mass. As an additional advantage, the cluster ions of \textit{146} were found to form without addition of modifiers, such as caesium salts241. Turning from application to fundamentals of calixarene gas-phase ion chemistry, the ability of these phenolic compounds to form stable adducts with alkali metal ions has also been investigated in detail recently. It is known that, different from proton attachment to aromatic molecules by σ-bonding, alkali cations coordinate with aromatic rings preferentially by π-cation interaction242,243. The gas-phase binding energies of Na+, NH\textsubscript{4}+ and NMe\textsubscript{3}+ ions have been calculated to be close to the binding energies of these ions to benzene242, suggesting that these cations are bound to the π-electron system rather than to the heteroatom. The experimentally determined lithium cation affinity of benzene is particularly high, $LCA(C\textsubscript{6}H\textsubscript{5}) = 38.3$ kcal mol$^{-1}$242. A recent combined experimental and theoretical study reports the theoretical binding enthalpy of Li+ to the π-electron system of phenol to be $LCA(1)_{(6\alpha)} = 39.2$ kcal mol$^{-1}$244. Coordination of the cation to the HO-C bond was calculated to be enthalpically less [$LCA(1)_{(OH)} = 36.8$ kcal mol$^{-1}$] but entropically more favourable. Equilibrium measurements in the FT-ICR mass spectrometer afforded the lithium cation basicity of phenol, $LCA(1) = 28.1$ kcal mol$^{-1}$, close to the calculated values (29.2 and 28.0 kcal mol$^{-1}$, respectively) for the two coordination modes244. Thus, the pronounced tendency of calixarenes to form ionic aggregates in the gas phase may be tentatively attributed to the presence of several π-electron systems, being held in a cone-type orientation and thus being able to develop a high negative electrostatic potential245,246 in the cavity of the [1.1.1.1]metacyclophan framework. Alternatively, the polar phenolic groups may act as the sites of attachment.

Only few investigations have been published on the gas-phase ion chemistry of host–guest complexes of calixarenes. With the advent of ESI mass spectrometry, especially when combined with ion-trap and FT-ICR mass spectrometry, this field has started to be developed. Binding selectivities of alkali metal ions to calixarene-based crown ethers and open-chain ethers have been studied247–249, the inclusion of neutral guests into the protonated resorcarene-based cavatand hosts by gas-phase ion–molecule reactions with amines have been studied250 and the formation of capsules from various calixarene tetaether derivatives and alkylammonium ions as ionic guests (notably enabling their detection by mass spectrometry) have been described recently251.

In another recent study252, ESI tandem mass spectrometry was used to generate cationized resor[c]arenes and pyrogallo[4]arenes bearing eight or twelve hydroxyl groups, respectively, and n-octyl and n-undecyl residues at the benzylic positions. Competition experiments performed with calix[4]arene \textit{145} for the series of alkali metal cations showed a strong preference for Cs+ in both the cationized monomers and cationized dimers. The corresponding pyrogallo[4]arene \textit{147} exhibited the same behaviour for the monomeric adduct but the homodimers of \textit{147} were found to be most stable with Li+ and Na+. Tetramethylammonium ions such as ionic complexation partners of calixarene \textit{146} gave much more abundant monomeric and dimeric adducts than higher tetraalkylammonium ions. These results point to the particularly favourable fit of the larger (but not too large) ions, such as Cs+ and Me\textsubscript{4}N+, into the cavity of the monomeric and dimeric adducts. Collisional activation experiments (ESI-MS/MS) with various heterodimers, such as \textit{[144 Li 146]}+ and \textit{[144 K 146]}+, revealed the preferred bonding of the smaller alkali metal cations to the pyrogallo[4]arenes, as compared to the simple resor[c]arenes, whereas K+ and the larger metal ions showed no preference. Therefore, two different binding mechanisms were put forward: The larger alkali metal cations are insensitive to the number of hydroxyl groups at the outer rim of the calix[4]arenes because they are bound preferentially by the cavity of the macrocycles; by contrast, the smaller alkali metal cations are coordinated outside that cavity, in the vicinity of the polar hydroxyl functionalities252.

\[\text{LCA}(C_6H_5) = 38.3 \text{ kcal mol}^{-1} \]
Mass spectrometry and gas-phase ion chemistry of phenols concerns this class of compounds and, in particular, the various types of gaseous ions formed from them, as objects of fundamental interest and analytical significance. However, in the special case of phenols, a mass spectrometry ‘with’ phenols has been developed. As mentioned in the Introduction, one of the modern methodologies for the formation of ions from polar and/or high-molecular mass, and thus non-volatile, organic and bioorganic compounds, relies on the use of various phenolic compounds as matrices for ion generation. Matrix-assisted laser ionization/desorption (MALDI)3,4,253–256 has become one of the major essential ionization methods in mass spectrometry and has widened the fields of application of analytical mass spectrometry enormously. In particular, the detection and identification of biopolymer samples (peptides and proteins, oligosaccharides and oligonucleotides) has gained extreme progress through the advent and application of MALDI mass spectrometry. The samples are co-crystallized with aromatic matrix compounds, which are able to absorb the energy of laser pulses and transfer parts of it to the analyte molecules, often with concomitant protonation. As already mentioned, the mechanism of the MALDI process is not well understood nowadays - in spite of its enormous analytical importance - and the success of an analysis by MALDI mass spectrometry depends strongly on the selection of the matrix compounds, possibly of some additives, and of its actual preparation. Thus, different matrix compounds have proven useful for different classes of analyte compounds and, despite the fact that certain classes of compounds are measurable with a high degree of confidence (e.g. peptides), quite some experience is required to choose the appropriate MALDI conditions in a given analytical case.

Remarkably, phenol derivatives are amongst the most useful matrix compounds. A list of the most frequently used organic matrices has been compiled in a recent review4. The formulae of the phenolic matrix compounds among these, 148–156, are reproduced in Scheme 39. 2,5-Dihydroxybenzoic acid 148 (2,5-DHB, mostly addressed simply as ‘DHB’), \textit{trans}-3,5-dimethoxy-4-hydroxycinnamic acid 149 (sinapinic acid, SA), \textit{trans}-3-methoxy-4-hydroxycinnamic acid 150 (ferulic acid, FA) and \textit{trans}-4-hydroxy-\textalpha-cyanocinnamic acid 151 (4HCCA) have proven to be most useful. All the isomers of ‘DHB’ (see below) turned out to be much less efficient for the production of ions. Beyond the hydroxybenzoic acids and the hydroxycinnamic acids, notably being vinylogues of the former, phenol derivatives which lack the carboxyl group are good MALDI matrices, too. For example, 2,4,6-trihydroxyacetophenone 152 and 1,8,9-trihydroxyanthracene 153 (or its tautomer, 1,8-dihydroxyanthrone 154, ‘dithranol’) are used frequently and nitrogen-containing phenols, such as 3-hydroxypicolinic acid 155 (3HPA) and 2-carboxy-4‘-hydroxazobenzene 156 [2-(4-hydroxyphenylazo)benzoic acid, HABA] have to be mentioned. The list of useful MALDI matrices containing phenolic hydroxyl groups will certainly increase further in the near future.

Various molecular and quasi-molecular ions can be formed under MALDI conditions. The formation of protonated analyte (A) molecules, \([A + H]^+\), is generally most important at least for samples containing slightly basic centres, such as the peptides and proteins, MALDI mass spectrometry of which is known to be most facile and reproducible. Therefore, proton transfer from the electronically excited, neutral or ionized, or protonated matrix species is considered to be crucial in the overall MALDI process257–263. Notably, proton transfer can occur already in the condensed phase, followed by desorption of the preformed ions264–267. However, the generation of the \([A + H]^+\) ions is believed to take place preferably in the so-called ‘plume’, that is, in the energized, short-lived and relatively dense vapour phase generated above the solid matrix upon excitation by the laser pulse4. The actual proton donor species (be it one or several) in a given case is still a matter of
research. Proton transfer from the neutral matrix molecule, from their radical cations or from the protonated forms, as well as from dimeric species have been considered.

It appears clear that a better understanding of the proton transfer processes in MALDI is crucial to the further development of the methodology268,269. Therefore, the determination of gas-phase acidities of neutral and cationic organic species is actively continued, and adds many details to the knowledge collected over several decades270.

The intrinsic acidities of substituted phenols and benzoic acids in the gas phase have been studied in detail in the 1970s271,272. It was noted early that the phenolic OH group of (neutral) para-hydroxybenzoic acid is more acidic than the carboxyl group271. Also, the anomalous ‘ortho acidities’ of ortho-substituted benzoic acids were traced to the special interaction of the substituents in these isomers. These findings rely on the structural motifs of many phenolic matrix substances, such as ‘DHB’148 and 2,4,6-trihydroxyacetophenone152. In fact, the phenolic OH groups of several phenol-derived matrices were recently shown by labelling experiments to be the proton donor sites rather than the carboxyl functionalities273,274. In a recent FT-ICR work, it was demonstrated that, amongst a group of important MALDI matrices including para-hydroxybenzoic acid157, para-aminophenol158, ‘DHB’148, 2-amino-3-hydroxypyridine159 and 2,4,6-trihydroxyacetophenone152, the latter compound was found to be the most acidic one275.
Obviously, the electronic effects of carbonyl groups oriented ortho or para to the phenolic hydroxyl groups, and the spatial influence of the ortho orientation, in particular, are attractive structural motifs to trace the origins of the MALDI processes. However, the situation has remained obscure, as also demonstrated by the recent systematic experimental determination of all the six isomeric dihydroxybenzoic acids, comprising the 2,5-isomer and its isomers, by FT-ICR mass spectrometry. The gas-phase basicities, and the corresponding proton affinities, of the neutral molecules were found to span only a small range, from $GB(3,5\text{-DHB}) = 194.6 \text{ kcal mol}^{-1}$ for the least basic isomer to $GB(2,4\text{-DHB}) = 198.6 \text{ kcal mol}^{-1}$ for the most basic one, including that of the empirically most ‘successful’ isomer, $GB(2,5\text{-DHB}) = 196.5 \text{ kcal mol}^{-1}$. This value and $PA(2,5\text{-DHB}) = 204.3 \text{ kcal mol}^{-1}$ are in excellent agreement with the previously published data of this particular isomer. Furthermore, the gas-phase acidities of the corresponding radical cations of the six isomers were also determined. In this series, the range is larger, spanning from $\Delta G_{\text{acid}}(3,4\text{-DHB}) = 194.8 \text{ kcal mol}^{-1}$ for the most acidic isomer to $\Delta G_{\text{acid}}(2,5\text{-DHB}) = 205.1 \text{ kcal mol}^{-1}$ for the least acidic one. Notably, the best-proven matrix, 2,5-dihydroxybenzoic acid, stands out as the least acidic isomer. Therefore, the results of this complete series of isomeric matrix compounds indicate that the ground-state proton transfer from the matrix radical cations to the analyte molecules may play a crucial role in the ionization process of MALDI, whereas proton transfer from the protonated matrix molecules can be excluded. It appears most probable that dimeric and/or oligomeric species of the diverse matrices, be it in the ground state or electronically excited states, represent the key intermediates for ion formation in the MALDI process. The dissociative proton transfer in gaseous cluster ions of various phenol-derived carboxylic acids has been studied recently.

XV. ACKNOWLEDGEMENTS

I would like to thank Dr. Michael Mormann, Universität Münster, Münster/Germany, for his valuable help in screening the literature on mass spectrometry and gas-phase ion chemistry of phenols. Also, I would like to thank Prof. Jean-François Gal, Université de Nice Sophia Antipolis, Nice/France, for providing a manuscript (Reference 244) prior to publication, and Prof. Minh Tho Nguyen, Katholike Universiteit Leuven, Leuven/Belgium, for providing a manuscript of his work on phenols. I am grateful to Prof. Susumu Tajima, Gunma College, Takasaki/Japan, for kindly providing additional material. Finally, I express my sincere appreciation to Prof. Zvi Rappoport, The Hebrew University of Jerusalem, for his encouragement, steadiness and unrestricted confidence in this project.

XVI. REFERENCES

28. (a) Mass spectra taken from Reference 7.
47. D. Kuck, unpublished results.
4. Mass spectrometry and gas-phase ion chemistry of phenols

4. Mass spectrometry and gas-phase ion chemistry of phenols

4. Mass spectrometry and gas-phase ion chemistry of phenols

CHAPTER 5

NMR and IR spectroscopy of phenols

POUL ERIK HANSEN and JENS SPANGET-LARSEN

Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
Fax: +45 46743011; e-mail: poulerik@ruc.dk; spanget@ruc.dk

I. INTRODUCTION ... 335
II. NMR ... 335
 A. Introduction .. 335
 B. OH Exchange 336
 C. δOH ... 336
 D. 13C Chemical Shifts 338
 1. Reference values of chemical shifts 338
 2. Chemical shift patterns 339
 3. Anisotropy 339
 E. 17O Chemical Shifts 339
 1. Substituent effects 339
 2. Hydrogen bonding 340
 3. Solvent effects 341
 F. Deuterium Isotope Effects on Chemical Shifts 342
 1. Experimental conditions 342
 2. $^\nu$C(D) .. 342
 a. $^\nu$C(OD) 342
 b. 2C(D) ... 345
 3. $^\nu$OH(OD) 345
 4. Solvent isotope effects 346
 5. 1C18O isotope effects 346
 6. 1O(OD) .. 346
 7. Primary isotope effects 347
 G. Coupling Constants 349
 1. $J(X,OH)$ coupling constants 349
 a. $J(^{13}$C,OH) 349

The Chemistry of Phenols. Edited by Z. Rappoport

333
b. \(^{n}J(C,OD)\) ... 349

c. \(^{5}J(OH,H)\) ... 349

d. \(^{1}J(H, 17O)\) ... 349

2. \(^{n}J(\text{C,}^{13}\text{C})\) ... 350

3. \(^{n}J(\text{C,}^{1}\text{H})\) ... 350

H. Hydrogen Bonding ... 350

1. Hydrogen bond strength ... 350

2. Ranking of substituents as hydrogen bond partners ... 350

3. Multiple hydrogen bonding to the same acceptor ... 351

4. Conformational equilibria ... 352

5. Bifurcated hydrogen bonds to hydrogen ... 352

6. Strong hydrogen bonds ... 352

7. Rotation ... 353

I. Steric Effects ... 354

J. Proton Transfer ... 355

K. Tautomeric Equilibria ... 356

1. General introduction ... 356

2. \(\sigma\)-Hydroxyazo compounds ... 358

3. Mannich bases ... 358

4. Schiff bases ... 359

5. Nitrosophenols ... 360

6. Equilibrium isotope effects ... 361

L. Complexes ... 363

1. Proton transfer ... 363

2. Weak complexes ... 364

M. Theoretical Calculations ... 366

N. Solid State NMR ... 366

O. Fractionation Factors ... 367

III. IR ... 367

A. Introduction ... 367

B. The Characteristic Vibrations of the Phenolic OH Group ... 369

1. OH stretching, \(\nu(OH)\) ... 369

 a. Free OH groups ... 369

 b. Hydrogen bonded OH groups ... 369

2. OH out-of-plane bending, \(\gamma(OH)\) ... 371

C. The IR Spectrum of Phenol ... 372

1. Low-temperature Argon matrix spectrum of phenol ... 372

2. IR polarization spectra of phenol aligned in a liquid crystal ... 372

D. Hydrogen Bonded Complexes ... 375

E. Phenols with Intramolecular Hydrogen Bonds ... 377

1. 2-Hydroxybenzoyl compounds ... 377

2. Hydroxyquinones ... 382

3. 2-Nitrophenols ... 384

4. 2-Nitrosophenols ... 385

5. Schiff bases ... 385

6. \(\sigma\)-Mannich bases ... 385

IV. ACKNOWLEDGEMENTS ... 386

V. REFERENCES ... 386
I. INTRODUCTION

Phenols are major constituents of many biological and naturally occurring compounds. The structural element $\text{C} = \text{C} - \text{O} - \text{H}$ formally existing in phenols clearly indicates some of the key features of phenols, their acidity and related to that their ability to form complexes, the ability to take part in hydrogen bonding (intra- and intermolecular) and tautomerism. These subjects will be some of the key features in this review of IR and NMR spectroscopy of phenols. Hydrogen bonds make phenols interesting partners in self-association or self-organizing systems. As already indicated, phenols are almost ubiquitous in the plant and animal kingdom and therefore in transformation products such as tar, coal, oil, humic substances etc. Phenols are also often components of polymers. In order to limit the review no attention will be paid to quantitative analysis, nor will specific groups of compounds like the above-mentioned be treated specifically. The emphasis will be placed on general features covering phenols whether these are benzene derivatives, polycyclic or heteroaromatic hydroxy compounds with none or one or more additional functional groups. The phenol part must be a major constituent of the compounds, but the borderline is diffuse. Likewise are polyhydroxy heteroaromatics existing primarily in the keto forms not treated.

The presence of an aromatic moiety clearly has very important consequences for the NMR and IR spectra and the structural element mentioned above also illustrates the vibrational coupling between the hydroxy group and the aromatic ring vibrational modes. The NMR part will cover analysis of chemical shifts both in solution and in the solid. The nuclei immediately coming to mind are ^1H, ^{13}C and ^{17}O as these are vital parts of the phenol moiety, but others such as ^{15}N and ^{19}F can also be present. Furthermore, as isotope effects on chemical shifts depend on vibrations they combine NMR and IR theory. Ab initio calculations of NMR properties such as chemical shifts and isotope effects can be very useful in studying some of these systems. These types of calculations are likewise invaluable in interpreting vibrational spectra.

A few symbols are common to both NMR and IR literature; one of these is δ, meaning in NMR chemical shift and in IR an in-plane bending vibration.

II. NMR

A. Introduction

NMR is clearly a very versatile technique in the study of phenols and in particular the important charge distribution in them. An example is the titration of phenols leading to phenolate ions, which is accompanied by distinct chemical shift changes (Table 1). Differences between the chemical shifts of C-1 and C-4 of phenols upon titration is a useful parameter when estimating the extent of deprotonation of phenols. Examples are given for 2,3-dichloro-, 2,5-dichloro- and 2,3,5-trichlorophenol. This sensitivity also means that pK_a values of phenols can be determined. This is of particular interest in compounds containing several phenol groups e.g. proteins having more than one tyrosine. The advantage of the NMR technique is the ability to determine the individual pK_a values simultaneously. Phenols of known pK_a values have also been used in co-titration studies. The OH group plays a central role in NMR studies of phenols. The O^1H chemical shift is a key parameter. The orientational dependence of the OH group will be treated as well as its reorientation (kinetics of rotation). As the present chapter covers both NMR and IR spectroscopy, an obvious inclusion is the effects of isotope substitution on chemical shifts as these are of vibrational origin.
TABLE 1. NMR parameters for phenol and phenolate ion

<table>
<thead>
<tr>
<th>No. of C</th>
<th>δ^{13}C</th>
<th>$\delta^{13}C^a$</th>
<th>δ^1H^b</th>
<th>$\delta^{17}O$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>155.6</td>
<td>168.3</td>
<td></td>
<td>77.3</td>
</tr>
<tr>
<td>2</td>
<td>116.1</td>
<td>120.5</td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130.5</td>
<td>130.6</td>
<td>7.14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120.8</td>
<td>115.1</td>
<td>6.81</td>
<td></td>
</tr>
</tbody>
</table>

aChemical shift for the phenolate anion.

bThe OH chemical shift may vary both with the solvent and the concentration.

B. OH Exchange

The intermolecular exchange of the OH proton is of vital importance for the appearance and interpretation of NMR spectra of phenols. Intermolecular exchange determines the position (chemical shift) of the OH resonance (see Section II.C). Splitting due to the OH proton (or deuterium) is only seen if the exchange is slow on the corresponding NMR time scale. Coupling constants to OH protons are quite often not observed because of too fast exchange (see Section II.G.1) or may be removed by heating\(^3\). Isotope effects due to deuteriation at the OH position may likewise not be directly observable (see Section II.F.1). In order to slow down the exchange, dry solvents must be used. Hydrogen bonding solvents such as DMSO are also useful. Finally, the temperature can in some cases, solvent permitting, be lowered.

However, NMR measurements give quite often estimates of the exchange parameters. Electron-withdrawing groups at the p-position seem to increase the ease of exchange judging from the difficulty of observing deuterium isotope effects at the 13C NMR spectra of 5-nitrosalicylaldehyde\(^4\). On the other hand, large alkyl substituents at the ortho-position to the OH group seem to slow down the exchange. This is most likely related to the exchange mechanism in which the OH group has to swing away from its hydrogen bond partner before exchange can take place\(^5,6\).

C. δOH

The OH chemical shifts have been studied intensely. The shifts are clearly solvent and concentration dependent\(^7\) and must be extrapolated to infinite dilution before comparisons can be made. They depend on intramolecular hydrogen bonding. δ(OH) of 1 is 12.26 ppm, that of 2 14.74 (OH-2) and 14.26 ppm (OH-4), that of 3 16.24 (OH-2), 14.5 (OH-4) and 10.4 (OH-6)\(^39,40\). They have been used to estimate hydrogen bond strength (see Section II.H.1). In ultimate intramolecularly hydrogen bonded non-tautomeric cases like 4 an OH chemical shift value as high as 17.09 ppm is found\(^39\). These values can clearly be used to estimate hydrogen bond strength (see Section II.H.1). As ring current effects may contribute, these also must be taken into account and subtracted if the values are to be used to estimate hydrogen bond strength. In intermolecular hydrogen bonded complex the shift can be even higher (see Section II.L.1).

The phenolic protons move to higher frequency upon cooling. A linear relationship between temperature and OH chemical shift is found. The temperature coefficient is close to -4 ppb per degree in chloroform, cyclohexane and acetone. Slightly numerically smaller values are found in acetonitrile and methylene chloride. A much more negative value is found in benzene. The variations are ascribed to the influence of resonance forms and variation in conformational changes resulting from different types of solute–solvent interactions\(^8\). A large set of data for o-hydroxyacyl aromatics show values between 2
and 10 ppb. The largest temperature coefficients are seen for compounds with the lowest OH chemical shifts again pointing to a relation with hydrogen bond strength. The difference between hydrogen bonded and free OH protons with temperature is shown for the 2,6-dihydroxy derivatives 5, $R^2 = \text{Me}$. It is found that the free OH proton has a larger temperature coefficient than the hydrogen bonded one at low temperature at which the two forms can be observed individually. For 6, $R^2 = \text{H}$ the average temperature coefficient is smaller than for 5, $R^2 = \text{H}^5$, probably due to the hydrogen bond of the OH-6 group to the OR1 moiety.
Bertolasi and coworkers\(^9\) have related the OH chemical shifts of \(o\)-hydroxyacyl aromatics to the oxygen–oxygen distance. A plot of \(\delta\text{OH}\) vs. the oxygen–oxygen distance (\(R_{O\cdots O}\)) in Å shows a reasonable linear relationship (equation 1).

\[
\delta\text{OH} = -34.1 (\pm 2.6) R_{O\cdots O} + 100.3 (\pm 6.4), \ r = -0.88
\]

The authors themselves point to the unusual correspondence considering the different conditions (solution and solid state) and that account must be taken of the fact that compounds with intramolecular hydrogen bonds in solution are intermolecular in the solid state. Furthermore, a number of the compounds are tautomeric and the predominant form in solution and in the solid state is not necessarily the same. A rather poor fit to equation 1 was seen for daunomycin\(^{10}\).

D. \(^{13}\text{C}\) Chemical Shifts

1. Reference values of chemical shifts

\(^{13}\text{C}\) chemical shifts for simple phenols are given by Kalinowski, Berger and Braun\(^{11}\). \(^1\text{H}, \(^{13}\text{C}\) and \(^{17}\text{O}\) chemical shifts are likewise listed in Table 1. As mentioned in the section on anisotropy, these values are only valid as long as ‘free’ rotation occurs. Chemical shifts for special groups of compounds are given for prenylphenols\(^{12}\), anthraquinones\(^{13}\), acetophenones\(^{14a}\), benzenones\(^{14b}\) and hydroxy derivatives of naphthalene\(^{15}\). Although phenols are generally well soluble in water, hydrophobic substituents may change this pattern. For hydrophobic compounds like, e.g., 2,6-di-tert-butyl-4-methylphenol (also known as butylated hydroxytoluene), a high frequency shift of all resonances is observed in water solutions compared to organic solvents due to emulsion formation\(^{16}\).

Hydroxy-substituted polycyclic aromatics (PAH) with hydroxy substituents are not radically different from those of the corresponding benzenes except in their larger ability to form keto forms, to form complexes and their ability to delocalize charge. The latter is well documented in the long-range substituent effects, e.g. on \(^{13}\text{C}\) chemical shifts of PAHs such as pyrene if the hydroxy group is in a well conjugated position. For hydroxyphenylene\(^{17}\) we observed for the 1-position (7) (well conjugated) and the 2-position (8) (poorly conjugated) the substituent effects shown in 7 and 8.
2. Chemical shift patterns

The OH group exerts a strong influence on both the 1H and 13C chemical shifts of the phenol ring. This will lead to very distinct chemical shifts (in ppm) for multiply substituted rings as often observed in biological material, as seen in 9–11. Such patterns could help to identify commonly occurring patterns in non-homogeneous materials such as lignins or fulvic or humic acids18,19.

Values reported in chemical shift tables assume ‘free’ rotation of the OH group. The anisotropy of this can be judged either from hydrogen bonded cases, from solid state NMR spectra in which the two ortho protons or carbons have become non-equivalent, or from theoretical calculations of chemical shifts (see Section II.M).

It is not possible, at least for hydrogen bonded cases, to correlate 13C chemical shifts of phenols with other parameters5.

3. Anisotropy

Of importance in understanding chemical shift patterns of phenols is, of course, also the effect of taking part in hydrogen bonding as, e.g., in salicylaldehyde, o-hydroxyacetophenones etc. Firstly, the anisotropy caused by the OH group but also the anisotropy effects of the other substituent (aldehyde, ketone etc.) lead to extensive non-additivity if using the standard values mentioned above.

The anisotropy of the OH group was obvious from measurements of splittings caused by isotopic perturbation (SIP) values in 2,6-dihydroxyacetophenones20. The anisotropy due to the OH group has been calculated in phenol. Depending slightly on the method and the basis set, the difference in chemical shifts between C-2 and C-6 is 3.5 to 5 ppm21.

E. 17O Chemical Shifts

The present review will concentrate on 17OH chemical shifts. These have not been studied so intensely because measurement of 17O resonances are best done on enriched compounds and the preparation of 17O enriched phenols is not simple. For a review see Boykin’s book22.

1. Substituent effects

The effects of substituents are clearly demonstrated in the shifts for $^{12–15}^{22}$. The shift decreases with electron-attracting substituents and increases with electron-donating ones.
The effect of a nitro group is clearly diminished when the nitro group is twisted out of the ring plane, as seen by a comparison of 2-nitrophenol and 2-nitro-3-methylphenol23. The compound 3-hydroxy-9-fluorenone shows an OH chemical shift of 92.5 ppm24. This again can be related to the effects of the C=O group, possibly in conjunction with a formal biphenyl moiety.

For 2-hydroxy-1-naphthaldehyde25,26, 2-acetyl-1-naphthol and 1-acetyl-2-naphthol26, the 17OH chemical shift is larger than 92 ppm. This is distinctly larger than for the corresponding benzene derivatives. This can either be ascribed to stronger hydrogen bonding (see Section E.2) or to the more effective delocalization of the lone-pairs by the aromatic system.

2. Hydrogen bonding

Related to substituent effects is the effect of intramolecular hydrogen bonding. The effect of hydrogen bonding has been discussed extensively for intramolecularly hydrogen bonded systems, but with emphasis on the hydrogen bond acceptor oxygen as found, e.g., in carbonyl groups27,28.

For phenolic oxygens the picture is as seen for 15 (see above) and 16. This shows a low frequency shift caused by hydrogen bonding. A similar picture is seen for intramolecularly hydrogen bonded nitro compounds23. However, these data consist of both intra- and intermolecular hydrogen bonding effects as well as proximity effects.

A more elaborate plot of the shifts of 5-substituted salicylaldehydes29 vs. the corresponding para-substituted phenols showed likewise that the aldehyde group at the
ortho-position caused only a moderate (5 ppm) high frequency shift, again indicating that hydrogen bonding is opposing the normal substituent effect (see above)29.

Boykin30 compared data of 1,4- and 1,2-dihydroxybenzenes and 1-hydroxy-4-methoxy- and 1-hydroxy-2-methoxybenzene (13, 17–19) and found that formation of a hydrogen bond to the singly bonded oxygen of both OH and OCH\textsubscript{3} causes shielding of the 17O resonance. This effect is considerably smaller than for the C=O group, but in the latter the hydrogen bond is stronger. In the case of 1,2-dihydroxybenzene the effect of the OH being a hydrogen bond donor has not been taken into account. As seen above this effect is probably small, but it exists.

\begin{center}
\begin{tabular}{c c c c}
\textbf{(17)} & \textbf{(13)} & \textbf{(18)} & \textbf{(19)}
\end{tabular}
\end{center}

17O chemical shifts of phenols hydrogen bonded to heteroaromatic nitrogens in systems like o-hydroxypyridines or similar compounds with one or more nitrogens or hydroxy groups show 17OH chemical shifts that are very similar (94–97 ppm), with the exception of a para-substituted methoxy derivative (90 ppm)26, but this can be ascribed to a simple substituent effect (see above).

Cerioni and coworkers31 investigated calixarenes. For calix[6]arene, a shift very similar to that of 2,6-dimethylphenol was found, thereby showing that the steric hindrance was similar. For the corresponding calix[4]arene a dramatically higher value was observed. This was ascribed to stronger hydrogen bonding in the calix[4]arene.

3. Solvent effects

Many 17O chemical shifts have been measured at high temperature and in a low viscosity solvent like acetonitrile. However, solvents play a small role as seen for 5-hydroxy-1,4-naphthoquinone: 84.5 ppm in toluene, 83 in acetonitrile and 84.1 in CDCl\textsubscript{3}. A difference of 1 ppm between toluene and acetonitrile was also observed for 2'-hydroxypropiophenone, 2'-hydroxybenzophenone and 2'-hydroxyacetophenone25. For the conformationally flexible 2,2'-dihydroxybenzophenone 17O is 85 ppm in acetonitrile, 86 in toluene and 84.4 ppm in CDCl\textsubscript{3}. In acetonitrile only one hydrogen bond exists (see Section II.H.4)25. Pyridine as solvent has a strong effect at the 17O chemical shift of calix[6]arene, but not for calix[4]arene, whereas the effect at phenol and 2,6-dimethylphenol is similar and slightly smaller than that for calix[6]arene. This either points towards a stronger intramolecular hydrogen bond in the calix[4]arene or to a more shielding environment around the phenolic groups. The reason for these apparent different trends in different types of compounds is at present unclear31.

F. Deuterium Isotope Effects on Chemical Shifts

These effects have recently been reviewed by Dziembowska and Rozwadowski32,33 and, for the more specific cases of intramolecularly hydrogen bonded cases, by Perrin and Nielsen34 and by Bolvig and Hansen35. Therefore, only a brief summary will be given including more recent developments.

1. Experimental conditions

Deuterium isotope effects on chemical shifts of phenols of which the OH proton has been exchanged by deuterium can be measured in two different ways. If the OH(D) proton is exchanging slowly (see Section II.B) two different resonances are observed, one due to the protio and one due to the deuterio species (see Figure 1). The relative intensities will depend on the H : D ratio, perhaps not in a quantitative way due to fractionation (see Section II.O). If exchange is fast on the NMR time scale only one resonance for the X-nuclei (e.g. 13C) is observed, the position of which depends on the H : D ratio. In order to determine the isotope effects properly, a series of experiments must be conducted varying the H : D ratios of the exchanging species, typically 1 : 5, 1 : 2, 1 : 1, 2 : 1 and pure solvent36. The exchanging species is typically H$_2$O : D$_2$O but could equally well be deuteriated alcohols, ROD.

2. $^\circ\Delta C(D)$

 a. $^\circ\Delta C(OD)$. Deuterium isotope effects have been measured in simple phenols dissolved in DMSO-d$_6$. Relatively few non-intramolecularly hydrogen bonded phenols have been measured. The typical two-bond isotope effects are 0.1 to 0.15 ppm37. The difference between inter- and intramolecular hydrogen bonding can be seen in 20 (B and A).

 \begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{figure1.png}
 \caption{(20)}
 \end{figure}

 The intramolecularly hydrogen bonded phenols can be divided into two groups, the resonance-assisted hydrogen bonded (RAHB)9 ones and those which are not. The RAHB case is the normal case in phenols (Figure 2). The resonance assistance depends on the double bond order of the double bond between the donor and the acceptor of the hydrogen bond. This is clearly seen in a plot of two-bond isotope effects vs. bond order4 and is demonstrated in 4-hydroxy-6-methyl-3-carboxyethylpyridine and the corresponding 5-carboxyethyl derivative38 (21 and 22). Two-bond isotope effects are shown to be a good
measure of hydrogen bond strength. This is related to the finding that the isotope effect depends strongly on the O···O and O–H distances39,40.

In cases like 22, the two-bond isotope effects can be really small as the double bond order is very low due to double bond fixation.

The two-bond isotope effects can be related to OH chemical shifts4,41, and to other parameters such as five-bond isotope effects, $^5\Delta^{17}$OD isotope effects42.

FIGURE 1. Part of a 13C NMR spectrum of a methyl resonance showing splitting due to deuteriation. 13C resonance of the deuteriated species appears at the low frequency.
For isotope effects over three bonds $^3\Delta C-2(OD)_{\text{trans}} > ^3\Delta C-2(OD)_{\text{cis}}$ 4,43. Isotope effects over four bonds may be of different types: $^4\Delta C=O(OD)$ or $^4\Delta C(OD)$. In the former case the four-bond classification is formal as the effect is most likely transmitted via the hydrogen bond44. This means that for systems with multiple OH groups the hydrogen bond partner can be identified. In the latter case the $^4\Delta C-4(OD)$ or $^4\Delta C-6(OD)$ values are normally not large, except in cases in which the hydrogen bond is very strong39,40. This statement is generally true as most of the isotope effects increase in numerical size as the hydrogen bond strength increases. The exception is $^4\Delta C = O(OD)$, as this is transmitted via the hydrogen bond. (An example is 23 in which $^4\Delta C = O(OD)$ is 0.30 ppm44.)

In a comparison of hydrogen bonded systems, salicylaldehydes, o-hydroxyacetophenones and o-hydroxyesters, a parallel phenomenon in the isotope effects is observed at different carbons and the effect can be described by 24, showing how the isotope effects reflect the transmission pathway through the aromatic system.

Another general finding is that, for phenols and RAHB systems, the OH group forms a stronger hydrogen bond than the OD group4,20,45.
A very interesting case is that of gossypol (25). O'Brien and Stipanovich46 reported very early unusual negative deuterium isotope effects on 13C chemical shifts. These have been reinvestigated and found to be related to electric field effects47. Recently, the isotope effects were studied in α-(2-hydroxyaryl)-N-phenylnitrones48.

![Diagram of gossypol (25)](image)

\textit{b. $^2\Delta C(D)$}. Deuterium isotope effects of C-deuteriated phenols show that $^2\Delta C(D)$ isotope effects are roughly related to 13C chemical shifts and to substituent effects on chemical shifts (SCS). Substitution always leads to a decrease of the isotope effect compared to phenol itself. Substitution at the \textit{ipso} position gives the largest effects in parallel to the SCS. Steric interactions may play a role in cases having substituents like t-butyl49.

\textit{3. $^n\Delta OH(OD)$}

Long-range deuterium isotope effects at other OH protons are seen in a number of systems. They are normally small as deuterium isotope effects on 1H chemical shifts in general. With regard to magnitude this follows the normal scheme, that the stronger the hydrogen bond the larger the isotope effect. The $^6\Delta OH(OD)$ of compounds such as those shown in 2–4, in which the OH(D) group is part of a strong hydrogen bond, seem to be on the larger side provided the OH group is also hydrogen bonded39,40. For 2, a value of 0.022 ppm is found. For 3, we have 0.044 ppm for OH-3 and 0 for OH-6, whereas for 4 with the strongest hydrogen bond it is 0.056 ppm. For 2,6-dihydroxyacyl compounds (26) an effect is seen at low temperature when the acyl group is an ester (6), but not when it is an acetyl group (5. $R^1 = \text{Me}$). For the ester, the OH-6 group is hydrogen bonded to the OR group whereas for the acetyl derivative, the OH-6 points towards C-5. The difference in geometry or transmission via two hydrogen bonds could explain the difference5. Very small isotope effects are found in 1,4-dihydroxy-9,10-anthraquinones. Ten values are also reported for perylenequinones and 1,4-dihydroxy-5,8-naphthoquinones. Both of these systems are equilibrium ones and the large values seen in the former over formally eleven bonds10 could possibly be of equilibrium type (see Section II.K.6). A relatively large effect is seen for the 3-OH resonance of 6-methyl-1,3,8-trihydroxyanthraquinone (emodin)–23 ppb50. For the similar hypericin anion (27) the sign of the isotope effect is positive (19 ppb)50. In this case the position of the OH proton is strongly delocalized (see Section III.E.2).
1,8-dihydroxyanthraquinones and 2,2′-dihydroxybenzophenones deuteriated at one OH position lead to high frequency shifts at the other position47,51. This has been termed a relay effect51. The suggested mechanism is that deuteriation leads to a weakening of the hydrogen bond in which it is involved, leading to a slightly stronger hydrogen bond for the other bond and therefore to a high frequency shift of the OH resonance. On the other hand, this also proves that the two OH groups are hydrogen bonded simultaneously (see also Section III.E.1)47,51.

A negative effect is also observed for anthralin (dithranol) (28)35. For equilibrium systems, the effects can be larger and of both signs as seen for the enol form of \textit{o}-hydroxydibenzoylmethane (29)36 and for the tautomeric naphthalene (30)47. Isotope effects at the chelate proton are -0.047 ppm and 0.0126 ppm and at OH–2′ = -0.0916 ppm. In the former case it is due to deuteriation at OH-2′ and at CH₂, respectively. For 30 the isotope effect at OH-1 is 0.0295 ppm and that at OH-8 is 0.161 ppm.

4. Solvent isotope effects

Solvent isotope effects (H\textsubscript{2}O:D\textsubscript{2}O) on 19F chemical shifts are much larger in \textit{o}- and \textit{p}-fluorophenolates than in the corresponding phenols and much larger than that in the \textit{m}-fluorophenol, thereby relating the strength of the solvation of the fluorine to its electronegativity52.

5. δ^{13}C(18O) isotope effects

These effects for acetyl groups have been correlated with 13C chemical shifts of the carbonyl carbon51. A similar correlation was not found for single bonded C–O groups including phenols. In the single bonded case much smaller isotope effects are found (10–ca 30 ppb)53.

6. δ^{17}O(OD)

For deuteriated phenols, isotope effects on 17O chemical shifts are 2.3 and 1.7 ppm to lower frequency for salicylaldehyde and methyl salicylate, respectively. Interestingly, the
signs are opposite to those observed at the carbonyl oxygen. For the carbonyl oxygen the size increases with the strength of the hydrogen bond. Because of the large chemical shift difference between the 17OH and the C=O chemical shifts, large equilibrium isotope effects are found.

7. Primary isotope effects

The primary deuterium, $^p\Delta(1^H, 2^H)$, and tritium isotope effects, $^p\Delta(1^H, 3^H)$, are proportional in general. The primary isotope effects are proportional to the hydrogen bond
strength and may be correlated with OH chemical shifts. A plot of $^p\Delta (^1H, ^3H)$ and the two-bond isotope effects, $^2\Delta$COD, revealed a very good correlation. Compounds like 2–4 as well as compounds like 31 fall out of this correlation. In the former cases steric compression is present. The primary tritium isotope effect is apparently more responsive due to a strongly asymmetric potential well (see Figure 3). For compounds with weak hydrogen bonds like salicylaldehyde or methyl 6-fluorosalicylaldehyde, $^p\Delta$H(D) is less than 0.1 ppm. In strongly hydrogen bonded systems like 4 it can reach 0.44 ppm.55.

Primary deuterium isotope effects have also been measured in 8-hydroxyquinoline N-oxides (32)56. It was found that a plot of $^p\Delta (^1H, ^2H)$ vs. δOH had a different slope than observed for tautomeric hydroxyquinones10 and β-diketones57.

FIGURE 3. Potential energy diagrams
Primary isotope effects have been used to describe the shape of the potential well. Large positive values point towards a symmetric two-potential well, whereas negative values indicate a single potential well57,58. An example of the former is the rubazoic acid derivatives59. An example of the former is a small negative value observed for methanol58. In all cases equilibrium isotope effects (see Section II.K.6) should be ruled out as contributors before making such potential surface type assignments55.

G. Coupling Constants

1. \(J(X,\text{OH})\) coupling constants

These couplings \(X\) being \(^{13}\text{C}\) or \(^1\text{H}\) have been studied for \(^{13}\text{C}\) in some detail in intramolecularly hydrogen bonded compounds46,60–65.

a. \(J(^{13}\text{C},\text{OH})\). These couplings have traditionally been used for assignment purposes64. The two-bond coupling constant is found to correlate only weakly with \(2\Delta\text{COD}\) and therefore with the hydrogen bond strength.

For the three-bond coupling constants, \(3J(C,\text{OH})_{\text{trans}} > 3J(C,\text{OH})_{\text{cis}}\) and a plot of \(3J(C,\text{OH})_{\text{cis}}\) vs. \(\delta\text{OH}\) shows a good correlation for \(o\)-hydroxybenzoyl derivatives. The corresponding correlation line for olefinic derivatives is parallel. Data for naphthalene derivatives fall mainly in between60. Bond order is clearly an important parameter.

Couplings involving the OH proton can be transmitted via the carbon skeleton or, for hydrogen-bonded cases, via the hydrogen bond. The latter may be the case for \(4J(C=O,\text{OH})\). A plot of \(4J(C=O,\text{OH})\) vs. \(\delta\text{OH}\) shows a good correlation except for 2-hydroxy-1-acenaphthone. This was ascribed to transmission via the hydrogen bond as those compounds (1–4) have long OH bond and short O···O distances, leading to substantial orbital overlap. For the sterically hindered compounds the coupling is small, due to poor orbital overlap60. Interestingly, esters show very small \(4J(C=O,\text{OH})\) couplings60.

A similar situation is found in Schiff bases. Kurkovskaya found a coupling \(5J(^{15}\text{N},\text{OH})\) of 1.6566.

b. \(^nJ(C,\text{OD})\). These couplings are proportional to \(^nJ(C,\text{OH})\) (factor of 1/6.51) and are usually too small to be observed directly. However, they will often be visible as a broadening of the C-2 and C-3 resonances of the deuteriated species, thereby providing an assignment tool.

c. \(5J(\text{OH},H)\). Hydrogen–hydrogen couplings involving the phenolic proton are small, but depend on the geometry of the coupling path. Five-bond couplings that have a W pathway are observable, whereas the corresponding coupling having a \(cis\) coupling pathway, e.g. OH, H-3 of phenol are zero. Based on this criterion the conformational preference of phenols has been investigated67–71. The same principle has been transferred to hydroxy derivatives of naphthols. For 1-naphthol, the OH group is pointing towards C-2 approximately 90\% of the time72. For sterically hindered compounds like 2-\text{-}t\text{-}butylphenol, the method may break down due to distortion of the COH geometry73. In a slightly more complex system, 2-hydroxybenzyl alcohols, three different rotamers are found with those involving hydrogen bonding dominating in non-polar solvents74. In D\textsubscript{2}O as solvent, a complex is suggested in which the D\textsubscript{2}O molecule forms a bridge (see Section II.H.5).

d. \(1J(H,^{17}\text{O})\). The one-bond coupling to \(^{17}\text{O}\) is obtained in a few cases. One example is the 8-hydroxyquinoline \(N\)-oxide35 (32). They are also observed in a number of \(o\)-hydroxyacyl aromatics. The magnitude is 80 ± 25 Hz29,30,76. The \(1J(H,^{17}\text{O})\) couplings
depend on concentration, temperature and solvent30, but a structural dependence has not yet been found, probably because of the difficulty of measuring these couplings accurately.

2. $\delta J^{(13}C,^{13}C)$

Hydroxy substitution has a major effect on $^1J^{(13}C,^{13}C)$ if the OH group is at one of the participating carbons. A considerable increase is observed77,78. For $^2J(C,C,OH)$ intraring couplings are slightly diminished numerically79. However, as the signs are not always determined, it is difficult to draw too extensive conclusions, but generally a decrease in the numerical magnitude occurs irrespective of the position of the electronegative substituent. Three-bond couplings can be of different types. Those within the same ring decrease slightly upon substitution at the coupling carbon, whereas substituents attached to carbons of the coupling pathway markedly decrease all three types of three-bond couplings.

3. $\delta J^{(13}C,^1H)$

The one-bond $^1J^{(13}C,^1H)$ coupling constant in mono-substituted benzenes does not correlate with the electronegativity, but can be correlated to a combination of σ_I and σ_P or to other Hammett parameters62. The lack of strict correlations can also be seen from 2-hydroxynapthalene in which $^1J^{(13}C-1,^1H-1)$ is decreased slightly compared to napthalene, whereas $^1J^{(13}C-3,^1H-3)$ is increased slightly80. For 1-hydroxynapthalene, an increase is seen for the C-8,H-8 coupling constant of the peri bond80. For a general introduction see elsewhere62.

H. Hydrogen Bonding

1. Hydrogen bond strength

Several attempts have been made to relate the OH chemical shift with the strength of the hydrogen bond. The original attempt is a correlation of corrected OH chemical shifts with OH torsional frequencies. The latter can be related to hydrogen bond energies81. More recently, Reuben suggested a logarithmic relation between hydrogen bond energy and $^2\Delta_1^{(13}COD)$82.

A correlation is found between magnetic anisotropy corrected C-1 chemical shifts and the OH stretching frequency for complexes between phenols and π and π bases such as benzene, pyridines and picolines83.

Mikeda and coworkers84–86 have investigated σ-hydroxyacyl and thioacyl derivatives and found very good agreement between δOH and the ν(OH) vibrational frequency (Section III.B.1). No distinct differences were seen between the thio derivatives and the corresponding oxygen ones, except that at a comparable ν(OH) frequency the δOH values of the oxygen compounds are typically slightly larger than those of the thio compounds, but the difference can possibly be ascribed to anisotropy effects84.

2. Ranking of substituents as hydrogen bond partners

Two-bond isotope effects on ^{13}C chemical shifts are a good measure of hydrogen bond strength39. A simple example is seen for 33 and 34. The phenol provides a common scaffold so that σ-hydroxy-substituted phenols form a suitable way of ranking acceptor
substituents of RAHB systems. The two-bond isotope effects decrease in the following order: \(\text{RC}=\text{O} > \text{HC}=\text{O} > \text{C}=\text{O}(\text{OR}) \).

3. Multiple hydrogen bonding to the same acceptor

Phenols quite often take part in multiple hydrogen bonding exemplified by 28, 29, 30, 35 and 36, a system akin to a large number of dyes and indicators. The hydrogen bonding can be described by \(^{17}\text{O} \) chemical shifts (see Section II.E.2), by \(^{1}\Delta^{13}\text{C} \ (^{18}\text{O}) \) (Section II.F.5) or by \(^{n}\Delta\text{C(OD)} \) isotope effects (Section II.F.2).

A different situation is seen in 37, with \(R^1 \) and \(R^3 \) being either \(\text{H} \) or \(\text{OH} \).
4. Conformational equilibria

Jaccard and Lauterwein concluded for 2,2′-dihydroxybenzophenone (36) that both OH groups are hydrogen bonded simultaneously\(^\text{25}\). A similar conclusion was reached based on \(^{1}\Delta^{13}\text{C}^{(18}\text{O})\) isotope effects (see Section II.F.5). Baumstark and Boykin found in acetonitrile, based on \(^{17}\text{O}\) chemical shifts, that only one hydrogen bond existed\(^\text{88}\).

5. Bifurcated hydrogen bonds to hydrogen

Bureiko and coworkers\(^\text{89,90}\) have studied hydrogen bonding of intramolecularly bonded phenols (e.g. 2,6-dinitro- and 2,4,6-trinitrophenols) at low temperature in freons. At 90 K the rotation of the OH group is slow on the NMR time scale. Addition of proton acceptors causes a bifurcated bond, as evidenced by a shift to lower frequency of the OH resonance. An example is dioxane (38).

![Dioxane](image)

Grech and coworkers\(^\text{91}\) studied 8-hydroxy-\(N,N\)-dimethyl-1-naphthylamine and suggested that the high frequency shift in dioxane compared to cyclohexane was due to formation of a bifurcated bond. This is somewhat unexpected. See also how multiple hydrogen bonding may affect equilibria (Section II.K).

6. Strong hydrogen bonds

A strong hydrogen bond of sodium 4,5-dihydroxynaphthalene-2,7-disulphonate (39) has been observed by NMR at a low temperature (\(\delta\text{(OH)}\) 17.72 ppm)\(^\text{92}\). This value has been related to the \(\text{O} \cdots \text{O}\) distance in relation to other measurements, in order to use OH chemical shifts to obtain oxygen–oxygen distances. One possible drawback of using values from the mono-ionized 1,8-dihydroxynaphthalene directly is that the chemical shift of the OH proton is likely to have a sizeable ring current contribution. Phenols are also involved in catalytic triads, e.g. in ketosteroid isomerase\(^\text{93,94}\), leading to OH chemical shifts of 18.2 ppm.

Very favourable hydrogen bonding may occur in substituted 8-hydroxyquinoline \(N\)-oxides (substituted 32) judging from the \(\delta\text{OH}\) value (in the 5,7-dinitro-8-quinolinol \(N\)-oxide a value of 20.38 ppm is found) as well as the deuterium isotope effects on the \(^{13}\text{C}\) chemical shifts. Complicated substituent effects are found, because substituents such as bromine may interact with both the OH and the \(N–O\) group. No tautomerism was observed.
5. NMR and IR spectroscopy of phenols

\[
\text{\begin{align*}
\text{Na}^+ & -\text{O}_3\text{S}^- \\
\text{SO}_3^- & \text{Na}^+
\end{align*}}
\]

(39)

in these systems judged from deuterium isotope effects\(^56\). Brzezinski and Zundel\(^95\) reached a different conclusion based on solvent effects. Solvent effects have been studied over a wide range of solvents\(^96\). \(\delta\text{OH}\) shifts to higher frequency with increasing solvent polarity. The correlation with the Onsager parameter \(\varepsilon - 1/(2\varepsilon + 1)\) is poor, suggesting that specific interactions take place. A multiple regression analysis using \(E_T\) and DN parameters\(^97\) gave a good correlation\(^96\).

Geometry is clearly of great importance for the strength of hydrogen bonds. In N-oxides of Schiff bases much weaker hydrogen bonds are seen\(^98\), as we are now dealing with a seven-membered hydrogen bond ring system.

In an N-substituted dihomoazacalix[4]arene, strong hydrogen bonding is found at low temperature between the OH and the N resulting in an OH resonance ultimately at 17.1 ppm\(^99\).

7. Rotation

For phenols, rotation around the C–O bond is clearly assumed. This rotation may be slowed down by intramolecular hydrogen bonding. For compounds such as 40, activation parameters for the rotation can be determined by dynamic NMR. A classic study is that of Koelle and Forsén\(^100\) of aldehydes (5, \(R^1 = H\)). The activation energy \(E_a\) was determined as 37.9 kJ mol\(^{-1}\), \(\Delta H^\ddagger = 35.6\) kJ mol\(^{-1}\) and \(\Delta S^\ddagger = 43.9\) J K\(^{-1}\) mol\(^{-1}\).

In substituted 40 for \(R^1 = \text{CH}_2\text{NR}_2\) (Mannich bases), \(E_a\) was 32.6–43.5 kJ mol\(^{-1}\) depending on the substituent at the \textit{para} position. The rotational barrier increases with strengthening of the hydrogen bond. For \(R^1 = \text{CH}=\text{NR}\) (Schiff bases) the activation energy was found as 48 kJ mol\(^{-1}\)\(^101\).

In a similar, though different situation with 2,4-diaryl-6-(2-hydroxy-4-methoxyphenyl)-1,3,5-triazine, \(\Delta H^\ddagger = 50\) kJ mol\(^{-1}\); \(\Delta S^\ddagger\) was found to be close to zero. The \(\Delta H^\ddagger\) value is almost three times as large as that found for the intermolecular complex between phenol and pyrimidine in CCl\(_4\)\(^102\).
For the compounds 40, R^1 = N=N−Ph, ΔH‡ = 47.3 kJ mol\(^{-1}\) and ΔS‡ = −24 J K\(^{-1}\) mol\(^{-1}\) in toluene-d_{8}. In CD\(_2\)Cl\(_2\), ΔS‡ decreased to −45 J K\(^{-1}\) mol\(^{-1}\). Substitution at the p-position to the OH increased ΔH‡. A similar value was found in the 3,5-di-t-butyl derivative. However, in this case the change of solvent to CD\(_2\)Cl\(_2\) had a much smaller effect on ΔS‡\(^{103}\), probably reflecting the hindered access to the OH groups.

Studies with R^1 = acetyl\(^{5,100}\) and methoxycarbonyl\(^5\) in different solvents have been undertaken. Rather large ΔS‡ values, ca. −30 to −81 J K\(^{-1}\) mol\(^{-1}\), are found\(^5\). For the esters, an additional hydrogen bond to the OR group is suggested\(^4\) to account for the larger ΔS‡ of the esters, indicating that two hydrogen bonds must be broken in the transition state. For the acetyl derivatives the non-intramolecularly hydrogen bonded OH-6 group points preferably towards C-5\(^5\). As seen above, the entropy plays a major role in some systems. For 41, the OH group prefers to form a hydrogen bond to the nitro group (as in 41B), although not exclusively, whereas at lower temperature the equilibrium is shifted fully towards hydrogen bonding to the acetyl group (41A). Entropy was suggested to play a role, as no similar effect was observed in derivatives with electronegative substituents at the 6-position\(^{47}\).

Rotation may clearly have a strong effect on spectra of compounds such as 2 and in similar natural products in terms of broadening of resonances at ambient temperature.

I. Steric Effects

Steric effects play an important role for phenols. The OH exchange may be influenced (see Section II.B). Hydrogen bonding in o-hydroxy derivatives where the ortho group is an aldehyde etc. (see above) is dominated by resonance-assisted hydrogen bonding. For this to be effective the six-membered ring involving the hydrogen bond must be planar. Non-planarity of the acceptor groups could be the case in systems in which the acceptor group is subject to steric interaction.

This problem has been addressed using isotope effects. Two different cases are found due to the interaction present. Two typical examples are seen in 42 and 43. In 43 steric twist is observed and in 42 steric compression is found. Spectroscopically these effects are characterized by the pairs of \(^1\)H chemical shifts and deuterium isotope effects on chemical shifts: δOH, \(^1\)ΔX(OD), \(^4\)ΔX=O(OD), \(^5\)ΔCH\(_3\)(OD) and \(^6\)ΔOH(CD\(_3\)). The latter is especially useful, but requires that deuterium is incorporated into methyl groups of, e.g., acetyl groups\(^{51,40}\). In 43 the number of intervening bonds are six (H−C8−C8a−C1−C(O)−C−H) whereas for the steric compression cases (42) the number of bonds is five (O−C2−C3−C(O)−C−H).
The twist is seen in a large number of polycyclic aromatic compounds. For these compounds and for 2-hydroxyacenaphtholphenone (43) one could wonder what happens to the OH group as the acetyl group is twisted out of the ring plane. In this case both X-ray and ab initio calculations indicate that the C-1–C=O bond is pushed out of the ring plane so that the acetyl C=O bond points back towards the OH group, which is in the aromatic ring plane. Steric effects have been pointed out in Schiff bases. NMR studies of deuterium isotope effects on chemical shift found a difference in the position and intensity of the $^2\Delta(1^3\text{COD})$ maximum as a function of the mole fraction.

Steric effects could also play a role in achieving planarity (conjugation) of non-hydrogen bonded phenolic hydroxy groups. This will be the case in, e.g., 2,6-di-tert-butylphenol leading to a low frequency resonance position of the OH proton. Large substituents, like tert-butyl, next to the OH group of intramolecularly hydrogen bonded compounds have only little effect on the hydrogen bond strength as judged from $^2\Delta(1^3\text{COD})$. This is slightly peculiar as this seems to be the case in the more complicated systems like those of 1–4.

Steric effects play a role in the ability of the OH group to exchange (see Section II.B).

J. Proton Transfer

The phenolic proton with its acidic properties is a good partner in proton transfer reactions leading to, e.g., tautomeric equilibria. Of interest in such situations is the barrier to interconversion which is related to the rate of interchange. The barrier height can be determined by means of NMR spectroscopy and the rate can be found from line shape analysis in suitable cases.

The characterization of the two species taking part in the equilibrium is of utmost importance. Infrared spectroscopy being such a ‘fast’ technique is obviously preferred, but is in a number of cases unsuitable due to strong coupling, leading to very broad resonances (see Section III). NMR data for a model situation are given in Table 1.

One of the most used ways to gauge the extent of proton transfer is to plot appropriate chemical shifts (O1H or 13C) vs. the difference in pK_a values of the donor and the acceptor, or simply the pK_a value of the phenol itself if the acceptor is the same for a series. Another parameter used is $\Delta_{14} = (\delta C-1 - \delta C-1_{\text{phenol}}) - (\delta C-4 - \delta C-4_{\text{phenol}})$ (phenol refers to the unsubstituted compound). The normal type of plot is seen in Figure 4a, but also a plot of the type of Figure 4b may be found. This is ascribed to a homoconjugate system (NO$^- \cdot \cdot \cdot H^+ \cdot \cdot \cdot ON$), e.g. in a system like 2,6-bis(diethylaminomethyl)phenol di-N-oxide (see Section II.L.1).
K. Tautomeric Equilibria

1. General introduction

Tautomerism involving phenols is most often seen for Schiff bases, Mannich bases, or o-hydroxyazo aromatics, but is also discussed for o-hydroxynitroso compounds. This is relatively seldom for phenols not having a nitrogen-containing substituent. An exception is 30 and other cases mentioned later.

The tautomerism has been described using a deuterium isotope on ^{13}C and ^{17}O chemical shifts as well as primary tritium isotope effects (0.90 ppm). The role of the hydroxy group at C-8 in the naphthalene system 30 could be important as this contributes strongly to hydrogen bonding in tautomer B. The methyl group at C-3 should lead to twist in tautomer A (see 30A) thereby probably making the two tautomers more energetically similar. ^{17}O chemical shifts have been used extensively to study tautomeric equilibria involving enolic groups like β-diketones. Also, for selected compounds it is relevant to use ^{17}OH chemical shifts of phenols. For compounds like 44 the tautomerism is clearly shown by the observation of only one ^{17}O chemical shift at 282.6 ppm. The chemical shift corresponds to an average between the chemical shifts of a C=O and a C−O oxygen. The
observation of two shifts in the 17OH chemical shift range shows that ditranol (anthralin) is at form A, despite the fact that it is often depicted as form B (28).

Lios and Duddeck109 studied substituted 1-(2-hydroxyphenyl)-3-naphthyl-1,3-propanediones. The 17OH resonance falls in the range 93–102 ppm. The higher value was found in a derivative with a methoxy group \textit{meta} to the OH group in question. The position of the tautomeric equilibrium could also influence the chemical shifts.

The 17OH chemical shifts parallel the strength of the hydrogen bond as seen previously. Hydrogen bonding of enols has been investigated in great detail and is of course related to the present study. A case involving both is \textit{o}-hydroxydibenzoylmethane (29) in which the extra hydrogen bond perturbs the enolic equilibrium.

A similar, though not identical, case is that of usnic acid (45) in which the equilibrium is markedly changed upon acetylation of the OH group at position 94.

Another case that has been debated is that of 9-hydroxyphenalen-1-one110. Based on the large deuterium isotope effects of both signs, one of the present authors has suggested that these are of equilibrium type (see Section II.5).

Benzaurins and fuchsones are a new type of tautomeric species showing intermolecular exchange (46)111.

\begin{align*}
\text{A} & \quad \text{B} \\
\text{(45)} & \\
\end{align*}
2. o-Hydroxyazo compounds

These compounds (47) are very widespread as both water-soluble and more hydrophobic dyes. The former group often have a SO_3H group as hydrophore. An example is FD&C Yellow no. 6, which is shown to exist primarily as a hydrazone below pH 12 and as an azo form as shown above.\(^{112}\)

The tautomeric equilibrium of these has been described by several methods, i.e. $^{13}\text{C} - ^{13}\text{C}$ couplings, \(^1J(N,H)\) coupling constants and deuterium isotope effects on $^{13}\text{C}\(^{115,116}\) and ^{15}N chemical shifts as these are very different for the azo and hydrazo forms. Isotope effects on ^{19}F chemical shifts are very sensitive due to the large chemical shift range (and, more importantly, the large difference in chemical shifts of the two tautomeric forms).\(^{117}\)

3. Mannich bases

Mannich bases have been studied intensely by both IR and NMR techniques. These have been reviewed very recently\(^{118-120}\) and will very briefly be touched upon. For Mannich bases the proton transfer leads to a moiety with separated charges. This may also be the case for Schiff bases (see below). Charge separation is clearly important in understanding the factors influencing proton transfer and the way the equilibrium responds to temperature and solvent.
4. Schiff bases

The equilibrium of Schiff bases (48) has been studied in detail because of their interesting properties both in the solid state (Section II.N) and in biological reactions. This can be done as just described for o-hydroxy azo compounds (1\(^J\)(N,H) coupling constants and deuterium isotope effects on \(^{13}\)C and \(^{15}\)N chemical shifts). Based on 1\(^J\)(N,H) it could be concluded that the Schiff bases form a conventional tautomeric equilibrium that can be described by two species.

\[
\begin{align*}
A & \quad \text{O} \quad \text{N} \quad \text{R} \\
& \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
& \quad \text{X} \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
& \quad \text{X} \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
& \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
B & \quad \text{O} \quad \text{N} \quad \text{R} \\
& \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
& \quad \text{X} \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
& \quad \text{X} \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
& \quad \text{H} \quad \text{N}^+ \quad \text{R} \\
\end{align*}
\]

\((48)\)

Of interest is also the interconversion barrier. These have been determined in N,N'-bis(salicylidene)phenylene diamine (49) as values of only 10 and 25 kJ mol\(^{-1}\) in the solid state (Section II.N); 10 kJ mol\(^{-1}\) refers to the first proton transfer and 25 kJ mol\(^{-1}\) to the second (see also Section II.N). For 50 the values are only 2 and 10 kJ mol\(^{-1}\).

\[
\begin{align*}
\text{(49)} & \quad R = R = H \text{ (DSP)} \\
\text{(50)} & \quad R = R = C_4H_4 \text{ (DNP)} \\
\end{align*}
\]

Zhuo investigated \(^{17}\)O chemical shifts of o-hydroxy Schiff bases. These systems are in some instances tautomeric. As described previously \(^{17}\)O chemical shifts are very good indicators of tautomerism (see Section II.K.1). Provided that good reference values for the two tautomeric states exist, the equilibrium constant can be determined. Zhuo used the values for simple Schiff bases as models for the phenolic form (48). For the form 48B a value from a simple enamine was chosen. This, however, is not a very appropriate choice, as it does not at all take into account the charged resonance form (48C). The equilibrium constant determined for N-(2-hydroxy-1-naphthalenylmethylene) amine is quite different from that derived by 1\(^J\)(N,H) coupling constants.

For Schiff bases a difficult question remains. To what extent has the proton transferred form B a formal charge separation (48C) or not (cf 48B)? This problem is in principle approachable by NMR, but not easily solved. Using \(^{13}\)C chemical shifts of C-1 the B and C forms are not sufficiently different. Dudek and Dudek approached the problem using...
A different approach is to use ^{17}O chemical shifts. These are very sensitive to differences in chemical surroundings. The ^{17}O chemical shifts of hydrogen bonded phenolates and quinones can be estimated. In addition, using a set of compounds with different equilibrium constants and extrapolating to a mole fraction of one, the ^{17}O chemical shift of the proton transferred form can be estimated. Using the above estimated ^{17}O chemical shifts it can be estimated that the o-quinonoid form \textbf{48B} contributed \textit{ca} 65\% to the proton transferred form134.

5. Nitrosophenols

Tautomeric equilibria have been studied in nitrosophenols. An early study of 4-nitrosophenol showed an intermolecular tautomerism catalysed by slight traces of water. In dry dioxane both the N-oxide and the oxime form could be observed135.

Inacenaphthenequinonemonoxime in DMSO four different species could be observed: primarily the cis and trans forms of the oxime but also the nitroso isomers136.

The 1-nitroso-2-naphthol and the 2-nitroso-1-naphthol have been studied by ^{1}H137 and ^{13}C NMR138. In an early study Vainiotalo and Vepsäläinen139 suggested that 1-nitroso-2-hydroxynaphthalene exist at the \textit{trans} form \textbf{51C}. For the latter both the oxime and the nitroso (\textbf{51A}) form were suggested based on ^{1}H and ^{13}C NMR in CDCl$_3$. However, in a recent study Ivanova and Enchev140 assigned the two different sets of resonances to two different rotamers of the oxime form, i.e. \textbf{51B} and \textbf{51C}. They also measured solid
state NMR spectra and found both compounds to exist in the oxime form in the solid. For the 2-nitroso compound they assigned this to the *anti* form. This is different from the 1-nitroso compound, which exists in the *syn* form in the solid state according to X-ray studies.\(^{141}\)

Theoretical calculations showed an energy difference of *ca* 17 kJ mol\(^{-1}\) and a barrier to interconversion of *ca* 37 kJ mol\(^{-1}\) for the 1-nitroso derivative.\(^{140}\) From deuterium isotope effects on \(^{13}\)C chemical shifts it was concluded that the 1-nitroso-2-naphthol was tautomeric.\(^{47}\)

6. Equilibrium isotope effects

Deuteriation at the XH position of tautomeric equilibria (XH being the transferred proton) leads to a shift (change) in the equilibrium. This has been demonstrated for, e.g., Schiff bases\(^{122}\) and \(o\)-hydroxyazo\(^{115}\) compounds. The change depends on the differences in zero point energies of the two tautomeric species. The observed equilibrium isotope effects (an intrinsic component is normally also present) depend besides the change in the equilibrium, also upon the chemical shift differences between the interconverting nuclei. Consequently, equilibrium isotope effects can be of both signs and be observed far from the centre of deuteriation. Observation of equilibrium isotope effects is thus a good way of establishing the presence of an equilibrium in cases of doubt. Furthermore, the presence of equilibrium isotope effects indicate that a two-potential well is at play. A typical feature observed for such systems is that the equilibrium isotope effect goes through either a maximum or a minimum as the mole fraction is increased/decreased from \(x = 0.5\).\(^{122,142}\)

For Mannich bases, isotope effects on \(^{13}\)C chemical shifts have also been observed. In this case the authors have chosen to ascribe this to a shift of the XH position as a single well potential is suggested.\(^{143,144}\)

Rubazoic acids (52) may occur in a \(Q = CH\) or a \(Q = N\) form. Deuterium isotope effects on \(^{13}\)C chemical shifts are given in Table 2. For \(Q = CH\) the compounds are not tautomeric, but for \(Q = N\) they are in polar solvents\(^{145}\) as can also be seen from the isotope effects. For the \(N\)-forms, the compounds can be divided into two groups according to symmetry. The symmetrical ones show only few isotope effects and those at C-5 and C-5′ are of equal magnitude, pointing either to a symmetrical structure with the OH equally shared between the two oxygens or a tautomeric equilibrium. The OH chemical shifts are for all investigated \(Q = N\) compounds close to 17 ppm.\(^{145}\) For those compounds having different substituents at \(N\)-1 and \(N\)-1′, the isotope effects are dramatically different (C-1 = 0.6 ppm, C-5′ = −0.5 ppm). A large difference is found for C-4 = 0.65 ppm and C-4′ = −0.6 ppm. However, the average value for C-5 and C-5′ is equal to 0.25 ppm and

![Diagram](52)
<table>
<thead>
<tr>
<th>Q</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>R⁴</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-3'</th>
<th>C-4'</th>
<th>C-5'</th>
<th>Me-N</th>
<th>Ph₁-N</th>
<th>Ph₂-N</th>
<th>Ph₃-N</th>
<th>Ph₄-C</th>
<th>C-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>0.03</td>
<td>0</td>
<td>0.20</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
</tr>
<tr>
<td>CH</td>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>N</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>0.06</td>
<td>0</td>
<td>0.25</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>N</td>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>Me</td>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>N</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>0</td>
<td>0</td>
<td>0.27</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>N</td>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>0.05</td>
<td>0</td>
<td>0.27</td>
<td>0</td>
<td>0</td>
<td>0.27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>N</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>0.1</td>
<td>0.70</td>
<td>0.62</td>
<td>0</td>
<td>−0.65</td>
<td>−0.10</td>
<td>0.045</td>
<td>0.09</td>
<td>0.08</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>Ph</td>
<td>0</td>
<td>0.71</td>
<td>0.58</td>
<td>0</td>
<td>−0.64</td>
<td>−0.09</td>
<td>0</td>
<td>0.08</td>
<td>0.05</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N</td>
<td>Me</td>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>−0.06</td>
<td>0.68</td>
<td>0.63</td>
<td>0.11</td>
<td>−0.70</td>
<td>−0.1</td>
<td>−0.08</td>
<td>0.06</td>
<td>0.06</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*See the symmetrical carbon.

Broad signal.
for C-4 and C-4′ it is ca 0 ppm, similar to the values found for the symmetrical compounds. The isotope effects of vastly different signs for carbons related by symmetry, and the fact that the average is similar to those of the symmetrical compounds (in which equilibrium isotope effects cannot contribute)142 shows that these compounds are tautomeric. The relatively large intrinsic two-bond isotope effects ($2\Delta C$-5(OD))\textsubscript{int} (the value is about twice as large as measured, as it corresponds to an average) found in the symmetrical compounds corresponds well with the primary isotope effect (see Section II.F.7) and with the short O· · · O distance (2.42–2.45 Å). In the solid state, this system shows almost total delocalization of the HO−C=X=C−C=O electrons146.

L. Complexes

1. Proton transfer

Complexes involving phenols can clearly be of many kinds. Much of the effort in this review will be concentrated on complexes with bases leading possibly to proton transfer. Intramolecular proton transfer has been treated too for a number of types of compounds (see Section II.J). Bases in the complexes are typically pyridines, aromatic and aliphatic amines, amine N-oxides and phosphine oxides. This is one of the rather difficult areas to review due to the fact that it is not always clear whether a single or a double potential well type is at play. Complexes have also been studied in a few cases in the solid state (see Section II.N).

It has turned out that temperature and the ratio of acid : base molecules is rather important for the outcome. The following situations are studied: (phenol : base) 2 : 1, 1 : 1, 1 : 2, 1 : 5 and 1 : 10. Historically, an excess of base was used. Ilczyszyn and coworkers1 assumed a 1 : 1 complex in a mixture of phenol with a five-fold excess of triethylamine and suggested that the situation could be described by a simple tautomeric equilibrium between a molecular complex (to the left) and an ion-pair (to the right) (equation 2)

\[
\text{PhOH} \cdots \text{NR}_3 \rightleftharpoons \text{PhO}^- \cdots \text{HN}^+\text{R}_3 \tag{2}
\]

and by using variable-temperature measurements they could determine the difference Δ_{14} (see Section II.I). For the non-charged complex, Δ_{14} is roughly proportional to the pK_a of the phenol. The values of Δ_{14} for the ion-pairs are similar to the values of phenolate ions. A ΔH^o of the order of -4.7 kJ mol-1 and a ΔS^o of -29 J K-1 mol-1 could be determined for the process. The small ΔH^o suggests an almost symmetrical double well potential. The large ΔS^o confirms the suggestion that solvation helps to stabilize the ion-pair (see later). The approach is too simple, as the authors themselves have shown later (equation 3). From line-shape analysis the reaction rates could also be determined147. The tautomeric equilibrium depends on interaction with surrounding molecules. The proton transfer process has been analysed in further detail148. It was found that an extra molecule of amine plays a role and that the proton transfer proceeds through an intermediate with bifurcated hydrogen bonds (see Section II.H.5). The transition state corresponds to a homoconjugated situation. It is also shown that the amine molecules exchange, as judged from the CH$\textsubscript{2}$ resonances of the triethylamine. For a 1 : 2 (phenol : base) complex the equilibrium of equation 3 can be written as follows:

\[
\text{A} \cdots \text{H} \cdots \text{B} + \text{B} \rightleftharpoons [\text{A} \cdots \text{H} \cdots \text{B}] \rightleftharpoons \text{A}^- \cdots \text{H} \cdots \text{B}^+ + \text{B} \tag{3}
\]
The rate constants depend very much on the ΔpK_a. In the so-called inversion region ($\Delta pK_a \approx 2$–3) one observes the highest δOH (Figure 4a) and the slowest exchange rates. For such complexes, the equilibrium may be frozen out on the NMR time scale and the δXH ($X = N$ or O) of the two bases observed. Examples of frozen out equilibria are for the complexes 2,4-dichlorophenol-triethylamine147; 2,5-dichlorophenol-N-methylpiperidine149; 2,3,5,6-tetrachlorophenol-N,N-dimethylaniline150,151.

The formation of (PhOH–\cdotsNR$_3$)$_2$–NR$_3$ aggregates helps to explain why in phenols with pK_a of ≈ 7.7 the OH–\cdotsN exchange is slow on the NMR time scale, allowing both species to be observed. The (PhOH–\cdotsNR$_3$)$_2$–NR$_3$ complex is probably not found at room temperature148. 1 : 1 Complexes have not been investigated in so much detail. They do not give rise to separate signals. The XH chemical shifts can be plotted vs. pK_a values as shown in Figure 4a148.

The 2 : 1 situation is somewhat different. A 2 : 1 phenol–amine complex can be observed at a δOH of 14.8 ppm (OH–\cdotsN). For the 1 : 1 complex at an equilibrium constant for proton transfer K_{PT} close to 1, the δOH is 13.6 ppm. This is in very good agreement with an equilibrium between the non-molecular complex at $ca \approx 12$ ppm and an ion-pair (taken as 14.8 ppm as for the 2 : 1 complex)152. A plot of δOH vs. the pK_a value of the phenol at 153 K in C$_2$H$_5$Br showed a characteristic shape (Figure 4a)148.

This is explained by the authors by assuming that both δOH and δNH^+ increase as the XH distance increases. At low temperature and a reduced amount of amine two OH resonances of 2,4-dichlorophenol may be observed, one at $ca 12$ ppm and the other at $ca 15$ ppm. The former is ascribed to the molecular complex, the latter to the ion-pair form147. For the 2 : 1 complex, a δOH for the OH–\cdotsO situation could also be measured at a value approximately 1 ppm lower than for the OH–\cdotsN complex.

Plotting ΔpK_a values for complexes between phenols and pyridines and lutidines gave two different plots depending on temperature: a normal one of type as shown in Figure 4a at 230 K and one at 128 K having a much higher δOH value (as high as 18 ppm)153. The latter was ascribed to formation of a homoconjugated ion. However, this behaviour was only found in a very narrow ΔpK_a range of -2 to 1.5 and was not observed in other studies of complexes of phenols with tertiary amines152. Because of solubility problems at low temperature these complexes could not be studied further, but an evaluation was conducted with thiophenol153. The complexes observed at 230 K could be described by Δ_{14} and the degree of proton transfer in this tautomeric equilibrium could be determined.

For the pyridine complexes, effects due to complexation observed at the pyridine molecule (such as 15N chemical shifts) can also be used153,154. Low temperature measurements have clearly been very useful in elucidating these reactions. An approach using 15N and 1H chemical shifts as well as deuterium isotope effects on 15N chemical shifts and primary proton isotope effects (see Section II.F.7) at very low temperature in freons showed in the 15N spectrum three different species: AHB, AHAHB and AHAHAB. For the 1 : 1 complex an asymmetric single well potential is assumed155, different from the approach taken above. Furthermore, a linear correlation was found between the 15N chemical shift and the one-bond $^1J(N,H)$ coupling constant. This type of reaction has also been studied using fractionation factors (See Section II.O).

N-Dodecyl-N,N-dimethylanmine oxide yields with phenols a typical sigmoidal curve when chemical shifts are plotted vs. ΔpK_a156.

2. Weak complexes

When dealing with complexes in which no proton transfer has occurred, this could be due to self-association156 or association in general. Albrecht and Zundel157 have determined the degree of association (as) for pentachlorophenol with different pyridines in
CCl₄ solution. Log K_{as} increased with ΔpK_a. Aggregation has been studied in a Schiff base of diazafluorenone with a long linear N-alkyl chain. The interaction could also be with typical solvents like alcohols, acetone or dioxane (see Section II.H.5). A study of thymol, carvacrol, eugenol and vanillin with a number of alcohols and ketones showed for the former two compounds a high frequency shift of the ipso and ortho carbon resonances and a small low frequency shift of the other carbons, indicative of the phenol hydrogen bonding to the alcohol or the ketone. In case of alcohols, hydrogen bonding to the phenolic oxygen is ruled out. For the eugenol, the effects are small probably due to intramolecular hydrogen bonding.

In order to test the effect of phenolic compounds on aromatic flavours, NOE experiments have been conducted and it was found that gallic acid forms a stronger complex than naringin (53) with aromatic flavours such as 2-methylpyrazine, vanillin and ethyl benzoate. The former two compounds form the strongest complexes.

Complexes with β-cyclodextrins are well studied. m-Fluorophenol showed that the fluorine is inside the cavity, but also that it formed a hydrogen bond with OH groups of the cyclodextrin judging from the isotope effects measured (see Section II.F.4). For Naringin-7-O-β-neohesperidoside, a structure is suggested in which the 4-keto and 5-OH group form hydrogen bonds to the secondary hydroxy groups at the rim of the wider end of the β-cyclodextrin cavity. A study of hydroxyphenyl alkyl ketones with β-cyclodextrin showed a 1 : 1 complex of mixed complexation modes with the aryl or alkyl groups inside the cavity.

The tetra-anion of macrocycles made from resorcinol allows likewise host–guest complexes with positively charged organic compounds, but also with neutral molecules like diethyl ether.

Gels may be formed by mixing sodium bis(2-ethylhexyl) sulphosuccinate with phenols in non-polar solvents. Doping these gels with other phenols is claimed to yield information about the importance of hydrogen bonding. Based on other methods the more acidic phenols are leading to the most stable gels. The OH chemical shifts are diminished at higher temperature. This is interpreted as a decrease of the hydrogen bonding. The temperature coefficients are largest for the more acidic phenols measured in the 20–30°C range (-8 ppb K⁻¹). For the dopands like 4-cresol the temperature coefficients are much smaller. A large temperature coefficient is, however, supposed to indicate weak hydrogen bonding (see Section II.C). Furthermore, for doped gels separate OH resonances are observed for the various phenols. The question is whether NMR at all supports hydrogen bonding.
The complex between phenols and the stable radical 2,2,6,6-tetramethyl-1-piperidinoxy radical (TEMPO) was studied by 13C NMR. Having constant phenyl concentration the concentration of TEMPO was varied and a linear change of the carbon chemical shifts was observed. The ipso carbon was shifted to lower frequency, whereas all others were shifted to higher frequency. CH carbons showed larger shifts than the quaternary ones. For 2,4,6-trinitrophenol unusually large shifts were observed, suggesting a π-stacking. For the 2,5-dinitro and 2,6-di-t-butyl derivatives no hydrogen bonding to the TEMPO radical is seen.

M. Theoretical Calculations

Theoretical calculations have now reached a level that allows one to calculate both vibrational frequencies and NMR chemical shifts to a good accuracy. Such calculations offer great help in assigning NMR chemical shifts and providing reliable structures. Structural information is also available from X-ray and neutron diffraction studies. The neutron studies and ab initio method have the advantage of giving the OH positions, a parameter very important for understanding hydrogen bonding of phenols.

Overviews of theoretical calculations of chemical shifts using salicylaldehydes are given. In these papers a large number of methods and basis sets are tested. A very good correlation between calculated and experimental 1H and 13C chemical shifts are found for the series 1–4. Recently, this range has been extended. In this context the change in chemical shifts is calculated as a function of the O–H bond length. The variation is found to be rather similar in the series. Deuterium isotope effects on 13C chemical shifts are also calculated and it is shown that these originate very strongly from the change in the O–H bond length upon deuteration.

17O chemical shifts were calculated in phenol, anisole, 4-methoxyphenol and 2-methoxyphenol. Reasonable agreement is obtained with experimental results. In the case of 2-methoxyphenol the 17OH chemical shift is 12 ppm different for the cis (hydrogen bonded) form and the trans conformation with the latter being at a higher frequency. This appears to be in very good agreement with experimental findings. 17O chemical shifts were calculated (DFT BPW91, 6-31G(d) basis set; GIAO approach) for the C=O groups of o-hydroxyaromatics. A good correlation was found except for 1-propionyl-2-naphthol, which is sterically hindered.

N. Solid State NMR

Conformational effects and effects due to intermolecular interactions can often be measured in the solid state. For strongly hydrogen bonded systems like compounds 1–4, the rings are stacked and are only moderately taking part in strong intermolecular hydrogen bonding. 1,3-Diacetyl-2,4,6-trihydroxybenzene (2) showed two sets of resonances. This is ascribed to the fact that of the two molecules in the asymmetric unit, one is forming a hydrogen bond to a water molecule. For 4, the CO resonances are seen in a 2 : 1 ratio, indicating that the molecule in the solid has no C_3 axis.

One of the interesting questions is whether the proton transfer found in solution is also present in the solid state. A second, always relevant problem is to distinguish between centrosymmetric and tautomeric cases for symmetrical compounds. A classic example is naphthazarin (44).

The solid state of the Schiff bases is of great interest because of their photochromic and thermochromic properties. A few studies of Schiff bases in the solid state exist. Salman and coworkers found for aniline Schiff bases of 2-hydroxy-1-naphthaldehyde that at
equilibrium in the solid state about 85% are the ketoamine form judged from the C-α chemical shift. N-(2′-Hydroxybenzylidene)-2-hydroxyaniline was likewise found to show tautomerism in the solid state, whereas the corresponding 4-nitro derivative did not\(^\text{169}\). Residual dipolar couplings were studied in phenylazo-2-naphthols\(^\text{170}\) (47).

A very extensive study of \(N,N′\)-di-(2-hydroxynaphthylmethylene)-\(p\)-phenylenediamine (49)\(^\text{171}\) exploits both spin–lattice relaxation times of protons and \(^{15}\)N CP-MAS spectroscopy at low temperature. Very low barriers are observed for the tautomeric processes: 8 kJ mol\(^{-1}\) for NH,NH → NH,OH (converting one of the NH forms to an OH form) and 2 kJ mol\(^{-1}\) for OH,OH → NH,OH. Furthermore, the effect of one hydrogen bond propagates to the other one\(^\text{171}\).

In a study of complexes between triphenylphosphine oxide (TPPO) and substituted phenols, a good correlation between the \(pK_a\) of the phenols and the degree of hydrogen transfer was found in solution but not in the solid. This was ascribed to TPPO being too weak a base so that crystallographic influences obscured the acid–base effects\(^\text{172}\). Using a highly basic phosphine oxide like tris(2,4,6-trimethoxyphenyl)phosphine oxide gave better results, as determined by \(^{13}\)C and \(^{31}\)P CPMAS solid state NMR\(^\text{173}\). The authors find effects on \(\Delta_{14}\) that are parallel to the solution data despite the crystal packing effects. However, several results are at least not quantitatively consistent. The \(^1\)H NMR data in solution suggest a 50% proton transfer at a \(pK_a\) value of the phenol of ca 5.5. However, the \(^{31}\)P results show that hardly any proton transfer takes place down to a \(pK_a\) of 3.8. Likewise, the \(^{13}\)C results \((\Delta_{14})\) indicates a value of 17.1 ppm for 2,4-dinitrophenol with a \(pK_a\) of 3.96. The 17.1 ppm is very close to that of picric acid, which is supposed to show full proton transfer.

The extent of proton transfer was also studied in complexes between genistein and piperazine. This was done by comparing solid and solution state \(^{13}\)C spectra\(^\text{174}\).

Studies of novolac-type resins (phenolic polyethylene oxide blends) show by \(^{13}\)C NMR that a blend of 30 : 70 composition leads to a ca 2 ppm high frequency shift compared to a pure phenolic resin. This is ascribed by the authors to increased hydrogen bonding\(^\text{175}\).

O. Fractionation Factors

Fractionation factors (the ratio between XD and XH in a H/D mixed solvent) can be determined by \(^{13}\)C NMR\(^\text{176}\). For phenol, a value of 1.13 was found at 32°C. This is slightly dependent on ionic strength\(^\text{177}\). For complexes between phenol and diamines, the fractionation factor is smallest for 1,2-propanediamine with a \(pK_a\) difference between donor and acceptor of −0.45. The fractionation factor increases as this difference becomes numerically larger.

For \(t\)-butylphenol and a series of other acids, fractionation factors were determined at low temperature in freons. A quasi-linear relationship between OH chemical shifts and fractionation factors was observed with different slopes for OH and NH bonds\(^\text{178}\).

Tyrosine can be part of low barrier hydrogen bonds in enzymatic reactions. This is suggested for ketosteroid isomerases\(^\text{179}\). A fractionation factor of the COOH proton of Asp-99 (0.34) supports this\(^\text{93,180}\). The phenol proton having a hydrogen bond to the steroid shows a fractionation factor of 0.97. The fractionation factors can be related to the O···O distance\(^\text{93}\).

III. IR

A. Introduction

Vibrational spectroscopy is a particularly useful tool in the study of phenols. Due to the polarity of the phenolic hydroxyl group, this structural element is associated with
strong and characteristic IR absorption bands, and the appearance of these bands generally contains significant information on intra- and intermolecular interactions181. The most important of these interactions involve hydrogen bonding, and historically, IR spectroscopy has been the most important spectroscopic method in the study of hydrogen bonds182,183. IR spectroscopy, in combination with Raman spectroscopy, has thus found widespread chemical, analytical and technical application in the study of a variety of phenols184–186. These applications are facilitated by the presence of extensive collections of IR data in the literature, such as those by Varsányi187, Nyquist188 and by Pouchert189. These collections contain IR data, spectra and detailed assignments for a very large number of phenols; the volumes by Varsányi contain data for more than 100 phenols.

Among general methodological advances in the last couple of decades, we shall mention two, one experimental and one theoretical. The first is the application of IR polarization spectroscopy on partially aligned molecular samples190,191. The second is the development of new quantum theoretical procedures based on density functional theory (DFT)192–194.

Traditional IR spectroscopy allows determination of transition energies (wavenumbers) and intensities, but it does not provide information on directional properties such as transition moment directions190,191. However, experimental determination of transition moment directions is of great significance, for example in the study of molecular symmetry aspects and in the assignment of observed transitions. Information on the polarization directions of vibrational transitions can be obtained by linear dichroism (LD) IR spectroscopy on oriented molecular samples. Molecular crystals are obvious examples of oriented molecular systems, but adequate crystalline samples for LD spectroscopy are frequently difficult to obtain, and the observed spectra are influenced by crystal effects. A much simpler procedure of obtaining oriented molecular samples is the use of anisotropic solvents, in particular stretched polymers and liquid crystals190,191,195,196. This technique is generally associated with significant baseline absorption from the anisotropic medium, and efficient application in the field of IR spectroscopy generally requires modern Fourier transform (FT) instrumentation with a high signal-to-noise ratio197. In the following sections we shall illustrate the results of IR polarization spectroscopy for phenol oriented in a nematic liquid crystal198, and for 1,8-dihydroxy-9(10H)-anthracenone (anthralin, dithranol, 28) partially aligned in a stretched polyethylene matrix199.

The most important development in applied quantum chemistry in recent years is probably the successful implementation of computational procedures based on DFT192–194 in several standard software packages, e.g. Gaussian200. The DFT procedures offer the advantage of an adequate representation of electron correlation effects in the theoretical model at a moderate computational cost. A proper consideration of electronic correlation effects is crucial in the prediction of molecular vibrations, particularly in the description of effects associated with hydrogen bonding201. A variety of computational DFT procedures are available, but extensive surveys have shown that the functionals B3LYP and B3PW91 are particularly suitable for prediction of vibrational transitions202–204. It is notable that the performance of these procedures is not only much superior to that of traditional Hartree–Fock (HF) molecular orbital theory, but the DFT predictions are in better agreement with experiment202–204 than those of post-HF MP2 perturbation theory193,194 that requires much longer computation time. The availability of powerful and computationally feasible DFT procedures has inspired a number of recent re-investigations of the vibrational structure of phenolic model compounds, as indicated in the ensuing survey.

In the following sections, some recent work in this field is reviewed. In a number of cases, references are given to recent publications with discussions of earlier work. The main focus is on IR investigations of key phenols that serve as reference compounds, particularly in relation to the study of hydrogen bonding effects. IR spectroscopy of biological systems is considered to fall outside the scope of this survey. For an example
of the application of IR spectroscopy in the study of biological systems, see the recent work by Berthomieu and collaborators \(^{205-207}\) on Photosystem II of green plants.

B. The Characteristic Vibrations of the Phenolic OH Group

The IR spectra of phenols are characterized by a number of bands associated with the hydroxyl group, involving the stretching and bending motions of the O–H and C–O moieties. C–O stretching, \(\nu(\text{CO})\), and in-plane O–H bending, \(\delta(\text{OH})\), tend to couple strongly with aromatic CC and CH movements, giving rise to patterns of IR bands mainly in the 1500–1000 cm\(^{-1}\) region (see Section III.C.2). In contrast, the vibrational modes \(\nu(\text{OH})\) and \(\gamma(\text{OH})\), corresponding to O–H stretching and O–H out-of-plane bending (or torsion), tend to be strongly localized in the OH moiety. They usually give rise to normal modes with effective masses close to 1 amu, indicating that the vibrational motion is essentially limited to the OH proton; these bands are therefore characterized by large isotope shifts in the corresponding OD isotopomers. The \(\nu(\text{OH})\) and \(\gamma(\text{OH})\) vibrations generally give rise to strong IR transitions (but weak Raman bands) and are of great diagnostic value, particularly in the study of hydrogen bonding effects. We give a brief description of these vibrational modes below. For a comprehensive account, see the volume by Lin–Vien and coworkers \(^{208}\).

1. **OH stretching, \(\nu(\text{OH})\)**

 a. **Free OH groups.** The O–H stretching vibration of phenols with no substituents ortho to the hydroxyl group gives rise to a sharp band between 3700 and 3600 cm\(^{-1}\) in the gas phase (the corresponding O–D stretching band is observed between 2700 and 2600 cm\(^{-1}\)). The presence of ortho substituents frequently complicates the situation. In particular, the presence of a hydrogen bond acceptor group in this position leads to intramolecular hydrogen bonding effects (see below). Even alkyl groups may cause complication. For example, gaseous 2-tert-butylphenol (54) exhibits two O–H stretching bands at 3670 and 3642 cm\(^{-1}\), indicating the presence of cis and trans –OH rotamers.\(^{181,188}\) In a recent investigation of 2,6-diisopropylphenol (55) in CCl\(_4\) solution, Bikádi and coworkers\(^{209}\) concluded that five conformers, corresponding to isopropyl rotamers, contribute to the pattern of IR absorption in the O–H stretching region.

 ![OH stretching bands](image)

 (54) (55)

 b. **Hydrogen bonded OH groups.** Participation of the OH proton in hydrogen bonding leads to a marked red shift of the O–H stretching band. It is observed that the stronger the hydrogen bonding, the larger the shift towards lower wavenumbers. At the same time, a broadening of the band is usually observed. IR spectroscopy is thus a very sensitive technique in the study of hydrogen bonding effects, and the wavelength shift, \(\Delta \nu\), and half-height width, \(\nu_{1/2}\), of the \(\nu(\text{OH})\) band are among the most important spectroscopic parameters in the characterization of these phenomena.
Intermolecular hydrogen bonding is frequently associated with an increase in the integrated IR intensity. As an example, Figure 5 shows the O–H stretching region for phenol in CCl\(_4\) solutions with different concentration\(^{198}\) (note that curve A in Figure 5 is shown on a five times expanded ordinate scale). The IR absorption indicates the coexistence of free and different associated forms. The sharp peak observed at 3611 cm\(^{-1}\) is due to free, non-complexed hydroxyl groups, while the broad band between 3600 and 3100 cm\(^{-1}\) is due to hydroxyl groups involved in hydrogen bonded dimer or polymer formation. Increasing the phenol concentration increases the relative concentration of self-associated forms, resulting in a rapid increase of the broad, continuous band belonging to hydrogen bonded OH groups.

Intramolecular hydrogen bonding is expected for those phenols that contain accessible hydrogen bond acceptor groups within the molecule. The formation of an intramolecular hydrogen bond usually results in the closing of a 5- or 6-membered pseudo-ring structure\(^{188,210,211}\). Weak effects are observed for phenols 2-substituted by halogen atoms (see, e.g., the recent investigation\(^{212}\) of 2,6-difluorophenol, \(56\)), or by methoxy, thiomethoxy, amino, cyano, vinyl or allyl groups. For example, the \(\nu\)(OH) band observed for 2-allylphenol\(^{213,214}\) (\(57\)) is split into two peaks at 3656 and 3592 cm\(^{-1}\); the red-shifted component is ascribed to the presence of a rotamer with hydrogen bonding between the hydroxyl and the \(\pi\)-bond of the adjacent allyl group. A similar splitting (3645 and 3508 cm\(^{-1}\)) is observed for 2-(hydroxymethyl)phenol\(^{214}\) (\(58\)) but this time the red-shifted component is by far the more intense, indicating the predominance of the hydrogen bonded form. Much stronger interaction is observed for 2-(alkylaminomethyl)phenols (ortho-Mannich bases, see Section III.E.6), leading to complicated \(\nu\)(OH) profiles in the 3500–2000 cm\(^{-1}\) range\(^{215}\). Strong, so-called ‘resonance-enhanced’ intramolecular

![Figure 5](https://example.com/figure5.png)

FIGURE 5. The OH stretching region of the IR absorption spectrum of phenol in CCl\(_4\) solution\(^{198}\): (A) 1% solution (5 × ordinate expansion); (B) 5% solution. Reprinted with permission from Reference 198. Copyright (1998) American Chemical Society
hydrogen bonding is present for phenols with NO₂, R−C=O or R−C=N−R’ groups in the 2-position\(^{210}\) (see Figure 2). This kind of interaction is frequently referred to as ‘chelation’. The chelated OH⋯X stretching vibration usually gives rise to a broad absorption band in the 3200–2500 cm\(^{-1}\) region. A large variation in intensity and shape for this absorption has been observed. The stronger the chelated hydrogen bond, the lower the recorded intensity, a situation that is opposite to that observed for intermolecular hydrogen bonding. The lowering of the IR intensity has been explained by the bending of the intramolecular OH⋯X linkage\(^{216}\). Sometimes, this absorption may be overlooked because of broad and weak features\(^{32,208,210}\). In Section III.E we consider the IR spectra of some compounds with chelated hydrogen bonding.

Participation of the OH group in hydrogen bonding increases the asymmetry of the O−H stretching potential, thereby increasing the importance of anharmonic effects. Strong interaction may lead to broad potentials of highly asymmetrical shape, or low-barrier double-minima potentials, possibly associated with proton transfer and tunnelling effects\(^{217}\). Non-rigid systems with easily polarizable hydrogen bonds (mobile protons) are frequently characterized by anomalous, broad or ‘continuous’ absorption bands\(^{218}\). In addition to affecting the fundamental of the OH stretching mode, the anharmonic effects tend to increase the intensity of overtone and combination bands observed in the near-IR (NIR) region. Hydrogen bonded phenols are generally characterized by rich NIR spectra\(^{219–221}\).

Theoretical modelling of the molecular and vibrational structure of hydrogen bonded systems and the associated optical properties is an area of current research\(^{204,216,222–233}\).

2. OH out-of-plane bending, \(\gamma(\text{OH})\)

For phenols with free, uncomplexed hydroxyl groups, this torsional mode usually gives rise to an absorption band in the far-IR region. In the gas phase spectrum of phenol\(^{188,198}\), the transition is observed as a strong band around 310 cm\(^{-1}\). When the hydroxyl proton participates in hydrogen bonding, the force constant for the out-of-plane torsional motion is increased, resulting in a shift towards larger wavenumbers. This band thus moves in the opposite direction to that of the \(\nu(\text{OH})\) band: Stronger hydrogen bonding increases the \(\gamma(\text{OH})\) wavenumber and decreases the \(\nu(\text{OH})\) wavenumber. In strongly chelated phenols like ortho-hydroxybenzoys (24), the \(\gamma(\text{OH})\) transition is observed in the 700–800 cm\(^{-1}\) region\(^{208,234,235}\), and a band observed at 984 cm\(^{-1}\) in the spectrum of the salicylate anion can possibly be assigned to this transition (Section III.E.1). In these compounds, the \(\gamma(\text{OH})\) vibration becomes near-degenerate with other out-of-plane vibrations like \(\gamma(\text{CH})\). This may lead to mixing with these modes and the \(\gamma(\text{OH})\) intensity is frequently distributed over a number of vibrational transitions in this region. This detracts from its diagnostic value, but bands with large \(\gamma(\text{OH})\) character can frequently be recognized by their broader shape.
C. The IR Spectrum of Phenol

The vibrational structure of phenol and its main isotopomers has recently been the subject of several investigations198,220,221,234–237. A critical review of previous assignments of the fundamental transitions can be found in the treatise by Keresztury and coworkers198.

1. Low-temperature Argon matrix spectrum of phenol

Figure 6 shows the IR spectrum of phenol isolated in an Argon matrix at 20 K237. This is a very inert medium and the observed wavenumbers are similar to those observed in the gas phase (see Table 3). The largest deviations concern the strong lines observed at 1343 and 1176 cm−1 which are red-shifted by about 20 cm−1 relative to the gas phase spectrum. The low-temperature matrix spectrum has the advantage of very sharp lines, in contrast to the spectrum of gaseous phenol, which is influenced by rotational line broadening. The splitting of some of the lines in the matrix spectrum is due to the occupation of different sites. The ν(OH) line, for example, is split into two major components at 3639 and 3634 cm−1. The observed wavenumbers are well reproduced by the results of a B3LYP/cc-pVTZ calculation200. The theoretical wavenumbers listed in Table 3 have been scaled by a common scale factor, $\alpha = 0.9776$. This factor was determined by a regression analysis based on 14 strong peaks in the matrix spectrum between 700 and 1700 cm−1, yielding a standard deviation of 3.1 cm−1.

2. IR polarization spectra of phenol aligned in a liquid crystal

Keresztury and coworkers198 have recently measured the IR LD spectra of phenol aligned in a uniaxially oriented liquid crystal nematic phase, thereby providing new

![Figure 6. IR absorption spectrum of phenol isolated in an Argon matrix at 20 K237](image)
TABLE 3. Observed and calculated fundamental vibrational transitions for phenol

<table>
<thead>
<tr>
<th>Gas phase 198</th>
<th>Ar matrix 237</th>
<th>Nematic phase 198</th>
<th>B3LYP/cc-pVTZ 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\nu}^a$</td>
<td>$\bar{\nu}$</td>
<td>$\tilde{\nu}^a$ ODd</td>
<td>$\tilde{\nu}^a$ ODd</td>
</tr>
<tr>
<td>1</td>
<td>3655</td>
<td>104.22</td>
<td>3634.1</td>
</tr>
<tr>
<td>2</td>
<td>3074</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3061</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3052</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3046</td>
<td>11.83</td>
<td>3049.2</td>
</tr>
<tr>
<td>6</td>
<td>3021</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1609</td>
<td>36.09</td>
<td>1610.7</td>
</tr>
<tr>
<td>8</td>
<td>1604</td>
<td>62.90</td>
<td>1602.0</td>
</tr>
<tr>
<td>9</td>
<td>1501</td>
<td>69.12</td>
<td>1501.0</td>
</tr>
<tr>
<td>10</td>
<td>1472</td>
<td>42.92</td>
<td>1471.1</td>
</tr>
<tr>
<td>11</td>
<td>1361</td>
<td>0.96</td>
<td>1342.6</td>
</tr>
<tr>
<td>12</td>
<td>1344</td>
<td>17.52</td>
<td>1330.0</td>
</tr>
<tr>
<td>13</td>
<td>1261</td>
<td>51.33</td>
<td>1255.7</td>
</tr>
<tr>
<td>14</td>
<td>1197</td>
<td>106.26</td>
<td>1176.1</td>
</tr>
<tr>
<td>15</td>
<td>1176</td>
<td>10.34</td>
<td>1169.0</td>
</tr>
<tr>
<td>16</td>
<td>1150</td>
<td>13.87</td>
<td>1150.0</td>
</tr>
<tr>
<td>17</td>
<td>1070</td>
<td>12.18</td>
<td>1071.0</td>
</tr>
<tr>
<td>18</td>
<td>1026</td>
<td>4.73</td>
<td>1025.9</td>
</tr>
<tr>
<td>19</td>
<td>999</td>
<td>3.68</td>
<td>1000.8</td>
</tr>
<tr>
<td>20</td>
<td>973</td>
<td>0.26</td>
<td>972.0</td>
</tr>
<tr>
<td>21</td>
<td>956</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>881</td>
<td>0.94</td>
<td>881.1</td>
</tr>
<tr>
<td>23</td>
<td>810</td>
<td>17.78</td>
<td>812.4</td>
</tr>
<tr>
<td>24</td>
<td>752</td>
<td>74.81</td>
<td>752.2</td>
</tr>
<tr>
<td>25</td>
<td>687</td>
<td>42.92</td>
<td>692.2</td>
</tr>
<tr>
<td>26</td>
<td>618</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>526</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>503</td>
<td>20.5</td>
<td>509</td>
</tr>
<tr>
<td>29</td>
<td>420</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>410</td>
<td>8.23</td>
<td>415</td>
</tr>
<tr>
<td>31</td>
<td>310</td>
<td>620</td>
<td>0.06</td>
</tr>
<tr>
<td>32</td>
<td>242</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aWavenumber in cm$^{-1}$.
bIntensity in arbitrary units.
cOptical density.
dIsotropic optical density, $(E_\parallel + 2E_\perp)/3$.
eIn-plane moment angles ϕ (deg) relative to the moment direction of transition no. 1, ν(OH). The experimental sign of ϕ is unknown.198. z indicates out-of-plane polarization.
fScaling factor 0.9776.
gIntensity in km mol$^{-1}$.
hApproximate mode description: ν = stretching, δ = in-plane bending, γ = out-of-plane bending.

Experimental information on the molecular and vibrational structure of phenol. Figure 7 shows the absorption curves A and B recorded with the electric vector of the linearly polarized IR radiation parallel (E_\parallel = curve A) and perpendicular (E_\perp = curve B) to the director of the liquid crystalline sample. The smallest dichroic ratio $d = E_\parallel / E_\perp = 0.325$ is observed for the five peaks at 509, 620, 692, 754 and 883 cm$^{-1}$, corresponding to a common orientation factor $^{190,196,197,238} K = d/(2 + d) = 0.14$. These peaks were assigned to out-of-plane polarized transitions in the C$_8$ symmetric molecule. The remaining peaks with
larger dichroic ratios d ranging from 0.79 to 3.71, corresponding to K values from 0.28 to 0.65, were assigned to transitions with different in-plane transition moment directions. The largest dichroic ratio $d = 3.71$ is observed for the broad OH stretching band with maximum around 3403 cm$^{-1}$. It was therefore assumed198 that the transition moment of the ν(OH) fundamental is oriented preferentially along the director of the liquid crystal, probably due to hydrogen bonding with the terminal nitrile groups of the rod-like molecules forming the liquid crystalline phase. The effective molecular orientation axis190 was thus taken to coincide with the ν(OH) transition moment direction, and by using the formulas of Thulstrup and Michl190, the absolute values $|\phi|$ of the in-plane moment angles relative to that of ν(OH) could be derived. The results for the observed fundamentals are included in Table 3.

Keresztury and coworkers198 compared the derived moment angles for phenol with those predicted by a B3P86/6–311G** DFT calculation. Corresponding results obtained with B3LYP/cc-pVTZ200 are included in Table 3. The theoretical angles ϕ listed in Table 3 are relative to the predicted direction of the ν(OH) transition moment (the sign of ϕ is defined as in Reference 198). This direction forms a considerable angle with the O–H bond axis (30°), very roughly corresponding to an axis through C$_1$ and the OH proton. The calculated moment angles are in fair agreement with the experimental estimates. The analysis by Keresztury and associates198 is based on a number of assumptions, and the derived numerical values are associated with experimental error limits that are difficult to estimate. In addition, the experimental results relate to phenol engaged in hydrogen bonding, whereas the calculated data refer to an isolated phenol molecule.

![FIGURE 7. Linear dichroic (LD) absorption spectra of phenol partially aligned in a uniaxially oriented nematic liquid crystal198. The curves indicate absorption measured with the electric vector of the linearly polarized radiation parallel (A) and perpendicular (B) to the director of the liquid crystalline sample. Reprinted with permission from Reference 198. Copyright (1998) American Chemical Society](image-url)
The results of the LD investigation of phenol are significant for a number of reasons. The grouping of the observed orientation factors allows conclusions concerning the molecular symmetry. The observation of five individual peaks with precisely the same (small) \(K \) value supports the assumption that phenol is a planar molecule. In particular, observation of the same \(K \) for \(\gamma(CH) \) and \(\gamma(OH) \) transitions demonstrates that the hydrogen bonding \(OH \) group stays co-planar with the benzene ring. On the other hand, the variation of \(K \) values observed for in-plane polarized peaks demonstrates a significant symmetry lowering relative to a \(C_{2v} \) symmetrical model, a situation that for example complicates an unambiguous correlation with the modes of benzene (as attempted, e.g., by Varsányi187 with reference to Wilson’s notation239). The clear experimental distinction between in-plane and out-of-plane polarized transitions enabled Keresztury and associates198 to suggest a reassignment of one transition: The weak peak observed at 829 cm\(^{-1}\) was previously assigned by most investigators to the out-of-plane polarized \(\gamma(CH) \) fundamental \(\nu_{23} \), but the observed \(K = 0.36 \) shows that the peak is in-plane polarized. The peak may be assigned198 to \(2\nu_{31} \), an overtone of the fundamental observed near 415 cm\(^{-1}\). The overtone may gain intensity by Fermi coupling with the medium intense transition at 814 cm\(^{-1}\) (also with \(K = 0.36 \)), which can be assigned to \(\nu_{24} \). The fundamental \(\nu_{23} \) is predicted to be extremely weak and is not clearly observed.

Figure 7 illustrates the influence of weak intermolecular hydrogen bonding on the IR spectrum of phenol. The \(\nu(OH) \) transition is observed as a broad, nicely Gaussian-shaped band with maximum at 3403 cm\(^{-1}\), red-shifted by 230–250 cm\(^{-1}\) relative to the transition in Argon matrix or in the gas phase. A similar broadening, but a shift in the opposite direction, is observed for \(\gamma(OH) \): In the liquid crystal this transition is observed at 620 cm\(^{-1}\), a blue-shift of more than 300 cm\(^{-1}\) relative to the position in the gas phase spectrum. The remaining bands show much smaller shifts, but a significant broadening and a relatively large blue shift are observed for the transition at 1219 cm\(^{-1}\). This transition is shifted by 43 cm\(^{-1}\) relative to the Argon matrix spectrum where it is found at 1176 cm\(^{-1}\). It can be assigned to the fundamental \(\nu_{14} \) which has substantial \(\delta(OH) \) character198,234–236. The peaks at 1268 and 1358 cm\(^{-1}\) are slightly broadened and are blue-shifted by 12–15 cm\(^{-1}\) relative to the Argon matrix spectrum. They are assigned to \(\nu_{13} \) and \(\nu_{11} \) which involve \(\nu(CO) \) and \(\delta(OH) \) contributions198,234–236.

D. Hydrogen Bonded Complexes

IR spectroscopic investigation of intermolecular interactions with phenols has a long history240. Phenols are frequently used as convenient model proton donors in the study of intermolecularly hydrogen bonded systems. Differently substituted phenols are characterized by a range of different acidities, and complexes can be studied with a wide variety of proton acceptors. The most commonly adopted acceptors are O and N bases. A special case is carbon monoxide that in complexes with phenols apparently forms ArOH···CO contacts (rather than ArOH···OC241). Here we mention some recent investigations with typical proton acceptors like water, alcohols and amines.

The vibrational structure of phenol or phenolate hydrates has been investigated for example by Leutwyler242,243, Müller-Dethlefs244, Ébata245, Carabatos-Nédélec246, Gerhards247 and their coworkers. As an illustrative example of an IR spectrum of a crystalline hydrate we show in Figure 8 the spectrum of ellagic acid dihydrate (EA·2H\textsubscript{2}O)248,249. Ellagic acid (59) is a plant phenol that is widely distributed in Nature. It has an extremely high melting point (>360 °C), an indication of strong intermolecular forces in the solid state. In the dihydrate crystal, the ellagic acid molecules are stacked, and the crystal water molecules act as hydrogen bond bridges in three directions250. The OH stretching region of the IR spectrum is characterized by a sharp peak close to 3600 cm\(^{-1}\).
FIGURE 8. Solid state IR absorption and Raman scattering spectra of ellagic acid dihydrate (59)248,249 which can be assigned to free OH groups, followed by a strong, continuous absorption band with a maximum at 3100 cm-1 and a long tail down to around 2300 cm-1. The considerable absorption intensity and anomalous band shape can probably be explained by coupling of the easily polarizable hydrogen bonds with low-frequency lattice phonons,
in combination with strong anharmonic effects (multi-Fermi resonance)227,233. The absence of the OH stretching band in the Raman spectrum is characteristic. Raman spectroscopy (Figure 8) offers a window to the weak CH stretching bands that are buried below the OH continuum in the IR absorption spectrum. In the region below 2300 cm-1 the spectrum of ellagic acid seems ‘normal’. Because of the centro-symmetric molecular structure (C\textsubscript{2v} point group), the IR and Raman spectra are complementary: those transitions that are IR active are forbidden in Raman, and vice versa.

Like water and alcohols, phenols are prone to self-association, as indicated in Section III.B.1.b. An interesting example is the self-association of phenolic calixarene-like building blocks, which was investigated by IR spectroscopy by Lutz and coworkers251, and most recently by Painter and associates252. The structure of the binary phenol–methanol cluster was investigated recently by Schmitt and coworkers253.

Several investigations have considered intermolecular phenol complexes with ammonia and amines216,230,254–264, and with aza-aromatics, nitriles and Schiff bases219,220,222,265–267. The IR spectra of complexes with strong trialkylamine bases usually show continuous absorption bands characteristic of hydrogen bonded bridges with broad, asymmetric single or double minimum potentials. The interaction with very strong bases (proton sponges) leads to proton transfer effects; optical UV-VIS and IR spectroscopy are excellent tools in the study of these reactions259,260. For examples of complicated spectra see the recent publications by Wojciechowski, Brzezinski and their coworkers263,264 on complexes between phenols and triazabicyclodecene bases; the observed broad and continuous IR profiles are interpreted in terms of strong, multiple hydrogen bonding, proton transfer and double minimum potentials with vibrational tunnelling splitting.

E. Phenols with Intramolecular Hydrogen Bonds

1. 2-Hydroxybenzoyl compounds

In these compounds, the phenolic OH group is situated next to a position with a carbonyl substituent, O=C–R. As in other conjugated \(\beta\)-hydroxycarbonyl compounds, these molecules are characterized by the formation of a stable, intramolecular hydrogen bond, OH···O=C–R, closing a six-membered chelate ring (see Figure 2).

The IR spectrum of salicylaldehyde, the simplest member of the series (R = H), has been the subject of several recent investigations234,235,268,269. The \(\nu\)(OH) fundamental gives rise to a complicated band between 3500 and 3100 cm-1. According to the analysis by Koll and coworkers269, the band profile is influenced by Fermi coupling with overtones and combinations of \(\delta\)(OH) bending vibrations, and by other anharmonic effects. Bands observed in the 760–700 cm-1 region have been assigned to \(\gamma\)(OH) vibrations; normal mode calculations predict significant coupling between near-degenerate \(\gamma\)(CH) and \(\gamma\)(OH) vibrations, giving rise to two or more modes with partial \(\gamma\)(OH) character. The \(\nu\)(C=O) stretching band is observed around 1670 cm-1, indicating a red shift of \(\text{ca} 40 \text{ cm}^{-1}\) relative to the corresponding band in the spectrum of benzaldehyde.

Systematic investigation of the IR spectra of different 2-hydroxybenzoyls has been undertaken, in particular by Mikenda and coworkers268 and by Palomar and coworkers235. The first group of investigators considered a series of 14 different 2-substituted phenols, with the following carbonyl substituents O=C–R: R = Cl, OH, SH, OCH\textsubscript{3}, SCH\textsubscript{3}, H, CH\textsubscript{3}, Cl, H\textsubscript{2}O, O(CH(CH\textsubscript{2})\textsubscript{2})\textsubscript{2}CH\textsubscript{2}, N(CH\textsubscript{2}CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}, N(CH\textsubscript{3})\textsubscript{2}, NHCH\textsubscript{3}, NH\textsubscript{2} and NH\textsubscript{3}H\textsubscript{2}. The second group investigated salicylaldehyde, 2-hydroxyacetophenone, methyl salicylate and salicylamide (R = H, CH\textsubscript{3}, OCH\textsubscript{3} and NH\textsubscript{2}). Observed \(\nu\)(OH) and \(\gamma\)(OH) wavenumbers for these four compounds are listed in Table 4. Both groups235,268 supported their investigations by comparison with data for pertinent reference compounds, and by
TABLE 4. Observed wavenumbers (cm$^{-1}$) for ν(OH) and γ(OH) vibrations in phenol and a number of 2-hydroxybenzoyl compounds with intramolecular hydrogen bondinga

<table>
<thead>
<tr>
<th>Compound</th>
<th>ν(OH)</th>
<th>γ(OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>3655</td>
<td>322</td>
</tr>
<tr>
<td>Methyl salicylate</td>
<td>3258</td>
<td>714b</td>
</tr>
<tr>
<td>Salicylaldehyde</td>
<td>3190</td>
<td>714b</td>
</tr>
<tr>
<td>2-Hydroxyacetophenone</td>
<td>3100</td>
<td>787b</td>
</tr>
<tr>
<td>Salicylamide</td>
<td>3070</td>
<td>807b</td>
</tr>
<tr>
<td>Sodium salicylate</td>
<td>2910–1900</td>
<td>984c</td>
</tr>
</tbody>
</table>

aThe data for sodium salicylate refer to the solid state spectrum and are taken from the work by Philip and coworkers271. The remaining data refer to gas phase spectra for ν(OH) and to CCl$_4$ or CS$_2$ solution spectra for γ(OH) and are taken from the compilation by Palomar and coworkers235. bAccording to Palomar and coworkers235, additional modes with partial γ(OH) character are observed. cThis assignment differs from the one suggested by Philip and coworkers271; see Section III.E.1.

correlation with the results of DFT calculations. Both groups derived empirical relationships between spectral data and hydrogen bond parameters, particularly the energy E_{IMHB} of the intramolecular hydrogen bond. It is found that the observed ν(OH) and γ(OH) shifts closely parallel the calculated or otherwise estimated hydrogen bond strengths. We refer to these publications235,268 for further discussion of the IR spectroscopic properties of these key compounds, and for references to earlier work in the field.

Very strong intramolecular hydrogen bonding is predicted270 for the salicylate anion (R = O$^-$) (60). Philip and associates271 recently published an IR and Raman spectroscopic investigation of sodium salicylate. Not surprisingly, a very complicated ν(OH) stretching band is observed with a broad IR profile between 3000 and 2300 cm$^{-1}$, and also broad features around 1900 cm$^{-1}$. These bands are absent in the Raman spectrum. A sharp IR peak at 537 cm$^{-1}$ (KBr pellet) is assigned to γ(OH) by Philip and associates271. However, one would expect a blue shift of this band relative to the spectra of neutral 2-hydroxybenzoyl compounds where it is observed in the 700–800 cm$^{-1}$ region (see Table 4). B3LYP/6–31G* calculations predict a blue shift of the γ(OH) vibration of no less than 280 cm$^{-1}$ when passing from salicylaldehyde to the salicylate anion. We suggest that the broad, intense band observed271 at 984 cm$^{-1}$ in the spectrum of sodium salicylate may be assigned to γ(OH). This band does not seem to have a counterpart in the Raman spectrum.

Simperler and Mikenda272 investigated a series of 2,6-disubstituted phenols containing two different carbonyl substituents (61). Five different substituents were considered:
COOH, COOMe, CHO, COMe, CONH₂, resulting in a series of ten phenols. These compounds are able to form two competitive kinds of intramolecular hydrogen bonds. According to the analysis by Simperler and Mikenda, the conformation of the most stable isomer is determined by the energetically most favourable non-bonded O···R−C interaction and not by the more favourable one of the two possible O−H···O=C hydrogen bond interactions.

\[
\begin{align*}
(61) & \quad \begin{array}{c}
R^1 \\
\text{O} & \text{H} & \text{O} & \text{O} \\
\text{R}^2
\end{array} \\
(62) & \quad \begin{array}{c}
\text{O} \\
\text{H} & \text{O} \\
\text{H}
\end{array}
\end{align*}
\]

A different example is provided by 2,2′-dihydroxybenzophenone (36), where two equivalent hydroxyl groups simultaneously form hydrogen bonds with the same carbonyl group, resulting in a bifurcated arrangement. The solid state IR and Raman spectra of this compound are shown in Figure 9. The two \(\nu(\text{OH}) \) vibrations give rise to a broad IR band with maximum at 3300 cm\(^{-1} \), overlapping a weaker CH stretching band at 3050 cm\(^{-1} \).

![Figure 9](image-url)
The ν(OH) IR band of 2-hydroxybenzophenone is observed at a lower wavenumber (3080 cm\(^{-1}\), liquid solution)\(^{268}\), perhaps an indication that the single hydrogen bond in this compound is stronger. According to the IR LD analysis by Andersen and coworkers\(^{274}\), a relatively broad IR band at 714 cm\(^{-1}\) can be assigned to the antisymmetric combination of the two \(\gamma\)(OH) vibrations (\(b\) symmetry in the \(C_2\) point group of this compound).

Neither ν(OH) nor \(\gamma\)(OH) transitions seem to have counterparts in the Raman spectrum. Two strong transitions at 1626 and 1584 cm\(^{-1}\), polarized along the \(C_2\) symmetry axis, could be assigned to modes involving coupling of ν(C=O) with δ(OH) and other motions. For comparison, the reported\(^{268}\) ν(C=O) wavenumbers for benzophenone and 2-hydroxybenzophenone are 1660 and 1632 cm\(^{-1}\). References to work on other hydroxybenzophenones can be found in the volume by Martin\(^{15}\).

Anthralin (dithranol), an efficient drug in the treatment of psoriasis and other skin diseases, is closely related to 2,2'-dihydroxybenzophenone. The compound was for many years believed to be 1,8,9-anthracenetriol (28B), but on the basis of IR and other spectroscopic data Avdovich and Neville\(^{275}\) could in 1980 show that the compound is 1,8-dihydroxy-9(10H)-anthracenone (28A). Solid state IR and Raman spectra of anthralin\(^{273}\) are shown in Figure 10. The broad ν(OH) band is centred around 3000 cm\(^{-1}\), completely blocking the ν(CH) bands. However, they are nicely resolved in the Raman spectrum, giving rise to an aromatic ν(CH) band with maximum at 3053 cm\(^{-1}\) and two peaks at 2910 and 2882 cm\(^{-1}\) that can be assigned to the two CH stretches of the methylene unit of anthralin. The analysis of the IR spectrum was supported by LD spectroscopy on a sample of anthralin partially aligned in a stretched polyethylene matrix. The observed LD absorbance curves\(^{276}\) are shown in Figure 11. In this case, the interpretation of the LD
data is greatly simplified by the C_{2v} symmetry of the anthralin molecule, which limits the molecular transition moment directions to three mutually perpendicular directions defined by the symmetry axes x, y and z. The resulting assignment of moment directions199 is indicated in Figure 11. It is evident that the results offer a unique insight into the vibrational structure. The strong x-polarized transition close to 750 cm-1 can be assigned to a γ(OH) vibration of b_1 symmetry. This and other transitions in the 1000–700 cm-1 region are very weak or absent in the Raman spectrum. It would be tempting to assign the strong IR transition at 1614 cm-1 to a C=O stretching vibration275, but this transition is y-polarized and thus cannot be assigned to ν(C=O). However, the neighbouring peaks at 1632 and 1602 cm-1 are z-polarized and can be assigned to totally symmetric vibrations with significant ν(C=O) character199.

FIGURE 11. Linear dichroism (LD) absorbance curves for anthralin (28A) partially aligned in uniaxially stretched polyethylene276. E_U and E_V denote absorbance curves measured with the electric vector of the linearly polarized light parallel (U) and perpendicular (V) to the stretching direction. The regions 1480–1430, 1380–1350 and 740–700 cm-1 were blocked by strong polyethylene absorption.
The prevailing enol form of (2-hydroxybenzoyl)benzoylmethane (29A) contains a bifurcated hydrogen bonding system similar to that of 2,2'-dihydroxybenzophenone (36) and anthralin (28A). The IR spectrum in CCl₄ solution (Figure 12, top)²⁷⁷ shows similarities with the spectra of those compounds, particularly in the region around 1600 cm⁻¹ where the IR LD analysis¹⁹⁹,²⁷⁷ reveals the presence of four similar transitions in all three compounds. Replacement of the phenolic hydroxyl group by a hydrogen atom produces dibenzoylmethane enol (62). Somewhat surprisingly, the IR spectrum of the latter compound is more complex than that of the former (Figure 12, bottom). In particular, the 1800–1400 cm⁻¹ region of the spectrum of 62 has comparatively broad and poorly resolved structures, with a curious tail towards higher wavenumbers. Similar spectra are recorded in other solvents and in the solid state²⁷⁷. Probably the IR spectrum of 62 is influenced by profound anharmonic effects associated with the symmetrical double-minimum OH stretching potential³²,²¹⁰ for this compound.

2. Hydroxyquinones

Very recently, Rostkowska and coworkers²¹¹ investigated the IR spectra of a series of compounds that form intramolecular hydrogen bonds closing five-membered rings, including 2-hydroxynaphthoquinone (63) and 2,5-dihydroxy-1,4-benzoquinone (64). The observed ν(OH) band maxima show a characteristic dependence on geometrical constraints, ranging from 3552 cm⁻¹ in 3,4-dihydroxy-3-cyclobutene-1,2-dione (65) to 3120 cm⁻¹ in tropolone (66) (Argon matrix), reflecting the increasing strength of the hydrogen bonding. At the same time, the γ(OH) band is shifted from 463 to 746 cm⁻¹.
In the case of tropolone, with a seven-membered ring, a complicated OH stretching region is observed, and the positions of ν(OH) and γ(OH) are in the range typical for molecules with intramolecular hydrogen bonds forming six-membered rings, such as the 2-hydroxybenzoyls considered above, and in hydroxyquinones like naphthazarin (44), quinizarin (67) and chrysazin (35).

The molecular structure of naphthazarin (44) has been a subject of considerable interest, particularly because of the rapid intramolecular proton transfer effects observed for this species. Andersen recently investigated naphthazarin and its 2,3-dichloro derivative (68) by means of IR LD spectroscopy on samples aligned in stretched polyethylene. Unfortunately, no useful LD was observed for naphthazarin (partly because of low solubility), but the dichloro derivative was readily dissolved and aligned in stretched polyethylene. The observed wavenumbers, IR intensities and polarization directions were well reproduced by the results of B3LYP/6–31G* calculations. Two strong, differently in-plane polarized bands at 1230 and 1204 cm$^{-1}$ were assigned to transitions with
significant δ(OH) character, and an out-of-plane polarized band at 775 cm\(^{-1}\) could be assigned to γ(OH).

Chrysazin (35) contains an intramolecular hydrogen bonding system similar to those of 2,2'-dihydroxybenzophenone (36) and anthralin (28A), and similar ν(OH) and γ(OH) transitions are observed\(^{238,283}\). A complicated spectrum is observed in the 1700–1550 cm\(^{-1}\) region with at least six overlapping transitions. Two transitions close to 1680 and 1627 cm\(^{-1}\) can be assigned to the ν(C=O) modes of the ‘free’ carbonyl group and the one involved in bifurcated hydrogen bonding, respectively. IR LD spectroscopy of crystalline chrysazin\(^{283}\) and on a sample aligned in stretched polyethylene\(^{238}\) revealed that the two transitions are polarized along the in-plane short axis (the symmetry axis) of the molecule, consistent with the assignment of ν(C=O) bands. For a few other bands in the IR spectrum of chrysazin, the results of the two investigations disagreed; e.g. two strong transitions close to 1200 cm\(^{-1}\) were assigned to in-plane short-axis polarized transitions in the crystal investigation\(^{283}\), but the LD spectra measured in stretched polyethylene showed that these transitions are long-axis polarized\(^{238}\).

A related species is hypericin, a polycyclic plant pigment that has attracted interest as a potent antiviral and antitumor agent. Deprotonated hypericin (27) forms an exceptionally short, linear hydrogen bond in the sterically constrained bay region. The vibrational structure of hypericin has been investigated by several investigators\(^{287–290}\). According to the DFT theoretical study by Uličný and Laaksonen\(^{290}\), the short hydrogen bond is of covalent rather than ionic nature, and is characterized by a symmetric potential without any proton transfer barrier. The normal mode analysis predicted a wavenumber of 1800–1700 cm\(^{-1}\) for the OH stretching vibration of the covalent hydrogen bond, compared with wavenumbers close to 2600 cm\(^{-1}\) for the OH stretching modes in the peri area.

3. 2-Nitrophenols

The IR spectra of phenols with nitro substituents in the 2-positions show intramolecular hydrogen bonding effects that are similar to those observed for the corresponding carbonyl compounds. Abkowicz, Bienko and coworkers recently investigated 2- and 4-nitrophenol\(^{291}\) and 2-fluoro-4,6-dinitrophenol\(^{292}\). Kovács and associates\(^{293,294}\) performed a detailed IR and Raman spectroscopic investigation of 2-nitrophenol (69) including a critical discussion of previous investigations. In this work, the ν(OH) band maximum was observed at 3242 cm\(^{-1}\) and the γ(OH) band at 671 cm\(^{-1}\) (CCl\(_4\) solution), corresponding to a red shift of 400 cm\(^{-1}\) and a blue shift of 380 cm\(^{-1}\), respectively, relative to the spectrum of phenol. A band at 95 cm\(^{-1}\) in the solid state spectrum was assigned to the torsional vibration of the nitro group, indicating a blue shift of \(\text{ca}\) 50 cm\(^{-1}\) compared with the spectrum of nitrobenzene.

![OH](69)

Kovács and collaborators\(^{294}\) also investigated 2-nitroresorcinol (70), where the nitro group is involved in hydrogen bonding with two hydroxyl groups. The results of IR LD
5. NMR and IR spectroscopy of phenols

Spectroscopy in an anisotropic liquid crystalline solvent indicated that the compound is planar and belongs to the C_{2v} symmetry point group. ν(OH) transitions were observed at 3252 and 3230 cm$^{-1}$, and a strong broad band at 663 cm$^{-1}$ was assigned to γ(OH) (CCl$_4$ solution). Four strong IR transitions were observed between 1700 and 1500 cm$^{-1}$, but only three fundamentals were predicted in this region by B3LYP/6–31G* calculations. Kovács and collaborators294 assigned a peak at 1598 cm$^{-1}$ to a combination band, gaining intensity by Fermi resonance with the nearby transitions at 1581 and 1553 cm$^{-1}$. This assignment was supported by the IR LD results, indicating that the transitions at 1598, 1581 and 1553 cm$^{-1}$ all belong to symmetry species b_2 in the C_{2v} point group. In addition, the investigation was supported by Raman spectroscopy. The Raman activities predicted with B3LYP/6–31G* were in relatively poor agreement with the observed spectrum; a larger basis set with inclusion of diffuse functions seems to be required for the prediction of Raman activities.

4. 2-Nitrosophenols

In the case of 2-nitrosophenols, the main issue is the question of whether the species exist as a nitrosophenol (71) or as the quinone–monooxime tautomer (72). Both forms are stabilized by intramolecular hydrogen bonding. A similar tautomerism, but without intramolecular hydrogen bonding, is relevant for 4-nitrosophenols. According to IR spectroscopic data295, 2-nitrosophenol is present in the quinonoid form while 4-nitrosophenol exists in equilibrium between both tautomeric forms. 1-Nitroso-2-naphthol exists in quinonoid form only, while the existence of both forms has been suggested for 2-nitroso-1-naphthol. For recent reviews, see the publications by Ivanova and Enchev296 and Kržan and coworkers297.

\[
\begin{array}{c}
\text{OH} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{HO}
\end{array}
\]

(71) (72)

5. Schiff bases

Schiff bases (50) derived from aromatic 2-hydroxyaldehydes are characterized by strong, chelated intramolecular hydrogen bonding and by intriguing conformational and proton transfer phenomena. They have attracted recent interest as analytical agents298 and as building blocks in the designing of novel molecular devices299. Their IR spectra have investigated by Cimerman and coworkers298,300 and by Filarowski and Koll216. For additional perspectives see, for example, recent theoretical investigations301,302.

6. ortho-Mannich bases

In these compounds, a strong, thermodynamically stable intramolecular hydrogen bond is formed between a phenolic OH group and an N,N-dialkylaminomethyl substituent in the 2-position (73). ortho-Mannich bases are excellent models for the investigation of
intramolecular hydrogen bonding and proton transfer phenomena, and their very complicated IR spectra continue to attract the interest of experimentalists and theoreticians.303–307 For a recent review, see the account by Koll and Wolschann215.

IV. ACKNOWLEDGEMENTS

The authors are grateful to J. George Radziszewski and Kristine B. Andersen for communication of spectra prior to publication, to Gábor Keresztury for providing the phenol spectra in Figures 5 and 7 and to Hans Fritz for providing data on rubazoic acids.

V. REFERENCES

5. NMR and IR spectroscopy of phenols

126. Z. Rozwadowski and T. Dziembowska, personal communication.

5. NMR and IR spectroscopy of phenols 391

5. NMR and IR spectroscopy of phenols

Synthesis of phenols

CONCEPCIÓN GONZÁLEZ

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Santiago de Compostela, 27002 Lugo, Spain
Fax: +34 982 22 49 04; e-mail: cgb1@lugo.usc.es

and

LUIS CASTEDO

Departamento de Química Orgánica y Unidad Asociada al C.S.I.C., Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Fax: +34 981 59 50 12; e-mail: qocasted@usc.es

I. BY DISPLACEMENT OF OTHER FUNCTIONAL GROUPS
 A. From Aryl Halides 396
 B. From Sulphonic Acids 397
 C. From Nitrogen Derivatives 399
 1. Hydrolysis .. 399
 2. Bucherer reaction 401
 3. Diazotation reaction 403

II. BY OXIDATION .. 404
 A. Hydroxylation 404
 1. With hydrogen peroxide 404
 2. With peroxides 405
 3. With peroxyacids 408
 a. Inorganic peroxyacids 408
 b. Organic peroxyacids 410
 4. Electrochemical hydroxylation 410
 5. Biotransformations 411
 6. Miscellaneous methods 413
 B. Oxidation of Organometallic Derivatives 414
 C. Oxidation of Nitrogen Derivatives 419
 D. Oxidation of Carbonyl Groups 419

The Chemistry of Phenols. Edited by Z. Rappoport
I. BY DISPLACEMENT OF OTHER FUNCTIONAL GROUPS

A. From Aryl Halides

The alkaline fusion is an important industrial method for the production of phenol (equation 1). For instance, bromobenzene in dilute sodium hydroxide gives an 89% yield of phenol at 236 °C in 2.5 h. Similarly, chlorobenzene affords a 97% yield of phenol at 370 °C in 30 min. Diphenyl ether and o- and p-hydroxybiphenyls, as well as other bicyclic compounds are some of the by-products of this type of reaction.

\[
\begin{align*}
\text{Ph}_2\text{C} & \quad \text{NaOH} \\
\text{Ph}_2\text{C} & \quad \text{HO} \\
\text{Ph}_2\text{C} & \quad \text{OH}
\end{align*}
\]

\(\text{X= F, Cl, Br, I} \)

Cuprous oxide accelerates the substitution reaction, and, for instance, chlorobenzene under these conditions affords a 92% yield of phenol in 1 h at 316 °C. Copper and barium chlorides catalyse also the steam hydrolysis of chlorobenzene over silica gel. This type of reaction requires extremely high reaction temperatures, normally above 200 °C, and consequently the transformation is limited by the stability of the starting material.
Reactions of chlorotoluenes with aqueous alkalies give cresols, but the positions taken by the hydroxy groups are sometimes not the same as those vacated by the chlorine atoms.

In the case of polyhalogenated systems, a partial substitution to afford halogenated phenols can be achieved. For instance, treatment of 1,2,4-trichlorobenzene with sodium hydroxide at 130°C gives 2,5-dichlorophenol in 93% yield.

Generally, the reaction rates of aryl halides follow the order: iodides > bromides > chlorides > fluorides. This fact can be used for the selective substitution in polyhalogenated systems. For instance, 2-bromo-4-chlorotoluene gives 76% of 5-chloro-2-methylphenol by treatment with sodium hydroxide at 200°C. Nevertheless, polyhalogenated systems which contain fluorides have a variable behaviour depending on the reaction temperature. At lower temperatures preferential hydrolysis of the fluoride takes place and at >200°C the usual reactivity order iodides > bromides > chlorides > fluorides is observed. For instance, 1,2-dibromo-3,4,5,6-tetrafluorobenzene affords 2,3-dibromo-4,5,6-trifluorophenol in 87% yield by treatment with potassium hydroxide at 85°C. Under the same conditions, 1,4-dibromo-2,3,5,6-tetrafluorobenzene produces a 78% yield of 2,5-dibromo-3,4,6-trifluorophenol. However, 4-fluorobromobenzene with NaOH at 200°C gives 4-fluorophenol in 70–79% yield.

As in other nucleophilic substitutions, electron-withdrawing groups (NO₂, CN, CO₂H, SO₃H) in ortho and para positions increase the reactivity of the aryl halide to hydrolysis. For instance, chlorobenzene is best hydrolysed above 300°C, whereas 1-chloro-2,4-dinitrobenzene gives a 95% yield of 2,4-dinitrophenol at 100°C.

Substituted 1,2-dichlorobenzenes with an electron-withdrawing substituent in the 4-position react with sodium nitrite to afford 2-nitrophenols in good yields (75–85%) (equation 2). The formation of nitrophenols proceeds presumably according to equation 2. The electron-withdrawing substituent in the 4-position promotes a nucleophilic substitution of the 1-chlorine atom in compounds 1. The second chlorine atom in compounds 2 is now easily replaced due to the activating effect of the o-nitro group, leading to compounds 3. These compounds are unstable and rapidly react with the nitrite nucleophile resulting in the formation of an unstable nitrite ester 4. Finally, compounds 4 are converted into the 2-nitrophenols with dilute acid.

Sodium trimethylsilanolate has been reported as a convenient synthon for a hydroxy group in the ipso substitutions of fluoride in aromatic compounds. The S₅Ar displacement of the fluoride by the nucleophilic trimethylsilanolate leads to the silyl ether, which is immediately desilylated by the liberated fluoride ion yielding the sodium arylxide salts. Acidification of these salts affords the hydroxylated product. For instance, 1,4-difluoroanthracene gives 1-hydroxy-4-fluoroanthracene in 90% yield by treatment with sodium trimethylsilanolate.

B. From Sulphonic Acids

Aryl sulphonic acids can be converted to phenols by alkali fusion through their salts. This method has been used for the industrial production of phenol. In spite of the extreme conditions, the reaction gives fairly good yields, except when the substrate contains other groups that are attacked at the fusion temperatures by the alkali. Milder conditions can be used when the substrate contains electron-withdrawing groups, but the presence of electron-donating groups hinders the reaction. The reaction mechanism (equation 3) has been proved to be a nucleophilic aromatic substitution by isotopic studies using...
benzenesulphonate specifically labelled with ^{14}C at its C-1 position and by the use of K^{18}OH.

\[\text{Cl} \quad \text{Cl} \quad \text{NaNO}_2/\text{DMSO} \quad 120-170^\circ\text{C} \]

\[\text{X} \quad \text{NO}_2 \quad \text{(1)} \]

\[\text{X} \quad \text{NO}_2 \quad \text{Cl} \quad \text{(2)} \]

\[\text{NO}_2 \quad \text{(3)} \]

\[\text{X} \quad \text{NO}_2 \quad \text{ONO}^- \quad \text{(4)} \]

\[\text{X} \quad \text{NO}_2^- \quad \text{(5)} \]

\[\text{X} = \text{NO}_2, \text{PhCO}, 3,4-\text{Cl}_2\text{C}_6\text{H}_3\text{SO}_2, \text{PhSO}_2, 4-\text{MeC}_6\text{H}_4\text{SO}_2, \text{CF}_3, \text{MeCO} \]

\[\text{SO}_3^-\text{Na}^+ \quad \text{NaOH} \quad \text{HSO}_3^- \quad \text{ONa} \quad \text{(3)} \]
6. Synthesis of phenols

Some examples of this type of reaction are shown in equations 4–8.

C. From Nitrogen Derivatives

1. Hydrolysis

Arylamine derivatives can undergo hydrolysis in acid or basic media to afford phenol and ammonia. Acid hydrolysis can be achieved under treatment with ZnCl₂, HCl, BF₃, H₂SO₄, or H₃PO₄ at very high temperatures (equations 9–11). Arylamine derivatives with ortho or para electron-withdrawing groups can also undergo hydrolysis in basic media by treatment with NaOH.
with alkali (equations 12–14).
2. Bucherer reaction

The amino group of naphthylamines can be replaced by a hydroxy group by treatment with aqueous bisulphite\(^{21}\). The scope of the reaction is very limited. With very few exceptions, the amino group (NH\(_2\) or NHR) must be on naphthalene or phenanthrene rings. The reaction is reversible and both the forward and reverse reactions are called the Bucherer reaction.

\[
\begin{align*}
&\text{NH}_2\quad \text{(6)} \quad \leftrightarrow \quad \text{NH}\quad \text{(7)} \\
&\text{NaHSO}_3 \\
\end{align*}
\]

The mechanism seems to involve tetralone imine sulphonate 8, which is formed by addition of NaHSO\(_3\) to the C=C double bond of the tautomeric imine form 7 of the naphthylamine 6 (equation 15). Imine 8 undergoes hydrolysis to afford ketone 9 which, by elimination of NaHSO\(_3\), yields ketone 10, the tautomeric form of the final naphthol 11. Equations 16 and 17 show examples of this type of transformation. Para electron-withdrawing substituents to the amino group accelerate the reaction. Only one substituent can be exchanged in diamino naphthalenes (or dihydroxynaphthalenes in the reverse reaction) (equations 18 and 19). If the two functional groups are attached to different rings, the replacement of the second one would require the dearomatization of the benzene ring.
in the tetralone sulphonate. If both substituents are attached to the same ring, a second addition of NaHSO$_3$ is no longer possible.

\[
\begin{align*}
\text{NH}_2 & \quad \text{NaHSO}_3, \text{H}_2\text{O}, \Delta \\
\text{MeO} & \quad 70\% \\
\text{HO}_3\text{S} & \quad \text{NaHSO}_3, \text{H}_2\text{O}, \Delta \\
\text{OH} & \quad 90\% \\
\text{NH}_2 & \quad \text{NaHSO}_3, \text{H}_2\text{O}, \Delta \\
\text{OH} & \quad 80\% \\
\text{NH}_2 & \quad \text{NaHSO}_3, \text{H}_2\text{O}, \Delta \\
\text{NH}_2 & \quad 80\% \\
\text{SO}_3\text{H} & \quad \text{NaHSO}_3, \text{H}_2\text{O}, \Delta \\
\text{SO}_3\text{H} & \quad 80\% \\
\end{align*}
\]

3. Diazotation reaction

Diazonium compounds can be converted to phenols by hydrolysis, under conditions where formation of the aryl cation takes place (equation 20). This reaction is usually accomplished synthetically by heating an aqueous solution of the diazonium salt. Some examples of this type of reaction are given in equations 21–26.

\[
\text{ArNH}_2 \xrightarrow{\text{HNO}_2} \text{ArN}_2^+ \text{X}^- \xrightarrow{\text{N}_2} \text{Ar}^+ \text{X}^- \xrightarrow{\text{H}_2\text{O}, \text{H}^+} \text{ArOH} + \text{HX} \quad (20)
\]
6. Synthesis of phenols

(21) \[
\text{Ph} \quad \overset{\text{NaNO}_2, \text{H}_2\text{SO}_4, \text{H}_2\text{O}}{\rightarrow} \quad \overset{70\%}{\text{Ph}}
\]

(22) \[
\text{Ph} \quad \overset{\text{NaNO}_2, \text{H}_2\text{SO}_4, \text{H}_2\text{O}}{\rightarrow} \quad \overset{57\%}{\text{Ph}}
\]

(23) \[
\text{Me} \quad \overset{\text{NaNO}_2, \text{H}_2\text{SO}_4, \text{H}_2\text{O}}{\rightarrow} \quad \overset{68\%}{\text{Me}}
\]

(24) \[
\text{Me} \quad \overset{\text{NaNO}_2, \text{H}_2\text{SO}_4, \text{H}_2\text{O}}{\rightarrow} \quad \overset{95\%}{\text{Me}}
\]

(25) \[
\text{Ac} \quad \overset{\text{NaNO}_2, \text{HCl}}{\rightarrow} \quad \overset{61\%}{\text{Ac}}
\]

(26) \[
\text{NO}_2 \quad \overset{\text{NaNO}_2, \text{AcOH}, \text{H}_2\text{SO}_4}{\rightarrow} \quad \overset{30\%}{\text{NO}_2}
\]
An alternative redox mechanism leads to the formation of phenols under rather mild conditions. This reaction is initiated by Cu$_2$O, which effects reductive formation of an aryl radical. In the presence of CuII salts, the radical is oxidized to the phenyl cation by a reaction presumably taking place in the copper coordination sphere. The reaction is very rapid and gives good yields of phenols over a range of structural types. Equations 27–29 show some examples of this type of transformation.

\[
\begin{align*}
\text{N}_2^+ \text{HSO}_4^- & \quad \text{Cu}_2\text{O}, \text{Cu}^{II}, \text{H}_2\text{O} \\
\text{N}_2^+ \text{HSO}_4^- & \quad \text{Cu}_2\text{O}, \text{Cu}^{II}, \text{H}_2\text{O} \\
\text{N}_2^+ \text{HSO}_4^- & \quad \text{Cu}_2\text{O}, \text{Cu}^{II}, \text{H}_2\text{O}
\end{align*}
\]

II. BY OXIDATION

A. Hydroxylation

1. With hydrogen peroxide

The direct production of phenols from aromatic hydrocarbons (electrophilic aromatic hydroxylation) would presumably need a hydroxy cation HO$^+$, analogous to NO$_2^+$ or R$^+$. However, since the hydroxy group is strongly activating towards electrophilic substitution, further oxidations usually occur so that the yields are generally low. Support for the proposal that HO$^+$ should be present in acidified solutions of hydrogen peroxide was first provided by the hydroxylation of mesitylenes with hydrogen peroxide in acetic and sulphuric acids. A possible mechanism of this reaction involves the displacement of water from protonated hydrogen peroxide by the reactive aromatic compound (equation 30).
Other acids such as HF37, HSO$_3$F-SbF$_5$/SO$_2$ClIF, HF/BF$_3$$_{38}$ and HF/SbF$_5$$_{39}$ have been used with the advantage that the phenolic products are protonated and so do not undergo further electrophilic attack.

A variation of the above method uses a Lewis acid in place of the protic acid. Here the advantage is that the acid coordinates to the oxygen of the product, thus retarding further degradation. AlCl$_3$40 is an effective catalyst to afford mainly ortho and para substitution.

Direct hydroxylation can be accomplished by free radical reagents, such as a mixture of hydrogen peroxide with a transition metal catalyst and a redox buffer [e.g. Fe$^{2+}$ + H$_2$O$_2$ (Fenton’s reagent41), Fe$^{3+}$ + H$_2$O$_2$ + catechol (Hamilton’s reagent)42]. The yields are usually poor, in the 5–20% range, and there are significant amounts of coupling products. A modification of the method, developed as a model for the biogenic oxidation of tyramine, has been introduced by Udenfriend and coworkers who used the system of O$_2$ + Fe$^{2+}$ + ascorbic acid in the presence of EDTA (Udenfriend’s reagent43). This method gives useful yields of ortho and para phenolic derivatives from phenylacetamide44. An update version of this oxidation uses anodic oxidation in the presence of Udenfriend’s reagent, which converts tyramine to a mixture of hydroxytyramines and dihydroxytyramine (DOPA)45.

2. With peroxides

Vicarious nucleophilic substitution (VNS) of hydrogen allows the direct introduction of substituents onto electrophilic aromatic rings (equation 31)46. A variety of carbo- and heterocyclic nitroarenes, as well as some electrophilic heterocycles lacking a nitro group, undergo this process with carbanions that contain a leaving group X at the carbanionic centre. The reaction proceeds according to the addition–elimination mechanism shown in equation 3147. Anions of alkyl hydroperoxides (ROOH)48 can be considered to be nucleophiles that bear a leaving group (RO) at the anionic centre, like α-halocarbanions and anions of sulphenamides, etc. They can therefore undergo the VNS reaction with nitroarenes to produce nitrophenols (equation 32).
The reaction usually proceeds in high yields, and it is often possible to control the orientation of the hydroxylation. For instance, nitrobenzene derivatives 12 substituted at the meta position with electron-withdrawing groups, such as halogens, CF₃, SO₂Me, COPh, CN, NO₂, etc., easily underwent a regioselective VNS hydroxylation, giving the corresponding p-nitrophenols 13 (equation 33).49

\[
\begin{align*}
\text{NO}_2 & \quad \text{Z} \\
& \quad \text{cumene hydroperoxide}
\end{align*}
\]

\[
\begin{align*}
\text{KOH, NH}_3 & \\
& \quad 74-90% \\
\text{Z} = \text{F, Cl, Br, CF}_3, \text{SO}_2\text{Me, CN, NO}_2, \text{COPh, CO}_2\text{Me}
\end{align*}
\]

A bicyclic aromatic ring system provides additional stabilization of the anionic \(\sigma\)-adducts; hence, nitronaphthalene derivatives show good reactivity in the VNS hydroxylation. 1-Nitronaphthalenes give 2- and 4-hydroxy derivatives in high yields. The orientation of the hydroxylation depends on the kind of base. For instance, treatment of 1-nitronaphthalene (15) with \(t\)-butyl hydroperoxide and potassium \(t\)-butoxide affords 1-nitro-2-naphthol (16) whereas using sodium hydroxide as base gives 4-nitro-1-naphthol (14) (equation 34).49b

Benzoyl peroxide introduces a benzoyl unit mainly ortho to an existing hydroxyl (equation 35), but para products can be formed by [3,3] migration of the acyloxy group around the ring periphery of the dienone intermediate.50 The benzoate esters can easily be hydrolysed to the corresponding phenols.
Phenols can also be formed by aromatic hydroxylation with the hydroxy radical generated from α-azo hydroperoxides in anhydrous organic media (equation 36)51. Photo- and thermal decomposition of α-azo hydroperoxides give hydroxy radicals, which can react with an aromatic ring generating a phenolic compound.
3. With peroxyacids

Inorganic and organic peroxyacids can be used as a source of hydroxy cations HO^+ for the oxidation of aromatic rings.

\textit{a. Inorganic peroxyacids.} Unstable inorganic peroxyacids can be generated \textit{in situ} by oxidation of OsO_4, MoO_3, V_2O_5 or CrO_3 with hydrogen peroxide52. Peroxymonophosphoric acid also provides hydroxylation, taking place at a much faster rate than with perbenzoic acid53. A good example of the utilization of inorganic peracids is the Elbs reaction54, which involves the oxidation of phenols with a persulphate in alkaline media. This reaction introduces a second hydroxy group into a phenol in the \textit{para} position unless this is occupied (equation 37). In that case, an \textit{ortho} hydroxylation occurs, but yields are, however, very poor. Potassium persulphate in alkaline medium is usually employed55. The initial oxidation product is the derivative 18, which is then hydrolysed to hydroquinone (19).

$$\begin{align*}
\text{OH} & \quad \text{K}_2\text{S}_2\text{O}_8, \text{NaOH} \\
\text{Cl} & \quad \text{OSO}_3\text{K} \\
\text{OH} & \quad \text{HCl} \\
\end{align*}$$

\text{(17)} \quad \text{(18)} \quad \text{(19)}

The presence of electron-withdrawing groups on the aromatic ring improves the yield, but electron-donating groups can also be tolerated. Equations 38–43 show some examples of these peroxyacid oxidations.

$$\begin{align*}
\text{OH} & \quad \text{Cl} \\
\text{1. K}_2\text{S}_2\text{O}_8, \text{NaOH} \\
\text{2. H}^+ & \quad \text{50\%} \\
\end{align*}$$

\text{(38)}56

$$\begin{align*}
\text{OH} & \quad \text{OMe} \\
\text{1. K}_2\text{S}_2\text{O}_8, \text{NaOH} \\
\text{2. H}^+ & \quad \text{18\%} \\
\end{align*}$$

\text{(39)}57
Analogously to the oxidation of phenols by the Elbs reaction, aromatic amines react with persulphate to give \(o\)-aminoaryl sulphates which can then be hydrolyzed to afford phenols. This reaction is known as the Boyland–Sims oxidation\(^{62}\). In this case, the substitution takes place exclusively ortho to the amino group just as in the phenol oxidation using the radical generator benzoyl peroxide. This is in contrast to the Elbs oxidation of phenols, which occurs predominantly in the para position\(^{62a,63}\). For instance, under these conditions, \(N,N\)-dimethylaniline, 4-methylaniline and 2-naphthylamine have been converted to the corresponding phenols \(N,N\)-dimethyl-2-hydroxyaniline, 2-hydroxy-4-methylaniline and 1-hydroxynaphthylamine in 40%, 28% and 45% yield, respectively\(^{63b}\). Para substitution takes place only if the ortho positions are occupied by substituents other than hydrogen.
 b. Organic peroxyacids. Oxidation with organic peroxyacids, such as peroxyacetic or trifluoroperoxyacetic acids, gives reasonable yields of phenol. Trifluoroperoxyacetic acid, usually prepared *in situ* from hydrogen peroxide and trifluoroacetic acid, is the most effective peroxyacid in aromatic oxidations.\(^{64}\) Usually, the oxidation takes place preferentially in the *para* position. The yields of these reactions can be greatly increased by the addition of Lewis acids, such as BF\(_3\). For instance, under these conditions mesitol can be obtained from mesitylene in 88% yield.\(^{65}\) However, during hydroxylation of polymethylbenzenes with trifluoroperoxyacetic acid and BF\(_3\) methyl groups can migrate, and this has been attributed to an *ipso* hydroxylation followed by a 1,2-shift of methyl.\(^{65b}\) For instance, 1,2,3,4-tetramethylbenzene (20) on treatment with trifluoroperoxyacetic acid/BF\(_3\) gives not only the expected 2,3,4,5-tetramethylphenol (21) but also small amounts of an isomeric phenol (22) and cyclohexadienone (23) (equation 44). Products 22 and 23 are obtained by assuming electrophilic attack on an already substituted position followed by Wagner–Meerwein methyl migration.

\[
\begin{align*}
\text{CF}_3\text{CO}_3\text{H, BF}_3 & \quad \text{(44)} \\
\text{HO} & + \\
\text{OH} & + \\
\text{O} &
\end{align*}
\]

(20)

(21)

(22)

(23)

4. Electrochemical hydroxylation

Electrochemical oxidations proceed by a radical mechanism. Normally, the hydroxylated products are converted to quinones which undergo a further degradation process. Selective monohydroxylation of some aromatic compounds, such as chloro- and trifluoromethylbenzenes, has been achieved in trifluoroacetic acid containing sodium trifluoroacetate and trifluoroacetic anhydride.\(^{66}\) Although under similar conditions benzene gives only 12–25% yield of phenol, Nishiguchi and coworkers\(^{68}\) reported an improved version of the procedure. The Nishiguchi method involves the selective monohydroxylation of
benzene and substituted benzenes 24 through anodic oxidation in a solvent mixture of trifluoroacetic acid and dichloromethane resulting in the corresponding phenols 25 in good yields, mainly substituted in the ortho and para positions (equation 45).

\[
\begin{align*}
R^1, R^2 = \text{H, Cl, Br, F, CF}_3, \text{Ac, CO}_2\text{Et, CHO, CN, NO}_2
\end{align*}
\]

5. Biotransformations

The selective hydroxylation of aromatic compounds is a difficult task in preparative organic chemistry. The problem is particularly severe when the compounds to be hydroxylated (or their products) are optically active and/or unstable, since in these instances the reaction should be conducted rapidly and under mild conditions in order to prevent racemization and decomposition. The selective hydroxylation of substituted phenols in the ortho and para positions can be achieved by using monooxygenases. In contrast, meta-hydroxylation is rarely observed. For instance, phenolic compounds 26 can be oxidized selectively by polyphenol oxidase, one of the few available isolated oxygenating enzymes, to give o-hydroxylated products 27 (catechols) in high yields (equation 46). Usually, only p-substituted phenols can be oxidized since m- and o-substituted phenols are unreactive. The reactivity of the p-substituted phenols decreases as the nature of the group R is changed from electron-donating to electron-withdrawing substituents. The synthetic utility of this reaction has been demonstrated by the oxidation of amino acids and alcohols containing a p-hydroxyphenyl moiety. In this way, L-DOPA, D-3,4-dihydroxyphenylglycine and L-epinephrine have been synthesized from their p-monohydroxy precursors in good yield.
Mechanistically, it has been proposed that the reaction proceeds predominantly via epoxidation of the aromatic species 28, which leads to unstable arene-oxides 29–31 (equation 47). Rearrangement of the arene-oxides 29–31 involving the migration of a hydride anion (NIH-shift) forms the phenolic product 32 or 33. Alternative flavin-dependent oxidases have been proposed to involve a hydroperoxide intermediate.

Regioselective hydroxylation of aromatic compounds can also be achieved by using whole cells. For instance, 6-hydroxynicotinic acid (35) is produced industrially from nicotinic acid (34) by a *Pseudomonas* or *Bacillus sp* (equation 48). Racemic prenalterol (37) has been obtained by regioselective p-hydroxylation of (±)-1-isopropylamino-3-phenoxypropan-2-ol (36) using *Cunninghamella echinulata* (equation 49).
6. Miscellaneous methods

The oxidation of benzene to phenol can also be achieved using nitrous oxide as an oxidant in the presence of a catalytic system such as vanadium, molybdenum or tungsten oxides at 550 °C, and after addition of 30% of water to afford phenol in 10% yield. More effective catalytic systems have been investigated and zeolites show promise to be good catalysts for the oxidation of benzene to phenol with nitrous oxide. The use of zeolite catalysts has led to a reduction in the reaction temperature to 300–400 °C, to the exclusion of water addition to the reaction mixture and to an increase in the yields up to 25–30%. Recently, direct oxidation of benzene to phenol by nitrous oxide has been commercialized.

Aromatic hydrocarbons can be oxidized to the corresponding phenols by transition metal peroxo complexes and, in particular, vanadium(V) peroxo complexes, which act either as electrophilic oxygen transfer reagents or as radical oxidants, depending on the nature of the ligands coordinated to the metal and on the experimental conditions. Vanadium picolinato peroxo complex (VO(O₂)PIC(H₂O)₂) (39) (PIC = picolinic acid anion) has been reported to be particularly effective in the hydroxylation of benzene and substituted benzenes (equation 50). Accordingly, 39 smoothly oxidizes substituted benzenes 38 to the corresponding monophenols 40 in acetonitrile at room temperature.
The reaction proceeds also under catalytic conditions by using hydrogen peroxide as co-oxidant85.

\[
\begin{align*}
\text{X} & = \text{Me, F, Cl, Br, NO}_2 \\
L & = \text{PIC}
\end{align*}
\]

Other type of complexes have also been used for the oxidation of hydrocarbons. For instance, Fujiwara and coworkers86 employ a coordinated complex of palladium with \(o\)-phenanthroline as an efficient catalyst for the direct conversion of benzene into phenol. Moro-oka and coworkers87 use an oxo-binuclear iron complex, whereas Machida and Kimura88 work with macrocyclic polyamines. Sasaki and coworkers89 employ Pd–Cu composite catalysts, which are prepared by impregnating the respective metal salts on silica gel.

Direct hydroxylation of aromatic rings with oxygen and hydrogen reported so far have been conducted by simultaneously mixing the aromatic compound, oxygen and hydrogen in the liquid phase in the presence of a multicomponent catalyst and additives90. However, these hydroxylations, besides the possibility of an explosion, give very low yields (below 1\%). Mizukami and coworkers91 have developed a more efficient and safe method, involving the direct hydroxylation in the gas phase with oxygen, activated by dissociated hydrogen obtained from a palladium membrane. Hydrogen atoms react with oxygen, producing species such as \(\text{HOO}^\cdot\) and \(\text{HO}^\cdot\) which cause hydroxylation.

B. Oxidation of Organometallic Derivatives

Autooxidation of an aryl Grignard or aryl lithium reagent gives a mixture of products which includes the phenol in variable yield92. Nevertheless, the controlled oxidation of aromatic lithium and magnesium derivatives with oxygen93 or with hydroperoxides94 produces the corresponding \(o\)-substituted phenols in yields that vary with the direct metalating group (DMG) of the ring (equation 51).

\[
\begin{align*}
\text{DMG} & = \text{CON(Pr-i)}_2, \text{OCONEt}_2, \text{OCON(Pr-i)}_2, \text{OMe} \\
\text{DMG} & = \text{CON(Pr-i)}_2, \text{OCONEt}_2, \text{OCON(Pr-i)}_2, \text{OMe}
\end{align*}
\]

More efficiently, Grignard reagents95 or lithium compounds96 react with boronic esters to give borinic esters which can be oxidized with hydrogen peroxide or \(\text{t}\)-butyl hydroperoxide to give phenols in good yields (equation 52)97. The mechanism has been formulated as
involved an aryl rearrangement from boron to oxygen. The oxidation can also be achieved with oxygen\(^{98}\), hydrogen peroxide/sodium perborate\(^{99}\), hydrogen peroxide/sodium carbonate\(^{100}\), ozone\(^{101}\) or trimethylamine oxide, either anhydrous\(^{102}\) or as dihydrate\(^{103}\). This method has been applied, for instance, for the preparation of phenol, α-naphthol or p-cresol, which have been obtained from the corresponding halides in 78, 75 and 60% yield, respectively\(^{104}\). Other examples of this type of oxidation are shown in equations 53–56.

\[
\begin{align*}
\text{ArM} & \xrightarrow{\text{Br(OR)}_3} \text{ArB(OR)}_2 \xrightarrow{\text{H}_2\text{O}_2} \text{Ar}_-\text{B} = \text{OR} \xrightarrow{\text{OR}} \text{OH} \\
M & = \text{Li, MgX} \\
\text{HO} & \xrightarrow{\text{B(OR)}_2} \text{ArOH} \xrightarrow{\text{H}^+} \text{ArO} \xrightarrow{\text{B(OR)}_2} \\
\text{SO}_2\text{NHEt} & \\
\text{1. } n\text{-BuLi} & \xrightarrow{2. \text{B(OMe)}_3} \xrightarrow{3. \text{H}_2\text{O}_2, \text{AcOH}} 90\% \\
\text{MeO} & \xrightarrow{\text{OH}} \xrightarrow{\text{Br} \xrightarrow{1. \text{Mg}} 2. \text{B(OMe)}_3} \xrightarrow{3. \text{H}_2\text{O}_2, \text{AcOH}} 80\% \\
\text{CONMe}_2 & \xrightarrow{\text{OH}} \xrightarrow{1. s\text{-BuLi/TMEDA} 2. \text{B(OMe)}_3} \xrightarrow{3. \text{H}_2\text{O}_2, \text{AcOH}} 72\% \\
\text{F} & \xrightarrow{\text{OH}} \xrightarrow{1. n\text{-BuLi} 2. \text{B(OMe)}_3} \xrightarrow{3. \text{H}_2\text{O}_2, \text{AcOH}} 83\%
\end{align*}
\]
Thallium(III)\(^{108}\), particularly as its trifluoroacetate salt\(^{109}\), has been successfully used for the synthesis of phenols. This method can be carried out in a single step and is subject to isomer orientation control\(^{110}\). The aromatic compound to be hydroxylated is first thallated with thallium trifluoroacetate (TTFA)\(^{111}\) and, by treatment with lead tetraacetate followed by triphenylphosphine and then dilute NaOH, it is converted to the corresponding phenol (equation 57). Table 1 shows some examples of these transformations\(^{108}\).

\[
\text{ArH} \rightarrow \text{ArTl(OOCF}_3\text{)}_2 \rightarrow \text{ArOOCF}_3 \rightarrow \text{ArOH}
\]

(57)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>phenol</td>
<td>39</td>
</tr>
<tr>
<td>Toluene</td>
<td>(p)-cresol</td>
<td>62</td>
</tr>
<tr>
<td>(o)-Xylene</td>
<td>(3,4)-xylenol</td>
<td>78</td>
</tr>
<tr>
<td>(m)-Xylene</td>
<td>(2,4)-xylenol</td>
<td>70</td>
</tr>
<tr>
<td>(p)-Xylene</td>
<td>(2,5)-xylenol</td>
<td>68</td>
</tr>
<tr>
<td>Anisole</td>
<td>4-hydroxyanisole</td>
<td>41</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>4-chlorophenol</td>
<td>56</td>
</tr>
</tbody>
</table>

An interesting alternative which combines both boron and thallium chemistry has been developed. The arylthallium compound is treated with diborane to provide the arylboronic acid which, by oxidation under standard conditions, yields the phenolic compound in good yield (equations 58 and 59)\(^{112}\).

\[
\text{Tl(TFA)}_2 \rightarrow \text{TlOH}
\]

(58)

A convenient synthetic method for the conversion of aryl bromides to phenols is the reaction of the corresponding organometallic reagents with molybdenum peroxide–pyridine–hexamethylphosphoramide (MoO\(_5\)-Py-HMPA \(\equiv\) MoOPH)\(^{113}\). This method provides a mild one-pot reaction sequence for the synthesis of phenols under basic conditions. Phenols are obtained in good to excellent yields with several prototype compounds. Other strongly basic carbanions have been hydroxylated with MoOPH, including aryllithium derivatives\(^{114}\). Table 2 shows some examples of this type of reaction\(^{113,115}\).

Other oxidizing reagents such as MoOPH which produce direct hydroxylation of organometallic reagents are the 2-sulphonyloxaziridines \(^{41}\) (equation 60)\(^{116}\). Both MoOPH
6. Synthesis of phenols

TABLE 2. Phenols obtained by oxidation of aryllithium derivatives by MoOPH

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bromobenzene</td>
<td>phenol</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>1-Bromo-4-methoxybenzene</td>
<td>4-methoxyphenol</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>1-Bromo-4-ethylbenzene</td>
<td>4-ethylphenol</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>1-Bromonaphthalene</td>
<td>1-naphthol</td>
<td>85</td>
</tr>
</tbody>
</table>

and 41 have oxygens as part of a three-membered ring at their active site. These reagents have been suggested to transfer oxygen to neutral substrates by a similar S\(_{N}\)2 reaction mechanism\(^{117}\). The organometallic reagent (Ar\(^2\)M) attacks the oxaziridine 41 to afford intermediate 42, which collapses to N-benzylidenesulphonimine 43 and the phenol 44. Oxidation of aryl lithium and Grignard reagents by 41 gives good to excellent yields of phenols, accompanied by the sulphonamide addition product 45. Table 3 shows some examples of this type of oxidation\(^{116}\).

\[
\text{PhO}_2\text{SN} \quad \stackrel{\text{Ar}^2\text{M}}{\longrightarrow} \quad \text{PhO}_2\text{SN} \quad \text{Ar}^1 \quad \text{M}^+ \quad \text{OAr}^2
\]

(41) \quad (42) \quad (60)

\[
\text{PhO}_2\text{SNH} \quad \quad \text{Ar}^1 \quad \text{Ar}^2 \quad \quad \text{PhO}_2\text{SN} \quad \text{Ar}^1 \quad \text{Ar}^2 \quad \text{OH}
\]

(45) \quad (43) \quad (44)

Ar\(^1\) = \text{p-tolyl, phenyl, 2-Cl-5-nitrophenyl}

To avoid the formation of the addition product 45, an oxaziridine that affords a sulphonimine resistant to addition by the organometallic reagent can be used. In this regard, oxidation of PhMgBr or PhLi with (+)-(camphorsulphonyl)oxaziridine (46)\(^{118}\)

TABLE 3. Formation of phenols according to equation 60

<table>
<thead>
<tr>
<th>Ar(^1)</th>
<th>Ar(^2)M</th>
<th>Ar(^2)OH</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Tolyl</td>
<td>PhMgBr</td>
<td>PhOH</td>
<td>90</td>
</tr>
<tr>
<td>p-Tolyl</td>
<td>PhLi</td>
<td>PhOH</td>
<td>62</td>
</tr>
<tr>
<td>p-MeOC(_6)H(_4)MgBr</td>
<td>p-MeOC(_6)H(_4)OH</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Phenyl</td>
<td>o-MeOC(_6)H(_4)Li</td>
<td>o-MeOC(_6)H(_4)OH</td>
<td>70</td>
</tr>
<tr>
<td>Phenyl</td>
<td>PhNa</td>
<td>PhOH</td>
<td>56</td>
</tr>
<tr>
<td>2-Cl-5-nitrophenyl</td>
<td>PhMgBr</td>
<td>PhOH</td>
<td>49</td>
</tr>
</tbody>
</table>
Bis(trimethylsilyl)peroxide (TMSO)$_2$ can be considered as a source of TMSO$^+$ and consequently of HO$. Reaction of (TMSO)$_2$ with aromatic lithium compounds (48) generated from the corresponding halides (47) gives the trimethylsilyloxy derivatives (49), which under desilylation afford the corresponding phenols (50) in good yields (equation 62119).

Perfluoroethyl-substituted stannanes (51) can be oxidized directly to the corresponding phenols (52) in excellent yield under mild conditions using potassium superoxide, sodium perborate, oxone or hydrogen peroxide/KHCO$_3$ (equation 63). The latter conditions give the best results120.

\[
\text{PhMgBr or PhLi} \quad \text{\(-78\,^\circ\text{C}\)} \quad \text{PhOH} + \quad \text{PhOH} \quad \text{PhOH}
\]

\[
\text{R = H, OMe, Me, NMe}_2
\]
C. Oxidation of Nitrogen Derivatives

N-arylhydroxylamines 53 readily rearrange in aqueous acid solution (HCl, HBr, H₂SO₄, HClO₄, etc.) to *p*-aminophenols 58 (equation 64)\(^{121}\). This reaction, known as the Bamberger rearrangement\(^ {122}\), occurs by an *S*₁₁-type mechanism. Protonation of the hydroxy group to 54, followed by dehydration, affords an intermediate nitrenium ion 55 ↔ 56. This conjugated cation is trapped by water at the *para* position to give the intermediate 57, the tautomer of the final *p*-aminophenol (58). Among the evidence\(^ {123}\) for this mechanism are the facts that other products are obtained when the reaction is run in the presence of competing nucleophiles, e.g. *p*-ethoxyaniline when ethanol is present, and that when the *para* position is blocked, compounds similar to 57 are isolated. In the case of 2,6-dimethylphenylhydroxylamine, the corresponding intermediate nitrenium ion 55 has been trapped, and its lifetime in solution was measured\(^ {124}\).

Nitrobenzenes also undergo the Bamberger rearrangement, being the most convenient and economical method for the synthesis of *p*-aminophenols, particularly on an industrial scale\(^ {125}\). The process is normally carried out by catalytic hydrogenation under highly acidic conditions, where *N*-phenylhydroxylamine has been shown to be the intermediate (equation 65).

The conversion of azoxy compounds, on acid treatment, to *p*-hydroxy azo compounds (or sometimes the *o*-hydroxy isomers\(^ {127}\)) is called the Wallach rearrangement\(^ {128}\). When both *para* positions are occupied, the *o*-hydroxy product may be obtained, but *ipso* substitution at one of the *para* positions is usually obtained. The mechanism of this reaction is not clear\(^ {129}\). Equations 66–68 are examples of these transformations.

Nevertheless, azoxy compounds can be transformed into *o*-hydroxy azo derivatives by photolysis, the reaction being known as the photo-Wallach rearrangement\(^ {132}\). Irradiation of these compounds leads to migration of the oxygen to the aromatic ring far from the original N-O function. For instance, (phenyl)4-methoxyphenyldiazene-1-oxide (59) under photolysis affords 2-hydroxy-4-methoxyphenylazobenzene (60) in 79% yield (equation 69)\(^ {133}\).

An intramolecular pathway shown in equation 70 has been postulated\(^ {134}\).

In strongly acid solution, irradiation of 3-substituted 2,1-benzisoxazols 61 gives 2-amino-5-hydroxyacylbenzenes 62 in good yield (equation 71)\(^ {135}\).

D. Oxidation of Carbonyl Groups

The conversion of benzaldehydes to phenols using alkaline hydrogen peroxide is generally known as the Dakin’s oxidation\(^ {136,137}\). However, this reaction is limited
in general to ortho- and para-hydroxy or alkoxy benzaldehydes because in other cases the corresponding benzoic acid is formed instead\(^{137}\). The reaction consists in the oxidation of an aromatic aldehyde \(\text{63}\) via rearrangement of the hydroperoxide \(\text{64}\) to the formyl ester \(\text{65}\), which is finally hydrolysed to yield the corresponding phenol \(\text{66}\) (equation 72). For instance, veratraldehyde\(^{138}\), piperonal\(^{139}\), isovanillin\(^{140}\), 5-bromovanillin\(^{141}\) and \(p\)-hydroxybenzaldehyde under Dakin’s oxidation produce 3,4-dimethoxyphenol, 3,4-methylenedioxyphenol, 2,4-dihydroxyanisole, 3-bromo-2,5-dihydroxyanisole and hydroquinone in 45\%, 67\%, 49\%, 92\% and 78\% yield, respectively.

Hydrogen peroxide in the presence of acid can be used for the oxidation of benzaldehydes without an activating group at the ortho and para position\(^{142}\). This method represents an alternative to the Dakin’s oxidation described above.
6. Synthesis of phenols

\[
\text{\text{NO}_2} \xrightarrow{\text{H}_3\text{PO}_2, 5\% \text{ Pd/C, H}_2\text{O, 80°C}} \text{\text{NH}_2}
\]

(65)\text{126}

\[
\text{Cl} \xrightarrow{\text{H}_2\text{SO}_4, \text{RT}} \text{Cl}
\]

(66)\text{130}

\[
\text{\text{Cl}} \xrightarrow{\text{H}_2\text{SO}_4, 65°C} \text{\text{Cl}}
\]

(67)\text{130}
The solid-state oxidation of hydroxylated benzaldehydes has been reported with urea-hydrogen peroxide (UHP) adduct, which appears to be a superior alternative in terms of shorter reaction time, cleaner product formation and easier manipulation143. For instance, under these conditions p-hydroxybenzaldehyde has been transformed into hydroquinone in 75 min at 85°C and with 82\% yield143.

Other reagents have been employed to oxidize aromatic aldehydes to arylformates; these include peroxyacetic acid144, peroxybenzoic acid145, m-chloroperoxybenzoic acid (MCPBA)146 and organoperoxyxeleninic acid147. Sodium perborate and sodium carbonate148 have also been shown to be versatile activating reagents of hydrogen peroxide for similar transformations149.
6. Synthesis of phenols

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{O} & \quad \text{N} \\
\text{H} & \quad \text{N} \\
\text{O} & \quad \text{N}
\end{align*}
\]

\[
\begin{align*}
\text{hv, } \text{EtOH} & \quad \text{hv, EtOH} \\
\text{R} & \quad \text{R}
\end{align*}
\]

(70)

\[
\begin{align*}
\text{R} & = \text{H, alkyl, aryl}
\end{align*}
\]

(71)

\[
\begin{align*}
\text{R} & \quad \text{R}
\end{align*}
\]

(62)

(61)

(63)

(64)

(66)

(65)
The Baeyer–Villiger oxidation of aromatic ketones by peroxyacids is a widely applicable method for the synthesis of phenols. This oxidation can be carried out by organic peroxyacids such as peroxyacetic, trifluoroperoxyacetic, 4-nitro- and 3,5-dinitroperoxybenzoic acids. However, m-chloroperoxybenzoic acid is most frequently used. Hydrogen peroxide is sometimes used, but it works only in the presence of strong acids.

Alkyl aryl ketones under treatment with peroxyacids undergo a Baeyer–Villiger reaction by a similar mechanism to the Dakin reaction (equation 73). In this case, migration of the alkyl or the phenyl group would occur to give the corresponding benzoate ester or phenoxyester, respectively. The relative ratio of esters and 69 depends on the type of alkyl group. Usually, the reactivity increases in the order: t-alkyl > s-alkyl > primary alkyl > methyl. Migration of tertiary alkyl groups predominates against phenyl group and consequently almost no formation of phenoxyester is observed. For instance, acetophenone gives 90% of phenyl acetate by treatment with MCPBA. Nevertheless, t-butylacetophenone under the same reaction conditions produces 77% of t-butylbenzoate. Each one of the acetophenones with varied electron-withdrawing or attracting groups in the meta or para position to the acetyl function yields up to 80% of a single ester (equation 74).

\[
\begin{align*}
\text{(67)} & \quad \text{R} & \quad \text{(68)} & \quad \text{OR} \\
\text{(69)} & \quad \text{OR} & \quad \text{O} & \quad \text{R}
\end{align*}
\]

\[(73)\]

\[
\begin{align*}
\text{(70)} & \quad \text{Z} & \quad \text{O} & \quad \text{O} \\
\text{(71)} & \quad \text{Z} & \quad \text{O} & \quad \text{O}
\end{align*}
\]

\[(74)\]

Z = H, NO₂, CO₂H, CO₂Me, OMe, CF₃, Me
In the case of asymmetric diaryl ketones, migration of aryl groups with electron-donating substituents occurs preferentially. For instance, \(p \)-methoxybenzophenone affords 96% of (4-methoxy)phenyl benzoate by oxidation with trifluoroperacetic acid, whereas \(p \)-nitrobenzophenone under the same reaction conditions gives 95% of phenyl 4-nitrobenzoate.

III. BY CONDENSATION

A. Cyclization

The reaction involving cyclization between an acylium ion derived from an unsaturated carboxylic acid and an ethylenic double bond was first studied by Banerjee and coworkers (equation 75). For example, PPA, \(\text{P}_2\text{O}_5 \) or POCl₃ in benzene or anhydrous HF are the reagents for this reaction.

\[
\begin{align*}
\text{HO}_2\text{C} & \quad \text{OH} \\
\text{C} & \quad + \quad \text{H}_2\text{O} \\
\end{align*}
\]

Some examples of this type of cyclization are given in equations 76–81.

1. \(\text{P}_2\text{O}_5 \), 200°C, 28%
2. KOH, \(\Delta \)

\[
\begin{align*}
\text{OH} & \quad \text{CO}_2\text{H} \\
\text{CO}_2\text{H} & \quad \text{OH} \\
\end{align*}
\]

1. 1. \(\text{P}_2\text{O}_5 \), 200°C, 47%
2. PPA, 120°C, 72%

\[
\begin{align*}
\text{OH} & \quad \text{CO}_2\text{H} \\
\text{CO}_2\text{H} & \quad \text{OH} \\
\end{align*}
\]

1. HF (anh.), 72%
B. Claisen and Aldolic Condensations

1. Intramolecular reaction

A large proportion of naturally occurring phenolic compounds (polyketides) may be derived by intramolecular condensation of a linear β-polyketo acid derivative 74 (polyacetate hypothesis) (equation 82)\(^{166}\). Structural analysis and tracer studies\(^{166b}\) indicate that the activated forms of acetic, propionic and cinnamic acid act normally as chain-initiating units 72 whereas malonyl coenzyme A (73) is presumably the chain-building unit. Cyclization of 3,5,7-triketoacids (75) has been suggested to give aromatic compounds in two ways (equation 83). The first route involves an aldol condensation to form β-resorcylic acids (76) and the second one corresponds to an internal Claisen condensation to give
6. Synthesis of phenols

acylphloroglucinols (77)

The two models of cyclization can also occur in the same biological system.

$$\text{RSCoA} \quad + \quad n \quad \text{HOOC-SCoA} \quad \rightarrow \quad \text{RSCoA} \quad \overset{n-1}{\underset{\text{SEnz}}{\longrightarrow}} \quad \text{RSEnz}$$

(72) (73) (74) (82)

(a) Aldol

(b) Claisen

R = Me, CH=CHPh

$$\text{Ph} \quad \overset{\text{NaHCO}_3}{\longrightarrow} \quad \text{Ph} \quad \overset{\text{KOH, 67%}}{\longrightarrow} \quad \text{Ph} \quad \overset{\text{85%}}{\longrightarrow}$$

(78) (79) (80) (81) (84)
With increasing chain lengths the number of possible cyclization products rises rapidly. A tetraketoacid can undergo three aldol condensations, a Claisen and additional heterocyclic ring closures. Some of the initial cyclization products can undergo further cyclization reactions. For instance, ketoacid 78 under treatment with aqueous NaHCO$_3$ produces mainly the unstable resorcinol 79, which cyclizes further to give the coumarin 80 (equation 84). With aqueous KOH, the resorcinol 79 became a minor product whereas the isomer 81 is the major product in the reaction167.

Some examples of these intramolecular cyclizations are shown in equations 85–90.
Although tetraketones would be the simplest starting materials for the synthesis of resorcinols, for instance, 2,4,6,8-nonatetraone (82) for resorcinol 83 (equation 91), protected forms of tetraketones are normally used to avoid different possible cyclizations. Protected forms of 82 include the 2-acetal 84©174, the 2,8-bisacetal 85©175, the 2,8-bisenamine 86©176, the acetylenic ketone 87©177, the 2,8-bis(hemithioacetal) 88©178 and the pyrones 89–91 (Chart 1)©179.
α-Pyrone undergoes also intramolecular Claisen condensation. Control over the various phenolic compounds obtained could be achieved by choosing the appropriate reaction conditions. For instance, methanolic potassium hydroxide converted pyrone \(93 \) into resorcylic ester \(92 \) whereas treatment with methanolic magnesium methoxide afforded the phloroglucinol \(94 \) (equation 92)\(^{80} \). In the same way, resorcylic acids \(97 \) have been formed from pyrones \(95 \) when potassium hydroxide has been used as the base, whereas phloroglucinol derivatives \(98 \) have been produced when magnesium methoxide was employed (equation 93)\(^{79,81} \). These reactions are considered to involve ring opening to the triketo dicarboxylic acids or esters \(96 \), followed by cyclization.
6. Synthesis of phenols

\[
\begin{align*}
\text{Ph} & \quad \text{OH} \\
\text{CO}_2\text{Me} & \quad \text{KOH, MeOH} \\
\text{55\%} & \quad \text{Ph} & \quad \text{OH} \\
\text{O} & \quad \text{KOH, H}_2\text{O} \\
\end{align*}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{Mg(OMe)}_2 & \quad \text{MeOH} \\
\text{44\%} & \quad \text{Ph} & \quad \text{O} \\
\text{CO}_2\text{Me} & \quad \text{KOH, MeOH} \\
\end{align*}
\]

\[
\begin{align*}
\text{R, R'} & = \text{alkyl} \\
\text{R} & \quad \text{OH} \\
\text{HO}_2\text{C} & \quad \text{KOH, H}_2\text{O} \\
\end{align*}
\]
Furans with suitable substituents in the 2-position can be transformed in acid conditions into phenols. The reaction proceeds through cyclic acetals of 1,4-dicarbonyl compounds, which then undergo an intramolecular condensation182. Equations 94 and 95 show some examples where different catechols have been prepared by refluxing several types of tetrahydrofuran dimethyl acetics with dilute hydrochloric acid.

\[
\begin{align*}
\text{MeO} & \quad \text{MeO} \\
\text{OMe} & \quad \text{OMe} \\
\text{OMe} & \quad \text{OMe}
\end{align*}
\xrightarrow{\text{HCl, H}_2\text{O, }\Delta} 49\%
\begin{align*}
\text{OH} & \quad \text{OH}
\end{align*}
\text{(94)}\text{182c}
\]

\[
\begin{align*}
\text{MeO} & \quad \text{COR} \\
\text{OMe} & \quad \text{COR}
\end{align*}
\xrightarrow{\text{HCl, H}_2\text{O, }\Delta} 49\%
\begin{align*}
\text{OH} & \quad \text{COR}
\end{align*}
\text{(95)}\text{183}
\]

\(R = \text{alkyl (75–91\%), CO}_2\text{Me (89\%), COMe (88\%), COBu-t (81\%)} \)

Under treatment with warm alkali, pyrylium salts with \(\alpha \)-alkyl groups \text{99} undergo hydrolysis and subsequent aldol condensation of the acyclic intermediate \text{100} to give phenols \text{101} in moderate yield (equation \text{96})\text{184}.

\[
\begin{align*}
\text{R} & \quad \text{NaOH, }\Delta \\
\text{R} & \quad \text{NaOH, }\Delta
\end{align*}
\xrightarrow{\text{OH}} 35\%
\begin{align*}
\text{OH} &
\end{align*}
\text{(99)} \quad \text{(100)} \quad \text{(101)} \quad \text{(96)}
\]

Some examples of this type of cyclization are given in equations \text{97}–\text{99}.

\[
\begin{align*}
\text{ClO}_4^- & \quad \text{MeO} \\
\text{ClO}_4^- & \quad \text{MeO}
\end{align*}
\xrightarrow{\text{NaOH, }\Delta} 35\%
\begin{align*}
\text{OH} &
\end{align*}
\text{(97)}\text{185}
\]

\[
\begin{align*}
\text{MeO} & \quad \text{MeO} \\
\text{MeO} & \quad \text{MeO}
\end{align*}
\xrightarrow{\text{NaOH, }\Delta} 40\%
\begin{align*}
\text{MeO} & \quad \text{MeO}
\end{align*}
\text{(98)}\text{186}
\]
2. Intermolecular reaction

a. Synthesis of monophenols. Intermolecular condensation between ketones and 1,3-dicarbonyl compounds such as 1,3-oxoaldehydes or 1,3-diketones produces monophenols in good yields (equation 100)\(^{188}\).

\[
\begin{align*}
\text{(100)} & \\
\end{align*}
\]

For instance, condensation of a variety of 1,3-dicarbonyl compounds \(^{102}\) with diethyl \(\beta\)-ketoglutarate (\(^{103}\)) afforded the phenols \(^{104}\) by treatment with sodium in ethanol (equation 101)\(^{189}\). Naphthalene \(^{106}\) has been obtained by self condensation of 2,4,6-heptatrione (\(^{105}\)) (equation 102)\(^{190}\).

\[
\begin{align*}
\text{(101)} & \\
\end{align*}
\]

(a) \(R^1 = R^3 = H, R^2 = \text{COPh}; 77\%\)
(b) \(R^1 = R^3 = H, R^2 = \text{CO}_2\text{Et}; 50\%\)
(c) \(R^1 = p\text{-ClC}_6\text{H}_4, R^2 = R^3 = H; 53\%\)
(d) \(R^1 = H, R^2R^3 = (\text{CH}_2)_5; 61\%\)
(e) \(R^1 = \text{Me}, R^2 = H, R^3 = \text{Ph}; 47\%\)
(f) \(R^1 = R^3 = \text{Me}, R^2 = H; 92\%\)

\(^{187,188,189,190}\)
Acylketene dithioacetal 107 and the corresponding β-methylthio-α,β-enone 108 undergo self-condensation and aromatization in the presence of sodium hydride and methyl benzoates in refluxing xylene to give 2,6-bis(methylthio)-4-hydroxyacetophenone (109) and 4-hydroxyacetophenone (110), respectively, in good yields (equation 103)191. The possible pathway for the formation of 109 and 110 could involve base-catalysed condensation of either 107 or 108 with methyl benzoates followed by successive inter- and intramolecular Michael additions and elimination of SMe. No reaction is observed in the absence of methyl benzoates.

Tandem Michael addition/aldol condensation of 1-(2-oxopropyl)pyridinium chloride (112) or 1-(3-ethoxycarbonyl-2-oxopropyl)pyridinium bromide (113) with chalcones 111 forms diketones 114 or 115, respectively, which under condensation afford cyclohexanones that aromatize by the elimination of pyridinium chloride or bromide, respectively, to give 3,5-disubstituted phenols 116 and 4,6-disubstituted ethyl 2-hydroxybenzoates 117, respectively (equation 104)192. This approach has been extended to solid-phase synthesis in order to prepare a phenol library (equation 105)193.

An alternative tandem Michael addition/aldol condensation for the synthesis of 3,5-diaryl-substituted phenols 121 employs, instead of 1-(2-oxopropyl)pyridinium chloride (112), 1-(benzotriazol-1-yl)propan-2-one (119) in the presence of excess of NaOH in refluxing ethanol (equation 106)194. Under these conditions, several types of 3,5-diaryl-substituted phenols 121 have been obtained in 52–94% yield. The reaction proceeds by Michael addition of the enolate of 119 to the α,β-unsaturated ketone 118 to afford intermediate 120, which then undergoes an intramolecular aldol condensation with elimination of benzotriazole.
6. Synthesis of phenols

$$R^1\text{--}C=O\text{--}R^2$$

(111)

```
\[
\text{NaOAc/EtOH/\(\Delta\) or Et\(_3\)N/EtOH/\(\Delta\)}
\]
```

```
\[
\text{NaOAc/EtOH/\(\Delta\) or Et\(_3\)N/EtOH/\(\Delta\)}
\]
```

```
\[
\text{NaOAc/EtOH/\(\Delta\) or Et\(_3\)N/EtOH/\(\Delta\)}
\]
```

R\(^1\) = Ph, 4-ClC\(_6\)H\(_4\), 4-MeOC\(_6\)H\(_4\), 4-pyridyl, 4-O\(_2\)NC\(_6\)H\(_4\), 4-Me\(_2\)NC\(_6\)H\(_4\)
R\(^2\) = Me, 2-furyl, Ph, 4-MeOC\(_6\)H\(_4\), 4-ClC\(_6\)H\(_4\), 4-O\(_2\)NC\(_6\)H\(_4\)

R\(^1\), R\(^2\), R\(^3\) = alkyl, aryl

```
\[
\text{O}
\]
```

(105)

53–85%
b. Synthesis of resorcinols. The conversion of dimethyl acetonedicarboxylate (DMAD) to resorcinols proceeds through the initial formation of a metal chelate compound \(\text{Ar} \cdot \text{CH} = \text{O} \cdot \text{R} \). The reaction proceeds readily with catalytic amounts of many metals (Na, Co(OAc)\(_2\), MgCl\(_2\)-6H\(_2\)O, Pb(Ac)\(_4\)-3H\(_2\)O, CaCl\(_2\), etc.) present either as the preformed metal chelate of DMAD or as a simple organic or inorganic metal compound. The yields of resorcinols varied considerably with the catalyst. For instance, in the presence of sodium metal, diethyl \(\beta \)-ketoglutarate (103) underwent a self-condensation to afford resorcinol 122 in 53% yield (equation 107)\(^{196}\).

In the case of \(\alpha,\beta \)-unsaturated esters, Michael addition and Claisen condensation are liable to proceed simultaneously. Equation 108 shows one of these cases where ethyl phenylpropiolate (123) reacted with dibenzyl ketone (124) by a combination of both types of reactions, leading to the formation of 2,4,5-triphenylresorcinol (125)\(^{197}\).
6. Synthesis of phenols

\[\text{PhCO}_2\text{Et} \]

(123)

\[+ \]

(124)

\[\text{Ph} \]

(125)

\(\text{R} = \text{H, alkyl} \)

(126)

(127)

(128)

(129)

(109)
C. Radical Cyclizations

Oxidative radical cyclization is an alternative method for the preparation of phenols from \(\omega\)-unsaturated-\(\beta\)-dicarbonyl compounds. Usually, manganese(III) acetate is used as an efficacious oxidant of enolizable carbonyl compounds. For instance, \(\beta\)-ketoesters 126 with 4 equivalents of Mn(OAc)\(_3\) and one equivalent of Cu(OAc)\(_2\) afforded salicylate derivatives 129 in good yield (equation 109)\(^{198}\). It has been suggested that in the first stage of this reaction, the \(\beta\)-ketoester 126 forms a manganese enolate which then reacts with the double bond to give the cyclic radical 127 as a reactive intermediate. Then the radical 127 reacts with Cu(OAc)\(_2\) to give a mixture of double-bond isomers 128, which are then oxidized to salicylate 129 by a second equivalent of Mn(OAc)\(_3\). Table 4 shows some salicylates and \(o\)-acetylphenol synthesized using this type of radical cyclization.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting material</th>
<th>Reaction product</th>
<th>Yield (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>78</td>
<td>199</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>96</td>
<td>199</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>70</td>
<td>198</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>46</td>
<td>198</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>91</td>
<td>198</td>
</tr>
</tbody>
</table>
IV. BY CYCLOADDITION

A. Cycloaromatization

The classical methods of constructing six-membered rings are the Diels–Alder reaction or the Robinson annulation, which consist of the union of two fragments, one with two carbon atoms and the other with four carbons. A conceptually different method from the above involves the condensation of two three-carbon units, one with two nucleophilic sites and the other containing two electrophilic sites. Furthermore, the regiochemistry of the reaction is controlled by the differential reactivities of these sites.

The 1,3-bis(trimethylsilyloxy)butadienes 130–132, as the equivalent of methyl acetoacetate dianion, constitute the three-carbon fragments with two nucleophilic sites (equation 110). Condensation of 130-132 with various equivalents of β-dicarbonyl compounds and titanium(IV) chloride gives substituted methyl salicylates. The differential reactivity of the electrophiles which increases in the order: conjugated position of enone > ketone > monothioacetal, acetal and of 130–132 (4-position > 2-position) ensures complete regioselectivity in this combination of two three-carbon units to form phenols such as 133 and 134200,201.

The diene 130 undergoes an interesting reaction with the orthoesters 135 or the anhydrides 136 and titanium(IV) chloride: the 4-position is first acylated to give an intermediate 137 or 138, which condenses with another molecule of 130 to produce 3-hydroxyhomophthalates 139 (equation 111)202.

A synthesis of (−)-Δ¹-tetrahydrocannabinol has been achieved using the cycloaromatization reaction of the 1,3-bis(trimethylsilyloxy)butadiene (130) with the β-dicarbonyl equivalent 140 to generate methyl olivetolate 141 with complete
regioselectivity (equation 112)203.

\[
\text{R}(ext{OMe})_3 \quad (135) \quad \text{or} \quad (\text{RCO})_2\text{O} \quad (136)
\]

\[
\text{RC} \quad (130)/\text{TiCl}_4
\]

DMF, -78°C

\[
\text{Y} = (\text{OMe})_2 \quad (137) \quad \text{Y} = \text{O} \quad (138)
\]

\[
\text{65--72\%} \quad (139)
\]

\[
\text{R} = \text{H, Me, Ph}
\]

\[
\text{TMSO} \quad (130)
\]

\[
\text{OMe}
\]

\[
\text{+}
\]

\[
\text{n-C}_5\text{H}_{11} \quad (140)
\]

\[
55\% \quad \text{TiCl}_4, \text{CH}_2\text{Cl}_2
\]

\[
\text{MeO}_2\text{C} \quad (141)
\]

\[
\text{B. Diels--Alder Reaction}
\]

Diels--Alder reactions have been used for the regioselective synthesis of phenols which are difficult to make by direct substitution. Aromatization of the initial Diels--Alder adducts can be effected by straightforward dehydrogenation, by elimination of suitably
placed substituents or by a retro-Diels–Alder step with loss of a small molecule such as carbon dioxide or nitrogen.

Trimethylsilyloxy dienes 142–147204 (Chart 2) have been used in the ring synthesis of substituted phenols205. For instance, phenol 149, the aromatic unit of milbemycin β3, has been obtained by reaction of the diene 143 with the alkyne 148 (equation 113). Ring aromatization with concomitant oxidation of the side chain was effected by treatment of the Diels–Alder adduct with Jones’ reagent206.

1,1-Dimethoxy-3-trimethylsilyloxybutadiene (146)205,207 reacts even more rapidly than Danishefsky’s diene (147), and with equally high regioselectivity205,207. For instance, dimethyl acetal 146 reacts with methyl propiolate to afford β-resorcylic ester 150 (equation 114)208. α-Resorcylic ester 152 has been obtained in a variation using methyl trans-β-nitroacrylate as dienophile. Here the orientation of the cycloaddition is controlled by the nitro group and elimination of nitrous acid from the adduct 151 leads exclusively to 152209. β-Resorcylic ester 154, a key intermediate in a synthesis of the plant growth inhibitor lasiodiplodin, has been obtained in 35% yield by reaction of butadiene 146 with the acetylene derivative 153 (equation 115)210.

The cycloaddition reactions of allenes with trimethylsilyloxybutadienes produce phenols in good yield by regioselective cyclization and subsequent aromatization by acid-catalysed enolization (equation 116)211, or by fluoride-induced cleavage of the trimethylsilyl groups.
and elimination of ethanol (equation 117)212.

\[
\begin{align*}
\text{(146)} & \quad \text{TMSO} \quad \text{CO}_2\text{Me} \quad \text{benzene, } \Delta \\
\text{OMe} & \quad \text{OMe} \quad \text{MeO} \quad \text{OMe} \quad \text{CO}_2\text{Me} \\
\text{TMSO} & \quad \text{TMSO} \quad \text{H}_2\text{O}^+ \\
\text{OMe} & \quad \text{OMe} \quad \text{CO}_2\text{Me} \\
\text{(150)} & \quad 74\%
\end{align*}
\]

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{CO}_2\text{Me} \\
0^\circ \text{C} \text{ to RT} & \quad 82\%
\end{align*}
\]

\[
\begin{align*}
\text{OMe} & \quad \text{NO}_2 \\
\text{O} & \quad \text{CO}_2\text{Me} \\
\text{(151)} & \quad 99\%
\end{align*}
\]

\[
\begin{align*}
\text{OMe} & \quad \text{CO}_2\text{Me} \\
\text{HO} & \quad \text{HO} \\
\text{(152)} & \quad \text{(114)}
\end{align*}
\]

\[
\begin{align*}
\text{OMe} & \quad \text{CO}_2\text{Me} \\
\text{OMe} & \quad \text{MeO} \\
\text{TMSO} & \quad \text{TMSO} \\
\text{(153)} & \quad \text{(154)} \\
\text{HO} & \quad \text{HO} \\
\text{(154)} & \quad \text{(115)}
\end{align*}
\]

\[
\begin{align*}
\text{OMe} & \quad \text{OMe} \\
\text{TMSO} & \quad \text{TMSO} \\
\text{(156)} & \quad \text{(157)} \\
\text{OMe} & \quad \text{H} \\
\text{MeO}_2\text{C} & \quad \text{MeO}_2\text{C} \\
\text{R} & \quad \text{R} \\
\text{(116)} & \quad \text{(116)}
\end{align*}
\]

\[
\begin{align*}
\text{OMe} & \quad \text{CO}_2\text{Me} \\
\text{HO} & \quad \text{HO} \\
\text{R} = \text{H, Me, Ph, CMe}_2
\end{align*}
\]
6. Synthesis of phenols

In contrast to diene 146, the analogous compounds 14720a,b or the pyrone 156213 are poor Diels–Alder dienes affording phenol 155 only in moderate yield (equation 118).
2,2-Dialkyl-2,3-dihydro-4\(H\)-pyran-4-ones 157 have also been shown to be good precursors for the \textit{in situ} preparation of electron-rich dienes, affording highly substituted phenols 159 by reaction with electron-poor acetylenes 158 (equation 119)214. This reaction proceeds with a high degree of regioselectivity and under very mild conditions.

\[
\begin{align*}
\text{R}^1 &= \text{Ph, } \text{t-Bu}; \text{R}^2 = \text{H, CO}_2\text{Et, Br}; \text{R}^3 = \text{Me} \\
\text{R}^4 &= \text{H, Me, CO}_2\text{Me, CHO}; \text{Z} = \text{COPh, CO}_2\text{Me, CO}_2\text{Et}
\end{align*}
\] (119)

Highly oxygenated butadienes have proven very useful for synthesizing anthraquinone natural products (e.g. aloesaponarins) and anthracyclinone antibiotics. Anthraquinones have been obtained by cycloaddition of 1,1-dioxygenated butadienes to appropriate chlorobenzoquinones and chloronaphthoquinones. The chloro substituents in the quinone dienophiles facilitate the reaction and control the regiochemistry of the addition. The best results have been obtained with vinyl ketene acetals, such as 161 which readily undergo cycloaddition reactions with quinones at room temperature (equation 120). Aromatization of the initial adduct is effected by pyrolysis, with evolution of hydrogen chloride, or better, by percolation through silica gel. These reactions could apparently give different products, depending on which of the acetal oxygen functions is eliminated during aromatization. In practice, the methoxy substituent is found to be eliminated preferentially, giving a phenol as the main product. The chrysophanol (162) has been obtained in one step from 3-chlorojuglone (160) and the acetal 161 (equation 120)215 and the isomeric 2-chlorojuglone (163) gave ziganein (164), illustrating the well-established regioselectivity of these reactions (equation 121). Many naturally occurring naphthoquinones and anthraquinones have been synthesized by this convenient procedure215c,216.

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
\text{Cl} & \quad \text{O} \\
\text{O} & \quad \text{Cl}
\end{align*}
\] (160)

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
\text{O} & \quad \text{Cl}
\end{align*}
\] (162) (120)

In the same way, exocyclic dienes 165217, 166218, 167219 and 168216e (Chart 3) react readily with naphthoquinones to give products with the anthracyclinone skeleton.
6. Synthesis of phenols

\[
\text{OH} \quad \text{O} \\
\text{Cl} \quad \text{OTMS} \\
(163) \\
+ \\
\text{OMe} \quad \text{OH} \\
(161) \\
\text{55\%} \quad \text{1. xylene, } \Delta \text{ 2. } \text{SiO}_2 \\
\rightarrow \\
\text{OH} \quad \text{O} \\
\text{O} \quad \text{OH} \\
(164) \\
\text{CHART 3}
Concepción González and Luis Castedo

\[\text{CHBr}_2 \quad \text{NaI, acetone} \quad \text{OMe} \]

\[\text{(169)} \]

\[\text{OMe} \quad \text{Br} \]

\[\text{Br} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \]

\[\text{(170)} \]

\[\text{OMe} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \]

\[\text{(171)} \]

\[\text{(172)} \]

\[\text{OH} \quad \text{OH} \]

\[\text{OH} \quad \text{OH} \quad \text{OH} \]

\[\text{(173)} \]

\[\text{OH} \quad \text{OH} \quad \text{OH} \]

\[\text{(174)} \]
6. Synthesis of phenols

Anthraquinones have also been obtained by reaction of \(o \)-quinodimethanes with substituted benzoquinones. Again, halogen substituents in the quinones control the regiochemistry of the cycloaddition. For instance, the unsymmetrical \(o \)-quinodimethane 169 and 2-bromo-6-methylbenzoquinone (170) gave the adducts 171 and 172 in a 92:8 ratio, respectively (equation 122), whereas the 3-bromo-6-methylquinone afforded the same products but in a 2:98 ratio. These cycloadducts have been converted in several steps into the anthraquinones islandicin (173) and digitopurpune (174)\(^\text{220}\).

Homophthalic anhydrides undergo a strong-base induced [4 + 2] intra-\(^\text{221}\) or intermolecular\(^\text{222}\) cycloaddition reaction with dienophiles to afford various types of polycyclic peri-hydroxy aromatics in a single step (equation 123). This elegant strategy has been employed in the synthesis of many biologically important compounds such as fredericamycin A\(^\text{222b}\), galtamycinone\(^\text{223}\) and dynemycin A\(^\text{224}\).

Equations 124–127 show some examples of this type of reaction.
Furans and their substituted derivatives undergo Diels–Alder reactions and the resultant 7-oxabicyclo[2.2.1]heptanes can be further transformed to substituted phenols by the cleavage of the oxygen bridge, which is a crucial step in the transformation. Lewis acid catalysts, Brønsted acids, metals or high pressure catalyse the cycloaddition. The incorporation of an electron-donating group onto the 2-position of furans enhances the reactivity of the heteroaromatic ring system. The major drawbacks of these protocols include lower regiochemical predictability and the intolerance of many functional groups in the ring-opening process.
For instance, 2,5-bis(trimethylsilyloxy)furans \textbf{175}, which are synthetic equivalents of the diketene \textbf{177}, are reactive Diels–Alder dienes undergoing cycloaddition reaction with dienophiles to give, after hydrolytic workup, \textit{p}-hydroquinones \textbf{176} in high yield (equation \textit{128})234.

\[
\begin{align*}
\text{1. } & \text{H}_2\text{C} \equiv \text{CHCO}_2\text{Et, CCl}_4, 50–70^\circ\text{C} \\
\text{2. } & \text{NaF} \\
\text{87–98\%}
\end{align*}
\]

\textbf{175}

(a) \(R^1 = R^2 = \text{H}\)
(b) \(R^1 = \text{Me}, R^2 = \text{H}\)
(c) \(R^1 = \text{Ph}, R^2 = \text{H}\)
(d) \(R^1R^2 = (\text{CH}_2)_4\)
(e) \(R^1R^2 = \text{CH}_2\text{CH} = \text{CHCH}_2\)

\[
\begin{align*}
\text{1. } \text{H}_2\text{C} \equiv \text{CHCO}_2\text{Et, CCl}_4, 50–70^\circ\text{C} \\
\text{2. } \text{NaF} \\
\text{87–98\%}
\end{align*}
\]

\textbf{176}

XR = NHBoc, OMe, OTMS, OCO\textsubscript{2}Me, Sn(Bn-\textit{t})\textsubscript{3}, O\textsubscript{2}CBu-\textit{t}
Zhu and coworkers have reported a regioselective rearrangement of the Diels–Alder cycloadduct 180, derived from furan 178 and acetylene 179, to form the 1,4-difunctionalized 2,3-bis(trifluoromethyl)benzene system 181 in one chemical operation (equation 129).

Recently, Hashmi and coworkers reported a selective Diels–Alder synthesis of phenolic compounds catalysed by Au(III) (equation 130). The mechanism has proven to include an intramolecular migration of the oxygen atom of the furan ring. Several other transition metals with d⁸ configuration (Pd, Pt, Rh, Ir) allow this conversion, but Au(III) is shown to be the most active catalyst giving the cleanest conversion.

\[
\text{R}^1, \text{R}^2 = \text{H, Me} \\
\text{G} = \text{O, CH}_2, \text{NTs, N(Ts)CH}_2, \text{C(CO}_2\text{Me)}_2
\]

C. Benzannulation

One of the most powerful strategies for the construction of polysubstituted phenols is the reaction of dienylketenes, generated in situ, with heterosubstituted alkynes by a cascade of pericyclic reactions, affording the aromatic ring in one step and with predictable regioselectivity. There are two methods for the generation of such dienylketenes. One is based on the irradiation of cyclobutenones 182, which triggers a four-electron electrocyclic ring opening (equation 131). The second method consists in a photochemical Wolff rearrangement of α,β-unsaturated α′-diazoketones 188. Equation 131 outlines the mechanistic course of this benzannulation reaction. The generated vinylketenes react with an electron-rich acetylene (X = OR, SR, NR₂) in a regioselective [2 + 2] cycloaddition to form 186. Further irradiation (or warming) induces a second four-electron electrocyclic ring-opening reaction to generate the dienylketene 187, which undergoes a rapid 6π electrocyclization, affording the desired substituted phenol 184 by tautomerization.

Table 5 shows some examples of benzannulation reactions with various cyclobutenones (entries 1–4), α,β-unsaturated α′-diazoketones (entries 5–7) and stable vinylketenes (entry 8).

The use of a metal carbene complex in benzannulations has become one of the most valuable synthetic applications of these organometallic reagents. Because of its applicability to a broad spectrum of substituents, its regioselectivity and its mild experimental conditions, benzannulation has been employed as a key step in the synthesis of a series of natural compounds.
Several transition metal complexes (Co247, Mo248, W249, Fe250, etc.) have been used in benzannulation reactions, but vinyl- or aryl(alkoxy)carbene chromium complexes 189, reported by Dötz, are the most generally employed (equation 132)251. The chromium tricarbonyl coordinated dienylketenes 190 generated in situ have been converted to the chromium complexes of polysubstituted phenols 191 in high yield. The reaction is a transition-metal-induced benzannulation, which corresponds formally to a [3 + 2 + 1] cycloaddition.

Carbocycles, heterocycles and polycyclic arenes can serve as carbene ligands for the synthesis of complexes with benzannulated arenes (equation 133)251c,252.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Precursor</th>
<th>Alkyne</th>
<th>Reaction product</th>
<th>Yield (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MOMO</td>
<td>TBSO</td>
<td>TBSO OH MeO MOM</td>
<td>73</td>
<td>239c</td>
</tr>
<tr>
<td>2</td>
<td>C₅H₁₁</td>
<td>Ph</td>
<td>Ph OH C₅H₁₁ TIPSO</td>
<td>86</td>
<td>242</td>
</tr>
<tr>
<td>3</td>
<td>TMS</td>
<td>OH</td>
<td>TMS OH EtO TMS</td>
<td>90</td>
<td>239b</td>
</tr>
<tr>
<td>4</td>
<td>n-C₄H₉</td>
<td>OH</td>
<td>n-C₄H₉ OH Cl</td>
<td>78</td>
<td>243</td>
</tr>
</tbody>
</table>
Generally, arene(alkoxy)carbene chromium complexes react with aryl-, alkyl-, terminal or internal alkynes in ethers or acetonitrile to yield 4-alkoxy-1-naphthols, with the more hindered substituent ortho to the hydroxyl group251,253. Upon treatment with alkynes, aryl(dialkylamino)carbene chromium complexes do not yield aminonaphthols, but they form indene derivatives254. Vinyl(dialkylamino)carbene complexes, however, react with alkynes to yield aminophenols as the main products249,255. The solvent is one of the many factors that affects this type of reaction, for which the most important is the polarity and/or coordinating ability of the solvent. The Dötz benzannulation reaction yields either arene chromium tricarbonyl complexes or the decomplexed phenols, depending on the work-up conditions. Oxidative work-up yields either decomplexed phenols or the corresponding quinones.

Remarkable improvements have been reported experimentally regarding the optimization of the reaction yield, such as variations in the reaction temperature and solvent, and the introduction of special techniques (e.g. dry stage adsorption conditions256, ultrasonication257 and photoirradiation employing a Xenon lamp258).

Examples of the Dötz benzannulation reaction are given in Table 6.

The rate-determining step has been demonstrated to be the dissociation of a CO ligand from the carbene complex 192 and the newly formed coordination site of complex 193 is being occupied either by a solvent molecule (e.g. THF) or saturated intramolecularly by the
6. Synthesis of phenols

When the η^2-alkyne complex 194 has been formed, insertion of the alkyne into the Cr–C double bond takes place to yield an η^3-vinyl-carbene complex 195. Depending on the carbene substituent X, two different reaction pathways must be considered. Amino carbene complexes, which usually require higher temperatures to react with alkynes, tend to cyclize without incorporation of carbon monoxide to yield aminoindene complexes 196. Alkoxy carbene complexes are generally more reactive and undergo fast CO-insertion to yield η^4-vinylketene complexes 197. The latter intermediates can cyclize to cyclohexadienone complexes, which finally tautomerize to naphthols 198.

Recently, it has been suggested that the first step of the Dötz benzannulation reaction may not necessarily be the dissociation of one carbonyl ligand. Alternatively, the $[2+2]$ cycloaddition of the alkyne to the unsaturated chromium carbene complex 199 has been proposed to afford a cyclic complex 200, which undergoes a four-electron electrocyclic opening to yield a 1-chroma-1,3,5-hexatriene 201 (equation 135). Dissociation of a carbonyl ligand gives chromium complex 202, which then, as in the CO-dissociation mechanism, undergoes a CO insertion to yield ketene 203, generating phenol 204 by electrocyclic ring closure and subsequent tautomerization.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Carbene</th>
<th>Alkyne</th>
<th>Reaction Product</th>
<th>Yield (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NMe\text{$_2$}Cr(CO)$_5$</td>
<td>1-pentyne</td>
<td>![Graphical representation]</td>
<td>66</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>Mes\text{$_2$}NH\text{$_2$}Cr(CO)$_5$</td>
<td>Tol-p</td>
<td>![Graphical representation]</td>
<td>63</td>
<td>259</td>
</tr>
<tr>
<td>3</td>
<td>NBoc\text{$_2$}Cr(CO)$_5$</td>
<td>1-pentyne</td>
<td>![Graphical representation]</td>
<td>60</td>
<td>260</td>
</tr>
<tr>
<td>4</td>
<td>OEt\text{$_2$}Fe(CO)$_4$</td>
<td>CO$_2$Me</td>
<td>![Graphical representation]</td>
<td>93</td>
<td>261</td>
</tr>
</tbody>
</table>
aR = Z-(CH$_2$CH=CH\equivCMe)$_2$Me.
\[
\begin{align*}
\text{(192)} & & \text{Cr(CO)}_5 \\
\text{(193)} &\xrightarrow{\Delta, \text{-CO}} & \text{Cr(CO)}_4 \text{X} \\
\text{(193)} &\xrightarrow{R^l \equiv \equiv R^s} & \text{R}^l \text{Cr(CO)}_4 \\
\text{(194)} & & \text{R}^l \text{Cr(CO)}_4 \\
\text{(195)} &\xleftarrow{X = \text{NR}_2 \text{-CO}} & \text{(196)} \\
\text{(195)} &\xrightarrow{X = \text{OR}'} & \text{(197)} \\
\text{(197)} &\xleftarrow{\text{R}^L \text{Cr(CO)}_3} & \text{(198)}
\end{align*}
\]

\(\text{R}^L = \text{Large substituent}\)

\(\text{R}^S = \text{Small substituent}\)
V. BY REARRANGEMENT

A. Alkyl and Benzyl Aryl Ethers

Alkyl and benzyl aryl ethers undergo acid-catalysed rearrangement to afford phenols. For instance, benzyl phenyl ether under treatment with AlBr₃ in dichloromethane yields exclusively 2-benzylphenol with simultaneous production of phenol\(^{268}\). The ratio of phenol and 2-benzylphenol is hardly affected by the solvent. Other types of catalysts have also been used successfully in this type of rearrangement. For instance, trifluoroacetic acid converts 4-(2′-methyl-but-2′-yl)phenyl benzyl ether (205) to the corresponding phenol 206 (equation 136)\(^{269}\) and over montmorillonite clays, benzyl phenyl ether (207), is converted to 2-benzylphenol (208) (equation 137)\(^{270}\).
B. Allyl Aryl Ethers. Aromatic Claisen Rearrangement

Claisen rearrangements of allyl phenyl ethers to ortho-allylphenols (aromatic Claisen rearrangement) were thoroughly studied before the analogous rearrangements of allyl vinyl ethers. The initial [3,3] step in the Claisen rearrangement of an allyl aryl ether 209 gives an ortho-cyclohexadienone 210, which usually enolizes rapidly to the stable product, an ortho-allylphenol 211 (ortho Claisen rearrangement) (equation 138). If the rearrangement is to an ortho position bearing a substituent, a second [3,3] step followed by enolization leads to the para-allylphenol 212 (para Claisen rearrangement). The ortho Claisen rearrangements predominate in the majority of the cases, but the para process can compete even when both ortho positions are free.

Some examples of this type of transformation are indicated in equations 139–144.

Remarkable improvements have been achieved in the optimization of the rate and yield of these thermal reactions (typically 150–220°C), such as the use of microwave irradiation or catalysts. For instance, allyl phenyl ether at 220°C gives an 85% yield of 2-allylphenol in 6 h, but the reaction time drops to 6 min by using microwave ovens and the yields also increase up to 92%. On the other hand, Lewis acids, such as BCl3, BF3·Et2O, Et2AlCl, TiCl4, and (i-PrO)2TiCl, have been successfully used to catalyse this rearrangement reaction under mild conditions. Other catalysts such as AgI and Pt complexes or zeolites have also been employed.

Few approaches for the development of enantioselective aromatic Claisen rearrangements have been reported. For instance, Trost and Toste proved that europium complexes, Eu(fod)3, induce the diastereoselective Claisen rearrangements for the synthesis of asymmetric phenols. For instance, the cyclic ethers 213 have been transformed into phenols 214 in high yields and excellent ee (equation 145). Rearrangement of acyclic system 215 proved to be a good yielding reaction under these conditions, producing phenol 216 with 91% ee and in 83% yield (equation 146). Taguchi and coworkers used a catechol
monoallyl ether derivative which can form a σ-bond with a chiral boron reagent. For instance, under these conditions, phenol 217 has been converted into catechol 218 with 93% ee and in 97% yield (equation 147).

\[
\begin{align*}
\text{(209)} & \quad \text{[3,3]} \quad \text{(210)} \\
\text{(211)}
\end{align*}
\]

Recently, Wipf and Ribe289 reported a novel tandem process in which water accelerates both a sigmatropic Claisen rearrangement catalysed by Erker’s catalyst290 and a subsequent carbometallation reaction with trimethylaluminium providing optically active phenols. Examples of this tandem process are shown in equations 148–150.

\[
\begin{align*}
\text{(212)}
\end{align*}
\]
\[
\text{MeO} \quad \text{OMe} \quad \text{OH} \quad \text{OMe} \\
\text{MeO} \quad \text{OMe} \quad \text{OH} \\
\text{BnO} \quad \text{NHZ} \quad \text{CO}_2\text{Bu-}t \\
\text{Br} \quad \text{Br} \\
\text{DMF, } \Delta \quad 50\% \\
\text{BnO} \quad \text{NHZ} \quad \text{CO}_2\text{Bu-}t \\
\text{HO} \quad \text{Br}
\]
6. Synthesis of phenols

(142) Toluene, sealed tube, 165 °C

(143)

(144)
Concepción González and Luis Castedo

\[\text{R} = \text{OMe, F} \\
\text{n} = 1–3 \]

\[\text{Ar} = 4\text{-methylphenyl (S,S); 3,5-bis (trifluoromethyl) phenyl (S,S)} \]
6. Synthesis of phenols

1. Me₃Al, Erker's Catalyst (5 mol%), H₂O, CH₂Cl₂, 0°C
2. O₂

75% (75% ee)

1. Me₃Al, Erker's Catalyst (5 mol%), H₂O, CH₂Cl₂, 0°C
2. O₂

75% (80% ee)

1. Me₃Al, Erker's Catalyst (5 mol%), H₂O, CH₂Cl₂, 0°C
2. O₂

78% (75% ee)
In the same way, Brønsted acid catalysts such as trifluoroacetic acid substantially accelerate the Claisen rearrangement of allylphenyl ether. However, the initially formed allylphenols generally react further under the acidic reaction conditions. For instance, crotolyl p-tolyl ether (219) in trifluoroacetic acid affords benzofuran 220 as the main reaction product derived from cyclization of the Claisen rearrangement product 221 (equation 151)291.

![Chemical structure of (219) and reaction products](image)

\[\text{Crotolyl p-tolyl ether (219)} \rightarrow \text{ Benzofuran (220), 69\%} + \text{ Allylphenol (221), 8\%} \]

\[\text{(220), 69\%} \quad \text{(221), 8\%} \]

C. Diaryl Ethers. Smiles Rearrangement

The ether linkage of aryl ethers is considered one of the more stable chemical bonds. In fact, the extreme stability of phenyl ethers has made them important heat-exchange fluids and high-temperature lubricants. However, at high temperatures (>400°C), 2,6-dimethylphenyl phenyl ether (222a) undergoes an exothermic decomposition with the formation of 2-benzyl-6-methylphenol (223a) in 70% yield (equation 152)292. Similarly, ethers 222b–e undergo the same type of transformation yielding the corresponding phenols 223b–e in moderate yield. The mechanism appears to be a radical process initiated by abstraction of a hydrogen atom from a methyl group. The generated benzyl radical undergoes a rearrangement reaction to afford a phenoxy radical, which abstracts a hydrogen atom from another molecule of the starting ether to continue the process.

Under treatment with phenyl sodium, diphenyl ether (224) affords 57% of 2-hydroxybiphenyl (225) (equation 153)293. Equation 154 outlines the mechanistic course of this reaction. The first step is the abstraction of an ortho-hydrogen to the oxygen to afford
6. Synthesis of phenols

226, which generates benzyne 227 by elimination of sodium phenoxide294. Benzyne (227) then reacts with intermediate 226 to give aryl sodium salt 228, which gives 229 by transmetallation. Finally, intermediate 229 affords 2-biphenyloxy sodium (230) and regenerates benzyne (227) to continue the process. Other examples of this rearrangement are given in equations 155–157293.

![Chemical structure](image)

(a) \(R^1 = \text{Me}, R^2 = R^3 = \text{H}; 70\% \)
(b) \(R^1 = R^3 = \text{H}, R^2 = \text{OMe}; 50\% \)
(c) \(R^1 = \text{Ph}, R^2 = R^3 = \text{H}; 50\% \)
(d) \(R^1 = \text{Bn}, R^2 = R^3 = \text{H}; 50\% \)
(e) \(R^1 = R^3 = \text{H}, R^2 = \text{Me}; 50\% \)

The Smiles rearrangement is an intramolecular nucleophilic substitution that follows the pattern given in equation 1585,295. The nucleophilic attack normally requires an electron-withdrawing group (e.g. nitro, sulphonyl or halogen) either in the ortho or the para position on the aromatic ring where the substitution takes place; generally X is a good leaving group (S, SO, SO_2 or O), and Y is a strong nucleophile, usually the conjugate base of OH, NH_2, NHR or SH. The reaction takes place on the carbon directly bonded to the leaving group X^{296}. Equations 159–161 show some examples of this rearrangement.
\[
\text{(224)} \xrightarrow{\text{NaO}} \text{(226)}
\]

\[
\text{NaO} \xrightarrow{\text{PhONa}} \text{(230)} \xrightarrow{\text{(227)}} \text{(226)} \xrightarrow{\text{PhONa}} \text{(228)}
\]

\[
\text{O} \xrightarrow{\text{PhNa, benzene, RT to 70°C}} \text{HO} \]

(154)

(155)
6. Synthesis of phenols

$$\text{PhNa, benzene, RT to 68} \, ^\circ \text{C} \rightarrow \text{PhNa, benzene, 35} \, ^\circ \text{C}$$

$$\text{41\%}$$

$$\text{54\%}$$

$$\text{Ph}$$

$$\text{Ph}$$

$$\text{Ph}$$

$$\text{Ph}$$

$$\text{X}$$

$$\text{Y}$$

$$\text{A}$$

$$\text{B}$$

$$\text{X} = \text{S, SO, SO}_2, \text{O}$$

$$\text{Y} = \text{NH, NR, S, O}$$

$$\text{NaNH}_2, \text{RNH}_2$$

$$\text{94\%}$$

$$\text{R} = \text{CH}_2\text{CH}_2\text{CH}_2\text{NMe}_2$$

$$\text{(156)}$$

$$\text{(157)}$$

$$\text{(158)}$$

$$\text{(159)}$$
D. Dienones. Dienone–Phenol Rearrangement

On acid treatment, cyclohexadienones 231 with two alkyl groups in position 4 undergo 1,2 migration of one of these groups to afford phenolic compounds 232 in good yields (equation 162). This reaction, known as the dienone–phenol rearrangement, is an important method for the preparation of highly substituted phenols that are not readily available by conventional aromatic substitution chemistry. In the overall reaction the driving force is the formation of an aromatic system. Examples of this rearrangement are shown in equations 163–168.
6. Synthesis of phenols

\[\text{AcAc, } H_2SO_4, H_2O, \text{ RT} \] \[\text{100\%} \]

\[\begin{array}{c}
\text{O} \\
\text{Ac}
\end{array} \]

\[\begin{array}{c}
\text{O} \\
\text{Ac}
\end{array} \]

\[\text{HCl, Et}_2\text{O} \]

\[\text{90\%} \]

\[\begin{array}{c}
\text{OH} \\
\text{Ph}
\end{array} \]

\[\begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} \]

\[\begin{array}{c}
\text{AcO} \\
\text{OAc}
\end{array} \]

\[\text{Cl} \]

\[\text{Fe}^{3+}, \text{Montmorillonite K10} \]

\[\text{98\%} \]

\[\begin{array}{c}
\text{OH} \\
\text{CHO}
\end{array} \]

\[\begin{array}{c}
\text{Cl}
\end{array} \]

\[\begin{array}{c}
\text{OAc}
\end{array} \]

\[\text{TsOH, toluene, } \Delta \]

\[\text{50\%} \]
Dienone–phenol rearrangements can also be achieved photochemically. For instance, cyclohexadienones 233 and 234 rearrange upon irradiation at 366 and 300 nm, respectively, to give phenols 235 and 236, respectively, in high yields (75–87%) (equation 169).

E. Phenolic Esters. Fries Rearrangement

Phenolic esters 237 can be rearranged under heating with Lewis acids or Brønsted acids in a synthetically useful reaction known as the Fries rearrangement to afford hydroxyaryl ketones 238 and 239 (equation 170). Among the wide variety of employed acids (AlCl$_3$, HgCl$_2$, SnCl$_4$, FeCl$_3$, BF$_3$, AlCl$_3$–ZnCl$_2$, TiCl$_4$, TsOH, H$_3$PO$_4$, HF, CH$_3$SO$_3$H, etc.) AlCl$_3$ has been the most extensively used.

Two mechanistic pathways are proposed in the literature for the Fries rearrangement: (a) intramolecular310, (b) intermolecular311. In the case of aryl benzoates, the Fries rearrangement has been shown to be reversible312. Both ortho- and para-hydroxyaryl ketones can be produced, and conditions can often be selected to enhance the yield of one of the isomers. The ortho/para ratio depends on the temperature, the solvent and the amount of catalyst used. Though exceptions are known, lower temperatures generally favour the para product and higher temperatures the ortho rearrangement product. For instance, benzoate 240 has been transformed at room temperature into a precursor of the coumarin dehydrogeijerin 241 (equation 171). Similarly, propionate 242 undergoes para Fries rearrangement at room temperature to yield the para-substituted phenol 243 in 97% yield (equation 172). Equations 173–177 show four examples of rearrangements at higher temperatures and in all cases ortho-phenols have been the main reaction product. One exception is the reaction of acetate 244 with ZrCl$_4$ at room temperature to afford in a highly selective way the corresponding ortho-acetylphenol 245 in 97% yield.
Fries rearrangement has generally been carried out using AlCl₃ as a promoter in more than a stoichiometric amount because most Lewis acids are deactivated by the free hydroxy groups of the products. Kobayashi and coworkers reported a catalytic version of this type of reaction using small amount of Sc(OTf)₃. Equation 177 shows an example where
ketone 247 has been obtained in 85% yield from 1-naphthyl acetate 246 using 5 mol% of Sc(OTf)$_3$ at 100°C.

\[
\begin{align*}
\text{OMe} & \quad \text{Et} \\
\text{Et} & \quad \text{OMe}
\end{align*}
\]

\[(242) \quad \xrightarrow{\text{AlCl$_3$, MeNO$_2$, RT}} \quad 97\% \quad (243)\]

\[
\begin{align*}
\text{OH} & \quad \text{MeSO$_3$H/Al$_2$O$_3$, 160°C} \\
\text{O} & \quad \text{O}
\end{align*}
\]

\[(173)316\]

\[
\begin{align*}
i\text{-Pr} & \quad \text{Ph} \\
i\text{-Pr} & \quad \text{Ph}
\end{align*}
\]

\[(174)317\]
6. Synthesis of phenols

\[
\begin{align*}
\text{F} & \quad \text{O} \\
\text{Cl} & \quad \text{OH} \\
\text{AlCl}_3, \ 200^\circ \text{C} & \quad 65\% \\
\end{align*}
\]

\((175)\)

\[
\begin{align*}
\text{F} & \quad \text{O} \\
\text{Cl} & \quad \text{OH} \\
\end{align*}
\]

\((176)\)

\[
\begin{align*}
\text{ZrCl}_4, \ \text{CH}_2\text{Cl}_2, \ 20^\circ \text{C} & \quad 97\% \\
\end{align*}
\]

\((177)\)

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
\end{align*}
\]

\((178)\)
The Fries reaction can also be metal-promoted to afford, under the proper reaction conditions, good yields of specific ortho acyl migration products. For instance, o-bromophenyl pivalate (248) has been treated at -95°C with s-butyllithium to afford o-hydroxy pivalophenone (249) in 76% yield (equation 178)\(^\text{319}\). Similarly, benzoate 250 gave o-hydroxyketone 251 in 82% yield by treatment with n-butyllithium (equation 179)\(^\text{320}\).

\[
\begin{align*}
\text{(248)} & \quad \text{s-BuLi, THF, } -95^\circ\text{C; 2. H}^+ \quad 76\% \\
\text{(249)}
\end{align*}
\]

\[
\begin{align*}
\text{(250)} & \quad 1. \text{n-BuLi, } -100^\circ\text{C, THF, Et}_2\text{O} \quad 82\% \\
\text{(251)} & \quad 2. \text{NH}_4\text{Cl}
\end{align*}
\]

The Fries rearrangement can also be carried out in the absence of a catalyst by photolysis. This reaction, known as the photo-Fries rearrangement\(^\text{321}\), is predominantly an intramolecular free-radical process formed by the initial photolysis of the ester\(^\text{322,323}\). Both ortho and para migrations are observed. The product distribution is strongly dependent...
on the reaction conditions324. Limiting the mobility of the radical pair by increasing the solvent viscosity325 or modifying mass transfer phenomena (using restricted spaces such as cyclodextrins324,326, micellar solutions327 and silica surfaces328) allows modification of the ortho/para ratio. For instance, irradiation of phenylbenzoate (252) in water affords 80\% of 2-hydroxybenzophenone (253) and 20\% of 4-hydroxybenzophenone (254) (equation 180)326c. Nevertheless, the yield of the ortho-phenol 253 can be increased up to 99\% using solid β-cyclodextrin (equation 181)324a. Similarly, phenol 256 has been obtained as the sole isomer from benzoate 255 (equation 182)324a. Equations 183 and 184 are examples of ortho and para rearrangements, respectively.

\[
\begin{align*}
\text{O} & \quad \text{Ph} \\
\text{O} & \quad \text{Ph} \\
\text{(252)} & \text{hv, H}_{2}\text{O} \\
\text{O} & \quad \text{Ph} \\
\text{O} & \quad \text{Ph} \\
\text{(252)} & \text{hv, β-cyclodextrin}
\end{align*}
\]

\[
\begin{align*}
\text{OH} & \quad \text{O} & \text{Ph} \\
\text{OH} & \quad \text{O} & \text{Ph} \\
\text{(253), 80\%} & \quad \text{(253), 99\%} & \quad \text{(254), 20\%}
\end{align*}
\]

\[
\begin{align*}
\text{OH} & \quad \text{O} & \text{Ph} \\
\text{OH} & \quad \text{O} & \text{Ph} \\
\text{(254), 1\%}
\end{align*}
\]

\[
\begin{align*}
\text{OH} & \quad \text{O} & \text{Ph} \\
\text{OH} & \quad \text{O} & \text{Ph} \\
\text{(256)} & \text{hv, β-cyclodextrin, >99\%}
\end{align*}
\]
VI. ACKNOWLEDGEMENT

We are indebted to the Xunta de Galicia (PGIDT99-PX120904B).

VII. REFERENCES

15. DE Patent 727109 (1944); *Chem. Abstr.*, 38, 2667 (1944).
6. Synthesis of phenols

6. Synthesis of phenols

84. M. Bianchi, M. Bonchio, V. Conte, F. Coppa, F. Di Furia, G. Modena, S. Moro and S. Stan-
(b) T. Jintoku, K. Takaki, Y. Fujiiwara, Y. Fuchita and K. Hiraki, Bull. Chem. Soc. Jpn., 63,
2511 (1996).
(2000).
96. E. Negishi, in Comprehensive Organometallic Chemistry (Eds. G. Wilkinson, F. G. A. Stone
(d) C. Lane and V. Snieckus, Synlett, 1294 (2000).
33, 2204 (1990).
6. Synthesis of phenols

Concepción González and Luis Castedo

(b) T. M. Harris and M. P. Wachter, Tetrahedron, 26, 5255 (1970).
(b) D. Leuchs, Chem. Ber., 98, 1335 (1965).
6. Synthesis of phenols

I. INTRODUCTION

Hydroxyarenes become stronger acids upon electronic excitation\(^1\)–\(^5\). Such a property of an aromatic molecule is usually described as ‘photoacidity’, and the molecules undergoing such a transition upon electronic excitation are usually named ‘photoacids’. Photoacids are Brønsted acids, and their excited state acidity may be described in terms used for ground state acids as were defined by Brønsted some 80 years ago\(^6\),\(^7\). Following Brønsted, one usually associates acidity with a proton-transfer reaction where a proton is transferred from a proton donor (an acid) to a proton acceptor (a base) (equation 1).

\[
AH (\text{acid}) + B (\text{base}) \iff A^- (\text{base}) + BH^+ (\text{acid})
\]

(1)

The reversible nature of acid–base reactions implies the existence of conjugated acid–base pairs, i.e. \(A^-\) is the conjugate base of \(AH\) and \(AH\) is the conjugate acid of \(A^-\). A more
modern observation is that proton transfer proceeds most often along a hydrogen bond, formed between the proton donor and the proton acceptor so that the reactive coordinate where proton transfer occurs is usually of the type $A-H^+ \cdots B$. The hydrogen-bonding interaction may be viewed as a relatively weak interaction between the proton donor and the proton acceptor through the sharing of a hydrogen atom.

Proton-transfer reactions and hydrogen-bonding interactions may occur within one molecule or between two molecules (intra- and intermolecular proton transfer, respectively). Photoacids such as the phenols or the naphthols readily undergo intermolecular proton transfer reactions in aqueous solutions. When the proton is transferred to a solvent molecule the reaction is sometime called a ‘proton-transfer-to-solvent’ reaction (PTTS reaction). In non-aqueous solutions, hydroxyarenes form moderately strong hydrogen bonds of the type: $O-H^+ \cdots O$ which usually do not lead to a full proton-transfer reaction either in the ground or the excited state of the photoacid.

The discovery of photoacidity was made by Förster more then 50 years ago. Förster correctly explained the unusual large Stokes shift found in the fluorescence of several classes of aromatic dyes, including 1- and 2-naphthol derivatives as an indication of excited state proton-transfer reaction which results in the formation of the molecular anion still in the excited state. Thus, it become clear that excited-state proton transfer may compete with other radiative and non-radiative decay routes of the photoacid. The main modern-day importance of photoacids lies in their ability to initiate and then to follow acid–base reactions so they may be regarded as optical probes for the study of general proton-transfer reactions.

Over the years the field of photoacids (and photobases) has been reviewed many times. The most extensive list of photoacids appeared, so far, in a 1976 review by Ireland and Wyatt. The hydroxyarenes are the most widely used photoacids. In polar solutions they may undergo an excited-state proton-transfer reaction according to the general reaction scheme of equations 2–5.

a. Electronic excitation:

$$\text{ROH} \xrightarrow{hv} (R^*\text{OH})_{\text{LE}}$$ (2)

b. Partial intramolecular charge transfer assisted by the solvent:

$$(R^*\text{OH})_{\text{LE}} \rightarrow (R^*\text{O}^+\cdot H^+ \cdots B)_{S_1}$$ (3)

where LE denotes the locally excited singlet state and S_1 denotes the first singlet state of the photoacid in polar solvents. The S_1 state may be directly accessed from the ground state.

c. Formation of a reactive coordinate along a hydrogen bond between the photoacid and a base molecule:

$$(R^*\text{OH}^+)_{S_1} + B \rightarrow (R^*\text{O}^+\cdot H^+ \cdots B)_{\text{hb}}$$ (4)

The base molecule, B, may either be a solvent or a solute molecule and hb denotes the hydrogen-bonded reaction complex.

This stage may involve some further electronic rearrangement in the photoacid toward the formation of the photobase.

d. Photoacid dissociation and ion-pair recombination:

$$\frac{k_d}{k_r} \frac{k_s}{k_D} \frac{[R^*\text{O}^- \cdots H^+ \cdots B]_{\text{ip}}}{R^*\text{O}^- + \cdot \text{HB}}$$ (5)
7. UV-visible spectra and photoacidity of phenols, naphthols and pyrenols

where ip denotes the ion-pair state, which may be either solvent separated or a contact pair, \(k_d\) and \(k_r\) are the ‘on-contact’ rate constants for the photoacid dissociation and ion-pair recombination, respectively, while \(k_S\) and \(k_D\) are the diffusion-limited rate constants for ion-pair dissociation to infinite separation and ion-pair formation, respectively\(^5\).

The charge separation stage, \(hb \rightarrow ip\), may involve considerable electronic rearrangement in the photobase.

Some of the most common hydroxyarenes\(^\text{5,8–17}\) used as photoacids are listed in Figures 1–3.

It is the aim of this chapter to describe some of the modern views on the origins of photoacidity of simple hydroxyarenes. Photoacids were extensively studied in the gas phase in clusters of various sizes including small to medium size clusters of ammonia\(^\text{18–23}\), water\(^\text{18,20,24–27}\) and methanol\(^\text{28}\). A second branch of research was carried out in solution and has been focusing on the various dynamic aspects of the proton-transfer reaction from photoacids observed mainly in aqueous solutions\(^\text{5,10–17}\). Phenol and phenol derivatives (Figure 1) due to their relatively small molecular weight and their relatively high vapor pressure\(^\text{23,29,30}\) have been mainly used in gas-phase research. Naphthols and naphthol derivatives (Figure 2), having intermediate molecular weights and strong photoacidities, have been studied both in the gas phase\(^\text{18–29}\) and in the liquid phase\(^\text{30–51}\). The pyrenols (Figure 3) have been almost exclusively studied in the liquid phase due to their low vapor pressure and their excellent properties as dye molecules\(^\text{5,52–66}\).

These two main branches of the study of photoacids have been carried out mostly in parallel. The effort to converge the two methodologies into one coherent view of photoacidity is not always apparent in the literature and is far from being concluded. Indeed, much of the issues described in this chapter are still in debate or are altogether unresolved.

![FIGURE 1. Pyrene derivatives used as photoacids: 1-hydroxypyrene (1HP), 8-hydroxy-1,3,6-tris(N,N-dimethylsulfonamido)pyrene (HPTA) and 8-hydroxypyrene 1,3,6-trisulfonate (HPTS)](image)

II. THE THERMODYNAMIC ASPECTS OF PHOTOACIDITY

Photoacidity is most often described by the Förster cycle diagram (Figure 4)\(^2\). Following Förster, photoacidity is defined in terms of \(K^*_a\), the excited state equilibrium constant for the dissociation reaction of the photoacid.
FIGURE 2. Common phenols used as photoacids: phenol (Ph), 2-cyanophenol (2CPh), 3-cyanophenol (3CPh) and 4-cyanophenol (4CPh)

FIGURE 3. Naphthol derivatives used as photoacids: 1-naphthol (1N), 1-naphthol-3,6-disulfonate (3,6S1N), 1-naphthol-4-sulfonate (4S1N), 4-chloro-1-naphthol (4Cl1N), 5-cyano-1-naphthol (5C1N), 2-naphthol (2N), 2-naphthol-3,6-disulfonate (3,6DS2N), 2-naphthol-6,8-disulfonate (6,8DS2N), 5-cyano-2-naphthol (5C2N), 8-cyano-2-naphthol (8C2N) and 5,8-dicyano-2-naphthol (5,8DC2N)
7. UV-visible spectra and photoacidity of phenols, naphthols and pyrenols

\[\text{FIGURE 4. Schematic representation of energy levels of a photoacid RO}^*\text{H and its conjugate base R}^*\text{O}^- + \text{H}^+ \]

\[\text{hv}_1 \quad \text{hv}_2 \]

\[\text{R}^*\text{OH} \quad \text{RO}^- + \text{H}^+ \]

\[|S_1> \quad |S_0> \]

\[\text{ROH} \]

Photoacidity occurs, per definition, when the excited molecule becomes a stronger acid in the excited state as compared to its ground state acidity, so \(pK^*_a < pK_a \), where \(pK_a \) is the equilibrium constant for the proton dissociation reaction in the ground state. For phenols, naphthols and pyrenols, the enhancement in the acidity constant \(K_a \) is between 5 (1HP) and 12 (3,6DC2N) orders of magnitude, which at room temperature translates into a free-energy increase of 7 to 16 kcal mol\(^{-1}\) in favor of the dissociation reaction in the excited state of the photoacid. The Förster cycle is a thermodynamic cycle. It connects between the optical properties of the photoacid and its conjugate photobase and the thermodynamic properties of the excited-state proton-transfer reaction. The main practical use of the Förster cycle is to get a rough estimation (usually, Förster cycle \(pK^*_a \) values of hydroxyarenes come within one to two \(pK_a \) units of the \(pK^*_a \) values found by direct time-resolved measurements) of the excited-state proton acidity of the photoacid but it does not give much clue as to the molecular process(es) which are involved in photoacidity. Nevertheless, the Förster cycle makes an excellent starting point for the discussion of photoacidity, as it allows the estimation of the excited-state acidity of many photoacids from simple, readily conducted optical measurements and establishes the idea that photoacids may be treated from a thermodynamic point of view similarly to ordinary ground-state acids.

Figure 5 shows the absorption spectra of phenol and the phenolate anion in water. The first three electronic transitions are shown for the base form while the same spectral range covers the first two electronic transitions of the acid. The electronic transitions of the acid are blue-shifted compared to the electronic transition of the base. In both cases the oscillator strength of the \(S_1 \) transition is much weaker than that of the \(S_2 \) transition. The first two electronic transitions of phenol and phenolate ion are assigned \(^1L_a (S_1) \) and \(^1L_a (S_2) \) transitions according to Platt notations\(^{68}\). Fluorescence is from \(S_1 \) and obeys the Kasha rule, which states that internal-conversion processes are much faster than the \(S_n \) radiative-decay rate back to the ground state. Thus, ordinary Förster-cycle calculations only consider the energies of the \(S_1 \) transitions of the photoacid and its conjugate photobase anion. Photoacidity of the first electronic triplet state is not considered in this review.

Figures 6 and 7 show the spectral behavior of HPTA, which is a much stronger photoacid than phenol having \(pK^*_a = -0.8 \) compared to \(pK^*_a \) of about 4 for phenol. The photoacidity of HPTA is sufficiently large for HPTA to dissociate in pure methanol, while proton dissociation of excited phenol is not observed even in water.

Weller\(^{5,32,33}\) has shown that photoacids may be titrated while in the excited state by monitoring their fluorescence intensity as a function of the pH of the solution. The fluorescence titration curves, after lifetime correction, yield similar information to the information gathered by acid–base titrations in the ground state. Thus, the gradual addition of a strong
FIGURE 5. Absorption spectra of phenol (—) and phenolate ion (-----) in water: acid-form pH = 6.0, base-form pH = 12 (from Reference 67)

mineral acid such as HCl to a solution of a photoacid gradually shifts the acid–base equilibrium in both the ground and excited state of the photoacid toward the acid form when the titration starts in basic conditions. The shift in the ground-state equilibrium populations of the acid and base forms of HPTA was monitored by absorption spectroscopy (Figure 6), while the corresponding shift in the excited-state population as a result of
FIGURE 7. Excited-state acid–base equilibrium of HPTA in MeOH followed by the fluorescence titration of the base form. The base was titrated by trifluoromethanesulfonic acid. Acid band maximum is at 466 nm and base band is at 553 nm. Notice the red shift in the fluorescence spectra compared to the absorption spectra shown in Figure 6 (from Reference 67)

the change in the pH of the solution was monitored by fluorescence spectroscopy and is shown in Figure 7. Only \(S_1 \) transitions are depicted.

The \(pK_a^* \) found in this way may be directly compared with Förster-cycle calculations. However, straightforward utilization of the fluorescence titration method is usually limited to moderately strong photoacids due to partial deactivation processes of the photoacid occurring in very concentrated mineral acid solutions. The most accurate method of finding the \(pK_a^* \) of a photoacid is by direct kinetic measurements of the excited-state proton dissociation and recombination rates\(^{58-60}\). However, these measurements are not trivial and are limited to a relatively small number of photoacids where accurate measurement of the excited-state reversible dynamics of the proton-transfer reaction is possible.

Förster-cycle calculations thus appear to be the most general way for estimating the \(pK_a^* \) values of photoacids. There was some confusion in the past regarding the practical method for estimating the \(0-0 \) transitions of the photoacid in solution. Using either the absorption spectra or the fluorescence spectra alone usually introduces considerable errors into the calculation, each set of data producing a different \(pK_a^* \) value. Estimating the \(0-0 \) transitions from the crossing points between the absorption and the fluorescence spectra of the photoacid and the photobase is not always possible. Weller\(^ {69} \) suggested averaging the transition energies of absorption and fluorescence taken at the peak intensities of the transition bands. The averaging procedure is carried out separately for the photoacid transitions and for the base transitions. Förster-cycle calculations with the averaged transition-energy values is usually found to fall within one \(pK_a^* \) unit of the true \(pK_a^* \) value found by direct measurements.

The absorption maxima of the phenol and phenolate anion in water appear to be at 270 nm and 286 nm, respectively. Introducing these values into the Förster cycle together with the known ground-state \(pK_a \) of phenol (9.82)\(^ {70} \) gives a \(pK_a^* \) of 5.7, which underestimates the acidity of the excited phenol. Introducing the values of the fluorescence maxima at 229 nm (phenol) and 336 nm (phenolate ion) gives a \(pK_a^* \) value of 2.3, which overestimates the photoacidity of phenol. Introducing the averaged transition energies gives a \(pK_a^* \) of 4.0, which should be a good estimation for the photoacidity of phenol. The averaging
procedure seems even to work in cases where the emitting state is thought to be different than the state directly accessed by absorption. An example of this is 1-naphthol, where the averaged Förster-cycle value is about -0.5 compared to the directly measured value of -0.2.

Most of the error in the Förster-cycle calculations appears to be instrumental, i.e. the error introduced by uncertainties in the spectroscopic measurements of the absorption and fluorescence maxima. Misreading or an uncalibrated instrumental reading of 1 nm at 275 nm will result in an error of 0.3 pK_a^* units. The severity of this problem tends to relax by the averaging procedure outlined above, which usually results in ‘cancellation of errors’. This is especially important when the reading errors are systematic. Even so, deviations of up to one pK_a^* unit between the spectroscopic data of different laboratories appear to be common. A large data base of pK_a^* values from various sources was summarized elsewhere

<table>
<thead>
<tr>
<th>Photoacid</th>
<th>pK_a</th>
<th>pK_a^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>9.8270</td>
<td>471</td>
</tr>
<tr>
<td>2-Cyanophenol</td>
<td>6.9772a</td>
<td>0.6672a</td>
</tr>
<tr>
<td>3-Cyanophenol</td>
<td>8.3472a</td>
<td>1.8972a</td>
</tr>
<tr>
<td>4-Cyanophenol</td>
<td>7.7472a</td>
<td>3.3372a</td>
</tr>
<tr>
<td>1-Hydroxypyrene</td>
<td>8.7112</td>
<td>4.169</td>
</tr>
<tr>
<td>HPTS</td>
<td>8.059</td>
<td>1.459</td>
</tr>
<tr>
<td>HPTA</td>
<td>5.667</td>
<td>-0.867</td>
</tr>
<tr>
<td>1-Naphthol</td>
<td>9.475</td>
<td>-0.225</td>
</tr>
<tr>
<td>1-Naphthol-3,6-disulfonate</td>
<td>8.5674</td>
<td>1.142</td>
</tr>
<tr>
<td>5-Cyano-1-naphthol</td>
<td>8.547</td>
<td>-2.847</td>
</tr>
<tr>
<td>1-Naphthol-4-sulfonate</td>
<td>8.2775</td>
<td>-0.175</td>
</tr>
<tr>
<td>2-Naphthol</td>
<td>9.671</td>
<td>2.89</td>
</tr>
<tr>
<td>5,8-Dicyano-2-naphthol</td>
<td>7.89</td>
<td>-4.59</td>
</tr>
<tr>
<td>5-Cyano-2-naphthol</td>
<td>8.759</td>
<td>-0.39</td>
</tr>
<tr>
<td>8-Cyano-2-naphthol</td>
<td>8.359</td>
<td>-0.49</td>
</tr>
<tr>
<td>2-Naphthol-6,8-disulfonate</td>
<td>8.9974</td>
<td>0.772b</td>
</tr>
</tbody>
</table>

It makes sense to start the discussion on the molecular-level processes which are responsible for photoacidity by first analyzing Brønsted acidity in general.

The attachment of a proton to a negatively charged molecule or to a neutral molecule is always a very exothermic process in the gas phase, the proton affinity (PA) of most common organic molecules being between 160 and 220 kcal mol$^{-1}176,77$, where proton affinity is the energy gained in the gas phase in the process depicted in equation 6

$$M + p^+ \rightarrow Mp^+ \quad (6)$$

where M is the isolated molecule in the gas phase and p^+ is the proton. When the proton is attached in the gas phase to a negative ion such as the phenolate anion, one may express
the proton affinity of the anion using the sum of the processes given in equation 7.

\[
\begin{align*}
\text{ROH} & \rightarrow \text{RO}^- + \text{H}^+ \\
\text{H}^- & \rightarrow \text{H}^+ + \text{e}^- \\
\text{RO}^- + \text{e}^- & \rightarrow \text{RO}^- \\
\text{ROH} &= \text{H}^+ + \text{RO}^-
\end{align*}
\]

(7)

It follows that the proton affinity of RO\(^-\) in the gas-phase reaction \(\text{RO}^- + \text{H}^+ \rightarrow \text{ROH}\) may be formally broken down into three separate contributions: the formation of the ROH bond, \(D(\text{ROH})\), the attachment of an electron to the proton, \(I(\text{H})\), and the ionization of the molecular anion, \(E(\text{RO}^-)\), to give the radical. The first two processes are exothermic and the third one is endothermic. The proton affinity is given as their sum in equation 8,

\[
\text{PA}(\text{RO}^-) = D(\text{ROH}) + I(\text{H}) - E(\text{RO}^-)
\]

(8)

where \(I(\text{H})\) is equal to the ionization energy of the hydrogen atom and \(E(\text{RO}^-)\) is equal to the electron affinity of the RO\(^-\) radical. The gas-phase proton affinity of anions is much larger than the proton affinity of their corresponding neutral molecules. Two examples are: \(\text{PA}(\text{H}_2\text{O}) = 167 \text{ kcal mol}^{-1}\), \(\text{PA}(\text{OH}^-) = 391 \text{ kcal mol}^{-1}\) and \(\text{PA}(\text{HF}) = 117 \text{ kcal mol}^{-1}\), \(\text{PA}(\text{F}^-) = 371 \text{ kcal mol}^{-1}\). The difference between the proton affinities of the neutral molecules and those of their corresponding anions are usually more than 200 kcal mol\(^{-1}\) and is attributed mainly to the neutralization of the charge of the proton by the anion. The proton affinity of the phenolate anion is about 350 kcal mol\(^{-1}\), which is significantly less than the typical proton affinities of small anions, the difference between \(\text{PA}(\text{OH}^-)\) and \(\text{PA}(\text{PhO}^-)\) being 41 kcal mol\(^{-1}\). This is partly due to the stabilization energy of the phenolate anion by resonance in the phenolate ion which shifts some negative charge away from the oxygen atom and delocalizes it on the benzene ring. One may conclude that Brønsted basicity rather than Brønsted acidity is the fundamental property of neutral molecules and negative ions in the gas phase, and that molecular properties and charge distribution affect the inherent gas-phase basicity of molecular anions. In situations where a second base is present in the gas phase, a proton-transfer reaction (equation 9) may occur:

\[
\text{ROH} + \text{B} \leftrightarrow \text{RO}^- + \text{BH}^+
\]

(9)

The free-energy change, \(\Delta G\), of such a reaction in the gas phase is simply \(\text{PA}(\text{RO}^-) - \text{PA}(\text{B})\). When \(\text{B}\) is \(\text{OH}^-\) and \(\text{ROH}\) is phenol, then \(\Delta G_g\) is \(\text{PA}(\text{PhO}^-) - \text{PA}(\text{OH}^-) = -41 \text{ kcal mol}^{-1}\), so in this reaction the phenol molecule acts as the Brønsted acid and the \(\text{OH}^-\) anion as the Brønsted base. Clearly, relative proton-affinity values determine the relative acidity scale of molecules in the gas phase.

Brønsted acidity comes into play in condensed phases, where proton dissociation is enhanced by the solvent or by other solute molecules which act as proton acceptors (bases) and stabilize the charge of the bare proton. The acid dissociation of phenol in solution may be written as in equation 10,

\[
(\text{PhOH})_s = (\text{PhO}^-)_s + (\text{H}^+)_s
\]

(10)

where \(s\) denotes the fully solvated (equilibrium solvation) species. The overall free-energy change (and hence the proton dissociation constant, see below) following the proton
dissociation reaction in a solvent s is given by equation 11,

$$\Delta G_s = \Delta G_g + \Delta G_t(\text{PhO}^-) + \Delta G_t(\text{H}^+) - \Delta G_t(\text{PhOH}) \quad (11)$$

where ΔG_g is the free-energy change upon proton dissociation in the gas phase and $\Delta G_t(X)$ is the free-energy change upon transferring the reactant X from the gas phase to solution.

The conventional thermodynamic description of an acid dissociation in solution is by the equilibrium constant of the dissociation reaction (equation 12),

$$K_a = [\text{RO}^-][\text{H}^+]/[\text{ROH}] \quad (12)$$

where K_a is given by equation 13,

$$K_a = \exp[\Delta G_s/RT] \quad (13)$$

from which equation 14 follows,

$$pK_a = \Delta G_s/\ln(10)RT = \Delta G_s/2.3RT \quad (14)$$

It is usually extremely difficult to calculate ΔG_s of ground-state acids from first principles with uncertainty of less than several kcal mol$^{-1}$, which translates into uncertainty of several pK_a units. In the excited state an additional difficulty involves the accurate electronic description of the excited state, which makes the task of calculating the pK_a^* of a photoacid even tougher. A recent attempt78 to calculate the excited-state pK_a^* of phenol resulted in a value larger by more than 4 pK_a units than the experimental one (a value of $pK_a^*(\text{calc}) = -0.2$, compared to the experimental value of about 4). A very recent calculation of the ground-state dissociation constant of phenol also resulted in overestimation of the dissociation constant, giving 7.2 compared to the experimental value of about 10.31

To have a feeling for the computational difficulties involved in this type of calculation equation 11 may be rewritten as equation 15:

$$\Delta G_s = PA(\text{PhO}^-) - \Delta G_t(\text{H}^+) + \Delta G_t(\text{PhO}^- - (\text{phOH})) \quad (15)$$

For phenol, PA (phenolate) = 350 kcal mol$^{-1}$, ΔG_t of the proton is about 260 kcal mol$^{-1}$ and $\Delta G_t(\text{PhO}^- - (\text{phOH}))$ may be roughly estimated assuming that it is mainly given by the Born free-energy of solvation of charged cavities immersed in a dielectric continuum (equation 16),

$$\Delta G_{\text{Born}} = e^2/2(1 - 1/\varepsilon_s)(1/r_B) \quad (16)$$

Here e is the electron charge, ε_s is the static dielectric constant of the solvent and r_B is the radius of the Born cavity around the charge, which may be approximated by the radius of the isolated ion. The solvation (Born) energy is calculated for a transfer from vacuum conditions to the solvent.

Substituting in equation 11 the known experimental parameters for phenol dissociation ($\Delta G_s = 13.8$ kcal mol$^{-1}$ calculated from the ground-state equilibrium constant, $pK_a = 10.0$), $\Delta G_t(\text{PhO}^- - (\text{phOH}))$ of the phenolate/phenol system is about -76 kcal mol$^{-1}$, which is about 10% less than the accepted value for the electrostatic solvation energy of the chloride anion in water, $\Delta G_s(\text{Cl}^-) = -85$ kcal mol$^{-1}$. These simple considerations imply that the $\Delta G_t(\text{PhO}^- - (\text{phOH}))$ contribution to the overall free energy of solvation is largely electrostatic, and that relatively small differences in the gas-phase proton affinity of the base and in specific solvent–solute interactions of the photoacid and the base determine the relatively narrow (in free-energy units) acidity scale in aqueous solution. It
is clear that the calculation of the absolute pK_a values in solution from first principles is a formidable task if one insists that the calculated pK_a values should exactly reproduce the experimental ones. A one-pK_a-unit error in the calculated pK_a translates into a mere 1.3 kcal mol$^{-1}$ error in the calculated overall stabilization energies of all species involved in the proton-dissociation reaction, each of these stabilization energies being about two orders of magnitude larger than the desired error bars.

This situation considerably improves if one limits oneself to the calculation of the relative acidity of the excited state compared to the acidity in the ground state. It is clear that photoacidity depends on the difference between ground- and excited-state free energies of solvation. Of all the parameters appearing in equation 12 only $\Delta G(\text{H}^+)_{t}$ does not depend on the electronic state of the photoacid:

$$pK^*_a - pK_a = (\Delta G^*_s - \Delta G_s)/2.3RT = (\text{PA}(\text{R}^+\text{O}^-) - \text{PA}($$

$$-$$

$$+ \Delta G_i((\text{R}^+\text{O}^-) - (\text{RO}^-)) + \Delta G_i((\text{ROH}) - (\text{R}^+\text{OH}))/2.3RT \quad (17)$$

Equation 17 may be viewed as an explicit form of the Förster cycle. It depends on both intramolecular and intermolecular factors which determine the extent of the photoacidity. The first factor is the difference between the excited-state and the ground-state proton affinities of the photobase. This difference will be equal to the difference in the intramolecular stabilization of the proton upon the electronic excitation of the acid, and will depend, in general, on the quantum-mechanical properties of the first excited electronic state of the photoacid. The second factor is the difference in the solvation energies of the base and the photoacid upon electronic excitation. The magnitude of the solvation-energy terms will depend in general both on the solvent and the solutes and will depend on the nature of the first electronic state of the photoacid and its conjugate base.

The traditional approach has been to define photoacidity as an intramolecular property of the photoacid10,12,13,79,80. In terms of equation 17, this approach places the main reason for photoacidity in the reduced proton affinity of the molecular anion in the electronic excited state. Alternatively, this means that photoacidity is mainly the result of the reduction in the dissociation energy of the photoacid in the gas phase upon electronic excitation. What is the reason behind this reduced proton affinity of the photobase?

There are two views regarding this scenario. The traditional view has been to ascribe photoacidity mainly to the increased reactivity of the photoacid in the excited state brought about by charge migration from the non-bonding electrons of the oxygen atom to the aromatic π system of the photoacid (n\rightarrowπ* transition), thus weakening the O$-$H bond and making the photoacid a stronger acid in the excited state. The aromatic residue is viewed in this approach as becoming more electronegative in the excited state, shifting some electron density away from the oxygen atom, thus making it a weaker base80,81. This intramolecular charge redistribution following electronic excitation is stabilized by polar solvents. This view of photoacidity is portrayed in Figure 8. The increased acidity of 2-naphthol in the excited state is rationalized by assuming that a partial positive charge develops on the oxygen atom and a partial negative charge develops on the distal aromatic
ring of the naphthol. The oxygen atom then becomes partially ‘repulsive’ toward the proton, which in turn explains the rapid dissociation of the proton observed in the excited state.80,81

A second, very recent view of photoacidity places the main electronic rearrangements within the product side of the dissociation reaction (the photobase)66,77,82. This view is corroborated by ab initio and semi-empirical calculations of the electronic distribution of several photoacids and photobases which show the excited state of the photobase to have a much larger charge-transfer character than the corresponding electronic state of the photoacid66,77. No significant n–π* transition was observed in the photoacid side of phenol and pyrenol. According to this recent view of photoacidity, photoacids become stronger acids in the excited state because the photobase becomes a much weaker base in the excited state. It is clear from the foregoing discussion that both scenarios fall within the arguments leading to equation 17 and define acidity in general terms. Rather, the two scenarios differ in the details of the molecular mechanism which is responsible for the proton affinity of the photobase being lower in the excited state with respect to the ground state: Is it because the excited base is less reactive toward the proton due to a larger internal stabilization energy of the negative charge and hence the smaller proton affinity (second scenario), or is the proton affinity of the excited anion smaller because the formed photoacid is less stable and more reactive (first scenario)? There is already a debate developing over this second recent scenario66,82: Is it or is it not a true revisionist description of photoacidity? Clearly, this question goes back to the basic definition of Brønsted acidity: Is acidity some inherent property of the acid or is it just reflecting the low reactivity of the base toward the proton? In other words, is it possible to define an acidity scale based entirely on the properties of the acid? And, by doing so, is it possible to separate between the actual proton-transfer act, which clearly depends also on the stabilization energy of the base (both internal (gas phase) and external (solvation) energies), and the property we call ‘acidity’? Excited-state proton transfer may or may not happen during the lifetime of the excited state, depending on the polarity of the solvent. So should it not be better to concentrate on the intramolecular processes occurring at the acid side regardless whether they lead to an observed proton-transfer reaction? In other words, is there a better way to define photoacidity than by using Brønsted-type terminology and the pKₐ scale?

Aside from these fundamental questions, some more questions arise from the practical difficulty in exactly calculating the Förster-cycle parameters of a photoacid from first principles (equation 17). From a thermodynamic point of view, in order to justify a product-side-driven reaction it is not sufficient to identify a larger electronic rearrangement in the excited state of the base compared with that found in the excited acid side. One rather has to show that both internal energies and solvation energies of the photobase are larger than in the ground state and are driving the proton dissociation reaction, and so are the main reason behind the enhancement in the acidity of the photoacid. In this stage one cannot conclude with certainty from either theoretical or experimental considerations that this is indeed the general situation which accounts for photoacidity (see the following section). In contrast, it is rewarding to point out several experimental observations which, although they do not prove, point out that both the acid side and the base side are active in determining the extent of photoacidity of hydroxyarenes in solution. The first observation, which probably has led to the traditional view of photoacidity, is that most of the enhanced acidity of excited hydroxyarenes may be traced back to the increase in the dissociation rate of the photoacid and, to a much lesser extent, to the decrease in the rate of the proton recombination to the photobase. Taking HPTS as an example, the dissociation rate of the acid on contact (i.e. excluding the effect of the electrostatic attraction between the proton and the anion) in the excited state increases by about 5 orders of magnitude, from about 10⁵ s⁻¹ to about 10¹⁰ s⁻¹. At the same time, the proton recombination rate to the
photobase decreases by about 2 orders of magnitudes, from less than 10^{12} s$^{-1}$ to about 3×10^9 s$^{-1}$. For 1-naphthol the situation is even more extreme. The dissociation rate of the photoacid increases by about 8 orders of magnitude while the recombination rate of the proton with the photobase decreases by less than 2 orders of magnitude. Clearly, the main dynamic effect appears from the photoacid side and not from the photobase side. However, this observation is by no means a general rule of photoacidity. There are good indications that the extreme excited-state acidity of protonated amine photoacids, such as the protonated 1-aminopyrene photoacid,15 comes from a very large reduction in the photobase reactivity, while the dissociation rates of the photoacids do not increase dramatically in the excited state and are typically two orders of magnitudes smaller than the dissociation rates of hydroxyarene photoacids having similar pK_a^+ values.83.

The second observation concerns the increase in the hydrogen-bonding interaction of the O–H moiety of the hydroxyarene. Several observations of this effect were reported in the past, for phenol, naphthol and pyrenol derivatives. Perhaps the most direct observation concerns the red shift observed in the IR absorption frequency of the complexed O–H bond. A shift of about 250 cm$^{-1}$ was observed for O–H···O and O–H···N type bonds of 1:1 complexes of 1-naphthol with water and ammonia when 1-naphthol was electronically excited. This shift translates to an about 0.7 kcal mol$^{-1}$ increase in the hydrogen-bonding interaction in the excited state of the photoacid. A similar effect was observed in solution by Weller for the system 1-hydroxypyrene complexed with pyridine in methylcyclohexane.5. Other observations include phenol and 1- and 2-naphthol complexed with dioxane in isooctane34, and HPTA complexed with dioxane and DMSO in dichloromethane and dichloroethane.84 In all cases the hydrogen-bonding interactions of the photoacid were found to increase upon electronic excitation by 0.5–3 kcal mol$^{-1}$. No proton transfer was observed in these systems.

The increase in the hydrogen-bonding interaction in the electronic excited state of the photoacid is a very convincing indication of stronger hydrogen bonds as compared to the ground-state situation. According to the widely accepted model of Pimentel85,86 for the effect of the hydrogen-bonding interaction on the electronic transitions from and to the ground electronic state of the chromophore, a situation where both the absorption and the fluorescence spectra are red-shifted, and the fluorescence shift being the larger one, can only arise from the hydrogen bond being stronger in the excited state. This is indeed the situation for 1- and 2-naphthol and HPTA. Finally, the spectral shift of the photoacid due to polar interactions with the solvent may be correlated with empirical solvent parameters in a procedure suggested by Kamlet and Taft and their coworkers (the K–T analysis$^{87–89}$, see below). Such correlations usually result in a much larger effect of solvent basicity (β factor) on the fluorescence spectra of the hydroxyarene than the solvent basicity effect on the absorption spectra, indicating again, according to Pimentel’s model85,86, stronger hydrogen bonds in the excited state of the acid. It does appear, then, that the O–H moiety of the hydroxyarenes forms stronger hydrogen bonds in the excited state, implying photoacidity emerging, at least partially, from the photoacid side. A correlation between the aqueous pK_a values of various acids and the strength of the hydrogen-bonding interaction of their acidic proton was demonstrated in the solid state by NMR measurements, giving some direct evidence that stronger acids form stronger hydrogen bonds.89 The NMR measurements have been mainly carried out in non-polar environments which do not support the ionization process involved in the proton-dissociation reaction of hydroxyarenes.

The relative strength of the hydrogen-bonding interactions may also be estimated indirectly by correlating their effect on the optical transition frequencies of the chromophore. In the Kamlet–Taft (K–T) analysis$^{87–89}$, any solvent-influenced property of the solute...
may be correlated using a multi-parameter fit (equation 18),

\[P_{s-s} = P^{o}_{s-s} + s\pi^* + a\alpha + b\beta \]

(18)

where \(P_{s-s} \) is the measured solvent-influenced property of the solute; \(P^{o}_{s-s} \) is the numerical value of the chosen solute property in cyclohexane; \(\pi^* \) is the normalized solvent polarity scale; \(\alpha \) and \(\beta \) are the solvent-acidity and the solvent-basicity scales, respectively; \(s, a \) and \(b \) are solute-dependent specific numerical coefficients, which characterize the solute molecule. The \(\pi^* \), \(\alpha \) and \(\beta \) parameters are assumed to be independent of each other (orthogonal) and additive, i.e. an ideal binary mixture of two solvents should correlate according to their combined values of \(\pi^* \), \(\alpha \) and \(\beta \) weighted by their relative composition in the solvent mixture.

Figure 9 shows an example of a correlation of the spectral shift of the peak fluorescence frequency of HPTA photoacid with the K–T parameters of several organic solvents. Most of the investigated solvents did not support proton dissociation within the lifetime of the excited state of HPTA, which is about 3.7 ns.

The K–T analysis, which is corroborated by direct IR measurements of the absorption of the stretching frequency of the O–H bond, shows that HPTA acts as strong hydrogen-bond donor (large \(b \) value) through hydrogen-bonding interaction of the type O–H···s\(^91\). At the same time, there is no evidence (small \(a \) value) for the oxygen atom accepting hydrogen bonds of the type O···H–s. This means a large sensitivity of the fluorescence spectra to the basicity of the solvent, and a much smaller sensitivity to the acidity of the solvent. In addition, the photoacid exhibits large sensitivity to the polarity of the solvent (large \(s \) values), indicating a relatively large dipole moment of the photoacid in the excited state compared to the ground state.

In an additional set of similar experiments the methoxy derivatives of HPTA, HPTS\(^91\), 1-naphthol\(^91\) and 2-naphthol\(^49\) were examined by the K–T procedure. It was found that replacing the proton by a methyl group almost eliminated the hydrogen-bond interactions of the oxygen atom, so solvent basicity had a much smaller effect on the fluorescence spectra of these methoxy photoacids (Figure 10). At the same time the shape of the spectra, its location and the \(s \) values remained almost unchanged, indicating that the intrinsic electronic structure of the methoxy derivative is analogous to that of the photoacid.

![FIGURE 9. Correlation of the fluorescence spectra of HPTA in pure solvents with the Kamlet–Taft solvent-polarity parameters\(^91\)](image)
In contrast, it was found by a similar K–T analysis that the conjugate photobase acted as a better hydrogen-bond acceptor in the ground state, accepting a hydrogen bond of the type RO\(^-\)···s\(^49\). This set of observations supports the idea that both the acid side and the base side are generally active in determining the extent of photoacidity of hydroxyarenes, the acid being a stronger acid in the excited state and the base being a stronger base in the ground state.

Figure 11 shows the hydrogen-bond free energy of the interaction (\(b\) values) of a series of hydroxyarene photoacids plotted against their photoacidity strength scaled in terms of their free energy of proton dissociation in aqueous solutions. There is a linear correspondence between the two values, indicating that the relative strength of hydroxyarene photoacids in non-polar solvents may be scaled using their relative \(pK^*_a\) values in aqueous solutions.

Finally, there appears to be a correlation between the acidity of the photoacid in aqueous solutions and the strength of the hydrogen-bonding interaction (Figure 11)\(^91\). This observation is in accord with the general observation stated earlier that the stronger the acid, the stronger the hydrogen-bond interactions that it undergoes with a given base.

A general rule may be extracted from these observations. For a given hydrogen-bond donor (the photoacid), the strength of the hydrogen bond that it forms in the excited state with a hydrogen-bond acceptor (a solvent molecule, or an additional base molecule dissolved in the solvent) will increase with increase in the \(\beta\) value of the hydrogen-bond acceptor. A similar observation holds for a given hydrogen-bond acceptor. In this case, the hydrogen-bond strength will increase with the \(\alpha\) value of the proton donor.

In conclusion, it is the opinion of this review that photoacidity manifests itself in both the photoacid and the photobase sides, the reactant side becoming a stronger acid and the product side becoming a weaker base in the excited state. It is still a matter of additional experimental and theoretical studies to establish if general rules may be drawn up concerning the relative importance and generality of these processes. Similarities to ground-state
FIGURE 11. Hydrogen-bond interaction of hydroxyarene photoacids (parameter \(b \) in equation 18) versus free energy of dissociation of the photoacids in water (from Reference 91)

Acids should also be pointed out. The following remarks concerning the debate about the traditional description of photoacidity may help to clear this issue. Enhanced acidity due to the anion side stabilized by electronic resonance has been a textbook explanation for the marked ground-state acidity of hydroxyarenes. Electronic resonance stabilization of the anionic charge by the aromatic ring is traditionally considered the main effect for the increased acidity of hydroxyarenes compared with the acidity of non-aromatic alcohols and the main reason for strong deviation from Hammett-type structure–acidity correlations. Figure 12 has been used to explain the very large acidity of \(p \)-nitrophenol\(^92\). In this case, the resonance stabilization of the anion is much more important than the resonance stabilization of the acid, leading to a larger increase in the acidity of the substituted phenol as compared with the predicted polar effect of the \(p \)-nitro group based on its effect on the ionization of benzoic acid.

Figure 13 shows all the contributing resonance hybrids to the ground states of phenol and phenolate anion. Those of the anion are thought to be more important than those of the phenol molecule by several kcal mol\(^{-1}\). This was used as an argument for the increased acidity of phenol over non-aromatic alcohols\(^93\).

However, having said that, the anion-side scenario was generally overlooked when excited-state photoacidity was considered, even in cases where it has become evident that the photobase undergoes an extensive intramolecular charge-transfer process. As an example, an extensive charge-transfer process has been assumed in the 1-naphtholate anion where a recent \textit{ab initio} calculation showed that roughly 2/3 of a unit charge is transferred from the oxygen atom to the naphthalene ring\(^46,51\). In contrast, the electronic structure of the photoacid did not show such an extensive charge-transfer process. Those observations have been made without remarking which side contributes more to the overall photoacidity.

FIGURE 12. The important resonance hybrids of \(p \)-nitrophenol and its conjugate anion in the ground state
of 1-naphthol. All said, it is perhaps best to refer to Bell’s book *The Proton in Chemistry* which, about 30 years after the publication of its 2nd edition, is still arguably the most authoritative contribution written on the physical aspects of acid–base reactions. In Bell’s book, almost side by side, ground-state and excited-state acidities of hydroxyarenes are discussed. To account for the considerable ground-state acidity of phenol, Bell invokes the anion-side resonance description of the phenolate anion, which reduces its reactivity as a base by delocalizing part of the negative charge over the aromatic residue. In contrast, the large increase in the excited-state acidity of 2-naphthol is attributed exclusively to a resonance structure of the photoacid similar to that shown in Figure 8. In view of many similar arguments appearing throughout the literature describing photoacidity in terms of the increased acidity of the acid side, it is only fair to say that the recent paper by Hynes and coworkers is constructive in stressing the importance of the anion-side charge-transfer reaction in the excited state of photoacids, and by doing so, in a somewhat paradoxical way, making photoacids more like ordinary ground-state acids than, perhaps, what has been traditionally thought previously.

Finally, we believe that a search for a new, more general definition of photoacids is in place, perhaps through their ability to form strong hydrogen bonds in the excited state, regardless of whether or not proton dissociation occurs within the excited-state lifetime of the photoacid. Thus, it may well be rewarding to describe the photoacidity phenomenon in terms not necessarily connected to proton transfer and Brønsted acidity of photoacids. By doing so, it would make the definition of photoacids applicable to a larger group of molecules, extending its application to non-polar environments where no proton transfer occurs within the excited-state lifetime. Clearly, more studies must be carried out before conclusive treatments of these issues may be achieved.

IV. THE ELECTRONIC STRUCTURE OF PHOTOACIDS

The origins of the enhanced acidity of hydroxyarenes and other photoacids are clearly due to the differences between the quantum-mechanical properties of the first electronic singlet state (the fluorescence emitting state) and the ground electronic state of the photoacid. Aside from the question whether acid or base is more important in determining the pK_a^* of the excited photoacid, one faces a more fundamental question as to why photoacidity occurs at all. To answer this question one should deal with the electronic structure of
the photoacid in the excited state. The electronic structure of both the photoacid and the photobase is important in determining the observed increase in the Brønsted acidity of the photoacid in the excited state. The elucidation of the electronic structure of hydroxyarenes in the excited state has become one of the most intriguing and demanding tasks in photoacid research. Although considerable progress has been achieved, our current understanding of this problem is still far from being conclusive concerning questions of photo acidity. Is there a ‘special’ electronic state which is responsible for photo acidity? Is this ‘special’ state accessed directly from the ground state? How long does it take for the electronic state to relax from the locally excited state to this photoacidity state when it is not accessed directly from the ground state? What intra- and intermolecular processes control the rate of this electronic relaxation? Which is the more important electronic rearrangement, the one occurring at the acid side or the one occurring at the anion side? From an experimental and theoretical point of view, these questions should have been approached by first undertaking the task of spectroscopic assignment of the first few electronic transitions covering the relevant absorption and fluorescence spectra of the photoacids in question. Unfortunately, systematic analysis of the electronic spectra of hydroxyarenes has met with great difficulties already in the stage of the spectroscopic assignment. In many cases the electronic spectra of the photoacid is congested and is usually thought to comprise two overlapping transitions, each mixed to a various degree with other, higher-lying electronic states.

Discussion of the theoretical aspects of the electronic structure of optically excited hydroxyarenes has been greatly influenced by the work of Platt and his coworkers at the University of Chicago. A source book of the papers of the Chicago group (1949–1964) summarizes their considerable contribution to the interpretation of the electronic spectra of simple aromatic systems. Platt’s model utilizes the free-electron molecular-orbital method (when applied to conjugate linear chains of alternating single and double bonds as found in some polyenes, this method is sometimes called the ‘electron in a box’ model). Platt applied this model to aromatic molecules, which may be viewed as having a π electronic system lying on a single closed loop or a ‘perimeter’. Platt’s ‘Perimeter Model’ was developed for ‘catacondensed’ hydrocarbons, whose general formula is \(\text{C}_{4n} \text{H}_{4n+8} \), and their carbon atoms form a single periphery. The general result of the model, which was corroborated by experimental findings, is that there are regularities in the spectra of simple aromatic compounds. These regularities are the energies of their lower electronic levels, the ordering of the levels according to one spectroscopic scheme and the distinctive molecular-orbital characteristics of each level. The energy of these levels changes smoothly, moving from one molecular system to the other.

The lowest four electronic levels common to all catacondensed hydrocarbons are, according to Platt’s notation, \(^1L_b, ^1L_a, ^1B_b \) and \(^1B_a \). The \(L \) transitions are generally almost forbidden, (especially the \(^1L_b \) transition) having very small oscillator strength, while the \(B \) transitions are strongly allowed, having typically oscillator strengths between one to two orders of magnitude larger than the \(L \) transitions. In Platt’s notation, subscript ‘a’ stands for electronic levels having the electron density of the electrons on the atoms and the nodal points (zero electron density points) on the bonds connecting the atoms; subscript ‘b’ stands for electronic levels having the electron density of the π electrons on the bonds and the nodal points on the atoms. In general, the number of nodal points of the two lowest states, the \(L \) states, equals the number of atoms and their dipole moments are expected to be small and similar in magnitude to the ground-state dipoles. The dipoles of the \(^1L_b \) and \(^1L_a \) states are generally orthogonal to each other, the dipole of the \(^1L_b \) state being along the short symmetry axis and the dipole of the \(^1L_a \) state being along the long symmetry axis of the molecule. Also, the \(^1L_b \) state sometimes appears to be more vibronically structured than the \(^1L_a \) state. Clearly, the main idea behind Platt’s free-electron model is its simplicity, which allows each electronic level to be described by
some characteristic molecular-orbital properties that define its unique physical identity. Experimentally, Platt’s approach is strictly valid in a limited number of unsubstituted aromatic systems. The assignment of these levels already becomes less strict in the pyrene system, in which only 14 out of its 16 carbon atoms lie on one peripheral. Substituents and polar interactions with the solvent also affect the simple picture outlined by Platt. However, it is customary to retain Platt’s notation in the assignment of the electronic levels of substituted benzene and naphthalene, although the distinctive physical character of these levels become blurred in the substituted molecules. Polar substituents are believed to stabilize the \(1L_a \) state more than the \(1L_b \) state, so they lower the transition energy of the \(1L_a \) state compared to the transition energy of the \(1L_b \) state. Polar substituents may also enhance the polarity of the \(1L_a \) and \(1L_b \) states and mix them. Inversion between the two \(L \) states may occur in polar environment, which further stabilizes the \(1L_a \) state over the \(1L_b \) state. The two \(L \) states may also be coupled to each other by some vibronic modes of the aromatic ring. This may result in the two \(L \) states being in a dynamic equilibrium with each other. Moreover, each of the two \(L \) states may be mixed to a different degree with the allowed \(B \) levels, thus ‘borrowing’ oscillator strength from these levels and considerably changing their characteristic spectra.

Over the past decade Platt’s notations were used extensively to describe the electronic levels of several hydroxyarene photoacids. This was very constructive in bringing to attention, in a qualitative way, the complexity of the electronic structure of some very common photoacids. However, the extent of the quantitative analysis which may be drawn from such considerations is still unclear. Arguably, the most researched and best example for the complexity of the photoacidity phenomenon from the viewpoint of the electronic structure of the photoacid is the 1-naphthol molecule. The ground-state acidity of 1-naphthol is almost identical with the ground-state acidity of the 2-naphthol isomer, yet the excited-state acidity of 1-naphthol is 3 orders of magnitude larger than the corresponding acidity of 2-naphthol. This observation has puzzled researchers for the past 50 years. The spectroscopic scope of this problem is evident when the absorption spectra of 1-naphthol is compared with that of 2-naphthol (Figure 14).

![Absorption spectra](image)

FIGURE 14. Absorption spectra at 20 °C of 1-naphthol (dashed line) and 2-naphthol (solid line) in H₂O.
The absorption spectra of 2-naphthol consist of two excitation bands, assigned as \(^1L_b (S_1) \) and \(^1L_a (S_2) \) transitions. In contrast, the absorption spectra of 1-naphthol taken over the same spectral range contains only one absorption band having roughly the same spectral width as the combined spectral widths of the \(^1L_b \) and \(^1L_a \) absorption bands of 2-naphthol. Thus the two \(L \) transitions are thought to overlap in the 1-naphthol absorption spectra.

The large difference in the appearance of the electronic absorption spectra of 1- and 2-naphthol seems to indicate that photoacidity may be correlated with some spectral features common to all photoacids of a given family. Such common features, if they indeed exist, may be used as ‘fingerprints’ for identifying the extent of inherent photoacidity exhibited by the photoacid, regardless of whether or not it can be ionized in the medium. Before addressing the various approaches dealing with this issue in connection with the 1- and 2-naphthol dilemma, it is worthwhile to point out that the general situation is most probably more complicated than what it appears to be from visual inspection of the spectra of 1- and 2-naphthol.

Figure 15 shows the absorption spectra of several 1- and 2-naphthol derivatives. The very broad absorption band of 5-cyano-1-naphthol looks like a red-shifted 1-naphthol spectra where the spectrum of 1,6-dibromo-2-naphthol resembles the two-band absorption spectrum of 2-naphthol shifted to the red by about 20 nm. The broad absorption spectrum of 1-naphthol is retained in the absorption spectra of 1-naphthol-3,6-disulfonate, but the spectrum becomes much more structured. In contrast, the familiar spectral features of 2-naphthol become blurred in the case of 2-naphthol-6,8-disulfonate and 1,6-dibromo-2-naphthol, which are considerably red-shifted and appear wider and almost featureless. In fact, the two spectra resemble each other more than they resemble the spectrum of either the ‘parent’ 2-naphthol molecule or the 1-naphthol isomer. In addition, no clear correlation exists between the shape of the spectra and the \(pK_a^* \) of the photoacid, the three 2-naphthol derivatives and 1-naphthol-3,6-disulfonate all having a \(pK_a^* \) that falls within 1 \(pK_a \) unit.
of each other, while 5-cyano-1-naphthol is a much stronger photoacid having a pK_a^* value of about -2.8^{47}. Evidently, substitutions change the spectra of naphthols not in a simple way and the magnitude of the change depends on the number of the substituents, their ring position and their chemical nature.

We thus limit ourselves mainly to a discussion of the electronic spectra of the unsubstituted naphthols and phenol. The very important class of pyrenol photoacids is also largely excluded from our discussion, although the absorption spectra of 1-hydroxypyrene seems to fall within Platt’s description exhibiting a typical $^1L_{bb}, ^1L_{ba}, ^1B_{bb}, ^1B_{ba}$ 4-band structure103. This does not mean that, from a pure theoretical background, pyrenols should not be analyzed in terms of Platt’s notation, a practice that has been extensively undertaken, very recently, by Hynes and coworkers$^{65, 66}$. Our opinion is, rather, that regularities concerning the molecular basis for photoacidity should be drawn only in the face of clear experimental evidence. Considering our current state of knowledge, this does not appear to be the case when most other pyrenols are considered (see also Figure 16).

With the above reservations in mind, we summarize below the different approaches that attempt to elucidate the excited-state acidity of 1- and 2-naphthol by analyzing the structure of their electronic spectra. As already pointed out, there is a considerable difference between the photoacidity of 1- and 2-naphthol (about 3 pK_a units). In contrast, the two naphthol isomers exhibit almost identical ground-state acidities, the difference between the pK_a of the two isomers being less than 0.2 pK_a units ($pK_a = 9.4$ and 9.5 for 1- and 2-naphthol, respectively). This simple observation suggests, although does not prove, that the two isomers differ mainly in their electronic structure in the excited state. Direct comparison between the electronic spectra of the two isomers has provided, arguably, the

![FIGURE 16. Absorption and fluorescence spectra of the HPTA molecule in acetonitrile. The mirror-like symmetry appearing at first sight to exist between the absorption and fluorescence spectra is misleading, the absorption spectra being about 30% wider and more structured. The sharp, vibronic-like spectral features were interpreted as coming from a mixture of $^1L_{bb}$ and $^1L_{ba}$ transitions, similar to the 1-naphthol case65, or alternatively, as originating from strong solvent–solute interactions of a single S_1 state in the case of the methoxy analogue of HPTS, the MPTS molecule94]
best known case where enhanced photoacidity was tracked to some specific electronic rearrangement in the excited photoacid, namely the 1L_b to 1L_a level crossing. At least three different scenarios are attached to this proposed electronic transition. In all scenarios for which the 1L_b state is assumed, the lower singlet state of the molecules in the gas phase (the S_1 state) and the 1L_a level is assumed to be higher in energy (the S_2 state) and more polar than the 1L_b state. Level inversion may occur in polar solvents which stabilize the 1L_a state more than they stabilize the less polar 1L_b state. Polar substituents may cause level crossing already in the gas phase. An example for such a substituent effect is found in the 1-naphtholate anion, where the S_1 state in the gas phase is thought to be the 1L_a state35,68b (strictly speaking, Platt’s notation describes the unsubstituted naphthalene molecule, so the 1-naphtholate anion should be viewed as a naphthalene molecule with O$^-$ substituent at the 1 position). The enhanced photoacidity of 1-naphthol over 2-naphthol is then explained as the result of level inversion: While the emitting state of 2-naphthol is the directly excited 1L_b state, level inversion occurs in 1-naphthol where the emitting state is not directly accessed from the ground state and is identified as the more polar 1L_a state. The three scenarios which make this mechanism their starting point differ by the way they treat the inversion process.

The origins of the first scenario goes back to the classic studies of Shizuka and Tsutsumi38,39. In this scenario the 1L_b and 1L_a transitions are congested together in the absorption (the absorption spectrum of 1-naphthol in water is shown in Figure 14) and fluorescence spectra of 1-naphthol (Figure 17).

In this scenario, the absorption red edge of 1-naphthol is thought to be mainly the 1L_b state and the blue edge of the absorption spectrum to be mainly the 1L_a state35. This is the reason suggested for the absorption spectra of 1-naphthol being roughly as wide as the first and second transitions of 2-naphthol combined together. The situation is reversed in the fluorescence spectra of 1-naphthol in polar solutions (Figure 17). Here, as in the absorption spectra, the width of the fluorescence band is roughly twice as large as the

![Fluorescence spectra of 1-naphthol in different solvents](https://example.com/figure17.png)

FIGURE 17. Fluorescence spectra of 1-naphthol in different solvents. Moving from formamide to cyclohexane, the fluorescence spectra is considerably shifted to the blue and becomes much narrower and more structured. In formamide and cyclohexane, the emitting state of 1-naphthol is thought to be 1L_a and 1L_b, respectively (from Reference 91)
fluorescence band of 2-naphthol. The red edge of the band is assigned to the 1L_a state and the blue edge is assigned to belong to the 1L_b state. Moving to less polar solvents, the fluorescence spectrum becomes narrower and more structured than the fluorescence spectrum in water. This progression in the various spectra is explained by the two states being strongly coupled and in rapid equilibrium. The relative 1L_b or 1L_a nature of the fluorescence band is determined by the polarity of the solvent, changing gradually from being mostly 1L_a type in water and formamide to being mostly 1L_b type in cyclohexane. Such a gradual change in the structure of the spectrum is not observed in the case of 2-naphthol, where much smaller spectral changes are observed as a function of solvent polarity (Figure 18).

A similar conclusion about the emitting state of 1- and 2-naphthol was reached from the K–T analysis of the fluorescence spectra of the two isomers (Figures 19 and 20). The K–T analysis showed much better correlation of the 2-naphthol spectra in various solvents than the corresponding 1-naphthol spectra.

Good correlation ($R = 0.94$) was found when the fluorescence spectrum of 1-naphthol was divided into two emitting states. For the red-edge emitting state (1L_a) the correlation has yielded a polar state, $2.8\pi^* - 1.3\alpha + 3.1\beta$, and for the blue-edge emitting state (1L_b) the outcome was a non-polar state, $1.1\pi^* - 0.1\alpha + 0.8\beta$ ($R = 0.95$). The poor correlation of the position of the fluorescence maximum shown in Figure 20 was attributed to the fluorescence maximum being the combination of two emitting singlet states of different polarity which partially overlap. This indicates non-trivial changes in the 1-naphthol fluorescence spectrum as a function of the polarity of the solvent, the location and the relative weight of each emitting state having different dependence on solvent polarities. The two overlapping fluorescence transitions were assigned 1L_b and 1L_a transitions. In this scenario, level dynamics are assumed to be extremely fast and follow the solvation relaxation dynamics of the solvent, so level crossing did not determine the rate of the proton transfer from the photoacids which is assumed to be activated in the solvent.
FIGURE 19. The good correlation found between the fluorescence maximum of 2N and solvent polarity using Kamlet–Taft analysis in 22 solvents. In this case no level crossing is evident and the emitting state is assumed to be 1L_0 in all solvents (from Reference 91).

FIGURE 20. The poor correlation found between the fluorescence maximum of 1N and solvent polarity using Kamlet–Taft solvent-polarity parameters of 15 common solvents (from Reference 91).
The second scenario was developed to describe the situation pertaining to 1-naphthol in the gas phase18,25,27,28. In the gas phase, excitation is assumed to be a pure 1L_a transition. Following excitation, level crossing to the 1L_a state may occur in 1-naphthol-base gas-phase clusters and is promoted by some vibrational modes of the naphthalene ring which allow the otherwise symmetry-forbidden L_b to L_a transition. Polar interactions in the cluster stabilize the level crossing. Level dynamics was suggested to be the rate-determining step for the onset of the photoacidity of 1-naphthol in gas-phase clusters and aqueous solutions. The characteristic level-crossing time was estimated to be several ps in water clusters.

In the third scenario66, developed for phenol derivatives on theoretical grounds, enhanced photoacidity was traced to the $^1L_b–^1L_a$ transition occurring upon proton dissociation. In this intriguing scenario the photoacid is assumed to be in a 1L_a state the polarity and internal acidity of which resemble that of the ground state. Level crossing to the polar 1L_a state occurs in the anion which, for that reason, is a much weaker base than the ground-state anion. In this scenario, level crossing does not consist of the rate-limiting step for the proton transfer although such a possibility was not entirely ruled out. An additional activated charge-transfer process was assumed likely to be the rate-limiting step for proton dissociation.

It is unclear if any of these scenarios may be considered a general description of photoacidity. More likely, each of these scenarios describes a possible intramolecular route which may contribute to photoacidity under certain experimental conditions but does not exclusively define photoacidity by itself. One should not rule out situations where the photoacidity state is directly accessed from the ground state and no further level ‘switching’ or crossing occurs in either the photoacid or the photobase side. This seems to be the case of 2-naphthol and its derivatives (see below). Also, it is unlikely that level dynamics determine the rate of the proton-transfer reaction in solution, the latter being usually a much slower process determined by the overall free-energy change upon proton dissociation. In fact, if we consider the arguments brought up in the first part of this review, even the seemingly clear-cut assignment of the emitting states of 1- and 2-naphthol must raise questions when their overall photoacidity is examined from Förster-cycle considerations. The general rule is that the lowest emitting state of 1-naphthol and 2-naphthol is 1L_a and 1L_b, respectively. In order to preserve the logic of the foregoing discussion, one must assume that the 1-naphtholate and 2-naphtholate anions are also 1L_a and 1L_b, respectively, since any other situation would not result in 1-naphthol being the strongest photoacid of the two isomers. This indeed appears to be the case95,96 and suggests that being in the 1L_a state rather than in the 1L_b state roughly contributes one-third of the total photoacidity of 1-naphthol. It follows that the increase in the photoacidity due to the photoacid and the base being in the more polar 1L_a state (1N) rather than being in the relatively non-polar 1L_b state (2N) causes only one-half of the effect of the photoacid being in the excited state.

If one adopts the idea that regularities are found in the first two electronic levels of unsubstituted hydroxyarenes, then it is clear that the effect of the electronic structure on photoacidity according to the $^1L_b–^1L_a$ terminology should increase in the order: 1L_b to $^1L_b'$, 1L_a to $^1L_a'$, 1L_b to 1L_a and 1L_a to 1L_b, where 1L denotes the electronic level of the photoacid and $^1L'$ denotes the electronic level of the photobase. In the case of 1-naphthol, the acid-side changes from being 1L_a—like in water— to being 1L_b—like in non-polar solvents— while the naphtholate anion is probably $^1L_a'$ in all polar and moderately polar solvents. It follows from the above order of photoacidities that the photoacidity of 1-naphthol should increase, moving from water to less polar solvents, where the acid side becomes higher in energy due to electronic rearrangement to form the less polar 1L_b state. In contrast, 2-naphthol dissociation is either 1L_b to $^1L_b'$, as usually assumed95,96, or 1L_b to...
FIGURE 21. Absorption (a, b) and fluorescence spectrum (c, d) of the acid form (a, c) and the base form (b, d) of 2N, 3,6DS2N and 3,6DS1N in methanol.
where the \(L'_a \) is of a greatly reduced charge-transfer nature than the corresponding \(L'_a \) state of 1-naphthol. It follows that in the case of 2-naphthol, one expects a much smaller solvent effect on the Förster-cycle acidity than the corresponding effect on 1-naphthol acidity. This indeed seems to be the case when the photoacidity of 1-naphthol and 2-naphthol was estimated from Förster-cycle calculations in water and methanol (Tables 1 and 2).

Absorption and fluorescence spectra of the acid and base forms of 2N, 3,6DS2N and 3,6DS1N in methanol used for the Förster-cycle calculations in methanol are shown in Figure 21.

2-Naphthol and its 3,6-disulfonate derivative show consistency in their spectral features in both the photoacid and base sides, while much less consistency is evident in the spectral features of the 1-naphthol derivatives in the acid side, where the fluorescence spectrum appears to be much narrower and more structured than the absorption spectrum (Figure 21). This points to more extensive electronic rearrangements in the acid side of

![Absorption and fluorescence spectra](image_url)

FIGURE 22. (a) Absorption spectra of the acid forms of 1N, 1-naphthol-2-sulfonate (2S1N), 1-naphthol-3-sulfonate (3S1N) and 1-naphthol-4-sulfonate (4S1N) in methanol. (b) Fluorescence spectra of the acid forms of 1N, 2S1N, 3S1N and 4S1N in methanol.
1-naphthol as a function of the solvent than in the acid side of 2-naphthol, and that both isomers show relatively small changes in the spectral features at the naphtholate side. This indicates the consistency of the emitting state of the naphtholate anion of both isomers.

Figures 22 and 23 offer a closer look at the absorption and fluorescence spectra of several 1-naphthol derivatives in methanol. In the case of sulfonate-substituted 1-naphthols, the substituent effect on the absorption spectra is relatively small, while a considerable effect is observed in the corresponding fluorescence spectra of the photoacids. This effect resembles the solvent effect on the fluorescence spectrum of the parent 1-naphthol molecule. Using the analogy to the effect of solvent polarity on the spectra, the ring position of the sulfonate group seems to appear more ‘polar’, moving from the 2- to the 4-position of the naphthol ring system.

The order of the effect of the ring position on the spectra is: 4 > 3 > unsubstituted > 2. This means that the further the substituent is from the OH group, the larger is its effect on the polarity of the first emitting state of 1-naphthol, probably through better stabilization of the charge-transfer character of the 1L_a state. A second mechanism which seems to increase the 1L_b character of the emitting state is direct hydrogen-bonding interactions between the OH and the sulfonate group at the 2 position and, to a lesser extent, at the 3 position.

Interestingly, Förster-cycle calculations of the pK_a^* in methanol (Table 2) seem to confirm the substituent effect on the polarity of the emitting state of 1-naphthol as discussed above: the less polar the emitting state of the acid compared to the emitting state of its conjugate base, the larger the Förster-cycle acidity of the photoacid. The calculated Förster-cycle difference between the ground-state and excited-state acidities in methanol was 12.3, 11.3, 10.9, 9.3 and 8.8 for the 2-substituted, 3-substituted, unsubstituted 4- and 5-substituted sulfonate photoacids, respectively.

This sort of argument demonstrates the need for defining a photoacidity scale which is independent of whether or not the photoacid is able to dissociate within the excited-state lifetime. The five photoacid derivatives of 1-naphthol discussed above do not dissociate in methanol. The order of their acidity in methanol extracted from Förster-cycle calculations awaits further confirmation. It should be conducted by some other method which would
TABLE 2. $pK_a^* - pK_a$ values of some common hydroxyarene photoacids from Förster-cycle calculations in methanol$^{[9]}$

<table>
<thead>
<tr>
<th>Photoacid</th>
<th>$pK_a^* - pK_a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Naphthol</td>
<td>10.9</td>
</tr>
<tr>
<td>1-Naphthol-2-sulfonate</td>
<td>12.3</td>
</tr>
<tr>
<td>1-Naphthol-3-sulfonate</td>
<td>11.3</td>
</tr>
<tr>
<td>1-Naphthol-4-sulfonate</td>
<td>9.3</td>
</tr>
<tr>
<td>1-Naphthol-5-sulfonate</td>
<td>8.8</td>
</tr>
<tr>
<td>4-Chloro-1-naphthol</td>
<td>9.8</td>
</tr>
<tr>
<td>1-Naphthol-3,6-disulfonate</td>
<td>12.2</td>
</tr>
<tr>
<td>2-Naphthol</td>
<td>6.5</td>
</tr>
<tr>
<td>2-Naphthol-6,8-disulfonate</td>
<td>7.3</td>
</tr>
<tr>
<td>HPTS</td>
<td>7.2</td>
</tr>
<tr>
<td>HPTA</td>
<td>6.8</td>
</tr>
</tbody>
</table>

provide a direct measure for their photoacidity as judged by the scaling of some chemical property common to all photoacids in question.

Before such an endeavor is carried out one must rely on circumstantial evidence. Doing so, it appears as if polar substituents affect photoacidity not just by processes identified in ground-state acids, such as the inductive and resonance effects, but, in the case of 1-naphthol, also by systematically affecting the character of its electronic excited state.

It is also encouraging to find that the effect of polar solvents on the electronic spectra of 1-naphthol appears to be qualitatively similar to the effect of polar substituents. This raises hope that the paradigm of the photoacidity of 1-naphthol could be potentially resolved in a general way.

However, as already indicated before, it is very difficult to find regular patterns in the electronic structure within one family of photoacids which directly correlate all their photoacidity related properties. An example of this difficulty is found in the classic paper of Suzuki and Baba$^{[34]}$ on the hydrogen-bonding interactions of phenol and 1- and 2-naphthol.

The two lowest electronic transitions of the three photoacids were assigned in the very non-polar isooctane solvent by analyzing the effect of hydrogen bonding on their respective absorption spectra. In all cases the level ordering was found to be $^1L_b (S_1)$ and $^1L_a (S_2)$. The effect of hydrogen bonding was to shift the absorption spectra to the red. For phenol and 1-naphthol the red shift of the absorption of the 1L_a state was much larger than the red shift of the absorption of the 1L_b state, an observation which seems to be in harmony with the assignment of 1L_a as the more polar state of the two. However, the situation was found to be the reverse in 2-naphthol, where the red shift of the 1L_b state due to hydrogen bonding was found to be three times larger than the red shift of the 1L_a state. Apparently, the position of the OH group affects the relative polarities of the two lowest electronic states of naphthols. When the absolute magnitude of the red shift was considered, the ordering of the red shift was found to be: $^1L_a(1-naphthol) \gg ^1L_b(2-naphthol) \gg ^1L_b(1-naphthol) = ^1L_a(2-naphthol)$, in accordance with the order of the photoacidity of the lowest emitting state of the two photoacids in polar solvents: 1-naphthol \gg 2-naphthol. A similar situation is found when the red shift of the single absorption band of 1-naphthol is compared with the relative red shift of the two absorbing bands of 2-naphthol measured in the same solvents. Figure 24 shows the red shift of the absorption spectra of 1-naphthol to be the largest, in agreement with its greater sensitivity to solvent polarity. The S_1 state of 2-naphthol was found to shift, as in the Suzuki and Baba experiment, more than its S_2 state, an observation which seems to oppose the assumption
FIGURE 24. Absorption spectra of (a) 1-naphthol and (b) 2-naphthol in several solvents of different polarity: (1) cyclohexane, (2) acetonitrile and (3) DMSO (from Reference 91)

that in this case the S_1 transition is to the less polar 1L_b state. Evidently, even in this seemingly simple case, the molecular-orbital character of the 1L_b and 1L_a states is not directly transferable moving from 1-naphthol to 2-naphthol.

This problem may be tackled by a more systematic analysis of the Stokes shift. Pines and coworkers51 assumed that the first absorption transition of 1-naphthol and the two absorption transitions of 2-naphthol may be described by Pekarian functions. These functions were analyzed by the Kamlet–Taft analysis (Figures 25 and 26).

The analysis shows the 1L_a absorption transition of 1-naphthol to be more sensitive to solvent polarity than the 1L_a or 1L_b absorption transition of 2-naphthol, indicating that it is the most polar of the three states. Comparison between the 1L_b and 1L_a states of 2-naphthol shows the 1L_b state to be less polar than the 1L_a state but considerably more sensitive to hydrogen-bonding interactions with the solvent. The greater sensitivity of the 1L_b state to hydrogen-bonding interactions with bases is in quantitative agreement with the findings of Suzuki and Baba34 discussed above. In both cases the spectral shift due to hydrogen-bonding interaction with the base was found to be three times larger in the 1L_b state.

These findings consist an argument against the idea that regularities in the photoacidity behavior of hydroxyarenes may be defined and quantitatively analyzed simply by assuming constancy in the properties of their two lowest electronic singlet states. Indeed, one cannot even rule out situations where the less polar state in terms of its dipole moment and charge-transfer properties is the more acidic one as the 2-naphthol case appears to be, at least when photoacidity is judged by the strength of the hydrogen-bonding interaction of the acidic hydrogen atom of the $−OH$ group.

An additional way to identify level crossing between the two lowest singlet states of hydroxyarenes as opposed to one emitting level gradually changing its properties was
FIGURE 25. Correlation of the peaks of Pekarian functions (energy scale) used to approximate the UV-vis absorption spectra of 1-naphthol (from Reference 91)

FIGURE 26. Correlation of the peaks of Pekarian functions (energy scale) used to approximate the UV-vis absorption spectra of 2-naphthol: (a) blue band and (b) red band with Kamlet–Taft parameters91. See Figure 24 for details of the absorption spectra
suggested by Hynes and coworkers. They argued that 1L_a to 1L_b level switching may be demonstrated by comparing the free parameter P_{os} in the K–T analysis (P_{os} corresponds to the transition energy of the probe in cyclohexane in equation 18) of the absorption spectra of the photoacid with the P_{os} found in the K–T analysis of the fluorescence spectra of the photoacid in the same set of solvents. In cases where level switching occurs in the excited state of the photoacid, the absorption transition is assumed to be 1L_b, while the fluorescence transition is assumed to occur from an 1L_a state. Assuming that level crossing does not occur in non-polar solvents, one finds the P_{os} of the fluorescence to be higher in energy than the P_{os} of the absorption, a situation which cannot happen if absorption and fluorescence are to and from the same electronic level. Hynes and coworkers argued that such a situation occurs in HPTS, although the complexity of this system still resists clear-cut conclusions.

V. FREE-ENERGY CORRELATIONS BETWEEN PHOTOACIDITY AND REACTIVITY

Pines, Fleming and coworkers have utilized a free-energy correlation between the excited-state equilibrium constant of the photoacid and the proton dissociation rate. Such correlations are extensions of similar correlations existing between the equilibrium constant and reactivity of ground-state acids (the ‘Brønsted relation’).

A ‘universal’ correlation (equation 19) was suggested to exist between the excited-state proton-transfer rate constant k_p and photoacidity in aqueous solutions:

$$k_p \sim k_0 \exp\left(-\left(\Delta G_a + w^r\right)/kT\right)$$ \hspace{1cm} (19)

where w^r is the so-called ‘work function’ of the work done when separating the two reactants to infinity and k_0 is the reaction frequency prefactor, which is assumed to depend on the solvent and to be identical for all photoacids of a given family in a given solvent; ΔG_a is the reaction free-energy given by Marcus’ Bond-Energy–Bond-Order (MBEBO) theory (equation 20)

$$\Delta G_a = \Delta G^o/2 + \Delta G^#_o + \Delta G^#_o \cosh[\Delta G^o \ln 2/(2\Delta G^#_o)]/\ln 2$$ \hspace{1cm} (20)

where $\Delta G^#_o$ is the activation free-energy of the symmetric transfer when the total free-energy change following the proton transfer is equal to zero, i.e. when ΔpK_a between the proton donor and the proton acceptor equals zero.

The semi-empirical model for proton dissociation presented above is supported by recent ab initio studies of Kiefer and Hynes. Figure 27 shows the good correlation found between the excited-state pK_a^* of hydroxyarene photoacids and their corresponding proton dissociation rate in aqueous solutions. The free-energy correlation seems to indicate that the equilibrium constant of the photoacid gives an excellent measure for its reactivity in the excited state regardless of whether the emitting state is 1L_b or 1L_a. This draws a line between the fundamental question as to why a particular photoacid has a particular pK_a^* and the question of how to estimate the reactivity of the photoacid, the latter property of the photoacid being proportional to its pK_a^*. It appears that, as a general rule, one could estimate the relative reactivity of a group of substituted photoacids by using empirical correlations between structure and acidity originally found for the ground-state acids. Such an approach has been successfully utilized by Tolbert and coworkers, who were able to synthesize ‘enhanced’ photoacids by predicting their pK_a^* values from Hammett’s σ value of the introduced substituents.
VI. CONCLUDING REMARKS: EVALUATION OF OUR CURRENT UNDERSTANDING OF THE PHOTOACIDITY OF HYDROXYARENES

The photoacidity of hydroxyarenes has attracted considerable interest over the past 50 years. Many conventions about photoacidity have their origins in the early studies of photoacidity. These conventions are now being critically examined by a new generation of researchers who have at their disposal new experimental tools and enhanced computational capabilities. A fresh outlook is already emerging from these latest studies, an outlook which appreciates the great complexity of these seemingly simple aromatic molecules. New ingredients have been successfully integrated into the old concepts, which have been used to describe photoacidity. This progress has not yet resulted in a coherent and full understanding of photoacidity, although the field is well prepared and poised for such a development to occur.

Hydroxyarene photoacids may be divided into two groups of molecules, the 1-naphthol-like and the 2-naphthol-like photoacids. The latter resemble ground-state photoacids in that the proton-transfer equilibrium takes place in one electronic level, presumably the $1L_b$ state. There are many features common to ground-state acidity and the excited-state acidity of 2-naphthol-like photoacids. Among these are the substituent effect through resonance and inductive interactions whose molecular mechanism does not seem to differ much from their respective mechanism in the ground state, although it is noteworthy that the magnitude of these effects is usually larger in the excited state. Also, ring positions do not necessarily have the same effects on acidity in the ground and the excited state of the photoacid. In addition, solvent polarity seems to affect 2-naphthol-like photoacids in a similar way to how it affects ground-state acids, thus making the effect of the solvent on the reactivity of the photoacid predictable from the corresponding ground-state data. Finally, the photophysics and photochemistry of the first emitting state of 2-naphthol-like photoacids appear to be simple with relatively small deactivation routes other than the radiative decay and adiabatic proton-transfer reaction. One may characterize 2-naphthol-like photoacids as ‘well-behaved’ photoacids or as ‘proper photoacids’. Substituted pyrenols also seem to fall under this category of well-behaved photoacids, although some of their electronic properties are still in debate.
The situation is drastically changed with 1-naphthol-like photoacids of which 1-naphthol is their best representative. 1-Naphthol exhibits enhanced photoacidity, complex absorption and fluorescence spectra which is very sensitive to solvent and ring substituents. The main route for its excited-state deactivation in aqueous solution is proton quenching102, a very intriguing phenomenon by its own merit which is not discussed in this review. The complexity found in the photophysics and photochemistry of 1-naphthol is attributed to the complex structure of its first two electronic singlet states which is affected by polar interactions with the solvent and intramolecularly by the chemical structure and position of ring substituents. The exact details of these interactions and their effect on the electronic structure of 1-naphthol and its photoacidity await further investigation. However, regularities which are found in the appearance of the 1-naphthol spectra and theoretical considerations from first principles clearly point out the reason for this complexity. It is generally accepted that the lowest emitting state of 1-naphthol is sensitive to polar interactions, changing from being $1L_b$-like in a non-polar environment to being $1L_a$-like in a polar environment. The enhanced acidity of 1-naphthol over its 2-isomer is attributed to the $1L_a$ state being more polar and of greater charge-transfer character than the $1L_b$ state. Correlation between the appearance of the fluorescence spectra of the photoacid and its excited-state reactivity is expected and indeed observed in the case of 1-naphthol, although it is not clear how general are these observations. Ring substituents seem to introduce a similar effect on the electronic structure of excited 1-naphthol; however, this effect has not yet been studied in detail. An example is shown above in Figures 22 and 23. Förster-cycle calculations and the spectral appearance of the sulfonate-substituted 1-naphthols correlate with the expected inductive effect at each ring position in the excited state; the migration of the electronic charge to the naphthalene ring is expected to be largest in the 5-substituted naphthol (Figure 23) and smallest in the 2-substituted naphthol. This makes excited 5S1N the most $1L_a$-like isomer, with almost featureless absorption and fluorescence spectra, and the excited 2-isomer the most $1L_b$-like isomer, with strong vibrational features in both the absorption and fluorescence spectra. The effect of the substituents on the Förster-cycle acidity of 1-naphthol is resolved in methanol. The order of Förster-cycle photoacidity in methanol is: 5S1N > 4S1N > 1N > 3S1N > 2S1N (Table 2).

The complex electronic structure of 1-naphthol-like photoacids makes them non-conventional photoacids. In this case, photoacidity is influenced by additional factors not present in ground-state acids, namely electronic rearrangements occurring during the lifetime of the excited photoacids. Clearly, electronic rearrangements occurring in the short-lived excited state of the photoacids (typically, the excited-state lifetime in the singlet state is no longer than a few nanoseconds) can affect both the dynamics of the excited-state proton-transfer reaction and the thermodynamics of the photoacids. The expected and observed non-trivial photoacidity of 1-naphthol-like photoacids awaits further investigation.

Our final observation is that, in gross details, photoacids seem to generally resemble ground-state acids in most studied cases where proton-transfer reaction is observed. As in ground-state hydroxyarenes, Brønsted acidity is greatly affected by the stabilization of the conjugate base in polar solvents and by intramolecular charge-transfer processes, shifting some of the anionic charge away from the oxygen atom to the aromatic ring. The charge-transfer process is assisted by inductive and resonance effects at the aromatic ring. Level mixing in the excited state, although very important in 1-naphthol-like acids, is secondary in importance to the acid being in the excited state. Level dynamics, if indeed they exist, do not seem to be the rate-determining step for proton-transfer reaction in polar solvents. Thus, level dynamics do not affect the generality of the above-stated observation. The extension of the photoacidity scale to less-polar environments where no proton transfer is observed within the short lifetime of the excited photoacid is a desirable goal, which may be achieved by scaling the hydrogen-bonding interaction of the photoacids or perhaps
by calibrating their Förster-cycle acidities using spectral analysis of their lowest optical transitions.

VII. REFERENCES

1. Th. Förster, Naturwissenschaften, 36, 186 (1949).

7. UV-visible spectra and photoacidity of phenols, naphthols and pyrenols

CHAPTER 8

Hydrogen-bonded complexes of phenols

C. LAURENCE, M. BERTHELOT and J. GRATON

Laboratoire de Spectrochimie, University of Nantes, 2, rue de la Houssiniere BP 92208, F-44322 Nantes Cedex 3, France
Fax: (+33) (0)2 51 12 54 12; e-mail: Christian.Laurence@chimie.univ-nantes.fr, Michel.Berthelot@chimie.univ-nantes.fr, Jerome.Graton@chimie.univ-nantes.fr

I. INTRODUCTION .. 530
II. HYDROGEN-BOND BASICITY OF PHENOLS 531
III. HYDROGEN-BOND ACIDITY OF PHENOLS 535
 A. log K_a^H Scale 535
 B. log K_a Scale 539
 C. Complexation with Pyridine N-oxide 540
 D. Solvatochromic Shifts of Reichardt’s Betaine Dye 540
 E. Hydrogen-bond Acidity from Partition Coefficients 543
IV. SELF-ASSOCIATION OF PHENOLS 546
V. INTRAMOLECULAR HYDROGEN BONDS 551
 A. OH···O=N ... 553
 B. OH···O=C .. 553
 C. OH···Halogen 554
 D. OH···OH(Me) 556
 E. OH···N .. 556
VI. PROPERTIES OF THE COMPLEXES 557
 A. Thermodynamic Properties 557
 B. Binding Energy D_e and Dissociation Energy D_o 577
 C. Geometry of Phenol Hydrogen Bonds 579
 D. Hydrogen-bonding Site(s) 582
VII. CONSTRUCTION OF HYDROGEN-BOND BASICITY SCALES FROM PHENOLS 586
 A. Thermodynamic Scales of Hydrogen-bond Basicity 586
 B. UV, NMR and IR Spectroscopic Scales 589

The Chemistry of Phenols. Edited by Z. Rappoport

529
I. INTRODUCTION

For many years phenols have been well recognized as participants in hydrogen bonding. In the chapter on hydrogen bonding in Pauling’s (1939) *The Nature of the Chemical Bond*¹, phenols are said to “form stronger hydrogen bonds than aliphatic alcohols because of the increase in electronegativity of the oxygen atom” resulting from the n-electron donation of the OH group to the aromatic ring. The three-dimensional structure of crystalline resorcinol (1,3-dihydroxybenzene) is explained by self-association through ···OH···OH··· hydrogen bonds. Many ortho-substituted phenols, e.g. o-nitrophenol or o-hydroxyacetophenone, are listed as substances forming strong intramolecular hydrogen bonds. In the proceedings (edited by Hadži²) of the first international conference (1957) on hydrogen bonding held in Ljubljana, Yugoslavia, there were studies of hydrogen-bonded complexes of phenols by neutron diffraction, infrared and electronic spectrometry. In the first text devoted entirely to hydrogen bonding, *The Hydrogen Bond* by Pimentel and McClellan (1960)³, phenols are classed as well-recognized hydrogen-bonding acids and hydrogen-bonding bases. In a table of nearly 300 entries of thermodynamic data (equilibrium constants, enthalpy, entropy) for hydrogen-bond formation, many data concern ArOH···Base complexes where phenol, substituted phenols, 1-naphthol and 2-naphthol are hydrogen-bond donors (HBD). A fourth book, *Hydrogen Bonding* by Joesten and Schaad (1974)⁴, contains *ab initio* and (mostly) semiempirical calculations of the hydrogen-bond geometry and energy, the thermodynamics of hydrogen bonding and empirical correlations between thermodynamic and spectroscopic properties of hydrogen-bonded complexes. There is also a chapter on intramolecular and homo-intermolecular (self-association) hydrogen bonds, and an appendix of thermodynamic data and A-H stretching frequency shifts with nearly 2000 entries. Hydrogen-bonded phenols are particularly well represented in this book. Other data and discussions on the hydrogen-bonded complexes of phenols are found in the book entitled *Hydrogen Bonding* by Vinogradov and Linell (1971)⁵, in the three-volume series entitled *The Hydrogen Bond. Recent Developments in Theory and Experiments*, edited by Schuster, Zundel and Sandorfy (1976)⁶, in the review by Rochester (1971)⁷ on the *Acidity and inter- and intramolecular H-bonds* of the hydroxyl group and in the multi-author publication (1991) entitled⁸ *Intermolecular Forces. An Introduction to Modern Methods and Results*. The theoretical interpretation of hydrogen bonding has been discussed by Scheiner (1997) in *Hydrogen Bonding, A Theoretical Perspective*⁹ and *Molecular Interactions, from van der Waals to Strongly Bound Complexes*¹⁰, by Hadži (1997)¹¹ in *Theoretical Treatments of Hydrogen Bonding* and by Smith (1994)¹² in *Modeling the Hydrogen Bond. Hydrogen Bonding in Biological Structures* by Jeffrey and Saenger (1991)¹³ and *An Introduction to Hydrogen Bonding* by Jeffrey (1997)¹⁴ focus on general principles and crystal structure studies. Reviews relating to the importance of hydrogen bonding in crystal engineering have been written by Subramanian and Zaworotko¹⁵, Desiraju¹⁶ and Aakeroü¹⁷.

Despite this voluminous literature on hydrogen bonding, there have been very few discussions on the hydrogen-bond basicity of phenols. The ability of phenols to act as hydrogen-bond acceptors is considered in Section II.

The main purpose of Section III is to establish the position of phenols on the scales of hydrogen-bond acidity, either solute (log K_A^H, a_H^2, log K_a) or solvent ($E_T(30)$) scales. Here, the ability of phenols to act as hydrogen-bond donors will be compared to that of other O–H (water, alcohols, carboxylic acids), N–H, S–H and C–H hydrogen-bond
donors. It is interesting to note that it was not until 1989 that phenol was found to be a (slightly) better hydrogen-bond donor than acetic acid, in spite of being a worse Brønsted acid by more than 5 \(pK_a \) units in water. This illustrates that hydrogen-bonding phenomena have little in common with proton transfer when acids with different functional groups are compared.

Various types of phenol complexes will be examined in Sections IV–VI. Dimers and multimers of self-associated phenols, \((\text{ArOH})_n\), will be considered both in solution and in the solid state (Section IV). The existence and, subsequently, the geometry and energy of intramolecular hydrogen bonds in \textit{ortho}-substituted phenols are discussed in Section V. The most recent thermodynamic, spectroscopic (mainly IR), geometrical and theoretical results on the heterodimers of phenols complexed to Lewis bases, \(\text{ArOH} \cdots \text{B} \), will be presented in Section VI.

Phenols are among the most useful reference hydrogen-bond donors for building thermodynamic and spectroscopic (NMR, UV and IR) scales of hydrogen-bond basicity. The building of such scales contributes not only to the increasing efforts towards a quantitative description of the hydrogen bond, but also to the difficult and unachieved task of measuring quantitatively the strength of organic Lewis bases. Scales constructed from phenol, 4-fluorophenol and 4-nitrophenol are presented in Section VII.

It is possible to increase the strength of the hydrogen bond by using complexes of Lewis bases with phenol derivatives of increasing hydrogen-bond donor strength, e.g. from polymethylphenols to polynitrophenols. Then the transition from a hydrogen-bonded complex \(\text{ArOH} \cdots \text{B} \) to a proton-transfer complex \(\text{ArO}^- \cdots ^+ \text{HB} \) can be observed. Proton transfer in the hydrogen-bonded complexes of phenols is studied in Section VIII.

II. HYDROGEN-BOND BASICITY OF PHENOLS

Laurence and coworkers18 have measured the equilibrium constant of reaction 1

\[2 \text{FC}_6\text{H}_4\text{OH} \rightleftharpoons (\text{FC}_6\text{H}_4\text{OH})_2 \quad (1) \]

in \(\text{CCl}_4\) at 298 K by following the absorbance variations of the \(\nu(\text{OH})\) infrared band of 4-fluorophenol at 3614 cm\(^{-1}\) with increasing concentrations of the phenol. Assuming that the self-association of 4-fluorophenol is limited to the formation of a dimer in the 4 to 50 mmol dm\(^{-3}\) range, they find a constant \(K = [\text{dimer}]/[\text{monomer}]^2\) value of 0.76 dm\(^3\) mol\(^{-1}\). The measurement, in the same conditions, of the complexation constants of 4-fluorophenol with water and alcohols (reaction 2)18, ethers (reaction 3)19 and various organic Lewis bases \(\text{B} \) (reaction 4)20

\[
\begin{align*}
4-\text{FC}_6\text{H}_4\text{OH} + \text{ROH} & \rightleftharpoons 4-\text{FC}_6\text{H}_4\text{OH} \cdots \text{O(R)H} \\
4-\text{FC}_6\text{H}_4\text{OH} + \text{ROR'} & \rightleftharpoons 4-\text{FC}_6\text{H}_4\text{OH} \cdots \text{O(R)R'} \\
4-\text{FC}_6\text{H}_4\text{OH} + \text{B} & \rightleftharpoons 4-\text{FC}_6\text{H}_4\text{OH} \cdots \text{B}
\end{align*}
\]

provides a hydrogen-bond basicity scale \(pK_{HB}\)21 (equation 5) (Section VII, A) for 4-fluorophenol, water, alcohols and various Lewis bases.

\[pK_{HB} = \log_{10} K(4-\text{FC}_6\text{H}_4\text{OH} \cdots \text{B}, \text{CCl}_4, 298 \text{ K}) \quad (5) \]

The scale, illustrated in Figure 1, shows that 4-fluorophenol is a weaker hydrogen-bond acceptor (HBA) than water, alcohols and aliphatic ethers. This is expected since the
phenyl group withdraws electronic density from the oxygen lone pairs through its field-inductive and resonance effects. Other phenols cannot be studied by this method because of the overlap of their own OH band with the OH band of 4-fluorophenol. Laurence and coworkers18 then turned to a spectroscopic scale of hydrogen-bond basicity, Δv(OH), namely the displacement, on H-bond formation, of the 3618 cm$^{-1}$ OH band of a very strong hydrogen-bond donor, the perfluoroalcohol (CF$_3$)$_3$COH. Results for 5 phenols and 7 alcohols are reported in column 3 of Table 1. Figure 2 shows that pK_{HB} and Δv(OH) are very well correlated. This correlation enables the calculation of the secondary pK_{HB}
TABLE 1. \(pK_{\text{HB}} \), \(\Delta \nu(\text{OH}) \) and \(\beta_2^\text{H} \) hydrogen-bond basicity scales for phenols and, for comparison, water and alcohols

<table>
<thead>
<tr>
<th>ROH</th>
<th>Primary (pK_{\text{HB}}^a)</th>
<th>(\Delta \nu(\text{OH})^b)</th>
<th>Secondary (pK_{\text{HB}}^c)</th>
<th>(\beta_2^\text{Hd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamantan-1-ol</td>
<td>1.27</td>
<td>482</td>
<td>—</td>
<td>0.51</td>
</tr>
<tr>
<td>(t)-BuOH</td>
<td>1.14</td>
<td>468</td>
<td>—</td>
<td>0.49</td>
</tr>
<tr>
<td>(i)-PrOH</td>
<td>1.06</td>
<td>455</td>
<td>—</td>
<td>0.47</td>
</tr>
<tr>
<td>EtOH</td>
<td>1.02</td>
<td>438</td>
<td>—</td>
<td>0.44</td>
</tr>
<tr>
<td>MeOH</td>
<td>0.82</td>
<td>417</td>
<td>—</td>
<td>0.41</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>0.65</td>
<td>—</td>
<td>—</td>
<td>0.38</td>
</tr>
<tr>
<td>ClCH(_2)CH(_2)OH</td>
<td>0.50</td>
<td>376</td>
<td>—</td>
<td>0.35</td>
</tr>
<tr>
<td>4-MeC(_6)H(_4)OH</td>
<td>—</td>
<td>304</td>
<td>0.03</td>
<td>0.24</td>
</tr>
<tr>
<td>3-MeC(_6)H(_4)OH</td>
<td>—</td>
<td>301</td>
<td>0.01</td>
<td>0.24</td>
</tr>
<tr>
<td>C(_6)H(_5)OH</td>
<td>—</td>
<td>289</td>
<td>—0.07</td>
<td>0.22</td>
</tr>
<tr>
<td>4-FC(_6)H(_4)OH</td>
<td>—0.12</td>
<td>281</td>
<td>—0.13e</td>
<td>0.21</td>
</tr>
<tr>
<td>3-CF(_3)C(_6)H(_4)OH</td>
<td>—</td>
<td>ca 248</td>
<td>ca 0.36</td>
<td>ca 0.16</td>
</tr>
<tr>
<td>(CF(_3))(_2)CHOH</td>
<td>—</td>
<td>ca 161</td>
<td>ca 0.96</td>
<td>ca 0.03</td>
</tr>
</tbody>
</table>

\(^a\)Experimental complexation constants of reactions 1 and 2.

\(^b\)In cm\(^{-1}\), \(\Delta \nu(\text{OH}) = 3618 - \nu(\text{OH} \cdots \text{O}) \).

\(^c\)Calculated from the equation \(pK_{\text{HB}} = 0.692 \left(\Delta \nu(\text{OH})/100 \right) - 2.07 \).

\(^d\)Calculated from equation 6.

\(^e\)The agreement between the primary (experimental) value and the secondary value, calculated from the \(\nu(\text{OH} \cdots \text{O}) \) band, indicates that complexes to the \(\pi \) and F sites can be neglected to a first approximation.

FIGURE 2. Correlation between the thermodynamic \(pK_{\text{HB}} \) (towards 4-fluorophenol) and the spectroscopic \(\Delta \nu(\text{OH}) \) (towards perfluoro-\(t \)-butyl alcohol) scales of hydrogen-bond basicity \((n = 7, r = 0.998)\) allowing the calculation of \(pK_{\text{HB}} \) for very weakly basic alcohols and phenols.

Values of 4 new phenols, reported in column 4 of Table 1. These \(pK_{\text{HB}} \) values can be anchored to the empirical \(\beta_2^\text{H} \) scale of hydrogen-bond basicity (equation 6)\(^{22} \) normalized from 0 to 1 \((\beta_2^\text{H} = 1)\) for HMPA.

\[
\beta_2^\text{H} = (pK_{\text{HB}} + 1.1)/4.636
\]

This \(\beta_2^\text{H} \) scale constitutes the last column in Table 1. From the correlation of \(pK_{\text{HB}} \) with the Hammett \(\sigma^\circ \) constant of the ring substituent (equation 7), many other \(pK_{\text{HB}} \) values can be calculated for meta- and para-substituted phenols.

\[
pK_{\text{HB}} = -0.650\sigma^\circ - 0.05
\]
Berthelot and colleagues23 have estimated the pK_{HB} values of the phenolic OH group in the \textit{intra}molecular hydrogen-bonded systems 1, 2 and 3. The higher basicity pK_{HB} of 1 and 2 compared to phenol (−0.07) can be explained by cooperative effects24 involved in hydrogen-bond formation: the oxygen electron pairs are more basic in OH···B than in the free OH group25. The push-pull effect shown by the curved arrows in 3 opposes the cooperativity effect and pK_{HB} falls.

The cooperativity effect can also increase the hydrogen-bond basicity of the phenolic OH group in \textit{inter}molecular hydrogen-bonded systems. For example, the study of phenol-triethylamine systems (equation 8)26 shows that a large increase in the ratio of initial concentrations $[\text{phenol}]_0/[\text{Et}_3\text{N}]_0$ leads to a large increase in the apparent complexation constant, which is explained by the formation of complexes of 2:1 stoichiometry (reaction 9). The evaluation of the constants of the 1:1 equilibrium (K_1) (reaction 8) and the 2:1 equilibrium (K_2) (reaction 9) gives $K_1 = 62$ and $K_2 = 40 \text{ dm}^3\text{ mol}^{-1}$ for 4-fluorophenol, i.e. a $pK_{\text{HB}}(\log K_2)$ value of 1.60 for a phenolic OH group hydrogen-bonded to NEt$_3$, to be compared to $pK_{\text{HB}} = −0.12$ for a free phenolic OH function. Other complexation constants have been measured for 2:1 complexes of phenols hydrogen-bonded to tetramethylurea27 and tri-n-butylamine28. Zeegers-Huyskens24 has recently reviewed how the displacement of the electronic clouds and of the nuclei, upon the formation of a first hydrogen bond A−H···B, affects the hydrogen-bond basicity and acidity of the other specific sites in the two partners.

\begin{equation}
\text{ArOH} + \text{Et}_3\text{N} \xrightleftharpoons{K_1} \text{ArOH} \cdots \text{NEt}_3
\end{equation}

\begin{equation}
\text{ArOH} \cdots \text{NEt}_3 + \text{ArOH} \xrightleftharpoons{K_2} \text{ArO−H} \cdots \text{O−H} \cdots \text{NEt}_3
\end{equation}

When a solute is dissolved in a pure hydrogen-bond donor solvent, such as water or alcohol, all acceptor sites are involved in the solvation phenomenon. For example, the partition of phenols between water and organic phases now depends both on the oxygen and on the π hydrogen-bond basicities, because of the excess of water molecules. From sets of water-solvent partition coefficients, Abraham29 has constructed a scale of effective or summation hydrogen-bond basicity, $\sum \beta^1_2$, for about 350 solutes, of which 72 are phenols. A few examples are given in Table 2. For the phenols and anisoles,
TABLE 2. Comparison of β^H_2 and $\Sigma\beta^H_2$ for phenols, anisoles, alcohols and ethers

<table>
<thead>
<tr>
<th>Base</th>
<th>$\Sigma\beta^H_2$</th>
<th>β^H_2</th>
<th>Diff.d</th>
<th>Base</th>
<th>$\Sigma\beta^H_2$</th>
<th>β^H_2</th>
<th>Diff.e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et$_2$O</td>
<td>0.45</td>
<td>0.46a</td>
<td>-0.01</td>
<td>C$_6$H$_5$OH</td>
<td>0.30</td>
<td>0.22b</td>
<td>+0.08</td>
</tr>
<tr>
<td>i-Pr$_2$O</td>
<td>0.41</td>
<td>0.48a</td>
<td>-0.07</td>
<td>3-MeC$_6$H$_4$OH</td>
<td>0.34</td>
<td>0.24b</td>
<td>+0.10</td>
</tr>
<tr>
<td>n-Bu$_2$O</td>
<td>0.45</td>
<td>0.43a</td>
<td>+0.02</td>
<td>4-MeC$_6$H$_4$OH</td>
<td>0.31</td>
<td>0.24b</td>
<td>+0.07</td>
</tr>
<tr>
<td>THF</td>
<td>0.48</td>
<td>0.51a</td>
<td>-0.03</td>
<td>4-FC$_6$H$_4$OH</td>
<td>0.23</td>
<td>0.21b</td>
<td>+0.02</td>
</tr>
<tr>
<td>THP</td>
<td>0.54</td>
<td>0.50a</td>
<td>+0.04</td>
<td>C$_6$H$_4$OMe</td>
<td>0.29</td>
<td>0.22c</td>
<td>+0.07</td>
</tr>
<tr>
<td>MeOH</td>
<td>0.44</td>
<td>0.41b</td>
<td>+0.03</td>
<td>4-ClC$_6$H$_4$OMe</td>
<td>0.24</td>
<td>0.18c</td>
<td>+0.06</td>
</tr>
<tr>
<td>n-C8H${17}$OH</td>
<td>0.48</td>
<td>0.46b</td>
<td>+0.02</td>
<td>2-MeC$_6$H$_4$OMe</td>
<td>0.29</td>
<td>0.21c</td>
<td>+0.08</td>
</tr>
<tr>
<td>avg</td>
<td>0</td>
<td></td>
<td></td>
<td>avg</td>
<td></td>
<td></td>
<td>+0.07</td>
</tr>
</tbody>
</table>

aCalculated from the pK_{HB} of Reference 19 and equation 6.

bFrom Table 1.

cFrom the pK_{HB} values of the oxygen atom (Reference 30) and equation 6.

dRandom differences for aliphatic ethers and alcohols.

eSystematic positive difference for phenols and anisoles.

the systematic positive difference between β^H_2, measuring the oxygen basicity alone, and $\Sigma\beta^H_2$, measuring the overall basicity, demonstrates the contribution of the π basicity to $\Sigma\beta^H_2$ values.

Nobili and colleagues31 have studied the hydrogen-bond basicity of phenols and anisoles from both the frequency of hydrogen-bond formation in molecular crystal structures and ab initio calculations on their complexes with methanol. The percentage of crystal structures found in the Cambridge Structural Database (CSD)32 where the oxygen of furan, anisole, tetrahydrofuran or phenol fragments accepts a hydrogen bond from an OH donor is in the order: furan \ll anisole $<$ THF $<$ phenol. These results do not imply that phenol is a better acceptor than anisole or THF, but are rather explained by the cooperativity effect since, in 25 of the 87 hydrogen bonds accepted by the phenol oxygen, it was simultaneously acting as a donor to an oxygen atom. In vacuo the calculated energy of a MeOH···O hydrogen bond is in the order: furan $<$ phenol \ll anisole $<$ THF, in agreement with the pK_{HB} scale ($-0.40^{19} < -0.07^{18} \sim -0.07^{30} < 1.28^{19}$). The perpendicular conformation of phenols forms hydrogen bonds a few kJ mol$^{-1}$ stronger than the planar one. This can be partly attributed to the change in the oxygen atom charge density caused by delocalization of the lone-pair charge density into the π system of the ring.

III. HYDROGEN-BOND ACIDITY OF PHENOLS

A. $\log K^H_A$ Scale

In 1989, Abraham and coworkers33,34 constructed a scale of solute hydrogen-bond acidity based on the numerous literature results of $\log K$ values for the 1 : 1 hydrogen-bond complexation reaction (equations 10 and 11) in which a series of hydrogen-bond acids AH_i complex with a given reference base in dilute solution in CCl$_4$. Such series of $\log K$ values were collected against 45 reference bases, e.g. pyridine, triethylamine, tetramethyleurea, tetramethylthiourea, N,N-dimethylacetamide, HMPA, acetone, DMSO, THF, acetonitrile, triphenylphosphine oxide, 1-methylimidazole, diethyl sulfide or pyridine N-oxide. By plotting $\log K$ values for acids against a given reference base vs. $\log K$ values for acids against any other reference base, they obtained a series of straight lines (equation 12) that intersected near a ‘magic point’ at $(−1.1, −1.1)$. The constants L_B and D_B characterize the 45 reference bases B. The $\log K^H_A$ values, computed using a
program described in Reference 33, represent the hydrogen-bond acidity of the acids over the 45 equations, and their mean constitutes a scale of solute hydrogen-bond acidity. Experimentally, new K_A^H values might be obtained from complexation constants with a reference base with $L_B = 1$ and $D_B = 0$. Pyridine ($L_B = 1.0151$, $D_B = 0.0139$) and triphenyl phosphate ($L_B = 1.0008$, $D_B = 0.0008$) might be used for such measurements.

$$A\cdot H + B \rightleftharpoons A\cdot H \cdots B$$

(10)

$$K (\text{dm}^3 \text{mol}^{-1}) = [A\cdot H \cdots B]/[A\cdot H][B]$$

(11)

$$\log K^i (\text{series of acids against base } B) = L_B \log K_A^H + D_B$$

(12)

The log K_A^H scale is not quite general in the sense that a number of acid–base combinations are excluded from equation 12. However, phenols, as well as alcohols and strong NH donors, can be combined with all types of bases.

The log K_A^H values calculated for 58 phenols are given in Table 3. The comparison of phenols with alcohols, carboxylic acids, NH, CH and SH donors is illustrated in Figure 3. By assuming the magic point to be the origin of the log K_A^H scale in CCl$_4$, this scale can be moved to the more convenient origin of zero by adding $+1.1$. At the same time, the scale can be compressed somewhat so that values extend from 0 to 1. Equation 13 converts log K_A^H to an empirical a_H^2 scale, which is generally used in linear solvation energy relationships

$$a_H^2 = (\log K_A^H + 1.1)/4.636$$

(13)

Within the phenol family there are connections between hydrogen-bond acidities and full proton transfer acidity. Abraham and colleagues found two good correlations between the log K_A^H scale and a parameter characteristic of proton transfer, the pK_a value in water. Equations 14 and 15 might be valuable in the conversion of pK_a into log K_A^H, or vice versa.

$$\log K_A^H (3\text{-substituted phenols}) = 8.13 - 0.66 \, \text{p}K_a$$

$$n = 11, \quad s = 0.09, \quad r = 0.980$$

$$\log K_A^H (4\text{-substituted phenols}) = 5.56 - 0.39 \, \text{p}K_a$$

$$n = 14, \quad s = 0.11, \quad r = 0.965$$

However, there is no general connection between the log K_A^H and the pK_a scales, or any other measure of proton transfer. For example, log K_A^H is larger for phenol than for simple carboxylic acids. This has been attributed to resonance stabilization in the carboxylate anion, which will disproportionately favor full proton transfer over hydrogen bonding. An additional steric effect has been suggested: the lone-pair repulsion between the incoming hydrogen-bond acceptor and the carbonyl group.

The classical steric effect plays a significant role in influencing the hydrogen-bond acidity of ortho-substituted phenols. The introduction of one ortho-alkyl group into phenol lowers log K_A^H (Table 3). A 2,6-dialkyl substitution produces a more severe steric inhibition to hydrogen-bond formation (Table 3) and 2,6-di-i-propyphenol and 2,6-di-t-butylphenol become so weak that they were excluded from the analysis (Figure 4).

Intramolecular hydrogen bonding also leads to a reduction in the log K_A^H values. If electronic effects cancel out, a rough measure of the effect of intramolecular hydrogen bonding might be the differences between the values for the 2- and 4-substituted
TABLE 3. Hydrogen-bond acidity scale log K_H^A for phenols

<table>
<thead>
<tr>
<th>Phenol</th>
<th>log K_H^A</th>
<th>3-substituted phenols</th>
<th>log K_H^A</th>
<th>4-substituted phenols</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Naphthol</td>
<td>1.74</td>
<td>4-i-Propyl</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>1-Naphthol</td>
<td>1.72</td>
<td>3,4,5-Trimethyl</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>1.66</td>
<td>3-Ethyl</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-Propyl</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-Ethyl</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Meta- and/or Para-substituted phenols</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Nitro-3-trifluoromethyl</td>
<td>3.33</td>
<td>4-Octyl</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>4-Nitro</td>
<td>2.72</td>
<td>3-Dimethylamino</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>3,4,5-Trichloro</td>
<td>2.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5-Di(trifluoromethyl)</td>
<td>2.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono-ortho-alkyl-substituted phenols</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Cyanogen</td>
<td>2.55</td>
<td>4-Methyl-2-t-butyl</td>
<td>(1.52)a</td>
<td></td>
</tr>
<tr>
<td>3-Nitro</td>
<td>2.54</td>
<td>3-Methyl-6-t-butyl</td>
<td>(1.47)a</td>
<td></td>
</tr>
<tr>
<td>3,5-Dichloror</td>
<td>2.49</td>
<td>2,4-Di-t-Butyl</td>
<td>(1.43)a</td>
<td></td>
</tr>
<tr>
<td>3-Cyanogen</td>
<td>2.48</td>
<td>2,5-Dimethyl</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>3,4-Dichloror</td>
<td>2.35</td>
<td>2-t-Propyl</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>4-Trifluoromethyl</td>
<td>2.25</td>
<td>2,3-Dimethyl</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>4-Acetoxy</td>
<td>2.25</td>
<td>2,4-Dimethyl</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>3-Trifluoromethyl</td>
<td>2.24</td>
<td>2,3,5-Trimethyl</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>3-Bromo</td>
<td>2.14</td>
<td>2-t-Butyl</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>3-Chloro</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Fluoro</td>
<td>2.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Iodo</td>
<td>2.05</td>
<td>4-Bromo-2,6-dimethyl</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>4-Bromo</td>
<td>2.03</td>
<td>2,6-Dimethyl</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>4-Chloro</td>
<td>2.01</td>
<td>2,4,6-Trimethyl</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>4-Fluoro</td>
<td>1.82</td>
<td>2-Methyl-6-t-butyl</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>4-Phenyl</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methoxy</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Methoxy</td>
<td>1.56</td>
<td>2-Cyano</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>4-s-Butyl</td>
<td>1.55</td>
<td>2,6-Dichloro-4-nitro</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>3-Methyl</td>
<td>1.55</td>
<td>2-Chloro</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>4-Methyl</td>
<td>1.54</td>
<td>Pentachloro</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>3,5-Dimethyl</td>
<td>1.53</td>
<td>Pentabromo</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>3,4-Dimethyl</td>
<td>1.49</td>
<td>2,6-Dichloro</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>4-t-Butyl</td>
<td>1.49</td>
<td>2-Methoxy</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

aDoubtful values, compared to 2-t-butylphenol.

phenol. This difference is small for the C≡N and Cl substituents (0.23 and 0.10 log units, respectively) and very large (1.45 log unit) for the OMe substituent.

For meta- and para-substituted phenols, log K_H^A values spread over 2 log units from 3-dimethylaninophenol to 4-nitro-3-trifluoromethylphenol. Their order is well explained by classical electronic effects. A dual-substituent parameter analysis gives equations 16 and 17, where σ_F and σ_R are the Taft field-inductive and resonance substituent constants38, respectively.

$$\log K_H^A (3\text{-substituted phenols}) = 1.63 + 1.35\sigma_F + 0.63\sigma_R$$ (16)

$n = 11, \quad s = 0.05, \quad r = 0.995$

$$\log K_H^A (4\text{-substituted phenols}) = 1.64 + 1.38\sigma_F + 1.01\sigma_R$$ (17)

$n = 14, \quad s = 0.06, \quad r = 0.992$
FIGURE 3. Comparison of the hydrogen-bond acidity of phenols with various hydrogen-bond donors
B. log K_α Scale

Hydrogen-bonding equilibrium constants K_α have been measured\(^{37}\) by titrational calorimetry or IR spectroscopy for sixteen phenols and a large and varied selection of hydrogen-bond donors, against N-methylpyrrolidinone. These have been used to create the log K_α scale (equations 18 and 19) of hydrogen-bond acidity for use in drug design. To this end, they have been measured in 1,1,1-trichloroethane, a solvent whose high polarity is considered a much better model for biological membranes than the previously employed apolar solvent CCl\(_4\). Values are reported in Table 4. The extremes of the scale are 4-nitrophenol (3.12) and 2,6-di-t-butylphenol (0). For phenols and alcohols, a reasonable relation (equation 20) is found between log K_α and log K_H, although different solvents have been used. There are four main families: carboxylic acids, phenols, alcohols and azoles (pyrroles, indoles, etc.), for the correlation between hydrogen bonding (log K_α) and full proton transfer in water (pK_a). For phenols, equation 21 seems of lower quality than equations 14 and 15. The log K_α scale is possibly more reliable than the log K_H scale. In particular, the log K_α values of 4-methoxyphenol (2.18) and 2-t-butylphenol (1.85) appear suspect compared to those of phenol (2.14) and 2-methylphenol (1.75), respectively. They disagree with the well-known electron-donor property of the 4-methoxy substituent\(^{38}\) and the greater steric effect of the 2-t-butyl group compared to the 2-methyl group.
TABLE 4. The log K_a hydrogen-bond acidity scale: comparison of phenols with other hydrogen-bond donors

<table>
<thead>
<tr>
<th>Meta- and para-substituted phenols</th>
<th>log K_a</th>
<th>Various hydrogen-bond donors</th>
<th>log K_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Nitro</td>
<td>3.12</td>
<td>N = N</td>
<td>3.55</td>
</tr>
<tr>
<td>4-Trifluoromethyl</td>
<td>2.80</td>
<td>(CF$_3$CO)$_2$NH</td>
<td>2.63</td>
</tr>
<tr>
<td>3-Chloro</td>
<td>2.50</td>
<td>Acetic acid</td>
<td>2.04</td>
</tr>
<tr>
<td>4-Methoxy</td>
<td>2.18</td>
<td>Trifluoroethanol</td>
<td>2.00</td>
</tr>
<tr>
<td>None</td>
<td>2.14</td>
<td>Thioacetic acid</td>
<td>1.52</td>
</tr>
<tr>
<td>3-Methyl</td>
<td>1.89</td>
<td>Methanol</td>
<td>1.48</td>
</tr>
<tr>
<td>3-i-Propyl</td>
<td>1.89</td>
<td>Acetonilide</td>
<td>1.34</td>
</tr>
<tr>
<td>3-N-N-Dimethylamino</td>
<td>1.79</td>
<td>p-Toluene sulfonamide</td>
<td>1.15</td>
</tr>
<tr>
<td>2-Cyano</td>
<td>2.69</td>
<td>2-Chloroethanol</td>
<td>1.08</td>
</tr>
<tr>
<td>2-Chloro</td>
<td>2.33</td>
<td>Pyrrole</td>
<td>0.95</td>
</tr>
<tr>
<td>2-i-Propyl</td>
<td>1.95</td>
<td>t-Butyl alcohol</td>
<td>0.78</td>
</tr>
<tr>
<td>2-t-Butyl</td>
<td>1.85</td>
<td>4-Nitro-N-methyleneiline</td>
<td>0.73</td>
</tr>
<tr>
<td>2-Methyl</td>
<td>1.75</td>
<td>chloroform</td>
<td>ca 0.4</td>
</tr>
<tr>
<td>2,6-Dimethyl</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichloro</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Di-i-propyl</td>
<td>ca 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Di-t-butyl</td>
<td>ca 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ortho-substituted phenols

<table>
<thead>
<tr>
<th>Phenols</th>
<th>log K_a</th>
<th>Various hydrogen-bond donors</th>
<th>log K_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Cyano</td>
<td>2.69</td>
<td>N = N</td>
<td>3.55</td>
</tr>
<tr>
<td>2-Chloro</td>
<td>2.33</td>
<td>(CF$_3$CO)$_2$NH</td>
<td>2.63</td>
</tr>
<tr>
<td>2-i-Propyl</td>
<td>1.95</td>
<td>Acetic acid</td>
<td>2.04</td>
</tr>
<tr>
<td>2-t-Butyl</td>
<td>1.85</td>
<td>Trifluoroethanol</td>
<td>2.00</td>
</tr>
<tr>
<td>2-Methyl</td>
<td>1.75</td>
<td>Thioacetic acid</td>
<td>1.52</td>
</tr>
<tr>
<td>2,6-Dimethyl</td>
<td>1.08</td>
<td>Methanol</td>
<td>1.48</td>
</tr>
<tr>
<td>2,6-Dichloro</td>
<td>0.98</td>
<td>Acetonilide</td>
<td>1.34</td>
</tr>
<tr>
<td>2,6-Di-i-propyl</td>
<td>ca 0</td>
<td>p-Toluene sulfonamide</td>
<td>1.15</td>
</tr>
<tr>
<td>2,6-Di-t-butyl</td>
<td>ca 0</td>
<td>2-Chloroethanol</td>
<td>1.08</td>
</tr>
</tbody>
</table>

\[
K_a (\text{dm}^3 \text{mol}^{-1}) = \frac{[\text{Complex}]}{[\text{H-bond donor}][N\text{-methylpyrrolidinone}]}
\]

\[
\log K_a = 0.870\log K_A^\text{H} + 0.70
\]

\[
n = 21, \ s = 0.13, \ r = 0.986
\]

\[
\log K_a = 6.25 - 0.40pK_a
\]

\[
n = 9, \ s = 0.11, \ r = 0.927
\]

C. Complexation with Pyridine N-oxide

A hydrogen-bond acidity scale has been constructed by Frange and coworkers and by Sraïdi based on log K values for complexation with pyridine N-oxide in cyclohexane (equations 22 and 23). Values for phenols and, for comparison, thiols, chloroform, pyrrole and alcohols are collected in Table 5. There is a fair measure of agreement between log K and log K_A^H ($n = 16, r = 0.992$) and log K_a ($n = 9, r = 0.972$).

\[
A + \text{H} + \text{N} \rightarrow \text{O} \rightleftharpoons \text{OR} \rightarrow \text{O} \cdot \cdot \cdot \text{H} \rightarrow \text{A}
\]

D. Solvatochromic Shifts of Reichardt’s Betaine Dye

Reichardt’s dye 4 is the most widely used solvatochromic probe of probe/solvent interactions. The solvatochromic shifts of the longest-wavelength intramolecular
TABLE 5. Hydrogen-bond acidity of hydrogen-bond donors including phenols towards pyridine N-oxide31

<table>
<thead>
<tr>
<th>Hydrogen-bond donors</th>
<th>Substituted phenols</th>
<th>log K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Propanethiol</td>
<td>-0.18</td>
<td>4-Methyl</td>
</tr>
<tr>
<td>2-Methyl-2-propanethiol</td>
<td>-0.13</td>
<td>3-Methyl</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.68</td>
<td>None</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>1.30</td>
<td>4-Fluoro</td>
</tr>
<tr>
<td>Cyclohexanol</td>
<td>1.32</td>
<td>4-Chloro</td>
</tr>
<tr>
<td>1-Octanol</td>
<td>1.41</td>
<td>3-Fluoro</td>
</tr>
<tr>
<td>2-Phenylethanol</td>
<td>1.51</td>
<td>Pentafluoro</td>
</tr>
<tr>
<td>Methanol</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>Pyrrole</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>2-Chloroethanol</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>2-Bromoethanol</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>Propargyl alcohol</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>Trichloroethanol</td>
<td>2.48</td>
<td></td>
</tr>
<tr>
<td>Hexafluoroisopropanol</td>
<td>3.66</td>
<td></td>
</tr>
</tbody>
</table>

charge-transfer $\pi - \pi^*$ absorption band of this dye provide a quantitative measurement of solvent effects. They are measured in kcal mol-1 (1 cal = 4.184 J) using the molar electronic transition energy, $E_T(30)$. For example $E_T(30)$ spreads from 31 kcal mol-1 for pentane to 65.3 kcal mol-1 for hexafluoroisopropanol43. With the phenolate oxygen atom, the dye has a strong hydrogen-bond acceptor center, suitable for interactions with hydrogen-bond donors. Hydrogen bonding to the phenolate oxygen will lead to a stabilization of the π ground state relative to the less basic π^* excited state, and this will be accompanied by an increase in the transition energy (Figure 5).

Coleman and Murray44 have reported evidence that the dye 4 forms hydrogen bonds with dilute acetonitrile solutions of phenols, alcohols and water. They have measured the equilibrium constants for the complexation of the dye 4 (ArO^-Cl) with these hydrogen-bond donors in MeCN (equation 24). For 6 phenols, 2 alcohols and water, the logarithm of these complexation constants is well correlated with log K_H^A ($n = 9, r = 0.985$). These results provide quantitative support for suggestions45,46 that the $E_T(30)$ scale is at least

\[(4) \text{ in pentane} \]

\[E_T(30) = 31 \text{ kcal mol}^{-1} \]

\[(4) \text{ in } (\text{CF}_3)_2\text{CHOH} \]

\[E_T(30) = 65.3 \text{ kcal mol}^{-1} \]

FIGURE 5. Structure of Reichardt’s dye 4, and a schematic diagram showing the influence of a hydrogen-bond donor solvent on the ground and excited states of the intramolecular charge-transfer absorption
as much a measure of solvent hydrogen-bond donor acidity as it is of van der Waals interactions in hydrogen-bond donor solvents.

\[
\text{ArO}^- \cdots \text{CH}_3\text{CN} + \text{ROH} \cdots \text{NCCH}_3 \rightleftharpoons \text{ArO}^- \cdots \text{HOR} + \text{CH}_3\text{CN} \cdots \text{CH}_3\text{CN} \quad (24)
\]

Hormadaly and Marcus\(^{47}\) have measured \(E_T(30)\) for 22 liquid and supercooled liquid phenols at room temperature. The \(E_T(30)\) values found (Table 6) show the phenols to be better hydrogen-bond donor solvents than alcohols (compare \(E_T\) for phenol, 61.4, and methanol, 55.4). Bulky alkyl groups at both ortho positions (2,6-di-\(t\)-butylphenol, 41.1) and intramolecular hydrogen bonds (methyl salicylate, 45.4) decrease \(E_T(30)\) drastically. Thus the solvent \(E_T(30)\) scale shows the same effects as already found on the solute log \(K_H^A\) scale. Figure 6 compares the two scales for phenols, water, alcohols, NH and CH donors. The correlation is statistically significant: for 31 hydrogen-bond donor solvents, the solute hydrogen-bond acidity (log \(K_H^A\)) explains 70% of the variance of the solvent \(E_T(30)\) scale. Four main reasons might, however, explain the differences between the two scales. First, one is comparing an electronic energy \((E_T)\) to a Gibbs energy (log \(K = \Delta G/RT\)). Second, \(E_T(30)\) measures not only hydrogen bonding but also nonspecific van der Waals interactions. Third, \(E_T(30)\) is a solvent scale, taking into account, for example, the self-association of amphiprotic solvents, while log \(K_H^A\) is a solute scale for monomeric compounds. Last, the phenolate oxygen in 4 is sterically hindered by two bulky ortho-phenyl groups and \(E_T(30)\) might be more sensitive than log \(K_H^A\) to steric effects.

The \(E_T(30)\) values of 55 phenols have been determined\(^{48}\) by means of a special technique using solutions of the phenols in 1,2-dichloroethane as inert solvent. Surprisingly,

Table 6. \(E_T(30)\) (kcal mol\(^{-1}\)) values of hydrogen-bond donor solvents and, for comparison, log \(K_H^A\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>(E_T(30))</th>
<th>log (K_H^A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH donors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-1-yne</td>
<td>33.7(^a)</td>
<td>−0.51(^c)</td>
</tr>
<tr>
<td>Phenylacetylene</td>
<td>37.2(^a)</td>
<td>−0.56</td>
</tr>
<tr>
<td>Pentfluorobenzene</td>
<td>38.6(^a)</td>
<td>−1.06(^d)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>39.1(^a)</td>
<td>−0.18</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>40.7(^a)</td>
<td>−0.50</td>
</tr>
<tr>
<td>Propargyl chloride</td>
<td>41.7(^a)</td>
<td>−0.24</td>
</tr>
<tr>
<td>Ethyl propiolate</td>
<td>45.4(^a)</td>
<td>−0.23</td>
</tr>
<tr>
<td>NH donors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniline</td>
<td>44.4(^a)</td>
<td>0.12</td>
</tr>
<tr>
<td>Pyrrole</td>
<td>51.0(^a)</td>
<td>0.79</td>
</tr>
<tr>
<td>N-Methylacetamide</td>
<td>52.1(^a)</td>
<td>0.68</td>
</tr>
<tr>
<td>OH donors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)-Butanol</td>
<td>43.3(^a)</td>
<td>0.38</td>
</tr>
<tr>
<td>2,6-Dimethylphenol</td>
<td>47.6(^b)</td>
<td>0.71</td>
</tr>
<tr>
<td>2-Propanol</td>
<td>48.4(^a)</td>
<td>0.40</td>
</tr>
<tr>
<td>2-Chloroethanol</td>
<td>54.1(^a)</td>
<td>1.22</td>
</tr>
<tr>
<td>2-Chloroethanol</td>
<td>55.4(^b)</td>
<td>1.91</td>
</tr>
<tr>
<td>2-Fluoroethanol</td>
<td>56.6(^a)</td>
<td>0.73</td>
</tr>
<tr>
<td>3-Methylbenzene</td>
<td>56.2(^a)</td>
<td>1.55</td>
</tr>
<tr>
<td>2,2,2-Trifluoroethanol</td>
<td>59.8(^a)</td>
<td>1.53</td>
</tr>
<tr>
<td>4-Methylbenzene</td>
<td>60.8(^b)</td>
<td>1.54</td>
</tr>
<tr>
<td>Hexafluoroisopropanol</td>
<td>65.3(^a)</td>
<td>2.47</td>
</tr>
</tbody>
</table>

\(^a\)Reference 41.
\(^b\)Reference 47.
\(^c\)Value for hept-1-yne.
\(^d\)Value for pentachlorobenzene.
these values are not correlated with log K_A^H. 4-Methoxyphenol and 4-methylphenol have about the same solute hydrogen-bond acidity (1.56 and 1.54, respectively) but very different $E_T(30)$ values (45.4 and 53.3, respectively). Conversely, 4-cyanophenol ($\log K_A^H = 2.55$) is a much stronger hydrogen-bond donor than 3-ethylphenol ($\log K_A^H = 1.44$), but these phenols have about the same $E_T(30)$ values (52.2 and 51.6 kcal mol$^{-1}$).

E. Hydrogen-bond Acidity from Partition Coefficients

Partition coefficients can be used to deduce the relative solute–solvent effects, e.g. solute–octanol less solute–water interactions in the case of octanol/water partition coefficients. From experimental octanol/water (o/w) and chloroform/water (Cl/w) partition coefficients Taft and colleagues49,50 derived an octanol/chloroform (o/Cl) partition coefficient and showed that a number of solute parameters cancel out in the difference. Thus $\log P_{o/Cl}$ depends only on the solute effective hydrogen-bond acidity, $\varepsilon\alpha$, and on the solute volume, V_x (equation 25). In equation 25 solute hydrogen-bond acidity favors octanol, since octanol is a better hydrogen-bond acceptor than chloroform, while solute size favors chloroform, since it is easier for the solute to create a cavity in chloroform, which has less cohesion energy than octanol. The coefficient of V_x is obtained from a set of solutes without hydrogen-bond acidity, while the coefficient of $\varepsilon\alpha$ is calculated from simple mono-hydrogen-bond donors, using known α_H^2 values determined from hydrogen-bond complexation constants in CCl$_4$ (see Section IIIA, equation 13). Equation 25 can be rearranged to give equation 26, from which the effective hydrogen-bond acidity $\varepsilon\alpha$ of the solute immersed in pure active solvents can be calculated. Table 7 gives typical $\varepsilon\alpha$ values for some phenols together with values for other hydrogen-bond donors for comparison.

\[
\log P_{o/Cl} = \log P_{o/w} - \log P_{Cl/w} = -1.00(0.01V_x) + 3.20\varepsilon\alpha - 0.03 \tag{25}
\]

\[
\varepsilon\alpha = [\log P_{o/Cl} + 1.00(0.01V_x) + 0.03]/3.20 \tag{26}
\]
In the same way, Abraham\(^{29}\) has calculated, from partition coefficients, an effective or summation hydrogen-bonding acidity scale, \(\Sigma \alpha^H_2\). However, while \(\varepsilon \alpha\) is obtained from one reference partition system (octanol/chloroform), with the hypothesis that a number of solute parameters acting on \(\log P\) cancel out, Abraham determines the \(\Sigma \alpha^H_2\) values by a back calculation procedure over numerous sets of partition systems, and uses linear solvation energy relationships with a more complete set of solute parameters. Table 7 shows that \(\Sigma \alpha^H_2\), \(\varepsilon \alpha\) and \(\alpha^H_2\) values do not differ much for simple mono hydrogen-bond donors. It is also important to note that the order of acidity:

\[
1\text{-alkynes} \approx \text{thiols} \approx \text{amines} < \text{alcohols} \leq \text{carboxylic acids} \leq \text{phenols}
\]

remains basically the same whether the acidity is calculated from partition coefficients (\(\varepsilon \alpha\) or \(\Sigma \alpha^H_2\)) or from hydrogen-bond complexation constants (\(\alpha^H_2\)).

Interestingly, the value of \(\varepsilon \alpha\) for bisphenol A (5) is nearly twice the value for phenol. This additive effect opens up a large field of investigation for the calculation of hydrogen-bond acidities of complex polyfunctional molecules such as solutes of biological importance which are not accessible by other techniques. Finally, the effective acidity of 2-methoxyphenol (2) (guaiacol; \(\varepsilon \alpha = 0.20\)) is much smaller than that of 3- and 4-methoxyphenol and for 2-nitrophenol (6) this acidity is nearly zero (\(\varepsilon \alpha = 0.07\)).

This reduced acidity is in line with the IR spectra of 2 and 6 in chloroform\(^{51}\). 2-Methoxyphenol (Figure 7b) exhibits two absorptions at 3621 and 3544 cm\(^{-1}\), corresponding respectively to a free OH absorption and a weak intramolecular hydrogen-bonded OH band. When 2-nitrophenol (Figure 7c) is dissolved in the same solvent, there is no absorption near 3600 cm\(^{-1}\) corresponding to a free phenol such as shown in Figure 7a for \(p\)-methoxyphenol, and the large shift of the intramolecularly hydrogen-bonded absorption from \(ca\) 3600 to 3240 cm\(^{-1}\) is an indication of a strong chelation leaving no residual acidity to the solute.

More detailed work on the intramolecular hydrogen bond of ortho-nitrophenols has recently been carried out by Chopineaux-Courtois and coworkers\(^{52}\) and by Abraham and

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\varepsilon \alpha^a)</th>
<th>(\Sigma \alpha^H_2^b)</th>
<th>(\alpha^H_2^c)</th>
<th>Compound</th>
<th>(\varepsilon \alpha^d)</th>
<th>(\Sigma \alpha^H_2^e)</th>
<th>(\alpha^H_2^f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-OMe phenol</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
<td>2-NO(_2) phenol</td>
<td>0.07</td>
<td>0.05</td>
<td>—</td>
</tr>
<tr>
<td>3,5-Me(_2) phenol</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
<td>2-CHO phenol</td>
<td>0.11</td>
<td>0.11</td>
<td>—</td>
</tr>
<tr>
<td>3-Ome phenol</td>
<td>0.58</td>
<td>0.59</td>
<td>0.59</td>
<td>Bisphenol A (5)</td>
<td>1.26</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phenol</td>
<td>0.58</td>
<td>0.60</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Naphthol</td>
<td>0.66</td>
<td>0.61</td>
<td>0.61</td>
<td>(t)-Butanol</td>
<td>0.36</td>
<td>0.30</td>
<td>0.32</td>
</tr>
<tr>
<td>4-COOEt phenol</td>
<td>0.66</td>
<td>0.69</td>
<td>0.71</td>
<td>Methanol</td>
<td>0.29</td>
<td>0.43</td>
<td>0.37</td>
</tr>
<tr>
<td>4-CI phenol</td>
<td>0.68</td>
<td>0.69</td>
<td>0.67</td>
<td>2,2,2-Trifluoroethanol</td>
<td>0.58</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td>4-COMe phenol</td>
<td>0.73</td>
<td>—</td>
<td>0.72</td>
<td>Acetic acid</td>
<td>0.60</td>
<td>0.61</td>
<td>0.55</td>
</tr>
<tr>
<td>3-NO(_2) phenol</td>
<td>0.76</td>
<td>0.79</td>
<td>0.78</td>
<td>Trichloroacetic acid</td>
<td>—</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>4-NO(_2) phenol</td>
<td>0.84</td>
<td>0.82</td>
<td>0.82</td>
<td>(NH, SH, CH donors)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-Me(_2) phenol</td>
<td>0.57</td>
<td>0.54</td>
<td>0.54</td>
<td>Acetanilide</td>
<td>0.45</td>
<td>0.50</td>
<td>—</td>
</tr>
<tr>
<td>2,4-Me(_2) phenol</td>
<td>0.58</td>
<td>0.53</td>
<td>0.53</td>
<td>Ethylamine</td>
<td>—</td>
<td>0.16</td>
<td>0.00(^d)</td>
</tr>
<tr>
<td>1-Naphthol</td>
<td>0.67</td>
<td>0.61</td>
<td>0.61</td>
<td>Thiophenol</td>
<td>—</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>2-Ome phenol</td>
<td>0.20</td>
<td>0.22</td>
<td>0.26</td>
<td>Phenylethyne</td>
<td>—</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

\(^a\)Calculated from equation 26.

\(^b\)Reference 29.

\(^c\)Calculated from hydrogen-bonding complexation constants in tetrachloromethane (equation 13).

\(^d\)Estimated value for alkylamines.
In 1,2-dichloroethane/water and cyclohexane/water partition coefficients, the large increase in lipophilicity found for ortho-nitrophenol by comparison with the meta- and para-isomers is due to the loss of hydrogen-bond acidity provoked by the intramolecular hydrogen bond. This increase is not observable in the octanol/water system, which does not depend on the solute hydrogen-bond acidity strength. Abraham and coworkers obtained the overall hydrogen-bond acidities $\sum a^H$ of several mono-, di- and tri-nitrophenols. In compounds 6, 7 and 8, the hydrogen-bond acidity strength

![IR spectra](https://example.com/IR-spectra.png)

FIGURE 7. IR spectra in the OH stretching region of substituted phenols diluted in CCl₄ ([]) and CHCl₃ ([])
of the phenolic group is ruined by the strong intramolecular hydrogen bond. However, when steric effects between ortho-substituents create some distortions from the ideal planar geometry, the intramolecular hydrogen bond is weakened and compounds 9, 10 and 11 partly recover some hydrogen-bond acidity, reducing their lipophilicity in cyclohexane/water and 1,2-dichloroethane/water binary phases.

\[
\begin{align*}
\sum \alpha_2^H &= 0.05 \quad (6) \\
\sum \alpha_2^H &= 0.09 \quad (7) \\
\sum \alpha_2^H &= 0.11 \quad (8)
\end{align*}
\]

\[
\begin{align*}
\sum \alpha_2^H &= 0.17 \quad (9) \\
\sum \alpha_2^H &= 0.46 \quad (10) \\
\sum \alpha_2^H &= 0.67 \quad (11)
\end{align*}
\]

IV. SELF-ASSOCIATION OF PHENOLS

The self-association of phenols has received little attention in the last few decades so that most of the results in the field have already been gathered in the reviews of Rochester\(^7\) and Joesten and Schaad\(^4\). The few recent contributions to the analysis of phenol self-association have not greatly clarified the confusion prevailing about the degree of polymerization and the structures of the polymers. By dispersive IR spectroscopy, Frohlich\(^55\) found that the major species in the \(5 \times 10^{-3} - 1.6 \times 10^{-2}\) mol dm\(^{-3}\) concentration range is the dimer, but proton NMR shifts measured on solutions of phenol of higher concentrations (\(10^{-2} - 3\) mol dm\(^{-3}\)) were found to be compatible with a trimer formation\(^56\). Heat capacity measurements carried out on several alcohols and phenols led Pérez-Casas and coworkers\(^57,58\) to the conclusion that tetramers are the most abundant species in apolar solvents in the concentration range \(2 \times 10^{-2} - 0.8\) mol dm\(^{-3}\). All these results are not totally incompatible since they refer to different concentration ranges. However, the thermodynamic parameters evaluated by various techniques on the basis of
distinct simplifying assumptions need further refinements since unacceptably large differences appear between the results reported by the different authors. Thus, the dimerization equilibrium constant K_{d} of phenol reported by Frohlich (70 dm3 mol$^{-1}$)55 is 100 times greater than the (most reasonable) value (0.74) given by Singh and Rao59 and 5 times larger than the constant found by Huggins and coworkers (13)60.

Using Fourier Transform IR spectroscopy which allows accurate measurements of small absorbance variations, Laurence and coworkers18 measured a dimerization constant of 0.76 dm3 mol$^{-1}$ for 4-fluorophenol in a narrow range of concentration ($4 \times 10^{-3} - 5 \times 10^{-2}$ mol dm$^{-3}$) where the dimer is the dominant associated species. Their value is in agreement with the substituent effect of a 4-fluorophenyl group on the basicity of a hydroxyl group (see Section II).

In order to show the complexity of the phenol self-association, we have reported in Figure 8 the evolution of its IR spectrum in the domain of the OH stretching vibration as a function of concentration51. For the most diluted solutions ($4 \times 10^{-2} - 0.2$ mol dm$^{-3}$), the predominant band corresponds to the monomer 12 at 3612 cm$^{-1}$, but an absorption corresponding to the O-dimer (structure 13) near 3500 cm$^{-1}$ is already present at 4×10^{-2} mol dm$^{-3}$. In a 4 mol dm$^{-3}$ solution, the phenol is mainly polymerized as shown by the importance of the broad band at 3350 cm$^{-1}$. However, monomeric as well as dimeric
species are still present. While the spectra in Figure 8 give little information on the extent of polymerization or on the linear or cyclic structure of the polymers corresponding to the broad band at 3350 cm$^{-1}$, they cast some new light on the dimerization equilibria by revealing the presence of an additional dimeric species that has been either neglected or misinterpreted. The weak, but significant, absorption shown at 3550–3560 cm$^{-1}$ must be attributed to the dimeric form where the hydroxyl group of a first phenol molecule is bound to the π cycle of a second phenol molecule.

The importance of this π dimeric form increases when the basicity of the aromatic ring is strengthened by alkyl substitution. This can be seen in Figure 9 where the spectra of 3,4,5-trimethylphenol (Figure 9a) and 4-methylphenol (Figure 9b) clearly present the same characteristics as the spectrum of the heteroassociation of phenol on anisole, where the OH···π and OH···O complexes have already been identified. Moreover, the OH···π absorption of a phenol has been assigned in the spectrum of the cis isomer of 2,2′-dihydroxybiphenyl (15), which presents an absorption at 3556 cm$^{-1}$.

It is clear that this dimeric structure has never been taken into account in any of the different calculations leading to estimations of dimerization constants. This association is, however, far from being negligible. Its relative importance can be evaluated semiquantitatively from the 4-fluorophenol-anisole association that has been fully analyzed by Marquis. In dilute carbon tetrachloride solutions, he estimated the two 1 : 1 equilibrium constants on both the π and O sites and found that 34% of the complexation occurs on the π ring of anisole. Misinterpretations of the same kind have appeared for phenols that bear HBA substituents adding more possibilities of association to the phenolic OH acid group. For example, in 4-methoxyphenol a large dimerization constant of 3.00 dm3 mol$^{-1}$ was found and is due to the simple accumulation of three association constants: (i) on the phenolic oxygen, (ii) on the methoxy oxygen and (iii) on the π cloud.
Another experimental technique to study the self-association of phenols is to investigate how molecules of phenols pack together in the crystalline state. This type of analysis is made possible by the availability of the computer-based CSD. The CSD contains unit-cell dimensions of more than 230,000 (April 2001 release) three-dimensional crystal-structure determinations that have been studied by X-ray or neutron diffraction. Each crystal structure is identified by a unique six-letter code, called its REFCOD, with an additional two digits for duplicate structures and measurements.

To define the properties relevant to the motif (or synthon) ···OH···OH···, we have searched in the CSD for the structure of simple phenols in which the phenolic hydroxy group is the only one capable of forming hydrogen bonds. This condition limits the sample to phenols with only alkyl or hydroxy substituents. The OH group invariably acts as both a hydrogen-bond donor and a hydrogen-bond acceptor and links each molecule to two others. Either hydrogen-bonded chains or hydrogen-bonded rings are formed. Most of the structures consist of infinite chains. The exceptions are hydrogen-bonded cyclic tetramers, e.g. in one form of 4-methylphenol (CRESOL01) and in 2,6-di-i-propylphenol (GAPTOG), and cyclic hexamers, e.g. in 2-i-propyl-5-methylphenol (IPMPEL) and 3,4-dimethylphenol (DPHNOL10). Of the hydrogen-bonded infinite chains, the most common arrangement is one in which the molecules are related by a two-fold screw axis as
in 2,6-dimethylphenol (DMEPOL10). There are other examples of a helical arrangement based on three- and four-fold screw axes. Catechol (CATCOL12) forms chains of cyclic dimers (with a third intramolecular hydrogen bond) and resorcinol (RESORA13) forms chains of cyclic tetramers (tetrameric helices). The degree of polymerization seems sensitive to the steric crowding of the OH group due to neighboring bulky substituents, varying from infinity for 2,6-dimethylphenol (DMEPOL10), to four for 2,6-di-i-propylphenol (GAPTOG) and to zero for 2,6-di-t-butylphenol (LERFET). In this structure the phenolic hydrogen is not located but the O⋯O distance of 3.32 Å shows at most a very weak hydrogen bond, compared to 2.74 Å for 2,6-di-i-propylphenol. In probucol (16) (HAXHET), a drug used to control blood-cholesterol levels, intermolecular hydrogen bonding between hydroxyl groups is also prevented in the crystal. Figure 10 illustrates how phenols self-associate in the solid state.
V. INTRAMOLECULAR HYDROGEN BONDS

An important effort has recently been devoted to understanding and predicting the internal hydrogen-bond (IHB) structures and strengths of chelated ortho-substituted phenols by means of new experimental methods and theoretical calculations. Among the different systems studied, 2-nitrophenols \(\text{73–80} \) and especially 2-benzoylphenols \(\text{81–108} \) (salicylic acid derivatives) have certainly been the most popular models. However, a great wealth of new structural information has also been published for internally hydrogen-bonded phenols with ortho substituents such as halogens \(\text{109–114} \), alcohol and ether oxygens and their thio analogues \(\text{115–117} \), and sp\(^2\) and sp\(^3\) nitrogens \(\text{118–123} \). 2-Thiobenzoyl \(\text{106,91,92,124} \) as well as phosphine or amine oxides \(\text{125–129} \) have also been found to be good acceptor groups for the formation of strong IHBs. In a recent communication, a new type of IHB between the hydroxyl and methyl groups has been detected in the IR spectrum of the 2-cresol cation \(\text{130} \).

The traditional ways of evaluating the IHB characteristics are to assess the vibrational frequencies or intensities of the OH stretching or torsion in the IR spectra and the chemical shifts of the hydroxyl protons in the NMR spectra which are found to be nicely correlated \(\text{131–133} \). Crystal-structure analysis also provides essential information in this field. Bilton and coworkers \(\text{134} \) carried out a systematic survey of the internally hydrogen-bonded frames in the 200,000 structures of the CSD \(\text{32} \) and gave a general overview of the IHB in the solid state.

These experimental data are now accompanied, or even replaced, by theoretical \textit{ab initio} calculations which can examine the conformers that cannot be observed experimentally. There is now general agreement that the Density Functional Theory (DFT) and, in particular, Becke’s three-parameters Lee–Yang–Parr hybrid method (B3LYP) with a 6-31G* or a 6-31G** standard basis set provide cost-effective evaluations of geometries and energies comparable with experimental data \(\text{74,79,104,106,107} \). However, the selection of a reference conformer for the quantitative evaluation of the hydrogen-bond energy \(\Delta E \) still raises some questions. In the pioneering works on 2-halophenols \(\text{4} \), it was found that the internally H-bonded syn conformer \(\text{17} \) and the anti conformer \(\text{18} \) coexist in apolar solvents, allowing the experimental determination of the enthalpy difference between the two isomers (see Section V.A). In spite of the introduction of additional interactions between the two non-bonded ortho-substituents, it appears that the reference geometry, reflecting at best the trends in the geometry of 2-benzoylphenols \(\text{104} \), is indeed that of the anti isomer where the OH group is rotated by 180° around the CO bond axis. In quantum-chemical calculations of \(\Delta E \), Lampert and colleagues \(\text{104} \) performed single-point calculations on the frozen molecule while Palomar and coworkers \(\text{106} \) and Catalán and coworkers \(\text{107} \) optimized the geometry of this isomer. The difference between the two analyses which corresponds to the full geometry relaxation of isomer \(\text{18} \) is in the range 8.5–10 kJ mol\(^{-1}\) for planar systems (Table 8).
Table 8. Calculated strengths of the IHB with \((\Delta E_O/kJ \text{ mol}^{-1})\) and without \((\Delta E_{NO}/kJ \text{ mol}^{-1})\) geometry optimization of the \emph{anti} conformer of 2-hydroxybenzoyl compounds \(\text{2-HOC}_6\text{H}_4\text{COX}\).

<table>
<thead>
<tr>
<th>X</th>
<th>(\Delta E_{NO})</th>
<th>(\Delta E_O)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>48.8</td>
<td>40.2</td>
<td>8.6</td>
</tr>
<tr>
<td>CN</td>
<td>54.4</td>
<td>45.9</td>
<td>8.5</td>
</tr>
<tr>
<td>OMe</td>
<td>60.5</td>
<td>51.4</td>
<td>9.1</td>
</tr>
<tr>
<td>H</td>
<td>61.0</td>
<td>51.6</td>
<td>9.4</td>
</tr>
<tr>
<td>Me</td>
<td>69.5</td>
<td>59.5</td>
<td>10.0</td>
</tr>
</tbody>
</table>

\(^a\)At B3LYP/6-31G**.

Table 8 shows that no universal definition of the IHB strengths can be given for all 2-substituted phenols. Nevertheless, comparison of the experimental and theoretical data is sufficient to unravel the different factors affecting the properties of these molecules. These are (i) the hydrogen-bond strength of the OH group, (ii) the HBA ability of the \emph{ortho}-substituent X, (iii) the steric accessibility of the accepting atom and (iv) the cooperative electronic delocalization in the ring formed by the chelation. The influence of the first two factors can be estimated from the analysis of the intermolecular complex formations of phenols (Sections III and VII). The essential role of steric and delocalization effects on the stability of the IHB has been analyzed by Bilton and coworkers\(^{134}\) in their survey of the CSD. Several thousand structures containing IHB rings of different sizes were examined. They found that the 50 most probable motifs are constituted of 5- and 6-membered rings, and among these motifs the 10 most probable rings are planar and conjugated 6-membered. These findings are in agreement with the concept of Resonance Assisted Hydrogen Bonding (RAHB) introduced by Gilli and colleagues\(^{135}\). In this model, the presence of alternate single and double bonds between the phenolic group and the acceptor substituent allows an electron delocalization which strengthens the hydrogen-bond ability of both the OH and the C=\(X\) groups in the resonance structures 19 ⇔ 20.

![Diagram 19 and 20](image)

Palomar and coworkers\(^{106}\) calculated that the stabilization energy gained by the chelation on going from an aliphatic compound 21 to an alkene transmitting group (structure 22) amounts to about 40 kJ mol\(^{-1}\).
A. \(\text{OH} \cdots \text{O}_2\text{N} \)

Several experimental and theoretical works on 2-nitrophenol (23) and 2-nitroresorcinol (24) have reaffirmed the planarity of both molecules and the \(C_{2v} \) symmetry of 24. The microwave spectrum of 24 indicates\(^{23} \) that no proton transfer occurs between the phenolic and nitro oxygen atoms. Kovács and coworkers\(^{74,75} \) reported the FTIR and FT Raman spectra of 23 and 24 and assigned all the fundamentals by means of a scaled B3LYP/6–31G** density functional force field. \textit{Ab initio} molecular orbital calculations were also needed to interpret the electron diffraction spectra of these two compounds\(^{76,77} \). The IHB lengths found by electron diffraction spectroscopy are 1.72 and 1.76 in 23 and 24, respectively, corresponding to 66% of the van der Waals radii of the hydrogen and oxygen atoms. This important shortening indicates a strong stabilization by an RAHB mechanism\(^{78} \) leading to a calculated energy\(^{79} \) of the hydrogen bond equal to about 42 kJ mol\(^{-1} \) in 24. Natural abundance \(^{17}\text{O} \) NMR chemical shifts have been measured\(^{80} \) for a series of 4-substituted-2-nitrophenols (25). The \(^{17}\text{O} \) OH signal is more sensitive to the substituent effect than the \(\text{NO}_2 \) signal and the presence of the \(\text{NO}_2 \) group in the ortho position reduces the substituent effect sensitivity of the OH group by about 25% in comparison with 4-substituted phenols.

B. \(\text{OH} \cdots \text{O} = \text{C} \)

The strong intramolecular hydrogen bond that occurs in \textit{ortho}-hydroxybenzoyl compounds (26) is still the subject of numerous papers. It is now well established that the large strength of the IHB is due to the synergistic delocalization of electrons between the OH and CO group permitted by the alternation of single and double bonds, the so-called RAHB effect. While the simplest compound 26 (Table 9) remains the most popular model, more complex structures leading to competitive hydrogen bonds such as 2,6-dicarbonylphenols\(^{81} \) 27 or benzophenone 28 and its tricyclic analogues fluorenones\(^{82} \) and anthrones\(^{83} \) give additional information on the IHB strength. Quantum-mechanical calculations on different existing or virtual conformers have led to several papers contributing to a better understanding of the structure of most of the 2-hydroxybenzoyl compounds\(^{84,100–107} \). In this series, the influence of the \(\text{COX} \) substituent on the OH acidity is claimed to be of minor importance\(^{104} \). However, Palomar and colleagues\(^{106} \) found a significant increase in the OH acidity with carbonyl groups such as COCN and CONO\(_2\), whereas the electronic demand of the CN and NO\(_2\) groups appears to be supplied by the phenolic oxygen. The IHB strength is therefore affected by the basicity of the carbonyl oxygen which increases mainly with the resonance donating ability of the substituent X. The great majority of the molecular frames are found to be approximately planar with the important exception of the compound containing the amide group (\(X = \text{NR}_2 \))\(^{86,87,104} \). In Table 9, the IHB strengths of some 2-hydroxybenzoyl compounds are given in increasing order together with the lengths of three bonds directly involved in the IHB. It can be seen...
TABLE 9. *Ab initio* calculated parameters for 2-hydroxybenzoyl compounds 26

<table>
<thead>
<tr>
<th>Substituent X</th>
<th>d_{OH} (Å)a</th>
<th>$d_{H\cdot\cdot\cdotO}$ (Å)a</th>
<th>$d_{O=C}$ (Å)a</th>
<th>ΔE (kJ mol$^{-1}$)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>0.982</td>
<td>1.752</td>
<td>1.212</td>
<td>40.3</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>0.983</td>
<td>1.709</td>
<td>1.213</td>
<td>40.6</td>
</tr>
<tr>
<td>F</td>
<td>0.982</td>
<td>1.793</td>
<td>1.212</td>
<td>42.3</td>
</tr>
<tr>
<td>C≡N</td>
<td>0.987</td>
<td>1.724</td>
<td>1.238</td>
<td>46.0</td>
</tr>
<tr>
<td>OH</td>
<td>0.987</td>
<td>1.727</td>
<td>1.233</td>
<td>50.9</td>
</tr>
<tr>
<td>OMe</td>
<td>0.987</td>
<td>1.721</td>
<td>1.234</td>
<td>51.5</td>
</tr>
<tr>
<td>H</td>
<td>0.990</td>
<td>1.729</td>
<td>1.235</td>
<td>51.2</td>
</tr>
<tr>
<td>NMe$_2$</td>
<td>0.991</td>
<td>1.686</td>
<td>1.249</td>
<td>59.4</td>
</tr>
<tr>
<td>Me</td>
<td>0.994</td>
<td>1.654</td>
<td>1.242</td>
<td>64.4</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>0.996</td>
<td>1.644</td>
<td>1.246</td>
<td>66.9</td>
</tr>
<tr>
<td>NHMe</td>
<td>0.996</td>
<td>1.640</td>
<td>1.249</td>
<td>66.9</td>
</tr>
</tbody>
</table>

aReferences 104 and 106 (B3LYP/6-31G**); d = bond length.

bCalculated energy difference between the *syn* isomer with IHB and the *anti* isomer. The energy of the *anti* isomer is optimized.107

cThe geometry of the *anti* isomer is not optimized.

from this table that the shortening of the hydrogen bond and the concomitant lengthening of the OH and C=O bond calculated at the B3LYP/6–31G** level are well correlated with the energy of the hydrogen bond.

![Diagram](26)

![Diagram](27)

![Diagram](28)

C. **OH· · ·Halogen**

2-Halophenols constitute the simplest structural model for the analysis of an intramolecular hydrogen bond since the *syn–anti* isomerization involves only the rotation of the OH proton around the single C—O bond. Furthermore, the two forms coexist in apolar solvents and give two characteristic absorptions in the OH stretching region of the IR spectrum with the notable exception of the fluoro derivative. In a series of papers Okuyama and Ikawa$^{109, 110}$ have re-examined by FTIR the relative stability of the *syn–anti* isomers by varying the temperature and the pressure. The enthalpies of isomerization are reported in Table 10.

These precise measurements109 provide a better discrimination between the halogens than the work of Baker and Shulgin136. The enthalpies determined for the IHB follow the variation found by Ouvrard and colleagues138 for the intermolecular association of 4-fluorophenol with halocyclohexanes. The hydrogen-bond acceptor ability of the halogen atom is therefore the main factor affecting the IHB strength in this system. Until recently, the enthalpies calculated by Carlson and coworkers137 from the torsional frequencies of the OH group in the far IR spectrum were considered4 as more reliable than the measurements obtained from IR intensities of the fundamental O—H stretching. However, the assignment of the two bands on which the enthalpy determination was made seems to be erroneous109.
TABLE 10. Enthalpies (kJ mol\(^{-1}\)) and IR \(\Delta \nu (\text{OH})\) frequency shifts (cm\(^{-1}\)) for the syn (17)–\(\text{anti}\) (18) isomerization of 2-halophenols and the intermolecular association of 4-fluorophenol with halocyclohexanes

<table>
<thead>
<tr>
<th>Halogen</th>
<th>Intramolecular hydrogen bonding</th>
<th>Intermolecular hydrogen bonding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-\Delta H^a)</td>
<td>(-\Delta H^b)</td>
</tr>
<tr>
<td>F</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Cl</td>
<td>6.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Br</td>
<td>5.7</td>
<td>5.1</td>
</tr>
<tr>
<td>I</td>
<td>4.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

\(a\)Reference 109.
\(b\)Reference 136.
\(c\)Reference 137.
\(d\)Reference 138.

It should be noted that the \(\Delta \nu (\text{OH})\) and \(\Delta H\) values vary in opposing directions. This apparent contradiction to the Badger–Bauer rule\(^{139}\), also found in the intermolecular association of phenols with haloalkanes\(^{140}\), is another example of the family dependence of this rule\(^{138}\). For 2-fluorophenol, 2,6-difluorophenol and tetrafluorohydroquinone, gas-phase electron diffraction studies indicate the existence of a weak IHB\(^{111,112}\). The lengths of the hydrogen bonds H···F (2.13, 2.05 and 2.02 Å, respectively) are 80% shorter than the sum of the van der Waals radii of the hydrogen and fluorine atoms.

The existence of an IHB in 2-trifluoromethylphenol has long been recognized\(^{141}\) by the presence of two IR absorptions for this molecule. However, the absorption of the chelated OH group is observed at higher wavenumbers (3624 cm\(^{-1}\)) than that of the free OH group (3604 cm\(^{-1}\)).

Theoretical calculations\(^{113,114}\) carried out on different \textit{ortho}-trifluoromethylphenols 29–31 show that the chelation rings are not planar. In 29, the OH and CF bonds are
twisted toward the same side of the benzene ring by 14° and 48°, respectively. The calculated energy difference between 29 and 32 is 7.2 kJ mol\(^{-1}\) at the MP2/6-31G** level in favor of the chelated form. The hydrogen bond lengths in 29 and 31 are found to be very similar (1.98 Å and 1.97 Å, respectively). In 30, the global minimum structure presents two slightly different H···F hydrogen bond lengths of 1.88 and 1.84 Å.

D. OH···OH(Me)

Langoor and van der Mass\(^{115}\) analyzed the IR spectrum in the OH region of several frames containing IHBs with 2 substituents bearing a hydroxy or a methyl group. By using Fourier self-deconvolution and second derivatives spectra, they were able to assign most of the overlapping absorptions and found the following increasing order of IHB strengths for compounds 33–37:

\[
\begin{align*}
\text{OH···O} & \quad 3570 \quad (33) \\
\text{OH···OMe} & \quad 3558 \quad (34) \\
\text{OH···OH} & \quad 3440 \quad (35) \\
\text{OH···OMe} & \quad 3409 \quad (36) \\
\text{OH···OMe} & \quad 3365 \quad (37)
\end{align*}
\]

Ab initio quantum-chemical calculations at the DFT/6-31G** level\(^{116}\) yield a value of 17.4 kJ mol\(^{-1}\) for the IHB strength of 33 relative to the optimized anti isomer. At the same level of calculation the IHB length is 2.12 Å. The calculated rotation barrier of the methoxy substituent in 34 is 30.5 kJ mol\(^{-1}\). This indicates an important restriction of the rotation due to the chelation by comparison with the barrier in anisole (12.5 kJ mol\(^{-1}\)).

E. OH···N

The IHBs of *ortho*-methylamino 38 and *ortho*-iminophenols 39 deserve interest since the amino and imino nitrogens are among the most basic atoms in intermolecular associations of phenols (see Section VII.A). Indeed in *ortho*-Mannich bases (38) an intramolecular proton transfer OH···N ⇌ O···HN\(^{+}\) is observed\(^{118,119}\) when the
difference ΔpK_a between the protonated amino group and the phenol exceeds a value of about 3. Another important feature of ortho-Mannich bases is the bent hydrogen bond due to the non-planar IHB rings. When a nitro group is placed in the competing ortho position, the OH group forms an OH···O$_2$NIHB120. In spite of the significant difference in hydrogen-bond basicity between a benzylamine nitrogen and a nitrobenzene oxygen, the oxygen site is preferred since it allows the formation of a planar chelation cycle stabilized by an RAHB effect. However, the IHB with the nitrogen is sufficiently strong to rotate the dimethylamino group of 40 at the expense of its conjugation with the naphthalene ring121. UV-visible, IR and 1H NMR spectroscopic data as well as crystal structures and theoretical calculations are available122,123 for a series of benzalmidines 39. These compounds form strong planar IHBs and tautomeric equilibria of phenol-imine \rightarrow keto-amine may be observed in solution.

VI. PROPERTIES OF THE COMPLEXES

A. Thermodynamic Properties

Most thermodynamic studies of the equilibria between hydrogen-bonded complexes of phenols and their free component molecules have been conducted in a diluting solvent. Binary solutions of phenols (phenol142,143, o-cresol144) in the pure base propionitrile have also been studied$^{142-144}$ by means of Raman142 and IR143,144 spectrometry. Factor analysis of the ν(C≡N) band indicates the formation of a 1 : 1 complex over a large concentration range. However, this procedure is not recommended for the determination of equilibrium constants because these exhibit a strong concentration dependence.

A variety of methods (IR, UV, NMR) have been used in attempts to determine the complexation constants K. The results should provide values for the free energies ΔG° of complexation, and, from their temperature variation, the corresponding enthalpy and entropy changes, ΔH° and ΔS°. An alternative method for determining ΔH° is by direct calorimetry. For a general text on the determination of K, ΔH° and ΔS° the reader is referred to the books by Joesten and Schaad4 and Vinogradov and Linnell5. In the first book4, there is a compilation of results from the literature up to 1974. Results between 1974 and ca 1986–1988 have been treated statistically in the paper on the log K_H^A scale33 (Section III.A). We shall focus here on the more recent literature but, before describing these results, we want to give a number of comments and caveats.

First, most methods of evaluating K have been based on the assumption that a single 1 : 1 complex is formed. However, the interaction of a phenol with a base may give rise to other complex species such as 41 for monofunctional single lone-pair bases, 42 for monofunctional two lone-pairs bases, 43a, 43b and 43c for polyfunctional bases and 44 for polyphenols. In addition, self-association of phenol (Section IV) and of the base can occur. In an IR study of the complexation of 3,5-dichlorophenol with ketones and ethers145, the use of a 1-mm optical pathlength obliged the authors to vary the phenol concentration up
to 0.02 dm3 mol$^{-1}$ and to take into account both phenol self-association and 2 : 1 complex formation in the measurement of the 1 : 1 equilibrium constants. A simpler way would have been to avoid multiple equilibria by adjusting the initial concentrations of phenol and base to the chemistry involved, i.e. to use very dilute solutions of phenol and excess base in order to minimize the phenol self-association and the formation of (41) and/or (42). This was done for the complexation of 4-fluorophenol with ethers19 and ketones146 by choosing a 1-cm-pathlength cell. This cannot be done with NMR signals less sensitive to hydrogen bonding but more sensitive to solvent effects than IR spectrometry. For example, when the chemical shift of the phenolic OH proton is used to evaluate the association of phenol with nitriles and oxygen bases147, the NMR chemical shift data suggest the presence of 1 : 1 and n : 1 phenol-base complexes, when the ratio of the phenol concentration to that of the base is high. At a low concentration ratio, the 1 : 1 complex is solvated by an enrichment of its solvation shell in base molecules. In the case of polyfunctional bases, e.g. (43), several 1 : 1 complexes are formed, such as (43a) and (43b), with individual thermodynamic parameters K_i and ΔH_i°. One must be aware that experimental quantities are only apparent ones (K_{app} and $\Delta H_{\text{app}}^\circ$), which are related to individual parameters by equation 27.

$$K_{\text{app}} = \Sigma_i K_i \quad \Delta H_{\text{app}}^\circ = (\Sigma_i K_i \Delta H_i^\circ) / \Sigma_i K_i$$ (27)

A second caveat concerns the dependence of the numerical values of the free energies and entropies of complexation on the concentration scale used148. ΔH° must be calculated by applying the van’t Hoff equation to K_x or K_m values, the complexation constants on the mole fraction or molal concentration scales, respectively. If one uses K_c (molar concentration), enthalpies must be corrected for the thermal expansion of the solvent.

Third, the ΔH° and ΔS° values of many hydrogen-bonded complexes have been obtained from van’t Hoff plots where the temperature range ΔT was usually too small. Enthalpies and entropies calculated with $\Delta T = 10^\circ$ for the complexes of 4-nitrophenol with amines149 are inevitably less reliable than those calculated with $\Delta T = 78^\circ$ for substituted phenols hydrogen-bonded to dimethylacetamide150 or with $\Delta T = 57^\circ$ for substituted phenols complexed with diphenyl sulfoxide151, simply because the error in ΔH° is inversely related to ΔT.

(41)
(42)
(43a)
(43b)
(43c)
(44)
Last, it is generally believed that a monotonic relationship exists between \(\Delta H^\circ \) and \(\Delta S^\circ \) for hydrogen-bond formation on the basis that a higher value of \(-\Delta H\) implies stronger bonding, with a more restricted configuration in the complex, hence greater order, leading to a larger value of \(-\Delta S^\circ\). A great number of such correlations have been given for related complexes in the book by Joesten and Schaad on the basis of wrong statistics. Indeed, the apparently simple equation 28

\[
\Delta H^\circ = \beta \Delta S^\circ + \text{constant} \tag{28}
\]

hides difficult statistical problems since both \(\Delta H^\circ \) and \(\Delta S^\circ \) are loaded with correlated errors when they are obtained from van’t Hoff plots. Among others, Exner\(^{152} \) has achieved a statistically correct treatment of equation 28, but we are unaware of its application in the field of hydrogen-bond complexation if we exclude the very recent work of Ouvrard and coworkers\(^{138} \) on the complexes of 4-fluorophenol with 18 halogenoalkanes. For this system they have established the validity of the extrathermodynamic equation 28. The isoequilibrium temperature \(\beta \) (592 K) is determined with some uncertainty but the confidence interval (529–701 K) does not include the isoentropic relationship \(\beta \to \infty \). In contrast, the hydrogen bonding of 3- and 4-substituted phenols to dimethylacetamide\(^{150} \) results in an almost isoentropic series; the \(\Delta H^\circ \) varies from \(-23.4 \text{ kJ mol}^{-1} \) for 3-dimethylaminophenol to \(-34.3 \text{ kJ mol}^{-1} \) for 4-nitrophenol while the extremes of \(T \Delta S^\circ \) values differ only by 0.6 \text{ kJ mol}^{-1}.

We have assembled in Table 11 the recent determinations of complexation constants \(K \), complexation enthalpies \(\Delta H^\circ \) and complexation entropies \(\Delta S^\circ \) for hydrogen bonding of phenols with various bases. When many substituted phenols have been complexed to the same base, values are given for the parent compound (unsubstituted phenol) and for the weakest and strongest hydrogen-bond donors. Many hydrogen-bond acceptors have several potential hydrogen-bonding sites; the main interaction site is written in the formula in bold type. The solvent is specified, since thermodynamic constants show a significant dependence on the nature of the solvent\(^{153} \). All results were obtained by means of IR spectrometry on the \(\nu(\text{OH}) \) phenolic band, except for (i) studies on the \(\nu(\text{C}≡\text{N}) \) band of NBu\(_4\)OCN\(^{−} \) and \(\nu_\text{as}(\text{N}≡\text{N}) \) band of NBu\(_4\)N\(_3\)^{−} (ii) an electron spin resonance study\(^{155} \), (iii) a \(^{13}\text{C}\) NMR determination\(^{156} \), (iv) the simultaneous use of an FTIR and a calorimetric method\(^{145} \) and (v) a UV determination on the nitroaromatic chromophore of 3,4-dinitrophenol\(^{157} \). The logarithms of the \(K \) values are related to the \(pK_a \) of the phenols and to the Hammett substituent constants\(^{38} \) of the phenolic substituent. They are not related to the \(pK_a \) of \(N \)-heterocyclic bases with two vicinal nitrogen atoms\(^{158} \). For these systems log \(K \) values are notably higher than predicted from the \(pK_a \) of the base in water. Figure 11 shows this peculiar behavior of azaaromatics where the two lone pairs are parallel or are pointing at each other. For the hydrogen-bonded complexes of the phenols with tetraalkylammonium halides\(^{159–161} \), the complexation entropies are significantly smaller than with neutral bases. This has been tentatively explained\(^{160} \) by the aggregation of the salts in CCI\(_4\). The dimers (NR\(_4\)^{+}X\(^−\))\(_2\) might be separated into ion pairs by the addition of phenol. Consequently the complexation might not effect a significant variation of the number of molecular species in the solution (equation 29).

\[
(\text{NR}_4^+\text{X}^-)_2 + \text{ArOH} \xrightarrow{\text{NR}_4^+\text{X}^- \cdots \text{HOAr} + \text{NR}_4^+\text{X}^-} \tag{29}
\]

Hine and coworkers have measured the complexation constants of 1,8-biphenylenediol in cyclohexane\(^{183} \) and of 4,5-dinitro-1,8-biphenylenediol in chloroform\(^{184} \), hydrogen-bonded to various oxygen and nitrogen bases, in order to study their double hydrogen-bonding ability, i.e. the existence of bifurcated hydrogen bonds as in 45. X-ray crystal structures of the solid complexes of 1,8-biphenylenediol with
TABLE 11. Summary of thermodynamic results for hydrogen-bonded complexes of phenols with various bases at 25 °C in different solvents

<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>log K_c</th>
<th>$-\Delta H^\circ$ (kJ mol$^{-1}$)</th>
<th>$-\Delta S^\circ$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>$\Delta \nu$(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>Carbonyl bases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-NMe$_2$</td>
<td>Me</td>
<td>CCl$_4$</td>
<td>1.86</td>
<td>23.85</td>
<td>24.9</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Me</td>
<td>CCl$_4$</td>
<td>2.11</td>
<td>25.46</td>
<td>25.6</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-NO$_2$</td>
<td>Me</td>
<td>CCl$_4$</td>
<td>3.40</td>
<td>34.87</td>
<td>32.4</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>R2</td>
<td>c-C6H${12}$</td>
<td>2.08</td>
<td>29.4</td>
<td>58.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>Me</td>
<td>c-C6H${12}$</td>
<td>2.05</td>
<td>29.3</td>
<td>59.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>Et</td>
<td>c-C6H${12}$</td>
<td>2.07</td>
<td>28.7</td>
<td>56.5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>n-Pr</td>
<td>c-C6H${12}$</td>
<td>2.05</td>
<td>29.2</td>
<td>58.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>i-Pr</td>
<td>c-C6H${12}$</td>
<td>2.07</td>
<td>29.0</td>
<td>57.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>n-Bu</td>
<td>c-C6H${12}$</td>
<td>2.04</td>
<td>28.5</td>
<td>56.5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>t-Bu</td>
<td>c-C6H${12}$</td>
<td>2.04</td>
<td>29.1</td>
<td>58.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Me</td>
<td>n-Hept</td>
<td>c-C6H${12}$</td>
<td>2.07</td>
<td>28.5</td>
<td>56.1</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Et</td>
<td>Et</td>
<td>c-C6H${12}$</td>
<td>2.00</td>
<td>29.2</td>
<td>59.4</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Et</td>
<td>n-Bu</td>
<td>c-C6H${12}$</td>
<td>2.04</td>
<td>28.7</td>
<td>57.3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n-Pr</td>
<td>n-Pr</td>
<td>c-C6H${12}$</td>
<td>2.03</td>
<td>28.7</td>
<td>57.3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i-Pr</td>
<td>i-Pr</td>
<td>c-C6H${12}$</td>
<td>2.00</td>
<td>28.9</td>
<td>58.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n-Bu</td>
<td>n-Bu</td>
<td>c-C6H${12}$</td>
<td>2.05</td>
<td>28.5</td>
<td>56.5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t-Bu</td>
<td>t-Bu</td>
<td>c-C6H${12}$</td>
<td>1.81</td>
<td>28.3</td>
<td>60.2</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n-Hex</td>
<td>n-Hex</td>
<td>c-C6H${12}$</td>
<td>2.09</td>
<td>28.6</td>
<td>55.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclopentanone</td>
<td>c-C6H${12}$</td>
<td>2.21</td>
<td>29.6</td>
<td>56.9</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyclohexanone</td>
<td>c-C6H${12}$</td>
<td>2.25</td>
<td>30.2</td>
<td>58.2</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,4-Me₂</td>
<td>1.95</td>
<td>25</td>
<td>48</td>
<td>319</td>
<td>162</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>2.19</td>
<td>27</td>
<td>50</td>
<td>333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5-Cl₂</td>
<td>3.32</td>
<td>36</td>
<td>40</td>
<td>438</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Me₂</td>
<td>1.34</td>
<td>19</td>
<td>41</td>
<td>334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.53</td>
<td>22</td>
<td>43</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5-Cl₂</td>
<td>2.35</td>
<td>30</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Me</td>
<td>1.20</td>
<td>18</td>
<td></td>
<td>188</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.27</td>
<td>17</td>
<td></td>
<td>193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Cl</td>
<td>1.46</td>
<td>18.7</td>
<td></td>
<td>215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Me</td>
<td>0.67</td>
<td>16.2</td>
<td>41.6</td>
<td></td>
<td>164</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.91</td>
<td>17.3</td>
<td>40.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5-Cl₂</td>
<td>1.38</td>
<td>19.9</td>
<td>40.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Me</td>
<td>0.41</td>
<td>14.2</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.68</td>
<td>15.4</td>
<td>38.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5-Cl₂</td>
<td>1.13</td>
<td>18.0</td>
<td>38.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Me</td>
<td>0.61</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.73</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5-Cl₂</td>
<td>1.29</td>
<td>14.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>$\log K_c$</th>
<th>$-\Delta H^\circ$ (kJ mol$^{-1}$)</th>
<th>$-\Delta S^\circ$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>Δv(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Me</td>
<td>H</td>
<td>0.92</td>
<td>12.8</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.97</td>
<td>13.1</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>3,5-Cl$_2$</td>
<td>1.48</td>
<td>14.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>4-Me</td>
<td>H</td>
<td>0.87</td>
<td>12.9</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.00</td>
<td>13.8</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>3,5-Cl$_2$</td>
<td>1.53</td>
<td>15.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>4-OH</td>
<td>Me</td>
<td>1.36</td>
<td>22.4</td>
<td>—</td>
<td>222</td>
<td></td>
<td>166</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-OH</td>
<td>1.51</td>
<td>23.3</td>
<td>—</td>
<td>227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4,5-Cl$_3$</td>
<td>2.45</td>
<td>29.1</td>
<td>—</td>
<td>—</td>
<td>306</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-OOH</td>
<td>N</td>
<td>1.46</td>
<td>22.6</td>
<td>—</td>
<td>239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1.56</td>
<td>23.3</td>
<td>—</td>
<td>247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4,5-Cl$_3$</td>
<td>2.62</td>
<td>29.3</td>
<td>—</td>
<td>—</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-OH</td>
<td>SMe</td>
<td>0.60</td>
<td>13.9</td>
<td>—</td>
<td>145</td>
<td></td>
<td>167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMe</td>
<td>0.68</td>
<td>14.4</td>
<td>—</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4,5-Cl$_3$</td>
<td>1.40</td>
<td>17.2</td>
<td>—</td>
<td>—</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-OMe</td>
<td>CCl₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>H</td>
<td>1.67</td>
<td>22.9</td>
<td>—</td>
<td>268</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>NMe₂</td>
<td>1.77</td>
<td>23.9</td>
<td>—</td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5-Cl₂</td>
<td>2.72</td>
<td>26.5</td>
<td>—</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>a</th>
<th>CCl₄</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td></td>
<td>1.26</td>
<td>24.0</td>
<td>56.2</td>
<td>242</td>
<td>169</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>1.31</td>
<td>25.2</td>
<td>59.6</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>1.42</td>
<td>26.7</td>
<td>62.5</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>1.43</td>
<td>28.6</td>
<td>68.6</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>1.43</td>
<td>29.1</td>
<td>70.2</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td>1.46</td>
<td>29.2</td>
<td>69.9</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
<td>1.51</td>
<td>29.4</td>
<td>69.5</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.61</td>
<td>29.7</td>
<td>68.9</td>
<td>221</td>
<td></td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>log K_c</th>
<th>$-\Delta H^\circ$ (kJ mol$^{-1}$)</th>
<th>$-\Delta S^\circ$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>$\Delta \nu$(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ethers

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>c-C6H${12}$</th>
<th>log K_c</th>
<th>$-\Delta H^\circ$</th>
<th>$-\Delta S^\circ$</th>
<th>$\Delta \nu$(OH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>t-Bu</td>
<td>1.96</td>
<td>32.0</td>
<td>69.9</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>1.79</td>
<td>29.5</td>
<td>64.9</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>n-Pr</td>
<td>n-Pr</td>
<td>1.61</td>
<td>28.3</td>
<td>64.0</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>i-Pr</td>
<td>i-Pr</td>
<td>1.95</td>
<td>31.5</td>
<td>68.6</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>n-Bu</td>
<td>n-Bu</td>
<td>1.61</td>
<td>28.4</td>
<td>64.4</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>i-Bu</td>
<td>i-Bu</td>
<td>1.28</td>
<td>27.8</td>
<td>69.0</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>n-Oct</td>
<td>n-Oct</td>
<td>1.69</td>
<td>29.0</td>
<td>65.3</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>n-Dec</td>
<td>n-Dec</td>
<td>1.70</td>
<td>29.3</td>
<td>65.7</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>Trimethylene oxide</td>
<td>2.32</td>
<td>31.6</td>
<td>61.5</td>
<td>330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>2.17</td>
<td>30.5</td>
<td>60.7</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahydropyran</td>
<td>2.04</td>
<td>30.0</td>
<td>61.5</td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>1.74</td>
<td>25.0</td>
<td>50.6</td>
<td>295</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>c-C6H${12}$</th>
<th>log K_c</th>
<th>$-\Delta H^\circ$</th>
<th>$-\Delta S^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et</td>
<td>Et</td>
<td>1.43</td>
<td>30.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Et</td>
<td>n-Pr</td>
<td>1.35</td>
<td>27.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Me</td>
<td>t-Bu</td>
<td>1.45</td>
<td>34.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Et</td>
<td>t-Bu</td>
<td>1.46</td>
<td>35.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>1.74</td>
<td>30.5</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Tetrahydropyran</td>
<td>1.67</td>
<td>28.9</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Imines, guanidines

<table>
<thead>
<tr>
<th>Structure</th>
<th>substitutes</th>
<th>solvent</th>
<th>λ (nm)</th>
<th>η (mPa s)</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,4-Me₂</td>
<td>CCl₄</td>
<td>2.06</td>
<td>29.7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>2.32</td>
<td>31.3</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3,5-Cl₂</td>
<td></td>
<td>3.40</td>
<td>35.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4-OMe</td>
<td>CCl₄</td>
<td>1.86</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>1.98</td>
<td>33.3</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3,4,5-Cl₃</td>
<td></td>
<td>3.19</td>
<td>37</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>i-Pr</td>
<td>CCl₄</td>
<td>1.55</td>
<td>30.4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>1.63</td>
<td>31.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3,4-Cl₂</td>
<td></td>
<td>2.47</td>
<td>39.4</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>i-Bu</td>
<td>CCl₄</td>
<td>1.09</td>
<td>33.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>1.21</td>
<td>34.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3,4-Cl₂</td>
<td></td>
<td>2.11</td>
<td>37.0</td>
<td>—</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>log K_c</th>
<th>ΔH° (kJ mol$^{-1}$)</th>
<th>ΔS° (J mol$^{-1}$ K$^{-1}$)</th>
<th>$\Delta \nu$(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3,4-Me$_2$</td>
<td>CCl$_4$</td>
<td>1.74</td>
<td>20</td>
<td>34</td>
<td>—</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4-Cl$_2$</td>
<td>CCl$_4$</td>
<td>2.72</td>
<td>30</td>
<td>49</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4-Me$_2$</td>
<td>CCl$_4$</td>
<td>1.76</td>
<td>19</td>
<td>30</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4-Cl$_2$</td>
<td>CCl$_4$</td>
<td>2.92</td>
<td>33</td>
<td>55</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-OMe</td>
<td>CCl$_4$</td>
<td>1.41</td>
<td>28.8</td>
<td>66.3</td>
<td>—</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4,5-Cl$_3$</td>
<td>CCl$_4$</td>
<td>2.75</td>
<td>33.5</td>
<td>68.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDCl$_3$</td>
<td>2.03</td>
<td>1.89</td>
<td>1.81</td>
<td>1.68</td>
<td>1.64</td>
<td>1.43</td>
<td>156</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued overleaf
<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>log K_c</th>
<th>$-\Delta H^\circ$ (kJ mol$^{-1}$)</th>
<th>$-\Delta S^\circ$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>$\Delta \nu$(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBu$_4^+$ Br$^-$</td>
<td>3,4-Me$_2$</td>
<td>CCl$_4$</td>
<td>2.87</td>
<td>18.0</td>
<td>—</td>
<td>451</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>3.18</td>
<td>24.7</td>
<td>—</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-Br</td>
<td></td>
<td>3.91</td>
<td>43.7</td>
<td>—</td>
<td>520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHept$_4^+$ I$^-$</td>
<td>3,4-Me$_2$</td>
<td>CCl$_4$</td>
<td>2.28</td>
<td>16.0</td>
<td>—</td>
<td>371</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>2.47</td>
<td>16.4</td>
<td>—</td>
<td>385</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,5-Cl$_2$</td>
<td></td>
<td>3.25</td>
<td>20.5</td>
<td>—</td>
<td>457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBu$_4^+$ Cl$^-$</td>
<td>3,4-Me$_2$</td>
<td>CCl$_4$</td>
<td>3.38</td>
<td>29.9</td>
<td>—</td>
<td>\sim530</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Me</td>
<td></td>
<td>3.43</td>
<td>21.3</td>
<td>—</td>
<td>\sim560</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>3.71</td>
<td>35.8</td>
<td>—</td>
<td>\sim560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic N-heterocycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBu$_4^+$ OCN$^-$</td>
<td>2,6-i-Pr$_2$</td>
<td>CCl$_4$</td>
<td>2.48</td>
<td>24.0</td>
<td>—</td>
<td>—</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>4.78</td>
<td>43.0</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-F</td>
<td></td>
<td>5.08</td>
<td>45.5</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBu$_4^+$ N$_3^-$</td>
<td>2,6-i-Pr$_2$</td>
<td></td>
<td>1.87</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>3.98</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-F</td>
<td></td>
<td>4.51</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = R² = H, R³ = R⁴ = H</td>
<td>H</td>
<td>ClCH₂CH₂Cl</td>
<td>1.56</td>
<td>21.7</td>
<td>42.8</td>
<td>—</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>R₁ = R² = H, R³ = R⁴ = Ph</td>
<td>H</td>
<td>ClCH₂CH₂Cl</td>
<td>1.67</td>
<td>23.6</td>
<td>47.2</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = R² = Me, R³ = R⁴ = H</td>
<td>H</td>
<td>ClCH₂CH₂Cl</td>
<td>1.80</td>
<td>22.4</td>
<td>39.6</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁ = R² = Me, R³ = R⁴ = Ph</td>
<td>H</td>
<td>ClCH₂CH₂Cl</td>
<td>2.03</td>
<td>24.0</td>
<td>41.7</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X	OH	3,4-Me₂	CCl₄	1.47	24	50	382	178
H	CCl₄	1.67	25	52	398			
3-NO₂	CCl₄	2.57	32	58	470			

(continued overleaf)
<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>log K_e</th>
<th>$-\Delta H^\circ$ (kJ mol$^{-1}$)</th>
<th>$-\Delta S^\circ$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>Δv(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,4-Me$_2$</td>
<td></td>
<td>1.08</td>
<td>21</td>
<td>50</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>3,5-Cl</td>
<td></td>
<td>H</td>
<td></td>
<td>1.23</td>
<td>23</td>
<td>52</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,5-Cl$_2$</td>
<td></td>
<td>1.91</td>
<td>30</td>
<td>61</td>
<td>462</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,4-Me$_2$</td>
<td></td>
<td>0.93</td>
<td>21</td>
<td>52</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>H</td>
<td></td>
<td>1.04</td>
<td>22</td>
<td>54</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,5-Cl$_2$</td>
<td></td>
<td>1.69</td>
<td>27</td>
<td>60</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,4-Me$_2$</td>
<td></td>
<td>1.48</td>
<td>23</td>
<td>49</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>H</td>
<td></td>
<td>1.62</td>
<td>25</td>
<td>51</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,5-Cl$_2$</td>
<td></td>
<td>2.34</td>
<td>31</td>
<td>60</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>ClCH$_2$CH$_2$Cl</td>
<td></td>
<td>1.46</td>
<td>23</td>
<td>—</td>
<td>440</td>
<td>158</td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>H</td>
<td></td>
<td>1.60</td>
<td>26</td>
<td>—</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,5-Cl$_2$</td>
<td></td>
<td>2.50</td>
<td>36</td>
<td>—</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>ClCH$_2$CH$_2$Cl</td>
<td></td>
<td>1.08</td>
<td>17</td>
<td>—</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>H</td>
<td></td>
<td>1.20</td>
<td>22</td>
<td>—</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>3,4-Cl</td>
<td></td>
<td>3,5-Cl$_2$</td>
<td></td>
<td>1.90</td>
<td>27</td>
<td>—</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>ClCH₂CH₂Cl</td>
<td>0.65</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.95</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1.04</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,4-Me₂</td>
<td>CCl₄</td>
<td>2.12</td>
<td>—</td>
<td>—</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>2.37</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>3,4-Cl₂</td>
<td>3.44</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>563</td>
</tr>
</tbody>
</table>
TABLE 11. (continued)

<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>log K_c</th>
<th>$-\Delta H^0$ (kJ mol$^{-1}$)</th>
<th>$-\Delta S^0$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>$\Delta \nu$(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2N</td>
<td>HOH</td>
<td>2</td>
<td>N</td>
<td>c-C6H${12}$</td>
<td>4.20</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R1 = R2 = R3 = Me</td>
<td>R1 = R3 = Me, R2 = H</td>
<td>4.07</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = Me, R2 = R3 = H</td>
<td>3.88</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = R3 = H, R2 = Me</td>
<td>3.73</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = R2 = R3 = H</td>
<td>3.51</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = Me, R2 = Br, R3 = H</td>
<td>3.10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1 = R3 = H, R2 = Br</td>
<td><2.94</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,4-Me₂</td>
<td>CCl₄</td>
<td>H</td>
<td>CCl₄</td>
<td>3,5-Cl₂</td>
<td>MeCN</td>
<td>CCl₄</td>
<td>H</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>OH</td>
<td>1.56</td>
<td>33</td>
<td>81</td>
<td>550</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>1.74</td>
<td>34</td>
<td>81</td>
<td>540</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>2.58</td>
<td>39</td>
<td>83</td>
<td>650</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.78</td>
<td>17</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.90</td>
<td>20</td>
<td>50</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5-Cl₂</td>
<td>1.49</td>
<td>26</td>
<td>59</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous bases

<table>
<thead>
<tr>
<th></th>
<th>CCl₄</th>
<th>H</th>
<th>CCl₄</th>
<th>Bu₂O</th>
<th>CCl₄</th>
<th>Et₂O</th>
<th>CCl₄</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>0.46</td>
<td>8.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>181</td>
</tr>
<tr>
<td>Cl</td>
<td>0.89</td>
<td>11.8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.74</td>
<td>11.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.41</td>
<td>13.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.54</td>
<td>13.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.85</td>
<td>14.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>HBD</th>
<th>HBA</th>
<th>X</th>
<th>Solvent</th>
<th>log K_c</th>
<th>$-\Delta H^\circ$ (kJ mol$^{-1}$)</th>
<th>$-\Delta S^\circ$ (J mol$^{-1}$ K$^{-1}$)</th>
<th>$\Delta \nu$(OH) (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td>1.29</td>
<td>19.2</td>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-F</td>
<td></td>
<td>1.45</td>
<td>23.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Bu$_3$N</td>
<td>Cl</td>
<td>C$_2$Cl$_4$</td>
<td>1.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Br</td>
<td></td>
<td>1.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
<td>1.59</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,4-Cl$_2$</td>
<td>CICH$_2$CH$_2$Cl</td>
<td>0.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,3,4,5,6-Cl$_5$</td>
<td></td>
<td>1.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 11. The plot of the logarithm of the equilibrium constant of phenol-azaaromatics complexes vs. the pK$_a$ of the base shows: (□) bases with only one N atom (e.g. pyridine or quinoline), two non-vicinal N atoms (e.g. pyrimidine or pyrazine) or pyridazine where the two lone pairs are not pointing to each other; (■) bases with two parallel or pointing to each other nitrogen lone pairs (adapted from Reference 158).

hexamethylphosphoramide, 1,2,6-trimethyl-4-pyridone and 2,6-dimethyl-γ-pyrone show that double hydrogen bonds are formed to an oxygen atom in each of these bases185. This does not establish that 45 is always the predominant complex in solution, where the extra internal rotation possible would favor the singly hydrogen-bonded complex 46. However, the high complexation constants of the 1,8-diols with amides, SO and PO bases, compared to those of phenols of about the same Brønsted acidity, are interpreted by the formation of two hydrogen bonds to the oxygen atom (complex 45). There appear to be significant amounts of single hydrogen bonding (complex 46) with the ethers and all the nitrogen bases. Unfortunately, the ΔS values are not precise enough for showing more negative values for the formation of 45 than of 46.

Higher than expected complexation constants are found for the complexes of phenols with amphiprotic thioamides186,187 and 2-aminopyridine188. They have been interpreted by the existence of the cyclic complexes 47 and 48.
IR spectrometry shows the existence of two equilibria for the complexation of phenols with carbonyl bases in CCl$_4$ (equations 30 and 31)146,189. Two different 1:1 stereoisomeric complexes are formed: the planar bent n complex a and the planar bidentate linear n complex b. The complex b has also been given the structure c (out-of-plane π complex). Experimentally, an overall complexation constant is determined which is the sum of the individual complexation constants K_n and K_π for each stereoisomeric complex. Massat and coworkers190 have proposed an IR method for evaluating the constants K_n and K_π of phenol–alkylketone complexes. They have shown that the n vs. π complex competition depends on the alkyl branching, measured by n_α, the number of methyls alpha to the carbonyl, and on the phenol acidity, measured by pK_a (equations 32 and 33).

$$\log K_n = 5.3 - 0.44 \ pK_a - 0.08 \ n_\alpha \quad (32)$$

$$\log K_\pi = 5.21 - 0.48 \ pK_a \quad (33)$$

Two geometries are also possible in the hydrogen bonding of 4-fluorophenol to epoxides, peroxides and sterically hindered ethers19. The most stable complex has geometry 49, and the least stable one the trigonal geometry 50.
The complexation enthalpies discussed above contain not only the electronic contribution to the interaction energies, but also contributions arising from translational, rotational and vibrational motions of the nuclei. If measured in a solvent or a matrix, they also contain a solvation term. We shall designate D_e the electronic portion of the interaction energy, i.e. the dissociation energy from the equilibrium geometry, or binding energy, or hydrogen-bond energy; D_o would refer to this same quantity, after correction for zero-point vibrational energies. For a stable complex, ΔH (or ΔE after a $\Delta p V$ correction) is negative, signifying its formation to be exothermic, while $D_e(D_o)$ is taken as positive since it refers to the energy required to dissociate the complex. A precise knowledge of the binding energies of hydrogen bonds is crucial for the theoretical understanding of this molecular interaction. However, even for small hydrogen-bonded complexes, precise experimental data on hydrogen-bond binding energies are very scarce.

Accurate hydrogen-bond energies were determined in the gas phase for complexes between 1-naphthol or 1-naphthol-d$_3$ (D at C2, C4, O) and H$_2$O, CH$_3$OH, NH$_3$ and ND$_3$ using the stimulated emission pumping-resonant two-photon ionization spectroscopy technique in supersonic jets191. In these complexes 1-naphthol acts as the hydrogen-bond donor. The dissociation energies (kJ mol$^{-1}$) obtained for the S_0 electronic ground state are $D_0 = 24.34 \pm 0.83$ for 1-naphthol-H$_2$O, 31.64 ± 1.63 for 1-naphthol-CH$_3$OH, 32.07 ± 0.06 for 1-naphthol-NH$_3$ and 33.51 ± 0.17 for 1-naphthol-d$_3$-ND$_3$. Adding the spectral red-shift of the complex relative to the free naphthol yields a dissociation energy in the S_1 first-excited state that is approximately 8% higher. Clearly, 1-naphthol is a stronger hydrogen-bond donor than H$_2$O, leading to a hydrogen bond with H$_2$O that is approximately a factor of two stronger than in H$_2$O-H$_2$O, the water dimer. The larger dissociation energy for the 1-naphthol-CH$_3$OH than for the 1-naphthol-H$_2$O complex can be attributed to dispersive interactions between the 1-naphthol moiety and the CH$_3$ group. Comparing the 1-naphthol-H$_2$O and 1-naphthol-NH$_3$ complexes, it can be seen that the hydrogen bond to the stronger hydrogen-bond acceptor NH$_3$ is 8 kJ mol$^{-1}$ stronger than for H$_2$O. All these data agree with the pK$_{HB}$ values measuring the hydrogen-bond basicity of H$_2$O (0.65), CH$_3$OH (0.82) and NH$_3$ (1.74) (Section VII.A).

With recent advances in computer technology, it is now possible to carry out ab initio calculations on relatively large molecules and to obtain reliable hydrogen-bond energies. However, the large size of phenols has, so far, restricted the calculations to small-size hydrogen-bond acceptor molecules (e.g. H$_2$O and NH$_3$). As an illustration of the agreement between the experimental and calculated energies, Table 12 contains a comparison of the D_0 values of 1-naphthol-B (B = H$_2$O, CH$_3$OH, NH$_3$, ND$_3$). Calculations were performed191 at the MP2 level on SCF optimized structures with Pople’s 6-31G(d, p) standard basis set. These ab initio calculations give good values for the dissociation energy, except for methanol. The computed binding energies D_e of the complexes phenol-H$_2$O and phenol-NH$_3$,192 where phenol is the hydrogen-bond donor), at different levels of theory (B3LYP, MP, MCPF) and different Dunning’s basis sets (D95*,

\[
\begin{align*}
\text{(49)} & \quad \text{H} \quad \text{O} \quad \text{Ar} \\
\text{(50)} & \quad \text{O} \quad \text{H} \quad \text{O} \quad \text{Ar}
\end{align*}
\]
TABLE 12. Calculated (MP2/6-31G(d,p) // SCF/6-31G(d,p)) vs. experimental dissociation energies D_0 (kJ mol$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>1-naphthol-H$_2$O</th>
<th>1-naphthol-CH$_3$OH</th>
<th>1-naphthol-NH$_3$</th>
<th>1-naphthol-d$_3$-ND$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCF</td>
<td>24.38</td>
<td>26.38</td>
<td>29.55</td>
<td>31.27</td>
</tr>
<tr>
<td>Δ(MP2)a</td>
<td>8.21</td>
<td>10.60</td>
<td>10.92</td>
<td>10.92</td>
</tr>
<tr>
<td>BSSE (SCF)b</td>
<td>-4.68</td>
<td>-5.40</td>
<td>-4.47</td>
<td>-4.47</td>
</tr>
<tr>
<td>BSSE (MP2)b</td>
<td>-4.31</td>
<td>-5.44</td>
<td>-4.44</td>
<td>-4.44</td>
</tr>
<tr>
<td>CP (SCF + MP2)c</td>
<td>23.60</td>
<td>26.14</td>
<td>31.56</td>
<td>33.28</td>
</tr>
<tr>
<td>Differenced</td>
<td>-3%</td>
<td>-17%</td>
<td>-2%</td>
<td>-1%</td>
</tr>
</tbody>
</table>

aCorrelation energy contribution to D_e.
bBasis set superposition error.
cCounterpoise corrected value.
dDifference in percent between calculated and experimental D_0 values.

TABLE 13. Calculated binding energies D_e (kJ mol$^{-1}$) of C$_6$H$_5$OH···OH$_2$ and C$_6$H$_5$OH···NH$_3$.a

<table>
<thead>
<tr>
<th>Level of theoryb,c</th>
<th>C$_6$H$_5$OH-H$_2$O</th>
<th>C$_6$H$_5$OH-NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2(D95$^$) // MP2(D95$^$)</td>
<td>38.91 (29.71)</td>
<td>50.21 (35.98)</td>
</tr>
<tr>
<td>MP4(D95$^$) // MP2(D95$^$)</td>
<td>38.07</td>
<td>48.53</td>
</tr>
<tr>
<td>B3LYP(D95$^$) // B3LYP(D95$^$)</td>
<td>36.40 (31.80)</td>
<td>47.28 (39.75)</td>
</tr>
<tr>
<td>MP2(D95++$^{!}$) // MP2(D95*)</td>
<td>37.66 (25.52)</td>
<td>46.02 (33.89)</td>
</tr>
<tr>
<td>B3LYP(D95++$^{!}$) // B3LYP(D95++$^{!}$)</td>
<td>31.38 (26.78)</td>
<td>40.58 (35.98)</td>
</tr>
<tr>
<td>MCPF(D95++$^{!}$) // B3LYP(D95++$^{!}$)</td>
<td>34.73</td>
<td>41.84</td>
</tr>
</tbody>
</table>

aIn parentheses are counterpoise corrected binding energies.
bMPn methods include electron correlation.
cB3LYP: Three-parameter hybrid density functional method; the MCPF method is an extension of the singles and doubles configuration interaction approach; D95++$^{*\!*}$ is a Dunning double-zeta plus polarization and diffuse functions quality basis set; D95* is the D95++$^{*\!*}$ basis set in which basis set functions and the polarization functions on the hydrogen atoms have not been included.

D95++$^{*\!*}$, are given in Table 13 in order to show the sensitivity of the hydrogen-bond energies to the method of calculation. The best estimates of D_e at the B3LYP (MCPF) levels are 31.38 (34.73) and 40.58 (41.84) kJ mol$^{-1}$ for the phenol–water and phenol–ammonia complexes, respectively. As a matter of fact, the counterpoise uncorrected B3LYP (MCPF) values can be quite accurate, since the basis set superposition error can partially compensate for the lack of dispersion energy evaluation. Including the B3LYP zero-point correction, the B3LYP (MCPF) dissociation energies D_0 of the phenol–water and phenol–ammonia complexes are 23.43 (26.78) and 32.64 (33.89) kJ mol$^{-1}$, respectively.

For the hydrogen-bonded phenol-oxirane complex193, the performance of the SCF and BLYP density functional methods was compared, using the Pople’s 6-31G(d, p) and 6-311++G(d, p) basis sets. The MP2/6-31G(d, p) hydrogen-bond energy is $D_e = 28.9$ kJ mol$^{-1}$ and the dissociation energy is $D_0 = 23.8$ kJ mol$^{-1}$.

The dissociation energy D_0 of the phenol-methanol complex (phenol as hydrogen-bond donor), calculated with MP2 and B3LYP using the rather small 6-31G(d, p) basis set, is 21.78 and 22.91 kJ mol$^{-1}$, respectively.194 The calculated D_0 shows good agreement with the experimental value (25.56 ± 0.75 kJ mol$^{-1}$)195.
C. Geometry of Phenol Hydrogen Bonds

Whereas energetic data in the gas phase, to which the calculations directly pertain, are hard to obtain, many geometries have been evaluated to high precision, not only in the gas phase but also in the solid adducts.

In the solid state, neutron diffraction studies are the most useful since they allow one to determine the precise location of the hydrogen-bonded hydrogen in the O–H···B moiety. For illustration, we have selected the adduct of 2-methylpyridine with pentachlorophenol. In the crystal, the molecular OH···N, and not the ionic O···H–N⁺, adduct is formed as shown in Figure 12. The length of the hydrogen bond, 1.535(7) Å, is much shorter than the sum of van der Waals radii of H and N (2.6 Å) but still longer than the sum of the covalent radii (1.0 Å). The hydrogen bond is not perfectly linear (OH···N = 167.5(6)° instead of 180°) but is directed almost exactly at the Nsp² lone pair (HNC4′ = 172.7(3)°). The elongation of the O–H bond is very large. If bond orders of the O–H and H···N bonds are calculated from the distances, using the Pauling rule and the bond valence model, one obtains $S_{OH} = 0.71$ and $S_{H···N} = 0.24$. Although the rule of bond order conservation ($\Sigma S = 1$ around H) is not ideally fulfilled, the quarter of a valence unit of the hydrogen bond means that the incipient proton transfer has already reached an advanced stage in the hydrogen-bonded complex.

Many X-ray diffraction crystal structures of solid phenol adducts have been published and can be found in the CSD database. Several are given in Chapter 2 of the present volume. The reader can search in the CSD for either well-defined hydrogen-bonded complexes or perform a statistical survey of ArOH···B contacts. Examples of the first search are:

(i) 1 : 1 Hydrogen-bonded complexes of pentafluorophenol with Ph_3AsO^+, Ph_3PO^+, 4,4′-bis(dimethylamino)benzophenone (Michler’s ketone) and a 2 : 1 complex of pentafluorophenol with 1,4-dioxane. In the complex involving Michler’s ketone, the phenol is hydrogen-bonded to the carbonyl group and not to a nitrogen atom. On the contrary, in the adduct of CF₃SO₂H with the Michler’s ketone, one of the two nitrogen atoms has been protonated by the acid. This illustrates that for polyfunctional hydrogen-bond acceptors the hydrogen-bonding site is not always the protonation site (Section VI.D).
(ii) 1 : 1 Hydrogen-bonded complexes of pentachlorophenol with 3-cyanopyridine and 4-acetylpyridine. The comparison of the hydrogen-bond lengths indicates a stronger hydrogen bond to 4-acetylpyridine, in agreement with the pKHB scale. In these adducts, hydrogen bonding occurs at Nsp, the protonation site. However, in CCl₄ solution, the Nsp of 3-cyanopyridine and the carbonyl of 4-acetylpyridine are also secondary hydrogen-bond acceptor sites.

(iii) 1 : 1 Double-hydrogen-bonded adducts of 1,8-biphenylenediol and related compounds with hexamethylenetriamide, 2,6-dimethyl-4-pyrene and 1,2,6-trimethyl-4-pyridone. For each of these complexes both OH groups of the diol are hydrogen-bonded to the same basic O atom at the base. In the same vein, in the 1 : 2 complex of 2,6-dimethylpyridine-N-oxide with pentachlorophenol the oxygen atom of the N-oxide group accepts hydrogen bonds from two molecules of pentachlorophenol. This property of oxygen atoms of C=O, P=O and N → O groups to accept simultaneously several hydrogen bonds constitutes a major difference between oxygen and nitrogen atoms as hydrogen-bond acceptors.

(iv) 1 : 1 Complexes of 2,9-dimethyl-1,10-phenanthroline and resorcinol and 1,10-phenanthroline with 1,1′-binaphthyl-2,2′-diol. These are examples of three-centered hydrogen bonds where an OH group binds in a bifurcated manner to the two N atoms.

(v) Complexes of phenols, bisphenols and trisphenols with polyamines. These molecules are attractive candidates as building blocks for supramolecular chemistry. Complexes of bisphenols and trisphenols with hexamethylenetetramine generate strings, multiple helices and chains of rings. One-dimensional chains, two-dimensional bilayers and a three-dimensional diamondoid architecture are formed in hydrogen-bonded adducts of 4,4′-biphenol with 1,4-diazabicyclo[2.2.2]octane and 1,2-diaminoethane. Hexamethylene tetramine is a four-fold acceptor of OH···N hydrogen bonds in its 1 : 2 adduct with 2,2′-biphenol.

The second type of CSD search relies on the fact that a large proportion of crystal structures involve molecules with HBA and/or HBD functional groups. Thus it is possible to perform statistical surveys of hydrogen-bond geometries, directed to specific classes of hydrogen-bond complexes, e.g. the complexes of phenols with nitriles or those with primary amines. Statistical methods lead to averaged radial and angular parameters of the hydrogen bond. These methods are of vital importance because the hydrogen-bond geometry is easily deformed by other interactions in the crystal. If a sufficient number of structures is examined, chemically significant trends may be observed in the averaged data. Table 14 summarizes the results obtained for ArOH···Nsp, ArOH···Nsp and...
ArOH⋯Nsp3 213 hydrogen bonds. These results indicate that hydrogen bonds are shorter and more linear according to the basicity order: Nsp$^3 >$ Nsp$^2 >$ Nsp. In the family of amines, steric effects are possibly responsible for the longer and less linear hydrogen bonds in tertiary than in primary and secondary amines.

In the gas phase, the structure of the phenol-water complex has been obtained by Gerhards and coworkers 214 and by Berden and coworkers 215 from the fully rotationally resolved spectrum of the S$_0 \rightarrow$ S$_1$ origin. Phenol acts as the hydrogen-bond donor, with water oxygen in the plane of the ring and water hydrogens above and below this plane, as shown in Figure 13. In the S$_0$ ground state, the O–O separation in the hydrogen bond is 2.93 Å and the deviation from linearity is 6.7°. A shorter O–O distance (2.81 Å) but a greater deviation from linearity (14°) is found for the phenol-methanol complex, the structure of which could be determined by rotationally resolved laser-induced fluorescence spectroscopy 216.

The geometries of phenol–NH$_3$ 192,217, phenol–(H$_2$O)$_2$ 218, phenol–(H$_2$O)$_3$ 219, phenol–(H$_2$O)$_4$ 220, phenol–oxirane 193, phenol–HCOOH 221, phenol–(HCOOH)$_2$ 221, phenol–CH$_3$COOH 222 and phenol–(CH$_3$COOH)$_2$ 222 have also been obtained in vacuo by ab initio calculations. The structures of phenol–(H$_2$O)$_2$ and phenol–(H$_2$O)$_3$ correspond to cyclic water dimer and tetramer, respectively. The replacement of one of the water molecules by phenol causes no fundamental changes in the geometries. The ‘reaction’ of phenol with the cyclic formic acid dimer 53 (equation 34) shows that the gain in binding energy by the insertion of a phenol molecule into the cyclic dimer and the formation of an extra hydrogen bond overcompensates for the break of a hydrogen bond in the cyclic dimer 53.
This tendency to allow insertion of a phenol molecule is lower for acetic acid since two isomers for phenol–(CH₃COOH)₂ are observed, the stabilization energies of phenol inserted in (54) and attached to (55) (CH₃COOH)₂ being comparable.

D. Hydrogen-bonding Site(s)

The majority of organic molecules are characterized by more than one potential HBA site. The site(s) of hydrogen bonding can be determined by various experimental methods.
8. Hydrogen-bonded complexes of phenols

(IR, NMR, X-ray diffraction), theoretical calculations and comparison with one-site models. This can be illustrated on the hydrogen-bond complexes of phenols with progesterone (56). This molecule bears two potential HBA groups corresponding to the oxygens of C₃=O and C₂₀=O. In the complex with 4-fluorophenol in CCl₄ solution, the existence of two 1:1 hydrogen-bond complexes is shown by the shift to lower wavenumbers of both infrared carbonyl bands. By comparison to the complexes with the models isophorone (57) and i-PrCOMe (58), it is found that ca 80% of the phenol molecules are hydrogen-bonded to C₃=O. In the same vein, the complex to O₃ is more stable by 3.6 kJ mol⁻¹ on the enthalpic scale, in agreement with theoretical calculations. In the solid state, the X-ray structure of a 1:1 progesterone-resorcinol complex (524) also shows that both carbonyl groups accept hydrogen bonds from resorcinol and that the C₃=O···HO hydrogen bond is shorter (stronger) by 0.04 Å than the C₂₀=O···HO bond. Other examples of complexes of phenols with polysite molecules, many of biological interest, are given below.

For phenols of pKₐ ranging from 10.3 to 4.5, OH···O=C hydrogen bonds are formed with 3-methyl-4-pyrimidone (59). With picric acid (pKₐ = 0.4) protonation occurs at the N₁ nitrogen atom. For phenols of intermediate pKₐ values, there is no preferred site of interaction, both ArOH···O=C and NH⁺···O⁻ Ar bonds being formed in solution (525).

In a comparative study of complexation enthalpies of phenols with enamino and amino ketones, it is suggested that, unlike the saturated base (60) where the complexation involves the nitrogen atom, hydrogen bonding to the push-pull compound (61) mainly takes place on the carbonyl group (526). However, when the amino nitrogen and the carbonyl group are separated by only one CH₂ group (62), the two sites are hydrogen-bonded to phenols (527).

Phenols (pKₐ = 10.2 − 7.7) are hydrogen-bonded to the oxygen atom of N,N-diethylnicotinamide (63). Thus the hydrogen-bonding site is not the preferred site of protonation in aqueous solution which is the nitrogen atom of the pyridine ring. This is also the case for the methylated derivative of cytosine (64) and for 1-methyl-2-pyrimidone (65), where hydrogen bonding occurs at the oxygen atom while protonation takes place on N₃. In contrast, both protonation and hydrogen bonding occurs on the O₄ oxygen of 1,3-dimethyluracil (66).

In the complexes of phenols with the Schiff base (67) the hydrogen-bonding site seems governed by the accessibility of the lone pair, which is markedly higher for the Nsp than for the Nsp² nitrogen atom. In the same way, in the complexes of phenols with 68−70, steric factors seems important for the preferred hydrogen-bonding site(s). These are: (i) the N₁ and N₇ atoms for the purine (68) complexes, (ii) mainly the N₃ atom for the adenine (69) complexes and (iii) the oxygen atom for the di-2-pyridyl diketone (70) complexes.
Push-pull and steric effects might explain why phenols are hydrogen-bonded to the C₆=O and C₈=O functions of the methyl derivative 71 of uric acid²³³, and to C₆=O and N₇ of N,N-1,9-tetramethylguanine (72)²³⁴. In this field of carbonyl vs. Nsp² competition, the hydrogen bonds between metyrapone (73) and phenols are predominantly formed on the nitrogen atom of ring A²³⁵.
The hydrogen-bonded complexes of phenols with the model dipeptide 74 have been investigated256. Complexation occurs at both the amide and urethane carbonyl groups. About 45\% of the complexes are formed on the urethane functions, almost independent of the Brønsted acidity of the phenols. When phenols are attached to the amide group, the intramolecular hydrogen bond seems to be broken.
VII. CONSTRUCTION OF HYDROGEN-BOND BASICITY SCALES FROM PHENOLS

For technical reasons, phenols are convenient reference hydrogen-bond donors for hydrogen-bonding studies. We present below their use for constructing thermodynamic and spectroscopic scales of hydrogen-bond basicity. These scales are either solute scales when the phenol and the base are dissolved in an inert solvent, or solvent scales when the phenol is studied in the pure base. In the latter case, methods such as the solvatochromic comparison method or the calorimetric pure base method have been developed to unravel the hydrogen-bond contribution to the overall solvent effect.

A. Thermodynamic Scales of Hydrogen-bond Basicity

Since the work of Gurka and Taft20 and Arnett and coworkers237, 4-fluorophenol has proved to be an excellent reference hydrogen-bond donor for the establishment of a thermodynamic hydrogen-bond basicity scale of organic bases B. This solute scale, denoted by \(pK_{HB} \), is defined as the logarithm of the formation constant \(K \) of the 1 : 1 hydrogen-bonded complex \(\text{4-FC}_6\text{H}_4\text{OH} \cdots \cdot \text{B} \) in \(\text{CCl}_4 \) at 25°C (equations 35–37). The choice of these standard conditions allows the accurate determination of \(K \) over a wide basicity range, by measuring equilibrium concentrations from various properties such as the \(^19\text{F} \)NMR shifts20, the absorbance of the OH stretching IR band237 at 3614 cm\(^{-1}\) or calorimetric determination of the heat of reaction237. The absorbance of the UV band caused by the \(\pi \rightarrow \pi^* \) transition at 281 nm can also be used238. Fifty-five equilibrium constants were determined by \(^19\text{F} \)NMR with values ranging from \(\text{Et}_2\text{S} (pK_{HB} = 0.11) \) to \(\text{Me}_2\text{N}_3\text{PO} (pK_{HB} = 3.56) \). \(pK_{HB} \) values for 20 additional bases were further reported153.

The study153 of reaction 35 in several solvents of relative permittivity ranging from 2.02 (\(\text{c-C}_6\text{H}_{12} \)) to 10.36 (1,2-dichloroethane) shows that linear free-energy relationships (log \(K \) in a given solvent vs. \(pK_{HB} \) in \(\text{CCl}_4 \)) are obeyed by oxygen and Nsp bases. However, Nsp2 and Nsp3 bases gain strength relative to oxygen bases as the solvent reaction field rises, probably because of an increase in the extent of proton sharing in hydrogen-bonded complexes permitted by the action of polar solvents.

\[
B + 4-\text{FC}_6\text{H}_4\text{OH} \rightleftharpoons 4-\text{FC}_6\text{H}_4\text{OH} \cdots \cdot \text{B} \quad (35)
\]

\[
K (\text{dm}^3 \text{ mol}^{-1}) = [4-\text{FC}_6\text{H}_4\text{OH} \cdots \cdot \text{B}]/[\text{B}][4-\text{FC}_6\text{H}_4\text{OH}] \quad (36)
\]

\[
pK_{HB} = \log_{10} K \quad (37)
\]

Few further studies on the \(pK_{HB} \) scale were reported between 1972 and 1988, when Laurence, Berthelot and coworkers began to extend systematically the \(pK_{HB} \) scale to various families of organic bases. The results were published in a series of papers18,19,23,146,186,188,239–256 referenced in chronological order in Table 15. These papers give the chemist a database for a range of HBA strengths and a variety of functionalities not previously approached. In Table 16, we have selected a number of \(pK_{HB} \) values among the ca 1,000 bases now available. The lowest published \(K \) value for reaction 35 is 0.14 dm\(^3\) mol\(^{-1}\) (\(pK_{HB} = -0.85 \))252 for the very weak \(\pi \) base 2,3-dimethylbut-2-ene. The highest published \(K \) values are 4570 dm\(^3\) mol\(^{-1}\) (\(pK_{HB} = 3.66 \)) for the neutral base \(\text{Ph}_3\text{AsO} \)238 and 120,000 dm\(^3\) mol\(^{-1}\) (\(pK_{HB} = 5.08 \))154 for the tetrabutylammonium cyanate ion pair \(\text{Bu}_4\text{N}^+\text{OCN}^- \). Thus, at present, the stability of 4-fluorophenol hydrogen-bonded complexes extends over a range of 6 \(pK \) units corresponding to a 35 kJ mol\(^{-1}\) Gibbs energy range.
8. Hydrogen-bonded complexes of phenols

TABLE 15. Hydrogen-bonding basicity scale constructed from 4-fluorophenol

<table>
<thead>
<tr>
<th>Base family</th>
<th>pK_{HB} range</th>
<th>Reference</th>
<th>Base family</th>
<th>pK_{HB} range</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amidines</td>
<td>1.28 to 3.14</td>
<td>239</td>
<td>Cyanamidate</td>
<td>3.24</td>
<td>250</td>
</tr>
<tr>
<td>Water, alcohols and phenols</td>
<td>−0.96 to 1.27</td>
<td>18</td>
<td>Thioamides and thioureas</td>
<td>0.30 to 2.29</td>
<td>186</td>
</tr>
<tr>
<td>Acetamidines, benzamidines</td>
<td>0.99 to 2.72</td>
<td>240</td>
<td>Nitrarnines and nitrarnidates</td>
<td>0.82 to 1.91</td>
<td>251</td>
</tr>
<tr>
<td>Iminologous compounds</td>
<td>1.23 to 2.10</td>
<td>241</td>
<td>π bases (aromatic, ethylenic)</td>
<td>−0.85 to 0.02</td>
<td>252</td>
</tr>
<tr>
<td>Formamidines</td>
<td>0.60 to 2.75</td>
<td>242</td>
<td>Chelated compounds</td>
<td>0.09 to 2.48</td>
<td>23</td>
</tr>
<tr>
<td>Amides, ureas and lactams</td>
<td>0.75 to 2.79</td>
<td>243</td>
<td>2,6-Di-α-butylypyridine</td>
<td>−0.54</td>
<td>253</td>
</tr>
<tr>
<td>Nitriles</td>
<td>−0.26 to 2.24</td>
<td>244</td>
<td>Sulfonyl bases</td>
<td>0.80 to 2.90</td>
<td>254</td>
</tr>
<tr>
<td>Super-basic nitriles</td>
<td>1.56 to 2.24</td>
<td>245</td>
<td>Ketones, aldehydes</td>
<td>−0.06 to 2.92</td>
<td>144</td>
</tr>
<tr>
<td>Amidines</td>
<td>0.83 to 2.22</td>
<td>246</td>
<td>Pyridines</td>
<td>−0.49 to 2.93</td>
<td>188</td>
</tr>
<tr>
<td>Amidates</td>
<td>2.70 to 3.56</td>
<td>247</td>
<td>Ethers, peroxides</td>
<td>−0.53 to 1.98</td>
<td>19</td>
</tr>
<tr>
<td>Nitro bases</td>
<td>0.13 to 1.55</td>
<td>248</td>
<td>Primary amines</td>
<td>0.67 to 2.62</td>
<td>255</td>
</tr>
<tr>
<td>Esters, lactones and carbonates</td>
<td>0.08 to 2.09</td>
<td>249</td>
<td>Halolakanes</td>
<td>−0.70 to 0.26</td>
<td>256</td>
</tr>
</tbody>
</table>

TABLE 16. Hydrogen-bonding acceptor strengths of neutral bases

<table>
<thead>
<tr>
<th>Base</th>
<th>HBA site(s)</th>
<th>pK_{HB}^a</th>
<th>Base</th>
<th>HBA site(s)</th>
<th>pK_{HB}^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexene</td>
<td>π</td>
<td>−0.82</td>
<td>N-Methylthioacetamide</td>
<td>CS</td>
<td>1.14</td>
</tr>
<tr>
<td>Methyl iodide</td>
<td>I</td>
<td>−0.47</td>
<td>Acetone</td>
<td>CO</td>
<td>1.18</td>
</tr>
<tr>
<td>Benzene</td>
<td>π</td>
<td>−0.50</td>
<td>$N_{-}N'$-Dimethylbenzenesulfonamide</td>
<td>SO$_2$</td>
<td>1.19</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>π</td>
<td>−0.30</td>
<td>Tetrahydrofuran</td>
<td>O$_2p^3$</td>
<td>1.28</td>
</tr>
<tr>
<td>Butyl bromide</td>
<td>Br</td>
<td>−0.30</td>
<td>γ-Butyrolactone</td>
<td>CO</td>
<td>1.32</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>2 π</td>
<td>−0.26</td>
<td>Pyrimidine</td>
<td>2 N$_2p^3$</td>
<td>1.37</td>
</tr>
<tr>
<td>Cyclohexyl chloride</td>
<td>Cl</td>
<td>−0.23</td>
<td>Cyclohexane</td>
<td>CO</td>
<td>1.39</td>
</tr>
<tr>
<td>1-Hexyne</td>
<td>π</td>
<td>−0.22</td>
<td>1-Diethylamino-2-nitroethene</td>
<td>NO$_2$</td>
<td>1.58</td>
</tr>
<tr>
<td>Phenol</td>
<td>$\pi + O$</td>
<td>−0.07</td>
<td>Diethylcyanamide</td>
<td>N$_2p^2$</td>
<td>1.63</td>
</tr>
<tr>
<td>Octyl fluoride</td>
<td>F</td>
<td>0.02</td>
<td>$N_{-}N'$-Diphenylacetamidine</td>
<td>N$_2p^2$</td>
<td>1.65</td>
</tr>
<tr>
<td>Diphenylamine</td>
<td>2 $\pi + N$</td>
<td>0.08</td>
<td>Ammonia</td>
<td>N$_2p^3$</td>
<td>1.68</td>
</tr>
<tr>
<td>Anisole</td>
<td>$\pi + O$</td>
<td>0.11</td>
<td>Morpholine</td>
<td>O + N$_2p^3$</td>
<td>1.86</td>
</tr>
<tr>
<td>Pyrrole</td>
<td>N$_2p^3$</td>
<td>0.15</td>
<td>Pyridine</td>
<td>N$_2p^2$</td>
<td>1.86</td>
</tr>
<tr>
<td>Nitromethane</td>
<td>NO$_2$</td>
<td>0.27</td>
<td>N-Methylformamide</td>
<td>CO</td>
<td>1.96</td>
</tr>
<tr>
<td>Tetrahydrothiophene</td>
<td>S$_2p^3$</td>
<td>0.30</td>
<td>Triethylamine</td>
<td>N$_2p^3$</td>
<td>1.99</td>
</tr>
<tr>
<td>Methyl salicylate</td>
<td>CO</td>
<td>0.32</td>
<td>Methylamine</td>
<td>N$_2p^3$</td>
<td>2.15</td>
</tr>
<tr>
<td>Aniline</td>
<td>$\pi + N$</td>
<td>0.56</td>
<td>N-Methylacetamide</td>
<td>CO</td>
<td>2.30</td>
</tr>
<tr>
<td>Water</td>
<td>O$_2p^3$</td>
<td>0.64</td>
<td>Piperidine</td>
<td>N$_2p^3$</td>
<td>2.35</td>
</tr>
<tr>
<td>Ethyl formate</td>
<td>CO</td>
<td>0.66</td>
<td>Tetramethyleurea</td>
<td>CO</td>
<td>2.44</td>
</tr>
<tr>
<td>2,2,2-Trifluoroethylamine</td>
<td>N$_2p^3$</td>
<td>0.67</td>
<td>Dimethylecetamide</td>
<td>CO</td>
<td>2.44</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>CO</td>
<td>0.78</td>
<td>2,6-Dimethyl-γ-pyrone</td>
<td>CO</td>
<td>2.50</td>
</tr>
<tr>
<td>1,3,5-Triazine</td>
<td>3 N$_2p^2$</td>
<td>0.80</td>
<td>1-Methyl-α-pyridone</td>
<td>CO</td>
<td>2.57</td>
</tr>
<tr>
<td>Diethyl sulfate</td>
<td>SO$_2$</td>
<td>0.80</td>
<td>Dimethyl sulfoxide</td>
<td>SO</td>
<td>2.58</td>
</tr>
<tr>
<td>Methanol</td>
<td>O$_2p^3$</td>
<td>0.82</td>
<td>Quinuclidine</td>
<td>N$_2p^3$</td>
<td>2.63</td>
</tr>
<tr>
<td>Diethyl carbonate</td>
<td>CO</td>
<td>0.88</td>
<td>Pyridine N-oxide</td>
<td>NO$_2$</td>
<td>2.70</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>N$_2p^3$</td>
<td>0.91</td>
<td>N-Methylimidazole</td>
<td>N$_2p^2$</td>
<td>2.72</td>
</tr>
<tr>
<td>Ethyl benzoate</td>
<td>CO</td>
<td>0.94</td>
<td>4-N'-N-Dimethylaminopyridine</td>
<td>N$_2p^2$</td>
<td>2.80</td>
</tr>
<tr>
<td>Methyl acetate</td>
<td>CO</td>
<td>1.00</td>
<td>Triphenylphosphine oxide</td>
<td>P$_2$O</td>
<td>3.16</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>O$_2p^3$</td>
<td>1.01</td>
<td>Tetramethylguanidine</td>
<td>N$_2p^2$</td>
<td>3.21</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>2O$_2p^3$</td>
<td>1.03</td>
<td>Hexamethylphosphoramide</td>
<td>P$_2$O</td>
<td>3.56</td>
</tr>
<tr>
<td>Dimethyltrifluoroacetamide</td>
<td>CO</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aThe pK_{HB} values are determined by FTIR spectrometry. Estimated precision: 0.02 pK unit.
In 1989 a log K_β solute hydrogen-bond basicity scale was constructed for 91 bases. It was scaled to 4-nitrophenol as hydrogen-bond donor in 1,1,1-trichloroethane (equations 38 and 39) and was explicitly targeted to the needs of the medicinal chemist. To this end, measurements were made in 1,1,1-trichloroethane, a solvent considered a better model for real biological phases than the non-polar tetrachloromethane. In addition, data are given for molecules of special interest to the medicinal chemist, for example many heterocycles never before investigated. The log K_β and pK_{HB} scales have a similar meaning and it is not unreasonable to find a fair correspondence between 24 common values (equation 40).

$$
B + 4\text{-O}_2\text{NC}_6\text{H}_4\text{OH} \rightleftharpoons 4\text{-O}_2\text{NC}_6\text{H}_4\text{OH} \cdots B
$$ (38)

$$
K_\beta(\text{dm}^3\text{mol}^{-1}) = [4\text{-O}_2\text{NC}_6\text{H}_4\text{OH} \cdots B]/[B][4\text{-O}_2\text{NC}_6\text{H}_4\text{OH}]
$$ (39)

$$
\log K_\beta = 1.27pK_{HB} + 0.11
$$ (40)

In contrast to the good agreement generally found between hydrogen-bonding complexation constants, there is a serious dearth of reliable hydrogen-bond enthalpies. Discrepancies amounting to 5–10 kJ mol$^{-1}$ are often found between the results obtained by different workers studying the same system by the same or different methods. For example, the results collected in Table 17 of sixteen determinations of the phenol-pyridine system vary from -20.9 to -31.8 kJ mol$^{-1}$. In view of the fact that most hydrogen-bond enthalpies for neutral hydrogen-bond donors and acceptors fall between -10 to -40 kJ mol$^{-1}$, these discrepancies seriously reduce the usefulness of such measurements.

<table>
<thead>
<tr>
<th>ΔH° (kJ mol$^{-1}$)</th>
<th>Methoda</th>
<th>Reference</th>
</tr>
</thead>
</table>

aVH denotes van’t Hoff equation and CAL denotes calorimetric method.
In determinations employing a variation of equilibrium constant with temperature, difficulties arise mainly from the use of a too restricted range of temperature variation, while values of ΔH^o determined calorimetrically depend strongly on the reliability of the equilibrium constant. Arnett and coworkers237 have proposed a pure-base method to avoid the need for accurate equilibrium constants. In this method the base is used as the solvent and the heat produced by van der Waals interactions is corrected by a model compound. Arnett and coworkers237 used 4-fluorophenol as the hydrogen-bond donor and 4-fluoroanisole as the model compound. A selection of their results237,258 on the enthalpy of hydrogen bonding of 4-fluorophenol to various bases is collected in Table 18. Enthalpies vary from 5.1 kJ mol$^{-1}$ for the weakest complex with benzene to 39.7 kJ mol$^{-1}$ for the strongest complex with quinuclidine. They constitute a solvent basicity scale that, however, differs little from a solute scale measured in dilute CCl$_4$.

B. UV, NMR and IR Spectroscopic Scales

The sensitivity of the A-H stretching infrared frequency to hydrogen-bond formation is well known4. The frequency shift, $\Delta \nu$, is generally represented as the difference between the stretching frequency for the monomeric A-H in an ‘inert’ solvent and the lowered stretching frequency for A-H···B in the same ‘inert’ solvent. Koppel and Paju259 have suggested that the phenolic OH shift (equation 41) can be used as a solute hydrogen-bonding basicity scale and have collected literature results for ca 200 bases. $\Delta \nu$(OH) values vary from 14 cm$^{-1}$ for the very weak chloro base CHCl$_3$ to 727 cm$^{-1}$ for the strong nitrogen base N-methylpipеридине. Many of these values must, however, be considered with caution because of (i) their variation with base concentration260, (ii) overlap with the ν(CH) bands and (iii) the great breadth and complicated shape of the ν(OH···B) band261. In fact, phenolic shifts are mainly recommended for measuring the basicity of weak bases as shown for alcohols18, nitriles244, nitro bases248, ethylenic, acetylenic and aromatic π bases252, sulfonyl bases254, ethers19 and haloalkanes256. For stronger bases, such as pyridines or amines, methanolic shifts are preferable262. IR OH frequency shifts are useful values for predicting hydrogen-bond enthalpies. In 1937, Badger and Bauer139 proposed that a linear relationship exists between the enthalpy of the hydrogen bond and

<table>
<thead>
<tr>
<th>Base</th>
<th>$-\Delta H^o$</th>
<th>Base</th>
<th>$-\Delta H^o$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>5.15</td>
<td>Tetrahydrofuran</td>
<td>24.06</td>
</tr>
<tr>
<td>1-Iodobutane</td>
<td>6.49</td>
<td>N,N-Dimethylformamide</td>
<td>29.16</td>
</tr>
<tr>
<td>1-Bromobutane</td>
<td>7.61</td>
<td>Dimethyl sulfoxide</td>
<td>30.17</td>
</tr>
<tr>
<td>1-Chlorobutane</td>
<td>8.08</td>
<td>Pyridine</td>
<td>30.96</td>
</tr>
<tr>
<td>Diethyl sulfide</td>
<td>15.19</td>
<td>N,N-Dimethylacetamide</td>
<td>31.13</td>
</tr>
<tr>
<td>Tetrahydrothiophene</td>
<td>15.52</td>
<td>4-Picoline</td>
<td>31.76</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>17.57</td>
<td>Tetramethylene sulfoxide</td>
<td>31.97</td>
</tr>
<tr>
<td>Tetramethylene sulfone</td>
<td>17.78</td>
<td>4-Dimethylaminopyridine</td>
<td>32.64a</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>19.83</td>
<td>Hexamethylphosphoramide</td>
<td>36.53</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>21.34</td>
<td>Trimethylamine N-oxide</td>
<td>36.82b</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>21.76</td>
<td>Triethylamine</td>
<td>37.32</td>
</tr>
<tr>
<td>Cyclopentanone</td>
<td>23.01</td>
<td>Quinuclidine</td>
<td>39.75c</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>23.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aIn CCl$_4$.
bIn CH$_2$Cl$_2$.
cIn o-C$_6$H$_4$Cl$_2$.

Table 18. Enthalpies of complexation (kJ mol$^{-1}$) of 4-fluorophenol with various bases measured by the pure base method258
the frequency shift of the A-H stretching vibration. This correlation has been challenged by many research groups and supported by others. Today the consensus seems to be that the $\Delta H - \Delta \nu$ correlation is family-dependent. If the domain of validity of the correlation has been clearly established for a given family, reliable ΔH data can be predicted for compounds belonging to this family. For example, the enthalpy of complexation of 4-fluorophenol with any chloroalkane in CCl$_4$ can be calculated from equation 42.

$$\Delta \nu(\text{OH})(\text{cm}^{-1}) = 3611 - \nu(\text{OH} \cdots B)$$

$$\Delta H^\circ (\text{kJ mol}^{-1}) = 0.12 \Delta \nu(\text{OH} \cdots \text{Cl})(\text{cm}^{-1}) - 0.4$$

$$n = 5, \quad r = 0.984, \quad s = 0.37 \text{ kJ}$$

With hydrogen-bond formation the $S_0 \rightarrow S_1$ transition of a phenol ArOH undergoes a bathochromic shift towards the spectral position of the corresponding transition of the anion. For example, the $\pi \rightarrow \pi^*$ transition of 4-fluorophenol at 281.1 nm in CCl$_4$ (absorption coefficient ca 3,000 dm3 mol$^{-1}$ cm$^{-1}$) is shifted to 286.5 nm on hydrogen bonding with Oct$_3$PO, because of the stabilization of the π^* excited state relative to

![Diagram](image-url)

FIGURE 14. The solvatochromic comparison principle. In a plot of the corresponding $\tilde{\nu}$ values of a hydrogen-bond (HB) donor probe, 4-NO$_2$C$_6$H$_4$OH, vs. a very similar but non-hydrogen-bond donor probe, 4-NO$_2$C$_6$H$_4$OMe, non-HBA and non-HBD solvents draw a so-called comparison line with a very high correlation coefficient from the gas phase to polyhalogenated benzenes, because the van der Waals effects of these solvents are similar for the two probes. HBA solvents (e.g. DMSO) are displaced below the comparison line because of an enhanced solvatochromic shift caused by hydrogen bonding. The contribution $\Delta \tilde{\nu}(\text{HB})$ to the total solvatochromic shift $\tilde{\nu}(\text{gas}) - \tilde{\nu}(\text{DMSO})$ of 4-NO$_2$C$_6$H$_4$OH is calculated as shown in the figure.
the less acidic π ground state. Greater shifts are observed when intramolecular charge transfer occurs upon excitation in push-pull compounds such as 4-nitroaniline or 4-nitrophenol. Kamlet and Taft have proposed a method for constructing a scale of solvent hydrogen-bond basicity from these shifts of electronic transitions, which they refer to as the solvatochromic comparison method. In this method, 4-nitrophenol is the reference hydrogen-bond donor and the base is used as the solvent, so complete association of 4-NO$_2$C$_6$H$_4$OH can be assumed. The solvatochromic comparison method is outlined in Figure 14. Magnitudes of enhanced solvatochromic shifts in hydrogen-bond acceptor solvents are determined for 4-nitrophenol (75) relative to 4-nitroanisole (76) for the $\pi \rightarrow \pi^*$ transition of longest wavelength (283.6 nm in heptane) in order that the $\Delta \tilde{\nu}$ (HB) contains only the hydrogen-bond contribution to the solvatochromic shift. Nicolet and Laurence have improved the precision and sensitivity of the method through their thermosolvatochromic comparison method. This method takes advantage of variations in solvent properties with temperature (0–105 °C) and of a better-defined comparison line, fixed by the largest possible range of solvents, from the gas phase to the most polar but non-HBA and non-HBD (or very weak HBA and/or HBD) solvents. They have thus

<table>
<thead>
<tr>
<th>Basic solvents</th>
<th>$\Delta \tilde{\nu}$(HB) (cm$^{-1}$) of 4-nitrophenol attributable to hydrogen bonding267</th>
<th>Basic solvents</th>
<th>$\Delta \tilde{\nu}$(HB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π bases</td>
<td></td>
<td>Ethyl acetate</td>
<td>993</td>
</tr>
<tr>
<td>Benzene</td>
<td>193</td>
<td>Methyl acetate</td>
<td>1033</td>
</tr>
<tr>
<td>Toluene</td>
<td>209</td>
<td>Cyclohexanone</td>
<td>1064</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>253</td>
<td>2-Butanone</td>
<td>1108</td>
</tr>
<tr>
<td>Mesitylene</td>
<td>364</td>
<td>Dimethylformamide</td>
<td>1451</td>
</tr>
<tr>
<td>Prehnitene</td>
<td>454</td>
<td>N-Methylpyrrolidinone</td>
<td>1525</td>
</tr>
<tr>
<td>Haloalkanes</td>
<td></td>
<td>Tetramethyleurea</td>
<td>1558</td>
</tr>
<tr>
<td>n-Butyl bromide</td>
<td>223</td>
<td>Dimethylacetamide</td>
<td>1582</td>
</tr>
<tr>
<td>n-Butyl chloride</td>
<td>260</td>
<td>SO and PO bases</td>
<td></td>
</tr>
<tr>
<td>Thiocarbamates</td>
<td></td>
<td>Sulfolane</td>
<td>657</td>
</tr>
<tr>
<td>Trimethylene sulfide</td>
<td>650</td>
<td>Diethyl sulfite</td>
<td>906</td>
</tr>
<tr>
<td>Dimethyl sulfide</td>
<td>668</td>
<td>Diethyl chlorophosphate</td>
<td>1131</td>
</tr>
<tr>
<td>Tetrahydrothiophene</td>
<td>738</td>
<td>Trimethyl phosphate</td>
<td>1314</td>
</tr>
<tr>
<td>Diethyl sulfide</td>
<td>745</td>
<td>Triethyl phosphate</td>
<td>1458</td>
</tr>
<tr>
<td>Di-sec-propyl sulfide</td>
<td>866</td>
<td>Dimethyl sulfoxide</td>
<td>1466</td>
</tr>
<tr>
<td>Di-n-butyl sulfide</td>
<td>875</td>
<td>Tetramethylene sulfoxide</td>
<td>1523</td>
</tr>
<tr>
<td>Ethers</td>
<td></td>
<td>Hexamethylenephosphoramide</td>
<td>2000</td>
</tr>
<tr>
<td>Anisole</td>
<td>417</td>
<td>$Pyridines$</td>
<td></td>
</tr>
<tr>
<td>Dioxolane</td>
<td>785</td>
<td>2,6-Difluoropyridine</td>
<td>822</td>
</tr>
<tr>
<td>Dioxane</td>
<td>919</td>
<td>2-Fluoropyridine</td>
<td>1158</td>
</tr>
<tr>
<td>Dibenzyl ether</td>
<td>927</td>
<td>3-Bromopyridine</td>
<td>1457</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>1183</td>
<td>Pyridine</td>
<td>1770</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>1205</td>
<td>4-Methylpyridine</td>
<td>1927</td>
</tr>
<tr>
<td>Di-n-butyl ether</td>
<td>1322</td>
<td>2,4,6-Trimethylpyridine</td>
<td>1972</td>
</tr>
<tr>
<td>2,2,5,5-Tetramethyltetrahydrofuran</td>
<td>1423</td>
<td>$Amines$</td>
<td></td>
</tr>
<tr>
<td>Nitriles</td>
<td></td>
<td>N,N'-Dimethylbenzylamine</td>
<td>2022</td>
</tr>
<tr>
<td>Chloroacetonitrile</td>
<td>364</td>
<td>N,N'-Dimethylpipеразине</td>
<td>2029</td>
</tr>
<tr>
<td>Benzonitrile</td>
<td>749</td>
<td>Triethylamine</td>
<td>2311</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>771</td>
<td>N,N-Dimethyl-c-hexylamine</td>
<td>2316</td>
</tr>
<tr>
<td>Dimethylcyanamide</td>
<td>1092</td>
<td>Tri-n-butylamine</td>
<td>2424</td>
</tr>
<tr>
<td>Carboxyl bases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl carbonate</td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>986</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
calculated the solvatochromic hydrogen-bonding shifts of 4-nitrophenol for an extended sample of oxygen, nitrogen, carbon, halogen and sulfur bases. Their results are given in Table 19. Solvatochromic shifts attributable to hydrogen bonding vary from 193 cm\(^{-1}\) (2.3 kJ mol\(^{-1}\)) for the 4-nitrophenol-benzene complex to 2,424 cm\(^{-1}\) (29.0 kJ mol\(^{-1}\)) for the 4-nitrophenol-tri-\(n\)-butylamine complex. The latter value compares well with the enthalpy of formation of the complex 4-nitrophenol-triethylamine (43.1 kJ mol\(^{-1}\), in \(c\)-\(C_6H_{12}\)) insofar as the electronic shifts refer to the difference in hydrogen-bond electronic energies between the ground and the excited states.

The significance of \(\Delta \tilde{\nu}\) (HB) as a hydrogen-bonding parameter has been tested by its correlation with complexation constants, NMR shifts, vibrational IR shifts and enthalpies of hydrogen-bond formation. Family-dependent correlations are generally found between the above properties. The only significant family-independent correlation, illustrated in Figure 15, is with the enthalpy of hydrogen-bond formation of 4-fluorophenol complexes \((r = 0.992\) for 37 complexes). This correlation follows directly from the similarity principle: not only are 4-nitrophenol and 4-fluorophenol similar OH donors but also both properties \((\Delta H\) and \(\Delta \tilde{\nu}\)) are similar, referring more or less to the energy of the hydrogen bond.

![Figure 15](image-url)
In NMR spectroscopy, the hydrogen-bond shift, or the difference in chemical shifts for free and complexed hydrogen-bond donors, can be used as an indication of hydrogen-bond strength. Gurka and Taft20 have used 19F NMR data of 4-fluorophenol hydrogen-bonded to bases in CCl$_4$. 4-Fluoroanisole was used as the internal reference to represent intramolecular screening effects similar to 4-fluorophenol so that the chemical shifts observed for 4-fluorophenol would be due entirely to hydrogen-bond formation. Limiting 19FNMR shifts, Δ in ppm, between free 4-fluorophenol and the 1 : 1 complex 4-FC$_6$H$_4$OH•••B have been obtained20 for 62 bases of widely different structures in CCl$_4$ at 25°C. Additional values are given in Reference 153. A linear correlation between pK_{HB} and Δ was shown to apply to bases without large steric effects. It is particularly significant that the correlation includes bases with substantial variations in the entropies of complexation.

VIII. HYDROGEN BONDING AND PROTONATION

When hydrogen bonds (HBs) of increasing strength are formed in solution (the HB equilibrium is given in equation 43), the attraction of the acceptor B for the proton becomes so great that the latter can leave the phenol molecule to reach the base B, leading to proton transfer (PT) and the formation of an ion pair (the PT equilibrium in equation 43). Depending on the experimental conditions, the ion pair may further dissociate into solvated ions (the D equilibrium in equation 43). However, the new HB formed between the protonated base BH$^+$ and the phenolate ion ArO$^-$ is generally so strong that no noticeable increase in conductivity can be detected when PT occurs. The two tautomeric forms on each side of the PT equilibrium delimit an important domain where the proton is delocalized between the two accepting species B and ArO$^-$ and/or jumps easily from one to the other well of its potential energy surface corresponding to the covalent O–H and H–B$^+$ bonds. These intermediary states are characterized by high proton polarizabilities that can be detected by an intense continuum raising the base line of the mid-IR spectrum of the PT adduct. They have been the focus of numerous studies in the last few years and the most recent developments in these HB \rightarrow PT reactions were reviewed in 1996 by Szafran269 and in 2000 by Zundel270.

\[
\text{ArOH} + B \xrightarrow{\text{HB}} \text{ArOH} \cdots B \xrightarrow{\text{PT}} \text{ArO}^- \cdots \text{HB}^+ \xrightarrow{\text{D}} \text{ArO}^- + \text{HB}^+ \quad (43)
\]

Among the different HBs studied in the analysis of PT equilibria, substituted phenols are certainly the most versatile models for several structural reasons:

(i) A large variety of substituents can be added to the five positions of the phenolic ring, enabling minute modifications of the acidity over a wide range of pK_a values. So far, HB \rightarrow PT reactions have been reported for pK_a values ranging from -0.70 for 3,5-dichloro-2,4,6-trinitrophenol271 to $pK_a = +10.67$ for 3,4,5-trimethylphenol272.

(ii) The IR stretching and deformations of the hydroxyl group are highly sensitive to the changes in HB complexation and in PT. Their positions allow a safe identification of the free and H-bonded species273 and their intensities are good probes for the quantitative estimation of the extent of PT274. Moreover, in some substituted phenols, the ring vibrations are good indicators of the PT level274,277 and specific phenolate C–O vibrations can also be found274 in the spectrum near 1200–1250 cm$^{-1}$.

(iii) Due to the presence of benzenic π electrons, molecular (OH•••B) and ionic (O$^-$•••HB$^+$) HB complexes of phenols may be distinguished from the free molecule by their different $\pi \rightarrow \pi^*$ transition spectra in the 270–400 nm UV region269,276–279.

(iv) Chlorophenols and especially ortho-chlorophenols give good quality crystals that can be grown from non-aqueous solutions280–282 and used for X-ray diffraction studies.
(v) The rigid frame of phenols permits simple calculations of the hydrogen-bond dipole moments which are vectorial differences $\Delta \vec{\mu}$ between the dipole moments of the complexes and the sum of the moments of the separate free molecules.276,283,284

There is no doubt that mid-IR spectroscopy is the most appropriate technique for the analysis of HB \rightarrow PT reactions, since a single spectrum provides precise information not only on the extent of PT from the positions and the intensities of the vibrational peaks but also on the proton polarizability levels that are characterized by the location and the intensities of the broad bands forming the so-called continuum.270,285 The far-IR domain has also been explored in order to find the HB vibration v_σ in the $150–300$ cm$^{-1}$ range.126,286 In the near-infrared, Rospenk and Zeegers-Huyskens287 examined the first overtone of the $\nu(\text{OH} \cdots \text{N})$ absorption of the phenol-pyridine system. Whereas no proton transfer occurs in the fundamental and the first excited vibrational states, they found in this first overtone a splitting that they assigned to PT in the second vibrational state. The 1H or 13C NMR shifts of hydrogen-bonded systems$^{288–290}$ follow the same trends as the IR frequency shifts. However, the PT reaction is a fast process on the NMR time scale and a lowering of the temperature is always necessary to obtain the decoalescence of the neutral and ionic hydrogen-bonded signals271,288. Homocoujugation equilibrium constants corresponding to the HB formation of substituted phenols with their conjugate phenolate ions (equilibrium 44) have been determined291 by potentiometric titration.

$$\text{ArOH} + \cdot\text{OAr} \rightleftharpoons \text{ArOH} \cdots \cdot\text{OAr} \quad (44)$$

Factors influencing the extent of proton transfer are: (i) Brønsted acidity and basicity of the proton donor and acceptor, (ii) solvent, (iii) temperature and (iv) concentration. In the following, we examine these various factors.

(i) *Acidity and basicity of the proton donor and acceptor*. The degree of PT is clearly related to the differences ΔpK_a between the protonated base and the phenol (equation 45). Table 20 shows that increasing substitution of the phenol moiety by chlorine substituents is sufficient to cover the full range of extent of PT in acetonitrile.

$$\Delta pK_a = pK_a(\text{BH}^+) - pK_a(\text{ArOH}) \quad (45)$$

<table>
<thead>
<tr>
<th>Phenol</th>
<th>$K_{PT} a$</th>
<th>$% \text{PT} b$</th>
<th>$\Delta pK_a c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0.82</td>
</tr>
<tr>
<td>4-Cl</td>
<td>0.010</td>
<td>1</td>
<td>1.53</td>
</tr>
<tr>
<td>3-Cl</td>
<td>0.031</td>
<td>3</td>
<td>1.86</td>
</tr>
<tr>
<td>2-Cl</td>
<td>0.064</td>
<td>6</td>
<td>2.22</td>
</tr>
<tr>
<td>3,5-Cl$_2$</td>
<td>0.176</td>
<td>15</td>
<td>2.79</td>
</tr>
<tr>
<td>2,4-Cl$_2$</td>
<td>0.30</td>
<td>23</td>
<td>2.96</td>
</tr>
<tr>
<td>2,3-Cl$_2$</td>
<td>5.25</td>
<td>84</td>
<td>3.27</td>
</tr>
<tr>
<td>2,4,5-Cl$_3$</td>
<td>99</td>
<td>99</td>
<td>4.71</td>
</tr>
<tr>
<td>2,3,4,5,6-Cl$_5$</td>
<td>∞</td>
<td>100</td>
<td>5.45</td>
</tr>
</tbody>
</table>

aCalculated from the intensity of the NH$_3^+$ bending vibration.

bFrom $K_{PT} = [\text{O} \cdots \cdot\text{HN}^+]/[\text{OH} \cdots \cdot\text{N}]$.

cFrom $\%\text{PT} = 100 \times K_{PT}/(K_{PT} + 1)$.

pK_a of n-propylamine in methanol, 10.71.
8. Hydrogen-bonded complexes of phenols

TABLE 21. Extent of the PT of pentachlorophenol-pyridine complexes in CCl₄

<table>
<thead>
<tr>
<th>Pyridine</th>
<th>K₁HB</th>
<th>K₁PT</th>
<th>% PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>97</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3-Me</td>
<td>283</td>
<td>0.24</td>
<td>19</td>
</tr>
<tr>
<td>3,5-Me₂</td>
<td>2097</td>
<td>0.97</td>
<td>49</td>
</tr>
<tr>
<td>2,4-Me₂</td>
<td>185</td>
<td>1.73</td>
<td>63</td>
</tr>
<tr>
<td>2,4,6-Me₃</td>
<td>227</td>
<td>6.81</td>
<td>87</td>
</tr>
</tbody>
</table>

K₁HB = [OH···N] / [OH][N].
K₁PT = [O⁻···HN⁺] / [OH···N].
%PT = 100 K₁PT / (K₁PT + 1).

When the phenol is kept constant, similar variations are observed for a series of methyl-substituted pyridines of increasing basicity (Table 21).

It can be seen in Table 21 that the steric hindrance due to the presence of ortho-substituents in the pyridine ring affects strongly the formation of the neutral HB, whereas a regular trend is observed for the PT equilibrium constant.

The literature reveals the use of several partners of substituted phenols. Aliphatic amines have been the most popular. However, numerous studies refer to other nitrogen bases such as dimethylaniline, pyridines, imines, guanidines, and 1,8-bis(dimethylamino)naphthalene. Oxygen bases (amines N-oxides, carboxylate and phenolate ions) are also convenient models for the study of HB → PT reactions. As seen in Section V, systematic studies of PT equilibria have also been carried out with ortho-substituted phenols presenting intramolecular hydrogen bonds.

(ii) Solvent effect. As expected for an equilibrium between neutral and charged forms, the extent of PT is highly dependent on the nature of the HB environment. In Table 22, the percentages of PT for the 2,4,6-trichlorophenol-triethylamine complex measured in different solvents are reported. The % PT increases with the increase in solvent polarity measured by its dielectric permittivity ε or by the Onsager function. A further displacement towards the ionic HB is observed when the solvent possesses HBD CH groups as shown in Table 22 for chloroform, dichloromethane and dibromomethane. The shift of the equilibrium towards the ionic tautomer can be explained by the cooperative

TABLE 22. Solvent effect on the PT in 2,4,6-trichlorophenol-triethylamine complexes

<table>
<thead>
<tr>
<th>Solvent</th>
<th>εᵃ</th>
<th>ε⁻¹ + b</th>
<th>% PTᶜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-C₇H₁₄</td>
<td>2.1</td>
<td>0.21</td>
<td>10</td>
</tr>
<tr>
<td>CCl₄</td>
<td>2.2</td>
<td>0.22</td>
<td>12</td>
</tr>
<tr>
<td>CH₃CCl₃</td>
<td>7.2</td>
<td>0.40</td>
<td>25</td>
</tr>
<tr>
<td>n-BuCl</td>
<td>7.2</td>
<td>0.40</td>
<td>25</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>4.6</td>
<td>0.35</td>
<td>45</td>
</tr>
<tr>
<td>CH₂Br₂</td>
<td>7.2</td>
<td>0.40</td>
<td>50</td>
</tr>
<tr>
<td>CD₂Cl₂</td>
<td>8.9</td>
<td>0.42</td>
<td>55</td>
</tr>
</tbody>
</table>

ᵃDielectric permittivity of the solvent.
ᵇOnsager function.
ᶜDetermined from the phenolate band at 1245 cm⁻¹.
TABLE 23. Thermodynamic parameters for HB and PT279: phenol and CH\textsubscript{3}(CH=CH\textsubscript{2})CH=NBu (B) in methylcyclohexane at 310 K

<table>
<thead>
<tr>
<th>Equilibrium</th>
<th>$\Delta G^\circ \text{a}$</th>
<th>$\Delta H^\circ \text{a}$</th>
<th>$\Delta S^\circ \text{b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhOH + B \rightleftharpoons PhOH \cdots B</td>
<td>-7.5</td>
<td>-36.8</td>
<td>-95</td>
</tr>
<tr>
<td>PhOH \cdots B \rightleftharpoons PhO$^-$ \cdots HB$^+$</td>
<td>+15.1</td>
<td>-23.4</td>
<td>-125</td>
</tr>
</tbody>
</table>

akJ mol-1.
bJ mol-1 K-1.

HB (CH-\cdotO$^-$-\cdotsHN$^+$) of the CH donor on the strongly basic negative oxygen which stabilizes the polar form.

(iii) Temperature effect. ΔH° values measured by van’t Hoff plots in solution are all negative270. However, these enthalpies are the sum of two terms. The first one, intrinsic and positive270, corresponds to the PT itself, and the larger second one corresponds to a negative solvation enthalpy.

Table 23 provides an example where the two steps, HB and PT, have been treated on the same binary system in an apolar solvent where the solute–solvent interactions are minimized. Owing to the large negative ΔH values, even small decreases of a few tens of a degree shift the HB step to completion and increase notably the extent of PT. The larger negative entropy and the smaller negative enthalpy in the PT compared to the HB are both unfavorable to the ionic form, so that the PT equilibrium constants are smaller than the HB equilibrium constants for identical systems.

(iv) Concentration effects. When the phenol and the base are mixed, the HB heterocomplex (equilibria 45) is formed but, depending on the base strength and on the phenol concentration, substantial association is likely to occur on the very basic phenolate oxygen (equilibrium 46)28,182,290,294–298. This new HB can be further shifted towards an extended ionic structure (equilibrium 47), which strengthens the polar form by a strong cooperative homoconjugation effect. Similarly, differences in the PT levels arise from the presence or absence of one or more hydrogen atoms on the acceptor B272 as a consequence of a homoconjugation of the base in excess (equilibrium 48).

\begin{align*}
\text{OH} + \text{O}^- \cdots \text{HB}^+ & \rightleftharpoons \text{OH} \cdots \text{O}^- \cdots \text{HB}^+ \quad (46) \\
\text{OH} \cdots \text{O}^- \cdots \text{HB}^+ & \rightleftharpoons \text{O}^- \cdots \text{HO} \cdots \text{HB}^+ \quad (47) \\
\text{O}^- \cdots \text{HBH}^+ + \text{B} & \rightleftharpoons \text{O}^- \cdots \text{HBH}^+ \cdots \text{B} \rightleftharpoons \text{O}^- \cdots \text{HB} \cdots \text{HB}^+ \quad (48)
\end{align*}

In the same way, addition of water to the complex always increases the amount of PT by formation of cooperative polyassociations on the polar structure202.

IX. REFERENCES

8. Hydrogen-bonded complexes of phenols

8. Hydrogen-bonded complexes of phenols

8. Hydrogen-bonded complexes of phenols

213. J. Graton, unpublished results.
239. E. M. Arnett, L. Joris, E. J. Mitchell, T. S. S. R. Murty, T. M. Gorie and P. v. R. Schleyer,
242. A. Chardin, C. Laurence, M. Berthelot, E. D. Raczynska, J.-Y. Le Questel, G. Duguay and P. Hudhomme,
 625 (1993).
8. Hydrogen-bonded complexes of phenols

CHAPTER 9

Electrophilic reactions of phenols

V. PRAKASH REDDY

Department of Chemistry, University of Missouri–Rolla, Rolla, Missouri 65409, USA
Fax: (573)-341-6033; e-mail: preddy@umr.edu

and

G. K. SURYA PRAKASH

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, USA
Fax: (213)-740-6270; email: gprakash@usc.edu

I. INTRODUCTION ... 606
II. FRIEDEL–CRAFTS ALKYLATION 606
 A. Lewis Acid Catalysis 607
 B. Bronsted Acid Catalysis 612
 C. Solid Acid Catalysis 612
 D. Alkylations under Supercritical Conditions 621
 E. Stereoselective Alkylations 621
 F. Formylation and Phenol-Formaldehyde Resins .. 626
III. FRIEDEL–CRAFTS ACYLATIONS 629
IV. NITRATION AND NITROSA TION 632
 A. Regioselectivity 632
 B. Peroxynitrite-induced Nitration and Nitrosation 636
 C. Nitrosation by Nitrous Acid 638
 D. Nitration by Tetrani
tromethane ... 638
 E. Nitration by Metal Nitrates 638
V. FRIES AND RELATED REARRANGEMENTS 639
 A. Lewis Acid Catalyzed Fries Rearrangements 639
 B. Bronsted Acid Catalyzed Fries Rearrangements 642
VI. ELECTROPHILIC HALOGENATION 645
 A. Fluorination ... 646
 B. Chlorination ... 649

The Chemistry of Phenols. Edited by Z. Rappoport

605
I. INTRODUCTION

Phenolic functional groups are often encountered in a variety of pharmaceuticals, agrochemicals and polymer materials. Phenol-formaldehyde resins, the polymers derived from phenols, for example, are the most widely used industrial polymers. Selective functionalization of the aromatic rings of phenols is therefore of great importance. Usually phenols are functionalized through electrophilic aromatic substitution reactions, such as Friedel–Crafts alkylations and acylations, and electrophilic halogenations, nitration and nitrosations. The Friedel–Crafts alkylation of phenols gives ortho- and para- alkylphenols, the regioselectivity being dependent on the catalyst used. The alkylation can be initiated by a wide variety of substrates, such as alcohols, alkyl halides and alkenes. Being industrially important chemicals, numerous catalysts have been explored for efficient preparation of the alkylphenols. Both Bronsted and Lewis acids can be used as the catalysts. The homogeneous catalysts are increasingly being replaced by the solid acid catalysts, such as zeolites, Nafion-H and Amberlyst type of catalysts, in order to avoid the environmental problems associated with the product workup. There is some progress toward the use of supercritical water and carbon dioxide as solvents. Stereochemistry of these reactions may be controlled in favorable cases by using chiral catalysts. The Friedel–Crafts acylations are more regioselective than the alkylation and a two-step process involving the acylation followed by reduction of the carbonyl group may provide a clean route to the alkylphenols.

The nitration and nitrosation of phenols are biologically important phenomena. For example, the oxidative stress induces the formation of peroxynitrite in vivo, which affects nitration of the tyrosine residues of the enzymes, causing deleterious effects. Nitration of phenols can be conveniently carried out by Olah’s nitronium and nitrosonium salts. Nitrosation followed by oxidation is also a convenient alternative for the preparation of the nitrophenols. The regiochemistry of the electrophilic reactions is dependent on the catalyst used and the reagent. The normal ortho/para directing effect of the phenolic hydroxyl group in the electrophilic substitution reactions is altered in the presence of superacids, due to the formation of the protonated phenols under these conditions. The electrophilic reactions of phenols including nitration, nitrosation, alkylation, acylation and halogenations, due to their industrial significance, have received much attention. However, in spite of many reviews detailing these reactions in connection with other topics of interest, the field has not been reviewed in general. The present review focuses on the recent developments in this broad area. An earlier volume of this series reviewed electrophilic halogenations of phenols. We therefore include only recent developments of electrophilic halogenations.

II. FRIEDEL–CRAFTS ALKYLATION

Phenols are highly reactive toward the Friedel–Crafts alkylation reactions involving tertiary alkyl halides. Phenol, 2-methylphenol and 2,6-dimethylphenol react with tertiary alkyl halides such as 1-bromoadamantane in the absence of any external catalyst to give exclusively the para-(1-adamantyl)phenols (equation 1). These compounds have found

...
uses in the preparation of certain copolymers4.

\[\text{Br} \quad \text{OH} \quad R \\ R \quad \text{OH} \quad R \]

\[+ \]

\[\text{o-dichlorobenzene} \quad \text{heat} \]

\[\text{R} = \text{Me, H} \]

(1)

The reaction of phenol with secondary alkyl halides, such as 2-bromoadamantane, cyclohexyl bromide and exo-2-bromonorbornane, also proceeds noncatalytically to give the corresponding ortho- and para-alkylated phenols5. The Friedel–Crafts alkylations using primary alcohols, however, require catalysts.

The alkylation of phenols is an industrially prominent reaction, as close to one million tons of the alkylated phenols are being produced each year. They find various applications such as antioxidants and polymer stabilizers. The O-alkylated phenols are also used in the manufacture of dyes and agrochemicals.

A variety of catalysts, homogeneous and heterogeneous, have been continually developed for the Friedel–Crafts alkylations. Although it is difficult to classify these catalysts as being exclusively either Bronsted or Lewis acids, for convenience in the organization of the broad material, we have classified the catalysts as: (a) Lewis acidic, (b) Bronsted acidic and (c) solid acid catalysts. It is important, however, to notice that in many cases, such as zeolites, both Lewis and Bronsted acid sites coexist. Catalysis by 100% pure AlCl\textsubscript{3} is less effective than in the presence of traces of water, suggesting again that it is impracticable to distinguish a catalyst exclusively as a Lewis or a Bronsted acid. Most of the solid acid catalysts we have considered in this review fit into this category, i.e. they have both Bronsted and Lewis acid sites.

A. Lewis Acid Catalysis

The alkylation of phenols can be achieved using cumyl and tert-butyl hydroperoxides using Lewis acids such as TiCl\textsubscript{4} or FeCl\textsubscript{3} (equation 2). FeCl\textsubscript{3} is the preferred catalyst for the alkylation of phenol using tert-butyl hydroperoxide. These soft Lewis acids (softer than H+) preferentially attack the oxygen attached to the tertiary aliphatic carbon, rather than the hydroxyl oxygen, resulting in the formation of the carbocationic intermediate upon its cleavage. The latter readily reacts with the phenols. Reaction of cumene hydroperoxide with phenol in the presence of FeCl\textsubscript{3}, for example, results in the formation of the 4-cumylphenol. Similarly, ortho-cresol gave 2-methyl-4-cumylphenol (51% yield), para-cresol gave 2-cumyl-4-methylphenol (27%), 1-naphthol gave 4-cumyl-1-naphthol (81%) and resorcinol gave 4-cumylresorcinol (39%). In case of sterically crowded substrates, radical mechanism may compete, resulting in the formation of dimeric products6.
Friedel–Crafts alkylation of dicyclopentadiene with phenol using boron trifluoride-etherate as the catalyst gives 2-[4-(2-hydroxyphenyl)tricyclo[5.2.1.0(2,6)]dec-8-yl]phenol, which can be used in the preparation of the phenol-formaldehyde resins (equation 3).\(^7\)

Alkylation of phenol with methanol can be effected regioselectively to give ortho-cresol in the presence of iron-magnesium oxide catalysts.\(^8\) High selectivity for ortho-alkylation can be achieved using ZnAl\(_2\)O\(_4\), prepared by reacting Zn(OAc)\(_2\) with Al(OPr-\(i\))\(_3\), AlCl\(_3\), and CeO\(_2\)-MgO catalyst.\(^9\) The ortho-alkylation is the major pathway for the alkylation of naphthols using methanol or other alcohols in the presence of iron oxide catalyst in the gas-phase reaction\(^12\), whereas predominant O-alkylation occurs using dimethyl carbonate and AlPO\(_4\)-derived catalysts\(^13\).

In the presence of catalytic amounts of anhydrous potassium carbonate, phenols react with trifluoroacetaldehyde ethyl hemiacetal to give the para-alkylated products (C-alkylation of the phenolate anions). Thus, phenol under these conditions gives 4-(2,2,2-trifluoro-1-hydroxyethyl)phenol as the predominant product. The reaction catalyzed by zinc halides predominantly gave the ortho-substituted product (equation 4).\(^14,15\)

Aryloxymagnesium bromides react with isatins under extremely mild conditions to provide 3-(2-hydroxyaryl)-3-hydroxyindolones in good yield. The reaction is highly selective for C-alkylation of the ambident phenolate anion.\(^16\) The electron-rich aromatic group undergoes nucleophilic addition to the \(\beta\)-carbonyl group of the isatin to give the intermediate dienone (not isolated), the aromatization of which gives the final product (equation 5). The reaction is highly regioselective and meta-substituted phenols undergo alkylation at the less crowded ortho position of the phenol. The reaction is applicable to...
a variety of substituted isatins and phenols.

The reaction of the tetra-O-acetyl-5-thio-α-D-xylopyranosyl-l-O-trichloroacetimidate with phenol in the presence of boron trifluoride-etherate, at low temperatures, gives a mixture of the corresponding O-glycosidation and the electrophilic substitution product, 4-hydroxyphenyl-5-thio-D-xylopyranoside (equation 6).\(^\text{17}\)

AlCl\(_3\)-catalyzed alkylation of calix[8]arenes with isopropyl chloride gives selective upper-rim isopropylation, showing the phenolic nature of the calixarenes (equation 7). The reaction is limited to calix[8]arenes and is not successful with calix[4]arenes and calix[6]arenes\(^\text{18}\), in which case mixtures of products are obtained.
\[
\text{OMgBr}
\text{R} + \text{N}_2\text{O}_2\text{H}_2\text{O} \rightarrow \begin{array}{c}
\text{N} \\
\text{O} \\
\text{O} \\
\text{MgBr}
\text{R}
\end{array}
\]

(5)

\[
\text{BF}_3\cdot\text{Et}_2\text{O} \cdot \text{CH}_2\text{Cl}_2, 30 \text{ min}
\]

(6)

30% + 40%
9. Electrophilic reactions of phenols

\[\text{AlCl}_3/\text{CH}_2\text{Cl}_2\text{Cl}_2 \]

\(n = 5 \)

\(n = 5 \)

(7)
B. Bronsted Acid Catalysis

The use of Bronsted acid catalysts such as HF and H₂SO₄ is discouraged in favor of mild solid acid catalysts such as zeolites, montmorillonite and Nafion-H (vide infra). Triflic acid and p-toluenesulfonic acid can also be used as convenient catalysts for the alkylation of phenols.

para-Toluenesulfonic acid (TsOH) monohydrate is an efficient catalyst for the Friedel–Crafts alkylation of phenols with activated alkyl halides, alkenes or tosylates under mild conditions. In comparison to conventional Friedel–Crafts catalysts such as AlCl₃, BF₃, HF and concentrated H₂SO₄, the extent of the formation of undesired products from side reactions such as transalkylation or polymerization was shown to be minimal in the TsOH-catalyzed reactions.¹⁹

Phenol reacts with linear and branched alkenes in the presence of trifluoromethanesulfonic acid (CF₃SO₃H) in chloroform to give the ortho- and para-alkylphenols, in moderate yields (equation 8)¹⁰. With branched alkenes, the para-alkyl phenols are the major products. The regioselectivity is dramatically altered from entirely para-alkylphenol to ortho-alkylphenol going from 100% potassium phenolate to 0% potassium phenolate in the presence of the Lewis acid AlCl₃.

C. Solid Acid Catalysis

The conventional homogeneous Friedel–Crafts alkylation reactions using HF, H₂SO₄, AlCl₃ and BF₃ catalysts are being increasingly replaced by heterogeneous catalysts such as zeolites and Nafion-H in order to minimize the environmental pollution due to the toxic waste water accumulation in the former processes. Alkylation of phenol to give cresols using methanol and zeolites can be achieved at high temperatures.²⁰
Nafion-H, a solid perfluorinated resinsulfonic acid, is a strongly acidic reagent and promotes electrophilic alkylation of aromatics under relatively mild conditions. The reactions proceed heterogeneously and workup of the reactions involves a simple filtration of the catalyst at the end of the reaction. Phenols are much more reactive than the alkylbenzenes for the alkylations and high yields of the alkylphenols are obtained. Methylation of phenol using methanol over Nafion-H catalysis gives anisole (37%) and cresols (10%), together with methylanisoles and xyleneols. The xyleneols are obtained in 15 to 20% yields by methylation of cresols using Nafion-H21.

The alkylation of phenol with alkyl chloroformates and alkyl oxalates under Nafion-H catalysis proceeds in both liquid and gas-phase conditions in good yields (equation 9). However, these reactions are not regioselective. Importantly, acylation products were not detected under these conditions22.

![Equation 9](image)

The Claisen rearrangement of allyl phenyl ethers proceeds in the presence of the Nafion-H and silica/Nafion-H nanocomposites23. The 2-methyldihydrobenzofuran is formed as a major product (75%) in the presence of the Nafion-H beads; the minor product is the \textit{ortho}-allylphenol (25%) (equation 10). However, the \textit{ortho}-allylphenol is formed as the major product in the presence of the Nafion/H-silica nanocomposites.

![Equation 10](image)

Phenols undergo Friedel–Crafts alkylations with allylic chlorides or allylic alcohols over solid acid catalysts such as acidic K10 clay. For example, 2-buten-1-ol gives 3-aryl-1-butene and 1-aryl-2-butene, albeit in low yields (12%) (equation 11). Allyl carbocations are involved as the reaction intermediates in these reactions24.

The metal cation-exchanged montmorillonites such as Al3+-montmorillonite can be used for the direct alkylation of phenols using ketones (reductive alkylation). The reaction involves the alkylation, followed by reduction of the intermediate alcohols. Cyclohexanone thus reacts with phenol to give 4-cyclohexylphenol. The reaction of the 4-alkycyclohexanones with phenols gives almost exclusively the \textit{trans}-(4-alkycyclohexyl)phenols, useful as the precursors for liquid crystalline materials (equation 12). The deoxygenative reduction of the intermediate tertiary alcohols involves the formation of the carbocation intermediate, which is quenched by a hydride ion apparently derived from the phenol. The use of pentadeuteriophenol in the alkylations results in a significant incorporation of deuterium at the benzylic carbon of the
alkylphenols, supporting this hypothesis25.

\begin{equation}
\text{OH} + \text{HO} \overset{\text{montmorillonite-K10}}{\rightleftharpoons} \text{OH} + \text{HO}
\end{equation}

\begin{equation}
\text{OH} + \text{OH} \overset{60 \, ^\circ \text{C}}{\rightleftharpoons} \text{OH} + \text{OH}
\end{equation}

1-Naphthol, on the other hand, reacts with 4-alkylcyclohexanones in the presence of Fe3+-montmorillonite to give the tetrahydrobenzonaphthofurans as the major products (equation 13). The Al3+-montmorillonite catalysis also gives the same products, in lower
yields. The intramolecular cyclization of the resulting olefin intermediates may account for the observed products.
Montmorillonite-KSF catalyzes the transalkylation of 2,4-di-tert-butylphenols in the presence of excess phenol or toluene. The ortho-tert-butyl group is preferentially transferred in the process, giving the para-tert-butylphenol as the major product (equations 14 and 15). Using xylenes as the solvent at higher temperatures (140°C) it was possible to transalkylate both of the tert-butyl groups. The catalyst can be recycled without loss of reactivity or selectivity.

![Chemical Structures](image)

Montmorillonite K10 effects regioselective cyclopentylation (68% ortho-selectivity) of phenol using cyclopentanol (equation 16). The latter serves as starting material for the preparation of optically active (S)-penbutolol, an antihypertensive drug.

Vapor-phase alkylation of phenol with tert-butyl alcohol in the presence of trivalent iron-substituted molecular sieve catalysts (FeMCM-41) gives para-tert-butylphenol with high regioselectivity. Supported heteropoly acid catalysts have been used in the heterogeneous alkylation reactions of 1-octene or nonene with phenol at 80–100°C. The catalyst H₄SiW₁₂O₄₀/SiO₂ gives 90% para-alkylphenol and 10% ortho-alkylphenol.

Zeolite catalysis for the alkylation of phenols is an industrially important process. It reduces the cost associated with filtration and disposal of chemical waste generated in the homogeneous catalysis. The alkylation of cresols on zeolites USHY and HZSM-5 in a flow reactor at 380°C and atmospheric pressure shows the following reactivity order for cresols: para > meta > ortho. The HZSM-5 acid sites are more active than those of USHY, for para- and meta- but not for ortho-cresol, showing that the ortho-cresol’s access to the active sites in HZSM-5 is the limiting factor. The cresols are transformed through unimolecular isomerization and transalkylation reactions. On HZSM-5, due to its relatively smaller pore size, isomerization is the dominant pathway. Alkylation of phenols with camphene catalyzed by large-porous beta-zeolite yields the corresponding O- and C-alkylated phenols. The C- versus O-alkylations can be partly controlled by the reaction solvent.
A mixture of C- and O-alkylated phenols was obtained when phenol was treated with cyclohexene over silica-supported boron trifluoride-hydrate catalyst (equation 17). In these reactions, the O-alkylated compounds are the major products (50–65%). The ring-alkylated products are formed in 20–30% yields, along with 2–5% of the O,C-dialkylated compounds. Fresh catalyst needs to be added during the reaction, due to the possible catalyst poisoning. The reaction may involve the initial formation of the cyclohexyl cation by the protonation of the cyclohexene through the BF$_3$-coordinated phenol. Whereas the homogeneous boron trifluoride solution causes the rearrangement of the O-alkylated phenols to C-alkylated isomeric compounds, the solid catalyst, due to its relatively milder Lewis acidity, does not promote such rearrangement. Thus alkyl phenyl ethers could be ring-alkylated with the latter reagent without involving the cleavage of the ether moiety.

Alkylation of phenol with methanol has been carried out over Lewis acid ion-exchanged Y-zeolites, FeY, ZnY, CdY and LaY at temperatures of 523, 573, 623, 673 and 698 K to give ortho-cresol, 2,6-xylenol and anisole. Selectivity to ortho-cresol decreases with increase of temperature, as it further reacts to give 2,6-xylenol.

Phenols react with deactivated carbonyl compounds such as chloral (2,2,2-trichloroethanal) in the presence of different dealuminated protonic zeolites (Y-FAU, MOR, MFI and BEA) to give the corresponding carbinols. A high para-selectivity was achieved using HBEA zeolite (Si : Al = 12.5) (equation 18).
The vapor-phase catalytic alkylation of phenol with methanol and dimethyl carbonate on CrPO$_4$ and CrPO$_4$-AlPO$_4$ catalysts gives a mixture of O- and C-alkylation products, the latter being predominantly ortho-isomers (equation 1936).
1,2-Tungstophosphoric acid (HPW) and its Cs and ammonium salts encapsulated into the channels of MCM-41 molecular sieves were useful for the conversion of phenol and acetone to Bisphenol-A37. The Cs-HPW/MCM system was more selective to the \textit{p,p'}-isomer than that of zeolites ZSM-5 and H-Y. The Bisphenol-A is useful industrially in the production of polymeric resins. Various other catalysts such as Amberlyst resins were used for this purpose (equation 20)38. The latter catalyst gave a 90\% selectivity for the \textit{p,p'}-isomer39. The MCM-41 encapsulated catalyst was shown to have superior thermal characteristics compared to that of the Amberlyst catalyst.

Highly acidic Al-MCM-41, U-MCM-41 and Th-MCM-41 catalysts have been used for the Friedel–Crafts alkylation of 2,4-di-\textit{tert}-butylphenol with cinnamyl alcohol to give the corresponding substituted benzopyran (equation 21)40. The reaction involves an initial \textit{ortho}-alkylation, followed by an acid-catalyzed intramolecular cyclization. Loss of the 2-\textit{tert}-butyl group results in minor byproducts.
The effects of various parameters on the tert-butylation of phenol on the Zeolite-H-beta have been studied. Alkylation of phenol in the vapor phase using Zeolite SAP-11 and tert-butyl alcohol gives the ortho- and para-tert-butylphenols, together with the 2, 6-di-tert-butylphenol (equation 22). Vapor-phase alkylation of phenol with tert-butyl alcohol over solid superacid catalysts, such as sulfated zirconia and mesoporous H-AlMCM-41, gives para-tert-butylphenol as a major product in high regioselectivity.

![Chemical structure](image)

Modified HY zeolites, with increased pore size distribution, are shown to be efficient catalysts for the alkylation of phenol with long-chain olefins. The enhanced activity results by improved accessibility of active acid sites on the zeolite for the long alkyl chains. The modified zeolites are potentially valuable catalysts in the petroleum industry.

Solid acid catalysts, consisting of polysiloxane bearing alkylsulfonic acid groups (MCM-41), are comparable in their catalytic activity to those of the polystyrene-based cation exchange resins. These catalysts can be used in the preparation of para-Bisphenol-A by the alkylation of phenol with acetone. Other application of these catalysts lie in the alkylation of phenol with isobutene at 90–130°C.

Lewis acids immobilized on ionic liquids have been used as the acid catalysts for the alkylation of phenols. The catalytic activities of the immobilized ionic liquids were found to be higher than those for the zeolites. Typically, ionic liquids such as butylmethylimidazolium halides are treated with AlCl₃ to give the ionic liquids with halogenoaluminates as the counter anions. They show enhanced Lewis acid character and promote predominantly C-alkylation of phenols over O-alkylation. The alkylation of phenol with dodecene, for example, in the presence of these immobilized ionic liquids results in up to 70% of C-alkylated products (ortho and para products) and 30% of O-alkylated product, comparable to zeolite catalysis (equation 23). The rates of alkylation of phenols are slower than those of arenes due to the complexation of the phenolic group with the Lewis acidic ionic liquids. At higher temperatures conversions of up to 99% could be achieved.
D. Alkylations under Supercritical Conditions

Alkylation of phenols using primary, secondary and tertiary alcohols was achieved using supercritical water (at the near-critical region, 250–350°C). This process eliminates the need for environmentally hazardous organic solvents and acid catalysts. Both ortho- and para-alkylphenols were formed in these reactions, their ratio being dependent on the temperature of the reaction mixture.

Supercritical carbon dioxide can be used as a solvent in the BF$_3$−Et$_2$O-catalyzed alkylation of phenols. Under these conditions phenol reacts with 2-chloro-2,4,4-trimethylpentane and poly(isobutylene)-Cl (PIB-Cl) to give the corresponding para-alkylated phenols (equations 24 and 25).

E. Stereoselective Alkylations

The hydroxyalkylation of phenolates with N-protected α-amino aldehydes gives β-amino-ortho-hydroxybenzyl alcohols with good to excellent diastereoselection. For
example, the reaction of 4-methoxyphenol with ethylmagnesium bromide followed by reaction with N-protected α-amino aldehydes gives ephedrine-like compounds with high diastereoselectivity in good yields (equation 26). The stereochemistry of the reaction can be controlled by modulating the nature of the reactive complex, e.g. by varying the Grignard reagents and other reaction conditions.

\[
\begin{align*}
&\text{OH} \\
&\text{OMe} \\
&\text{1. EtMgBr} \\
&\text{2.} \\
&\text{Ph} \\
&\text{NHCO}_2\text{Bu-t} \\
&\text{OH} \\
&\text{OMe} \\
&\text{88 : 12 (54% yield)} \\
\end{align*}
\]

The alkylation of phenoxymagnesium halides with \(N\)-(tert-butoxycarbonyl)-α-amino aldehydes also gives excellent diastereoselection. 2-tert-Butylphenoxymagnesium bromide, for example, has been found to react with \(N\)-(tert-butoxycarbonyl)-L-prolinal to give exclusively the syn diastereomer regio- and stereoselectively (equation 27).

\[
\begin{align*}
&\text{OH} \\
&\text{OMe} \\
&\text{1. EtMgBr} \\
&\text{2.} \\
&\text{Ph} \\
&\text{NHCO}_2\text{Bu-t} \\
&\text{OH} \\
&\text{OMe} \\
&\text{88 : 12 (54% yield)} \\
\end{align*}
\]

The crystal structures of the bromomagnesium phenolate and its complex with para-isopropylbenzaldehyde further demonstrate the chelation control as the factor for the regioselective alkylations. In this process the metal coordination sphere would be expanded from 4 to 5.
The hydroxyalkylation of phenols with chiral glyoxylates, followed by hydrolysis, gives regioselectively 2-hydroxymandelic acids with high enantioselectivity (equation 28). The crystal-structure determination of the titanium phenoxide complex shows evidence for chelation-controlled reaction giving the observed high enantioselectivities54.

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
& \quad \text{CO}_2\text{R}^* \\
\text{TiCl}_4 & \quad -30^\circ \text{C}; 20 \text{ h} \\
\text{OH} & \quad \text{OH} \\
& \quad \text{CO}_2\text{R}^* + \\
\text{R}^* = \text{menthyl} & \quad \text{Major product} \\
\end{align*}
\]

(28)

80–87\% yields

The synthesis of analogues of the spiroketal-containing pyranonaphthoquinone antibiotic griseusin A can be achieved by the regio- and stereoselective hydroxyalkylation of 4,8-dimethoxy-1-naphthol (equation 29)55.

\[
\begin{align*}
\text{OMe} & \quad \text{OH} \\
\text{OBn} & \quad \text{OSiEt}_3 \quad \text{OSiMe}_2\text{Bu-}t \\
\text{OMe} & \quad \text{OMe} \\
\text{H} & \quad \text{O} \\
\text{OBn} & \quad \text{OSiEt}_3 \quad \text{OSiMe}_2\text{Bu-}t \\
1. \text{TiCl}_3(\text{OPr-i}), \text{CH}_2\text{Cl}_2, 0^\circ \text{C} & \\
\text{OMe} & \quad \text{OH} \quad \text{OH} \quad \text{OSiEt}_3 \quad \text{OSiMe}_2\text{Bu-}t \\
\text{OBn} & \quad \text{OMe} \\
\end{align*}
\]

(29)

The reaction of 5 equivalents of substituted phenols with 1 eq of (S)- or (R)-methyl 7-(4-fluorophenyl)-7-hydroxyheptanoate afforded \textit{ortho}-alkylated phenol
derivatives enantioselectively in 33 to 42% chemical yield and 90 to 93% enantiomeric excess. These derivatives are used as the non-prostanoid thromboxane A(2) receptor antagonists

Trost and Toste have developed asymmetric O- and C-alkylations of phenols, with enantioselectivities ranging from 80 to 97%. The reaction of various substituted phenols with five- to seven-membered cyclic allyl carbonates in the presence of chiral salen catalysts leads to the formation of chiral O-allylphenols with up to 94% enantioselectivity. The latter undergo Claisen rearrangement upon heating to 50°C in the presence of Lewis acid, Eu(fod)$_3$, with excellent chirality transfer from the substrate to give ortho-allylphenols. Other Lewis acids such as BCl$_3$ or Et$_2$AlCl lead to products with significant racemization. The reaction is also applicable to acyclic allylic carbonates, in which case a mixture of cis- and trans-isomers of the ortho-allylphenols are formed (equation 30).

\[
\begin{align*}
\text{OH} & \quad \text{R} \\
\text{Cyclic Allyl Carbonate} & \quad \text{(dba)}_3\text{Pd}_2\text{CHCl}_3 \\
\text{CH}_2\text{Cl}_2 & \quad \text{rt} \\
\text{H} & \\
\text{O} & \\
\text{R} & \\
\text{n} & = 1, 2, 3
\end{align*}
\]

(30)

The Claisen rearrangement of catechol mono allylic ethers using chiral Lewis acidic, C2-symmetric, boron reagent, in equimolar quantities, also provides the ortho-allyl products with high enantioselectivity (equations 31 and 32). Under these reaction conditions, 2-hexenylphenyl ether and O-methyl protected catechol monoallyl ethers, both of which do not have a free ortho-hydroxy group, did not undergo the Claisen rearrangement. Thus, the complexation of the boron with the free hydroxyl group is essential for the chiral boron reagent to act as the catalyst for the Claisen rearrangement. O-allyl ethers of salicylic acid undergo the Claisen rearrangement, but the enantioselectivity and the yield of the ortho-allyl product were low (equation 33). The para-isomer is also formed as a byproduct.
9. Electrophilic reactions of phenols

\[\text{Et}_3\text{N, } -45 \degree \text{C, 3 d} \]

\[\text{89\% yield; ee: 93\%} \]

\[\text{Et}_3\text{N, } -23 \degree \text{C, 2 d} \]

\[\text{97\% yield; ee: 95\%} \]
F. Formylation and Phenol-Formaldehyde Resins

Phenols can be electrophilically formylated by a variety of reagents. Formaldehyde/\(\text{SnCl}_4/\text{Bu}_3\text{N} \) gives salicylaldehydes from phenols with high yields and selectivity (equation 34)\(^6\). Selective ortho-formylation of phenols has also been achieved using paraformaldehyde and magnesium chloride/triethylamine (equation 35). Alkyl-substituted phenols give excellent yields of the corresponding salicylaldehydes. Similar results have been obtained with chlorophenols and 3- and 4-methoxyphenols. 2-Methoxyphenol is unreactive under these conditions\(^6\). Other reagents for the formylations of phenols include HCN/AlCl\(_3\), DMF/POCl\(_3\), MeOCHCl\(_2/\text{TiCl}_4\) and CHCl\(_3/\text{NaOH}\)\(^6\).
The reactions of phenols with formaldehyde in the presence of montmorillonite KSF-Et₃N as a heterogeneous catalyst give the substituted salicylaldehydes in high yields (equation 36)⁶².

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{R} & \quad \text{R} \\
\text{CH}_2\text{O}, \text{KSF-Et}_3\text{N} & \quad \text{CH}_2\text{O}, \text{KSF-Et}_3\text{N} \\
toluene, 100 ^\circ\text{C}, 1 \text{ h} & \quad \text{toluene, 100 } ^\circ\text{C}, 1 \text{ h}
\end{align*}
\]

The hexamethylenetetramine-trifluoroacetic acid system was shown to introduce three aldehyde groups into phenol. Thus, 2-hydroxy-1,3,5-benzenetricarbaldehyde was synthesized from phenol conveniently in one step by this method (equation 37)⁶³.

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
& \quad \text{CHO} \\
\text{CF}_3\text{CO}_2\text{H} & \quad \text{CF}_3\text{CO}_2\text{H} \\
& \quad \text{CHO} \\
\end{align*}
\]

Phenol reacts readily with formaldehyde to give trimethylolphenol (2,4,6-tris(hydroxymethyl)phenol), which undergoes further alkylative polymerization in the presence of acid catalysts (equation 38). Thus-formed phenol-formaldehyde resins (prepolymers) can be used to crosslink a variety of polymers. This is a broad area of industrial significance.
The phenol-formaldehyde prepolymer was polymerized with 4-(1-phenylethyl)phenol (para-styrenated phenol) (equation 39). The sulfonation of the resulting polymer gave a cation exchange resin, which is useful as an acid catalyst.

\[
\text{phenol-formaldehyde resin} + \text{CH}_3\text{OH} \rightarrow \text{sulfonated resin}
\]
Such sulfonated polymers are conventionally prepared by the free-radical polymerization of polystyrene, followed by sulfonation.

III. FRIEDEL–CRAFTS ACYLATIONS

Regioselective direct acylation of phenol and naphthol derivatives with acid chlorides was achieved by using hafnium triflate, \(\text{Hf(OTf)}_4 \) (5 to 20 mol%), as a catalyst (equations 40 and 41)\(^65\).

$$\text{OH} \quad \text{cat. Hf(OTf)}_4, \text{RCOCl} \quad \text{toluene-MeNO}_2, 100^\circ \text{C}, 6 \text{ h} \quad \text{OH} \quad \text{O} \quad \text{R}$$

\[R' = \text{OMe, H, Me, } R = \text{Me} \]

$$53–84\%$$

$$\text{OH} \quad \text{cat. Hf(OTf)}_4, \text{RCOCl} \quad \text{toluene-MeNO}_2, 100^\circ \text{C}, 6 \text{ h} \quad \text{OH} \quad \text{O} \quad \text{R}$$

\[R = \text{Me, c-C}_6\text{H}_11 \]

\(ca\) 90%

The \(\text{Hf(OTf)}_4 \), is also effective in the \textit{ortho}-acylation of phenols using carboxylic acids instead of the acid chlorides, although somewhat lower yields are obtained and larger amounts of the catalyst are required (equations 42 and 43)\(^66\).

$$\text{OH} \quad \text{Hf(OTf)}_4 (20 \text{ mol%}), \text{AcOH} \quad \text{toluene-MeNO}_2, 100^\circ \text{C}, 6 \text{ h} \quad \text{OH} \quad \text{O} \quad \text{CH}_3$$

\[R' = \text{OMe, H, Me, etc.} \]

$$55–72\%$$

$$\text{OH} \quad \text{Hf(OTf)}_4 (20 \text{ mol%}), \text{AcOH} \quad \text{toluene-MeNO}_2, 100^\circ \text{C}, 6 \text{ h} \quad \text{OH} \quad \text{O} \quad \text{CH}_3$$

$$81\%$$
Similarly, scandium triflate \((\text{Sc(OTf)}_3)\), zirconium triflate \((\text{Zr(OTf)}_4)\) and titanium chloro(tris)triflate \((\text{TiCl(OTf)}_3)\) were also used for the ortho-acylation of phenols and 1-naphthols using acid chlorides\(^{67,68}\).

By using suitable protecting groups, meta-acylation of phenols and anisoles was made possible using acetyl chloride and aluminium chloride\(^{69}\).

Phenol reacts with acetic anhydride to give 4-methylcoumarin in a process involving O-/C-diacylation and cyclization over CeNaY zeolite in high yields (equation 44)\(^{70}\).

\[
\begin{align*}
\text{OH} & \quad \xrightarrow{\text{Ac}_2\text{O} / \text{CeNaY Zeolite}} \quad \text{OCOCH}_3 \\
\text{H}_3\text{COC} & \quad \text{OCH}_3
\end{align*}
\]

\[
\text{OCOCH}_3 \quad \xrightarrow{\text{CeNaY Zeolite}} \quad \text{CH}_3 \\
\text{O} \quad \text{Ac}_2\text{O} \quad \text{O} \\
\text{Ac}_2\text{O} / \text{HBEA zeolite} \\
\]

Acetylation of 2-methoxynaphthalene by acetic anhydride over HBEA zeolite gives 1-acetyl-2-methoxynaphthalene, 2-acetyl-6-methoxynaphthalene and a small amount of 1-acetyl-7-methoxynaphthalene (equation 45)\(^{71}\). The 1-acetyl-2-methoxynaphthalene rearranges to the other isomers under longer contact times, probably involving both intermolecular transacylation and intramolecular rearrangements (equation 46).

\[
\begin{align*}
\text{OCH}_3 & \quad \xrightarrow{\text{Ac}_2\text{O} / \text{HBEA zeolite}} \quad \text{COCH}_3 \\
\text{COCH}_3 & \quad \text{OCH}_3 \\
\text{COCH}_3 & \quad \text{OCH}_3 \\
\text{H}_3\text{COC} & \quad \text{OCH}_3 \\
\text{H}_3\text{COC} & \quad \text{COCH}_3 \\
\text{H}_3\text{COC} & \quad \text{OCH}_3
\end{align*}
\]
Gas-phase acetylation of phenol using β-zeolites gives phenyl acetate rapidly, which rearranges (see Fries rearrangement, *vide infra*) to ortho-hydroxyacetophenone and para-hydroxyacetophenone. The o/p ratio is high under these conditions72.

Zeolites such as HZSM-5 were used for the acylation of phenol using acetic anhydride or acyl halides$^{73-77}$. Cobalt, copper and cerium ions show a promoting effect on the zeolite-catalyzed acylation reactions72. The Friedel–Crafts acetylation of phenol over acidic zeolites involves initial formation of the phenyl ester, followed by the Fries rearrangement, both being catalyzed by the zeolites74. Usually, high para-selectivity for the acylation is observed for the zeolite catalysis. However, modification of the zeolites involving dealumination of the outer surface of the crystallites gives high ortho-selectivity78.

Pyridine-catalyzed acylation of phenols using benzoyl chloride and benzoyl bromide was reported79. Acylation of phenols using acetyl chloride or benzoyl chloride can be achieved using triflic acid as the catalyst80 in nonpolar solvents such as methylene chloride. The role of pyridine in these reactions seems to be the intermittent formation of the benzoylpyrimidinium ions as the reactive species. The activated phenolic compounds such as resorcinol, on the other hand, could be acylated in near-supercritical water (250–300 °C) without using any external Lewis acid catalysts (equation 47)81. The equilibrium conversions in water, however, are to the extent of about 4%. Running the same reactions in neat acetic acid causes a tenfold increase in yield.

Whereas the Friedel–Crafts alkylations require only catalytic quantities of the Lewis acidic AlCl$_3$ catalyst, Friedel–Crafts acylations of phenols require excess Lewis acids, due to the complex formation of the Lewis acids with the hydroxyl group82. Boron trifluoride-phosphoryl chloride, in stoichiometric amounts, is used for the Friedel–Crafts reaction of phenol with β,β-dimethylacrylic acid to give the acrylophenone83.

It was shown that acetic anhydride/zinc chloride is an efficient C-acylating reagent for phenol and polyphenols (such as resorcinol, phloroglucinol, catechol and pyrogallol) resulting in improved yields of the corresponding hydroxyacetophenones84. With resorcinol, the isomeric diacetyl derivatives are formed in excellent yields in a single step, while catechol and hydroquinone give only monoacetyl derivatives. Pyrogallol gives a monoacetyl derivative, while phloroglucinol gives both mono- and diacetyl derivatives but not triacetyl derivatives.
Montmorillonite K10 and KSF are highly efficient for the O-acetylation of phenols and naphthols (equation 48). The reaction can be achieved in solvents such as CH₂Cl₂ or under solvent-free conditions.

\[
\begin{array}{c}
\text{OH} \\
\text{R} \\
\end{array} \rightarrow \begin{array}{c}
\text{OAc} \\
\text{R} \\
\end{array} \\
\text{Ac}_2\text{O} \quad \text{K10 or KSF} \\
\end{array}
\]

\[R = \text{NO}_2, \text{CH}_3, \text{etc.} \quad >95\%\]

Phenols undergo Friedel–Crafts type reaction with RSCN in the presence of BCl₃ to give the ortho-imino products which, upon hydrolysis, give thiocarboxylic esters.

IV. NITRATION AND NITROSATION

A. Regioselectivity

Phenol reacts with NaNO₂ on wet SiO₂ at room temperature to give mono- or dinitrosation products, which are in situ oxidized by oxone to give the ortho- and para-nitrophenols in high yields, depending on the reaction conditions.

Phenols and alkylaromatics can be nitrated with 100% nitric acid on MoO₃/SiO₂, WO₃/SiO₂, TiO₂/SiO₂ and TiO₂–WO₃/SiO₂ systems in over 90% yields. In these reactions, the most active catalysts showed para-selectivity for nitration.

Due to the industrial importance of the 2-nitrophenol, extensive research has been focused on enhancing the regioselectivity of the nitration of phenol. The regiochemistry of the nitration is dramatically increased, giving an ortho/para ratio of 13.3 with acetyl nitrate as the reagent, when dry silica gel was used for the catalysis. In chloroform solvent, in the absence of silica gel, a normal ortho/para ratio of 1.8 was obtained. 2-Naphthol gives 1-nitro-2-naphthol exclusively, under these conditions. 4-Hydroxy-3-methoxybenzaldehyde (vanillin) gives the expected product, 4-hydroxy-3-methoxy-5-nitrobenzaldehyde in high yields (equation 49).

\[
\begin{array}{c}
\text{CHO} \\
\text{OCH}_3 \\
\text{OH} \\
\end{array} \rightarrow \begin{array}{c}
\text{CHO} \\
\text{OCH}_3 \\
\text{OH} \\
\end{array} \\
\text{H}_3\text{C} \quad \text{O} \quad \text{NO}_2 \quad \text{silica gel} \\
\end{array}
\]

The acidic hydrogen of phenol may participate in the formation of a phenolacetyl nitrate–silica complex, in which the nitro group is well positioned in a six-membered transition state, for the ortho-attack. In other words, the initially formed oxonium ion is
stabilized through the H-bonding interactions with the silica gel (equation 50).

\[
\begin{align*}
\text{OH} & \quad \text{silica gel} \quad \text{CH}_3\text{COONO}_2 \\
\text{O}_2\text{Si} & \quad \text{H}_3\text{C} \\
\text{H} & \quad \text{O} \\
\text{O} & \quad \text{NO}_2 \\
\text{SiO}_2 & \quad \text{OH} \\
\end{align*}
\]

The use of supported catalysts, such as zeolites, usually provides the \textit{para}-isomer as the predominant product. Nitration of phenols using \textit{‘claycop’}91, a reagent consisting of an acidic montmorillonite impregnated with anhydrous cupric nitrate and montmorillonite impregnated with bismuth nitrate92 proceeds highly regioselectively, giving predominantly \textit{ortho}-nitration in high yields. Even higher regioselectivity for \textit{ortho} nitration was observed using nitronium tetrafluoroborate under micellar catalysis93.

Pyridinium salts bearing carboxylate side chains and pyridones react with \text{NOBF}_4 to give the corresponding O-nitrates, which are effective nitrating agents for phenols. These nitration reactions proceed with high regioselectivity to give the predominant \textit{ortho}-products, in quantitative yields93. The nitration of some substituted phenols leads to mixtures of mononitrated products. Dinitro products are obtained for the activated phenols such as \textit{para}-methoxyphenol and naphthols. Spectroscopic evidence shows that intermolecular association between pyridinium salts and the phenols leads to the observed regioselectivity.

The direct nitration of calix[6]arene was not successful. However, sulfonation followed by nitration of the calix[6]arene gave \textit{para}-nitrocalix[6]arene (equation 51)94. The \textit{para}-calix[\textit{n}]arene (\textit{n} = 1, 3, 5) sulfonic acids, prepared by treatment of the corresponding calixarenes with \text{H}_2\text{SO}_4, are reacted with \text{HNO}_3—\text{H}_2\text{SO}_4 to give \textit{para}-nitro calixarenes in 15–25% yields. The electron-withdrawing sulfonic acid groups in these compounds
prevent ortho-nitration and favor ipso-nitration95.

The direct nitration of calix[4]arene, obtained by Lewis acid catalyzed dealkylation of tert-butylcalix[4]arene, with HNO\textsubscript{3}/AcOH in benzene, however, has been reported to give 88\% yield of \textit{para}-nitrocalix[4]arene (equation 52)96. The method has been extended to other calix[\(n\)]arenes \((n = 4, 6, 8)\), providing a convenient one-step method for the preparation of \textit{para}-nitrocalix[\(n\)]arenes97,98. Calix[\(n\)]arenes have also been directly nitrated with KNO\textsubscript{3}/AlCl\textsubscript{3} to give \textit{para}-nitrocalix[\(n\)]arenes in good yields99.

\[\text{HNO}_3/\text{AcOH} \]

\[\text{Bu-t} \]

\[\text{Bu-t} \]

\[\text{HNO}_3/\text{AcOH} \]

\[\text{O}_2\text{N} \]

\[\text{O}_2\text{N} \]

\[n = 1, 3, 5 \]
9. Electrophilic reactions of phenols

The 1,3-diether derivatives of tert-butylcalix[4]arene can be selectively nitrated at the para-position of the phenolic units to give calix[4]arenes bearing tert-butyl and nitro groups at the upper rim in alternating sequence, in yields up to 75% (equation 53). The structures of the products were established by single-crystal X-ray analysis\(^\text{100}\). Partly O-alkylated para-tert-butylcalix[4]arenes are converted into mono-, di-, tri-, and tetrinitrocalix[4]arenes via ipso-nitration using HNO\(_3\)/AcOH in CH\(_2\)Cl\(_2\) (equation 54)\(^\text{101}\).

\[
\begin{align*}
R = \text{CH}_2\text{CH}_2\text{OEt} & & R = \text{CH}_2\text{CH}_2\text{OEt} \\
\text{t-Bu} & & \text{t-Bu} \\
\text{OR} & & \text{OR} \\
\text{OH} & & \text{OH} \\
\text{t-Bu} & & \text{Bu-t} \\
\text{HNO}_3/\text{AcOH} & \rightarrow & \text{HNO}_3/\text{AcOH} \\
\end{align*}
\]

(53)

c.e., \(R = (\text{CH}_2)_4\text{Me}, \text{CH}_2\text{Ph}; n = 1, 3, 5\)

c.e., \(R = (\text{CH}_2)_4\text{Me}, \text{CH}_2\text{Ph}; n = 1, 3, 5\)

Selectively mono- and 1,3-dinitrated calix[4]arenes have been prepared by the nitration of tribenzoyl and 1,3-dibenzoylcalix[4]arenes using HNO\(_3\)/AcOH, followed by the deprotection of the benzoyl group with NaOH/EtOH (equation 55)\(^\text{102}\).

\[
\begin{align*}
\text{t-Bu} & & \text{t-Bu} & & \text{t-Bu} & & \text{t-Bu} \\
\text{OH} & & \text{OR} & & \text{OR'} & & \text{OR'} \\
\text{t-Bu} & & \text{t-Bu} & & \text{t-Bu} & & \text{t-Bu} \\
\text{HNO}_3/\text{AcOH} & \rightarrow & \text{1. HNO}_3/\text{AcOH} & & \text{2. NaOH/EtOH} & & \text{NaOH/EtOH} \\
\end{align*}
\]

(55)

\begin{align*}
(1) & \ R' = R'' = \text{COPh} \\
(2) & \ R = \text{COPh}, R' = \text{H} \\
(3) & \ R' = \text{COPh}; R'' = \text{Bu-t} \\
(4) & \ R = \text{COPh}, R' = \text{H}, R'' = \text{NO}_2
\end{align*}
B. Peroxynitrite-induced Nitration and Nitrosation

Nitration is the major reaction for phenols using peroxynitrite, whereas aqueous solutions of nitric oxide give mixtures of nitro and nitroso derivatives depending upon the nature of the phenol103, the acidity of the medium and the presence of CO\textsubscript{2}/carbonate salts. Nitrosation occurs on phenol substrates bearing a free \textit{para}-position with respect to the OH group, with the exception of 1-naphthol, affording a 1 : 1 mixture of the 2- and the 4-nitroso derivatives. 4-Methoxyphenol gives 80\% yield of the \textit{ortho}-nitro derivative using NO as the reagent, whereas under similar conditions 2,6-dimethylphenol gives 65\% of \textit{para}-nitroso derivative and 30\% of \textit{para}-nitro derivative. Chroman derivatives (analouges of tocopherols) showed the highest reactivity with nitric oxide and peroxynitrite, suggesting that they can act as efficient scavengers of these toxic intermediates; in both cases the corresponding 5-nitro derivative was the only reaction product detected (equation 56). Peroxynitrite (ONOO−), the product of NO• with superoxide (O\textsubscript{2}−), being more stable than the nitric oxide, gives only about 10\% yields of the nitrated chromans, as compared to over 60\% with NO. The nitric oxide overproduction causes various pathologies such as neuronal degeneration, diabetes and atherosclerosis and thus the chromans can be useful substrates to capture these species \textit{in vivo}. Another metabolic end product of NO, the nitrite ion (NO\textsubscript{2}−), was also shown to be involved in the nitration of the tyrosine residues of the enzymes104.

\begin{equation}
\begin{aligned}
&\text{HO} & & \text{O} & & \text{O} \\
&\text{NO} & & 5 \text{ min} & & \rightarrow & & \text{HO} \\
& & & & & & \text{O} & & \text{NO}_2 \\
& & & & & & \text{68}\% \text{ yield}
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
&\text{MeO} & & \text{O} & & \text{O} \\
&\text{HO} & & & & \\
&\text{NO} & & 5 \text{ min} & & \rightarrow & & \text{MeO} \\
& & & & & & \text{O} & & \text{O} & & \text{HO} & & \text{NO}_2 \\
& & & & & & \text{6}\% \text{ yield} \\
& & & & & + & & \\
& & \text{O} & & \text{O} & & \text{OH} \\
& & & & & & \text{90}\% \text{ yield}
\end{aligned}
\end{equation}

The reaction of peroxynitrite (ONOO−) was also investigated with a series of \textit{para}-substituted phenols in phosphate buffer solutions105. The corresponding 2-nitro derivative and the 4-substituted catechol were the major products. The reaction exhibits good correlation with Hammett σ_p^+ and half-wave reduction potentials, suggesting a
possible one-electron transfer process involving the nitrosonium ion \((\text{NO}^+) \) as initial electrophile generated from peroxynitrous acid. \(^{15}\) CICDPN studies also resulted in similar conclusions\(^{106}\).

Pryor and coworkers have shown that peroxynitrite-mediated nitrosations and nitrations of phenols are modulated by \(\text{CO}_2 \). The reaction was found to be first order with respect to peroxynitrite and zero order with respect to phenol, showing that an activated intermediate of peroxynitrite, perhaps the peroxynitrite anion-\(\text{CO}_2 \) adduct \((\text{O} = \text{N}–\text{O}–\text{CO}_2^{-}) \), is involved as the intermediate (equation 57)\(^{107,108}\). At \(\text{pH} \) higher than 8.0, 4-nitrosophenol is the major product, whereas in acidic media significant amounts of the 2- and 4-nitrophenols were formed. Peroxynitrite also induces biological nitration of tyrosine residues of the proteins. The detection of 3-nitrotroxyline is routinely used as an \textit{in vivo} marker for the production of the cytotoxic species peroxynitrite \((\text{ONOO}^{-}) \). It was shown that nitrite anion \((\text{NO}_2^{-}) \) formed \textit{in situ} by the reaction of nitric oxide and hypochlorous acid (\(\text{HOCl} \)) is similarly able to nitrate phenolic substrates such as tyrosine and 4-hydroxyphenylacetic acid\(^{109}\).

\[
\text{ONOO}^{-} + \text{CO}_2 \rightarrow \text{O} = \text{N}–\text{O}–\text{CO}_2^{-}
\]

It was shown that tryptophan is also nitrated by peroxynitrite in the absence of transition metals to one predominant isomer of nitrotryptophan, as determined from spectral characteristics and liquid chromatography-mass spectrometry analysis. Typical hydroxyl radical scavengers partially inhibited the nitration\(^{110}\). The yields of the nitration of tyrosine and salicylate by peroxynitrite are significantly improved by the Fe(III)–EDTA complex\(^{111,112}\).

Sterically hindered phenols react with nitric oxide under basic conditions to give either cyclohexadienone diazenium diolates or oximates. Phenols with 2,6-di-\textit{tert}-butyl and 4-methyl (butylated hydroxytoluene, BHT), 4-ethyl or 4-methoxymethyl substituents yield the corresponding 2,6-di-\textit{tert}-butyl-2,5-cyclohexadienone-4-alkyl-4-diazenium diolate salts (equation 58)\(^{113}\).

\[
\begin{align*}
\text{t-Bu} & \quad \text{Bu-t} \\
\text{R} & \quad \text{Bu-t} \\
\text{NO/MeO}^{-} & \quad \text{NO} \\
\text{R} = \text{Me, OMe, etc.}
\end{align*}
\]
C. Nitrosation by Nitrous Acid

The reaction of phenols with nitrous acid gives the ortho- and para-nitroso products, which are formed through a neutral dienone intermediate, the proton loss from the latter being the rate-limiting step. It has been shown that the nitrous acid can act as a catalyst for the formation of the nitro derivatives. Thus the conventional preparation of nitro compounds by the oxidation of nitroso compounds may be replaced by methods using an electron-transfer pathway in certain cases. In the latter method, the phenoxy reacts with nitrosonium ion to give the phenoxy radical and nitric oxide radical. The nitric oxide radical is in equilibrium with the nitronium radical by reaction with nitronium ion. The reaction of the phenoxy radical with the nitronium radical results in the formation of the ortho- and para-nitro products. Leis and coworkers carried out kinetic studies on the reaction of phenolate ions with alkyl nitrites and found that the initially formed product is the O-nitrite ester, which evolves by a complex mechanism to give the ortho- and the para-nitro products.

D. Nitration by Tetrinitromethane

Tetranitromethane (C(NO₂)₄) reacts under mild reaction conditions with phenols. The first reactions of tetranitromethane with unsaturated hydrocarbons were initially carried out by Ostromyslenkski and Werner. Titov suggested that the reactions follow an ionic mechanism with the initial formation of a π-complex. A radical mechanism or an electron-transfer mechanism may also operate in these reactions, depending on the reaction conditions. It is a convenient reagent for the nitration of phenols in biological systems. For example, nitration of the tyrosyl residues in the lipase from Pseudomonas cepacia (CPL) was achieved using tetranitromethane (equation 59). The modified enzyme showed better enantioselectivity in the hydrolysis reactions of esters, due to increased acidity of the phenolic group. Further studies are needed to understand the scope of this and related reactions using hexanitroethane.

E. Nitration by Metal Nitrates

Nitration of phenol and its derivatives with Cu(NO₃)₂, Fe(NO₃)₃ and Cr(NO₃)₃ salts in different anhydrous organic solvents was examined. It was found that solvents have a major effect on the regioselectivity as well as on the competitive formation of the 2,4-dinitro derivatives. Salt effects (LiClO₄) on the rates of reaction were also observed; i.e. the rates of nitrations increased in the presence of inorganic salts such as lithium perchlorate. Several derivatives of phenol were nitrated by lanthanide(III) nitrates in ethyl
9. Electrophilic reactions of phenols

acetate. The regioselectivity of the nitration was based only on the phenolic OH group and was independent of the substituents. Thus, 3-substituted 5-nitrophenols were the only products observed under the conditions employed124.

Nitrosation of phenols using metal nitrites in acidic media results in the formation of the ortho- and the para-nitroso phenols, which are subsequently spontaneously oxidized to the corresponding nitro compounds. High yields of the ortho- and para-nitrophenols (85%–90%) have been obtained under the appropriate reaction conditions. Thus 2-chlorophenol gave a quantitative para substitution at pH 3.5 in the absence of oxygen using 3 equivalents of nitrite salt. In acetate-buffered solutions, 4-tert-butylphenol gave 90% of 2-nitro-4-tert-butylphenol, whereas resorcinol gave 85% of 2,4-dinitrosoresorcinol (nonoxidized product). The initially formed nitroso compounds in these reactions may be oxidized to nitro derivatives by oxygen, or by reactions involving the reduction of the nitrous acid to nitric oxide, as shown below125. The possibility of reaction of the phenoxy radical directly with NO\textsubscript{2} radical has also been proposed (equations 60 and 61)126.

\begin{equation}
2 \text{HNO}_2 \rightleftharpoons \text{NO}_2^+ + \text{NO}^+ + \text{H}_2\text{O}
\end{equation}

\begin{equation}
\begin{array}{c}
\begin{array}{c}
\text{OH} \\
\text{NO}^*
\end{array} \\
\text{O}^* \\
\text{NO}^-
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{OH} \\
\text{NO}
\end{array} \\
\text{NO}_2^-
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{OH} \\
\text{NO}^*
\end{array} \\
\text{O}^*
\end{array}
\end{array}
\end{equation}

V. FRIES AND RELATED REARRANGEMENTS

A. Lewis Acid Catalyzed Fries Rearrangements

The O-acyl derivatives of phenols (phenyl esters), in the presence of Lewis acids, undergo rearrangement to give ortho- and para-acyl phenols, which is generally known as the Fries rearrangement127. Fries rearrangement of phenyl esters followed by a Wolff–Kishner reduction provides a convenient procedure for the preparation of alkylation phenols128. The rearrangement involves the reversible formation of the Wheland intermediates from the Lewis acid-complexed substrate and is useful for the isomerization of the acylated phenols under appropriate reaction conditions (equation 62). The Lewis acid may complex both oxygens of the ester group when used in excess. The reaction proceeds by both intermolecular as well as intramolecular rearrangement pathways, depending on the substrate, reaction temperature and solvent129,130.

A variety of catalysts, such as TiCl\textsubscript{4}, AlCl\textsubscript{3}, BF\textsubscript{3} and CF\textsubscript{3}SO\textsubscript{3}H, may be used for the Fries rearrangement. Hafnium trifluoromethanesulfonate, Hf(OTf)\textsubscript{4} (5 to 20 mol%), was recently used as an efficient catalyst in the Fries rearrangement of acyloxy benzene or naphthalene derivatives65. Scandium triflate (Sc(OTf)\textsubscript{3}), zirconium triflate (Zr(OTf)\textsubscript{4}) and titanium chlorotriflate (TiCl(OTf)\textsubscript{3}) were also used for the Fries rearrangements of phenyl and naphthyl acetates67. A silica-supported heteropoly acid has been used as the catalyst for the conversion of phenol to phenyl acetate and its subsequent Fries rearrangement to 4-hydroxyacetophenone. The esterification proceeds at 140 °C and the Fries rearrangement of the ester proceeds at 200 °C on the same catalyst, with 90% regioselectivity to give the para-isomer (10% yields)131. ortho-Acetyl- and benzoxyhydroxy[2.2]paracyclophanes
have been prepared from 4-hydroxy[2.2]paracyclophane using TiCl₄-catalyzed Fries rearrangement with high yields. Alumina/methanesulfonic acid has been used to prepare ortho-hydroxyaryl ketones, by acylation of phenol and naphthol derivatives with carboxylic acids, followed by Fries rearrangement of the resulting phenolic esters. The Fries rearrangement of phenyl acetate has been studied over various zeolites, among which Zeolite H-Beta was found to be the superior catalyst. In the same studies, MCM-41 zeolitic material was also developed as an efficient catalyst for esters with sterically hindered groups. Alkylphenols were O-acylated using γ-chlorobutyroyl chloride, which undergoes Fries rearrangement with AlCl₃ to give hydroxyaryl ketones.

The regiochemistry of the Fries rearrangement is dependent on the reaction conditions. For example, the reaction of meta-cresyl acetate with AlCl₃ gives the para-acetyl-meta-cresol as the major product at low temperatures, while the ortho-acetyl-meta-cresol is formed as the major product at high temperatures (equation 63).
O-glycopyranosides of 1- and 2-naphthols undergo a Fries type of rearrangement using Lewis acids such as BF$_3$-Et$_2$O to give 2- and 1-C-glycopyranosides, respectively (equation 64). O-2-tetrahydropyranyl phenols and naphthols also rearrange under the BF$_3$-Et$_2$O catalysis to give the corresponding ortho-alkylated phenols (equation 65)136. Such aryl C-glycosides are anti-tumour agents. Several versions of these compounds have also been prepared by Friedel–Crafts reaction using Zr-complexes/silver perchlorate137.

9. Electrophilic reactions of phenols
Pivalophenones were prepared by the Fries reaction of Ph, cresyl and xylyl pivalates in the presence of HCl–SnCl₄ and by the Friedel–Crafts acylation of the phenols by Me₃CCOCl in the presence of SnCl₄. Phenols and naphthols also react with unprotected α- and β-glycosides, directly, in the presence of trimethylsilyl triflate catalyst under mild conditions (equation 66). A variety of phenols and naphthols react with mannose and glucosyl phosphates to give the α-O-glucosyl or α-O-mannosyl derivatives in the presence of the trimethylsilyl triflate, which spontaneously undergo a regiospecific and stereospecific Fries type of rearrangement to give the ortho-β-C-glucosyl and β-C-mannosyl phenols, which are useful intermediates for the synthesis of biologically active compounds (equation 67).

B. Bronsted Acid Catalyzed Fries Rearrangements

Olah and coworkers have shown that Nafion-H, a perfluorinated resinsulfonic acid, acts as an efficient catalyst for the Fries rearrangement of aryl benzoates. For example, meta-chlorophenyl benzoate undergoes Fries rearrangement in the presence of Nafion-H
in 75% yield with an ortho/para ratio of 1 : 2.6 (equation 68).
Nafion-H-silica nanocomposite (13% Nafion-H) catalyzed Fries rearrangement of phenyl acetate at high temperatures gives phenol, ortho-acetylphenol, para-acetylphenol and para-acetylphenyl acetate in a ratio of 45 : 5 : 24.5 : 25.5 (equation 69). The rearrangement in the presence of added phenol gives exclusively the para-acetylphenol, showing that the Fries rearrangement under these conditions is intermolecular in nature.23

\[
\begin{array}{c}
\text{OCOCH}_3 \\
\xrightarrow{\text{Nafion-H/silica nanocomposite}} \\
\text{Nitrobenzene; 220 °C, 2 h} \\
\text{OCOCH}_3 \\
\text{OH} \\
+ \\
\text{OH} \\
\text{COCH}_3 \\
\text{45\%} \\
\text{5\%} \\
+ \\
\text{OCOCH}_3 \\
\text{COCH}_3 \\
\text{OH} \\
\text{25.5\%} \\
\text{24.5\%}
\end{array}
\]

\[
\text{(69)}
\]

Hoelderich and coworkers systematically compared the catalytic activities of zeolites, Nafion-H and Nafion-H-silica nanocomposite catalysts for the Fries rearrangements.142 They have found that the acidic zeolite H-BEA is the most selective catalyst and the products para-hydroxyacetophenone and ortho-hydroxyacetophenone are obtained in a ratio of 4.7 : 1 (equation 70). Although Nafion-H-silica nanocomposite is a more efficient catalyst than the Nafion-H beads, its performance decreases as the concentration of Nafion-H in the resin is decreased. They have also observed that the change of solvent from cumene to phenol in the Fries rearrangement of phenyl acetate increases the conversion significantly. More recently it has been shown that the Fries rearrangement of phenyl acetate catalyzed by the pentasil-type zeolite T-4480 affords 2-hydroxyacetophenone in good yield (73.6%), with a minor product of 4-hydroxyacetophenone (o/p selectivity = 26.6 : 2.9). Similar reactions using H-ZSM yields these products with much less o/p selectivity in low yields (o : p = 2.9; 7.3% yield).143

\[
\begin{array}{c}
\text{OCOPh} \\
\xrightarrow{\text{Zeolite-H-beta}} \\
\text{OH} \\
\text{COPh} \\
\text{OH} \\
\text{COPh}
\end{array}
\]

\[
\text{(70)}
\]

1 : 4.7
The industrially significant 2,4-dihydroxybenzophenone can be prepared in 88\% yield by the Fries rearrangement of the resorcinol benzoate formed \textit{in situ} by the reaction of benzoic acid and resorcinol using zeolite-H-beta catalyst (equation 71). A variety of solvents such as butylbenzene and \textit{n}-decane are used successfully for these reactions144.

\begin{center}
\begin{align*}
\text{PhCOOH/Zeolite-H-beta} & \xrightarrow{\text{Heat}} \quad \text{OCOPh} \\
\text{OH} & \quad \text{OH} \quad \text{PhCO} \quad \text{OH} \\
\text{Ph} & \quad \text{O} \quad \text{Ph} \quad \text{OH}
\end{align*}
\end{center}

The propionylation of phenol with propionyl chloride can be carried out over zeolite-H-beta, Re-Y, H-Y, mordenite, H-ZSM-5 and AlCl\textsubscript{3} at 140° C to give \textit{para}-hydroxypropiophenone and \textit{ortho}-hydroxypropiophenone as the major products. Among these catalysts, the zeolite-H-beta is the most efficient. The product distribution depends upon the reaction conditions and acidity of the zeolite catalysts145. The reaction involves the initial O-propionylation of the phenol followed by its rapid Fries rearrangement.

\section*{VI. ELECTROPHILIC HALOGENATION}

The electrophilic halogenation of phenols give rise to mixtures of \textit{ortho}- and \textit{para}-substituted phenols. Phenols are more reactive than alkylaromatics in these reactions due to the enhanced resonance stabilization of the carbocationic intermediates (equation 72). However, in superacidic solutions, the oxygen protonation of the phenols leads to the deactivated substrate for halogenation and \textit{meta}-halo products are obtained (equation 73)21.

\begin{center}
\begin{align*}
\text{OH} & \quad \text{X} \\
\text{OH} & \quad \text{X} \\
\text{OH} & \quad \text{X} \\
\text{OH} & \quad \text{X}
\end{align*}
\end{center}

\begin{center}
\begin{align*}
\text{H} & \quad \text{X} \\
\text{H} & \quad \text{X} \\
\text{H} & \quad \text{X}
\end{align*}
\end{center}

\begin{center}
\begin{align*}
\text{X} & \quad \text{X} \\
\text{X} & \quad \text{X} \\
\text{X} & \quad \text{X}
\end{align*}
\end{center}
A. Fluorination

Phenols can be fluorinated using F$_2$/N$_2$ solutions in solvents such as chloroform or trifluoroacetic acid at low temperatures to give high conversions to ortho- and para-fluorinated phenols, with minimal regioselectivity. The ortho-isomer predominated by about 1.5 : 1 (equation 74).\(^{146}\)

It was found that increasing polarity of the solvent increased the yields of the reaction, in the following order: CF$_3$CO$_2$H > CF$_3$CH$_2$OH > CH$_3$OH > CHCl$_3$ > CFC$_3$, which indicates the electrophilic substitution mechanism. Fluorine solutions in hydroxyl group containing solvents give ROF species, which is a source of electrophilic F$^+$ species. The fluorination of benzoic acid in a variety of hydroxylic solvents, such as trifluoroacetic acid, 2,2,2-trifluoroethanol and methanol, gave meta-fluorobenzoic acid as the major product, further confirming the electrophilic nature of these reactions. Highest regioselectivity is observed in 2,2,2-trifluoroethanol: 74 (m-fluorobenzoic acid) : 19 (o-fluorobenzoic acid) (equation 75).

Electrophilic fluorinating reagents such as Selectfluor and related compounds can be used for the ring fluorination of phenols. The reaction of phenol with 1,3-bis(4-fluoro-1,4-diazoniabicyclo[2.2.2]oct-1-yl)propane tetratriflate in methanol gives moderate yields
(59%) of 2-fluoro- and 4-fluorophenols in a ratio of 1.5 : 1 (equation 76). 2-Naphthol similarly gave 1-fluoro-2-naphthol with this reagent at a reaction temperature of 80°C in acetonitrile solvent (equation 77). These reactions were dramatically improved using the more reactive reagent, Selectfluor\(^{147}\).

Other reagents such as perfluoro-[N-fluoro-N-(4-pyridyl)acetamide]\(^{148}\) and N-(R)-N-fluoro-1,4-diaziobiacyclo[2.2.2]octane salts (R = CH\(_3\), CH\(_2\)Cl, C\(_2\)H\(_5\), CF\(_3\)CH\(_2\), C\(_8\)H\(_{17}\))\(^{149}\) also readily fluorinate phenol to give 2- and 4-fluorophenols under mild conditions. The DesMarteau sulfonimide ((CF\(_3\)SO\(_2\))\(_2\)NF) and N-fluorocarboxamides are powerful electrophilic fluorinating agents, potentially suitable for the electrophilic fluorination of phenols. Banks and coworkers have prepared analogous N-fluoro compounds, perfluoro-N-fluoro-N-(4-pyridyl)methanesulfonamide and perfluoro-(N-fluoro-N-(4-pyridyl)acetamide as electrophilic fluorinating agents\(^{148}\). Using the latter reagent it was shown that phenol gives 2-fluorophenol and 4-fluorophenol (1 : 1) in 91% yield.

A series of alkyl- or (trifluoromethyl)-substituted N-fluropyrindinium-2-sulfonates were found to be suitable for the electrophilic fluorination of phenol, naphthol and the trimethylsilyl ether of phenol, highly regioselectively. Exclusive or predominant ortho-fluorination could be achieved by these reagents (equations 78 and 79)\(^{152}\). The observed regioselectivity was explained as due to the H-bonding interaction of the 2-sulfonate anion with the hydroxy groups of the phenol derivatives, in which the ‘F\(^+\)’ of the reagent is in closer proximity to the ortho-position of the phenolic OH group. The ortho-fluoro cyclohexadienone is formed as an intermediate in agreement with this mechanism. These reactions proceed highly regioselectively in nonpolar solvents such as dichloromethane or 1,2-dichloroethane. Phenol under these conditions gives 80% of ortho-fluorophenol (equation 79) and only 2% of para-fluorophenol. 1-Naphthol similarly gives predominantly the ortho-fluoronaphthol. Polar solvents such as hexafluoroisopropanol, (CF\(_3\))\(_2\)CHOH, diminish the H-bonding interaction of the reagent, making the reaction less regioselective. In the latter solvent, phenol gives 57% of ortho-fluorophenol and 13% of para-fluorophenol and 6% of 2,4-difluorophenol. \(^{18}\)F-labeled fluorophenols may be readily available by these methods. Conventionally, the \(^{18}\)F-labeled fluorophenols are obtained by a Baeyer–Villiger oxidation of fluorobenzaldehydes and fluoroacetophenones.\(^{153}\)
Anodic fluorination of phenols in the presence of Et$_3$N/5HF readily afforded 4,4-difluorocyclohexa-2,5-dien-1-ones, which could be converted to para-fluorophenols in good yields by a subsequent reduction with Zn in aqueous acidic solutions (equation 80)154.

The oxidative fluorination of 4-alkylphenols to give the 4-fluoro-4-alkylcyclohexa-2,5-dien-1-ones can be achieved by using hypervalent iodine reagents, such as phenyliodo bis(trifluoroacetate) or phenyliodine diacetate in the presence of pyridinium polyhydrogen fluoride (equation 81) ($^{vide\ infra}$)155.

9. Electrophilic reactions of phenols

\[
\begin{align*}
\text{OH} & \quad \text{PhI(OCOCF}_3\text{)}_2 \\
& \quad \text{Py(HF)}_n
\end{align*}
\]

(81)

B. Chlorination

Phenols are monochlorinated regioselectively using sulfuryl chloride and amines (such as di-sec-butylamine) as the catalysts in nonpolar solvents (equation 82). In a typical experiment an ortho/para ratio of 22 was obtained with yields of about 90%.\(^{156}\)

\[
\begin{align*}
\text{OH} & \quad \text{SO}_2\text{Cl}_2, R_2\text{NH (or RNH}_2\text{)} \\
\text{Cl} & \quad \text{OH}
\end{align*}
\]

(82)

In the absence of the amines, the yields of the chlorinated products are very low. Thus the addition of 8 mol% of the primary or secondary amines increased the conversion of phenol from 7.2 to 97.5% and the reaction was complete in less than one hour. The reaction is highly regioselective, giving almost exclusively the ortho-chlorinated products. The highest o/p ratio of 65.9 was observed when di-isobutylamine was used as the catalyst. The reaction is completely nonregioselective in the absence of the amine catalysts. The use of two equivalents of sulfuryl chloride resulted in the formation of 2,6-dichlorophenol as the predominant product (equation 83). Tertiary amines such as triethylamine, on the other hand, gave low o/p ratios, typically ranging from 0.5 to 1.3.

\[
\begin{align*}
\text{OH} & \quad \text{SO}_2\text{Cl}_2 (2 \text{ eq.}, R_2\text{NH}) \\
\text{Cl} & \quad \text{OH}
\end{align*}
\]

(83)

C. Bromination

There are numerous procedures for the bromination of phenolic compounds and the regioselectivity in these reactions has been frequently achieved by varying the nature of the solvent system\(^3\). Controlled monobromination of phenols can be achieved using N-bromosuccinimide (NBS) on silica gel\(^{157}\).
The involvement of the bromocyclohexadienones as the reaction intermediates in the electrophilic bromination of phenols is confirmed by the isolation of the 4-alkoxy-cyclohexa-2,5-dienones, from the reaction of phenols with Br\(_2\)/ROH in the presence of AgClO\(_4\) and Na\(_2\)CO\(_3\) (equation 84)\(^{158}\).

\[
\begin{align*}
\text{OH} & \quad \underset{\text{Br}_2/\text{ROH}/\text{AgClO}_4}{\text{R'}} \quad \text{Na}_2\text{CO}_3 \quad \text{OR} \\
\end{align*}
\]

The regioselectivity of the bromination of the phenols is enhanced in the presence of adjacent O-glycosylated groups. The bromination of O-(2,3,4,6-tetra-O-acetyl-\(\beta\)-D-glucopyranosyl) phenols gives the para-bromo isomer highly regioselectively\(^{159}\), perhaps due to the steric hindrance for the ortho substitution (equations 85 and 86).

\[
\begin{align*}
\text{OGlc(OAc)}_4 & \quad \underset{\text{Br}_2/\text{CH}_2\text{Cl}_2, \text{5 }^\circ\text{C}}{\text{Br}} \\
\text{OGlc(OAc)}_4 & \quad \underset{\text{Br}_2/\text{CH}_2\text{Cl}_2, \text{5 }^\circ\text{C}}{\text{Br}} \\
\end{align*}
\]

The bromination of phenols can be achieved in high yields using N-bromosuccinimide (NBS)/HCl in acetone\(^{160}\). NBS/HBF\(_4\)-Et\(_2\)O was also used as the brominating agent for phenols\(^{161}\). N-bromosuccinimide was also used for the regioselective bromination of naphthols as well as phenols. The regioselectivity was dependent on the solvent used in the reaction; acetonitrile as a solvent gave the para-isomers, whereas carbon disulfide gave ortho isomers\(^{162}\). Thus bromination of 1-naphthol in acetonitrile solvent gave 4-bromo-1-naphthol, whereas in CS\(_2\) solvent it results in the formation of 2-bromonaphthol. Similarly, regioselective ortho brominations were observed using NBS or Br\(_2\) in the presence of primary or secondary amines\(^{163,164}\). Importantly, bromination at the benzylic position was not observed in the case of methylphenols. Solid state electrophilic bromination has also been achieved by NBS\(^{165}\). The bromination of phenol to ortho-bromophenol was achieved on a large scale using trans-alkylation strategy. Thus para-tert-butyl phenol was brominated exclusively at the ortho position and the tert-butyl group is transferred to toluene in the presence of AlCl\(_3\) catalyst. The para- and ortho-tert-butyltoluenes are then reconverted to para-tert-butylphenol using excess phenol and Engelhard F-24 catalyst\(^{166}\).
The solid-phase bromination of hindered phenols using NBS was reported to give the corresponding brominated cyclohexadienones167.

The \textit{para}-selective bromination of phenol can be achieved by using a variety of reagents such as DBU hydrobromide perbromide168, tetrabromocyclohexadienone169, tetraalkylammonium tribromides170, hexamethylenetetramine tribromide171 and NBS/HBF\textsubscript{4}, Et\textsubscript{2}O (equation 87)161. In the latter reagent it was suggested that bromonium tetrafluoroborate (BrBF\textsubscript{4}) is the actual brominating agent.

\[
\begin{array}{c}
\text{OH} \\
\text{R} \\
\text{Br}
\end{array}
\xrightarrow{\text{NBS/HBF\textsubscript{4}, Et\textsubscript{2}O}}
\begin{array}{c}
\text{OH} \\
\text{R} \\
\text{Br}
\end{array}
\]

(87)

For example, R = H, CN, Cl

\section*{D. Iodination}

Selective solid-phase iodination of phenolic groups could be achieved using bis(pyridinium) iodonitrofluoroborate172, which does not react with O-protected phenols under these mild conditions. Using this reagent, it was shown that in peptides containing multiple tyrosine residues (e.g. the analgesic peptide dermorphin) selective O-protection of the tyrosine residues could be used to chemoselectively iodinate the unprotected tyrosine residues (equation 88).

\[
\begin{array}{c}
\text{OTBDMS} \\
\text{OH}
\end{array}
\xrightarrow{\text{Py\textsubscript{2}BF\textsubscript{4}}}
\begin{array}{c}
\text{OTBDMS} \\
\text{OH}
\end{array}
\]

(88)

\section*{VII. PHENOL–DIENONE REARRANGEMENTS}

The reversible conversion of phenols to diene intermediates is an important transformation in the synthesis of natural products. This rearrangement occurs efficiently in superacid solutions173–181. The corresponding version for the halophenols to give halodienones has been reviewed in an earlier volume of this series3. 4-Bromo-2,4,6-trialkylcyclohexa-2,5-dienones have recently been synthesized by electrophilic bromination182 of the corresponding phenols.

The reaction of mono- and polycyclic 4-alkylphenyl ethers using the hypervalent iodine compound, PhI(OCOCF\textsubscript{3})\textsubscript{2}, in the presence of chloride and fluoride ions gives the corresponding 4-chloro- and 4-fluoro-cyclohexa-2,5-dienones155,183. The corresponding oxidative reactions in the presence of the alcohols give 4-alkoxy-cyclohexadienones. These reactions may be used in the preparation of fluoro- and alkoxy-substituted
hydroindolenones and hydroquinolenones, which are the precursors of various biologically active compounds (equations 89 and 90).

\[
\begin{align*}
&\text{HO} \quad \text{X} \\
&\begin{array}{c}
\text{PhI(OCOCF}_3)_2 \\
\text{Py(HF)}_n
\end{array} \\
&\rightarrow \\
&\begin{array}{c}
\text{F} \\
\text{O} \\
\text{X} \\
\text{CO}
\end{array}
\end{align*}
\]

\(X = \text{CH}_2, \text{NCO}_2\text{Me}\)

\text{30–70% yields}

The reaction of estrone derivatives with HF–SbF\(_5\) or FSO\(_3\)H–SbF\(_5\) gives estra-4,9-dien-3,7-dione (equation 91). The intermediate tricationic species and their isomers have been characterized by \(^1\)H NMR spectroscopy\(^{184}\).

\[
\begin{align*}
&\text{HO} \\
&\begin{array}{c}
\text{HF/SbF}_5
\end{array} \\
&\rightarrow \\
&\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\end{align*}
\]

\text{30–70% yields}

In the presence of suitable hydride donors the dienone intermediates formed in these reactions can be further reduced to the corresponding ketones. 3-Hydroxytetralin in the presence of HF–SbF\(_5\) and methylcyclopentane gives 3-oxodecaline (equation 92)\(^{185}\).

\[
\begin{align*}
&\text{HO} \\
&\begin{array}{c}
\text{HF/SbF}_5
\end{array} \\
&\rightarrow \\
&\begin{array}{c}
\text{O} \\
\text{H}
\end{array}
\end{align*}
\]

\text{3-oxodecaline (equation 92)}
In superacidic media, phenols and anisoles are diprotonated to give the superelectrophilic O,C-diprotonated gitonic dications. The latter react readily with aromatics to give regioselectively arylated 4-aryl-2-cyclohexenones, which slowly isomerize to the 3-aryl-2-cyclohexenones under the reaction conditions. At longer reaction times, the latter are the predominant products. 4-Methylphenol, for example, in the presence of benzene and HF/SbF$_5$ gives initially a mixture of 4-methyl-4-phenyl-2-cyclohexenone (29%) and 4-methyl-3-phenyl-2-cyclohexenone (33%) after 1.5 min and after 15 min; the latter rearranged product can be isolated in 90% yield (equation 93). The possible superacid catalyzed route is shown in equation 94. A variety of aromatics such as benzene, naphthalene and tetrahydroquinoline can be used as the arylating agents in these reactions.186

\[
\begin{align*}
\text{(93)} & \quad \begin{array}{c}
\text{OH} \\
\text{Me} \\
\text{HF/SbF}_5 \quad \text{C}_6\text{H}_6
\end{array} & \quad \begin{array}{c}
\text{O} \\
\text{Me} \\
\text{HF/SbF}_5 \quad \text{C}_6\text{H}_6
\end{array} & \quad \begin{array}{c}
\text{O} \\
\text{Me} \\
\text{HF/SbF}_5 \quad \text{C}_6\text{H}_6
\end{array} \\
\end{align*}
\]

\[
\begin{align*}
\text{(94)} & \quad \begin{array}{c}
\text{OH} \\
\text{Me} \\
\text{HF/SbF}_5
\end{array} & \quad \begin{array}{c}
\text{OH}_2 \\
\text{Me} \\
\end{array} & \quad \begin{array}{c}
\text{OH}_2 \\
\text{Me} \\
\text{C}_6\text{H}_6
\end{array} & \quad \begin{array}{c}
\text{OH} \\
\text{Me} \\
\text{C}_6\text{H}_6
\end{array}
\end{align*}
\]

The synthesis of the spirocyclic cyclohexadienone ring system of the shiarisanrin family of natural products were based on the Lewis acid-promoted C-alkylation of the corresponding phenols or their derivatives.187 The dibenzodioxepen, for example, when reacted with Lewis acids such as AlCl$_3$, or Me$_3$SiOTf, give the intermediate oxomethylene ylides, which undergo cyclization to give the spirocyclic cyclohexadienone (equation 95). The latter serves as a convenient intermediate for the shiarisanrin family of natural
products, which exhibit cytotoxicities at µg ml⁻¹ levels against several standard cell lines.

The phenol-dienones could be conveniently prepared directly from phenols by reaction with Br₂ in the presence of AgClO₄ and Na₂CO₃. These dienones are transformed efficiently to the 4-alkoxycyclohexa-2,5-dienes by the silver ion mediated reaction in the presence of the corresponding alcohols (equation 96)158,188. The solid-phase bromination of tert-butyl-substituted phenols with N-bromosuccinimide also affords halogenated cyclohexadienones167.

For example, R = Me, Et, i-Pr, t-Bu, t-Am
9. Electrophilic reactions of phenols

The halodienones can also be reacted with other phenols to give the biphenol derivatives in the presence of silver perchlorate (equation 97):\(^\text{189}\)

\[
\begin{align*}
\text{Br}_2 & \quad \text{AgClO}_4^- \\
\text{HClO}_4^- & \quad \text{Ot-Bu} \quad \text{Ot-Bu} \\
\text{HO} \quad \text{Hi-Pr} & \quad \text{Pr-i} \\
\text{t-Bu} & \quad \text{t-Bu}
\end{align*}
\]

4-Fluorocyclohexa-2,5-dienone derivatives were obtained in high yield by reaction of \textit{para}-substituted phenols with 1-fluoro-4-chloromethyl-1,4-diazenobicyclo[2.2.2]octane bis(tetrafluoroborate) (SelectfluorTM; F-TEDA-BF\textsubscript{4}) or its 4-hydroxy analogue (AccufluorTM; NFTh) in acetonitrile (equation 98). Estrogen steroids were readily converted to \(\beta\)-fluoro-1,4-estradien-3-one derivatives in high yields using this method (equation 99):\(^\text{190}\)

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
\text{CH}_3CN & \quad \text{Selectfluor} \\
\text{R} & \quad \text{F} \\
\text{R} & \quad \text{F}
\end{align*}
\]

For example, \(R = \text{Me, i-Pr}\)

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{Selectfluor} & \quad \text{CH}_3CN \\
\text{Me} & \quad \text{Me} \\
\text{H} & \quad \text{F} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]
VIII. REFERENCES

9. Electrophilic reactions of phenols

Synthetic uses of phenols

MASAHIKO YAMAGUCHI

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578 Japan

Fax: 81-22-217-6811; e-mail: yama@mail.pharm.tohoku.ac.jp

I. INTRODUCTION

The purpose of this review is to provide an overview on the recent advances in synthetic chemistry of phenols since 1980. In organic synthesis, phenols are important both as substrates and as reagents. Phenols can be derivatized either at the hydroxy group or the aromatic moiety, for which many classical methods have been employed both in industry and academia.

II. DERIVATIZATION OF PHENOLS

A. C—O Bond Formation

1. O-alkylation
2. O-arylation
3. O-glycosidation

B. C—C Bond Formation

1. C-alkylation: Bond formation with sp³ carbon
2. C-alkenylation and C-phenylation: Bond formation with sp² carbon atoms
3. C-ethynylation: Bond formation with sp carbon atoms
4. C-hydroxyalkylation and related reactions
5. C-formylation, C-acylation and C-carboxylation

C. C-fluorination

III. METAL PHENOXIDE AS REAGENT IN ORGANIC SYNTHESIS

A. Organic Synthesis Using Metal Complexes of Monophenol

B. Organic Synthesis Using Metal Complexes of Biphenol: BINOL and Derivatives

C. Organic Synthesis Using Metal Complexes of Salicylaldehyde Imines

IV. REFERENCES

The Chemistry of Phenols. Edited by Z. Rappoport

661
and in the laboratory. The first part of this review describes recent work to enhance the efficiency of these processes, particularly on the C−O bond formation and the C−C bond and C−F bond formation. Metalated phenols have become very important reagents in organic synthesis, and notable is the use of chiral phenols as ligand in asymmetric synthesis. The second part of this review treats synthetic reactions using metal phenoxide reagents. The notation ‘cat’ is provided in equations in order to discriminate catalytic reactions from stoichiometric reactions.

II. DERIVATIZATION OF PHENOLS

This section treats the synthetic reactions of phenols leading to C−O bond formation at the hydroxy group and C−C bond formation at the aromatic nuclei. Reactions similar to those of aliphatic alcohols, aromatic hydrocarbons or anisole are in general excluded. Oxidation reactions and replacement reactions of the hydroxy group are treated in other chapters of this book.

A. C−O Bond Formation

1. O-alkylation

The classical Williamson synthesis treats alkali metal phenoxides and alkyl halides or alkyl sulfates in organic solvents to give O-alkylphenols1,2. The problem of insolubility of the phenoxides can be overcome by phase transfer catalysis using tetraalkylammonium salts, crown ethers or poly(ethyleneglycol)s in the presence of alkali metal hydroxides or fluorides3–6. Both solid–liquid and liquid–liquid biphasic systems are employed. The phase transfer reaction is dramatically accelerated by microwave irradiation using a domestic oven, which can be conducted without organic solvents on the solid support such as sodium hydroxide, alumina, zeolite or sodium carbonate7–10. Often, the reactions are completed within 1 min. A calix[6]arene equipped with poly(oxyethylene) group at the oxygen atoms catalyzes the phenol O-alkylation in a solid–liquid system (equation 1)11,12. The catalyst is more effective than benzyltrimethylammonium chloride, polyethyleneglycol diethyl ether and 18-crown-6 in terms of the reaction rate and catalyst loading. Micelles

\[
\begin{align*}
\text{OH} & \quad + \quad \text{PhCH}_2\text{Br} & \rightarrow & \quad \text{OCH}_2\text{Ph} \\
\text{cat, KOH} & \quad \text{CH}_2\text{Cl}_2 & \rightarrow & \quad \text{cat, KOH} \\
\text{cat} & = & \text{cat, KOH} \\
\end{align*}
\]

\text{(1)}
formed from cetyltrimethylammonium bromide in water were used for the O-alkylation of 2,6-disubstituted phenols13. Cs\textsubscript{2}CO\textsubscript{3} is effective for the Williamson synthesis in organic solvents because of its higher solubility than K\textsubscript{2}CO\textsubscript{3} or Na\textsubscript{2}CO\textsubscript{3}14. Notably, Ni(acac)\textsubscript{2} promotes \textit{t}-alkylation of phenol in the presence of NaHCO\textsubscript{3} (equation 2)15. In order to avoid the formation of metal halides as a byproduct of the Williamson synthesis, use of dimethyl carbonate for the methylating reagent was examined16–19. The reagent is non-toxic, and produces only methanol and carbon dioxide as byproduct (equation 3). Sennyey and coworkers16 and Lee and Shimizu17 recommended the use of a catalytic amount of pentaalkylguanidine or Cs\textsubscript{2}CO\textsubscript{3} as the base rather than K\textsubscript{2}CO\textsubscript{3} or Na\textsubscript{2}CO\textsubscript{3}. The phase transfer method employing solid K\textsubscript{2}CO\textsubscript{3} and tetrabutylammonium bromide was also reported for the carbonate O-alkylation20.

\[
\text{OH} \quad \text{CH}_3 + \text{t-BuCl} \quad \xrightarrow{\text{Ni(acac)}_2, \text{NaHCO}_3} \quad \text{CH}_3 \quad \text{t-BuO}
\]

The Mitsunobu reaction proved to be useful for the synthesis of aryl alkyl ethers from alcohols and phenols21. The method proceeds under mild conditions and tolerates many functional groups with inversion of configuration, as exemplified by the reactions of lactate and \textit{endo}-5-norbornen-2-ol (equations 4 and 5)22,23. Neighboring group participation, however, was observed in the reactions of \textit{exo}-5-norbornen-2-ol (equation 6) and \textit{trans}-1-hydroxy-2-aminoindane with phenol23–25. The Mitsunobu reaction of a tertiary propargylic alcohol takes place at the hindered carbon via S_N26.

\[
\text{Cs}_2\text{CO}_3 \text{cat} \quad \xrightarrow{\text{CH}_3\text{OCO}_2\text{CH}_3}
\]

\[
\text{O} \quad \text{OCH}_3 \quad \text{CO}_2\text{CH}_3 \quad \text{CH}_3
\]

\[
\text{O} \quad \text{O} \quad \text{CO}_2\text{H} \quad \text{CO}_2\text{H}
\]
Phenol serves as an excellent oxygen nucleophile in transition metal catalyzed reactions27. O-allylation catalyzed by palladium, rhodium or ruthenium proceeds via π-allyl metal complexes. Phenol itself as well as sodium phenoxide, stannyl phenoxide, silyl phenoxide and phenyl carbonate is employed in the presence or absence of bases such as triethylamine, potassium fluoride or alumina28–30. Allyl carbonates are generally employed as the precursor of π-allyl metals, and allyl acetate or vinyl epoxide is used in some cases31–33. Miura and coworkers used allylic alcohol in the presence of Ti(OPr-i)\textsubscript{4}34. π-Allylpalladium species generated by C–C bond cleavage of methylenecyclopropanes or by the C–C bond formation such as the Heck reaction also undergo phenoxylation35,36. Sinou and coworkers examined the regio- and stereochemistry of palladium catalyzed phenol O-allylation with allyl carbonates; acyclic primary allyl carbonates give primary phenyl ethers as the thermodynamic products; under kinetic control the selectivity was influenced by the steric and electronic nature of the allyl carbonates37. The phenoxylation of a 2-cyclohexenol carbonate proceeds with retention of configuration, which is consistent with the known π-allylpalladium chemistry (equation 7). Evans and Leahy attained preferential formation of secondary phenyl ethers from secondary allylic carbonates using a rhodium catalyst with net retention of configuration (equation 8)38. Palladium complexes derived from propargylic carbonates undergo phenol addition at the central carbon atom39,
and Ihara and coworkers utilized the addition reaction followed by fragmentation of the
cyclobutane ring for the stereoselective synthesis of cyclopentanones (equation 9)40. A
catalytic amount of copper salt effectively promotes the O-alkylation by 2-methyl-3-
butyn-2-ol trifluoroacetate in S_N2 regioselectivity41.

\[
\begin{align*}
\text{PhOH} + \text{EtOCO}_2 & \xrightarrow{\text{Pd}_2(\text{dba})_3, \text{dppb cat, THF}} \text{PhCO}_2\text{CH}_3 \\
\text{PhOH} + \text{OOCCH}_3 & \xrightarrow{\text{RhCl}(\text{PPh}_3)_3, \text{P(OCH}_3)_3 \text{cat, THF}} \text{PhOCOCH}_3 \\
\text{PhOH} + \text{CH}_2\text{OCO}_2\text{CH}_3 & \xrightarrow{\text{Pd}_2(\text{dba})_3, \text{dppe cat, THF, dioxane}} \text{PhOCOCH}_3
\end{align*}
\]

(7) (8) (9)

Phenols are used as the nucleophile in the asymmetric allylation of \(\pi\)-allylpalladium complexes. Trost and Toste attained asymmetric phenyl ether formation in high enan-
tiomeric excess (ee) using diphosphine ligand derived from chiral 1,2-cyclohexanedi-
amine (equation 10)42. Dynamic kinetic resolution of the racemic secondary allylic carbonate is
conducted in the presence of tetrabutylammonium chloride, which increases the rate of
\(\pi-\sigma-\pi\) isomerization of the \(\pi\)-allyl palladium intermediate (equation 11)43. Lautens and
coworkers cleaved \textit{meso}-oxabicyclic alkenes with phenol in the presence of a catalytic
amount of a chiral ferrocenyldiphosphine and a rhodium complex (equation 12)44.
Excess diazomethane has been used to convert phenols to methyl ethers in the presence or absence of acids. Employment of transition metal derivatives, typically Rh(OAc)$_4$, and recently CH$_3$ReO$_3$, allows one to react functionalized diazo compounds in an intramolecular or intermolecular O-alkylation (equation 13). The stability of diazo compounds derived from active methylene compounds toward OH insertion was compared
using 2-propanol and the order will probably apply also to phenols: \(\text{PO(OEt)}_2 > \text{Ph}_2\text{PO} > \text{EtO}_2\text{C} \sim \text{PhSO}_2 > \text{Me}_2\text{NCO} > \text{CN} > \text{PhCH}_2 > \text{Ph} \sim \text{H} \). The reactivity should be reversed.

![Diagram of reaction](image)

Shibasaki and coworkers developed gallium lithium bis(naphthoxide) (GaLB) for the asymmetric cleavage of meso-epoxides with \(p \)-methoxyphenol giving optically active hydroxy ethers (equation 14)\(^{50}\). The 6,6'-bis(triethysilylhexynyl) derivative of GaLB improved the stability of the catalyst, resulting in higher chemical yields. The ring opening of cyclohexene oxide with phenol did not take place using conventional bases (BuLi, NaOBu-\(t \), KOBu-\(t \), K\(_2\)CO\(_3\) or Cs\(_2\)CO\(_3\)) or Lewis acids (BF\(_3\), ZnCl\(_2\)), which indicates the efficiency of the bimetallic catalyst with Brønsted basicity and Lewis acidity. An \(N,N' \)-ethylenebis(salicylideneamine) (salen) cobalt complex developed by Ready and Jacobsen catalyzes the kinetic resolution of a racemic epoxide (equation 15)\(^{51}\). Since epibromohydrin epimerizes in the presence of bromide anion, kinetic dynamic...
resolution gives the optically active phenoxy alcohol in 74% chemical yield (equation 16). Employing the cooperative nature of the Jacobsen catalyst, i.e. two molecules of the complex are involved in the transition state, acceleration of the rate and decrease in the catalyst loading was attained using oligomeric salen cobalt complexes52,53. Jung and Starkey developed a reaction of epoxyketones with phenols under phase transfer conditions to give α-phenoxyenones, which were converted to biaryl ethers after dehydrogenation (equation 17)54.

\begin{equation}
\HO \quad + \quad \text{GaLB cat} \quad \text{toluene} \quad \rightarrow \quad \begin{array}{c}
\HO \\ \text{OME}
\end{array}
\end{equation}

48%, 93% ee ($X = H$)
60%, 94% ee ($X = \text{C} = \text{CSiEt}_3$)

\begin{equation}
\begin{array}{c}
\HO \\ \text{H}_3\text{C} \\
\text{C}_4\text{H}_9-n
\end{array}
\quad + \quad \begin{array}{c}
\text{OH} \\ \text{C}_4\text{H}_9-n
\end{array}
\quad \text{Co cat} \quad \text{t-BuOCH}_3
\quad \rightarrow \quad \begin{array}{c}
\HO \\ \text{C}_4\text{H}_9-n
\end{array}
\quad + \\
\begin{array}{c}
\text{OH} \\ \text{C}_4\text{H}_9-n
\end{array}
\end{equation}

Addition of phenols to activated $\text{C} - \text{C}$ multiple bonds is another method for O-alkylation. Conjugated carbonyl compounds with β-leaving groups react with metal phenoxides, giving the substituted products via addition–elimination, and the resulted β-aryloxylated carbonyls are versatile intermediates for synthesis of heterocyclic compounds55–58. Addition
to acetylenic compound is another O-alkylation method, where no β-leaving group is necessary. Even (1-alkynyl)carbene tungsten complex can be used as the acceptor of phenol in the presence of triethylamine (equation 18)59. Addition of sodium phenoxides to tetrafluoroethylene generates carbanions stable to β-elimination, which can be trapped with carbon dioxide (equation 19)60. Vinyl ethers $\text{CF}_2=\text{CFOR}$ undergo the addition giving $\text{PhOCF}_2\text{CFHOR}^61$. Phenol adds to $\text{PhC}≡\text{CCF}_3$ in an anti-stereochemistry under both kinetic and thermodynamic control62. Addition to unactivated olefin occurs in the presence of strong electrophilic reagents. The non-nucleophilic selenium reagent m-$\text{O}_2\text{NC}_6\text{H}_4\text{SO}_3\text{SePh}$ derived from PhSeSePh and (m-$\text{O}_2\text{NC}_6\text{H}_4\text{SO}_3$)$_2$ was used for the phenoxy-selenation of simple alkenes63. The asymmetric version of palladium catalyzed intramolecular phenol addition to alkene (the Wacker-type reaction) was initially studied by Hosokawa and Murahashi64,65, and Uozumi and Hayashi later attained high ee (equation 20)66,67.
2. O-arylation

Total synthesis of vancomycin and related antibacterial substances active against MRSA required effective diaryl ether formation. Diaryl ethers are also important in polymer synthesis. In the classical Ullmann reaction aryl halides are heated with alkali metal phenoxides at high temperature, typically at about 200°C, in the presence of copper powder or copper salts. New methods which will conduct the coupling at lower reaction temperature and possess broader applicability must therefore be developed. Nicolaou and coworkers and Snieckus and coworkers used activated aryl halides with o-triazene and o-carbamyl groups as the substrate. Boger and Yohannes conducted the intramolecular coupling in a non-polar solvent, and suppressed the racemization of a phenylalanine derivative (equation 21). Buchwald and coworkers, using CuOTf and Cs₂CO₃, eliminated the prior preparation of metal phenoxides and coupled aryl iodides at 110°C in toluene (equation 22). Addition of a catalytic amount of 1-naphthoic acid accelerated the reactions of less reactive aryl bromides. A library screening for the amine ligand in the copper catalyzed reaction revealed 8-hydroxyquinoline and 2-(N,N-dimethylamino)methyl-3-hydroxyypyridine to be effective (equation 23). Palladium complexes also catalyze the diaryl ether formation as indicated by Mann and Hartwig.
employing 1,1'-diphenylphosphinoferrocene (DPPF) ligand. The method can couple aryl bromides with electron-withdrawing groups and sodium phenoxides. Biphenylphosphine and binaphthylphosphine were used by Buchwald and coworkers who coupled less reactive aryl bromide, chloride and triflate possessing electron-donating groups (equation 24). A modified Ullmann reaction was reported by Barton and coworkers using arylbismuth in the presence of a catalytic amount of a copper complex (equation 25). Evans and coworkers and others found that the reaction of phenol and arylboronic acid in the presence of stoichiometric amounts of Cu(OAc)$_2$ gave aryl ethers at room temperature (equation 26). Jung and coworkers employed intramolecular Pummerer-type rearrangement for the diaryl ether synthesis.

$$\text{CH}_3\text{O}$$
$$\text{O}$$
$$\text{H}$$
$$\text{N}$$
$$\text{O}$$
$$\text{CH}_3\text{O}_2\text{C}$$
$$\text{I}$$
$$\text{NaH, CuBr} \cdot \text{SM}_{2}$$
$$\text{dioxane}$$
$$\text{92\% ee}$$
$$\text{(21)}$$

$$\text{OH}$$
$$\text{CH}_3$$
$$\text{CH}_3$$
$$\text{CH}_3$$
$$\text{OH}$$
$$\text{+}$$
$$\text{Br}$$
$$\text{(CuOTf)}_2 \cdot \text{C}_6\text{H}_6$$
$$\text{AcOEt cat}$$
$$\text{Cs}_2\text{CO}_3$$
$$\text{toluene}$$

$$\text{CH}_3\text{O}$$
$$\text{O}$$
$$\text{CH}_3\text{O}_2\text{C}$$
$$\text{N}$$
$$\text{O}$$
$$\text{CH}_3\text{O}_2\text{C}$$
$$\text{(22)}$$
Oh

+ NH₂

Br CH₃

CH₃

CuCl, ligand cat diglyme

O

NH₂

CH₃

ligand = N

<table>
<thead>
<tr>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
</tr>
</tbody>
</table>

or

N

<table>
<thead>
<tr>
<th>NMe₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH</td>
</tr>
</tbody>
</table>

(23)

Oh

+ Cl

CH₃

CH₃

Pd(OAc)₂, ligand cat NaH toluene

CH₃

Bu-n

ligand = P(Bu-t)₂

(24)
The S_NAr reaction is another attractive method for diaryl ether synthesis, and reactions of o-nitro- and o-cyanofluorobenzenes with phenols were reported. π-Complexation of aryl halides with transition metals activates the aromatic nuclei toward S_NAr. Segal employed a ruthenium chlorobenzene complex in the poly(aryl ether) synthesis, and the methodology was extensively studied by Pearson, Rich and their coworkers using manganese complex and later iron and ruthenium complexes in natural product synthesis.

The intramolecular substitution of an aromatic chloride with a phenylalanine derivative takes place at room temperature without racemization (equation 27).

3. O-glycosidation

In relation to the synthesis of natural products and biologically active unnatural compounds, O-glycosidation of phenol has been studied; it is an acetal formation reaction at the sugar anomeric position. The classical König–Knorr method treats phenol with glycosyl bromide or chloride in the presence of metal promoters such as mercury or cadmium halides. Yields, however, were not satisfactory, and several effective methods were developed (equation 28). Phase transfer methods using alkali metal bases are effective for the O-glycosidation of phenols giving thermodynamically stable β-anomers either from perbenzyl or peracetyl glycosyl bromides and even from N-acetylglucosamine.

Unreactive o-hydroxyacetophenones are O-glycosidated using K_2CO_3 and benzyltrimethylammonium chloride. Glycosyl fluorides are excellent substrates, since fluorophilic activation differentiates many other oxygen functionalities in a sugar molecule. Suzuki and
coworkers found that benzyl protected glucopyranosyl fluorides reacted with phenol in the presence of Cp₂HfCl₂–AgClO₄ promoter giving the α-anomers selectively. Reaction of peracetylated glucopyranosyl fluorides was examined by Yamaguchi and coworkers: BF₃•OEt₂ gave the α-anomers, while addition of a guanidine base provided the β-anomers. 1-Acetyl sugars, being stable and readily available, are used for the glycosidation with silylated or stannylated phenols in the presence of Lewis acids, giving the β-anomers. 1-Trifluoroacetyl sugars react with phenol itself in the presence of BF₃•OEt₂. Inazu and coworkers used 1-dimethylphosphonothioate in the presence of AgClO₄. Kahn and coworkers employed sulfoxide in the presence of trifluoromethanesulfonic anhydride via Pummerer rearrangement, where the stereochemistry is controlled by changing the solvent; the α-anomers are formed in toluene and the β-anomers in dichloromethane. 1-Trimethylsilyl ethers were used by Tieze and coworkers. Free 1-hydroxy sugars were glycosylated by in situ formed p-nitrobenzenesulfonate giving the α-anomers, and the Mitsunobu reaction was employed by Roush giving the β-anomers.

Danishefsky and coworkers used a 1,2-α-epoxyglucose as an glycosyl donor, which is derived from a glucal by dioxirane oxidation. Under basic conditions, the configuration at the anomeric center inverts giving the β-anomers (equation 29), while Lewis
10. Synthetic uses of phenols

\[
\begin{align*}
\text{OX} & \quad + \\
\text{ROCH}_2 & \quad \text{Y} \\
\text{RO} & \quad \text{RO} \\
\text{ROCH}_2 & \quad \text{OR} \\
\text{RO} & \quad \text{RO} \\
\text{activator} & \quad = \\
\end{align*}
\]

\(\alpha\)-anomer

\(\beta\)-anomer

activator = \(R_4\text{NOH}\), \(\text{Cp}_2\text{HfCl}_2\cdot\text{AgClO}_4\), \(\text{BF}_3\cdot\text{OEt}_2\), \(\text{BF}_3\cdot\text{OEt}_2\)-tetramethylguanidine, \(\text{SnCl}_4\), \(\text{AgClO}_4\), \(\text{Tf}_2\text{O}\), \(\text{PPh}_3\cdot\text{EtO}_2\), etc.

\(X = \text{H}, \text{SiMe}_3, \text{SnBu}_3\), etc.

\(Y = \text{F}, \text{Cl}, \text{Br}, \text{OAc}, \text{OPSM}_2\), \(\text{OPh}, \text{OH}\), etc.

\(X = \text{Ac, PhCO, PhCH}_2\), etc. (28)

\[
\begin{align*}
\text{OH} & \quad + \\
\text{BnOCH}_2 & \quad \text{BnO} \\
\text{BnO} & \quad \text{BnO} \\
\text{acetone} & \quad \text{K}_2\text{CO}_3, 18\text{-crown-6} \\
\text{BnOCH}_2 & \quad \text{BnO} \\
\text{BnO} & \quad \text{OH} \\
\end{align*}
\]

(29)

acid promotion gives the \(\alpha\)-anomers predominantly\(^{112}\). Lewis acids, \(\text{BF}_3\cdot\text{OEt}_2\), \(\text{InCl}_3\) and \(\text{Yb(OTf)}_3\), promote the Ferrier reaction, which is the \(S_N2'\) reaction of glycal and phenols giving phenyl 2-unsaturated glucosides\(^{113,114}\). Microwave irradiation without solvent was reported to promote the Ferrier reaction\(^{115}\). 1,2-Cyclopropanated glucose was used for the donor in the presence of \([\text{Pt(C}_2\text{H}_4\text{)}\text{Cl}_2]\)\(_2\) giving 2-methylated \(\alpha\)-glucosides with concomitant cyclopropane cleavage\(^{116}\).
Among many C−C bond forming reactions of phenols, the classical Friedel−Crafts method is still important, since it possesses an advantage of converting aromatic C−H bonds to C−C bonds without any synthetic intermediate. However, there are drawbacks of (i) employing strong Lewis acids often in stoichiometric amounts, and (ii) being effective only for C-alkylation or C-acylation and not, for example, C-ethenylation or C-ethynylation. Alkylation of halogenated phenols has become useful based on the development of various organometallic reactions such as the Suzuki coupling, the Heck reaction, the Stille coupling and the Sonogashira coupling. This methodology, however, requires extra steps for the preparation of halogenated phenols in a regioselective manner, and the hydroxy group generally must be protected prior to the organometallic reaction. A demand therefore exists for new synthetic methodologies, which directly convert aromatic C−H bonds of phenol to C−C bonds, employing catalytic amounts of reagents. The hydroxy group of phenol serves as a directing group in such aromatic C−H bond activation and C−C bond formation.

1. C-alkylation: Bond formation with sp³ carbon

The C−C bond formation between the aromatic sp² carbons of phenol and sp³ carbons can be conducted either under basic or acidic conditions, and can compete with O-alkylation. The o/p-selectivity is another matter of interest. Although the classical reaction of alkali metal phenoxides with alkyl halides generally takes place at the oxygen atom, C-alkylation occurs in some cases depending on solvent, counter cation and heterogeneity of the reaction system. The regio- and stereoselectivity of the phenol alkylation was examined using a chiral ortho-ester under acidic conditions (equation 30). The C- and O-alkylation is controlled by the electronic nature of the substituent on the ortho-ester; an electron-rich aryl group induces the C-alkylation. The stereochemistry at the benzyl carbon is retention of configuration for the trans-isomer and inversion for the cis-isomer, which is explained by the involvement of free carbocation. Heating a mixture of
phenol and 1-adamantyl halides at 100–200°C for several hours to days gives C-alkylated phenols, in which a small amount of the acid formed during the reaction may be catalyzing the generation of the tertiary carbocations (equation 31)119. Adamantyl bromide gives predominantly the p-isomer while the chloride gives the o-isomer. Secondary alkyl halides such as 2-bromoadamantane, bromocyclohexane or 2-bromonorbornane can also be used.

Several methods were reported for C-allylation of phenol, which is an alternative to the Claisen rearrangement120,121. The reaction sometimes competes with chroman formation by the addition of the phenol hydroxy group to the olefin. Potassium phenoxides in the presence of ZnCl\textsubscript{2} react with allyl halides giving o-allylphenols (equation 32)122. In the absence of the zinc salt, a modest yield of O-allylated phenol is obtained. Stoichiometric amounts of copper metal and copper(II) perchlorate also promote the o-allylation123. Molybdenum complexes [$\text{Mo(CO)}_4\text{Br}_2$]\textsubscript{2} or Mo($\text{CO})_3\text{CH}_3\text{CN})_2\text{SnCl}_3$ catalyze allylation of phenol with allyl acetate, and (acac)$_2\text{Mo(SbF}_6)_2$ allyl alcohol, in which the formation of a π-allyl molybdenum complex is proposed124,125. Treatment of allyl alcohols with Brønsted acids in general provides chromans, for which two mechanisms are suggested: (i) initial O-allylation followed by cyclization, and (ii) initial C-allylation126–128. Conjugated 1,3-dienes are used for the C-allylation in the presence of Lewis acid, zeolite or a transition metal complex129–131. Rhodium catalysis found by Bienaymé and coworkers couples β-springene and a phenol giving the C-allylated phenol (equation 33)132. Cleavage of a vinyliclopropanecarboxylate with tin phenoxide was reported to give an o-allylated product133.

Inoue, Sato and coworkers studied a [2.3]sigmatropic rearrangement for the synthesis of o-alkylphenol. Reaction of a sulfoxide and phenol in the presence of dehydrating reagents such as thionyl chloride or benzenesulfonyl chloride provides phenoxysulfonium salts, which on treatment with triethylamine are converted to o-(α-alkylthioalkyl)phenols134,135. Since the benzylic thio group can be readily removed, the overall transformation provides the o-alkylated phenols. Later, a method to treat sulfides with sulfuryl chloride was developed for the same transformation (equation 34)136, which is more effective than the original Gassmann’s method employing N-chlorosuccinimide.

Posner and Canella used the directed metalation technology for phenol C-alkylation (equation 35); phenol was dimetalated at both the hydroxy group and the o-position with t-butyllithium, and treatment with methyl iodide gave o-cresol137. Brandsma and coworkers employed a complex reagent of butyllithium, N,N,N',N''-tetramethylethylenediamine, and potassium t-butoxide for the metalation138. Bates and Siahaan metalated cresols with butyllithium and potassium t-butoxide, and the o- and m-isomers gave the organometallic intermediate in good yield, while the yield was fair for the p-isomer139. The Simmons–Smith
reagent is effective for the o-methylation of phenol, which is considered to involve iodomethylzinc phenoxide (equation 36)140.

\[
\begin{align*}
\text{OH} &+ \beta\text{-springene} \\
\text{toluene} &\xrightarrow{[\text{Rh(COD)Cl}]_2, \text{dppb, K}_2\text{CO}_3 \text{ cat}} \\
\text{dppb} &= \text{Ph}_2\text{PCH}_2\text{(CH}_2\text{)}_2\text{CH}_2\text{PPh}_2
\end{align*}
\]

\[
\begin{align*}
\text{OH} &+ i\text{-PrS} \\
\text{CH}_2\text{Cl}_2 &\xrightarrow{\text{SO}_2\text{Cl}_2, \text{Et}_3\text{N}} \\
\text{OH} &+ \text{SPr-i}
\end{align*}
\]
Total synthesis of a group of antibiotics containing aryl C-glycoside linkage, many of which possess C–C bonds between phenol o/p-positions and sugar anomeric centers, have attracted much interest during the last two decades. Suzuki and coworkers showed that the initial aryl O-glycosidation followed by a rearrangement to the C-glycoside (O-to C-glycosyl rearrangement) provides convenient access to this C–C bond formation (equation 37). Glycosyl fluoride and phenol are reacted in the presence of the
Cp₂HfCl₂−AgClO₄ reagent giving the C-glycosidated phenol at the α-position. Kometani and coworkers reported the use of BF₃•OEt₂ for this transformation. The stereochemistry of the glycosyl center is dependent on the Lewis acid, and the stronger Lewis acid Cp₂HfCl₂−AgClO₄ gives the thermodynamically stable β-anomer from glucopyranosides. The rearrangement of the kinetically favorable α-anomer to the thermodynamically stable β-isomer is observed with a weaker Lewis acid. Suzuki and coworkers and Toshima and coworkers indicated that glycosyl esters and ethers can also be used as the glycosyl donor. 2-Unsaturated glucose also undergoes such C−O rearrangement with phenol in the presence of Lewis acids.

2. C-alkenylation and C-phenylation: Bond formation with sp² carbon atoms

Nucleophilic attack of phenol on a carbonyl followed by dehydration has been generally used to attach alkenyl sp² carbon atoms to the phenol nuclei. The methodology works well when the dehydration reaction can be controlled as in the classical Pechmann reaction, which is the condensation of β-ketoesters and phenols to give coumarins. The reaction is accelerated by applying microwave irradiation or using an ionic liquid as the solvent. A zeolite catalyst allows the synthesis of coumarins from acetic anhydride and phenols with concomitant Claisen condensation. A modified Pechmann reaction employs propiolic acid in place of a keto ester under microwave irradiation. Zeolite HSZ-360 catalyzes the reaction of phenol and a propargyl alcohol to give chromen (equation 38) in which an enyne compound generated by dehydration is considered to be the intermediate.

Addition reactions of phenols to acetylenes which provide a direct access to C-alkenylated phenols have recently been developed. The method giving such non-cyclized alkenylphenols requires in some cases devices to avoid the decomposition of the products. Sartori and coworkers reported alkenylation of phenol with phenylacetylene in the presence of HSZ-360 catalyst. Yamaguchi and coworkers found that ethenylation (C₂-olefination) of phenol can be conducted using acetylene in the presence of stoichiometric amounts of SnCl₄ and tributylamine (equation 39). The ethenylation takes place exclusively at the α-position. The reaction tolerates electron donating and withdrawing groups on phenol and is relatively insensitive to steric hindrance; m-substituted phenols give mixtures of regioisomers in comparable amounts even in the case of m-(t-butyl)phenol. Modifications of the reaction conditions give 2,6-divinylphenols. The mechanism involves a carbometalation of tin phenoxide and ethynyltin (carbostannylation) followed by protodestannylation under aqueous base conditions. The stannylated alkene structure is considered to protect the ethenylphenols from decomposition. Use of butyllithium as the base in place of tributylamine allows one to conduct the ethenylation with trimethylsilylacetylene in a catalytic mode in regard to the metal reagents (equation 40). Gallium phenoxides also react with
the silylacetylene giving \(o-(\beta\text{-silylethenyl})\text{phenols}\); the organogallium compound undergoes similar carbometalation with the organotin compound. This is an interesting example of organometallic reagents of elements arranged diagonally in the periodic table that exhibit similar reactivities. Trost and Toste developed a palladium catalyzed reaction of phenol and alkyl propiolates in the presence of carboxylic acid (equation 41). The electron-withdrawing group is essential to activate the alkyne, and the phenol needs electron donating groups.

\[
\begin{align*}
\text{(39)} & \\
\text{(40)} & \\
\text{(41)}
\end{align*}
\]

Barton and coworkers indicated that phenols are directly C-phenylated with \(\text{Ph}_4\text{BiX} \) or \(\text{Ph}_3\text{BiX}_2 \) (\(X = \text{OCOCF}_3 \) etc.) reagents under basic conditions (equation 42). Yamamoto and coworkers later developed an asymmetric version of the reaction in the presence of optically active amines. Jung and coworkers developed a Pummerer-type rearrangement of 2-sulfinylphenol giving \(\alpha\text{-ketosulfonyl} \) salt, which was attacked by the phenol giving biphenols (equation 43).
3. C-ethynylation: Bond formation with sp carbon atoms

Ethynylation of phenol has been conducted using the Sonogashira coupling reaction of a halogenated phenol and terminal alkyne. It was recently found by Yamaguchi and coworkers that phenol itself can be ethynylated at the \(o \)-position using triethylsilylethynyl chloride; the reaction is catalyzed by \(\text{GaCl}_3 \), butyllithium and 2,6-di(\(t \)-butyl)-4-methylpyridine (equation 44)\(^{166} \). The reaction takes place via carbogallation of the phenoxygallium and the silylacetylene, followed by \(\beta \)-elimination regenerating \(\text{GaCl}_3 \). O-alkylation of phenol with \(\text{Cl}_2\text{C}≡\text{CF}_2 \) under phase transfer conditions followed by treatment with excess butyllithium also gives \(o \)-ethynylphenols\(^{167} \).

4. C-hydroxyalkylation and related reactions

Metal phenoxides are structurally related to metal enolates, and undergo aldol reaction to give C-hydroxyalkylated phenols. Reaction of formaldehyde and phenol to give phenol resins is of industrial importance, and occurs under either basic or
10. Synthetic uses of phenols

acidic conditions. Casiraghi and coworkers observed an uncatalyzed reaction of phenols and paraformaldehyde giving salicyl alcohols in the presence of 1 equivalent of 1,2-dimethoxyethane (equation 45). The reactions of magnesium, titanium and aluminum phenoxides which take place at the o-position of the phenol hydroxy group were extensively studied by Casnati and coworkers. Applications to heterocyclic carbonyl compounds have appeared. Reaction of trifluoroacetaldehyde hemiacetal and phenols gives the o- and p-isomers depending on the promoters; K₂CO₃ gives the p-isomers and ZnI₂ the o-isomers. Phenylboronic acid or dichlorophenylborate in the presence of triethylamine reacts with phenols and aldehydes giving 1,3,2-dioxaborins, which are hydrolyzed oxidatively with hydrogen peroxide (equation 46).

The stereochemistry of the aldol reaction between phenols and aldehydes was studied in detail by Italian chemists. Addition of magnesium phenoxides to chiral aldehydes with α-heteroatoms such as glyceraldehyde, sugar aldehyde and aminoaldehyde gives uniformly the syn-isomers, while titanium phenoxides give the anti-isomers (equation 47). The magnesium phenoxides are considered to form chelation intermediate and the titanium Cram-model intermediate. 8-Phenylmenthyl ester is an excellent chiral auxiliary for the diastereoselective addition of titanium phenoxides to glyoxylate and pyruvate. Enantioselective addition of phenol to chloral using a stoichiometric amount of chiral menthylpyruvate promoter gives the adducts in 80% ee. Double asymmetric induction in the addition of phenol to menthyl pyruvate employing a menthoxylaluminum promoter indicated that the use of the same configuration of menthyl derivative provided higher stereoselectivity (matched pair). Erker developed a catalytic asymmetric reaction of...
methyl pyruvate and 1-naphthol using 1 mol% of a chiral zirconium cyclopentadienyl complex giving the adduct in 84% ee (equation 48).

The classical Mannich reaction converts phenols to aminomethylated phenols. The reaction involves the addition of phenols to C=\(N\) bonds of imines or iminium salts formed from formaldehyde and primary or secondary amines, respectively. Recent modifications employ the reaction of an aminal in the presence of SO\(_3\), which gives a sulfonate ester, followed by \(o\)-aminomethylation (equation 49). Sc(OTf)\(_3\) catalyzed three-component reactions of phenol, glyoxylates and amine. Addition of a titanium phenoxide generated from TiCl\(_4\) and the phenol to activated C=\(N\) bonds of a chiral glyoxylate imine exhibits high diastereoselectivity (equation 50). Fukuyama utilized Lewis acid promotion for the stereoselective Mannich reaction of phenols and cyclic acylimines.
Attaching C=O groups to phenol nuclei has been conducted using classical methods such as the Reimer–Tieman reaction, the Duff reaction (formylation), the Friedel–Crafts acylation, the Fries rearrangement (acylation) and the Kolbe–Schmidt reaction (carboxylation). New methods employing various metal derivatives were developed to improve the efficiency of the processes. The Reimer–Tieman reaction conducted with chloroform under basic conditions can be accelerated by ultrasound irradiation. Jacobsen and coworkers employed the modified Duff reaction, treating hexamethylenetetramine in trifluoroacetic acid for large-scale preparation of substituted salicylaldehydes. Phenols are conveniently formylated at the ortho-position by treating paraformaldehyde with tin or magnesium phenoxides (generated from the phenols with either SnCl₄–tributylamine or a Grignard reagent) which involves the Canizzaro oxidation of initially formed salicyl alcohols.

Phenols are C-acylated either by electrophilic substitution under acidic conditions or by nucleophilic acylation under basic conditions. Advances in the chemistry of strong acids and Lewis acids provided novel aspects to catalytic Fries rearrangement and Friedel–Crafts acylation. Effenberger and Gutermann used a catalytic amount of...
trifluoromethanesulfonic acid for the Fries rearrangement and obtained the \(o \)-isomer as the thermodynamic product\(^{202} \). Kobayashi and coworkers reported the catalytic Fries rearrangement using Hf(OTf)\(_4\) or Sc(OTf)\(_3\), which are Lewis acids relatively insensitive to oxygen functionalities, including water\(^{203} \). While phenol is 4-acylated by this method, \(m \)-substituted phenols and 1-naphthol are 2-acylated. The Friedel–Crafts acylation is conducted using carboxylic acid in the presence of Hf(OTf)\(_4\) (equation 52)\(^{204} \) or zeolite HZSM\(^{205} \). The latter exhibits very high \(o \)-selectivity.

\[
\begin{align*}
\text{CH}_3\text{OH} + (\text{HCHO})_n & \xrightarrow{\text{SuCl}_4, \text{Bu}_3\text{N}} \text{CH}_3\text{CHO} \quad \text{toluene} \\
\text{CH}_3\text{COO}^+ + \text{Hf(OTf)}_4 \xrightarrow{\text{cat}} \text{CH}_3\text{CO}_2\text{H} & \xrightarrow{\text{toluene–methanol}} \text{CH}_3\text{CO}_2\text{H}
\end{align*}
\]

Sartori and coworkers indicated that magnesium phenoxides can be C-acylated with unsaturated acid chloride and oxalyl chloride\(^{206,207} \). The effect of the metal on the acylation of \(o \)-(\(t \)-butyl)phenoxide with chloroacetyl chloride was also examined in regard to the O/C-selectivity and \(o/p \)-selectivity. Alkali metal phenoxides give O-acylated product exclusively; aluminum and titanium phenoxides, and to some extent magnesium phenoxide, exhibit a tendency to C-acylation\(^{208} \). As for the reaction site, the exclusive \(o \)-acylation was observed for (ArO)\(_3\)Al, (ArO)\(_4\)Ti and ArOMgBr, while ArOAlCl\(_2\) and ArOTiCl\(_3\) were relatively \(p \)-selective. The results were ascribed to the higher coordinating ability of magnesium metal. Sugasawa and Piccolo and their coworkers showed that BCl\(_3\) is effective for the \(o \)-acylation of phenols with acid chlorides (equation 53)\(^{209,210} \).

\[
\begin{align*}
\text{OH} + \text{PhCOCl} & \xrightarrow{\text{BCl}_3 \text{toluene}} \text{OH} \quad \text{COPh} \\
\text{CH}_3\text{O} + \text{PhCOCl} & \xrightarrow{\text{BCl}_3 \text{toluene}} \text{OH} \quad \text{COPh}
\end{align*}
\]

The classical Kolbe–Schmidt reaction treats alkali metal phenoxides and carbon dioxide at higher than atmospheric pressure, giving salicylic acid. Hirao and Kato developed several modifications for industrial production\(^{211} \). Recently, phenol phosphate was enzymatically carboxylated, giving \(p \)-hydroxybenzoic acid\(^{212} \). As for related reactions, Sartori and coworkers conducted \(o \)-carbamoylation of aluminum or boron phenoxides with alkyl isocyanate\(^{213} \), and Adachi and Sugasawa \(o \)-cyanated phenols using methyl thioisocyanate in the presence of BCl\(_3\) (equation 54)\(^{214} \).
C. C-fluorination

Organofluorine compounds have become very important in relation to the development of novel biologically active substances215,216. Since the direct treatment of fluorine and organic molecules results in an explosive reaction, modified methods have been developed for effective aromatic fluorination. Use of 11% molecular fluorine diluted with nitrogen was examined by Misaki for fluorination of phenols217; phenol gave predominantly \(\alpha \)-fluorophenol (equation 55), \(p \)-cresol gave a considerable amount of 4-fluor-2,5-cyclohexadienone and salicylic acid was fluorinated at the 4-position. The presence of a Lewis acid such as \(\text{BCl}_3 \) or \(\text{AlCl}_3 \) increases the yield and the percentage of the \(p \)-isomer218. In order to control the reactivity and attain selectivity of fluorination, reagents containing \(\text{O}^–\text{F} \) bonds such as \(\text{CsSO}_3\text{F} \) were developed219. Later, \(\text{N}^–\text{F} \) compounds were also studied and were shown to have the advantage of controlling the reactivity by changing the nitrogen substituents. Barnette used \(\text{N}^–\text{fluorosulfoneamide CF}_3\text{SO}_2\text{N}(\text{-Bu})\text{F} \), which reacted with potassium salt of 1-naphthol to give the 2-fluoro derivative220. Des-Marteau and coworkers developed more reactive \(\text{N}^–\text{fluorosulfoneimides (CF}_3\text{SO}_2\text{)}_2\text{NF} \), which directly fluorinated phenol221. \(\text{N}^–\text{Fluoropyridinium salts were studied extensively by Umemoto and coworkers and, for example, the reaction can be promoted by introducing electron-withdrawing groups on the pyridine}222–225. Very high \(\alpha \)-selectivity was attained when a betaine was employed. Treatment of 4-hydroxyphenyl acetate with 2,6-dimethoxycarbonylpyridinium salt gave a considerable amount of the 4-fluoro derivative along with the 2-derivative (equation 56).
III. METAL PHENOXIDE AS REAGENT IN ORGANIC SYNTHESIS

Metal phenoxides are utilized extensively in organic synthesis as reagents, since they can readily be prepared from phenols and appropriate metal reagents, and the phenol moiety can easily be modified either sterically or electronically. Particularly, 2,2′-dihydroxy-1,1′-binaphthyl (BINOL), salicylideneamine and N,N′-ethylenebis(salicylideneamine) (salen) proved to be excellent phenol ligands for asymmetric synthesis. Since some of their reactions have recently been reviewed\(^2\), it may not be appropriate to reproduce all of them. Instead, this section concentrates on the effect of the phenol moiety on the chemical reactivity and selectivity, and tries to provide structure–activity relationships for the metal phenoxide reagents. Metalated derivatives of monophenols, biphenols and salicylaldehyde imines are discussed separately.

A. Organic Synthesis Using Metal Complexes of Monophenol

Maruoka and Yamamoto introduced aluminum phenoxide reagents in organic synthesis\(^2\). Aluminum phenoxides are sufficiently Lewis acidic to interact with oxygen functionalities such as carbonyl or ether, and to change the reaction site or the stereochemistry. High selectivity in the axial attack of methyllithium addition to 4-(t-butyl)cyclohexanone was attained using bulky aluminum reagents such as methylaluminum bis(2,4,6-tri(t-butyl)phenoxide) (MAT) (equation 57)\(^2\). In the absence of the reagent, modest selectivity for the axial attack was observed. Analogously, the presence of MAT directs the addition to α-methyl substituted aldehydes in a high anti-Cram manner (equation 58), and the addition to conjugate enones at the γ-position. Aluminum tris(2,6-diphenylphenoxide) (ATPH) gives mostly 1,4-adducts even from unsaturated aldehydes (equation 59)\(^2\). These aluminum reagents were used in several selective syntheses which otherwise could not be conducted, such as 1,6-addition to

\[
\text{CH}_3\text{Li} + \text{MAT} \xrightarrow{\text{toluene}} \text{CH}_3\text{Li} + \text{CH}_3\text{Li}
\]

(57)
acetonone230,231, enolate formation from unsaturated aldehydes and aldol reaction
at the remotest nucleophilic center232 and selective alkylation of hindered aldehydes in
the presence of less hindered aldehydes and ketones233. Use of appropriate phenoxydes
controls the double bond stereochemistry in the Claisen rearrangement of allyl vinyl
ethers (equation 60)234, which was extended to asymmetric synthesis using a binaphthyl
derivative ATBN-F (equation 61)235.

\begin{equation}
\text{Ph CHO} + \text{CH}_3\text{MgI} \quad \xrightarrow{\text{MAT, toluene}} \quad \text{Ph CH}_3(\text{OH}) + \text{Ph CH}_3(\text{OH}) \quad 93:7
\end{equation}

anti-Cram

\text{Cram} (58)

\begin{equation}
\text{Ph CH}_2\text{CHO} + n\text{-BuCaI} \quad \xrightarrow{\text{ATPH}} \quad \text{Ph CH}_3(\text{OH}) + \text{Bu-}n \quad 98:2
\end{equation}

(59)

\text{ATPH} = \text{Ph}_\text{Al}_\text{O Ph}_\text{Ph}_\text{Ph}_\text{Ph}

\begin{equation}
\text{R CHO} \xrightarrow{\text{reagent A, } \text{CH}_2\text{Cl}_2} \quad \text{R O} \xrightarrow{\text{reagent B, } \text{CH}_2\text{Cl}_2} \quad \text{R CHO}
\end{equation}

(60)

reagent A = \text{Br Bu-}t_\text{Ph}_2\text{O Al t-Bu}

reagent B = \text{Ph Al CH}_3_\text{Ph}
(R)-ATBN-F =

\[
\begin{align*}
&\begin{array}{c}
\text{CHO} \\
\text{Ph}
\end{array} \\
\text{Ph}_3\text{PS}
\end{align*}
\]

\[\text{ligand cat}\]

(61)

\[
\begin{align*}
\text{CHO} &+ \text{PhCO} \\
\text{Et}_2\text{Zn, Ph}_3\text{P} &\rightarrow \text{ligand cat} \\
\text{THF}
\end{align*}
\]

98% ee

(62)

\[
\begin{align*}
\text{CHO} &+ \text{OH} \\
\text{Ph}_3\text{PS}
\end{align*}
\]

(63)

98% ee

ligand =
Trost and coworkers developed a chiral zinc phenoxide for the asymmetric aldol reaction of acetophenone or hydroxyacetophenone with aldehydes (equations 62 and 63). This method does not involve the prior activation of the carbonyls to silyl enol ethers as in the Mukaiyama aldol reactions. Shibasaki and coworkers employed titanium phenoxide derived from a phenoxy sugar for the asymmetric cyanosilylation of ketones (equation 64). 2-Hydroxy-2′-amino-1,1′-binaphthyl was employed in the asymmetric carbonyl addition of diethylzinc, and a 2′-mercapto derivative in the asymmetric reduction of ketones and carbonyl allylation using allyltin.

\[
\begin{align*}
\text{Ti(OPr-\text{\textit{i}})}_4, \text{ligand cat} & \\
\text{ligand} & = \text{Ph}_2\text{PO} \quad \text{HO} \quad \text{O} \quad \text{HO} \quad \text{Ph} \\
\text{Me}_3\text{SiO} & \quad \text{CN} \\
\end{align*}
\]

(64)

Yamamoto and coworkers protonated silyl enol ethers with a stoichiometric amount of a complex derived from BINOL and SnCl₄ giving optically active α-alkyl ketones. A catalytic reaction was developed employing another tin complex derived from BINOL monomethyl ether (LBA), in which 2,6-dimethylphenol was used as the proton source (equation 65).

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{OSiMe}_3 & \quad \text{Ph} \\
\text{Ph} & \quad \text{Ph} \\
\text{O} & \quad \text{Ph} \\
\text{CH}_3 & \quad \text{SnCl}_4 \\
\text{H} & \quad \text{H} \\
\end{align*}
\]

(65)

B. Organic Synthesis Using Metal Complexes of Biphenol: BINOL and Derivatives

The most common metal biphenoxide used in organic synthesis is that derived from chiral BINOL, the aluminum hydride complex of which was employed in asymmetric
carbonyl reduction by Noyori and coworkers247. Since then, its potential has been demonstrated in a variety of stoichiometric and catalytic asymmetric reactions: the Diels–Alder reaction, ene-reaction, carbonyl addition reaction, conjugate addition reaction, epoxide cleavage reaction or enolate protonation. The effect of the substituents into the BINOL moiety is discussed here.

The earliest work of a modified BINOL in asymmetric synthesis was conducted by Yamamoto and coworkers, who employed a stoichiometric amount of 10,10′-dihydroxy-9,9′-biphenanthrene aluminum hydride complex in the reduction of phenyl ketones (equation 66)248. Higher enantiomeric excess (ee) was attained compared with the original BINOL. Introduction of the 3,3′-substituents into the BINOL generally results in higher ee in the Diels–Alder reaction, provided that the group does not interfere with the reaction. Kelly and coworkers reported the reaction of juglone and 1-methoxy-1,3-cyclohexadiene in the presence of a stoichiometric amount of 3,3′-diphenyl-1,1′-binaphthylborane derivative in >98% ee (equation 67)249. The higher selectivity compared
with the 3,3′-dimethyl derivative (70% ee) was attributed to the effective shielding of an enantioface by the phenyl group. Yamamoto and coworkers employed 2,2′-dihydroxy-3,3′-bis(triarylsilyl)-1,1′-binaphthyl aluminum complex in the asymmetric hetero-Diels–Alder reaction and found the tris(3,5-xylyl)silyl derivative to exhibit higher ee than triphenylsilyl (equation 68)250–252. Wulff and coworkers employed 2,2-diphenyl-4,4′-dihydroxy-3,3′-diphenanthryl (VAPOL) aluminum complex possessing a deeper pocket, and attained 97.8% ee with a turnover number of 200253,254. The asymmetric Claisen rearrangement of 1-trimethylsilylvinyl cinnamyl ether was promoted by 3,3′-bis(t-butyldiphenylsilylated) BINOL aluminum complex (equation 69)255, and the asymmetric ene-reaction of 2-phenylthiopropene and pentafluorobenzaldehyde by the triphenylsilyl derivative256.

Their 3,3′-substituents are utilized not only for their steric bulk, but also for the coordination to metals. Yamamoto and coworkers employed a boron complex of 3,3′-bis(2-hydroxyphenyl) BINOL in the asymmetric Diels–Alder reaction of cyclopentadiene and acrylaldehyde (equation 70)257–261. The ligand possesses two additional hydroxy groups and forms a helical structure on coordination. The catalyst is considered to function as a chiral Brønsted acid and a Lewis acid. The complex was also used in the Diels–Alder reactions and aldol reactions of imines. Although addition of diethylzinc to aldehydes gives low ee using BINOL itself or its 3,3′-diphenyl derivative, the selectivity can be increased when coordinating groups are introduced at the 3,3′-positions. Katsuki and
coworkers developed 3,3′-bis(dialkylcarbamoyl) BINOL for highly selective addition to aromatic and unsaturated aldehydes, in which the amide group is considered to form a rigid chelated structure to the zinc metal (equation 71)262. The same catalyst is effective for the asymmetric Simmons–Smith cyclopropanation of allylic alcohols263. Pu and coworkers introduced 2,5-dialkoxyphenyl group at the 3,3′-positions, and attained very high ee even for aliphatic acyclic aldehydes, in which the oxygen functionality is likely to play an important role264,265. A polymeric catalysts containing the functionalized BINOL were also developed266.

\[
\text{PhCHO} + \text{Et}_2\text{Zn} \rightarrow \text{Ph} + \text{OH} + \text{OC}_6\text{H}_{13-\text{n}}
\]

Shibasaki and coworkers employed 3,3′-bis(diarylphosphonoylmethyl) BINOL aluminum complex for the asymmetric silylcyanation of aldehydes (equation 72)267. The
phosphonate group is designed for the nucleophilic activation of the silyl cyanide without affecting the Lewis acidic aluminum center. Accordingly, the phosphinoylethyl derivative with the C2-tether between BINOL and phosphinoyl moiety exhibits very low activity. Tuning of the substituents led to the development of a successful asymmetric Reisert reaction, in which a 2-methylphenyl derivative exhibited higher reactivity and stereoselectivity than a phenyl derivative (equation 73)268,269. A 3-hydroxymethyl BINOL lanthanum complex catalyzes the asymmetric epoxidation of conjugated ketones with cumene hydroperoxide270,271. Reetz and coworkers showed the reversal of the absolute configuration in the asymmetric oxidation of tolyl methyl sulfide with t-butyl hydroperoxide, when BINOL titanium complex and 6,6'-dinitro-1,1',2,2',3,3',4,4'-octahydro BINOL complex were used. A very low asymmetric induction was observed in the absence of the nitro group272. Shibasaki and coworkers linked two BINOL moieties at the 3-position and used zinc complex of the product in the direct aldol reaction of hydroxyacetophenone and aldehydes273,274.

\[
\text{Al cat (Ar} = \text{Ph}) \quad \begin{array}{c}
\text{OH} \\
n-C_6H_{13} \\
\text{CN} \\
n-C_6H_{13}
\end{array} \\
\begin{array}{c}
\text{Cl} \\
N(\text{allyl})_2
\end{array} \quad \begin{array}{c}
\text{Cl} \\
N(\text{allyl})_2 \\
\text{COR}
\end{array}
\]

\[
\begin{array}{c}
\text{O} \quad \text{O} \\
\text{POAr}_2 \\
\text{N} \quad \text{POAr}_2
\end{array} \\
\begin{array}{c}
\text{N} \quad \text{CN} \\
\text{Al cat (Ar} = \alpha-\text{CH}_3C_6H_4)
\end{array} \\
\begin{array}{c}
\text{Cl} \\
\text{Me}
\end{array} \quad \begin{array}{c}
\text{Cl} \\
\text{N(allyl)}_2
\end{array}
\]

\[
\text{RCOCl} \quad \text{CH}_2\text{Cl}_2
\]

6,6'-Substituents on BINOL also affect the reaction course. Mikami and coworkers, employing 6,6'-dibromo BINOL titanium complex, enhanced the stereoselectivity in the ene-reactions of trisubstituted olefins (equation 74), which was attributed to the compression of the internal bond angle Cl-Ti-Cl275. Kobayashi and coworkers conducted the asymmetric addition of silyl enol ethers to imines catalyzed by BINOL zirconium complex, in which the introduction of the 6,6'-dibromo group increased the ee from 70% to 90% (equation 75)276–278. Shibasaki and coworkers employed the same dibromo BINOL lanthanum complex in the Diels–Alder reaction of cyclopentadiene and acryloyloxazolidone279, and the higher ee in the reaction compared to the original BINOL was ascribed to the increased Lewis acidity. In the nitroaldol reaction, the use of 6,6'-diethynyl BINOL lanthanum complex attained higher diastereoselectivity and enantioselectivity (equation 76, also see equation 14)280.
\[
\text{HCOCO}_2\text{CH}_3 + \text{cyclohexene} \xrightarrow{\text{Ti cat}} \text{Cyclic product}
\]

\[
68\% \text{ ee (R = H)}
\]

\[
81\% \text{ ee (R = Br)}
\]

\[
\text{Ti cat} = \begin{array}{c}
\text{R} \\
\text{O} \\
\text{Cl} \\
\text{Ti} \\
\text{Cl}
\end{array}
\]

\[
\text{HO} \text{phenyl} + \text{allyl} \text{OSiMe}_3 \xrightarrow{\text{Zr cat}} \text{Product}
\]

\[
70\% \text{ ee (R = H)}
\]

\[
90\% \text{ ee (R = Br)}
\]

\[
\text{Zr cat} = \begin{array}{c}
\text{R} \\
\text{O} \\
\text{Zr} \\
\text{O} \\
\text{R}
\end{array}
\]

\[
\text{PhCHO} + \text{EtNO}_2 \xrightarrow{\text{La cat}} \text{Product}
\]

\[
66\% \text{ ee (R = H)}
\]

\[
93\% \text{ ee (R = C≡CSiEt}_3)
\]

\[
\text{La cat} = \begin{array}{c}
\text{R} \\
\text{O} \\
\text{La} \\
\text{O} \\
\text{R}
\end{array}
\]
Other use of the functionalized chiral BINOL includes the 5,5′,6,6′,7,7′,8,8′-octahydro derivative developed by Chan and coworkers, the titanium complex of which is more effective than BINOL in the enantioselective addition of triethylaluminum and diethylzinc, a 4,4′,6,6′-tetrakis(perfluorooctyl) BINOL ligand developed for easy separation of the product and catalyst using fluorous solvents for the same zinc reaction, an aluminum complex of 6,6′-disubstituted-2,2′-biphenyldiols used by Harada and coworkers in the asymmetric Diels–Alder reaction; a titanium complex of (S)-5,5′,6,6′,7,7′,8,8′-octafluoro BINOL employed by Yudin and coworkers in the diethylzinc addition, in the presence of which the reaction of the enantiomeric (R)-BINOL is promoted.

C. Organic Synthesis Using Metal Complexes of Salicylaldehyde Imines

Like BINOL, salicylaldehyde imines have become very important in asymmetric catalysis and a variety of polydentate ligands prepared from chiral monoamines and diamines are employed in oxidation reactions, carbenoid reactions and Lewis acid catalyzed reactions. As in the previous section, this section emphasizes the effect of the phenol moiety on the asymmetric catalysis. An imine derived from a chiral 1-phenethylamine and salicylaldehyde was employed in the copper catalyzed asymmetric cyclopropanation by Nozaki, Noyori and coworkers in 1966, which is the first example of the asymmetric catalysis in a homogeneous system. Salicylaldehyde imines with ethylenediamine (salen) have been studied extensively by Jacobsen and Katsuki and their coworkers since 1990 in asymmetric catalysis. Jacobsen and coworkers employed the ligands prepared from chiral 1,2-diamines and Katsuki and coworkers sophisticated ligands possess chirality not only at the diamine moiety but also at the 3,3′-positions.

Asymmetric cyclopropanation of styrene developed by Noyori was extended by Aratani to the industrial production of chrysanthemic acid (equation 77). Fukuda and Katsuki using salen cobalt complex prepared from chiral 1,2-diphenylamine attained high ee in the cyclopropanation of styrene with diazoacetate esters (equation 78). Unlike epoxidation (vide infra), introduction of t-butyl groups to 3,3′-positions results in low catalytic activity. However, a complex possessing 5,5′-dimethoxy groups exhibits high ee as well as high trans-selectivity. The same complex is used in the [2.3]sigmatropic rearrangement of S-ylide derived from allyl aryl sulfide and t-butyl diazoacetate.

\[
\text{CO}_2\text{menthyl-1} + \text{N}_2\text{CHCO}_2\text{menthyl-1} \xrightarrow{\text{Cu cat}} \text{Cu cat} = \begin{array}{c}
\text{Ph} \\
\text{Ar} \\
\text{O} \\
\text{Cu} \\
\text{N}
\end{array}
\]

\[
\text{Ar} = 2\text{-octyloxy-4-(t-butyl)phenyl}
\]

\[
\text{94\% ee}
\]
The stability of the salicylaldehyde imine ligand under oxidative conditions lead to the application in asymmetric oxidation reactions. Jacobsen and coworkers employed a manganese salen complex with \(t\)-butyl groups at the 3,3'-positions and attained especially high ee for the epoxidation of disubstituted cis-alkenes (equation 79). The role of bulky groups was ascribed to blocking the side-on attack to the manganese oxo-intermediate. Electron-donating groups at the 5,5'-positions also enhance the ee. Katsuki and coworkers examined salen manganese complexes derived from chiral diamines and chiral aldehydes, which possess 1-phenylpropyl or 1-naphthyl group at the 3,3'-positions.
The diastereomeric complexes containing stereogenic centers at the diamine moiety and at the 3,3'-substituent exhibit different behaviors in asymmetric catalysis. For example, asymmetric epoxidation of dihydronaphthalene using PhIO gave the product in high ee, when a ligand derived from (S,S)-2,3-diphenyl-2,3-butanediamine and (R)-aldehyde was employed (equation 80). It was also observed that the stereochemistry in the asymmetric epoxidation of cis-alkenes is mainly governed by the configuration at the diamine moiety rather than by the 1-phenylpropyl moiety, and that the stereochemistry of the trans-alkene epoxidation is governed by the configuration at the 1-phenylpropyl moiety.

Asymmetric sulfide oxidation giving optically active sulfoxide has also been studied using metal complexes of salicylaldehyde imines (equation 81). Fujita and coworkers examined a vanadium salen complex I derived from (R,R)-1,2-diaminocyclohexane and obtained (S)-sulfoxide in 40% ee from phenyl methyl sulfide using t-butyl hydroperoxide as oxidant. The selectivity is higher for a ligand equipped with 3,3'-dimethoxy groups than that without 3,3'-substituents or that with 3,3'-di(t-butyl) groups. Bolm and Bienwald improved the ee up to 85% by employing salicylaldehyde t-leucinol imine vanadium complex II with aqueous hydrogen peroxide, where the introduction of a 6-(t-butyl) group and t-butyl or nitro group at the 4-position enhances the enantioselectivity. A disulfide or dithioketal can also be oxidized asymmetrically. Although titanium salen complexes were not quite effective, Katsuki and coworkers improved the effectiveness by using a complex III possessing (R,R)-diamine moiety and (S)-axis chiral moiety at the 3,3'-positions. As for the manganese salen complex, Jacobsen and coworkers found that the selectivity of the sulfide oxidation can be markedly increased by employing complex IV with bulky substituents at the 3,3'-positions and electron-donating groups at the 5,5'-positions. Katsuki and coworkers further improved the ee using manganese complex V with axis chiral groups, in which the matched pair was (R,R)-1,2-diaminocyclohexane and (S)-axis configuration. Notably, the opposite combination is the matched pair for the epoxidation. (vide supra).
Ph-S-CH₃ + ROOH $\xrightarrow{\text{cat}}$ Ph-S-CH₃

\[
\text{cat} = \begin{array}{c}
\text{I} \\
\text{II} \\
\text{III} \\
\text{IV} \\
\text{V}
\end{array}
\]

(81)
Bolm and coworkers developed a chiral copper complex from an oxazoline and salicylic acid for the Baeyer-Villiger oxidation employing oxygen and an aldehyde for the oxidant, and high ee was obtained with a 4-nitro-6-(t-butyl)salicylic acid derivative (equation 82)314–317. Salicylaldehyde itself can be used as a catalyst ligand for the Baeyer-Villiger oxidation as indicated by Strukul and coworkers. Reaction of K\textsubscript{2}PtCl\textsubscript{4} and 6-methoxysalicylaldehyde in the presence of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP) gives acylplatinum complexes, which in the presence of perchloric acid catalyzes the asymmetric Baeyer-Villiger oxidation with hydrogen peroxide (equation 83)318.

\[
\text{Cu cat = } \begin{array}{c}
\text{O} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{Bu-t} \\
\text{6} \\
\text{t-Bu} \\
\text{4} \\
\text{Bu-t} \\
\text{N} \\
\text{O} \\
\text{t-BuCHO} \\
\text{O} \\
\text{Ph} \\
\text{O} \\
\text{Ph} \\
\text{Cu cat} \\
\text{benzene} \\
\text{69\% ee} \\
\end{array}
\]

\[
\text{Pt cat = } \begin{array}{c}
\text{PPh} \times \text{P} \\
\text{PPh} \times \text{P} \\
\text{O} \\
\text{OCH} \times \text{3} \\
\text{H} \times \text{2} \\
\text{H} \times \text{2} \\
\text{C}_{\text{5}} \times \text{H}_{\text{11}} \times \text{n} \\
\end{array}
\]

Manganese salen complex catalyzes C–H oxidation of organic molecules with NaOCl or PhIO, giving alcohols319. Larrow and Jacobsen observed kinetic resolution in the benzylic hydroxylation320. Katsuki and coworkers used the axis chiral salen manganese complexes for the benzyl hydroxylation and ether hydroxylation, and attained higher ee with the ligand possessing (R,R)-diamine and (R)-axis chirality (equation 84)321–323.
Although asymmetric aziridination of styrenes was attempted by Burrow and Katsuki and their coworkers using manganese salen complexes in the presence of PhI=NTs, low asymmetric induction was observed324–326. Nishikori and Katsuki later employed a salen complex synthesized from \((R,R)\)-2,3-diaminobutane and \((S)\)-biphenol, and found that the chirality at the 3,3'-positions is more important for the asymmetric induction (equation 85)327. Carreira conducted the stoichiometric amination of enol ethers and alkenes using a manganese nitride salen complex333. Komatsu extended the methodology to the catalytic process and attained 94\% ee for aziridination of \(\beta\)-isopropylstyrene332.

Titanium complexes of chiral imines derived from salicylaldehydes are employed not only for oxidation reactions, but also for carbonyl addition reactions. Asymmetric silyl-cyanation of aldehydes can be catalyzed by a titanium complex (equation 86)333–336. Introduction of the 6-(\(t\)-butyl) group at the salicylaldehyde moiety enhanced the selectivity and at the same time reverses the absolute configuration; the bulky group may be inhibiting the approach of cyanide from the \textit{re}-face333. Bolm and Müller employed a sulfoximine in the presence of Ti(OPr-i)\textsubscript{4} for the stoichiometric cyanation of aldehydes337. Titanium imine complex was also used for the Mukaiyama asymmetric aldol reaction by Oguni and coworkers338 and Carreira and coworkers339–341. Carreira employed salicylaldehyde imine derived from 2-amino-2',3-hydroxy-1,1'-binaphthyl (equation 87). Asymmetric organometal alkylaion of epoxide and aziridine was examined using the related titanium complex342,343. Inoue and Mori treated aldehydes with hydrogen cyanide in the presence of Ti(OPr-i)\textsubscript{4} and imines, which were derived from either \((S)\)-valyl-(\(S\))-tryptophan/2-hydroxy-1-naphthaldehyde imine or \((S)\)-valine/3,5-dibromosalicylaldehyde imine (equation 88)344; the complexes provide enantiomeric cyanohydrins. Snapper and Hoveyda screened similar dipeptides by a combinatorial method for finding an effective ligand for enantioselective cleavage of \textit{meso}-epoxides (equation 89)345,346.

\[
\begin{align*}
\text{Mn cat} = & \quad \begin{array}{c}
\text{H} \\
\text{N} \\
\text{N} \\
\text{Mn} \\
\text{X}^-
\end{array} \\
\end{align*}
\]
10. Synthetic uses of phenols

\[
\text{Mn cat} = \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{O} & \quad \text{N} & \quad \text{N} & \quad \text{Mn}
\end{align*}
\]

\[
\begin{align*}
\text{Cl} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

\[
\text{Ts}
\]

\[
\begin{align*}
\text{Mn cat} = \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{O} & \quad \text{N} & \quad \text{N} & \quad \text{Mn}
\end{align*}
\]

\[
\begin{align*}
\text{Cl} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

\[
\text{Ts}
\]

\[
\begin{align*}
\text{Mn cat} = \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{O} & \quad \text{N} & \quad \text{N} & \quad \text{Mn}
\end{align*}
\]

\[
\begin{align*}
\text{Cl} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

\[
\text{Ts}
\]

\[
\begin{align*}
\text{Mn cat} = \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array}
\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{O} & \quad \text{N} & \quad \text{N} & \quad \text{Mn}
\end{align*}
\]

\[
\begin{align*}
\text{Cl} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

\[
\text{Ts}
\]
Derivatives of phenols are becoming more important in industrial use containing drugs, materials, catalysts etc. Consequently, the development of more efficient methods is very necessary from a synthetic point of view.

IV. REFERENCES

10. Synthetic uses of phenols

705

Masahiko Yamaguchi

10. Synthetic uses of phenols

10. Synthetic uses of phenols 709

192. C.-S. Ge, Y.-J. Chen and D. Wang, Synlett, 37 (2002).
712 Masahiko Yamaguchi

CHAPTER 11

Tautomeristic equilibria and rearrangements involving phenols

SERGEI M. LUKYANOV and ALLA V. KOBLIK

ChemBridge Corporation, Malaya Pirogovskaya str., 1, 119435 Moscow, Russia
e-mail: semiluk@chembridge.ru

I. INTRODUCTION ... 714
II. TAUTOMERISM IN PHENOLS ... 714
 A. Keto–Enol Tautomerism in Phenols .. 714
 1. Monocyclic phenols ... 715
 2. Polycyclic phenols ... 719
 3. Phenols bearing nitrogen-containing substituents 721
 a. Nitrosophenol–quinone oxime tautomerism 721
 b. Arylazophenol–quinone arylhydrazone tautomerism 724
 c. Tautomerism in Schiff bases 726
 4. Metal-coordinated phenols 731
 5. Phenols inserted into conjugated systems 735
 B. Ring-chain Tautomerism ... 737
 C. Tautomer Transformations in Side Chains 740
III. REARRANGEMENTS OF PHENOLS .. 743
 A. Cis–trans-Isomerizations and Conformational Transformations 743
 B. Phenol–Dienone Conversions ... 745
 C. Hydroxy Group Migrations ... 748
 D. Isomerizations of Alkylphenols 749
 E. Isomerizations of Phenols Containing Unsaturated Side Chains .. 750
 1. Double bond migration .. 750
 2. Allylphenol–coumaran rearrangement 753
IV. REARRANGEMENTS OF O-SUBSTITUTED PHENOL DERIVATIVES 759
 A. Rearrangements of Alkyl and Aryl Phenolic Ethers 759
 B. Rearrangements of Allyl Aryl Ethers 761
I. INTRODUCTION

Rearrangements involving phenols are no less various than the phenolic systems themselves. Indeed, any compound can be regarded as ‘phenol’ if an aromatic ring in its structure is connected directly to one or more hydroxy groups. The aromaticity of phenols is responsible for the fact that phenols turn out to be the end products of most rearrangements discussed here whereas the rearrangements of phenols themselves are comparatively rare.

The rearrangements to form phenolic systems have been known for a long time and are in essence the methods for synthesis of phenols. The literature concerning these methods is too voluminous to review in detail. Therefore, this chapter contains only a concise survey of these reactions which were described previously in many reviews. Most attention is devoted to the recently discovered or modified rearrangements, in which the phenols serve as reactants or are formed as isolable products, or are believed to participate as intermediates.

II. TAUTOMERISM IN PHENOLS

The tautomeric transformations of phenols can be subdivided into two groups: (i) keto–enol tautomerism which is accompanied by loss of the aromatic character of the ring, and (ii) tautomeric equilibrium involving participation of substituents where the aromatic phenol nucleus is conserved.

A. Keto–Enol Tautomerism in Phenols

The tautomerism of hydroxyarenes occupies a particular position among keto–enol tautomer transformations of various organic compounds because of the aforementioned loss of aromaticity. In contrast to carbonyl compounds (e.g. the keto form 1 is more energetically favored than the enol form 2 by 42 kJ mol^{-1},1a, equation 1), the phenols 3 are much more stable than their keto tautomers (4 or 5) because the energy gained by
the $3 \rightarrow 4$ or $3 \rightarrow 5$ conversions is offset in plenty by the simultaneous large decrease in resonance energy (ca 151 kJ mol$^{-1}$) (equation 2)1b,2.

$$
\begin{align*}
\text{H} & \quad \text{O} & \quad \text{H} \\
\text{4} & \quad \text{Keto form} & \quad \text{5} & \quad \text{Enol form}
\end{align*}
$$

Therefore, the keto–enol tautomism of phenols becomes significant only if there are additional factors which in one way or another reduce the difference between enolization and aromatic π-conjugation energies. These factors are: (i) an increase in the number of hydroxy groups leads to equalization of the aromatic conjugation energy to the total enolization energy of several carbonyl groups; (ii) one or more aryl rings annulated with the phenolic cycle decrease the total aromatic conjugation energy; (iii) electron-withdrawing substituents in the ortho- and para-positions of phenol give rise to a redistribution of the electron density in the system and result in lowering the aromatization energy; besides, the nature of the keto–enol tautomerism in this situation can change since the proton migrates to the electronegative substituent but not to the aromatic ring; (iv) bulky groups in the ortho-positions of phenol create a steric hindrance which stabilizes a quinoid structure2; (v) formation of phenolate anions as well as metal coordination facilitate the fixation of the keto form owing to delocalization of the negative charge into the aromatic ring.

The influence of these factors, either separately or together, was described in detail in several reviews$^{1–3}$.

1. Monocyclic phenols

More than 100 years ago Thiele4 and Lapworth5 put forward the hypothesis that the exclusive substitution of phenol at the ortho- and para-positions might be attributed to rapid equilibration of phenol 3 with the transient keto forms 4 and 5. Since that time, the keto–enol equilibrium ratio in phenol itself has been estimated repeatedly and by application of various research methods. Thus, $ab\ initio$ 6-31G* basis set calculations were recently carried out on the structures of phenol 3, and its keto tautomers 2,4-cyclohexadienone 4 and 2,5-cyclohexadienone 56. Energy calculations were carried out by using the all-electron $ab\ initio$ Hartree–Fock formalism (RHF) as well as 2nd-order Moller–Plesset formalism (MP2) on the RHF-optimized geometries. It was shown that phenol 3 is significantly more stable than dienones 4 and 5 by 47.4 and 42.5 kJ mol$^{-1}$ (RHF) as well as 72.5 and 70.6 kJ mol$^{-1}$ (MP2), respectively. An equilibrium constant ‘$3 \rightleftharpoons 4$’ was estimated as 1.98×10^{-13}, i.e. in excellent agreement with experimental results as shown below.
The two keto tautomers of phenol 3, i.e. 4 and 5, were generated by flash photolysis of polycyclic precursors 6–8 in aqueous solution, and the pH–rate profiles of their 4 → 3 and 5 → 3 enolization reactions were measured. The rates of the reverse reactions, 3 → 4 and 3 → 5, were determined from the rates of acid-catalyzed hydrogen exchange at the ortho- and para-positions of phenol 3 (equation 3).

\[
\begin{align*}
\text{(4)} & \quad \text{(3)} \\
\text{(5)} & \quad \text{(7)}
\end{align*}
\]
forms turn out to be the products of such reactions. For example, a strategy of a ‘blocked tautomer’ has been used as a method for the introduction of the angular methyl group\(^\text{12}\) (equation 4).

\[
\begin{align*}
\text{OH} & \quad \text{CHCl}_3 \\
& \quad \text{KOH} \\
& \quad \downarrow \\
\text{CHCl}_2 & \quad \text{[H]} \\
& \quad \downarrow \\
& \quad \text{Me} \\
\end{align*}
\]

Such a ‘phenol keto-tautomer equivalent strategy’ was used for conjugate reduction of cyclic enones\(^\text{13}\) (equation 5). The quinone monoketals \(9\) and \(para\)-quinol ethers \(10\) were used as precursors to keto-tautomer equivalents of substituted phenols, namely enones \(11\), which were prepared by action of bis(2,6-di-tert-butyl-4-methylphenoxy)methylaluminium (MAD), followed by addition of lithium tri-sec-butyl borohydride (\(L\)-Selectride). The enones \(11\) obtained are reasonably stable at a freezer temperature without aromatization\(^\text{13}\).

\[
\begin{align*}
\text{O} & \quad R^1 \\
\text{MeO} & \quad R^2 \\
\text{R}^3 & \quad (9) \quad R^3 = \text{OMe} \\
\text{R}^3 & \quad (10) \quad R^3 = \text{Bu, Ph, 4-MeC}_6\text{H}_4 \\
\end{align*}
\]

The influence of bulky \(ortho\)-substituents on the tautomerism of phenols can be illustrated by the recently reported generation and isolation of 4-alkoxy-2,6-di-tert-butylocyclohexa-2,5-dienones \(13\). They were generated efficiently by the Ag ion mediated reaction of 4-bromocyclohexa-2,5-dienone \(12\) with simple alcohols (equation 6). All the dienones \(13\) were proved to be very susceptible to a prototropic rearrangement to form the phenols \(14\) under catalysis with bases, acids or SiO\(_2\)\(^\text{14}\).

The introduction of additional hydroxy groups into the phenolic ring assists the development of a ketonic character because the energy released by formation of multiple keto groups compensates for the loss of resonance stabilization. There are many reports concerning the ability of polyhydric phenols to react as tautomeric keto forms\(^\text{2}\). For instance, the conversion of phenol into aniline proceeds under very drastic conditions (350–450 °C, 50–60 bar) and the substitution of one hydroxy group in resorcinol by an amino group
occurs quite readily at 200°C, whereas phloroglucinol gives 3,5-dihydroxyaniline and 3,5-diaminophenol in almost quantitative yield under very mild conditions (long storage at room temperature with ethanolic solution of ammonia)1b,2. Phloroglucinol 15 is the most typical example of tautomerism in polyhydric phenols. Thus, 15 reacts with hydroxylamine to produce trioxime 1615 and gives hexamethylcyclohexane-1,3,5-trione 17 in reaction with excess of methyl iodide16 (equation 7).

![Chemical Structure](attachment:image.png)

It was shown by all-electron \textit{ab initio} Hartree–Fock (RHF) calculations that the enolic form, i.e. 1,3,5-benzenetriol 15, is by far more stable than the keto form, i.e. 1,3,5-cyclohexanetrione17. On the other hand, the latter is more abundant in the phloroglucinol system than is the keto form of phenol (i.e. 2,4-cyclohexadien-1-one 4) in the phenol system. Nevertheless, the keto form of phloroglucinol cannot be observed by spectral methods both in solutions and in the solid state. It is now thought that phloroglucinol
behaves like a polyketone due to tautomeric transformations of its anions 18 and 19 (equation 8).

\[
\begin{align*}
\text{(15)} & \quad \text{OH} & \quad \text{OH} & \quad \text{OH} \\
\text{(18)} & \quad \text{OH} & \quad \text{OH} & \quad \text{O} \\
\text{(19)} & \quad \text{OH} & \quad \text{OH} & \quad \text{O}
\end{align*}
\]

The existence of the dianion 19 was proved by means of NMR spectroscopy. Thus, the \(^1\)H NMR spectrum of phloroglucinol in aqueous solution contains a single resonance of aromatic protons (δ 6.05) which shows a small shift to high field (δ 6.02) after addition of one mole of an alkali. However, the addition of a second mole of alkali results in the disappearance of the aromatic proton signal. Instead of this, olefinic proton signals (δ 5.03) as well as signals of the methylene protons (δ 3.0) appear.

\[
\begin{align*}
\text{(20)} & \quad \text{OH} & \quad \text{OH} & \quad \text{OH} \\
\text{(21)} & \quad \text{O} & \quad \text{H} & \quad \text{O}
\end{align*}
\]

A polyphenol such as 1,2,3,4-tetrahydroxybenzene can exist in the two isomeric forms 20 and 21. An addition of acid to an alkaline solution of phenol 20 results in the formation of the solid diketo form 21 that is stable at room temperature owing to intramolecular hydrogen bonds. The aromatization 21 → 20 occurs only by heating of 2,3-dihydroxy-2-cyclohex-2-en-1,4-dione 21 in acidic solution.

Consequently, it can be concluded that the tautomerism does not involve a mobile equilibrium in the series of monocyclic phenols containing one to four hydroxy groups.

2. Polycyclic phenols

The tautomeric properties of hydroxynaphthalenes show in the most unambiguous manner that the naphthalene system is less aromatic than that of benzene. The benzoannelation appreciably destabilizes the aromatic tautomers not only among phenols but also in the arene series. Therefore, even the monohydroxy naphthalenes display in their chemical reactions properties typical for the tautomeric keto form.
However, a real tautomerism in monohydric phenols appears only if the phenolic ring is fused with at least two aromatic rings. Thus, 9-hydroxyanthracene (anthrol) \(\text{22} \) undergoes a reversible conversion into ketone \(\text{23} \) (anthrone) in which two separate aromatic rings are conjugated with a carbonyl group. This conjugation stabilizes very much the keto form (equation 9)\(^{1b,2} \). The keto tautomer becomes increasingly stable in the higher polycyclic phenols. For example, the keto form of hydroxynaphthacene \(\text{24} \) shows very little tendency for enolization, whereas in the pentacene series \(\text{25} \) the phenolic forms are unknown. On the other hand, another isomer of hydroxynaphthacene exists as the two separable forms \(\text{26} \) and \(\text{27} \) (equation 10)\(^{1b,2} \).
It was shown recently that K-region\(^*\) arene oxides can rearrange to phenols in two steps: (i) rapid rearrangement of the arene oxide 28 forming the positionally isomeric keto tautomers 29 of the K-region phenols 30, followed by slow enolization to 30\(^{22}\) (equation 11).

The kinetic characteristics were measured for the rearrangements of arene oxides of benzo[a]anthracene, its methyl-substituted derivatives as well as for other polycyclic arene oxides (for transformations of arene oxides into phenols, see Section VII.C). The mechanism of these acid-catalyzed rearrangements and the isotope effects in these reactions were discussed\(^{22}\).

Very interesting tautomeric properties are inherent in polycyclic systems that contain annulated phenol and quinone rings. The simplest model for these compounds is napthazarin 32 which can exist, both in solution and in the solid state, as a fast equilibrium mixture of several tautomers (32a–32c) where forms 32a and 32b (i.e. a degenerate tautomeric pair of identical 1,4-diones) predominate (equation 12).

In contrast to keto–enol tautomerism, such enol–enol tautomerism is characterized by extremely rapid hydrogen transfers. It was shown by \textit{ab initio} calculations\(^{23,24}\) that structures 32a and 32b are more stable than the degenerate tautomeric forms 32c and 32e by 104.7 kJ mol\(^{-1}\) as well as by 117 kJ mol\(^{-1}\) than symmetric structure 32d. According to these calculations, a synchronous tunneling of two protons must occur in the napthazarine molecule 32 between the identical structures 32a and 32b with a frequency of 20 to 40 MHz, i.e. approximately \(10^{11}\) to \(10^{13}\) migrations of hydrogen from one oxygen atom to another per second take place.

Related systems to the napthazarines are perylenequinones 33, which are biologically active pigments obtainable from natural sources. These compounds are of interest not only because of their peculiar structure features, but also owing to their photodynamic activity.

The keto–enol tautomerism of the dihydroxy perylenequinones 33a–d was studied by \(^1\)H, \(^2\)H and \(^{13}\)C NMR spectroscopy\(^{25,26}\) (equation 13). The most important factors determining the tautomeric equilibrium in these helix-shaped systems are the substituent effects, the strength of intramolecular phenol–quinone hydrogen bonds, the distortion from planarity of the perylenequinone structure and solvation as well as aggregation effects.

3. Phenols bearing nitrogen-containing substituents

\textit{a. Nitrosophenol–quinone oxime tautomerism.} The introduction of electron-withdrawing substituents into the \textit{ortho}- and \textit{para}-positions of phenol results in reducing the

\(^*\) The terminology ‘K-region’, ‘non-K-region’ and ‘bay-region’ arene oxide’ can be illustrated by reference to the phenanthrene ring 31\(^{21}\). The addition of an oxygen atom to the C=C double bonds gives: (a) K-region, (b) non-K-region and (c) bay-region arene oxides.

![Diagram of phenanthrene ring with oxygen atoms]
energy of aromatic conjugation and in a strong polarization of the oxygen–hydrogen bond in the hydroxy group due to redistribution of the electron density within the molecule. These changes facilitate the dissociation of the O–H bond and promote the appearance of a keto–enol tautomerism. The above-named effects are most typical for nitrosophenol since the nitroso group possesses the greatest negative conjugative effect. Besides, it is able to add a proton by rearrangement to form an oxime moiety (equation 14).
11. Tautomeric equilibria and rearrangements involving phenols

\[R^2 \equiv R^1 = \text{MeCH(OH)CH}_2; R^3 \equiv R^4 = \text{MeO; } R^3R^4 = \text{OCH}_2\text{O} \]

\[R^1R^2 = \begin{array}{c}
\text{COMe} \\
\text{COMe}
\end{array}; \quad \begin{array}{c}
\text{COMe} \\
\text{Me}
\end{array}; \quad \begin{array}{c}
\text{Me} \\
\text{Me}
\end{array}; \quad \begin{array}{c}
\text{Me} \\
\text{COMe}
\end{array} \]
The tautomerism in nitrosophenols has been reviewed in detail2,3.

\begin{equation}
\begin{array}{c}
\text{OH} \\
\text{NO} \\
\text{O} \\
\text{NOH}
\end{array}
\xleftrightarrow{}
\begin{array}{c}
\text{O} \\
\text{NOH}
\end{array}
\tag{14}
\end{equation}

\(34\)

\textit{b. Arylazophenol–quinone arylhydrazone tautomerism.} The tautomeric equilibrium between \textit{para-}arylazophenols \textit{35} and \textit{para-}quinone arylhydrazones \textit{36} has been investigated extensively using phenol, anthranol and naphthol derivatives (equation 15). The results obtained were summarized in several reviews27.

\begin{equation}
\begin{array}{c}
\text{HO} \\
\text{N} \\
\text{N}
\end{array}
\xleftrightarrow{}
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{N}
\end{array}
\tag{15}
\end{equation}

\(35\)

\(36\)

\(37\) \(R = \text{OMe, CH}_2\text{OCH}_3,\)

\[\text{RR} = \]

\[n = 3, 4 \]

\[n = 0, 1; m = 1, 2; p = 0, 1, 2 \]
The phenylazophenol—quinone phenylhydrazone tautomerism in a series of azobenzene derivatives 37 was investigated by UV-visible spectroscopy. The results revealed a high sensitivity of this tautomerism to substituent variation. It was found that system 37 exists in the azo form only for \(R = \text{CH}_2\text{OCH}_3 \), but in the hydrazone form only for \(R = \text{CH}_3\text{O} \). The change between these compounds may be attributed to intramolecular hydrogen bonding of the phenolic group (37, \(R = \text{CH}_2\text{OCH}_3 \)) with the more basic oxygens of the ether groups.

The UV, IR and NMR spectroscopy methods were used to investigate the tautomeric equilibrium of the benzoylhydrazones 38 in solvents having different polarity. Compounds 38 exhibited 1,3-, 1,7- and 1,9-prototropic shifts. The fraction of azophenols 38a increased on increasing the solvent polarity and the redox potential of the quinoid form. These compounds can exist as the three tautomeric structures 38a–c. It was shown that the azo form (38a) is absent when the substituents \(R^1 \) and \(R^2 \) are isopropyl or tert-butyl, i.e. the keto forms are relatively stabilized by the presence of bulky ortho-substituents.

\[
\begin{align*}
R^1, R^2 &= \text{H, Me, } t\text{-Pr, } t\text{-Bu, Br; } R^3 = \text{H, Me} \\
(38a) &
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{N} \\
\begin{array}{c}
\begin{array}{c}
\text{N} \\
\begin{array}{c}
\begin{array}{c}
\text{O} \\
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{N} \\
\begin{array}{c}
\begin{array}{c}
\begin{a

(38a)

(38b)

(38c)

(39)

(40)

An \(^1\text{H}, \ ^{13}\text{C}\) and \(^{15}\text{N}\) spectral investigation of four 1-naphthylazo compounds 39–42, which were prepared by coupling 1-naphthalenediazonium chloride with the appropriate passive components, was reported.

It was found that compounds 39 and 42 exist almost completely as the tautomeric azo forms whereas compound 40 is completely in the hydrazone structure, and compound 41 exists predominantly in the hydrazone form. In that way, the annelation of the benzene ring in the active component has, contrary to the annelation of the benzene ring in the passive component, practically negligible influence on the azo–hydrazone equilibrium.
c. Tautomerism in Schiff bases. The Schiff bases formed by condensation of aromatic amines and aromatic aldehydes containing an ortho-hydroxy group can exist in two tautomeric forms, namely the phenol-imine 43 and the keto-enamine 44 (equation 16). For adducts formed from anilines and salicylaldehyde, the keto tautomer is found to be highly disfavored owing to the loss of aromaticity. However, in the case of Schiff bases formed from 2-hydroxynaphthaldehyde, the keto–enamine tautomer 44 is present to a significant extent in a rapid exchange equilibrium with the phenol-imine structure 43. These conclusions were drawn from results of 1H, 13C and 15N NMR spectroscopy.30–33.

The equilibrium in the case of Schiff bases prepared from salicylaldehyde and 2-amino-, 2,3-diamino-, 2,6-diamino- and 3-aminomethylpyridine was studied by means of NMR, UV and IR spectroscopy and X-ray crystallography.34,35 It was shown that the enol-imines were the predominant form in non-polar solvents, whereas in polar solvents a rapid tautomeric interconversion between the enol-imines and the keto-enamines as well as a slow hydrolysis were observed. The tendency to tautomeric interconversion was significant for the 2-(3-pyridylmethyliminomethyl)phenol 45 while in the case of other Schiff bases it was very low.

Because of the contradictory literature reports, the physical and spectral properties of N-salicylidene-1,2-diaminobenzene 46 were reinvestigated.36 In the solid state compound 46 exists as a phenol–imine tautomer, wherein the phenolic hydrogen atom is hydrogen-bonded to the imine nitrogen atom.
The introduction of a second hydroxy group into an ortho-position of the phenolic fragment in the Schiff base influences significantly the tautomeric equilibrium. Thus, in the series of \(N \)-(2,3-dihydroxybenzylidene)amine derivatives \(47 \) a–e all the compounds are characterized by the presence of a strong intramolecular O–H···N bond which determines the formation of a six-membered pseudocycle. Except for compound \(47 \) b, all the molecules are associated as dimers with two intermolecular O–H···OH bonds which are included into a ten-membered pseudocycle\(^{37,38} \). In contrast to the \(N \)-(2-hydroxybenzylidene)amines for which the phenolic tautomer prevails considerably, in compounds \(47 \) the quinonic form is present in significant amounts and is dominant even for compound \(47 \) d.

\(\text{(47)} \)

(a) \(R = \text{Ph} \); (b) \(R = 4-\text{MeC}_6\text{H}_4 \); (c) \(R = 2-\text{ClC}_6\text{H}_4 \);
(d) \(R = \text{i-Pr} \); (e) \(R = \text{cyclopropyl} \)

The tautomeric equilibrium between the phenol imine structure (OH···N form) and the keto-enamine structure (O···HN form) was determined by UV-Vis spectroscopy in polar solvents for the bis(crown ether) ligands \(48 \) which contain recognition sites for Na and Ni guest cations\(^{39} \).

\(\text{(48) } n = 2–4 \)

The azomethines considered above have a hydroxy group which is attached to an arylcarbaldehyde fragment. At the same time the keto–enol tautomerism was reported also for systems containing the hydroxy group in the arylamine fragment.
Thus, 4-[(4-dimethylamino)phenyl]imino]-2,5-cyclohexadien-1-one (DIA), also known as Phenol Blue, is a merocyanine dye that exists in two extreme resonance hybrids of a keto and a phenolate form (49, 50). Hybrid 49 is expected to contribute more in the solid state, whereas hybrid 50, owing to its larger dipole moment, is believed to contribute more in polar solvents40.

![Diagram of molecular structures](image-url)
However, many reports in this field describe the intramolecular hydrogen bonding and tautomerism in Schiff bases bearing the hydroxy groups in both fragments.

The 13C cross-polarization magic-angle-spinning NMR spectra of three structures (51–53) have shown the keto–hydroxy tautomerism in compound 51 but not in 52 and 53. This was confirmed by a single-crystal X-ray diffraction study of compound 51. The results revealed that the distinct molecules in the unit cell are linked by intermolecular hydrogen bonds 41.

A series of substituted salicylaldimines 54 was prepared by the condensation of various hydroxy and methoxy salicylaldehydes and 2,6-di-tert-butyl-4-aminophenol. It was shown by UV-Vis and 1H NMR spectroscopy investigations that compounds 54 exist in solutions both in the phenol-imine and keto-enamine tautomeric forms 42.

It should be noted that the keto-enamine tautomers of Schiff bases are observed always when the latter are derived from 2-hydroxynaphthaldehyde and aniline. However, in Schiff bases derived from salicylaldehyde and aniline, the new band at >400 nm in UV-Vis spectra was not observed in both polar and non-polar solvents, but it appeared in acidic media 43. In this work 43 which contains a quite good survey of the investigations of tautomerism in Schiff bases, the effects of the solvent polarity and acidic media on the phenol-imine \rightleftharpoons keto-amine tautomerism equilibrium in systems 55 and 56 were reported. It was shown by 1H NMR and UV-Vis spectra that compound 55 is in tautomeric equilibrium of structures 55a and 55b in both polar and non-polar solvents (equation 17), whereas the tautomer 56b was not observed for compound 56 (equation 18) 43.

The tautomerism and photochromism of 2-[(2-hydroxyphenyl)aminomethylene]-2H-benzo[b]thiophenone 57 and its acetyl derivatives were studied by UV-Vis spectroscopy 44. The acylation of compound 57 with Ac$_2$O affords under different conditions the monoacetyl (58) and diacetyl (59) derivatives (equation 19). It was found that a mobile equilibrium of three forms takes place in solutions of compound 58 (equation 20). The equilibrium is shifted to the left (i.e. to form 58) in solvents of low polarity (hydrocarbons, ethers, acetone, acetonitrile) while polar solvents such as DMF, DMSO or HMPA stabilize the more acidic form 60. The latter undergo a rearrangement upon irradiation by sunlight (equation 21) 44.

Compounds showing excited-state intramolecular proton transfer (ESIPT) were proposed as efficient materials to protect against UV radiation damage and to store information at the molecular level. The ESIPT involves the intramolecular transfer of proton from a hydroxy or amino group to an accepting site on the molecule such as carbonyl oxygen or another nitrogen while the molecule is in the excited state. Among these compounds are 2-(2'-hydroxyphenyl)imidazole (61) and (2'-hydroxyphenyl)benzimidazole.
derivatives45 (equation 22). Quantum-chemical calculations of the phototautomerization in these and related systems were carried out recently46. Analogous ESIPT properties in competition with ESICT (excited-state intramolecular charge transfer) were observed in the pyrazole series (63), in which the spectral characteristics can be fine-tuned by substituent variations as well as by solvent effects (equation 23)47. The 4-aminopyrimidinoanthrones 64 were shown to have the amino-ketone structure in the crystal state and in neutral organic solvents, whereas in acidic or basic media the tautomeric equilibrium was shifted toward the ionic forms of the imino-phenol structure48 (equation 24).
The tautomerism in phenols containing other substituents (CHO, COR, CH=CHCOOH etc.) were described in detail in another review2.

\[\text{Phenol} \rightarrow \text{Phenol}^+ \]
(18)

4. Metal-coordinated phenols

The coordination of transition metals is known to influence the keto–enol tautomerism in the condensed phase49. The effect of coordination of bare Fe2+ ions on the keto–enol equilibrium of phenol was investigated by means of generation of various cyclic [Fe,C\textsubscript{6}, H\textsubscript{6}, O]+-isomers. These isomers were characterized by collisional activation (CA) and Fourier transform ion cyclotron resonance (FTICR) mass spectrometry49. It was shown that the energy difference between the phenol–iron complex 65 and the keto isomer 66 is not perturbed by the presence of the iron cation in comparison with the uncomplexed isomers 3 and 4 (equation 25). Thus, the energy difference for both the neutral and the Fe2+-coordinated systems amounts to \textit{ca} 30 kJ mol−1 in favor of the phenolic tautomer.
Furthermore, it was also found that the dissociation of the Fe$^{+}$-complex of the valence tautomers benzene oxide ⇄ oxepin proceeds via a [phenol-Fe$^{+}$] complex 65 rather than via the [2,4-cyclohexadien-1-one-Fe$^{+}$] species 66 (see also Section VII.C).

The effect of η2 coordination on the arenes was studied in the context of the phenol–ketodiene equilibrium50. It was shown that this equilibrium for the free ligands favors heavily the phenol tautomer (vide supra) whereas for the complexes [Os(NH$_{3}$)$_{5}$-2,3-η2-arene]$^{2+}$ (arene = phenol; 2-, 3-, 4-methylphenol; 3,4-dimethylphenol) the corresponding equilibrium constants approach unity (20°C). The conversion of phenol 67 into the 2,4-cyclohexadien-1-one 68 was kinetically favored over the formation of the 2,5-isomer 69, although the latter is the thermodynamically favored product (equation 26).

It was assumed that osmium rehybridizes the C(5) and C(6) atoms to form a metallocyclopropane. This removes much of the resonance energy and therefore destabilizes the enolic form of the free ligand. The free energies of ketonization (25°C) for the η1-phenol complex in comparison with free phenol are shown in equations 27 and 2850.

\[
\begin{align*}
&\text{SN} \\
&\begin{array}{c}
\text{(57)} \\
\text{Ac$_2$O} \\
3-5 \text{ min}
\end{array}
\end{align*}
\]

\[
\begin{align*}
&\text{SN} \\
&\begin{array}{c}
\text{(58)} \\
\text{Ac$_2$O} \\
\text{Et$_3$N, toluene, DMAP} \\
30 \text{ min}
\end{array}
\end{align*}
\]
11. Tautometric equilibria and rearrangements involving phenols

58 \rightleftharpoons (20)

60 \xrightarrow{h\nu} (21)
(61) $R^1, R^2 = \text{Me, Ph}$

(62) $R^1R^2 = \text{[benzo]}$

hv-XeCl laser (308 nm)

(63)

$R^1, R^3 = \text{H, OMe}$

$R^2 = \text{H, Me, Cl, Br, OMe, NH}_2, \text{NM}_2$

(23)

(64) $R = \text{H, Bu, Ph}$

(24)
Such dearomatization of the arene ligand activates it toward an electrophilic addition. Thus, osmium(II) was used as a dearomatization agent for the direct 10β-alkylation of β-estradiol 7051 (equation 29). When the tautomeric mixture $71 \rightleftharpoons 72$ was placed in acidic methanol and reprecipitated, a 3:1 equilibrium ratio of the phenolic 71 and dienone 72 tautomers was observed51. This intermolecular Michael addition to the C(10) position of the aromatic steroid was unprecedented.

An application of molybdenum and ruthenium complexes for synthesis of substituted phenols was also reported recently52–55.

5. Phenols inserted into conjugated systems

An interesting situation arises when a tendency of ketodiene tautomer to transform into phenol results in a disturbance of the conjugation system in the whole structure in which this tautomer is a fragment. Thus, in the series of porphyrinoids 74 containing a semiquinone moiety, the macrocycle achieves the aromatization by undergoing a keto–enol tautomerization, whereby the phenolic subunit in structure 73 is transformed in such a way that the inner three carbon atom moiety becomes part of the 18 π-electron
(70) \[\text{Os(NH}_3\text{)}_5\text{(OTf)}_2 \] \[\text{Mg}^+ \] \[\text{MeOH} \]

(71) \[\text{[Os]}^{2+} \]

(72) \[\text{[Os]}^{2+} \]

MeCN

(\text{i-Pr})_2\text{NEt}

\[15 \text{ h, 97\%} \]

\[-35 ^\circ \text{C} \]

\[20 ^\circ \text{C} \]

(29)

69\% \[\text{Ce(NH}_4\text{)}_2\text{(NO}_3\text{)}_6 \]

[Os]^{2+} = [\text{Os(NH}_3\text{)}_5\text{(OTf)}_2]
aromatic core, whereas the outer carbon atoms generate an enone unit (equation 30). This ‘keto–enol’ tautomeration would still result in the loss of the arene subunit, but the formation of a thermodynamically favorable aromatic aza[18]annulene would compensate for this loss.

\[(73) \]

B. Ring-chain Tautomerism

A classical example for a tautomeric equilibrium between the cyclic (lactone-phenolic) and open-chain (quinoid) forms is the behavior of phenolphthalein 75 as a function of the pH (equation 31).

\[(74) \]

\[R^1 = \text{Me}, R^2 = \text{Et}, R^3 = \text{Et}; R^3R^3 = (\text{CH}_2)_4 \]
\[
\text{R}^1 = \text{OH, OMe; R}^2, \text{R}^3, \text{R}^4, \text{R}^5 = \text{H, OH}
\]
It should be noted, however, that most of the ring-chain tautomeric transformations of phenols proceed without loss of aromaticity of the arene cycle. The metal [Cu(II), Fe(II), Fe(III)] catalyzed oxidation of flavonols 76 gives the 2-(hydroxybenzoyl)-2-hydroxybenzofuran-3(2H)-ones 78 which are in an equilibrium with the initially formed 2-(hydroxyphenyl)-2-hydroxybenzopyran-3,4-diones 77 (equation 32).

The hydroformylation of ortho-propenylphenols 79 gives the cyclic hemiacetals 80 in yields varying from 70 to 100%60 (equation 33).

\[R^1 = \text{H, 4-Me, 5-Cl} \]
\[R^2 = \text{H, Me, Ph, 4-MeC}_6\text{H}_4 \]
The hydroformylation of the ortho-prop-2-enylphenol 81 which contains no benzylic hydroxy group gives a mixture of the open-chain aldehyde 82 and the seven-membered cyclic hemiacetal 83 in a 82:83 ratio of approximately 40:60 (equation 34). The benzofuran epoxide 85 and its valence-isomeric quinone methide 86, both readily obtainable from benzofuran 84, rearrange thermally above −20 °C to form the allylic alcohol 87 and the tautomeric phenol 88 (equation 35).

The addition of trichlorotitanium 4-tert-butylphenolate 89 to phthalaldehyde gives the intermediate 90, which undergoes a ring–chain tautomerism to afford the cyclic isomer 91. The latter reacts with the second molecule of 89 to yield the final product 92 via replacement of the acetalic OH group by the p-t-butylphenol moiety (equation 36).

Many examples of ring–chain tautomerism in phenols are described in a recent review. It should be mentioned in conclusion that tautomerism can also take place in the substituents at the phenolic ring.

C. Tautomer Transformations in Side Chains

In the presence of a second ionogenic group having a basic character, a prototropic tautomeric equilibrium is observed between the neutral 93 and the zwitterionic 94 forms (equation 37).

Acylation of 2-hydroxyacetophenone 95 with RCOCl gives the esters 96, which undergo a Baker–Venkataraman rearrangement (see Section IV.D.2) in the presence of t-BuOK to afford the phenolic β-diketones 97. The enol tautomers 97a and 97b were observed by means of 1H NMR spectroscopy (equation 38).
A cooperative proton motion was observed within the hydrogen-bonded structure of 4-substituted phenolic N-oxides \(98\) (equation 39).
11. Tautomeric equilibria and rearrangements involving phenols

III. REARRANGEMENTS OF PHENOLS

A. Cis–trans-Isomerizations and Conformational Transformations

The titled structural changes in phenols deserve attention as much as the hydroxy group affects the geometry of the molecule. Thus, it was shown by 1H and 19F NMR spectroscopies as well as by X-ray diffraction that 2-(2,2,2-trifluoro-1-iminoethyl)phenols exist exclusively as the E-isomers with intermolecular hydrogen bonding in the solid state whereas these compounds isomerize to give a mixture of 66% Z- and 34% E-isomers in chloroform solutions.

Many examples of tautomeric transformations as well as rearrangements in the phenol series were considered in detail in a book.
Cis–trans-Isomerization together with dehalogenation reactions and cyclizations were observed upon irradiation (125-W medium-pressure Hg lamp, argon, 1 h) of trans-2-cinnamylphenols 100, which are bichromophoric systems.\(^{71,72}\)

The rotational and conformational isomerism in dimeric proanthocyanidines 101 was studied by NMR spectroscopy. It was found that the geometry of these important polyflavanoids depends on the nature of the solvent (in organic solvents and water).\(^{73}\) The effect of the Y atom and the substituents X on the planarity and the barrier to internal rotation about the aryl–Y bond were estimated by semiempirical quantum-chemical calculations of the 4-XC\(_6\)H\(_4\)YH (X = H, NO\(_2\), NMe\(_2\); Y = O, S, Se) systems.\(^{74}\)

\[\text{(99)}\]
\[
\begin{align*}
\text{OH} & \quad \text{CF}_3 \\
\text{R} & = \text{Me}, \text{Pr}
\end{align*}
\]

\[\text{(100)} \quad \text{R}^1, \text{R}^2 = \text{H, Cl, Br, Ph}\]

\[
\begin{align*}
\text{OH} & \quad \text{R}^1 \quad \text{R}^2 \\
\end{align*}
\]

\[\text{Z,E}-\text{isomerism was shown by } ^{13}\text{C NMR spectroscopy in the series of 4-X-2-methoxynaphthalenonium ions 102. It was found that electron-donating substituents X stabilize the Z-isomer (equation 40). A Z,E-isomerism around the C–O bond in the corresponding 2-hydroxy-(102, R = H) and 2,4-dimethoxynaphthalenonium ions (102, R = Me, X = OMe) was not observed.}^{75,76}\]

It should be noted that a large variety of conformations is typical for the cyclic polyphenols-calixarenes, which are considered in Chapter 19.
B. Phenol–Dienone Conversions

It is generally known that the processes of reversible oxidation of phenols, i.e. the conversions of phenolic systems into quinone structures and vice versa, are of great importance in biochemical reactions. The reaction partners mentioned above can serve as donors and acceptors of electrons and protons, i.e. as antioxidant systems. The conversions of phenols into cyclohexadienones are accompanied by the loss of aromaticity and in essence are not rearrangements, although the term "phenol–dienone rearrangement" is found in the literature. A review which summarizes in detail the oxidation reactions of phenols under conditions of halogenation, nitration and alkylation as well as radical reactions appeared. The various transformations of phenols upon oxidation with nickel peroxide were also reviewed. Therefore, only recent reports concerning the phenols-to-quinones conversions are described in this section.

The quinone monoketals 9 and para-quinol ethers 10 mentioned above can be obtained by anodic oxidation of the corresponding O-protected phenols (equation 41) or upon oxidation of substituted phenols 104 with one equivalent of phenyliodonium diacetate (PIDA) at an ambient temperature (equation 42).

\[(\text{103}) \quad \xrightarrow{\text{[O]}} \quad (\text{9}) \]

\[R = \text{Me}_3\text{Si}, \text{t-BuMe}_2\text{Si}, \text{MeOCH}_2, \text{MeO(CH}_2)_2\text{OCH}_2 \]
The annulation of these oxidation products 9, 10 with the anion of 3-cyanophthalide 105 affords access to a range of anthraquinones 106 (equation 43).

Hydroxylation is one of the most widespread conversions of phenols in redox reactions. This conversion occurs under a wide range of conditions, namely, at various pH, in organic and aqueous solutions as well as in the solid phase, due to the participation of quinoid intermediates that are prone to both ionic and radical transformations. Thus, the oxidation of 3,6-di-tert-butylpyrocatechol 107 in protic media is accompanied by the formation of 3,6-di-tert-butyl-2-hydroxy-para-benzoquinone 108 (equation 44). Hydroxylation of the 3,5-isomer 109 results in dealkylation (by an ionic or a radical route) and
isomerization with formation of 6-tert-butyl-2-hydroxy-para-benzoquinone 110 as well as compound 108 (equation 45). It was found that hydroxylation is of great importance for heterophase redox reactions and is closely connected with the formation of nitrogen-containing organic compounds where the nitrogen comes from nitrogen compounds in the air (equation 46)82,83.

\[
\begin{align*}
\text{t-Bu} & \quad \text{OH} & \quad \text{H}_2\text{O}_2 & \quad \text{FeCl}_2 \\
\text{t-Bu} & \quad \text{OH} & \quad \text{t-Bu} & \quad \text{t-Bu} & \quad \text{OH} \\
(107) & & (108) \\
\end{align*}
\]

\[
\begin{align*}
\text{t-Bu} & \quad \text{OH} & \quad \text{t-Bu} & \quad \text{OH} \\
\text{t-Bu} & \quad \text{OH} & \quad \text{t-Bu} & \quad \text{OH} \\
(109) & & (108) \\
\end{align*}
\]

\[
\begin{align*}
\text{FeCl}_2 & \quad \text{H}_2\text{O}_2 \\
\left[\begin{array}{c}
\text{t-Bu} \\
\text{HO} \\
\text{t-Bu} \\
\end{array} \right] & \quad \text{O}^{\cdots}\text{FeCl}_2\text{OH} \\
\text{CH}_2\text{Cl}_2 & \quad \sim \text{Me}_3\text{C} \\
108 & \\
\end{align*}
\]

\[
\begin{align*}
\text{MeOH} & \quad \sim \text{t-Bu} \\
\text{t-Bu} & \quad \text{OH} & \quad \text{t-Bu} & \quad \text{OH} \\
(110) & & (108) \\
\end{align*}
\]

\[
\begin{align*}
109 & \quad \text{silica gel} & \quad \text{air} \\
\text{t-Bu} & \quad \text{OH} & \quad \text{t-Bu} & \quad \text{OH} \\
\text{t-Bu} & \quad \text{OH} & \quad \text{t-Bu} & \quad \text{OH} & \quad \text{Bu-t} \\
(109) & & (110) \\
\end{align*}
\]
An efficient regio- and stereoselective organometallic method to nucleophilic phenol ortho-functionalization promoted by a cyclopentadienyl iridium cation ([Cp*Ir]2+, where Cp* is C5Me5) was reported by Amouri and coworkers (equation 47) (the electrophilic phenol functionalization by means of electron-rich moiety [Os(NH3)5]2+ was mentioned above51, see Section II.A.4).

\[
\begin{align*}
\text{OH} & \quad \text{[Cp*Ir][BF}_4]_2 \quad \text{Me} \\
& \quad \text{Ir} \quad \text{Me} \\
& \quad \text{Me} \quad \text{Me} \\
& \quad \text{PR}_3 \\
\end{align*}
\]

\[
\text{OH} \quad \text{PR}_3 = \text{PMe}_3, \text{PEt}_3, \text{PMe}_2\text{Ph}
\]

The mushroom tyrosinase-catalyzed oxidative decarboxylation of 3,4-dihydroxyphenyl mandelic acid (111, R = H) and α-(3,4-dihydroxyphenyl) lactic acid (111, R = Me) proceeds via the quinone methide intermediate 112. The coupled dienone–phenol rearrangement and keto–enol tautomerism transforms the quinone methide 112 into 1-acyl-3,4-dihydroxyphenyl compounds 113 (equation 48)87,88.

The structures and properties of quinone methides were recently reviewed89. Inter alia, the microbial tyrosine phenol lyase (TPL) catalyzes the α, β-elimination of L-tyrosine to phenol and ammonium pyruvate. It is assumed that the process includes three steps, the second of which is tautomerization of the aromatic moiety which converts it into a good leaving group (equation 49)90.

Various isomerizations were reported, including the tautomeric transformations of 2,6-disubstituted phenols which involve participation of phenoxy radicals and cation radicals91,92.

C. Hydroxy Group Migrations

The rearrangements of phenols which are accompanied by hydroxy group transpositions are called the Wessely–Moser reaction93,94 (equations 50 and 51). In essence, these rearrangements are recyclizations of flavonoides 114 via the ring-opened form 115 to give the novel structures 116. Compounds that can participate in these rearrangements are flavones (114, R2 = H, R3 = Aryl), flavonoles (114, R2 = OH, R3 = Aryl), isoflavones (114, R2 = Aryl, R3 = H), chromones (114, R2 = OH, R3 = Alkyl), chromonoles (114, R2 = OH, R3 = Alkyl), xanthones (114, R2R3 = benzo) as well as benzopyrylium salts (e.g. see Reference 95).
D. Isomerizations of Alkylphenols

Information about the transformations of alkylphenols upon heating and action of acid catalysts is too voluminous and is concentrated mainly in the patent literature (for a review see Reference 96). Thus, the higher \(n \)-alkylphenols undergo alkyl group elimination, transalkylation and transposition of side chains under acid catalysis conditions. The isopropyl and tert-butyl groups have the greatest migration ability. For example, 2-methyl-6-isopropylphenol rearranges readily to afford 2-methyl-4-isopropylphenol by action of catalytic amounts of H\(_2\)SO\(_4\) at \(ca \) 60°C\(^{97}\). 2-tert-Butylphenol rearranges almost quantitatively into 4-tert-butylphenol already at \(-40^\circ C\) in liquid HF solution\(^{98}\).

In spite of such an abundant literature concerning the alkylphenol conversions, investigations in this field are still progressing. The Amberlyst 15-catalyzed alkylation of phenol or catechol with olefins, capable of forming the stable tert-alkylcarbenium ions, results in the corresponding tert-alkylphenols at 25–130°C, with the \(para \)-isomer being the favored product. However, the alkylation at 140–150°C leads to sec-alkylphenols, with both \(ortho \)- and \(para \)-isomers in almost equal amounts\(^{99}\). It was found that 2-tert-butylphenol isomerizes easily to 4-tert-butylphenol during the alkylation of phenol with tert-butanol in the vapor phase on an SAPO-11 catalyst (silicoaluminophosphate molecular sieves)\(^{100}\).
E. Isomerizations of Phenols Containing Unsaturated Side Chains

1. Double bond migration

The classic example for conversion of allylphenols to propenylphenols is the base-catalyzed rearrangement of eugenol 117 to isoeugenol 118 (equation 52)101. Silyl protected phenolic tertiary cinnamyl alcohols 119 undergo a lithium-ammonia induced hydrogenolysis with concomitant double bond migration. This reaction serves as a unique approach to prenyl-substituted aromatic compounds 120 (equation 53)102,103.
11. Tautomeric equilibria and rearrangements involving phenols

\[
\begin{align*}
\text{Acid} & \quad \xrightarrow{\text{H}_2\text{O}} \\
\text{(114)} & \quad \xrightarrow{-\text{H}_2\text{O}} \\
\text{(115)} & \quad \xrightarrow{\text{H}^+} \\
\text{(116)} & \quad \xrightarrow{\text{H}^+} \\
R^1 = \text{H, Alkyl}; R^2 = \text{H, OH, Aryl}; R^3 = \text{H, Alkyl, Aryl} \\
\text{Acid} = \text{HI, H}_2\text{SO}_4, \text{Py} \cdot \text{HCl}
\end{align*}
\]
The isomerization of 2-allylphenol 121 to 2-propenylphenol 122 catalyzed by the ortho-metallated complex Rh[P(OPh)₃][P(OPh)₂(OC₆H₄)] produces only one isomer (equation 54).
2. Allylphenol–coumaran rearrangement

The abnormal Claisen rearrangement (see also Section IV.B.1) of 2-allylphenols 123 leads to spirodienones 124 and 125 (equation 55). This reaction is a [1,5s]-homosigmatropic process that is accompanied by transfer of hydrogen atom from the hydroxy group to the γ-C-atom of the C=C bond. Compounds 124 and 125 can undergo further transformations, namely, a reverse conversion into phenols 123, trans–cis-isomerization, isomerization of the side chain (R² = Me) (with the exception of isomers 125) and a [1,3]-sigmatropic rearrangement into coumaranes 126 and 127 (equations 55 and 56). The formation of isomer 126 occurs especially readily if the substituent R² in the intermediates 124 and 125 is a vinyl or an aryl group. The 2-(1′-arylallyl)phenols 128 were transformed on heating in N,N-diethylaniline at 225 °C to the trans-2-aryl-3-methylcoumaranes 129 in excellent yields (equation 57).

\[
R^1 \quad H \quad R^2 \\
\text{(123)}
\]

\[
R^1 \quad \overset{\text{O}}{\text{C}} \quad R^2 \\
\text{(124)} + \text{(125)}
\]

\[
\text{OH} \quad \text{CH}_2 \\
\text{(126)}
\]

\[
R^1 \quad \text{OH} \quad R^2 \\
\text{(127)}
\]
\[R^1 = H, \text{Me}, \text{OMe}, \text{Br}, \text{CN}; R^2 = H, \text{OMe} \]

\[\text{R}^1 = \text{H, Me, OMe, Br, CN; R}^2 = \text{H, OMe} \]
2H-Chromenes 134 were obtained via cyclization of the unstable intermediates—vinyl-o-quinone methides 133—which can be formed by various paths: (a) from ortho-(cis-buta-1,3-dienyl)phenols 130 by thermal [1,7\textsubscript{a}]-hydrogen shift; (b) from ortho-allenylphenols 131 (which are intermediates in the Claisen rearrangement of propargyl phenyl ethers, see Section IV.C) by [1,5s]-hydrogen shift; and (c) by dehydration of ortho-allylphenols 132 with dichlorodicyanobenzoquinone (DDQ) (equation 58)106. The ortho-quinomethanes 136 were prepared by thermolysis of ortho-hydroxyphenyl carbinols 135106 (equation 59).

\[
\begin{align*}
\text{(135)} & \xrightarrow{\text{diglyme, 147 °C, } -\text{H}_2\text{O}} \text{(136)} \\
R = \text{H, CH}=\text{CH}_2, \text{Ph}
\end{align*}
\]
Isomerization of phenols 137 over silica gel in the solid phase furnishes the corresponding 2,3-dihydro-4-oxo-4\(H\)-1-benzopyrane derivatives 138 (equation 60). The cascades of the charge-accelerated rearrangements of the ortho-(1,1-dimethylpropenyl)phenol 139 catalyzed by Brønsted acid (e.g. trifluoroacetic acid, equation 61) as well as by Lewis acids (anhydrous AlCl\(_3\) or TiCl\(_4\), equations 62 and 63) proceed via the common intermediate 140.

The analogous isomerization of ortho-hydroxyaryl phenylethynyl ketone 141 leads to 6-methoxyflavone 142 and 5-methoxyaurone 143 (equation 64).

\[
\begin{align*}
139 & \rightleftharpoons \\
& \rightleftharpoons \\
\begin{array}{c}
139 \\
\text{Me} \\
\text{Me} \\
\text{H} \\
\text{OMe} \\
\text{OMe}
\end{array} & \\
& \text{Me} \\
& \text{Me} \\
& \text{O}^+ \\
& \text{R} \\
& \text{A}
\end{align*}
\]

\[
\begin{align*}
(140) & \rightleftharpoons \\
& \rightleftharpoons \\
\begin{array}{c}
(140) \\
\text{Me} \\
\text{Me} \\
\text{Me} \\
\text{Me} \\
\text{OMe} \\
\text{OMe}
\end{array} & \\
& \text{Me} \\
& \text{Me} \\
& \text{O}^+ \\
& \text{R} \\
& \text{A}
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{O} & \\
\begin{array}{c}
\text{Me} \\
\text{Me} \\
\text{Me} \\
\text{Me} \\
\text{OMe} \\
\text{OMe}
\end{array} & \\
& \text{Me} \\
& \text{Me} \\
& \text{O}^+ \\
& \text{R} \\
& \text{A}
\end{align*}
\]

\[
\begin{align*}
A &= \text{Lewis acid (AlCl}_3, \text{TiCl}_4)
\end{align*}
\]
$R = \begin{array}{c}
\text{HO} \\
\text{Ph}
\end{array}$ and $\begin{array}{c}
\text{HO} \\
\text{Ph}
\end{array}$

$A = \text{Lewis acid (AlCl}_3, \text{TiCl}_4)$

upon extraction

$\begin{array}{c}
\text{MeO} \\
\text{Ph}
\end{array}$

$\begin{array}{c}
\text{MeO} \\
\text{Ph}
\end{array}$ + $\begin{array}{c}
\text{MeO} \\
\text{Ph}
\end{array}$

(142) + (143)
IV. REARRANGEMENTS OF O-SUBSTITUTED PHENOL DERIVATIVES

A. Rearrangements of Alkyl and Aryl Phenolic Ethers

Alkyl aryl ethers are quite stable on heating. Phenyl benzyl ether isomerizes slowly at 250 °C to afford 4-benzylphenol and its ortho-isomer as a minor product. The conditions of isomerizations of O-alkylated and O-aralkylated phenols were reviewed.

The rearrangements of diaryl ethers are more useful for organic synthesis. The most known reaction in this field is the Smiles rearrangement (equation 65). Electron-donating substituents R^2 facilitate this rearrangement which often turns out to be reversible.

\[\text{R}^1 \text{R}^2 \text{YH} \xrightarrow{(i)} \xrightleftharpoons{} \text{R}^1 \text{R}^2 \text{XY} \]

(i) NaOH, KOH, NaNH$_2$; H$_2$O, MeOH, EtOH, C$_6$H$_5$, DMF; 50–100 °C
R1 = H, Me, Hal; R2 = H, NO$_2$, Hal; X = O, S, SO$_2$, COO; Y = O, S, NH, SO$_2$

The isomerization of diaryl ethers to ortho-arylphenols in the presence of phenylsodium is known as the Lüttringhaus rearrangement (equation 66).

\[\text{O} \xrightarrow{\text{C}_6\text{H}_2\text{Na}} \text{Na} \xrightarrow{\text{C}_6\text{H}_2\text{ONa}} \text{Na} \xrightarrow{\text{H}_2\text{O}} \text{OH} \]

An unusual ring-contraction reaction occurs on the acid-catalyzed interaction of trimethylhydroquinone 144 with cycloalkane-1,2-diols (e.g. 145) to form the spiro compounds 146 (equation 67). Besides two isomers of cyclohexane-1,2-diols 145, this rearrangement was also described for cyclopentane-, cycloheptane- and cyclooctane-1,2-diols.
11. Tautomeric equilibria and rearrangements involving phenols

It should be mentioned here that very interesting constitutional and translational isomerism is observed in the series of catenanes and rotaxanes which contain phenol derivatives such as macrocyclic phenylene-crown components as well as phenolic polyether chains116–118 (see also Lehn’s recently published book119).

B. Rearrangements of Allyl Aryl Ethers

Among the isomerizations of phenolic ethers, the rearrangements of allyloxyarenes occupy a special position because of the wide variety of pathways and the great synthetic significance.

1. Claisen rearrangement

The overwhelming majority of literature devoted to isomerizations of allyl aryl ethers is connected with the aromatic Claisen rearrangement and is summarized in detail in many reviews120–124. Although the [3,3]-sigmatropic isomerization of phenol ethers to the corresponding C-alkylated derivatives has enjoyed widespread application in organic synthesis for over seventy years, it continues to be a very important reaction for the construction of a carbon–carbon bond. This section presents only recent reports.

In general, the aromatic Claisen rearrangement can be illustrated by equation 68. The initial step in the thermal Claisen rearrangement of an allyl aryl ether leads to an orthodienone which usually enolizes rapidly to form the stable product, an ortho-allylphenol (so-called ortho-Claisen rearrangement, 147 \rightarrow 148 \rightarrow 149). However, if the rearrangement proceeds to an ortho-position bearing a substituent, a second [3,3]-rearrangement step, followed by enolization, occurs to afford the para-allylphenol (para-Claisen rearrangement, 147 \rightarrow 150 \rightarrow 151 \rightarrow 152). The temperature range for typical reactions is 150$^\circ$C to 225$^\circ$C121.

\begin{equation}
\begin{align*}
(147) & \rightarrow (148) \rightarrow (149) \\
(150) & \rightarrow (151) \rightarrow (152)
\end{align*}
\end{equation}
The intramolecular nature of the rearrangement was established by means of 14C-labeled allyl phenyl ether as well as by a crossover experiment. *Ab initio* calculations were performed to determine the transition-state structures and the energetics of aromatic Claisen rearrangement as well as in related isomerizations\(^{125}\). It was shown during an investigation of the solvent effects on the thermal Claisen rearrangement that isomerization of cinnamyloxybenzene \(\text{153}\) in diethylene glycol gives, in addition to ‘normal products’ \(\text{154}\) and \(\text{155}\), also 2-cinnamylphenol \(\text{157}\) and diethylene glycol monocinnamyl ether \(\text{158}\). The formation of the ether \(\text{158}\) was ascribed to the acidic and high dielectric properties of the glycol solvent that allows generation and capture of the cinnamyl cationic intermediate \(\text{156}\) (equation 69)\(^{126}\).

\[
\text{O} \quad \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} \\
\text{OH}
\]

(153)

\[
\begin{array}{c}
\text{OH} \\
\text{O}
\end{array} \quad \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} \\
\text{OH}
\]

(154)

\[
\begin{array}{c}
\text{HO} \\
\text{O}
\end{array} \quad \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} \\
\text{OH}
\]

(155)

\[
\begin{array}{c}
\text{HO} \\
\text{O}
\end{array} \quad \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} \\
\text{OH}
\]

(156)

\[
\begin{array}{c}
\text{OH} \\
\text{O}
\end{array} \quad \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} \\
\text{OH}
\]

(157)

\[
\begin{array}{c}
\text{OH} \\
\text{O}
\end{array} \quad \begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array} \\
\text{OH}
\]

(158)

The preparative Claisen rearrangement was studied in aqueous media at temperatures up to 300°C. The experiments were conducted in the recently created pressurized microwave batch reactor and in conventional heated autoclaves. It was found that allyl phenyl ether isomerizes in water during 10 min at 240°C to give the ortho-Claisen rearrangement product in 84% conversion\(^{127}\).
The Claisen rearrangement can be effectively catalyzed by Lewis acids, Brönsted acids, bases, Rh(I) and Pt(0) complexes as well as by silica121. Several reviews were published recently in which the application of zeolites and acid-treated clays as catalysts for the Claisen rearrangement was described128–130. Thus, it was shown that the rearrangement conditions for phenolic allyl ethers can be dramatically milder if this reaction is carried out by thermolysis of a substrate immobilized on the surface of previously annealed silica gel for chromatography. For example, the thermolysis of ether 159 on silica gel (in a 159: SiO\textsubscript{2} ratio of 1:10 w/w) at 70 °C gives the phenol 160 in 95% yield after 3.5 hours131 (equation 70). An additional example is shown in equation 71131.

An unusual [1,3]-rearrangement of aryl 2-halocyclohexenylmethyl ethers 161 was promoted by trifluoroacetic acid132 (since the thermal rearrangement failed because the ethers 161 are stable up to 240 °C). When the ethers 161 were exposed to TFA at room temperature, an extremely facile reaction afforded the products 162 in good yields (65–80%). However, no products of Claisen rearrangement were formed (equation 72)132.

On the contrary, the acid-catalyzed rearrangement of the allyl ether 163 failed owing to acidolysis. The ether 163 was rearranged on heating in N,N-diethylaniline (equation 73)133. It is interesting that the reaction of phenol with methylenecyclopropane 164 proceeds smoothly to give the phenol 165 by an addition/ring-opening reaction followed by Claisen rearrangement in 56% yield (equation 74)134.

A novel class of purely thermally activated dyes which became colored only upon heating (i.e. without any other components) was created by using the fact that the neutral and colorless allyl aryl ethers 166 generate an acidic group upon heating due to Claisen rearrangement. The phenol groups thus formed undergo an intramolecular acid–base reaction, which in turn causes the opening of the lactone ring and the coloration (equation 75)135.

In the studies of syringin, an active component in traditional Chinese medicine, it was shown that 4-hydroxy-3,5-dimethoxybenzoic acid 167 reacted with allyl bromide under basic conditions to produce a mixture of O- and C-allylated compounds 168, 169. After the mixture was subjected to heating at about 200 °C, a para-Claisen rearrangement took place to form the main product 169 in 71% yield (equation 76)136.

Claisen rearrangement is widely used in organic synthesis. Thus, to obtain ortho-methoxyated phenethylamino derivatives as potent serotonin agonist 170, the strategy employed was based on the Claisen rearrangement and isomerization of the allyl fragment. The bromine atom was attached at an ortho-position to the hydroxy group in order
to force a regiospecificity on the Claisen rearrangement (equation 77)137.

\begin{equation}
\begin{array}{c}
\text{(161)} \\
\begin{array}{c}
\text{R}^2 \\
\text{R}^1 \\
\text{O} \\
\text{R}^3 \\
\text{X}
\end{array}
\end{array}
\begin{array}{c}
\text{TFA} \\
\begin{array}{c}
\text{R}^2 \\
\text{R}^1 \\
\text{O}^+ \\
\text{R}^3 \\
\text{X}
\end{array}
\end{array}
\begin{array}{c}
\rightarrow \\
\begin{array}{c}
\text{R}^2 \\
\text{R}^1 \\
\text{O} \\
\text{R}^3 \\
\text{X}
\end{array}
\end{array}
\begin{array}{c}
\text{(162)} \\
\begin{array}{c}
\text{R}^2 \\
\text{R}^1 \\
\text{O} \\
\text{R}^3 \\
\text{H}
\end{array}
\end{array}
\begin{array}{c}
\text{H}_2\text{C} \\
\text{X}
\end{array}
\end{equation}

\[X = \text{Cl, Br}; R^1 = \text{H, Me, OMe, Cl} \]
\[R^1 = \text{H}, R^2R^3 = \text{benzo} \]
\[R^3 = \text{H}, R^1R^2 = \text{benzo} \] \text{(72)}

The \textit{ortho}-allylphenols 171 and 172 which were used for the synthesis of coumaranes (Section III.E.2) were obtained by means of a thermal Claisen rearrangement (equations 78 and 79)105.

It was found that molybdenum hexacarbonyl effectively catalyzes a tandem Claisen rearrangement—cyclization reaction of allyl aryl ethers 173 to produce the dihydrobenzofurans 174 in good yields (equation 80)138. However, the methallyl aryl ethers 175 under the same conditions (40 mol% of catalyst Mo(CO)\textsubscript{6} in refluxing toluene for 55 hours) gave good yields of the corresponding 2,2-dimethylchromans 176 (equation 81)139.
The ortho-Claisen rearrangement was employed in the synthesis of dihydrobenzopyrans 179 using aqueous trifluoroacetic acid as the catalyst for both the condensation of the phenols 177 with allyl alcohols 178 and the rearrangement which was followed by cyclization (equation 82)140.
The Claisen rearrangement was also used for the preparation of coumarins and their derivatives. Thus, alkyl 3-acetoxy-2-methylenebutanoate \(180\) reacts with phenol to afford the ether \(181\), which rearranges into methylenecoumarin \(182\) (equation 83).\(^1\)

The original ‘tandem Claisen rearrangement’ promoted by \(\text{Et}_2\text{AlCl}\) and 2-methyl-2-butene was utilized for synthesis of a new type of macrocyclic derivatives \(186\) from the corresponding macrocyclic polyethers \(185\) which were formed via \(183\) and \(184\) (equations 84 and 85). This very rapid reaction results in good yields of potential host molecules and supramolecular building blocks under mild conditions, instead of the thermal treatment.

The aromatization of intermediates under thermal Claisen rearrangement conditions can affect also the alicyclic fragments annelated with the phenolic ring. Thus, the rearrangement of the naphthalene derivative \(187\) is accompanied by a retro-Diels–Alder reaction involving de-ethylenation (equation 86). This strategy was used for a high yield synthesis of racemic hongconin \(190\) (equation 87). The key intermediate \(189\) was prepared starting from the Diels–Alder adduct \(188\) in three steps including a Fries rearrangement (see Section IV.D.1).

While the aliphatic Claisen rearrangement\(^1\) has proven to be a major synthetic tool for controlling the stereochemistry in a C–C bond formation, the aromatic Claisen rearrangement has not been exploited as an asymmetric aryl alkylation protocol.\(^2\) A facile
asymmetric O-alkylation of phenols is required in order to carry out the catalytic Claisen rearrangement that proceeds with excellent chirality transfer. These two aims were achieved recently by application of the chiral catalyst 191 for asymmetric O-alkylation\(^{145}\). In addition, a new catalytic version of aromatic Claisen rearrangement was proposed where the selectivity for ortho-migration and the high chirality transfer are provided by a lanthanide catalyst (equation 88)\(^ {145}\).

\[
\text{(i) 1) } \text{K}_2\text{CO}_3, \text{Me}_2\text{CO}, \text{reflux, 18 h, 2) } \text{CH}_2 = \text{CHCH}_2\text{Br}, \text{10.5 h} \\
\text{(ii) } \text{PhMe}_3\text{NMeSO}_4, \text{K}_2\text{CO}_3, \text{DMF, reflux, 36 h} \\
\text{(iii) } \text{AgNO}_2, \text{I}_2, \text{pyridine} \\
\text{(iv) 1) } \text{LiAlH}_4, \text{THF, H}_2\text{O}, \text{2) } \text{Br}_2/\text{AcOH}
\]
Sergei M. Lukyanov and Alla V. Koblik

(78)

(79)

(79)

R = H, Me, OMe; Ar = 4-XC₆H₄, X = H, Me, MeO, Br, CN

(80)

R = H, 4-Me, 4-MeO, 4-Cl
A highly enantioselective and regioselective aromatic Claisen rearrangement was carried out using the reaction of catechol monoallyl ethers 192 with the chiral boron reagent 193. This reaction occurs without the formation of either the para-rearrangement or the abnormal Claisen rearrangement products (equation 89). The aromatic Claisen rearrangement was employed in the synthesis of building blocks for various macrocyclic compounds, such as pendant-capped porphyrins, multidentate macrocycles containing 1,3,4-oxadiazole, imine and phenol subunits, as well as to prepare longithorone B, a sixteen-membered farnesylated para-benzoquinone.

2. Other isomerizations of allyloxy arenes

A new convenient synthesis of alkyl and aryl 1-propenyl ethers in good to excellent yields was developed. The aryl allyl ethers obtained can be smoothly
isomerized to the desired 1-propenyl ethers by refluxing in a basic ethanolic solution containing pentacarbonyliron as a catalyst. The interesting isomerization of 2-(allyloxy)phenyllithium in the presence of tetramethylethylenediamine (TMEDA) occurs with a new domino cyclization–elimination sequence to afford the 2-(cyclopropyl)phenol.

A unique rearrangement of 2-bromophenyl allyl ethers proceeds as a completely regio- and stereospecific process without any migration to the para-position and with conservation of the regiochemistry in the allyl substituents of the phenolic products. It was assumed that the reaction occurs via the \(\pi \)-allyl complexes.

The reversible migrations of aryloxy groups along the perimeter of the pentaphenyl-substituted cyclopentadiene system also deserve attention here. A more detailed description of such circumambulatory rearrangements was published recently.

C. Rearrangements of Propargyl Aryl Ethers

The titled reactions are employed for synthesis of benzopyrane derivatives. Thus, the racemic cordiachromene was prepared starting from 6-methylhept-5-en-2-one using the Claisen rearrangement of the intermediate propargyl ether in an overall yield of 50%.

New photochromic chromenes and annulated with a furan ring were obtained using the Claisen rearrangement of propargyl ethers. It is interesting that the Claisen rearrangement of aryl propargyl ether, which was carried out by heating in \(N,N \)-diethylaniline at 215 °C, gave naphthopyran whereas naphthofuran was obtained as a sole product under the same conditions but in the presence of cesium fluoride. The addition of components other than CsF (e.g. CsCl, KF, RbF, CaF\(_2\), BaF\(_2\)) lead to chromene in yields of 84–97%.
11. Tautomeric equilibria and rearrangements involving phenols

\[
\begin{align*}
\text{t-Bu} & \quad \text{OH} \\
& \quad \text{DMF, 97%} \quad \text{NaH} \\
\quad \bigg\uparrow & \\
\begin{array}{c}
\text{t-Bu} \\
\quad \bigg\uparrow & \\
\text{Cl} \\
\quad \bigg\uparrow & \\
\text{Cl} \\
\quad \bigg\uparrow & \\
\text{Bu-t} \\
\end{array} \\
\end{align*}
\]

8 h, 61% decalin, reflux

\[
\begin{align*}
\text{t-Bu} & \quad \text{OH} \\
& \quad \text{Bu-t} \\
\text{Cl} & \quad \text{Cl} \\
\quad \bigg\uparrow & \\
\text{NaH, DMF} & \\
\text{(183)} & \\
\end{align*}
\]

(84)
183 + 184

\[
\text{t-Bu} \quad \text{NaH, DMF} \quad \text{t-Bu}
\]

\[
\begin{array}{c}
\text{t-Bu} \\
\text{O} \\
\text{Me} \\
\text{Me} \\
\end{array} \\
\begin{array}{c}
\text{Me} \\
\text{Me} \\
\text{Et}_2\text{AlCl} \\
10 \text{ min, RT, 46%}
\end{array} \\
\begin{array}{c}
\text{t-Bu} \\
\text{O} \\
\text{OH} \\
\text{OH} \\
\end{array} \\
\begin{array}{c}
\text{t-Bu} \\
\text{OH} \\
\text{OH} \\
\text{t-Bu}
\end{array}
\]

\[(185) \quad (186)\]
reaction in the presence of CsF (0.1–10 mol equiv) results in the furan 208 (86–87%) and chromene 207 as a byproduct (2.2–6.8%). Such pathway change can be explained by the fact that the formation of benzopyrans 213 occurs via enolization step 209 → 210 while cesium fluoride acts as a soft base providing the abstraction of α-hydrogen atom from the α-allenylketone 209 to give the enolate anion 211 that cyclizes to the benzofuran 212 (equation 96). The benzofuran derivatives 215 and 217 were obtained also by Claisen rearrangement of 2-phenylsulfinyl-2-propenyl phenyl ethers 214 (refluxing in mesitylene in the presence of SiO₂, 180°C, 22 h) (equation 97) as well as of aryl β-chloroallyl ethers 216 (equation 98). These aryl ethers act here as the synthetic equivalents of aryl propargyl ethers.

D. Rearrangements of Phenolic Esters

1. Fries rearrangement

The Fries rearrangement used for the preparation of aryl ketones from phenolic esters is now one of the most significant reactions in the synthetic chemistry of aromatic compounds, both in the classical version (equation 99) and in the newest modifications (see Section IV.D.3).

In general, high reaction temperatures favor the ortho-rearrangement whereas low temperatures favor the para-rearrangement, although many exceptions are known. The mechanistic aspects, scope, procedures and synthetic applications of the ortho- and para-Fries rearrangement are generalized in detail in many reviews. The use of rare-earth element (Sc, Hf, Zr) complexes as water-compatible catalyst (Lewis acids) in
the Fries rearrangement was described in a recent survey168 as well as in a series of papers169–173. Novel efficient catalysts, such as a mixture of methanesulfonic acid and phosphorus oxychloride (MAPO)174, various zeolites175–179 as well as silica composite catalysts180–183, were proposed for the Fries rearrangement. Studies of Fries rearrangement under microwave irradiation conditions were also reported184–188. The Fries rearrangement was efficiently carried out in liquid hydrogen fluoride98,189, which was also employed as a medium for the cleavage of \(\omega\)-amino acids from a Merrifield resin in peptide synthesis190. The kinetics and mechanisms of a Fries rearrangement catalyzed by AlCl\(_3\) in different solvents were discussed in a series of papers by Japanese chemists191–194.

\begin{align*}
\text{OMe} & \quad \text{O} \\
\begin{array}{c}
\text{O}
\end{array} & \quad \begin{array}{c}
\text{Me}
\end{array}
\end{align*}

\text{(188)}

\begin{align*}
\text{OMe} & \quad \text{OH} \\
\begin{array}{c}
\text{O}
\end{array} & \quad \begin{array}{c}
\text{Me}
\end{array}
\end{align*}

\text{(189)}

\begin{align*}
\text{OMe} & \quad \text{OMe} \\
\begin{array}{c}
\text{O}
\end{array} & \quad \begin{array}{c}
\text{Me}
\end{array}
\end{align*}

\text{(87)}

\begin{align*}
\text{OMe} & \quad \text{OH} \\
\begin{array}{c}
\text{O}
\end{array} & \quad \begin{array}{c}
\text{Me}
\end{array}
\end{align*}

\text{(190)}
11. Tautomeric equilibria and rearrangements involving phenols

\[
\begin{align*}
\text{OH} & \quad + \quad \begin{array}{c}
\text{OCO}_2R^2 \\
(\text{Ph})_2\text{PPh}_2 \\
\text{N} \\
\text{NH} \\
\text{Ph}_3\text{P} \\
\text{Pd} \\
\text{CHCl}_3
\end{array} \\
\text{R}^1 \\
\text{R}^2
\end{align*}
\]

\((\text{dba})_2\text{Pd}\cdot\text{CHCl}_3\) \quad \text{CH}_2\text{Cl}_2, \text{RT} \quad \text{ee up to 97%}

\[
\begin{align*}
\text{(191)}
\end{align*}
\]

\[
\begin{align*}
\text{R}^1 = \text{OMe, F}; \text{R}^2 = \text{Me, t-Bu}; \\
n = 1-3
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{array}{c}
\text{O} \\
\text{H}
\end{array} \\
\text{R}^1
\end{array} & \quad \text{H} \\
\begin{array}{c}
\text{O} \\
\text{R}^1
\end{array} & \quad \begin{array}{c}
\text{H}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{(192)}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{OH}
\end{array} & \quad \text{OH}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{OH}
\end{array} & \quad \begin{array}{c}
\text{OH}
\end{array}
\end{align*}
\]

\[(\text{S,S-1}) \quad \text{or} \quad (\text{S,S-2})
\]

\[
\begin{align*}
\text{Ar} = \text{Me} & \quad \begin{array}{c}
\text{F}_3\text{C}
\end{array} \\
\text{R} = \text{i-Pr}
\end{align*}
\]
A new approach to the synthesis of 3-acetyl-5-methoxynaphthoquinone 221 involves the pyrolysis of the polycycle 218 derived from the Diels–Alder adduct 188 (Section IV.B.1). The regiospecific Fries rearrangement of diacetoxy napthalene 219 leads to the naphthol 220 whose oxidation gives the desired product 221 as a key intermediate for the synthesis of naturally occurring antibiotic pyranoquinones (equation 100)\(^{195}\).

A specific Fries rearrangement takes place when 1-aryloxy-5-methoxynaphthalenes 222 undergo an intramolecular acyl transfer to form peri-hydroxynaphthoyl aryl ketones 223 under mild conditions in the presence of trifluoroacetic anhydride and boron trifluoride etherate (equation 101)\(^{196}\).

The first synthesis of a dimeric pyranonaphthoquinone 225 which is related to naturally occurring biologically active compounds such as actinorhodin and crisamicin includes the double Fries rearrangement of the bis-ether 224 as one of the stages\(^{197,198}\) (equation 102).

The bicoumarin 229 was obtained using a double Fries rearrangement of the diacetate 226 promoted by TiCl\(_4\) as a Lewis acid, and a subsequent cyclization of the dicarbonate 228 derived from the diketone 227 (equation 103)\(^{199}\). The Fries rearrangement of hydroxycoumarin chloroacetates 230 provides a new short pathway to furocoumarins 231 (equation 104)\(^{200}\).

The Fries rearrangement was efficiently used for the synthesis of O- and C-glycosides. Thus, the ‘O → C-glycoside rearrangement’ as an access to C-glycosides is a two-stage reaction which proceeds in a one pot in the presence of a Lewis acid. The first step is the low-temperature O-glycosidation of the 1-fluoro sugar 232, \(X = F\) to form the O-glycoside 233, which is further converted \textit{in situ} to ortho-C-glycoside 234 simply by raising the temperature\(^{201,202}\) (equation 105). An analogous approach to aryl C-glycosides was proposed by Schmidt and coworkers\(^{203–205}\) (equation 106) (see also Reference 206).

The so-called ‘thia-Fries rearrangement’ occurs upon treatment of aryl phenylsulfonates 235 (obtained by reaction of phenols with phenylsulfanyl chloride) with AlCl\(_3\) at 25 °C to afford the (phenylsulfanyl)phenols 236 in good yields (equation 107)\(^{207}\).
\[\text{Cu(t-Bu)(CN)Li}_2 \rightarrow \text{CuCN/LiBr} \rightarrow -78^\circ C \text{ to } 20^\circ C \]

\[\text{R}^1 = \text{H, Me, Ph, (CH}_2\text{)}_2\text{CH} = \text{CMe}_2; \text{ R}^2, \text{ R}^3 = \text{H, Me}; \text{ R}^2\text{R}^3 = (\text{CH}_2)_4 \]

\[\text{196} \rightarrow \text{197} \rightarrow \text{198} \]
2. Baker–Venkataraman rearrangement

The rearrangement of ortho-aryloxyacetophenones 237 to ortho-hydroxybenzoylmethanes 238 in the presence of basic reagents is known as the Baker–Venkataraman rearrangement (for a review see Reference 208) (equation 108).

There are scanty reports about the Baker–Venkataraman rearrangement which is used in synthesis very seldom. Thus, in the approach mentioned in equation 106 the C-glycoside 239 undergo O-benzoylation to afford the ester 240, which rearranges into the 1,3-dicarbonyl compound 241 formed as a keto–enol mixture in 48% yield (equation 109)209.

In another approach the same starting C-glycoside 239 was acylated with para-anisoyl chloride to form the ester 242, which was treated with lithium diisopropylamide (LDA) to give the enol of a dibenzoylmethane 243 (equation 110)209.

A brief survey (5 papers from 1933 to 1950) was given and the conditions of Baker–Venkataraman rearrangement were investigated elsewhere210 (equation 111). It was found that sodium ethoxide in benzene was the best catalyst for this reaction. It was also shown that this rearrangement failed in the case of the ester 244.

The Baker–Venkataraman rearrangement was used as a key step in syntheses of trihydroxyflavanones 245 (equation 112)211 as well as isoflavones 246 (equation 113)212.

An interesting example of Baker–Venkataraman rearrangement was reported for peri-acyloxyketones 247 (equation 114)213.

3. Anionic ortho-Fries rearrangement

Side by side with the wide application of the classical Fries rearrangement in organic synthesis, a new approach is developing lately. This method represents an anionic
\[
\begin{align*}
(200) \xrightarrow{\text{MgBr, Et}_2\text{O/THF} \ 90\%} \quad (201) \\
(201) \xrightarrow{(\text{CF}_3\text{CO})_2\text{O, DBU, MeCN, 75\%}} \quad (202) \\
(202) \xrightarrow{\text{EtOH/H}_2\text{O, KOH} \ 85\%} \quad \text{AcO} \\
(202) \xrightarrow{\text{PhNEt}_2, \text{DMF, 150 \degree C, 85\%}} \quad \text{AcO}
\end{align*}
\]
R¹ = (CH)₄, (CH₂)₄, (CH₂)₅; R² = Me, Ph
equivalent of the ortho-Fries rearrangement which is based on the so-called directed ortho metalation reaction (DoM) (equation 115). The DoM reaction comprises the deprotonation of molecule 248 in an ortho-position to the heteroatom-containing directed metalation group (DMG) by a strong base such as alkyl lithium to form the ortho-lithiated intermediate 249. The latter upon treatment with electrophilic reagents gives 1,2-disubstituted products 250. 40 DMGs are known, over half of which, including the CONR₂ and OCONR₂ groups, have been introduced into synthetic practice during the last twenty years. A comprehensive review of DoM reactions, of which only a small part is represented by anionic rearrangements, was published a decade ago²¹⁴.
An unprecedented O → C 1,3-carbamoyl migration of the *ortho*-lithiated species 252 in the course of a directed metalation reaction of carbamates 251 to give the salicylamides 253 was first reported by Sibi and Snieckus (equation 116)\(^{215}\). This approach was afterwards developed in a series of investigations\(^ {216 – 218}\).

The dicarbamates 254 were smoothly lithiated by using *t*-BuLi—TMEDA at \(-80^\circ\text{C}\) and then allowed to warm to room temperature over 16 hours. Under these conditions a smooth anionic *ortho*-Fries rearrangement gave the diamido derivatives 255 in fair yields (25–80\%) (equation 117)\(^ {219}\) (see also Reference 220). A similar rearrangement was also described for [2,2]-paracyclophanes\(^ {221}\).
11. Tautomeric equilibria and rearrangements involving phenols

Anionic ortho-Fries rearrangement which involves a 1,3-transposition of a carbamoyl group occurred also in the chromium complex 256 on warming the lithium intermediate 257 to −20 °C (equation 118)\(^\text{222}\). The lithio benzo[b]thiophene 258 obtained at −78 °C was allowed to attain room temperature, and when it was left stirring for 12 hours it gave the salicylamide 259 (equation 119)\(^\text{223}\).

A transformation called ‘metallo-Fries rearrangement’ was described for lithiation of O-substituted ortho-nitrophenols 260 (equation 120)\(^\text{224}\). Analogous migrations of SiR\(_3\) groups were reported for reactions of the bromine-substituted O-silylated phenols with t-BuLi\(^\text{225}\).

An anionic ortho-Fries rearrangement has also been observed in the naphthyl-, phenanthryl-, pyridyl- and quinolinylcarbamate series. It was found that the rate of anionic ortho-Fries rearrangement is highly sensitive to N-substitution and temperature, and was shown by crossover experiments to proceed by an intramolecular mechanism.

However, the real Fries rearrangement, i.e. a transformation of aryl esters into ortho-hydroxyketones accompanied by migrations of acyl groups, can also be a metal-promoted reaction to produce, under the proper reaction conditions, good yields of ortho-specific acyl migration products. Thus, ortho-bromophenyl pivaloate (261, \(R^1 = t\)-Bu, \(R^2 = R^3 = H\)) affords ortho-hydroxyphenalphenone (262, \(R^1 = t\)-Bu, \(R^2 = R^3 = H\)) in 76% yield (equation 121), whereas the phenyl pivaloate reacts with AlCl\(_3\) (refluxed in dichloroethane for 18 h) to form para–tert-butylphenol (25%) and phenol (65%)\(^\text{226}\). The same work\(^\text{226}\) described also the so-called anionic homo-Fries rearrangement, namely, a series of pivaloates 263–265 having the ester functionality separated from the aromatic nucleus by a
carbon chain gave, under the same conditions, different products depending on the length of this chain (equations 122–124).

\[
\begin{align*}
\text{(222)} & \\
\text{(223)} & \quad \text{Ar} = \text{Ph, 4-MeOC}_6\text{H}_4, 4-\text{O}_2\text{NC}_6\text{H}_4
\end{align*}
\]

ortho-Hydroxymethylated benzophenones 267, key intermediates in the synthesis of the phenolic alkaloids (+)-cherylline and (+)-latifine, were obtained by anionic Fries rearrangement of the ester precursors 266 (equation 125).
The above-named anionic homo-Fries rearrangement was employed for developing a general approach to substituted hydroxyphthalans 269 as precursors to isobenzofurans. In this approach the treatment of benzyl esters 268 with BuLi in a 4:1:1 THF–Et₂O–hexane mixture at −100°C was followed by immediate quenching with NH₄Cl, and the crude material 269 was treated with dimethyl acetylenedicarboxylate (cat. AcOH, 100°C, 30 min) to give the intermolecular Diels–Alder adducts 270 in yields of 40–80% (equation 126).
(--)-Balanol, a fungal metabolite with potent protein kinase C inhibitory activity, was prepared in a total synthesis in which the anionic homo-Fries rearrangement was used as a key step to form the benzophenone subunit 271 (equation 127)229,230.

One more variant of the anionic Fries rearrangement, namely a lateral Fries rearrangement, constitutes an O → C carbamoyl transposition and thereby provides a regiospecific and general route to 2-hydroxyphenyl acetamides 273, which are precursors to the benzo- and naphthofuranones 274. This reaction proceeds via migration of a carbamoyl group in the starting carbamate 272 to a side chain but not to the aromatic nucleus (equation 128)231. The analogous 2-hydroxyphenyl acetamides were also described elsewhere232.
11. Tautomeric equilibria and rearrangements involving phenols

\[\begin{align*}
\text{R}^2 \text{O} & \quad \text{O} \\
\text{R}^1 & \quad \text{O} \\
\text{Cl} & \quad \text{AlCl}_3 \\
& \quad 120^\circ \text{C}
\end{align*} \]

(230)

\[\begin{align*}
\text{R}^2 \text{O} & \quad \text{O} \\
\text{R}^1 & \quad \text{O} \\
\text{Cl} & \quad \text{AlCl}_3 \\
& \quad 120^\circ \text{C}
\end{align*} \]

(231)

\[\begin{align*}
\text{Me} & \quad \text{O} \\
(\text{RO})_n & \quad \text{X} \\
& \quad \text{OH} + \text{C}_{\text{PhCH}_2}
\end{align*} \]

(232)

\[\begin{align*}
\text{Me} & \quad \text{O} \\
(\text{RO})_n & \quad \text{X} \\
& \quad \text{OH} + \text{C}_{\text{PhCH}_2}
\end{align*} \]

(233)

\[\begin{align*}
\text{Me} & \quad \text{O} \\
(\text{RO})_n & \quad \text{X} \\
& \quad \text{OH} + \text{C}_{\text{PhCH}_2}
\end{align*} \]

(234)

R = Me, PhCH₂
X = F, OAc

(104)

(105)
\[
\text{Bn} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{N} \quad \text{C} \quad \text{H} \quad \text{C} \quad \text{F} \quad \text{S} \quad \text{O} \quad \text{R} \quad \text{OH}
\]

\(-30^\circ\text{C}, 30\text{ min, then RT 3 h}\)

\[\text{CF}_3\text{SO}_2\text{OSiMe}_3\]
\[\text{CH}_2\text{Cl}_2\]

\[
\text{Bn} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{O} \quad \text{R} \quad \text{OH}
\]

\[
\begin{align*}
\text{OH} & \quad \text{PhSOCl} \quad \text{THF, pyridine} \\
\text{R} & \quad \text{(235)} \\
\text{OH} & \quad \text{AlCl}_3 \quad \text{CH}_2\text{Cl}_2 \quad 25^\circ\text{C} \\
& \quad 72-87\% \\
\text{R} & \quad \text{(236)}
\end{align*}
\]

\(R = 4\text{-Me, 4-MeO, 3-Cl, 3-Me, 2-Me}\)

\[
\begin{align*}
\text{R} & \quad \text{Me} \quad \text{O} \quad \text{Ph} \quad \text{O} \quad \text{Me} \quad \text{NaNH}_2^* \\
\text{R} & \quad \text{(237)} \\
\text{OH} & \quad \text{Ph} \quad \text{(238)}
\end{align*}
\]

\(R = \text{Alk, OH, OAlk}\)

* also EtONa, Na, K$_2$CO$_3$, NaOH
\[
\text{Scheme 3: Reaction Pathway}
\]

MeO OMe + \[
\text{MeO OMe}
\]

\[
\text{CH}_2\text{Cl}_2, \text{TMSOTf} \rightarrow -25 \degree \text{C to RT}
\]

\[
\text{(239)}
\]

\[
\text{pyridine, PhCOCl}
\]

\[
\text{O}
\]

\[
\text{Sug}
\]

\[
\text{PhCOCl}
\]

\[
\text{RT}
\]

\[
\text{NaOH, DMSO}
\]

\[
\text{RT}
\]

\[
\text{or LDA, THF}
\]

\[
\text{MeO OMe}
\]

\[
\text{MeO}
\]

\[
\text{O}
\]

\[
\text{O}
\]

\[
\text{O}
\]

\[
\text{O}
\]

\[
\text{Sug}
\]

\[
\text{Ph}
\]

\[
\text{Sug}
\]

\[
\text{Ph}
\]

\[
\text{Sug}
\]

\[
\text{Sug} = \text{RO}
\]

\[
\text{RO}
\]

\[
\text{OR}
\]

\[
\text{OR}
\]

\[
\text{R = PhCH}_2
\]
(242)

\[\text{MeO} \text{COCl} \xrightarrow{\text{NaH, DMF}} \text{MeO} \text{CO} \text{Sug} \]

\(-35^\circ C \xrightarrow{\text{LDA, THF}} \)

(110)

\[\text{OMe} \text{Sug} \text{O} \text{OMe} \]

\[\text{OMe} \text{Sug} \text{O} \text{OMe} \]

\[\text{OMe} \text{Sug} \text{O} \text{OMe} \]

\(\text{RT} \xrightarrow{\text{TMSOTf, CH}_2\text{Cl}_2} \)

(243)

\[\text{Sug} = \begin{array}{c} \text{OR} \\ \text{RO} \\ \text{OR} \end{array} ; \text{R} = \text{PhCH}_2 \]

(111)

\[\text{R} = 2-\text{Me, 3-Me, 4-Me} \]

\(\xrightarrow{\text{conc. } \text{H}_2\text{SO}_4} \)

\[\text{R} \]
11. Tautomer equilibria and rearrangements involving phenols

\[
\begin{align*}
&\text{(244)} \\
&\text{(245)} \\
&\text{(246)}
\end{align*}
\]
R = Me, Ph, 4-MeC₆H₄, 4-MeOC₆H₄, 4-O₂NC₆H₄

DMG = directed metalation group
11. Tautomeric equilibria and rearrangements involving phenols

\[\text{R}_{2} \text{NCOCI} \quad \text{NaH, DMF} \]

\[\begin{array}{c}
\text{OH} \\
\text{OH}
\end{array} \quad \begin{array}{c}
\text{O} \\
\text{O}
\end{array} \quad \begin{array}{c}
\text{NR}_{2} \\
\text{NR}_{2}
\end{array} \]

\[\text{(254)} \]

\[\text{TMEDA} \quad \text{t-BuLi} \]

\[\begin{array}{c}
\text{NR}_{2} \\
\text{NR}_{2}
\end{array} \quad \begin{array}{c}
\text{O} \\
\text{O}
\end{array} \quad \begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\]

\[\text{R = Me, Et, i-Pr} \]

\[\text{(255)} \]

\[\begin{array}{c}
\text{OCON(Pr-}\text{i})_{2} \\
\text{Cr(CO)}_{3}
\end{array} \]

\[\begin{array}{c}
\text{OLi} \\
\text{Cr(CO)}_{3} \text{CON(Pr-}\text{i})_{2}
\end{array} \]

\[\begin{array}{c}
\text{RX} = \text{MeCOCl, t-BuMe}_{2}\text{SiOTf}
\end{array} \]

\[\text{RX, THF} \quad -78 \degree \text{C to } -20 \degree \text{C} \]

\[\text{(117)} \]

\[\text{(256)} \]

\[\text{(257)} \]

\[\text{(118)} \]

\[\text{R = MeCO, t-BuMe}_{2}\text{Si} \]
Sergei M. Lukyanov and Alla V. Koblik

794

\[
\begin{align*}
\text{OCONET}_2 & \quad t\text{-BuLi, THF, TMEDA} \\
\text{Me} & \quad \text{Li} \\
\text{O} & \quad \text{OH} \\
\text{S} & \quad \text{Et}_2\text{N} \\
\end{align*}
\]

\[
(258)
\]

\[
12 \text{~h, 80\% to } -78 \degree \text{C to } 20 \degree \text{C}
\]

\[
(119)
\]

\[
\begin{align*}
\text{O} & \quad \text{Oh} \\
\text{S} & \quad \text{Et}_2\text{N} \\
\end{align*}
\]

\[
(259)
\]

\[
\begin{align*}
\text{O} & \quad \text{OH} \\
\text{S} & \quad \text{Et}_2\text{N} \\
\end{align*}
\]

\[
(260)
\]

\[
\begin{align*}
\text{X} & = \text{CONET}_2, \text{COCHMe}_2, \text{COOCH}_2\text{Ph (49–65\%);} \\
& \quad \text{SiMe}_3, \text{SiMe}_2\text{Bu-t}, \text{Si(Pr-i)}_3, \text{SiPh}_2\text{Bu-t (53–72\%)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{OH} \\
\text{X} & \quad \text{Me} \\
\end{align*}
\]

\[
(261)
\]

\[
\begin{align*}
\text{OCOR}^1 & \quad \text{Br} \\
\text{R}_3 & \quad \text{R}_2 \\
\end{align*}
\]

\[
(262)
\]

\[
\begin{align*}
\text{R}_1 & = \text{Me, Et, i-Pr, t-Bu, Ph, 1-adamantyl, t-pentyl, CMe}_2\text{CH}_2\text{Cl} \\
\text{R}_2, \text{R}_3 & = \text{H, Me, t-Bu}
\end{align*}
\]

\[
(121)
\]

\[
(120)
\]
11. Tautomeric equilibria and rearrangements involving phenols

\[
\text{(263)} \quad \begin{array}{c}
\text{Br} \\
\text{OCOBu-}t
\end{array}
\xrightarrow{(i)}
\begin{array}{c}
\text{t-Bu} \\
\text{OH}
\end{array}
\]

\[
\text{Br} \quad \begin{array}{c}
\text{OCOBu-}t
\end{array}
\xrightarrow{(i)}
\begin{array}{c}
\text{86}\%
\end{array}
\]

\[
\text{(264)}
\]

\[
\text{Br} \quad \begin{array}{c}
\text{OCOBu-}t
\end{array}
\xrightarrow{(i)}
\begin{array}{c}
\text{77}\%
\end{array}
\]

\[
\text{OCOBu-}t
\]

\[
\begin{array}{c}
\text{Br}
\end{array}
\xrightarrow{(i)}
\begin{array}{c}
\text{58}\%
\end{array}
\]

\[
\text{(265)}
\]

(i) – for reaction conditions see equation 121

A new carbanion-induced ring-to-ring carbamoyl transfer reaction \(\text{275} \rightarrow \text{276} \), formally a remote anionic Fries rearrangement, proceeds upon the directed metation of biaryl ortho-carbamates \(\text{275} \) containing a protecting group (PG) at the ortho-position\(^{233} \) (equation 129). Tandem remote anionic Fries rearrangement and anionic Friedel–Crafts reactions were observed on ortho-carbamoyl- as well as carbamoyloxytriarylphosphane oxides \(\text{277} \), which were converted into P-phenyl functionalized phosphinonines \(\text{278}^{234} \) (equation 130).
30 min BuLi, THF, −98 °C to −50 °C

R¹, R² = H, OCH₂Ph; R³ = OCH₂Ph
11. Tautomeric equilibria and rearrangements involving phenols

R¹ = (CH₂)₂CH=CH₂, 3,4-(methyleneoxy)phenyl, (CH₂)₃C≡CH, (CH₂)₃C≡CTMS, Ph, Et, Me,
R² = H, (CH₂)₃CH=CH₂, R³, R⁴ = H, OMe
R = H, TMS, TBDMS

PG = OMe, SiEt₃ (protecting groups for ‘normal’ metalation)

PG = OMe, TMS; R = Et, i-Pr
This section covers the isomerizations of aromatic derivatives bearing oxygen- and nitrogen-containing functional groups which lead to phenols. Because these reactions are widely known, only a brief survey will be presented here concerning the most typical examples of these transformations. More detailed information can be found elsewhere.²³³

A. Transformations of Peroxides

α-Aryl alkyl hydroxyperoxides ²⁷⁹ derived from aromatic hydrocarbons bearing branched side chains (isopropylbenzene, diarylmethanes, etc.) rearrange in the presence of strong acids to give phenols and carbonyl compounds (Hock–Sergeev reaction)²³⁵ (equation 131). In general, a similar process is the Baeyer–Villiger oxidation²³⁶ that occurs as oxidative rearrangement of aromatic aldehydes and aryl alkyl ketones ²⁸⁰. These compounds form the esters ²⁸¹ under the influence of hydrogen peroxide or peracids (equation 132).

This list has to be continued by the Dakin rearrangement, which is the oxidation of aromatic ortho- or para-hydroxyaldehydes with H₂O₂ in the presence of alkali to afford polyhydric phenols²³⁷ (equation 133).
\[
\text{CHO} \quad \xrightarrow{\text{H}_2\text{O}_2, 50^\circ\text{C}} \quad \text{NaOH} \quad \xrightarrow{\text{R}} \quad \xrightarrow{\text{H}_2\text{O}} \quad \text{H}_2\text{O}
\]

(133)

(282)

\[
\text{SbCl}_5^- \quad + \quad \text{CO}_2
\]

(134)

(283)
Diacyl peroxides, which are known as radical sources, can decompose by an ionic mechanism in the presence of strong acids. Thus, benzoyl peroxide \(282\) can be converted into phenyl benzoate in a process whose first step involves a Lewis acid catalyzed carboxy inversion reaction to the mixed carbonate \(283\) (equation 134)\(^{238}\).

B. Isomerizations of \(N\)-Arylhydroxylamines

The action of mineral acids brings about the rearrangements of \(N\)-arylhydroxylamines \(284\) into para-aminophenols \(285\)\(^{3,113,239}\) (equation 135). This intermolecular transformation is known as the *Bamberger rearrangement*. If the para-position is occupied by an alkyl group, the imine intermediate \(286\) cannot be aromatized by deprotonation but it undergoes hydrolysis to form the quinole \(287\) in which an alkyl migration occurs (equation 136)\(^{240}\) (see also Section VI.A). A very interesting rearrangement takes place upon treatment of 2-naphthyl hydroxylamine \(288\) with pyridine/SO\(_3\) in acetone\(^{241,242}\) (equation 137). These reactions are related to the *Boyland–Sims rearrangement*\(^{243,244}\).

The \(N\)-aryl-\(N\)-acylhydroxylamines \(289\) and \(290\) rearrange to aminophenol derivatives in the presence of sulfonyl chlorides\(^{245}\) (equation 138) as well as of iodonium salts in a reaction similar to the benzidine rearrangement\(^{246}\) (equation 139). The \(N\)-aryl-\(N\),\(O\)-diacylhydroxylamine \(291\) undergoes isomerization on heating to produce dibenzoylated aminophenol \(292\) (equation 140)\(^{245,247}\). The *Wallach rearrangement* consists of isomerization of aromatic azoxy compounds \(293\) to form the hydroxyazobenzenes \(294\) on heating in
the presence of strong acids248 (equation 141). A similar rearrangement proceeds upon the sulfonation of nitrones 295245 (equation 142) as well as acylation of dialkaryl-N-oxides 296249 (equation 143).
11. Tautomeric equilibria and rearrangements involving phenols

\[
\text{(289)} \quad \begin{array}{c}
\text{COPh} \\
\text{N} \\
\text{O} \\
\downarrow \\
\text{OH}
\end{array} + \begin{array}{c}
\text{SO}_2\text{Cl} \\
\text{Me}
\end{array} \xrightarrow{\text{Et}_3\text{N, Et}_2\text{O}} \begin{array}{c}
\text{NHCOPh} \\
\text{O} \\
\text{SO}_2 \\
\text{Me}
\end{array}
\]

\[
\text{(138)}
\]

\[
\text{(290)} \quad \begin{array}{c}
\text{COMe} \\
\text{N} \\
\text{O} \\
\downarrow \\
\text{OH}
\end{array} \xrightarrow{\text{Ph-I-Ph OH}} \begin{array}{c}
\text{COMe} \\
\text{N} \\
\text{O}
\end{array}
\]

\[
\text{(139)}
\]

\[
\begin{array}{c}
\text{NHCOMe} \\
\text{OH}
\end{array} + \begin{array}{c}
\text{NHCOMe} \\
\text{OH}
\end{array}
\]
(291) \[\text{O} \text{N} \text{Ph} \text{O} \text{Ph} \]

150 °C 3 h

(292)

(293)

\[\text{H}_2\text{SO}_4 \]

(294)

(140)

(141)
11. Tautomeric equilibria and rearrangements involving phenols

\[\text{O}_2\text{N} - \text{SO}_2\text{Cl} \quad \text{THF, 20\%} \]

\[\text{H}_2\text{O} \rightarrow \text{PhCHO} \quad 20\% \]

\[\text{N} - \text{Me} \quad \text{Me} \quad \text{O} \quad \text{COMe} \quad \text{Ac}_2\text{O} \quad 0-10 \degree \text{C} \quad \text{H}_2\text{O} \]

\[\text{N} - \text{Me} \quad \text{Me} \quad \text{O} \quad \text{COMe} \quad \text{Me} \quad \text{Me} \]

\[\text{(295)} \]

\[\text{(296)} \]

\[\text{(142)} \]

\[\text{(143)} \]
VI. REARRANGEMENTS OF NON-AROMATIC CARBOCYCLES

A. Dienone–Phenol Rearrangements

Perhaps one of the most widespread ways to form phenols is by the rearrangements of alicyclic dienones. The simplest variant of these isomerizations can be represented by acid-catalyzed transformation of 2,5-cyclohexadien-1-ones 297 to phenols 298 which proceeds with migration of a group R and aromatization of the ring (equation 144). Numerous versions of the dienone–phenol rearrangement were described in detail in many reviews. A list of other surveys and original papers can be found elsewhere.

\[
\begin{align*}
0 & \quad \text{OH} \\
R^1 & \quad \text{R}^2 \\
R^1 & \quad \text{R}^2 \\
(297) & \quad \text{H}^+ \\
\text{OH} & \quad \text{OH} \\
\text{R}^1 & \quad \text{R}^2 \\
\text{R}^1 & \quad \text{R}^2 \\
(298) & \quad \text{H}^- \quad \text{H}^+
\end{align*}
\]

The mechanism of the dienone–phenol rearrangement was investigated very thoroughly by many authors. The methods of deuterium isotope effects, competitive [1,2] and [1,5] migrations of benzylic groups and others, were used to study this mechanism. A theoretical evaluation of the substituent influence on the direction of the dienone–phenol rearrangement was carried out. In general, the first step of these transformations is a protonation (or coordination with Lewis acid) of the carbonyl oxygen to form a cyclohexadienyl cation. The second step includes a migration of an alkyl or aryl group to the adjacent electron-deficient carbon atom. Subsequent elimination of proton leads to the stable phenol 298 (equation 144).

As a rule, the dienone–phenol rearrangements are catalyzed by strong acids (H$_2$SO$_4$, HCl, CF$_3$COOH) but other catalytic systems were also reported. Thus, the Fe$^{3+}$-doped acidic montmorillonite K10 clay accelerates greatly (by factors of 10^5 to 10^6) the cyclohexadienone–phenol rearrangement which occurs in a few minutes at room temperature according to [1,2] and [3,3] pathways (equation 145).

Unusual catalysis in dienone–phenol rearrangements were also described, e.g. the first example of antibody-catalyzed 1,2-isomerization of C–C bonds as well as base-catalyzed rearrangements of 2-hydroxyanilinium salts 299. The latter reaction includes the formation of 2-oxidoanilinium ylides 300, which rearrange on heating (40°C) to the ethers 301 together with the dienones 302 and the phenols 303 and 304 (equation 146). It should be noted that a Claisen [3,3] rearrangement of ethers 301 to form the phenols 303 can be excluded because the ethers 301 prepared beforehand fail to rearrange even at 80°C.

The dienone–phenol rearrangement can be induced not only by protonation of the oxygen atom, but also by bromination of the C=C double bond via the generation of carbocation intermediates (equation 147).

A series of papers devoted to rearrangements of cyclohexadienone intermediates formed upon bromination and chlorination of phenols was published. The migration tendency
of the different atoms (e.g., bromine) and groups was investigated in detail using various cyclohexadienone systems. It was shown that the migration aptitude can be as follows: Me < Et < vinyl as 1:50:12,000. The cyano group migrates extremely slowly or does not migrate at all. Rearrangements with migration of acetoxy groups were also reported.

The dienone–phenol rearrangement is widely employed for the synthesis of many polycyclic structures, the formation of which demands an expansion of one of the cycles. Thus, the aporphine-type plant alkaloids can be obtained via the dienone–phenol rearrangement of orientalinone and dienol–benzene rearrangement of orientalinol (equation 148).

Analogous rearrangements were reported for similar systems such as proaporphines, the alkaloids of Croton sparsiflorus Morong and cannabinoids. The dienone–phenol and dienol–benzene rearrangements were studied in the eupodienone-1 series (a constituent of Eupomatia laurina R. Br.). These compounds were transformed under a variety of acidic conditions into dibenzocyclooctene derivatives (equation 149). It is remarkable that the rearrangement proceeds with migration of the C–C bond which connects two six-membered rings, i.e. in essence a migration of the aryl group but not of the alkyl group occurs.

Various dienone–phenol rearrangements were carried out in spirocyclic and bicyclic systems. It was shown during investigations of cyclohexa-2,5-dienes bearing acyl
(299) $\xrightarrow{\text{NaH, MeOH, } 0 \, ^\circ \text{C, 14–16 h}} (300)$

(300) $\xrightarrow{40 \, ^\circ \text{C}} (301)$

(301) $\xrightarrow{[1,4]} (302)$

(302) $\xrightarrow{1,5} (303)$

(303) $\xrightarrow{3,2} (304)$

(304) $\xrightarrow{11–62\%} (305)$

$R^1, R^2 = \text{H, Me, t-Bu}$
Tautomeric equilibria and rearrangements involving phenols

\[
\begin{align*}
\text{Ph}_2\text{C} & \text{Ph} \\
\text{O} & \\
\text{Br}_2, \text{MeCN} & \text{RT} \\
\end{align*}
\]

\[
\begin{align*}
\text{Ph}_2\text{C} & \text{Ph} \\
\text{O} & \text{Br}^+ \\
& \rightleftharpoons \\
\text{Ph}_2\text{C} & \text{Ph} \\
\text{O} & \text{Br} \\
& \sim \text{PhCH}_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{Ph}_2\text{C} & \text{Ph} \\
\text{O} & \text{Br} \\
& \xrightarrow{-\text{H}^+} \\
\end{align*}
\]

\[
\begin{align*}
\text{Ph}_2\text{C} & \text{Ph} \\
\text{O} & \\
\text{Br} & \text{OH} \\
& \\
\end{align*}
\]

\[(147)\]
groups that under acidic conditions 3-acetyl- (313, \(R = \text{Me} \)) and 3-ethoxycarbonyl-4,4-dimethylcyclohexa-2,5-dienones (313, \(R = \text{EtO} \)) rearrange to the 3-acyl- (314, \(R = \text{Me} \)) and 3-ethoxycarbonyl-4,5-dimethylphenols (314, \(R = \text{EtO} \)) via a methyl migration from position 4 to position 5\(^{286} \) (equation 150). However, the treatment of 4-benzoylcyclohexa-2,5-diene 315 with acids failed to realize the desired dienone–phenol rearrangement with a [1,2] acyl migration from C(4) to C(3) but instead gave 4-methylphenyl benzoate 316 by a retro-Fries rearrangement\(^{287-289} \). Crossover experiments suggest strongly that this rearrangement is at least partly intermolecular (via path b) (equation 151).

Interesting transformations occur in systems where the cyclohexa-2,5-diene fragment is in a spiro connection with heterocycles. Thus, treatment of griseofulvin derivative 317 with magnesium iodide results in the xanthone derivative 318 via a dienone–phenol rearrangement\(^{290} \) (equation 152).

Rearrangement of spirodienones 319 gave substituted 6\(H\)-dibenzo[\(b,d\)]pyran-6-ones 320 and 321\(^{291} \) (equation 153). The rearrangement in aqueous sulfuric acid [path (i)] consistently affords high yield of the O-migration product 321 whereas rearrangement using aqueous sodium hydroxide can involve lactone hydrolysis followed by a rearrangement regarded as formal C-migration.

It was found that the treatment of spirodienone 322 with a \(\text{H}_2\text{SO}_4/\text{AcOH} \) mixture (1:50 v/v) results in an isomerization to form the cinnamic acid derivative 323 instead of the classical dienone–phenol rearrangement product\(^{292} \) (equation 154).

The quinoline 325 was obtained in a dienone–phenol rearrangement of azaspirodienone 324 under vigorous conditions in the presence of an oxidizing agent\(^{293} \) (equation 155). The treatment of the spirodienone 326 with BF\(_3\)·\(\text{Et}_2\text{O} \) gives the 1,3-diazepine derivative 327 (73%) via a dienone–phenol rearrangement\(^{294} \) (equation 156).
\[\text{(315)} \]

\[\text{OH} \quad \text{Me} \quad \text{O} \quad \text{Ph} \]

\[\text{CF}_3\text{COOH in CDCl}_3 \quad (2.5\% \text{ w/v}) \]

\[-10^\circ\text{C}, 100 \text{s} \]

\[\text{path a} \]

\[\text{path b} \]

\[\text{(316)} \]

\[\text{(151)} \]

\[\text{MeO} \quad \text{O} \quad \text{Me} \]

\[\text{Cl} \]

\[\text{MeO} \quad \text{Cl} \]

\[\text{Me} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \quad \text{O} \quad \text{Me} \]

\[\text{OH} \]

\[\text{MeO} \quad \text{OH} \quad \text{Ph} \]

\[\text{OH} \quad \text{Ph} \]

\[\text{Me} \]

\[\text{MeO} \quad \text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \quad \text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{OH} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]

\[\text{MeO} \]

\[\text{Cl} \]

\[\text{Me} \]
Tautomeric equilibria and rearrangements involving phenols

(i) 1) 50% aqueous H₂SO₄, 2) K₂CO₃, Me₂SO₄, 88%
(ii) 1) 10% aqueous NaOH, 2) K₂CO₃, Me₂SO₄, 42% [321:320 = 95:5]

Application of the dienone–phenol rearrangement in steroid chemistry has been reported in many publications.

Other polycyclic systems such as naphthoquinones also undergo the dienone–phenol rearrangement. Thus, acetylation of naphthalene-1,4,5(8H)trione 328 with Ac₂O containing an acid (H₂SO₄, HClO₄) resulted in a rearrangement yielding naphthoquinone 329 (equation 157).
The acid-catalyzed dienone–phenol rearrangement of 2-hydroxy- and 2-alkoxycyclohexa-2,5-dien-1-ones 330 proceeds with regioselective migration of the C(4) substituent to the C(5) position only to form the corresponding phenols 331 (equation 158). Such regioselectivity can be simply explained by considering the relative electron density at C(3) versus C(5) positions in the protonated form of the dienone 330.

The key step in the regiospecific synthesis of phenolic bis-glycosides is a regiocontrolled dienone–phenol-type rearrangement of cyclohexadienediols 332 to disubstituted phenols 333 in which a glycal fragment migrates in a 1,2-shift (equation 159). Competitive dienone–phenol-type rearrangements were observed in the synthesis of the 2,4-disubstituted naphthols 334 and 335 (equation 160). In principle, this regioselectivity is determined by the fact that phenyl, sec-butyl and n-butyl substituents migrate preferentially compared to methyl.

Protonation of cyclohexadienediol 336 produced the cation 337 which can follow a ‘normal’ dienone–phenol rearrangement pathway when the substituents R are Me and Ph, and the t-Bu substituent can be eliminated in the last step 337 \rightarrow 338. However, when R was a substituted phenyl, the cationoid intermediate 337 cyclized to the oxonium cation 339, which then underwent deprotonation to give the oxepine 340 (equation 161).

A dienone–phenol rearrangement occurs also as a migration of hydrogen atoms in systems containing exocyclic C=C double bonds in the six-membered rings of 341 and 342 (equations 162 and 163).
11. Tautomeric equilibria and rearrangements involving phenols

\[
\begin{align*}
\text{R}^3 &= \text{OH} \\
\text{R}^1 &\quad \text{R}^2 \\
\text{R}^2 &\quad \text{R}^1
\end{align*}
\]

\[
\text{R}^3 = \text{H, Me, } t\text{-Bu, Ph; } \text{R}^2 = \text{Me, Ph; } \text{R}^3 = \text{H, Me}
\]

\[
\begin{align*}
\text{Et}_2\text{O} &\quad \text{HCl (or H}_2\text{SO}_4) \\
\end{align*}
\]

\[
\begin{align*}
\text{R}^1 &= \text{H, Me, } t\text{-Bu, Ph; } \text{R}^2 = \text{Me, Ph; } \text{R}^3 = \text{H, Me}
\end{align*}
\]

\[
\begin{align*}
\text{ZnCl}_2, \text{Et}_2\text{O} &\quad -78 \degree \text{C to } 0 \degree \text{C, 80%} \\
\end{align*}
\]

\[
\begin{align*}
\text{R} &= \text{H, Br}
\end{align*}
\]
The quinone methides \(\text{R} \) undergo a rapid and practically quantitative rearrangement on neutral alumina at 70–80°C to afford the alkenylphenols \(\text{344} \) (equation 164).

A series of dienone–phenol photorearrangements was also reported\(^{309–311} \).

B. Rearrangements Involving Ring Expansion

Phenols can be formed also in rearrangements of small carbocyclic rings, starting from cyclopropane derivatives. For instance, the reaction of benzoylcyclopropene \(\text{345} \) with acetylenes \(\text{346} \) in the presence of 10 mol% of \([\text{ClRh(CO)}_2]_2\) results in the oxepines \(\text{347} \) and phenols \(\text{348} \).
11. Tautomeric equilibria and rearrangements involving phenols

\[
\begin{align*}
(336) & \quad t-Bu \quad \text{Bu-t} \quad R^1 \quad R^2 \\
(337) & \quad H^+ \quad -H_2O \\
(338) & \quad R^1 \quad R^2 \\
(161) & \\
(339) & \\
(340) & \\
R^1 = \text{Me, Ph, Ar}; R^2 = t-Bu, Ph, Ar; \text{Ar} = p\text{-tolyl, } m\text{-tolyl, } p\text{-Me}_2\text{NC}_6\text{H}_4
\end{align*}
\]

\[
\begin{align*}
(341) & \quad \text{Me, COOH} \\
(342) & \quad \text{Me, COOH} \\
(162) & \quad \text{Me, COOH} \\
\text{AcOH, H}_2\text{SO}_4 \quad \text{reflux} \\
(341) & \quad \text{Me, COOH} \\
(342) & \quad \text{Me, COOH} \\
\end{align*}
\]
Treatment of the oxepines 347 with HCl at 40 °C brings about a practically quantitative rearrangement to afford the isomeric phenols 349 (equation 165)312,313 (for rearrangements of oxepines, see Section VII.C). A similar reaction occurs if an alkyne fragment is connected to a cyclopropene ring in one molecule313 (equations 166 and 167). Liquid-phase thermolysis of the cyclopropane 350 as well as oxirane 352 leads to the same phenol 351 (equation 168)314.

The thermal rearrangement of diarylcyclobutenones 353 gives the naphthol derivatives 354 (equation 169)315. The cyclobutane derivatives 355 undergo a retro-Diels–Alder reaction and rearrangement to produce naphthol 356 (equation 170)316. The formation of cyclobutene intermediate 358 was assumed for the transformation of trans-α-diazo-β-ketophosphonates 357 into naphthols 359 (equation 171)317.

C. Rearrangements Involving Ring Contraction

The hydrolysis of the tropolone methyl ether 360 with concentrated HCl in boiling EtOH results in the hydroxyfluorenone 361 (equation 172)318–320. Thermal rearrangement with loss of sulfur dioxide occurs on heating the γ-sultones 362 in dioxane, DMSO, dioxane–water or THF at 90 °C for 6–10 h to give 90% of the styrene derivatives 363 in a highly stereospecific manner (equation 173)321.
11. Tautomeric equilibria and rearrangements involving phenols

\[
\begin{align*}
\text{Pr} & \quad \text{O} \\
\text{Ph} & \quad \text{H} \\
(345) & + \quad \text{R} \\
\end{align*}
\]

\[
\begin{align*}
[\text{ClRh(CO)}_2]_2 & \quad \xrightarrow{60-70\%} \\
\text{Pr} & \quad \text{Pr} \\
\text{O} & \quad \text{Ph} \\
\text{R} & \quad \text{R} \\
(346) & + \quad (347) \\
& \quad (348) \\
\end{align*}
\]

\[
\begin{align*}
\text{Pr} & \quad \text{R} \\
\text{Ph} & \quad \text{OH} \\
(347) & = \quad (348) \\
347 : 348 &= 8 : 1 \\
R &= \text{Ph, OMe} \\
\end{align*}
\]

\[
\begin{align*}
\text{Pr} & \quad \text{R} \\
\text{Ph} & \quad \text{OH} \\
(349) & \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{Ph} \\
\text{K} & \quad \text{O} \\
(165) & \\
\end{align*}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{H} \\
\text{O} & \quad \text{Ph} \\
\text{O} & \quad \text{Ph} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{Ph} \\
\text{K} & \quad \text{O} \\
(166) & \\
\end{align*}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{H} \\
\text{K} & \quad \text{O} \\
(167) & \\
\end{align*}
\]
820 Sergei M. Lukyanov and Alla V. Koblik

(350) \[\begin{array}{c}
\text{Ph} \\
\text{H}
\end{array} \]

OH

$\begin{array}{c}
\text{Ph} \\
\text{Ph}
\end{array}$

(130 °C, 1 h, 90%)

(351)

(160 °C, 1 h, 83%)

(352)

Me

Me

(353)

MeO

Me

140 °C reflux, xylene

(354)

EtO

OEt

EtO

OEt

(355)

HCl, 6N

1 h, reflux

(356)

(170)
(357) \[
\text{MeO} \quad \text{PO(OMe)}_2 \quad \text{N}_2
\]

\[
\text{toluene} \quad \text{reflux}
\]

(358)

66–85%

(171)

(359)

\(R = \text{H, Me} \)
Many examples of acid- and base-catalyzed rearrangements of tropone derivatives into phenols have been described in several reviews.3,322,323
VII. REARRANGEMENTS OF HETEROCYCLIC COMPOUNDS

Phenols can be formed also by rearrangements of oxygen- and nitrogen-containing heterocycles. As a rule, these transformations involve recyclizations to produce a benzene ring bearing the hydroxy group.

A. Five-membered Heterocycles

2-Acylfurans 364 react with secondary amines (piperidine, pyrrolidine, morpholine, dibutylamine) in the presence of catalytic amounts of acids (AcOH, HCl) to give enamines 365, which rearrange during distillation into 2-aminophenols 366 (equation 174).

\[
\begin{align*}
\text{(364)} & \quad \text{O} & \quad \text{R}^1 \quad \text{O} \\
\text{O} & \quad \text{R}^1 \quad \text{R}^2 \quad \text{R}^3 \\
\text{NH} & \quad \text{H} \\
\text{2-Acylfurans} & \quad \text{N} & \quad \text{R}^2 \\
\text{Enamines} & \quad \text{R}^3 & \quad \text{OH} \\
\text{(365)} & \quad \text{(366)} \\
\end{align*}
\]

R\text{1} = H, Me, Ph; R\text{2} = R\text{3} = Bu, R\text{2}R\text{3} = (CH\text{\textsubscript{2}})\text{\textsubscript{4}}, (CH\text{\textsubscript{2}})\text{\textsubscript{5}}, (CH\text{\textsubscript{2}})\text{\textsubscript{2}}O(CH\text{\textsubscript{2}})\text{\textsubscript{2}}

Benzo[c]-1,2-oxazoles 367 transform in the presence of strong acids and, upon UV-irradiation, into 3-acylaminophenols 368 (equation 175).

\[
\begin{align*}
\text{(367)} & \quad \text{H}_{2}\text{SO}_{4}, 66\% \quad \text{UV}, 1.5 \text{ h} \\
\text{R} & \quad \text{Me}, \text{Et}, \text{Ph} \\
\text{R} & \quad \text{OH} \\
\text{R} & \quad \text{NH}_{2} \\
\text{R} & \quad \text{COR} \\
\text{(368)} & \quad \text{(175)} \\
\end{align*}
\]

B. Six-membered Heterocycles

2\text{H}-Pyrans 370 derived from pyrylium salts 369 undergo during phase transfer catalysis conditions a recyclization on refluxing in Ac\text{\textsubscript{2}}O to give the acetylsalicylic acid derivatives 371 (equation 176). An interesting rearrangement occurs on prolonged refluxing of 6,6-dimethyl-4-phenyl-6\text{H}-dibenzo[b,d]pyran 372 in trifluoroacetic acid to afford 4-hydroxy-9,9-dimethyl-3-phenylfluorene 373 (equation 177).

Some examples of transformations of pyran systems into phenol derivatives have been reviewed.

It has long been known that reactions of the 2-methylpyrylium salts 374 with oxygen nucleophiles are accompanied by recyclizations into phenols 375 (equation 178).
It was shown that benzo[b]pyrylium salts 376 are capable also of recyclizations to produce the phenol derivatives 377,331,332 (equation 179). The 1,3-benzodioxanes 378 undergo an acid-induced fragmentation to xanthylium salts 380 via phenolic intermediate 379 (equation 180).

C. Transformations of Oxepines

Among the transformations of heterocycles, the rearrangement ‘oxepines (381) → benzene oxides (382) → phenols (383)’ is best known (equation 181). This rearrangement was described in detail in several surveys21,334–336. The most studied aspect of the arene oxide chemistry is the ring expansion to oxepines, on the one hand, and aromatization reaction to phenols, on the other.

Semiempirical and ab initio calculations were carried out to investigate the relative stabilities of O-protonated benzene oxide and its related carbenium ions and to obtain further insight into the mechanism of the acid-catalyzed isomerization of the benzene
R1, R2 = Alk, Ar
oxide 382 to phenol. The results suggest that the O-protonated oxide 384 is not on the main reaction pathway in the process but that para-quinonoid ions 385 are formed directly upon protonation (equation 182).

The hexafluorobenzene oxide 386 having no hydrogen atoms rearranges spontaneously to hexafluorocyclohexa-2,4-dienone 387 in polar solvents (acetonitrile, acetone) at room temperature as well as in non-polar solvents at elevated temperatures. Benzene oxide 386 is reduced under very mild conditions (sodium iodide in acetone at RT) to pentafluorophenol 388 (equation 183).

The mixture of valence isomers 389 and 390 undergo aromatization on a silica gel chromatography column to afford the phenols 391, which are in equilibrium with dihydrofurans 392 (equation 184). The vinylbenzene 1,2-oxides 394 and 397 are in equilibrium with
11. Tautomeric equilibria and rearrangements involving phenols

their valence isomers 393 and 396 in aprotic solvents (n-hexane, CCl₄) but they undergo rapid conversion in the presence of water or methanol to the vinylphenol rearrangement products 395 and 398₃⁴⁰ (equations 185 and 186). Three isomeric amino-substituted arene oxides 399–401 serving as models for the postulated involvement of amino-acid-derived arene oxides during the biosynthesis of various fungal metabolites rearrange to the corresponding phenols 402 and 403 rather than give the amine/epoxide cyclization products₃⁴¹ (equations 187–189).

\[
\begin{align*}
\text{(389)} & \quad \leftrightarrow \quad \text{(390)} \\
\text{(391)} & \quad \downarrow \quad 73\% \quad \text{silica gel} \\
\text{(392)} & \quad \leftrightarrow \quad \text{(391)} \quad \text{R = Me, Et}
\end{align*}
\]

(184)

\[
\begin{align*}
\text{(393)} & \quad \leftrightarrow \quad \text{(394)} \\
\text{(395)} & \quad \downarrow \quad \text{H₂O or MeOH} \\
\text{(395)} & \quad \downarrow \\
\end{align*}
\]

(185)
(396) \[\overset{}{\rightleftharpoons} \] (397)

H₂O or MeOH

(398)

(186)

(399)

MeOH

(402)

(187)

(400)

MeOH

(403)

(188)
The percentage of arene oxide component in the mixture decreases along the series \(399 > 400 > 401\), and compound \(401\) exists largely in the oxepin form.

The mechanism of aromatization of arene 1,2-oxides was studied using a series of model compounds such as 1-carboxy-, 1-carbomethoxy-, 1-formyl- and 1-(hydroxymethyl)benzene oxides\(^\text{342}\). The results obtained support the literature suggestions that arene 1,2-oxides may be intermediates in hydroxylation reactions of biological systems\(^\text{343,344}\).

Acid-catalyzed isomerization of 2,7-disubstituted oxepins \(404\) leads to products \(407\) and \(408\), depending on the nature of the substituent\(^\text{345}\) (equation 190). It was found that the oxepin valence tautomer \(404\) is more stable than the oxide valence tautomer \(405\) in 1,2-disubstituted arene 1,2-oxides. The isomerization proceeds via the so-called NIH shift (NIH = National Institute of Health, Bethesda, MD, USA) which involves the migration of the \(R^1\) substituent in the intermediate cation \(406\) to either of the adjacent carbon atoms to form the products \(407\) and \(408\).
Treatment of ketone 409 with lithium diisopropylamide (LDA) results in the ethyl 1,2-dihydroxybenzoate 410 in a 74% yield (equation 191). The acid-catalyzed isomerization of diarene oxides derived from benz[a]anthracene, chrysene and benzo[c]phenanthrene gives mixtures of isomeric polycyclic phenols. Finally, it should be mentioned that dibenzo[b,e]oxepin 411 undergoes an interesting rearrangement to 2-hydroxyphenylindene 412 (equation 192).

\[
\begin{align*}
\text{O} & \quad \text{COOEt} \\
\text{O} & \quad \text{LDA, THF} \\
& \quad \text{−78 °C, 2 h, then 7 h at RT} \\
\text{O} & \quad \text{COOEt} \\
\end{align*}
\]

(409) (410) (411) (412)

VIII. REFERENCES

11. Tautomeric equilibria and rearrangements involving phenols

11. Tautomeric equilibria and rearrangements involving phenols

11. Tautomeric equilibria and rearrangements involving phenols 835

838 Sergei M. Lukyanov and Alla V. Koblik

Phenols as antioxidants

L. ROSS C. BARCLAY and MELINDA R. VINQVIST

Department of Chemistry, Mount Allison University, Sackville, New Brunswick, Canada, E4L 1G8
Fax: (506) 364-2313; e-mail: rbarclay@mta.ca

‘Pure’ air might be very useful in medicine, but... as a candle burns out much faster in it, so a man might live out too fast. Joseph Priestley, 1775

We dedicate this chapter to Keith Ingold

I. INTRODUCTION 840
II. KINETICS AND MECHANISM 841
 A. Autoxidation 841
 B. Inhibition by Phenols......................... 842
 1. Antioxidant activity and stoichiometric factor—H-atom transfer and electron transfer mechanisms .. 842
 2. Reaction products of antioxidants: α-Toc 845
III. EFFICIENCIES OF PHENOLIC ANTIOXIDANTS 850
 A. Some Experimental Methods 850
 1. Reaction of phenolic antioxidants with peroxyl radicals 850
 a. Inhibited oxygen uptake (IOU) measurement techniques .. 850
 b. Product studies—Hydroperoxide products 851
 2. Reaction of phenolic antioxidants with other radical sites 855
 3. Overall assessment of strategies to determine antioxidant activities .. 858
 B. Structural Effects on Efficiencies of Antioxidants 859
 1. Monohydroxy phenols: Substituent effects 859
 2. Dihydroxy phenols: Catechols and 1,4-hydroquinones—Intramolecular hydrogen bonding revisited .. 871
 C. Media Effects 876
 1. Solvent effects 876
 a. Solvent interactions with the attacking radicals 877
 b. Solvent interactions with phenolic antioxidants—Effects on antioxidant mechanisms .. 880

The Chemistry of Phenols Edited by Z. Rappoport
I. INTRODUCTION

In general terms, an antioxidant can be defined as ‘any substance, when present at low concentrations compared with those of an oxidizable substrate, significantly delays or prevents oxidation of that substrate’\(^1\). There are two general classes of antioxidants. Preventative antioxidants are those that prevent the attack of reactive oxygen species (ROS) on a substrate. For example, in biological systems superoxide dismutase (SOD) catalyzes the deactivation of the superoxide anion, \(\text{O}_2^- \), by converting it to hydrogen peroxide, which is subsequently reduced by catalase. Chain-breaking antioxidants reduce or delay the attack of ROS, usually by trapping chain-propagating, oxygen-centered free radicals. Phenolic antioxidants accomplish this by hydrogen-atom transfer to peroxyl radicals, converting them to hydroperoxides (equation 1).

\[
\text{ROO}^- + \text{ArOH} \xrightarrow{k_{\text{inh}}} \text{ROOH} + \text{ArO}^-
\]

Our current knowledge on phenolic antioxidants developed after the discovery of vitamin E, and its role as antioxidant, since its existence was first reported in 1922 by Evans and Bishop\(^2\). Six decades later Ingold and coworkers reported that vitamin E is the main chain-breaking, lipid-soluble antioxidant in human blood\(^3\). This outstanding discovery helped spark an increased interest in antioxidants. Uninhibited free radical peroxidation \textit{in vivo} is implicated in a wide variety of degenerative diseases such as cancer, heart disease, inflammation and even ageing; consequently, it is not surprising to find that during the last two decades the large volumes of literature reports on phenols as antioxidants are concentrated on their role in biochemical or biological systems. This is especially evident in publications from international symposia\(^4–6\), other reviews in books\(^7–9\) and even a new journal founded in 1999\(^10\).

While we are not unaware of the biological significance of antioxidants, our review will concentrate on the more basic chemical aspects of their function, since this has lagged behind the attention to their practical use. Accordingly, this chapter begins with a brief outline of the kinetics and mechanism of autoxidation and its inhibition by phenolic antioxidants. There are many methods to study antioxidants and report their activities. Unfortunately, some of them give quite unreliable data so we will attempt to point out advantages and disadvantages of some of the common methods. Most of this chapter will be devoted to the structural effects on the activities of antioxidants, since this may
Phenols as antioxidants

present possibilities for selecting or even designing more active ones. Solvation phenomena, especially hydrogen bonding, can have a profound effect on the activity of phenols as antioxidants, so a separate section is included on media effects in solution and in heterogeneous phases. Calculations of the hydrogen–oxygen bond strengths and ionization energies of the phenolic hydroxyl groups on various phenols allow for predictions of their potential as antioxidants, and some typical examples will be cited of this theoretical approach.

II. KINETICS AND MECHANISM

A. Autoxidation

The reaction of organic compounds with oxygen, known as autoxidation, is the most common of all organic reactions. The reaction is a free radical chain process involving peroxyl radicals which includes initiation, propagation and termination steps and is the subject of earlier reviews 11–13. For control of these reactions under laboratory conditions, the reaction is usually initiated by azo initiators. The reactions are outlined briefly in equations 2–4.

Initiation:

\[R \text{N} \text{N} \text{R} \xrightarrow{k_i} 2 R^* + N_2 \]

(2)

\[R^* + O_2 \text{ (fast)} \rightarrow \text{ROO}^* \text{ (peroxyl radical)} \]

Propagation:

\[\text{ROO}^* + R_s \text{ (substrate)} \xrightarrow{k_p} \text{ROOH} + R_s^* \]

(3)

Termination:

\[2 \text{ROO}^* \xrightarrow{2k_i} \text{non-radical products} + O_2 \]

(4)

The kinetic expressions for these reactions are given in equations 5–8. Since the reaction of oxygen with carbon-centered radicals is fast and essentially diffusion controlled, the rate of oxygen uptake is given by equation 5.

\[\frac{-d[O_2]}{dt} = k_p[\text{ROO}^*][R_s \text{ } H] \]

(5)

The rate of chain initiation, \(R_i \), can be controlled and calculated by using an initiator with a known rate of decomposition, \(k_i \), and known initiator efficiency, \(e \). This correction, \(e \), is needed since only those radicals which ‘escape’ the solvent cage in which they are formed can react with oxygen to initiate reaction on the substrate. At steady state, the rate of chain initiation = the rate of termination, as shown in equation 6 for an azo-initiator.

\[R_i = 2k_i e[R \text{N} \text{N} \text{R}] = 2k_i \times [\text{ROO}^*]^2 \]

(6)

Substituting for the reactive intermediate, \([\text{ROO}^*] \), into equation 5 gives equation 7, the general expression for uninhibited oxygen uptake.

\[\frac{-d[O_2]}{dt} = \frac{k_p}{2k_i^2} (2k_i \times e[R \text{N} \text{N} \text{R}])^{1} \times [R_s \text{ } H] = \frac{k_p}{2k_i^2} \times [R_s \text{ } H] \times R_i^{\frac{1}{2}} \]

(7)
The susceptibility of a substrate to undergo autoxidation, known as its oxidizability, is given by equation 8, a very useful concept in free radical oxidation of different substrates.

\[
\text{Oxidizability} = \frac{k_p}{2k_i\frac{1}{2}} = \frac{-d[O_2]/dt}{[R_s - H] \times R_i^{\frac{1}{2}}}
\] (8)

For quantitative kinetic determinations, the \(R_i \) must be controlled and it can be measured. This is usually done by adding a phenolic inhibitor, known to trap two peroxy radicals (see Section II.B), and measuring the induction period, \(\tau \), during which oxidation is suppressed (equation 9).

\[
R_i = \frac{2[\text{Ar} - \text{OH}]}{\tau}
\] (9)

B. Inhibition by Phenols

1. Antioxidant activity and stoichiometric factor — H-atom transfer and electron transfer mechanisms

The kinetics and mechanism of inhibition (inh) of free radical oxidation has been the subject of several earlier reviews\(^{13–16}\). The main reactions for inhibited oxidation by phenols are outlined below. When a phenolic antioxidant is present, peroxy radicals are ‘trapped’ by H-atom abstraction from a phenolic hydroxyl group, followed by rapid recombination of peroxy and resulting aryloxyl radicals (equations 10 and 11).

\[
\begin{align*}
\text{ROO}^\cdot + \text{ArOH} & \quad \overset{k_{ih}}{\longrightarrow} \quad \text{ROOH} + \text{ArO}^\cdot \\
\text{ROO}^\cdot + \text{ArO}^\cdot & \quad \overset{\text{fast}}{\longrightarrow} \quad \text{non-radical products}
\end{align*}
\] (10) (11)

In the presence of an ‘efficient’ antioxidant, most of the peroxy radicals are trapped so that a new steady-state approximation applies, where the rate of peroxy radicals formed in initiation equals the rate of peroxy radicals trapped in the process of equation 10 (equation 12).

\[
R_i = 2k_i\text{e[initiator]} = k_{inh} \times n[\text{ArOH}] \times [\text{ROO}^\cdot]
\] (12)

Now the reactive intermediate is redefined by equation 13.

\[
[\text{ROO}^\cdot] = \frac{R_i}{k_{inh} \times n[\text{ArOH}]}
\] (13)

Substituting for \([\text{ROO}^\cdot]\) in equation 5, for the rate-limiting reaction of peroxy radicals, gives the basic expression for suppressed oxygen uptake in the presence of the antioxidant (equation 14).

\[
-\frac{d[O_2]}{dt} = \frac{k_p}{k_{inh}} \times [R_s - H] \times \frac{R_i}{n[\text{ArOH}]}
\] (14)

The factor ‘n’ in equations 12–14 represents the number of peroxy radicals trapped by the antioxidant in reactions 10 and 11 the stoichiometric factor. This value is expected to approximate 2 for those phenols, which are efficient antioxidants.

This simple kinetic treatment of inhibited autoxidation provides for a useful semiquantitative explanation of what is meant by antioxidant and antioxidant activity under known and controlled \(R_i \). The ability of a known amount of ‘potential’ antioxidant to suppress the oxygen uptake depends on the value of the absolute rate constant for inhibition, \(k_{inh} \),
compared to the propagation rate constant, \(k_p \), for reaction of the substrate with peroxy radicals, e.g. the ratio of the rate constants in equation 14. Unsaturated organic compounds such as alkenes, arylalkenes and unsaturated fatty esters readily undergo initiated autoxidation and their \(k_p \) values are in the range of about 1.0 for an alkene to 200 M\(^{-1}\) s\(^{-1}\) for a polyunsaturated ester (triene)\(^{11}\). Consequently, for a compound to be an effective antioxidant its antioxidant activity, \(k_{inh} \), must be several orders of magnitude greater than \(k_p \), or \(k_{inh} \geq 10^4 \) M\(^{-1}\) s\(^{-1}\). An antioxidant can also be defined graphically, as illustrated in Figure 1, which compares the typical profile of uninhibited oxygen uptake with the suppressed profiles in the presence of antioxidants. By definition, the oxygen uptake in the presence of the antioxidant is significantly suppressed, when equation 14 applies, until all of the antioxidant is consumed, and then the oxidation returns to its uninhibited rate and the kinetic equation 7 applies. By determination of the length of the induction period, \(\tau \), for an antioxidant where the stoichiometric factor, \(n \), is known (e.g. \(n = 2 \), Figure 1), the rate of chain initiation is calculated (equation 15).

\[
R_i = \frac{2[Ar-OH]}{\tau}
\]

(15)

There are very many organic compounds that can have an effect on oxygen uptake during free radical oxidation but which do not possess sufficiently high antioxidant activities to suppress the oxygen uptake significantly. Such compounds do not rapidly trap peroxy radicals, so peroxyls still undergo self-recombination. As a result, such compounds do not give measurable induction periods (Figure 1). Such compounds are NOT by definition antioxidants but are classed as retarders. The kinetics in this situation become quite

![FIGURE 1. Oxygen uptake profiles for oxidation of 0.12 M methyl linoleate in 0.5 M SDS micelles, initiated by 0.03 M of the thermal azo initiator di-tert-butylhyponitrite, comparing the effects of the retarder melatonin (R) with phenolic antioxidants: U—uninhibited oxidation, R1—8.72 \times 10^{-5} \text{ M melatonin}, R2—8.72 \times 10^{-3} \text{ M melatonin, } \alpha\text{-Toc—8.72 \times 10^{-3} M } \alpha\text{-Toc, IIIb—8.72 \times 10^{-5} M BHT [butylated hydroxytoluene (2,6-di-tert-butyl-4-methylphenol)], Ve—8.72 \times 10^{-5} \text{ M Trolox (2,5,6,7-tetramethyl-2-carboxy-5-hydroxychroman), Va—8.72 \times 10^{-5} M PMHC (2,2,5,6,7-pentamethyl-5-hydroxychroman). Reproduced by permission of Elsevier Science from Reference 283.}
complex as discussed before17. The reaction in equation 4 will occur simultaneously with that in equation 10 and, in addition, a retarder, XH, may react with peroxyl radicals to give an X* radical, which will in turn abstract hydrogen from the substrate and continue the oxidation chain (equations 16 and 17).

\[
\text{ROO}^* + X\text{H} \rightarrow \text{ROOH} + X^* \quad (16)
\]

\[
X^* + R_s\text{H} \rightarrow X\text{H} + R_s^* \quad (17)
\]

Consequently, the retarder may be consumed slowly while oxygen uptake is only reduced slightly, but the effect occurs well past the time at which two peroxyl radicals have been generated from the initiator for every molecule of retarder. Under these conditions, a retarder may appear to react with more than two peroxyl radicals. This situation is quite often observed and causes misinterpretation of results concerning inhibition efficiency, unless a reliable method is used to determine the stoichiometric factor and antioxidant activity (See Section II.A.)

The detailed pathway involved in the antioxidant mechanism by phenols has been the subject of considerable debate. The main question is whether the pathway is a direct, concerted mechanism for H-atom transfer (HAT) from the phenolic hydroxyl, or, alternately, if the process involves a stepwise mechanism whereby a rate-determining single electron transfer (SET) precedes the hydrogen transfer. In a general manner, one could consider a range of possible ‘structures’, 1a–1d, along the pathway where concerted H-atom abstraction is at one end, while at the other extreme electron transfer is complete before the hydrogen (proton) moves over giving ion pairs 1c or 1d. In addition, a hydrogen bonded complex, ArOH···O−O−R, in a pre-equilibrium followed by the rate-controlling atom transfer may be involved.

\[
\begin{align*}
\text{ArO:H} & \rightarrow \text{O}\cdots\text{O}−\text{R} \quad (1a) \\
\text{Ar} & \rightarrow \text{O}\cdot\text{H} \cdots \text{O}\rightarrow \text{O}−\text{R} \quad (1b) \\
\text{Ar} & \rightarrow \text{O} \cdot \text{H} \cdots \text{O} \rightarrow \text{O}−\text{R} \quad (1c) \\
\text{Ar} & \rightarrow \text{O} \cdot \text{H} \cdots \text{O} \rightarrow \text{O}−\text{R} \quad (1d)
\end{align*}
\]

Ingold and coworkers found substantial deuterium kinetic isotope effects for phenol-inhibited autoxidations in non-polar media, including results with more reactive phenols, and concluded that ‘H-atom transfer is rate-controlling in all cases’18. A transition state with partial charge transfer, 1b, was also considered in their HAT mechanism, since rate constants for para- and meta-substituted phenols correlated with σ^+, $\rho = 2.2$19. More recently Bisby and Parker reported20 that α-Toc reduces duroquinone triplet by direct H-atom transfer even in polar media such as acetonitrile or SDS micelles, media that would be expected to favor electron transfer. Since excited triplet ketones are well known to be effective H-atom abstractors, this supported direct H-atom transfer as the usual mechanism. On the other hand, Nagaoka and Mukai and coworkers interpreted large deuterium kinetic isotope effects for the α-Toc reaction with an aryloxyl radical in terms of electron transfer followed by proton tunneling, through a complex such as 1b or 1c21–23. Nagaoka and Ishihara24 interpreted their femtosecond spectroscopic evidence on the lifetime of the singlet state of a tethered vitamin E-duroquinone in terms of ‘an initial electron transfer’, the opposite conclusion to that reached by Bisby and Parker20.
12. Phenols as antioxidants

for the similar kind of process. The different result may be due to a more restricted spatial relationship between the excited carbonyl and the hydroxyl group in the tethered system, which prevents direct H-atom abstraction, so that electron transfer takes over. As Neta and coworkers showed, the reactivity of the attacking oxygen-centered radical as well as solvent effects can influence the mechanism of the antioxidant mechanism by phenols and, for example, the effect of polar solvents support the electron transfer mechanism for the reaction of reactive halogenated peroxyl radicals. It is clear that one must be very careful when applying an interpretation using results obtained from different kinds of reactive species and different solvents to reactions propagated by peroxyl radicals. We will return to this question of the mechanism for hydrogen transfer under substituent effects in Section III.B.1.

2. Reaction products of antioxidants: α-Toc

The aryloxyl radicals formed in the initial antioxidant reaction of phenols (equation 1) may undergo several different kinds of secondary reactions, including: Type (1), rapid combination (termination) with the initiating oxygen-centered radicals (equation 11); Type (2), self-reactions; Type (3), initiation of new oxidation chains by H-atom abstraction from the substrate, the so-called prooxidant effect; and Type (4), reduction or regeneration by other H-atom donors resulting in synergistic inhibition. The relative importance of these secondary reactions will be considered briefly here, since they may affect the overall efficiency of the antioxidant, which includes the antioxidant activity, as measured by the rate constant, \(k_{inh} \) (equation 10), and the number of radicals trapped, \(n \).

Type (1) reaction is the usual fast reaction on initiation by oxygen-centered radicals. The primary products of this reaction depend on the nature of the initiating radical and the structure of the antioxidant. For example, early product studies on a trialkyl phenol, on reaction with tert-butyl peroxyl radical, yielded the 4-tert-butylperoxy-2,5-cyclohexadienone, by recombination with 3 (cf. 3') at the para position, whereas the more reactive tert-butoxyl radical gives dimeric products of the type shown in Scheme 1. This could occur through 'hydrogen migration' from the methyl group, as proposed, however dimerization via a quinone methide, 3a, is more likely. Alternately, the reactive tert-butoxyl can abstract hydrogen directly from the para methyl, a known reaction. Some general trends were recognized and indicate how the product distribution depends on steric hindrance in the antioxidant. If the antioxidant has bulky R groups (e.g., tert-butyls) at positions 2 and 6 and a substituent at position 4, self-reaction [Type (2)] is slow, and Type (1) will predominate so that the principal product is the 4-alkylperoxy adduct, which can be isolated in high yield. With ortho-substituted phenols, ortho-coupling or disproportionation may also occur. Oxidation of compounds containing a para-methyl can, under certain conditions, lead to the formation of stilbenequinones, possibly by disproportionation of 3 to 5, dimer formation and continued oxidation of the dimer, or more likely by formation of a quinone methide followed by dimer formation. Oxidation of phenols with a ‘free’ ortho position gave (unexpectedly) a complex array of at least ten products, classified into three types, as shown in Scheme 2: (A) Peroxy adduct at the free ortho site, followed by decomposition to an ortho quinone, 7 \(\rightarrow \) 8 \(\rightarrow \) 9; (B) carbon–carbon radical recombination at the ortho positions yielding a bis-ortho-phenol, 12, which in turn adds peroxy to form the peroxycyclohexadienone dimer, 13, and (C) phenoxyl radical self-addition at the ortho position followed by the reaction sequence 14 \(\rightarrow \) 15 \(\rightarrow \) 16, the latter being the isolated product.

Products from reaction Types (1)–(2) are of particular interest with chromanol antioxidants of the vitamin E class. They have been studied by various researchers and are the subject of a detailed review. The main features of these reactions as applicable
to α-Toc (α-Toc) are summarized in Scheme 3. The α-Toc quinone, 19, formed by para coupling and rapid reaction of the adduct, 18, is a major product of oxidation by alkylperoxyl radicals in organic solvents and determination of the consumption of peroxyls gave a stoichiometric value of 2. Products of reaction at the 5-ortho methyl position are also observed. In particular, disproportionation of the α-Toc radical, 17, could form the reactive quinone methide, 22, which dimerizes to 21 or the spirodimer 23. A pathway via the benzyl-type radical 20 is considered less probable. The dimer 21 has been found as a ‘natural’ impurity in vitamin E and it caused an ‘extraordinary’ kinetic behavior by accelerating the rate of decay of the α-Toc radical. Epoxides are also oxidation products, apparently formed from oxidation of the radical 17. Oxidation of α-Toc in polar protic solvents including water can lead to an additional array of products resulting from polar
addition of solvent to the intermediate quinone methide as outlined before\(^{41}\). Product distribution using chemical oxidizing agents, such as metal ions, will therefore give different products and one must be careful in assuming that these are also typical of the products from free radical oxidation of these chromanols in non-polar solvents.

As has been emphasized before\(^{18}\), α-Toc and related phenols owe their effective antioxidant activity to the rapid reaction with peroxyl radicals (equations 10 and 11), and the \(\text{ArO}^*\) ‘wasting’ reactions (equations 18–21) are all relatively slow reactions.

\[
\text{ArO}^* + \text{ArO}^* \rightarrow \text{non-radical products}
\]

(18)

SCHEME 2. Oxidation products of 2,4-di-tert-butylphenoxyl radical with tert-butylperoxyl radicals, \(R = \text{tert}-\text{butyl}\)
SCHEME 2. (continued)

\[\text{ArO}^* + \text{O}_2 \rightarrow \text{no reaction} \] \hspace{1cm} (19)

\[\text{ArO}^* + \text{R}_s - \text{H} \rightarrow \text{ArOH} + \text{R}_s^* \] \hspace{1cm} (20)

\[\text{ArO}^* + \text{ROOH} \rightarrow \text{ArOH} + \text{ROO}^* \] \hspace{1cm} (21)
Reaction 20, the pro-oxidant effect (Type 3), can become significant during high local concentrations of \(\alpha \)-Toc in heterogeneous systems of lipids and will be discussed in Section III.C.2. Similarly, synergism (Type 4) is of particular interest in the inhibition of lipid peroxidation and will be reviewed in that section.

\[\text{SCHEME 3. Oxidation products of } \alpha \text{-tocopheroyl radical with peroxyl radicals, } R^1 = C_{16}H_{33} \]
III. EFFICIENCIES OF PHENOLIC ANTIOXIDANTS

A. Some Experimental Methods

There are numerous techniques available to measure antioxidant effectiveness, which generally involve monitoring the suppression of oxygen uptake, the loss of antioxidant or substrate or else the formation of reaction products over a time period, in order to compare differences when antioxidant is present or absent. A variety of the more commonly used techniques, and some of their advantages and disadvantages, are outlined in this section.

1. Reaction of phenolic antioxidants with peroxyl radicals

 a. Inhibited oxygen uptake (IOU) measurement techniques. As shown in equations 2–5, peroxidation of substrates including fatty biological material (lipids) involves the
consumption of oxygen; consequently, one technique to study antioxidant activity is to monitor the effect of the phenolic antioxidant on the rate of oxygen uptake over time (Inhibited Oxygen Uptake or IOU technique). It is possible to monitor oxygen consumption using either a pressure transducer system, or using an oxygen electrode system.

Pressure Transducer. This is an extremely sensitive method that measures minute changes in gas pressure in a sample cell containing an oxidizing sample, compared to a reference cell, using a pressure transducer.\(^{43,44}\) Thermal control of the experiment is possible by immersing the equipment in a thermostated water bath. It is not specific to oxygen, consequently one corrects the oxygen uptake profiles obtained for release of nitrogen from decomposition of azo-initiators, oxygen consumption by the initiator and oxygen evolution during the termination step. Using a thermal azo-initiator with known efficiency and rate of decomposition (such as azo-bis-isobutyryl nitrite, AIBN, 2,2-azo-bis-2,4-dimethylvaleronitrile, AMVN, or azo-bis-amidinopropane 2HCl, ABAP or AAPH) means that one can control the rate of chain initiation, and thus determine the antioxidant activity quantitatively (i.e. its \(k_{inh}\) value, equation 10), provided the propagation constant, \(k_p\), of the substrate is known (equations 12–14). The stoichiometry of the reaction, its \(n\) value (equation 9), is also obtained. This technique also differentiates between antioxidants and retarders because of the distinctly different oxygen uptake profiles (see Figure 1). This technique can be used for studies in homogeneous solution with lipid or simple organic substrates\(^ {48–51}\), and for studies in aqueous model systems (micelles or liposomes)\(^ {44–47}\). Oxygen depletion in the reaction cell occurs fairly rapidly, requiring frequent oxygen purging, and there are other problems associated with routine use of the electrodes\(^ {63}\).

Oxygen Electrode. Oxygen electrodes are used mainly in aqueous systems to measure absorption of oxygen across a gas-permeable membrane.\(^ {53,61,62}\) It is possible to obtain quantitative kinetic data from this technique by relating the oxygen consumption to the moles of oxidizing substrate, and one does not have to correct for nitrogen evolution by azo-initiators since the electrode is oxygen specific. Also, the profiles of oxygen uptake will differentiate between antioxidants and retarders. The oxygen electrode is useful for studies in aqueous systems such as micelles and phosphatidylcholine liposomes, however it is limited in the number of organic solvents that can be used\(^ {63}\). Oxygen depletion in the reaction cell occurs fairly rapidly, requiring frequent oxygen purging, and there are other problems associated with routine use of the electrodes\(^ {54}\).

b. Product studies—Hydroperoxide products

Direct Measurements—UV/VIS Techniques. The conjugated diene (CD) formed among the polyene hydroperoxide products that are formed as a result of oxidation of polyunsaturated fatty acids (PUFAs) have a UV absorbance that can be monitored to follow the progress of the oxidation. The effect of antioxidants on the suppressed rate of product formation can be followed with time. For example, conjugated dienes from oxidation of linoleate lipid molecules absorb at 234 nm and can be monitored directly\(^ {65–69}\), or else after HPLC separation (via normal phase or reverse phase)\(^ {72–74}\) of the individual isomers. In order to use these findings to calculate the antioxidant activity of phenols and relate it to oxygen uptake studies (equations 7 and 14), one also has to make a correction to account for loss of absorbance due to loss (from decomposition) of hydroperoxides (equation 22)\(^ {67,68}\).

\[
\frac{-d[O_2]}{dt} = K \frac{-d[CD]}{dt}
\]
(22)

The rate of oxygen uptake, \(-d[O_2]/dt\), is therefore directly related to the rate of conjugated diene formation, \(-d[CD]/dt\), corrected for product decomposition by the proportionality constant, \(K\), which was found to equal 1.19, in other words 19% of the conjugated dienes decompose, so the absorbance of products has to be corrected to that
degree to equal the oxygen consumption. Using the molar absorptivity of the oxidation products68,72, or else individual molar absorptivity values for the 4 main product isomers separated by HPLC24, it is possible to relate the changing absorbance to moles of products formed (equation 23)67, where A_t is the absorbance at 70% of the induction period (after which point the rate of oxygen consumption is no longer increasing in a steady manner due to decreased antioxidant concentrations), A_0 is the absorbance when the antioxidant is added, t_i is the time at 70% of the induction period, t_0 is the time that the antioxidant is added, ϵ is the molar absorptivity of the conjugated dienes and L is the path length.

\[
\frac{-d[CD]}{dt} = \frac{- (A_t - A_0)}{\epsilon L (t_i - t_0)}
\]

To calculate the antioxidant activity for the antioxidant used with this technique, one first determines the slope, S, from the plot of $-d[CD]/dt(t_0)$ vs [Inh]-1. The k_{inh} can be represented as the k_{inh}/k_p ratio, or calculated if the propagation rate constant, k_p, is known for the substrate LH = lipids (equation 24)67.

\[
\text{Antioxidant Efficiency} = AE = \frac{k_{inh}}{k_p} = \frac{[LH]R_i}{nKS}
\]

The concentration of the oxidizable substrate must be low enough so that the absorbance from the products during the course of the oxidation does not exceed maximum reliable absorbance readings. Direct UV examination of the oxidizing material is possible when conducting studies on homogeneous systems in organic solvents77, or studies in heterogeneous systems like micelles67,69 and unilamellar liposomes78. Extraction of the lipids before analysis is often required for purposes of HPLC analyses79, or, in the case of direct UV studies on multilamellar liposome systems or biological samples, lipid extraction may be necessary due to opacity of the material and/or UV interference from other compounds. The sensitivity of direct UV analyses can be improved by monitoring more than one wavelength or using tandem cuvettes78. If one uses UV study on lipid peroxidation products post-HPLC, then using product ratios of the cis–trans/trans–trans isomers provides information on the mechanism of initiation (e.g. free radical vs singlet oxygen, Section III.C.2) and peroxidation80,81 and also on the antioxidant behavior60,71,75,82.

The separation of products on HPLC also can reduce interference due to absorbance from non-hydroperoxide conjugated dienes from other sources in biological samples. In order to obtain relevant, semiquantitative results, one has to be able to stop any further oxidation of the lipid during extraction and work-up, and have an appropriate control sample for comparison purposes, especially in studies of tissue samples65. Conjugated trienes absorbance can be monitored at 288 nm69,83 or 235 nm (methyl linolenate oxidation products, $\epsilon = 24,400$)75. However, with oxidation of triene fats one can get non-conjugated products, making the UV analysis less useful for quantitative results unless an appropriate correction factor can be determined, and conjugated trienes can be formed from diene lipids during the course of photoinitiation69.

The application of UV alone to monitor substrate oxidation product formation is limited to studies on polyunsaturated fats with conjugated oxidation products. Reverse-phase HPLC elution of conjugated and non-conjugated lipid hydroperoxides (LOOH) can be followed electrochemically (concurrently with UV detection) so long as the eluent contains a supporting electrolyte (such as sodium chloride84 or tetraethylylammonium perchlorate72).

UV analysis can also be used to monitor loss of antioxidants or formation of antioxidant radicals or their product quinones85,86, although there may be products other than just quinones (\textit{vide supra}). Absolute second-order rate constants for hydrogen atom transfer from antioxidants ($k_{ROO^*/ArOH}$) can be determined by following the rate of radical formation k_{obs}, and plotting k_{obs} vs $[ArOH]$ (equation 25)86.

\[
k_{obs} = k_0 + k_{ROO^*/ArOH}[ArOH]
\]
In general, equation 25 applies to most spectrophotometric procedures where rate of product formation or rate of loss of a colored indicator is used to monitor antioxidant behavior.

Direct Measurements—Fluorescence/Chemiluminescence Techniques. The progress of the peroxidation of lipids can be followed by chemiluminescence, specifically by measuring the chemiluminescence of lipid peroxyl recombination products like singlet oxygen and triplet carbonyl products. It is a technique that has been found to correlate well with the UV method of monitoring conjugated diene formation, while avoiding the problem in UV studies of absorbance by other compounds at the relevant wavelength. The degree of chemiluminescence is very low however, so detection may require the use of chemiluminescent enhancers, and also singlet oxygen can be generated by other means, which may cause interference. The polyunsaturated fatty acid *cis*-parinaric acid has been used as a marker to follow lipid oxidation due to its fluorescence, since the rate of oxidation can be monitored by following the rate of loss of fluorescence, which would be influenced by antioxidants according to their efficiency. This marker has the potential for application in a variety of media, as it can be used embedded in low density lipoprotein LDL or added in solution to liposomes. Another way to measure antioxidant potential directly using luminescence is to heat *di-tert*-butyl peroxyoxalate with *o*-dichlorobenzene and ethylbenzene, and monitor the resultant luminescence of the *di-tert*-butyl peroxy-oxalate and its suppression by the addition of an antioxidant. *β*-Phycoerythrins can also be used as fluorescent markers of peroxyl radical damage by monitoring the loss of their fluorescence in the presence of peroxyls and the protection of the *β*-phycoerythrins by antioxidants, although the *β*-phycoerythrins method does not actually distinguish between antioxidants or retarders.

Indirect Measurement of Hydroperoxide Formation. The rate of substrate oxidation in the presence and absence of antioxidants can be followed by measuring reactions of the hydroperoxide products formed with various compounds. Some of these techniques are outlined here.

(A) Fluorescence/Chemiluminescence Techniques. Lipid hydroperoxides can be reacted with chemiluminescent indicators such as luminol or diphenyl-1-pyrenylphosphine post-HPLC, which allows separation and identification of phospholipid and cholesterol ester peroxides. This technique is applicable to both conjugated and non-conjugated lipids, however it tends to involve a relatively long delay between injection and final fluorescent analysis, and it probably provides inaccurate assessments of total levels of peroxide.

(B) UV/VIS Techniques. (i) The absorbance of *β*-carotene at 455–465 nm decreases in the presence of oxidizing linoleic acid in micelles, and the addition of antioxidants slows down the rate of this decrease, depending upon the effectiveness of the antioxidant. There has been some work to quantify the protective effect of antioxidants using this technique, and Rosas-Romero and coworkers defined a parameter for this purpose, *ω*, based upon the change of *β*-carotene absorbance with time and concentration of the antioxidant, which they then correlated with the estimated ionization potential and 13C NMR chemical shift, δ, of the *ipso*-carbon of the OH group. The technique has, so far, been used in micellar systems. It may be difficult to use *β*-carotene as an indicator in this technique for analyses of tissue samples or plant extracts because the materials for study would have to be corrected for natural levels of *β*-carotene, which is itself an antioxidant and singlet oxygen quencher.

(ii) The reaction of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid, ABTS) with lipid peroxyl radicals forms ABTS+, which in the presence of a peroxidase (metmyoglobin) and ferryl myoglobin produces absorbance at 650, 734 and 820 nm, a high enough wavelength to avoid interference from most other compounds. Addition of antioxidants or hydrogen atom donating compounds results in a loss of absorbance, and the net loss is related to that from a standard antioxidant, a water-soluble vitamin E analogue,
Trolox (2,5,7,8-tetramethyl-2-carboxy-6-hydroxychroman)95,96. This test is referred to as the TEAC or Trolox-Equivalent Antioxidant Capacity assay.

(iii) For the Fox Assay, Fe(II) is oxidized to Fe(III) under acidic aqueous conditions in the presence of LOOH, and the Fe(III) subsequently forms a complex with xylene orange which is measured at 560–580 nm; however, lengthy incubation periods make this procedure less reliable if oxidation of the substrate continues during work-up97. This technique is a useful indicator of hydroperoxide in both liposome preparations and in assays of biological samples such as plasma64.

(C) Titration for Hydroperoxides. The iodometric assay technique is useful in both aqueous65,98 and organic media99 and involves the measurement of the iodine produced from the reaction between LOOH and potassium iodide by sodium thiosulfate titration with a starch indicator. The two main problems with iodine measurements in aqueous systems are that free iodine can be absorbed by lipid material, and iodine can be produced in the absence of substrate due to reaction between oxygen and potassium iodide98. In organic systems, water can interfere with measurements, however treatment with sodium bicarbonate can eliminate the error in measurements when oxygen is present99. It is also possible to measure the amount of iodine formed via other techniques, such as potentiometrically using a platinum electrode98, or spectrophotometrically measuring I_3^- absorbance at 350 or 290 nm (although this technique has solvent restrictions, and requires that nothing else present interferes at those wavelengths).

Analysis of the Decomposition Products of Hydroperoxides. Some authors have monitored formation of some of the decomposition products of the lipid hydroperoxides. Direct spectrophotometric measurements of the formation of o xo-octadecadienoic acids at 280 nm are possible74, as are measurements of secondary oxidation products like α-diketones and unsaturated ketones at 268 nm. The formation of various aldehyde products of lipid peroxide decomposition can be monitored by reacting them with 2,4-dinitrophenylhydrazine and, after HPLC separation, measuring at 360–380 nm the DNPH derivatives formed100, although the sensitivity of this particular technique makes it very susceptible to interference.

A commonly used technique to follow lipid oxidation is to monitor the formation of malondialdehyde (MDA), a water-soluble compound produced from lipid hydroperoxide and endoperoxide decomposition. The formation of the MDA can be followed by measuring it directly via HPLC101,102, however most often it is reacted with thiobarbituric acid (TBA) with a 1 : 2 stoichiometry (equation 26), and formation of the product is followed spectrophotometrically at 535 nm83,98 or followed by fluorescence103.

\[
\begin{align*}
\text{MDA} +
&\text{HS}\text{-N}=\text{O} + \text{HS}\text{-N}=\text{O} \\
&\text{H}^+, \text{H}_2\text{O} \\
&\text{heat} \\
\rightarrow
&\text{HS}\text{-N}=\text{O} + \text{HO}\text{-N}=\text{O} + \text{N} = \text{S} \\
\text{colored complex, } \lambda_{\text{max}} 532 \text{ nm}
\end{align*}
\]
It should be obvious that this method is limited to those lipids that form MDA on oxidation. In biological samples, the work-up for sample preparation involves addition of trichloroacetic acid to precipitate proteins, acid to change the pH and heating to dissolve the TBA. The technique is widely used because it is both simple and sensitive. However, there are a number of factors to consider when interpreting results using this technique, particularly when studying biological samples: (a) the presence of oxygen, Fe\(^{+2}\) and acid during sample work-up results in further substrate oxidation which can distort the results (although the addition of an inhibitor like BHT can help protect against this)\(^{65,66,101}\); (b) TBA will react with other compounds, such as other aldehydes\(^{65}\) or even sucrose\(^{101}\); (c) MDA can be generated from other processes than just lipid peroxidation, and can be lost due to dimerization, reaction with other biological compounds or metabolized by mitochondrial enzymes\(^{65,83,101}\); (d) as with other spectrophotometric techniques, TBA absorbance can reach a maximum level, limiting the upper range of MDA concentration that can be analyzed\(^{104}\). The acid, pH, and heating temperatures and times should ideally be optimized for each type of analysis, rather than just following a standard procedure\(^{105}\).

2. Reaction of phenolic antioxidants with other radical sites

Studies have been conducted to measure antioxidant effectiveness in reactions with radical species other than peroxyl radicals, generally in terms of hydrogen atom donating ability. It must be kept in mind that different radical species may well differ in their hydrogen atom abstracting ability, and so measurements using different radical centers might lead to different relative reactivities of antioxidants. There are several different radical species, generated in a variety of ways, used in the study of antioxidants. Hydroxyl radicals are reported to be generated by the xanthine–xanthine oxidase system\(^{105–107}\), but this only occurs when traces of metal ions are present. They are also formed by the ascorbate/Fe\(^{+2}\) combination\(^{108}\), and by irradiation of hydroperoxyl species\(^{109}\). Pulse radiolysis is also a common method to generate hydroxyl radicals. However, it is very unlikely that reaction with hydroxyl radicals provides a reliable method to determine an antioxidant’s H-atom donating ability. As pointed out before\(^{110,111}\), a hydroxyl radical reacts rapidly with almost any organic molecule in its proximity and addition to unsaturated systems is a common reaction\(^{111}\). Stable radical species like diphenylicrylhydrazyl radical DPPH\(^*\), galvinoxyl and a phenoxy species (vide infra) can be used with spectrophotometric or ESR analyses. Alkoxyl radicals can be generated by irradiation of hydroperoxyl species\(^{109}\), and with NADPH/ADP/Fe\(^{+3}\). Aryloxyl radicals can be generated using time-resolved laser flash photolysis, and the phenoxy radical generated in this way is a much more active hydrogen atom abstractor than peroxyl radicals\(^{112}\).

Use of Electron Spin Resonance Techniques. Electron spin resonance (ESR) studies have been used to examine both ‘activity’ of antioxidants\(^{18,113–115}\) and their location within the liposome\(^{113}\). Studies of antioxidant radicals via ESR provide data on the electron delocalization within the antioxidant, which can be correlated with antioxidant activity, although not always with very good agreement with inhibition studies\(^{18}\). Spin traps have been themselves examined as potential antioxidants, and have been used to attempt to trap peroxyl species for study\(^{116}\). However, trapped peroxyl species are not very stable and carbon-centered radicals have been preferentially trapped, even though in some studies other techniques (e.g. malondialdehyde/thiobarbituric acid, MDA/TBARS-technique) indicate the presence of peroxide species in the sample\(^{117}\). Fremy’s salt (\((K^+SO_3^-)_2NO\)^*) has been used in micellar systems to determine rate constants quantitatively for the antioxidants α-Toc and ascorbic acid and their derivatives, because it reacts with them in a way similar to peroxyl radicals and can be used as a spin probe in stop-flow ESR studies\(^{114,115}\). ESR has also been used to monitor the loss of DPPH\(^*\)\(^{90,105,118}\) and galvinoxyl\(^{119,120}\) signal intensity.
to follow the rate at which the radicals abstract the phenolic hydrogen of the antioxidant (thus becoming ESR silent), and to follow the formation of the antioxidant radicals.

UV/VIS Techniques. The UV/VIS method can be utilized to measure the hydrogen atom donating ability of antioxidants to alkoxyl and nitrogen-centered radicals, and some techniques are outlined here:

(i) In one technique, alkoxyl radicals (RO·) are generated by irradiating tert-butyl hydroperoxide or 13-hydroperoxylinoleic acid in the presence of tert-butyl alcohol (to scavenge hydroxyl radicals). The rate at which the alkoxyl radicals bleached the carotenoids crocin, monitored at 440 nm in aqueous systems, or canthaxanthin, monitored at 450 nm in hexane, was determined in the presence and absence of antioxidants (which would preferentially react with the alkoxyl radicals, protecting the carotenoid). From these rates it is possible to calculate relative rate constants; however, in this study the rates were calculated based upon the change in absorbance measured before and after 5 minutes of photolysis, rather than continually monitoring changes in absorbance over longer periods of time. The technique is limited to non-thiol antioxidants that do not have absorbance in the same region as the carotenoids. In addition, the bleaching reaction studied must be faster than the known rapid unimolecular decay, 1.5×10^6 s$^{-1}$, of t-butoxyl in water, and the stoichiometric factors for antioxidants cannot be determined from this technique.

(ii) The chemiluminescent indicators luminol and lucigenin can also be used to determine the reaction of phenols with superoxide radicals and hydrogen peroxide by monitoring the degree to which the phenols protected the indicators from oxidation, since the oxidation of luminol causes it to emit a blue light which can be measured.

(iii) Aryloxyl radicals (in this example, phenoxy) can be generated through laser flash photolysis, and can be monitored by their absorbance at 400 nm. The rate at which phenolic antioxidants donate a hydrogen to the aryloxyl radical can then be followed not only by measuring the loss of the aryloxyl radical absorbance, but also by the growth in absorbance for the antioxidant radical (so long as the species do not absorb at similar wavelengths).

(iv) A common technique to measure a phenol’s hydrogen atom donating ability is to measure the reaction rate between the phenol and a colored, stable radical species such as: (a) DPPH*, which in solution is purple with an absorbance at approximately 515 nm, (b) the galvinoxyl radical, which in solution is orange with an absorbance at approximately 424 nm, or (c) with a phenoxyl radical species (2,6-di-tert-butyl-4-(4′-methoxyphenyl)phenoxyl radical, ArO·), which is generated by oxidizing a solution of the starting phenol (a white solid) with lead dioxide, yielding a purple solution which has a strong absorbance at 370 nm. With these techniques, the progress of the hydrogen abstraction can be monitored by the loss of absorbance for the indicator radical. Galvinoxyl has even been incorporated into liposomes to study antioxidant mobility and action. Different researchers using the DPPH* technique to measure antioxidant activity may monitor the loss of DPPH* signal until a steady state is reached, or may monitor it for only a short time period to determine the initial rate of signal loss. The calculation to determine a quantitative rate constant (k_2 for the second-order reaction with the phenol) requires the initial and final concentrations of the DPPH* (equation 27).

$$k_2 = \frac{2.303}{t} \log \frac{[\text{DPPH}*]_0}{[\text{DPPH}*]_t} \times \frac{1}{[\text{ArOH}]}$$

(27)

It also does not take into consideration the rate of the reaction, although one group has addressed this by defining a new parameter to characterize antioxidant compounds that
does incorporate time, T_{EC50}, to reach the 50% reaction of the DPPH* (EC$_{50}$) value124 (equation 28).

$$\text{Antiradical efficiency} = AE = \frac{1}{EC_{50}} T_{EC_{50}}$$ \hspace{1cm} (28)

In summary, these are some of the common techniques used to measure lipid peroxidation in the presence and absence of antioxidants, and to study antioxidants directly. There are other techniques, ranging from simple gas chromatographic analysis and measurement of amounts of unoxidized polyunsaturated fatty acids (PUFA) before and after oxidation83, to enzyme-mediated assay techniques such as the cyclooxygenase or glutathione peroxidase-based systems64. There is even a spectrophotometric technique to measure the ability of a phenol to bind with the iron reagent, in which the phenol is incubated with ferrozine (monosodium 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p'-disulfonate) and ammonium ferrous sulfate with ammonium acetate. The phenol will compete with the ferrozine to complex with iron, and this is followed by monitoring the absorbance of the iron(II) ferrozine complex at 562 nm and comparing that to an untreated sample88,131. This technique, however, is a measure of a phenol’s ability to act as a preventative antioxidant (since metal ions like copper and iron have a significant role in initiating lipid peroxidation in vivo133,134, and are also used to initiate lipid peroxidation in in vitro studies108,134,135) as opposed to a chain-breaking antioxidant. These techniques to study the effectiveness of phenolic antioxidants tend to be used on individual antioxidants. There are also investigations conducted on plant/tissue extracts that contain many phenolic compounds, and thus any technique used will only be able to screen overall antioxidant capacity of the mixed system. They will not be quantitative for any single phenolic species, and will provide little useful information on interactions (synergistic or otherwise) of the phenolic antioxidants present with other compounds. Studies on mixed systems also will not take into consideration varying reaction rates of the antioxidants, and may not differentiate among the roles of free radical scavenging (chain breaking) or metal chelating (preventative) actions, or the ability of some compounds to repair oxidative damage61,134. Results of such studies may provide a relative numerical value for ‘antioxidant activity’ within the system. For example, one paper using the chemiluminescence technique with luminol on plant extracts reported results in terms of percent inhibition of luminol intensity, and the authors compared their results to two standard phenolic antioxidants122. Other papers also were interested in total antioxidant capacity of plant or tissue/plasma preparations64,89, but assays in such complex systems may be measuring protein peroxides as well as lipid peroxides64, and there are non-phenolic compounds which play a role in protection against peroxidative damage134. One technique used for this kind of combined antioxidant assay is called the FRAP (ferric reducing ability of plasma) assay, which follows spectrophotometrically (at 593 nm) the reduction of ferric ion in a complex with tripyridyltriazine to ferrous ions64,96. Another technique, called the TRAP (total radical antioxidant parameter) assay, is used on plasma samples to assess total antioxidant capacity, and uses the oxygen uptake technique to determine the induction period (length of inhibition) provided by a plasma sample when initiation is induced and controlled by an azo-initiator, and results are reported relative to the water-soluble phenolic antioxidant Trolox62,64,96. A variation of this technique, called ORAC (oxygen radical absorbance capacity) follows the progress of the reactions via a decrease in the fluorescence of phycoerythrin96. Techniques which examine total antioxidant capacity of plant/tissue preparations directly (for example, looking at plasma directly via UV/VIS) often require substantial dilution of the material, which can cause misleading results, because although the concentration of water-soluble antioxidants decreases with the dilution, the concentration of lipid particles with LDL is not affected by the dilution64. Also, direct UV analysis, particularly for complex biological samples, is susceptible to
interference due to the low wavelength required to observe conjugated diene formation, and thus overall has a tendency to overestimate lipid peroxidation.

3. Overall assessment of strategies to determine antioxidant activities

A quote from Halliwell sums up the overall problem of assessing antioxidant activities: ‘Many substances have been suggested to act as antioxidants in vivo, but few have been proved to do so’. Given the wide variety of techniques available to the investigator, it is important to clarify what makes an optimal strategy for the determination of antioxidant activity. The main problems associated with the variety of methods available to determine antioxidant ‘activity’ are summarized very well in the review by Frankel and Meyer. Antioxidant studies are conducted using a wide array of substrates (e.g. simple organic substrates like styrene or cumene, or lipids, which vary in type, charge and degree of unsaturation), types of initiators (e.g. thermal azo-initiators, photoinitiators, enzyme mediated initiation, metal ion mediated initiation), system compositions (e.g. homogeneous solution, bulk lipids, oil/aqueous emulsions, micelles, liposomes, biological samples such as plasma, tissue and plant extracts), pH, temperatures and assay techniques. Studies to determine if natural ‘potential’ antioxidant compounds show reasonable activity should be conducted at antioxidant concentrations that would be relevant to those in biological systems. Studies on biological samples need to take into consideration that there may be more than one biological role for the antioxidant in question, that the antioxidant may be regenerated through the action of other compounds (e.g. the regeneration of vitamin E by vitamin C, see Section III.C.2) and that there may be partitioning and/or charge factors affecting its activity, and that other components in the samples may respond to the assay chemicals to varying degrees depending upon the assay used. Often, determinations of antioxidant activity are conducted using only one type of technique, even though there can be extreme inconsistencies in results found when comparing different techniques. Even comparing results that use the same assay technique can be difficult, depending on what the different researchers use as an end-point in their technique, or if there are slight modifications to the experimental conditions. This makes it very difficult to compare results from different researchers.

A standardized testing system is needed that provides not only a quantitative kinetic rate constant for the activity of the antioxidant, but also indicates the stoichiometry of the reaction, and which is relevant to the systems of interest (for example, reaction with peroxy radicals, which is relevant to biological systems). To obtain kinetic data in a manner that applies the principle of autoxidation and inhibition as outlined in equations 2–15 (see Section II) requires consideration of the following factors:

(a) The rate of chain initiation must be controlled and measurable, for example by using azo-initiators with known rate constants of decomposition and efficiencies.

(b) The concentration of oxidizable substrate must be known, and the propagation rate constant \(k_p \) for the substrate should be known or measurable. If \(k_p \) is not known, the relative values of \(k_{inh}/k_p \) may be used.

To give a specific example, the advantages of styrene as a substrate for peroxyl radical trapping antioxidants are well known: (i) Its rate constant, \(k_p \), for chain propagation is comparatively large (41 M\(^{-1}\) s\(^{-1}\) at 30°C) so that oxidation occurs at a measurable, suppressed rate during the inhibition period and the inhibition relationship (equation 14) is applicable; (ii) styrene contains no easily abstractable H-atom so it forms a polyperoxyl radical instead of a hydroperoxide, so that the reverse reaction (equation 21), which complicates kinetic studies with many substrates, is avoided; and (iii) the chain transfer reaction (pro-oxidant effect, equation 20) is not important with styrene since the mechanism is one involving radical addition of peroxyxls to styrene.
For very weak antioxidants \((k_{\text{inh}} \leq 5 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}) \), in order to measure the stoichiometric factor, which requires determination of the inhibition period, one should select a substrate with a relatively low \(k_p \). For this purpose, cumene \((k_p = 0.18 \text{ M}^{-1} \text{ s}^{-1} \text{ at } 30^\circ \text{C}^{137}) \) has proven to be useful and with this substrate the inhibition periods of a variety of inhibitors were measured\(^{138}\). Overall, the relative efficiencies of different phenolic antioxidants vary markedly with substrate and in different solvents (see Section III.C). These factors must be carefully controlled for quantitative studies of activities. Qualitative screening methods are widely used, without regard to the controls outlined above, to determine the relative effectiveness of antioxidants, as reviewed in detail in this section. These methods do provide some useful data on the relative ‘potential’ of compounds as antioxidants, but they do not determine the actual ‘activity’ of individual compounds.

B. Structural Effects on Efficiencies of Antioxidants

1. Monohydroxy phenols: Substituent effects

It is well known that substituents have a profound effect on the hydrogen atom donating ability of phenols. Indeed, only those phenols bearing electron donating substituents, particularly at the ortho and/or para positions, are active as antioxidants. In general, this is as expected since such groups are expected to lower the phenolic O–H bond dissociation enthalpy and increase the reaction rates with peroxy radicals.

In general, the effects of alkyl and alkoxy (e.g. \(\text{CH}_3\text{–O} \)) groups are well known and understood. For example, \(\text{ortho} \) and \(\text{para} \) alkyls (at positions 2,4,6) stabilize the phenoxy radical by inductive and hyperconjugative effects and, in addition, \(\text{ortho} \) groups provide steric hindrance to minimize undesirable ‘wasting’ reactions such as pro-oxidation (equation 21). In addition, the conjugative effect of a heteroatom, for example at the \(\text{para} \)-position, provides stabilization through resonance (Scheme 4).

\[
\begin{align*}
&\begin{array}{c}
\text{G} \\
\text{G} \\
\text{G} \\
\text{G} \\
\end{array}
\end{align*}
\begin{array}{c}
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\end{array}
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d} \\
\end{array}
\text{G = resonatively electron donating group}
\]

SCHEME 4. Electron delocalization in phenoxy radicals
Quantitative kinetic studies of absolute rate constants for hydrogen atom transfer from substituted phenols to polystyrene peroxy radicals by Howard and Ingold in the 1960s provided the first reliable data on substituent effects on antioxidant activities of phenols. Later, a very detailed report appeared providing data on substituent and structural effects on various classes of monohydroxy phenols. In addition, detailed reviews were given of substituent effects. These reports provide the basis for understanding how substituent and structural effects control the antioxidant activities of phenols and will be summarized in part below.

Substituent Effects of Alkyls and para-Methoxy in Simple Phenols. Table 1 gives some data on substituent effects of alkyls, especially methyls, and para-methoxy on antioxidant activities, k_{inh}, of three classes, I, II and III, of monophenols. The data were interpreted for the most part in terms of the relative inductive or resonance effects on stabilizing the aryloxyl radical intermediates. For example, the large increase in activity of Ib over Ia, and IIb over IIa, can be attributed to increased stabilization of the radical by conjugative interaction with the para-ether oxygen (Scheme 4d). In general, the para-methoxy exerts this effect in most of these structures; however, when it is flanked by two ortho-methyl groups, as in IId, this increased ‘activity’ is lost, apparently due to lack of coplanarity which is required for the conjugative, resonance effect (see the following paragraph).

TABLE 1. Effects of alkyl and methoxy (para) substituents on antioxidant activities of mono-hydroxy phenols

<table>
<thead>
<tr>
<th>Structure</th>
<th>No.</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>k_{inh} ($M^{-1} s^{-1} \times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>Ia</td>
<td>CH$_3$</td>
<td></td>
<td></td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>Ib</td>
<td>OCH$_3$</td>
<td></td>
<td></td>
<td>4.78</td>
</tr>
<tr>
<td>IIb</td>
<td>IIa</td>
<td>H</td>
<td>CH$_3$</td>
<td>H</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>IIb</td>
<td>H</td>
<td>OCH$_3$</td>
<td>H</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>IIC</td>
<td>H</td>
<td>OCH$_3$</td>
<td>CH$_3$</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>IID</td>
<td>CH$_3$</td>
<td>OCH$_3$</td>
<td>CH$_3$</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>IIE</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>IIF</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>H</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>IIG</td>
<td>CH$_3$</td>
<td>H</td>
<td>CH$_3$</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>IIH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2.5</td>
</tr>
<tr>
<td>IIIb</td>
<td>IIIA</td>
<td>OCH$_3$</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>IIIB</td>
<td>CH$_3$</td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>IIIC</td>
<td>(CH$_3$)$_3$C</td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
</tbody>
</table>

aTaken from Reference 19. At 65°C.

bTaken from Reference 18.
When the phenolic hydroxyl is flanked by two ortho-tert-butyl groups (cf. III), the lower activity is attributed to steric hindrance to abstraction of the hydrogen atom by peroxy radicals.

Stereoelectronic Effects. Stereoelectronic effects of para-methoxyl (as well as inductive effects of methyls) are important in controlling the antioxidant activities of methoxy phenols of Class II\(^1\). As noted above, a para-methoxyl stabilizes a phenoxy radical by conjugative electron delocalization with the oxygen. For stabilization, the oxygen p-type lone-pair orbital must overlap with the semi-occupied orbital (SOMO) of the radical. The extent of overlap depends on the dihedral angle, \(\theta\), between the oxygen lone pair and the SOMO which is perpendicular to the atoms of the aromatic plane, and the angle \(\theta\) should be the same as the angle \(\theta'\) between the \(O_1-C_2\) bond and this plane (see Figure 2). Stabilization of the radical will be at a maximum when \(\theta = 0^\circ\) and at a minimum when \(\theta = 90^\circ\). In fact, the angle for the solid IId (89°) is almost that of perpendicular arrangement, whereas it was estimated to be only 8° for IIc, in agreement with the markedly higher activity of IIc as an antioxidant. However, as pointed out, the radical activity of the ‘twisted’ IId \((k_{\text{inh}} = 39 \times 10^9 \text{ M}^{-1} \text{s}^{-1})\) is higher than expected in comparison with the para-methyl compound, IIg, or the unsubstituted, IIh\(^1\). In fact, a perpendicular para-methoxyl in IId might be expected to reduce its activity by the \(-I\) (inductive) effect of oxygen. That this is not the case might be due to the possibility that the ‘effective’ \(\theta\) for IId in solution is less than 90° or, as suggested, the \(-I\) effect of a perpendicular methoxy group is outweighed by a residual \(+M\) (mesomeric) effect attributed to ‘...a resonance contribution from the other lone pair on the oxygen’\(^1\).

Effect of a Heterocyclic Ether Ring: Vitamin E Class. The antioxidant activities of four classes, IV, V, VI and VII, of chromans are summarized in Table 2. \(\alpha\)-Toc was determined to be the most active antioxidant of the vitamin E tocopherols\(^1\). Differences in \(k_{\text{inh}}\) among the tocopherols appear to be due to inductive effects based upon the number and positions of methyl groups, the maximum effect being attained with completely substituted \(\alpha\)-Toc. It is interesting to note that \(\beta\)-tocopherol has the same activity as the ‘planar’ acyclic compound, IIc. Thus the stereoelectronic effect enforced by the ring system together with inductive effects of methyls contribute to the overall high reactivity of the tocopherols. Minor differences observed in the activity of \(\alpha\)-Toc compared to Va and Vb were attributed to different 1,3-interactions within the half-chair conformation of the chromans.
TABLE 2. Effect of heterocyclic ether ring and substituents on antioxidant activities of mono-hydroxy phenols

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name/No.</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>(k_{inh}) (M⁻¹ s⁻¹ × 10⁻⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVα</td>
<td>α-Toc</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>DMT</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>β-Toc</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>γ-Toc</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>δ-Toc</td>
<td>H</td>
<td>H</td>
<td>CH₃</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Va</td>
<td>CH₃</td>
<td>CH₃</td>
<td></td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Vb</td>
<td>H</td>
<td>H</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Vc</td>
<td>CH₃</td>
<td></td>
<td>COOH</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Vd</td>
<td>CH₃</td>
<td></td>
<td>COOCH₃</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Ve</td>
<td>CH₃</td>
<td></td>
<td>CH₂COOH</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Vf</td>
<td>CH₃</td>
<td></td>
<td>CH₂COOCH₃</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Vg</td>
<td>CH₃</td>
<td></td>
<td>(CH₂)₂COOH</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Vh</td>
<td>CH₃</td>
<td></td>
<td>(CH₂)₂COOCH₃</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Vi</td>
<td>CH₃</td>
<td></td>
<td>CH₂OH</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Vj</td>
<td>CH₃</td>
<td></td>
<td>OCH₃</td>
<td>150</td>
</tr>
<tr>
<td>VI</td>
<td>VIaα</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>VIbα</td>
<td>H</td>
<td>CH₃</td>
<td>CH₃</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>VIcα</td>
<td>R¹R² = CH₂CH₂(spiro)</td>
<td></td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>VIIc</td>
<td>VIIa</td>
<td>C₁₆H₃₃</td>
<td>CH₃</td>
<td>x = 1</td>
<td>1140</td>
</tr>
<tr>
<td></td>
<td>VIIb</td>
<td>CH₃</td>
<td>CH₃</td>
<td>x = 0</td>
<td>2870</td>
</tr>
</tbody>
</table>

α Taken from Reference 18.
β Taken from Reference 142.
γ Taken from Reference 49.
δ \(k_{inh}\) for α-Toc was 290 × 10⁴ M⁻¹ s⁻¹ under the same conditions.

heterocyclic ring. In contrast, significant differences are observed when electron attracting groups replace one of the methyls on this ring, so that a carboxyl group in the commercial, water-soluble antioxidant Trolox (Vc) reduces the reactivity to one-third that of α-Toc. In water, however, where the group is ionized, \(−\text{COO}^−\), it is expected to be more reactive. Two types of convincing evidence indicate that the reduced reactivities of the type V series is due to \(−\text{I}\) effects of the substituents\(^\alpha\). First, the relative reactivities show
a regular (approximately) linear trend $d > g > h > i \sim f > e > j > c$ with the σ_1 substituent constants. Second, interesting electron spin resonance data confirmed this trend. The relative spin densities in the various ArO* radicals were determined by measuring the hyperfine splittings (hfs) of the 2- and 6-CH$_3$ groups of IIb, c, d and the 5- and 7-CH$_3$ of type V compounds. The sum of the hfs splittings exhibited a remarkable linear trend with $\log k_{inh}$ of the antioxidant activities.

The search for compounds more reactive than α-Toc led to the discovery of the 5-hydroxy-6,7-dimethyl-2,3-dihydrofurans and derivatives, class VI (Table 2). The very significant increase in reactivity for VIa (1.78 times that of α-Toc) was, at least in part, attributed to the increased planarity of the 5-membered heterocyclic ring which reduced the θ torsion angle to 6°, compared to 17° for Va. Following the lead of Ingold and coworkers, there were some interesting attempts to produce even more reactive phenolic antioxidants bearing heterocyclic ether rings. Incorporation of a spiro ring (cf. VIc) did not cause an increase in reactivity, although the calculated θ angle was less than 1°142. However, incorporation of a second benzene ring in 6-hydroxy-2,5-dimethyl-2-phytyl-7,8-benzochroman, vitamin E derivative VIIa, and a corresponding chromene (3,4-double bond, not shown) raised the reactivity to four times that of α-Toc and the compound with both a second ring and a 5-membered heterocyclic ether ring, 2,3-dihydro-5-hydroxy-2,2,4-trimethylnapthof[1,2-b]furan, VIIb, has a reactivity about nine times that of α-Toc, and is undoubtedly the most reactive phenolic antioxidant known59. However, with an increase in reactivity of compounds of class VIIa, b, there is a drop in the stoichiometric factor, n, to around 1.5–1.6 compared to $n = 2$ for α-Toc. The lower n values could be due to ArO* ‘wasting’ reactions resulting from chain transfer reactions with styrene and/or terminating self-reaction of ArO*.

Some phenols containing large ortho-alkyl groups and heterocyclic oxygen rings were synthesized to determine if this combination would provide efficient antioxidants. Two examples of the chromanol class, VIIIa, b, shown in Table 3, having iso-propyl groups or methyl and tert-butyl groups, have antioxidant activities less than α-Toc. The decreased reactivity here is attributed to a combination of steric hindrance to attack by peroxyl radicals and the lack of a stabilizing +1 effect of a meta-methyl55.

<table>
<thead>
<tr>
<th>Structure</th>
<th>No.</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>k_{inh} (M$^{-1}$s$^{-1}$) $\times 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIIIa</td>
<td></td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>(CH$_3$)$_2$CH</td>
<td>(CH$_3$)$_2$CH</td>
<td>238a</td>
</tr>
<tr>
<td>VIIIb</td>
<td></td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>(CH$_3$)$_3$C</td>
<td>199a</td>
</tr>
<tr>
<td>IXb</td>
<td></td>
<td>HO</td>
<td>C(CH$_3$)$_3$</td>
<td>C3H${11}$</td>
<td>C3H${11}$</td>
<td>k_{inh}/k_p(IX) = 2.24 \times 103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(H$_3$C)$_3$C</td>
<td>C(CH$_3$)$_3$</td>
<td>C3H${11}$</td>
<td>C3H${11}$</td>
<td>k_{inh}/k_p(\alpha-Toc) = 4.55 \times 103</td>
</tr>
</tbody>
</table>

aTaken from Reference 55.

bTaken from Reference 126.
The hindered phenol IX was ‘designed’ as an antioxidant, especially as an inhibitor of lipid peroxidation (see Section III.C). In acetonitrile, its antioxidant activity was about one-half that of α-Toc against azo-initiated peroxidation of methyl linoleate (Table 3). This reduced reactivity was attributed to steric hindrance to attack by peroxy radicals at the phenolic hydroxyl.

Effect of a Heterocyclic Nitrogen or Sulfur Ring and Substituents. There is considerable interest and some data on antioxidant activities of nitrogen and sulfur analogs at the heterocyclic center. It was anticipated that X (Table 4) might be a better antioxidant than its analog, Vb (Table 2), because nitrogen should provide better conjugative delocalization of its lone pair. That this was not observed (k_{inh} are about the same) was attributed to a conformational interaction between the N–CH$_2$CH$_3$ and the 8-CH$_3$ alkyl, which in turn forces the N–CH$_2$CH$_3$ to be axial and the nitrogen lone pair to be coplanar with the benzene ring, an unfavorable position for maximum stabilization of the radical. It

<table>
<thead>
<tr>
<th>Structure</th>
<th>No.</th>
<th>R1</th>
<th>R2</th>
<th>k_{inh}</th>
<th>$n k_{\text{inh}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C$_2$H$_5$</td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>COCH$_3$</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td></td>
<td>CH$_3$</td>
<td>CH$_3$</td>
<td>280</td>
<td></td>
</tr>
</tbody>
</table>

*Table 4. Selected examples of the effect of hetero-nitrogen and sulfur on the antioxidant activities, k_{inh}, and H-atom donating ability, k_{-H}, of phenols

aTaken from References 18 and 143.

bTaken from Reference 144.

cPresented in the same format for comparison.
would be of interest to have results for the N−CH₃ derivative; the N−H compound was found to be unstable.

Several sulfur analogs (XI, XII) were also synthesized and their reactivities measured during inhibition of styrene autoxidation. The stoichiometric factors, n, were less than 2 for these compounds, so their antioxidant activities were reported as n × k_{inh} values. Compounds XII are compared with α-Toc and hydroxychromans in Table 4. It is seen that in all cases the activities of the sulfur analogs are lower than the vitamin E class.

Recently, an interesting report appeared on the ‘antioxidant profiles’ of some 2,3-dihydrobenzo[b]furan-5-ol and 1-thio, 1-seleno and 1-telluro analogs. Redox properties and rate constants with the tert-butoxyl radical were measured in acetonitrile. The values found for the oxygen and sulfur analogs were the same, 2 × 10⁸ M⁻¹ s⁻¹, less than the value for α-Toc, 6 × 10⁸ M⁻¹ s⁻¹, under the same conditions.

Hydrogen Atom Donating Ability of Antioxidants. Phenolic antioxidants can transfer hydrogen to radicals other than peroxy radicals in the absence of oxygen and various methods have been employed to measure the hydrogen donating ability of antioxidants (see Section III.A). We propose the term ‘antioxidant ability’, k_{ab}, for the ability of phenols to react in this way, because the attacking radicals are quite different from peroxy radicals, the chain-carrying radicals in autoxidation, and the methods employed and kinetic data differ from ‘antioxidant activities’ determined with peroxy radicals.

Mukai and coworkers developed the use of the stable, colored 2,6-di-tert-butyl-4-(4′-methoxyphenyl)phenoxyl radical (ArO·) and other para derivatives in stopped-flow measurements of hydrogen bond donating ability of a wide variety of chromanol-type antioxidants, and some of their results are reviewed below.

The relative k_{ab} values of α, β, γ, δ tocopherols (1.00 : 0.44 : 0.47 : 0.20) in Table 5 are in good agreement with the relative values given in Table 2 of k_{inh} (α, β, γ, δ = 1.00 : 0.41 : 0.44 : 0.14), although the stopped-flow k_{ab} values are 600 times smaller. These stopped-flow measurements were made using a hindered reactant in a protic solvent (ethanol) which could account for low reactivities of the phenols as hydrogen atom donors (see Section III.C.1). However, this agreement does not hold for the more reactive antioxidants of the class VI (Table 2) and XIV (Table 5). Only with a tertiary butyl group at position 8 (meta to the phenolic OH, XIIIa) does the k_{ab} value approach that of k_{inh} (relative) for VI and the explanation involved interaction with the ether oxygen to ‘increase the orbital overlap between the 2 p type lone pair...and the aromatic π electron system’. As shown in Table 5, compounds XV and XVI, with a second benzene ring, were found to be very active hydrogen bond donors.

These researchers present a number of arguments and evidence, including large deuterium kinetic isotope effects, in support of a mechanism involving ‘proton-tunneling’ in a charge transfer complex (equation 29), as the rate-determining step for the reaction of the hindered aryloxyl radical, ArO·, with phenolic antioxidants and they propose that the mechanism applies equally well to attack by peroxy radicals, R−O−O·, on phenols.

\[
\begin{align*}
Y^* + HX & \rightarrow \{[Y^* \cdots HX^{5+}] \rightarrow \text{proton tunneling} \\
YH + X^* & \leftarrow [YH \cdots X^*]
\end{align*}
\] (29)

However, the evidence for their interpretation, and in particular extension to the reaction with peroxy radicals, is far from convincing, especially since Mukai and coworkers
TABLE 5. Hydrogen donating ability of tocopherol and related antioxidants to a substituted phenoxyl radical (PhO*)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name/No.</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>k_{ab}^a (M^{-1} s^{-1} \times 10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Toc</td>
<td>CH_3</td>
<td>CH_3</td>
<td>CH_3</td>
<td></td>
<td>5.12</td>
</tr>
<tr>
<td>β-Toc</td>
<td>CH_3</td>
<td>H</td>
<td>CH_3</td>
<td></td>
<td>2.24</td>
</tr>
<tr>
<td>γ-Toc</td>
<td>H</td>
<td>CH_3</td>
<td>CH_3</td>
<td></td>
<td>2.42</td>
</tr>
<tr>
<td>δ-Toc</td>
<td>H</td>
<td>H</td>
<td>CH_3</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Tocol</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>0.56</td>
</tr>
<tr>
<td>XIIIa</td>
<td>CH_3</td>
<td>H</td>
<td></td>
<td>(CH_3)_3C</td>
<td>3.62</td>
</tr>
<tr>
<td>XIIIb</td>
<td>CH_3</td>
<td>(CH_3)_3C</td>
<td>H</td>
<td></td>
<td>2.97</td>
</tr>
<tr>
<td>XIIIc</td>
<td>(CH_3)_2CH</td>
<td>(CH_3)_2CH</td>
<td>H</td>
<td></td>
<td>2.51</td>
</tr>
<tr>
<td>XIIIId</td>
<td>CH_3</td>
<td>CH_3</td>
<td>H</td>
<td></td>
<td>2.39</td>
</tr>
<tr>
<td>XIIIle</td>
<td>CH_3CH_2</td>
<td>CH_3CH_2</td>
<td>H</td>
<td></td>
<td>1.97</td>
</tr>
<tr>
<td>XIVa</td>
<td>CH_3</td>
<td>H</td>
<td></td>
<td>(CH_3)_3C</td>
<td>9.10</td>
</tr>
<tr>
<td>XIVb</td>
<td>CH_3</td>
<td>CH_3</td>
<td></td>
<td></td>
<td>6.99</td>
</tr>
<tr>
<td>XIVc</td>
<td>(CH_3)_2CH</td>
<td>(CH_3)_2CH</td>
<td>H</td>
<td></td>
<td>5.40</td>
</tr>
<tr>
<td>XIVd</td>
<td>CH_3</td>
<td>CH_3</td>
<td>H</td>
<td></td>
<td>3.49</td>
</tr>
<tr>
<td>XIVe</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>XV</td>
<td>C_{16}H_{33}</td>
<td>—</td>
<td></td>
<td></td>
<td>35.4</td>
</tr>
<tr>
<td>XVI</td>
<td>C_{16}H_{33}</td>
<td>—</td>
<td></td>
<td></td>
<td>24.8</td>
</tr>
</tbody>
</table>

^a^Taken from Reference 147.
^b^Taken from Reference 146.

reported that the ‘reverse reaction’ \(^{21}\) (equation 30)

\[
\begin{align*}
R - O - O - H + \text{di-}i\text{-propyl-Toc} & \underset{k_{inh}}{\overset{k_{ab}}{\rightleftharpoons}} R - O - O' + 5,7\text{-di-}i\text{-propyl-Toc} \\
\end{align*}
\]

(30)
does not exhibit an unusual kinetic deuterium isotope effect; that is, tunneling does not play a role in this reaction. Now, of course the back reaction (i.e. equation 30) is simply the reaction involved in the rate-determining step of the mechanism of antioxidation. From the Principle of Microscopic Reversibility, the mechanism of the back reaction and its forward one must be the same, since they should follow the same potential energy surface. This means that the evidence from reactions of a hindered aryloxyl radical (ArO\(^\cdot\)) may not be applicable in detail to those involving peroxyl radicals (R−O−O\(^\cdot\)). Alkyl peroxyl radicals, the main chain-carrying radicals in autoxidation, are highly polarized due to stabilization through resonance\(^{150}\) and through inductive effects from the alkyl group\(^{151}\).

The hindered aryloxyl radicals may not ‘model’ exactly the antioxidant mechanism of phenols with phenoxyl radicals.

Ortho-Methoxyphenols: Effect of Intramolecular Hydrogen Bonding. Current interest in ortho-methoxyphenols as antioxidants is driven by their frequent occurrence and importance in various natural products including ubiquinols, curcumin, lignin model compounds and others. An ortho-methoxy group could provide stabilization of the phenoxyl radical formed by resonance of the type shown in structure 24\(^{152}\). The parent methoxyphenol is intramolecularly hydrogen bonded as shown in structure 25, so that in non-polar solvents less than 0.1% exists as the free phenol\(^{153}\). This hydrogen bond is estimated to stabilize the parent compound by 4 kcal mol\(^{-1}\), which opposes the electronic effect of the methoxy group\(^{154}\), to decrease the reactivity compared to the para-methoxyphenol. As suggested before, the non-linearity of the intramolecular hydrogen bond in the ortho-methoxy isomer ‘leaves the phenolic hydrogen atom available for abstraction’\(^{155}\). The net result of these opposing effects, the activating effect of the ortho-methoxy versus the stabilizing effect of H-bonding, is a decreased reactivity of the 2-methoxy isomer.

![Diagram](24)

![Diagram](25)
compared to the 4-methoxy one. For example, in non-polar solvents (tetrachloromethane, benzene) the relative rate constants for hydrogen atom abstraction by alkoxyl radicals are in the range $k_{3\text{MeO}}/k_{2\text{MeO}} = 25–32$ and these differences drop remarkably in more polar solvents. The effects of hydrogen bonding and polar solvents must be kept in mind when evaluating the antioxidant activities of all ortho-methoxyphenols (see Section III.C).

The antioxidant activities of a series of para-substituted ortho-methoxyphenols, and related lignin model compounds, were determined by Barclay and coworkers in styrene/chlorobenzene initiated by AIBN. Their data are summarized in Table 6, relative to the commercial antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT). It is interesting to note that 2-methoxyphenol itself was not sufficiently reactive with peroxyl radicals to measure its activity since it acted only as a retarder under these conditions. The lignin model compounds isoeugenol, XVIIc, and coniferyl alcohol, XVIId, show twice the activity of XVIIa and XVIIb, and this was attributed to the conjugated double bond in XVIIc and XVIId which provides additional stabilization of the phenoxyl radical through extended delocalization. A strong electron-attracting carbonyl group in XVIIe appears to reduce this effect. It is interesting to note that the overall efficiencies of the dimers, XVIIg and XVIIh, and the tetramer, XVIII, as determined by the product $n \times k_{\text{rel}}$ is greater than those of the monomeric compounds, even when corrected by the number of phenolic hydroxyls. The increased reactivities of these compounds are probably due to the conjugative effect of the ortho-phenyl linkage in the case of XVIIg and the inductive effect of the ortho-–CH$_2$– linkages in XVIII.

Curcumin (26a) is an important example of a natural ortho-methoxyphenol which is reported to have many health benefits. The structure is a dimeric phenol linked through a β-diketone system. Solutions of curcumin in non-polar media consist mainly of the enol form due to extended conjugation and hydrogen bonding. Jovanovic and coworkers proposed a novel mechanism for the antioxidant mechanism of curcumin. From its reactions with reactive radicals such as methyl and tert-butoxyl generated by pulse radiolysis or laser photolysis, an absorption band appeared at 490 nm assigned to the carbon-centered radical from hydrogen atom transfer from the –CH$_2$– group. However, other researches assigned this transient absorption to phenoxyl radicals derived from curcumin, using chemical kinetic methods of autoxidation, namely inhibition of the azo-initiated oxidation of styrene or of the lipid methyl linoleate by curcumin and some methylated, non-phenolic curcumin derivatives.

Typical oxygen uptake method results, employing methyl linoleate as a substrate in chlorobenzene and initiation by AIBN, are shown in Figure 3. These results clearly show that curcumin, 26a, is a moderately active phenolic antioxidant against lipid peroxidation since $k_{\text{inh}} = 3.9 \times 10^4$ M$^{-1}$ s$^{-1}$, $n = 4$, compared to 2,6-di-tert-butyl-4-methoxyphenol (DBHA), $k_{\text{inh}} = 11 \times 10^4$ M$^{-1}$ s$^{-1}$, $n = 2$. The effect of the non-phenolic derivative, 26b, is even more striking; there is no effect at all on the oxygen uptake (see Figure 3 for 26b), consequently the antioxidant mechanism does not operate by hydrogen atom transfer from the –CH$_2$– group. The inhibiting effect of curcumin and dehydrozingerone, 27, was also examined during AIBN-initiated oxidation of styrene in chlorobenzene. Here, curcumin was a somewhat better antioxidant, $k_{\text{inh}} = 34 \times 10^4$ M$^{-1}$ s$^{-1}$, $n = 4$. It was of interest to find that dehydrozingerone gave $k_{\text{inh}} = 17 \times 10^4$ M$^{-1}$ s$^{-1}$, $n = 2$, one half the activity of curcumin, which is not unexpected considering its structure. Again the non-phenolic derivative 26b gave no inhibition of oxygen uptake under these conditions. Finally, the somewhat suppressed activity of curcumin in the presence of methyl linoleate ($k_{\text{inh}} = 3.9 \times 10^4$ M$^{-1}$ s$^{-1}$) compared to that in non-polar styrene ($k_{\text{inh}} = 34 \times 10^3$ M$^{-1}$ s$^{-1}$) is expected for a phenolic antioxidant. Antioxidant activities of phenols are known to be reduced in the presence of esters, which are strong hydrogen bond acceptors for the phenolic hydroxyl.
TABLE 6. Antioxidant activities of ortho-methoxyphenols

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name/No.</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>k<sub>rel</sub><sup>a</sup></th>
<th>n<sup>b</sup></th>
<th>n × k<sub>rel</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>XVIa</td>
<td>H</td>
<td>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></td>
<td>1.69</td>
<td>1.7</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>XVIb</td>
<td>H</td>
<td>CH<sub>2</sub>CH = CH<sub>2</sub></td>
<td>1.83</td>
<td>1.6</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>XVIc</td>
<td>H</td>
<td>CH = CH–CH<sub>3</sub></td>
<td>3.95</td>
<td>1.6</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>XVIId</td>
<td>H</td>
<td>CH = CH–CH<sub>2</sub>OH</td>
<td>4.25</td>
<td>1.7</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>XVIe</td>
<td>H</td>
<td>CH = CH–CHO</td>
<td>2.00</td>
<td>1.7</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>XVIIf</td>
<td>CH<sub>3</sub>O</td>
<td>CH<sub>2</sub>CH = CH<sub>2</sub></td>
<td>4.09</td>
<td>1.7</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>XVIIfg</td>
<td>H<sub>3</sub>CO</td>
<td>CH<sub>2</sub>CH = CH<sub>2</sub></td>
<td>5.36</td>
<td>3.2</td>
<td>17/2 = 8.5</td>
<td></td>
</tr>
<tr>
<td>XVIIfh</td>
<td>H<sub>3</sub>CO</td>
<td>CH<sub>2</sub>OCH<sub>3</sub></td>
<td>4.48</td>
<td>3.3</td>
<td>27/2 = 13.5</td>
<td></td>
</tr>
<tr>
<td>XVIII</td>
<td>H<sub>3</sub>CO</td>
<td>CH<sub>2</sub>CH = CH<sub>2</sub></td>
<td>7.75</td>
<td>6.4</td>
<td>50/2 = 25</td>
<td></td>
</tr>
</tbody>
</table>

^aRelative k_{inh} values to BHT = 1.82 × 10⁴ M^{−1}s^{−1} determined under the same conditions; taken from Reference 152.

^bThe stoichiometric factor, n, determined compared to 2,6-di-tert-butyl-4-methoxyphenol, equals 2.
FIGURE 3. Oxidation of 0.74 M methyl linoleate in chlorobenzene, initiated with 0.04 M AIBN: \(U \) = uninhibited rate of oxidation; \(26a \) = 5.7 \(\mu \)M curcumin \((26a)\), \(\tau \) = 64 min, \(R_i = 5.61 \times 10^{-9} \text{ M s}^{-1} \), \(n = 4.0 \), \(k_{\text{inh}} = 3.85 \times 10^4 \text{ M}^{-1} \text{s}^{-1} \); \(26b \) = 19.3 \(\mu \)M of \(26b \), which shows no inhibition; \(\text{DBHA} \) = 5.9 \(\mu \)M DBHA, \(\tau \) = 46 min, \(R_i = 4.00 \times 10^{-9} \text{ M s}^{-1} \), \(n = 2.0 \), \(k_{\text{inh}} = 11.1 \times 10^4 \text{ M}^{-1} \text{s}^{-1} \). Reprinted in part with permission from Reference 51. Copyright 2000 American Chemical Society

Recently, another antioxidant mechanism was proposed for curcumin which involved an initial carbon-centered radical at the \(\beta \)-diketone moiety that subsequently undergoes rapid intramolecular hydrogen shift to a phenoxy radical157. Obviously, this mechanism does not account for the antioxidant activity results with peroxyl radicals51.
2. Dihydroxy phenols: Catechols and 1,4-hydroquinones — Intramolecular hydrogen bonding revisited

Catechols, 1,2-dihydroxybenzene and derivatives are remarkably active antioxidants compared to most ortho-methoxyphenols and this structure is very widely distributed in nature, especially as the flavonoids, as well as various flavonal compounds. When one considers the similarity in basic structure of catechol with ortho-methoxyphenol, the interesting question arises: What is the origin of the increased activity of catechol? The answer lies in increased stabilization of the semiquinone radical formed from catechol, and of the corresponding transition state, through strong hydrogen bonding in resonance canonical structures such as 28a and 28b, as suggested before. Increased stabilization of the radical, 28, over that of the parent catechol (or, of course, the ortho-methoxyphenol, 25) provided by hydrogen bonding was confirmed by calculations. The parent catechol is stabilized by a moderately strong hydrogen bond of 4 kcal mol\(^{-1}\) while the radical has a much stronger hydrogen bond of about 8 kcal mol\(^{-1}\). Thus overall, an ortho-methoxyphenol is somewhat deactivated as an antioxidant by intramolecular hydrogen bonding whereas a catechol is activated. A few selected examples shown in Table 7 indicate the effects of hydrogen bonding on antioxidant activities of some simple catechols compared to an ortho-methoxyphenol. The 4-tert-butylcatechol, XIXb, has nearly 30 times the activity of the ortho-methoxyphenol, XVIIa, and 3,5-di-tert-butylcatechol, XIXc, has about half the activity of α-Toc under the same conditions. The methyl catechols, XIXd and XIXe, showed similar increases in \(k_{inh}\) values.

Yamamura and coworkers used an oxygen absorption method to study the effects of a series of 46 dihydric phenols on inhibition of azo-initiated oxidation of tetralin. They reported activities in terms of the stoichiometric factor, \(n\), and the rate of oxygen absorption, \(R_{inh}\), during induction periods. The 13 catechols studied all showed higher \(n\) factors (\(n = 2.0–2.3\)) and lower \(R_{inh}\) values than any other of the diols. Unfortunately, they were not able to obtain \(k_{inh}\) values.

Flavonoids are widely distributed in fruits and vegetables and are very common nutritional supplements as antioxidants. The results on antioxidant activities of simple catechols provide a useful basis for evaluating results for the many, more complex natural compounds containing the catechol structure, such as the flavonoids, steroidal catechols and hormonal catecholamines. There are several reviews on the antioxidant properties of flavonoids and several reports on experimental and theoretical evidence linking their antioxidant properties to the catechol moiety usually found in their structure. The basic flavonoid structure (29) is shown in Chart 1, with a few selected examples (30–36) from different groups to illustrate some of the relationships between their detailed structures and related antioxidant properties. Efforts to elucidate these relationships are hampered by their very low solubility in non-polar solvents, and the tendency of some researchers to employ metal ions as initiators of oxidation in aqueous media so that one cannot distinguish between their action as chain-breaking
TABLE 7. Comparison of antioxidant activities of simple catechols with an ortho-methoxyphenol

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name/No.</th>
<th>R1</th>
<th>R2</th>
<th>k_{inh}^{a}</th>
<th>n^{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R1</td>
<td>OCH3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^1</td>
<td>XVIIa</td>
<td>H</td>
<td>CH₂CH₂CH₃</td>
<td>3.07</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>(Table 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>XIXa</td>
<td>H</td>
<td>H</td>
<td>55^a</td>
<td>2.3^b</td>
</tr>
<tr>
<td></td>
<td>XIXb</td>
<td>H</td>
<td>(CH₃)₃C</td>
<td>88^a</td>
<td>2.1^b</td>
</tr>
<tr>
<td></td>
<td>XIXc</td>
<td>(CH₃)₃C</td>
<td>(CH₃)₃C</td>
<td>149^a</td>
<td>2.3^b</td>
</tr>
<tr>
<td></td>
<td>XIXd</td>
<td>CH₃</td>
<td>H</td>
<td>85^c</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>XIXe</td>
<td>H</td>
<td>CH₃</td>
<td>150^c</td>
<td>—</td>
</tr>
</tbody>
</table>

^aResults for these catechols taken from Reference 139, using inhibited oxidation of styrene initiated by AIBN.

^bEarlier n factors for catechols of 2–3 were attributed to reactions of the initial catechol-oxidation products with peroxyl radical^{138}.

^cThese results from Reference 68 were determined from inhibited oxidation of linoleic acid in cyclohexane.

antioxidants and their metal ion complexing ability. Non-kinetic methods, such as electron spin resonance of the radicals and ionization energies, are sometimes used to evaluate their 'antioxidant potential'.

It is a ‘risky’ business to attempt an evaluation of literature reports on antioxidant properties of flavonoids, since it is not surprising that these polyphenols give different results from different experimental methods. Nevertheless, a report on their rate constants for reactions with peroxyl radicals generated by azo-initiated reaction on diphenylmethane (DPM) in chlorobenzene provided a quantitative measure of the relative antioxidant activities^{168}. Although the chemiluminescence kinetic method did not follow ‘classical’ theory, the relative reactivity obtained for α-Toc and 2,6-di-tert-butyl-4-methylphenol (BHT) was the same (ca 230) as that reported by the IOU method (compare Tables 1 and 2). The rate constants for reaction with these DPM peroxyls were similar for quercetin (31), dihydroquercetin (34), luteolin (30) and 3,5-di-tert-butylcatechol: 2.1 × 10^6, 19 × 10^6, 22 × 10^6 and 19 × 10^6 M⁻¹ s⁻¹, respectively (see Chart 1, examples 30–36), which indicates that the main contribution to the activity is the catechol structure in ring B of 29. This is confirmed by the value for kaempferol (33), which dropped to 1.0 × 10^6 M⁻¹ s⁻¹. This remaining activity in 33 could be due to the phenolic hydroxyl in ring B which is activated by the para conjugated enol group, since the flavonoid naringenin (35) has only very slight activity according to their chemiluminescent method (3.4 × 10³ M⁻¹ s⁻¹)^{168}. Polar solvents exert a very large effect on the hydrogen atom donating ability of catechols^{50}. This is also true, as expected, for the flavonoids, since the reactivity is mainly in the catechol ring. In chlorobenzene, the antioxidant activities for quercetin and epicatechin during inhibited peroxidation of methyl linoleate determined by a spin probe method were determined to be 4.3 × 10^5 and 4.2 × 10^5 M⁻¹ s⁻¹, respectively^{166}. In tert-butyl alcohol, these values dropped to 2.1 × 10^4 and 1.7 × 10^4 M⁻¹ s⁻¹, respectively. A quantum mechanical explanation for the antioxidant activity of flavonoids found a planar structure for quercetin and compared the torsion angles of other flavonoids with spin densities and oxidation potentials with $\Delta\Delta H_f$, the heat of formation of the radicals.
relative to that of the parents. Van Acker and coworkers correlated the torsion angle of ring B with the rest of the molecule to the scavenging activity, the latter apparently improving with conjugation. An interesting conclusion was reached which attributed the ‘good’ antioxidant activity of the flavonols, quercetin, fisetin (32) and kaempferol to an intramolecular hydrogen-bond-like interaction between the protons on carbons 2’ and 6’ and the 3-OH moiety. However, this interpretation is not supported experimentally, since evidence so far indicates that luteolin, which lacks the 3-OH, is equally as active as
quercetin while kaempferol is relatively inactive. Electron transfer reactions on model catechols and flavonoids initiated by pulse radiolysis support the general conclusions that the catechol ring B is responsible for the antioxidant activity of flavonoids, and similarly for the activity of gallolechin from green tea.

The catechol structure is also present in several steroids and in natural hormonal amines such as adrenalin, L-dopa and dopamine, and their effects as antioxidants in natural biological systems are of interest. Some catechol steroids were reported to have effective antioxidant properties in lipoproteins and rat liver microsomes. The hormonal catecholamines are of particular interest. They are known to have both antioxidant and toxic effects. Both catechols and 1,4-hydroquinones have associated toxic properties in biological systems. The cytotoxicity is attributed to two processes. In one, redox cycling between a semi-quinone radical, formed in an initial hydrogen atom transfer to attacking radicals, and a quinone results in the formation of superoxide and subsequently the reactive conjugate acid, $^\circ O-O-H$. In another process, quinone methides cause damage through alkylation of cellular proteins or DNA.

There are many examples in the literature on applications of 1,4-hydroquinones as polymer stabilizers and as antioxidants. The natural ubiquinols are 2,3-dimethoxy dialkyl derivatives of these hydroquinones and these natural compounds are now known to be of great importance in biological systems. We select a few examples of 1,4-hydroquinones as antioxidants to illustrate the effect of structure (e.g. substituents) on their reactivity, but especially to emphasize the role that hydrogen bonding plays in the reactivity of catechols, 1,4-hydroquinones and methoxy derivatives.

In the 1970s Pospíšil and coworkers reported on hydroquinones as polymer stabilizers and antioxidants. For the latter studies they used tetralin as substrate, initiated by AIBN. Their usual method of reporting antioxidant properties, the ‘relative activities’ from the induction periods in the presence of antioxidants, A_{IP}, and the time for absorption of a measured volume of oxygen, A_T, do not permit actual evaluation of quantitative antioxidant activities. Nevertheless, some interesting results were recorded. They found that the oxidation rates did not return to the uninhibited rates after the ‘end’ of the induction period, especially with the catechols. In other words, the ortho-quinones formed were acting as retarders. We think this could be due to addition of peroxyl radicals to the conjugate quinone chromophore. They also reported that the 2-alkoxyalkyl-substituted hydroquinones were the most ‘active’ and attributed this to hydrogen bonding between the phenolic group and the alkoxy group. Actually, this conclusion is quite ambiguous because the longer induction periods for these derivatives, shown in larger A_{IP} and A_T values, are probably due to decreased reactivity resulting from hydrogen bonding in these derivatives. They also reported that the stoichiometric factors depended markedly on experimental conditions and proposed pathways to account for this, such as reaction of the semi-quinone radicals with hydroperoxides, an explanation that has been invoked by others later. The antioxidant properties of 1,4-hydroquinones has been re-examined by several groups more recently. Yamamura and coworkers found that these hydroquinones were less effective in reducing oxygen uptake than catechols (by about one-half) and the stoichiometric factors of hydroquinones ranged (0.6–1.1) to about half that of the catechols. It is interesting to note that they attributed the higher activity of catechols, compared to hydroquinones, to the increased stability of the derived phenoxyl radicals due to the intramolecular hydrogen bond.

Last year Roginsky and coworkers determined the chain-breaking activity of thirteen hydroquinones, p-QH$_2$, during azo-initiated oxidation of styrene, ‘...known as the most suitable oxidation substrate for testing chain-breaking antioxidants’. Their results provide a useful comparison with antioxidant activities of monophenols studied under similar conditions (e.g. Section III.B.1), therefore their results are reproduced in summary form for compounds XX in Table 8. The following conclusions can be drawn from the results:
12. Phenols as antioxidants

<table>
<thead>
<tr>
<th>(\text{QH}_2)</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>(R^4)</th>
<th>(k_{\text{inh}}) ((\text{M}^{-1}\text{s}^{-1} \times 10^5))</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXa</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>5.54</td>
<td>2.09</td>
</tr>
<tr>
<td>XXb</td>
<td>CH(_3)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>7.13</td>
<td>1.94</td>
</tr>
<tr>
<td>XXc</td>
<td>CH(_2)CH(_2)</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>13.1</td>
<td>1.00-1.63</td>
</tr>
<tr>
<td>XXd</td>
<td>(CH(_3))(_3)C</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>12.0</td>
<td>0.76-1.79</td>
</tr>
<tr>
<td>XXe</td>
<td>CH(_3)</td>
<td>H</td>
<td>H</td>
<td>CH(_3)</td>
<td>15.6</td>
<td>0.83-2.00</td>
</tr>
<tr>
<td>XXf</td>
<td>CH(_3)</td>
<td>H</td>
<td>CH(_3)</td>
<td>H</td>
<td>11.9</td>
<td>0.35-0.99</td>
</tr>
<tr>
<td>XXg</td>
<td>CH(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>H</td>
<td>18.8</td>
<td>0.26-1.35</td>
</tr>
<tr>
<td>XXh</td>
<td>CH(_3)</td>
<td>H</td>
<td>CH(_3)CH(CH(_3))CH(_2)</td>
<td>H</td>
<td>17.1</td>
<td>0.27-1.07</td>
</tr>
<tr>
<td>XXi</td>
<td>CH(_3)O</td>
<td>H</td>
<td>H</td>
<td>CH(_3)O</td>
<td>13.7</td>
<td>0.21-0.50</td>
</tr>
<tr>
<td>XXj</td>
<td>C(_6)H(_5)</td>
<td>H</td>
<td>H</td>
<td>C(_6)H(_5)</td>
<td>4.7</td>
<td>0.29-0.48</td>
</tr>
<tr>
<td>XXk</td>
<td>Cl</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>0.9</td>
<td>1.99</td>
</tr>
<tr>
<td>XXl</td>
<td>CH(_3)</td>
<td>CH(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>23.2</td>
<td>0.09-0.31</td>
</tr>
<tr>
<td>XXm</td>
<td>CH(_3)O</td>
<td>CH(_3)O</td>
<td>CH(_3)</td>
<td>H</td>
<td>4.4</td>
<td>1.59</td>
</tr>
</tbody>
</table>

(1) The antioxidant activities of 1,4-hydroquinones are greater than those of the mono phenols of similar structure. For example, the \(k_{\text{inh}} \) value of the 2,6-dimethyl derivative, XXe \((1.56 \times 10^6 \text{ M}^{-1}\text{s}^{-1})\), is nearly two orders of magnitude greater than that of 2,6-dimethylphenol (IIh, Table 1, \(2.5 \times 10^4 \text{ M}^{-1}\text{s}^{-1} \)). (2) Alkyl groups increase the reactivity which increases in the order mono-, di-, and tri-substituted \(\text{QH}_2 \), whereas electron attracting chlorines reduce the activity (cf. XXk). (3) Methoxy groups (cf. XXi) cause a drop in activity, especially in the ubiquinol XXm. This was attributed to a decrease in oxygen p-type and aromatic \(\pi \) overlap if two adjacent methoxy groups are forced out-of-plane. However, a much more feasible explanation is that the lower reactivity of XXm is due to strong intramolecular hydrogen bonding of each phenolic hydroxy group to an ortho-methoxy; that is, the same phenomena encountered with ortho-methoxyphenol (vide supra) applies here. (4) The stoichiometric factors, \(n \), of the substituted 1,4-hydroquinones are less than two and depend on the experimental conditions; e.g. \(n \) decreases with oxygen concentration, and increases somewhat at high rate of initiation. Low and variable \(n \) values are characteristic of 1,4-hydroquinones. Of the two probable ‘wasting’ reactions (equations 31 and 32) involving the semi-quinone radical, \(^*\text{QH}\), the authors give arguments favoring the disproportionation reaction (equation 31) as the main factor reducing \(n \).

\[
\text{QH}^\cdot + \text{O}_2(\text{O}_2, \text{LH}) \rightarrow \text{Q} + \text{LO}_2^\cdot + \text{H}_2\text{O}_2 \quad (31)
\]

\[
\text{QH}_2 + \text{O}_2 \rightarrow \text{QH}^\cdot + \text{HO}_2^\cdot \quad (32)
\]

The antioxidant properties of the ubiquinols have been reviewed recently\(^{183}\) and this material will not be discussed here. Nevertheless, we emphasize the importance of intramolecular hydrogen bonding again here. The 2,3-dimethoxy-1,4-hydroquinones are strongly hydrogen bonded at both sites as shown in structure 37. Transition state
calculations as well as rate constant data show that intramolecularly hydrogen bonded phenolic hydrogens in ortho-methoxyphenols are abstracted surprisingly readily by oxygen-centered radicals155. The internal hydrogen bonds in 37 ‘protect’ the molecule from the strong solvent interactions shown for mono-hydroxy phenols. As a consequence, although ubiquinol has only one-tenth the activity of α-Toc in the styrene–AIBN system184, the activities are the same in aqueous dispersions because the mono-phenol is more susceptible to strong external hydrogen bonding185. Thus ubiquinol becomes very important in biomembranes (see Section III.C.2).

C. Media Effects

1. Solvent effects

Studies on antioxidant activity have been conducted in homogeneous systems in organic solvents, and in heterogeneous systems like micelles and liposomes. In biological systems, peroxyl radical reactions can take place in hydrophilic (e.g. in plasma, cytosol, serum) or hydrophobic (e.g. within lipid bilayers) environments. The nature of solvent interactions with phenolic antioxidants and their effect on antioxidant activity are of considerable interest when attempting to understand antioxidant behavior in biological systems and the diverse solvent environments there. Many have conducted studies on antioxidant activity in homogeneous solution and attempted to apply those findings to what occurs in natural systems. However, before one can do that, it is important to consider the solvent in which antioxidant activity is studied, and determine whether the solvent itself can interact with the reactants to increase or decrease the reaction rate. For convenience, and to overcome problems with solubility, antioxidants or initiators have often been dissolved and added in solvents different from the rest of the reaction mixture, and because the effects of these solvents on reaction rates are not taken into consideration, the results are often difficult to interpret. The effect the solvent has on the rate constant for the reaction of antioxidants with the radical species is dependent upon how the solvent interacts with reactants, and on the mechanism of the antioxidant action. It should be noted that in order to predict the effect of solvents on antioxidant activities, it is important to be able to utilize solvent parameters that are established for a large number of solvents. Abraham and coworkers186 have developed a scale of solute hydrogen bond basicity, β_{S}^{H}, for a very large number of solutes by measuring their log K_{B}^{H} values against several reference acids and using equation 33 to calculate the β_{S}^{H} value. The K_{B}^{H} values are the equilibrium constants for hydrogen bond complexation of bases with various reference acids.

$$\beta_{S}^{H} = \frac{\log K_{B}^{H} + 1.1}{4.636} \tag{33}$$
They clearly indicate that the \(\beta_H^2 \) is not the same as solvent hydrogen bond basicity, \(\beta_1 \), because the \(\beta_H^2 \) value treats the solvent as a solute in the chemical interactions, and that the \(\beta_H^2 \) and \(\beta_1 \) scales are relatively collinear but not interchangeable\(^{186} \). (The latter scale is based on the comparison of the indicators \(p \)-nitroaniline and \(p \)-nitro-\(N, N \)-dimethylaniline.) Neither is the \(\beta_H^2 \) value connected to solute proton-transfer basicity\(^{187} \). They have established that this \(\beta_H^2 \) value is relatively constant for homologous series of solvents, and that substituents on the parent structure of the solvent do not overly influence the \(\beta_H^2 \) value, unless the substituent is halogenated, in which case the \(\beta_H^2 \) will decrease. Chain branching of the parent also has little effect on the \(\beta_H^2 \) value. This makes it possible to predict ‘average’ \(\beta_H^2 \) values for solutes whose \(K_B^H \) values are not known. Correlations of kinetic data with \(\beta_H^2 \) are not always accurate because the \(\beta_H^2 \) parameter does not take into consideration solvent size, which can lead to steric hindrance of hydrogen bond formation\(^{188} \).

\(a. \text{ Solvent interactions with the attacking radicals.} \) Ingold and coworkers\(^{189,190} \) have reported that an increase in solvent polarity also increases the likelihood that an alkoxyl radical, in this case the cumyloxyl radical, undergoes \(\beta \)-scission (equation 34) in preference to hydrogen abstraction (equation 35) from a hydrocarbon substrate, due to improved solvation of the late transition state for the \(\beta \)-scission reaction.

\[\begin{align*}
\text{\(\beta \)-scission:} & \quad \text{C}_6\text{H}_5\text{--}\text{(CH}_3)_2\text{C}--\text{O}^* & k_{\text{CumO}}^{\beta} & \rightarrow & \text{C}_6\text{H}_5\text{--}\text{(CH}_3)\text{C}==\text{O} + \text{CH}_3^* \\
\text{H-abstraction:} & \quad \text{C}_6\text{H}_5\text{--}\text{(CH}_3)_2\text{C}--\text{O}^* + \text{R}--\text{H} & k_{\text{CumO}}^{\alpha} & \rightarrow & \text{C}_6\text{H}_5\text{--}\text{(CH}_3)_2\text{C}==\text{OH} + \text{R}^*
\end{align*}\] (34)

They conducted these studies using several techniques to monitor product formation in six different solvents. They concluded under the conditions of these experiments that the decrease in the ratio for the rate constants \(k_{\text{CumO}}^{\alpha}/k_{\text{CumO}}^{\beta} \) with increase in solvent polarity was due to increase in the \(k_{\text{CumO}}^{\alpha} \) while the \(k_{\text{CumO}}^{\beta} \) was solvent independent of abstraction from a hydrocarbon (although there is a significant solvent effect for hydrogen atom abstraction from phenols, \textit{vide infra}\(^{188,191,192} \)). Although hydrogen bonding between the cumyloxyl radical and a polar solvent can occur, it has been speculated that the hydrogen bonding does not involve the unpaired electron on the cumyloxyl oxygen, and thus its reactivity is not affected\(^{191} \).

Franchi and coworkers reported on the effect of solvents on hydrogen atom abstraction from phenolic antioxidants by primary alkyl radicals\(^{193} \), which could be useful when studying oxidations at low oxygen partial pressures because under those conditions the addition of oxygen to substrate alkyl radicals can be reversible (equation 36) and alkyl radicals could play a role in termination reactions (equation 37)\(^{116} \)

\[\begin{align*}
\text{R}^* + \text{O}_2 & \rightleftharpoons \text{R}--\text{O}--\text{O}^* \\
\text{R}^* + \text{ROO}^* & \rightleftharpoons \text{R}--\text{O}--\text{O}--\text{R}
\end{align*}\] (36)

These authors demonstrated that a kinetic solvent effect (KSE) was observed; in other words, that the solvent affects the reaction rate between attacking radical and antioxidant,
and some of their results are presented in Table 9. Table 9 also includes data on KSEs observed when different radical species are used to abstract hydrogen from phenolic antioxidants (vide supra).

The effect of solvent on the hydrogen atom abstracting ability of the nitrogen-centered radical DPPH* can be significant (see Table 9). However, it seems to be due only slightly to hydrogen bonding interactions between the DPPH* and the solvent. Polar solvents could have two influences on the DPPH*: (a) polar solvents could stabilize the charged resonance

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Alkane</th>
<th>Cl-Ph</th>
<th>CH3OPh</th>
<th>CH3CN</th>
<th>1°ROH</th>
<th>3°ROH</th>
<th>(CH3)2CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Toc + DPPH*</td>
<td>0</td>
<td>0.09</td>
<td>0.26</td>
<td>0.44</td>
<td>0.45</td>
<td>0.49</td>
<td>0.50</td>
</tr>
<tr>
<td>α-Toc, k x 10^-2 M^-1 s^-1</td>
<td>74</td>
<td>27</td>
<td>14</td>
<td>4.9</td>
<td>5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_alkane/k_s</td>
<td>2.7</td>
<td>5.3</td>
<td>15</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Toc + RO*</td>
<td>99</td>
<td>36</td>
<td>20</td>
<td>9.4</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_alkane/k_s</td>
<td>2.8</td>
<td>4.9</td>
<td>10.3</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Toc + ROO*</td>
<td>68</td>
<td>27</td>
<td>15</td>
<td>3.8</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_alkane/k_s</td>
<td>2.5</td>
<td>4.5</td>
<td>18</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Toc + R*</td>
<td>115</td>
<td>44</td>
<td>23</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_alkane/k_s</td>
<td>2.6</td>
<td>5</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phenol + DPPH*</td>
<td>160</td>
<td>59</td>
<td>7.2</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phenol, k x 10^-3 M^-1 s^-1</td>
<td>2.7</td>
<td>22</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phenol + RO*</td>
<td>110</td>
<td>48</td>
<td>5.6</td>
<td>0.58</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phenol, k x 10^-7 M^-1 s^-1</td>
<td>2.3</td>
<td>20</td>
<td>189</td>
<td>306</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Va + DPPH*</td>
<td>68</td>
<td>2.3</td>
<td>2.2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Va, k x 10^-2 M^-1 s^-1</td>
<td>29</td>
<td>31</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Va + RO*</td>
<td>93.9</td>
<td>4.4</td>
<td>5.6</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Va, k x 10^-3 M^-1 s^-1</td>
<td>21</td>
<td>17</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIa + DPPH*</td>
<td>37.6</td>
<td>5.23</td>
<td>4.27</td>
<td>1.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIa, k M^-1 s^-1</td>
<td>7.2</td>
<td>8.8</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIa + RO*</td>
<td>44.3</td>
<td>5.8</td>
<td>6.4</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIa, k x 10^-2 M^-1 s^-1</td>
<td>7.6</td>
<td>6.9</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The different alkanes and cycloalkanes used were octane, isooctane, hexane and cyclohexane. 1° ROH was n-propyl alcohol, 3° ROH was tert-butyl alcohol. All β_H values are from Reference 186.

Results are selected from Reference 191. RO* is tert-butoxyl radical with α-Toc, and cumyloxyl radical with phenol.

Results are selected from Reference 86. ROO* is the cumylperoxyl radical. α-Toc rate in alkane is for the rate measured with cyclohexane.

Results are selected from Reference 193.

Results are selected from Reference 188. RO* is the cumyloxyl radical.

Results are selected from Reference 50. RO* is the 2,6-di-tert-butyl-4-(4′-methoxyphenyl)phenoxy radical.
structure of the radical (see above), and (b) hydrogen bonding at the N₂ nitrogen (since the picryl group is very electron-withdrawing) could increase the localization of the unpaired electron on N₁, increasing DPPH⁺ reactivity with increasing solvent polarity. A more important consideration, however, may be due to solvent structure. The ‘bulky’ alcohols 2-propanol and especially tert-butyl alcohol have a dramatic effect on the reactivity of DPPH⁺. It was speculated that this effect may be due to these solvents forming a ‘solvation shell’ around the radical, causing steric crowding between solvent molecules that compete for sites on the DPPH⁺. This causes increased spin density on both N₁ and N₂, resulting in increased reactivity. In order to ensure that the effect observed was not due to interactions between solvent and substrate, Ingold and coworkers used the hydrocarbon cyclohexadiene as the hydrogen atom donor.

Solvent effects on peroxyl radical reactions have been conducted by a variety of researchers. In particular, the effect of solvent dielectric constant and polarity on the propagation and termination rate constants (k_p/2k_t) ratio of substrates were studied. Hendry and Russell attempted to determine if an increase in solvent polarity would increase the value of k_p, which could have been attributed to increased solvation of the polar peroxyl radical structure and polar transition state for hydrogen atom abstraction; however, there was insufficient evidence to state this absolutely. Instead, they concluded that the increased solvent polarity had a more significant effect on the 2k_t value, since the polar character of the peroxyl is lost upon termination, a theory which has been supported by other groups. Other researchers also examined the effects of solvent polarity on k_p for hydrogen abstraction by cumylperoxyl radical and found the value of k_p to be relatively constant for five solvents of varying β₁ values; thus variations in the oxidizability (k_p/2k_t^{1/2}) due to solvent could be attributed to changes in 2k_t. The 2k_t value also appears to decrease as the size of the peroxyl species increases within the same solvent system. The independence of k_p with respect to solvent indicates that the kinetic solvent effects (KSE) observed with hydrogen atom abstraction from phenols are due to interactions of the solvent with the substrate rather than the attacking radical. If propagation by peroxyl species is unaffected by solvent polarity, it seems reasonable
that hydrogen atom abstraction by DPPH˚, due to its similar electronic structure (e.g. its charged resonance structure) to peroxyl radicals, should also be relatively unaffected by solvent polarity.

Alpincourt and coworkers used theoretical calculations to predict the effects of polar and non-polar solvation on the structure of and electron distribution in peroxyl radical species. Structurally, bond angles of peroxyl species are not affected significantly by polar solvents. However, there is a strong increase in dipole moment for the peroxyl (in terms of the charge distribution), even though there is a slight decrease in spin density on the outer oxygen, due to electrostatic interactions. Furthermore, hydrogen bonding with the solvent by the peroxyl allows for intermolecular charge transfer from the peroxyl to water, the polar medium used in these calculations. Their results seem to confirm that the stabilization of the peroxyl radical by a polar solvent is significant. On the other hand, Sumarno and coworkers state that small amounts of a polar solvent, ethanol, can promote decomposition of a hydroperoxide species, producing reactive radical products (alkoxyl and peroxyl radicals) which would promote further oxidation of substrate.

b. Solvent interactions with phenolic antioxidants—Effects on antioxidant mechanisms

Electron Transfer. Neta and coworkers have worked extensively with halogen-substituted methyl peroxyl radicals (XnHmCOO˚, where X = Cl, Br or F) in aqueous and non-aqueous media, using combinations of solvents in different ratios to change the polarity of the mixture. They describe the mechanism for the reaction of the water-soluble antioxidant Trolox with their peroxyl radicals as ‘H-mediated electron transfer’, having determined that the rate of the reaction increases with an increase in solvent polarity. They examined solvent polarity in terms of the dielectric constant of the solvent, ε, and solvent basicity, reported as either the coordinate covalency parameter, ξ, which is a measure of solvent proton-transfer basicity, or the β1 value, which is a measure of solvent hydrogen bond basicity.

If the antioxidant reaction proceeds via electron transfer from antioxidant to radical, then the increased polarity of the solvent (Solv) will help to stabilize the polar transition state. If the solvent basicity increases, then the reaction may proceed first via deprotonation of the antioxidant by the solvent to form an antioxidant anion, which would be much more reactive in terms of electron transfer to the radical than the protonated phenol. The reaction pathway may be shown to be three steps (equations 38–40), especially in strongly basic solvents.

\[
\begin{align*}
\text{ArO} - \text{H} + \text{Solv} & \rightarrow \text{ArO}^- + \text{Solv} - \text{H}^+ \\
\text{ArO}^- + \text{Cl}_3\text{COO}^* & \rightarrow \text{ArO}^* + \text{Cl}_3\text{COO}^- \\
\text{Cl}_3\text{COO}^- + \text{Solv} & \rightarrow \text{H}^+ \rightarrow \text{Cl}_3\text{COOH} + \text{Solv}
\end{align*}
\]

The other possible mechanism is the removal of a proton from the transition state concerted with the electron transfer. Overall, the equations can be combined and expressed as a hydrogen atom transfer reaction (equation 41).

\[
\begin{align*}
\text{ArO} - \text{H} + \text{Cl}_3\text{COO}^* + \text{Solv} & \rightarrow \text{ArO}^* + \text{Cl}_3\text{COOH} + \text{Solv}
\end{align*}
\]

However, this simplified reaction does not indicate the involvement of solvent or electron transfer. They supported their theory using kinetic isotope studies, which showed the involvement of solvent protons in the electron transfer step, via hydrogen bonding by the
solvent to the hydroperoxide anion formed (equation 39)25. They suggested that in environments of low polarity and decreased proton donating ability (e.g. in the hydrophobic phase of lipid membranes), electron transfer would be slowed down enough that hydrogen atom transfer would become the predominant mechanism25.

Maki and coworkers designed a group of hindered phenolic antioxidants that showed reversible and non-reversible electron transfer depending on the location (\textit{ortho} or \textit{para}) of an α-alkylamino group, which would hydrogen-bond with the phenolic hydrogen202. These compounds were designed to model what happens biologically in protein systems to allow the formation of a persistent tyrosyl radical with histidine residues, and show that hydrogen bonding can have a significant effect on redox potential for an antioxidant202.

Hydrogen Atom Transfer. In the presence of a hydrogen bond accepting (HBA) solvent, the phenolic hydrogen can form a hydrogen bond with the solvent that interferes with hydrogen atom abstraction by attacking radicals192. If the attacking radical is, for example, an alkoxyl such as cumyloxyl radical, it is unable to approach the hydrogen-bonded complex to abstract the phenolic hydrogen for steric reasons192.

Looking at this in terms of the Gibbs free energy, as expressed by Ingold and coworkers191, when hydrogen atom abstraction reactions take place in a strongly HBA solvent (ii), the overall ΔG_{ii} to reach the transition state is the sum of the ΔG_{i} for the reaction in a poor HBA solvent (i) and the extra $\Delta G_{\text{i-ii}}$ required to overcome the energy barrier caused by increased solvation of the reactants (specifically, the hydrogen bonded phenolic antioxidant). The amount of this difference can then be calculated from the measured rate constants for the reactions of the antioxidant with the attacking radical in the two solvents (equation 42)191.

$$\log \left(\frac{k_i}{k_{\text{ii}}} \right) = \frac{\Delta G_{\text{i-ii}}}{2.3RT}$$ (42)

Ingold and coworkers have also expressed a kinetic equation (equation 43) to determine the equilibrium constant ($K^{A/nA}$) for hydrogen bonding between the phenolic antioxidant and dilute HBA solvent, A, if rate constants in neat HBA and non-HBA solvent, nA, CCl\textsubscript{4} in this example, are known. For this study they monitored hydrogen-atom transfer from the antioxidant phenol to cumyloxyl radicals188,203.

$$k^{nA} = k^A \left(1 + K^{A/nA}[A] \right)$$ (43)

Ingold and coworkers have concluded that the kinetic solvent effect, KSE, is independent of the nature of the attacking radical, in other words the radical species used would not influence the trend of hydrogen bonding interactions of solvent with antioxidant191. That means that if one examined rate constants for the antioxidant activity of a phenolic antioxidant over a series of solvents with a particular radical, one would then be able to predict the rate constants for that antioxidant with a new radical for the same series of solvents, based on a measurement in just one of the solvents. This can be shown by plotting the log of the rate constants for the same antioxidant with two different radical species over a series of solvents, and if the plot is linear with a slope of one, then this indicates that the KSE is independent of the nature of the radical193. The KSE on antioxidant activities can also be examined in terms of the ratio of rate constants in an alkane (non-H-bonding) solvent versus different solvents, k_{alkane}/k_s, which should in general be similar for an antioxidant independent of the nature of the attacking radical, even though absolute rate constants will differ. Table 9 shows some rate constants and k_{alkane}/k_s ratios for some phenolic antioxidants in various solvents, with various attacking radical species. For example, for \textit{\alpha}-Toc, the ratio $k_{\text{alkane}}/k_s = 2.7$ (DPPH$^+$) vs 2.8 (RO$^-$) vs 2.5 (ROO$^+$) when S = chlorobenzene; $k_{\text{alkane}}/k_s = 5.3$ (DPPH$^+$) vs 4.9 (RO$^-$) vs 4.5
(ROO·) when $S = \text{anisole}$ and $k_{\text{alkane}} / k_s = 15$ (DPPH·) vs 10 (RO·) vs 18 (ROO·) when $S = \text{acetonitrile}$191,86. There are sometimes discrepancies in using the ratio rates to examine the KSE, for example when using DPPH in t-butyl alcohol as discussed earlier191,194, and it generally is used to examine only a few points, whereas plotting the log k values for antioxidant reactions with two different radicals provides more reliable information using more data points. That the KSE is independent of the attacking radical is the most important single discovery about solvent effects on hydrogen atom transfer reaction, and it has important implications for antioxidant activities determined in solution.

Recently, Snelgrove and coworkers derived an empirical relationship to describe quantitatively KSEs for hydrogen atom abstraction195. They found a linear correlation between the KSEs for a range of solvents and the hydrogen bond basicity values, β_H^1 of Abraham and coworkers186, and also a simple linear correlation between the magnitude of the KSE for substrates, XH, and the α_H^2 parameter of Abraham and coworkers196, the ability of a substrate to act as a hydrogen bond donor, HBD. A combination of the linear relationships gave a general, empirical equation which can be used to predict KSEs for hydrogen atom donors (equation 44).

$$\log(k_{XH/YH}/M^{-1}s^{-1}) = \log(k_{XH/YH}/M^{-1}s^{-1}) - 8.3\alpha_H^2\beta_H^1$$

So if the rate constant is measured in a non-hydrogen-bonding solvent, k^0, one can predict the rate constant, k, in any other solvent by the use of equation 44.

Hydrogen bonding between the phenolic antioxidant and solvent is not straightforward when the structure of the antioxidant allows for internal hydrogen bonding, as outlined in Scheme 5155. In HB1, there is a linear hydrogen bond formed between the phenolic hydrogen and the solvent, and the OH group is twisted out of the plane of the aromatic ring by approximately 25° in the transition state. In HB2, the bond between solvent and phenolic hydrogen is no longer linear because the hydrogen is also involved in an internal hydrogen bond with an ortho HBA oxygen (in this case another hydroxyl group, although it could also be an alkoxy substituent). In HB3, only an internal hydrogen bond is illustrated. With an internal hydrogen bond, the OH is closer to the plane of the aromatic ring, with a dihedral angle of about 14.6° in the transition state. It is hydrogen bonding with the solvent that has the most influence on the magnitude of the KSE, because such an intramolecular hydrogen bond interferes with hydrogen abstraction155. If one tries to predict rate constants for hydrogen atom abstraction from a phenol capable of internal hydrogen bonding, based on the assumption that intramolecular hydrogen bonds also interfere with hydrogen abstraction, one discovers that the predicted rate is lower than the experimental rate. In other words, internal hydrogen bonds do not appear to prevent hydrogen atom abstraction in the way that hydrogen bonds to solvents do, and Ingold and coworkers155 speculated it is due to the non-linearity of the hydrogen bond, which leaves the hydrogen still open to radical attack. The fact that phenols capable of intramolecular hydrogen bonds do still show KSE effects is evidence that the ‘doubly’ hydrogen-bonded complex, HB2, in Scheme 5 also exists, although for steric reasons hydrogen atom abstraction from this complex is unlikely.

Another potential site of hydrogen bonding interactions between solvent and antioxidant is at the para-ether oxygen of α-Toc analogs and 2,6-di-tert-butyl-4-methoxyphenol. Electrons from para-ether oxygen can assist through resonance stabilization of phenoxyl radicals formed after hydrogen atom abstraction (Scheme 4, part d). We had speculated that hydrogen bond formation between the solvent and the ether oxygen on the antioxidant could also affect the rate constant, by tying up electrons that would otherwise have stabilized the phenoxy radical55, however it has since been shown that hydrogen bonding at that site is not important204. Iwatsuki and coworkers204 compared KSE for α-Toc and for a derivative of α-Toc in which the para-ether oxygen of the chroman ring was replaced
with a CH₂ group (and the ring itself is five- rather than six-membered), and the addition of methanol decreased the rate constants for the two antioxidants to the same degree, indicating that the para-ether oxygen had no significant effect on the KSE.

Aside from the considerations of hydrogen bonding, solvent can have a ‘physical’ effect on the reaction rate, generally by steric or viscosity influences. As far as steric effects are concerned, as mentioned earlier in this section, if the approach of a peroxyl radical towards the hydrogen atom of the substrate (antioxidant or hydrogen bond donor, HBD) is sterically hindered either by solvent or antioxidant substituents, then the KSE will differ from the predicted solvent effect. To briefly summarize some of the influences: (a) a steric effect on rate was observed with hydrogen abstraction by DPPH⁺, where the bulky tert-butyl alcohol solvent actually enhanced the reaction rate by enclosing the DPPH⁺ in a ‘solvent cage’¹⁹¹,¹⁹⁴, (b) hydrogen bonding between solvent and substrate sterically interferes with the approach of the attacking radical species, cumyloxyl¹⁹², to decrease the reaction rate, and (c) attempts to relate rate constants to β²H values are not always successful because the β²H values ignore steric considerations¹⁸⁸.

Changes in solvent viscosity can reduce reaction rates by reducing the rate at which reactants can diffuse towards each other. This was seen with α-Toc in homogeneous solution, where viscosity affected the α-Toc diffusion, resulting in k_Toc/RO⁺ values which deviated from those predicted based on solvent polarity alone¹⁹¹,²⁰⁵. Solvent viscosity can
also change the efficiency of radical production from the decomposition of thermal azo-initiators, by affecting the rate of solvent cage escape. For example, the efficiency at 65 °C for azo-bis-isobutyronitrile can vary from 0.60 (tert-butyl alcohol) to 0.80 (chlorobenzene) to 1.33 (acetonitrile)206. Consequently, changes in solvent will have a significant effect on the R_i, as seen from equation 6. Even high concentrations of unhindered phenols (so that they can be considered to be part of the solvent) can enhance the rate of peroxyl radical formation from the thermal azo-initiator AIBN206, and can decrease the efficiency of the antioxidant because of complex formation between the antioxidant molecules193,206.

2. Antioxidants in heterogeneous systems: Lipid peroxidation and inhibition in micelles and lipid membranes

Inhibition of peroxidation of unsaturated lipid chains in biomembranes is of particular significance and interest, because uncontrolled oxidation disrupts the protective layer around cells provided by the membranes. Furthermore, radical chain transfer reactions can also initiate damage of associated proteins, enzymes and DNA. The volume of literature is immense and expanding in the field of antioxidants. We will select certain milestones of advances where micelles and lipid bilayers, as mimics of biomembranes, provided media for quantitative studies on the activities of phenolic antioxidants. One of us, L. R. C. Barclay, was fortunate to be able to spend a sabbatical in Dr. Keith Ingold’s laboratory in 1979–1980 when we carried out the first controlled initiation of peroxidation in lipid bilayers of egg lecithin and its inhibition by the natural antioxidant α-Toc45. A typical example of the early results is shown in Figure 4. The oxidizability of the bilayer membrane was determined in these studies, but we were not aware that phosphatidyl cholines aggregate into reverse micelles in non-protic solvents like chlorobenzene, so this determination was not correct in solution. This was later corrected by detailed kinetic and 31P NMR studies, which concluded that the oxidizability of a lipid chain in a bilayer is very similar to that in homogeneous solution207,208.

A second milestone of quantitative studies of lipid peroxidation in 1980 came from Porter and coworkers. They provided quantitative studies of lipid hydroperoxides found

![Figure 4](image-url)
during controlled initiation of linoleate in solution and dilinoleoylphosphatidyl choline (DLPC) bilayers which showed how the cis, trans to trans, trans product ratios (kinetic to thermodynamic ratios) depended directly on the hydrogen atom donating ability of the medium, such as provided by an antioxidant like α-Toc. These pioneering studies were the basis for others to use such product studies together with kinetic studies to examine the effects of antioxidants during peroxidation of linoleate chains in micelles and bilayers (vide infra).

Another milestone in the 1980s was the discovery that either water-soluble or lipid-soluble initiators with water-soluble or lipid-soluble phenolic antioxidants can be used for quantitative kinetic studies in micelles and lipid membranes. This made measurements in these systems less difficult than before when the initiators were included in high concentrations in lipid membranes due to low initiator efficiency. A fourth major advance towards quantitative studies of antioxidant activities in heterogeneous phases was the determination that the classical rate law of autoxidation (equation 7) is applicable to micelles and membranes. We showed that the kinetic order in substrate was unity and half order in \(R_i \) for varying linoleate concentrations and initiator in SDS micelles. Similarly, the classical rate law was discovered to apply to phospholipid bilayers by using mixtures of unsaturated and saturated lipid systems. Through the use of rotating sector experiments for micelles and lipid bilayers, the absolute rate constants for propagation, \(k_p \), and termination, \(2k_t \), were determined in these systems. These advances set the stage for determinations of the absolute rate constants for antioxidant activities, \(k_{inh} \) of equation 15, in heterogeneous phase, in particular in the laboratories of Niki and Pryor. Examples of antioxidant activities are given in Table 10, so that comparisons can be made between homogeneous solutions, SDS micelles and lipid bilayers in terms of the effects influencing the antioxidant activities of phenols in solutions to heterogeneous systems.

![Graph](image-url)
TABLE 10. Antioxidant activities of phenolic antioxidants in different media

<table>
<thead>
<tr>
<th>Structure</th>
<th>No.</th>
<th>Medium</th>
<th>k_{inh} (M$^{-1}$ s$^{-1} \times 10^{-4}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Styrene/ C$_6$H$_5$Cla</td>
<td>(CH$_3$)$_3$COHb</td>
</tr>
<tr>
<td>α-Toc, $R = C_{16}H_{33}$</td>
<td>320</td>
<td>23 (51)d</td>
<td>3.7</td>
</tr>
<tr>
<td>Va, $R = CH_3$</td>
<td>380</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Vc, $R = COOH$</td>
<td>110</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>VIIIa, $R^1 = R^2 = (CH_3)$_2CH</td>
<td>238</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>VIIIb, $R^1 = CH_3$, $R^2 = (CH_3)$_3C</td>
<td>199</td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>IIc, $R^1 - R^3 = CH_3$, $R^4 = H$</td>
<td>130</td>
<td></td>
<td>1.04</td>
</tr>
<tr>
<td>IId, $R^1 - R^4 = CH_3$</td>
<td>39</td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>IIIa, $R^1 = R^2 = (CH_3)$_3C, $R^3 = R^4 = H$</td>
<td>11</td>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td>IIIb, $R^1 = R^2 = (CH_3)$_3C, $R^3 = CH_3$</td>
<td>1.4</td>
<td>1.1</td>
<td>0.37</td>
</tr>
<tr>
<td>IIa, $R^1 - R^3 = CH_3$</td>
<td>8.5</td>
<td></td>
<td>0.056</td>
</tr>
</tbody>
</table>

aData taken from Tables 1, 2 and 3.
bData taken from Reference 55.
cData taken from Reference 216.
dFrom the oxidation of methyl linoleate233.

a. Monohydroxy phenols. Factors controlling antioxidant activities in membranes. The unique behavior of α-Toc. A qualitative comparison of the inhibition period provided by α-Toc with that of simple mono-phenols such as 2,6-di-t-butyl-4-methoxyphenol (DBHA) in DLPC membranes (Figure 5) indicated at the outset that very important differences influence their activities in membranes compared to solution. That is, while DBHA is a relatively weak antioxidant in styrene oxidation (k_{inh}DBHA/α-Toc = 0.034, styrene), it appears to be far superior compared to α-Toc in aqueous DLPC (k_{inh}DBHA/α-Toc = 4.7, DLPC). This earlier data of k_{inh} in DLPC for the typical classes of monohydroxy phenols together with results in styrene/chlorobenzene, and available data in t-butyl alcohol and SDS micelles are given in Table 10. For α-Toc, PMHC (Va) and Troloc (Vc), very significant decreases in activity were observed from styrene \rightarrow t-butyl alcohol \rightarrow SDS micelles \rightarrow DLPC bilayers. Attempts were made to explain the drop in activity by hydrogen bonding of the phenolic hydroxyl by the polar protic media in alcohol or in the
aqueous systems55,216. This was a reasonable interpretation at the time, since \(\alpha\)-Toc was found to be located in bilayers of egg lecithin with its polar chromanol head group near the aqueous–lipid interface where the phenolic hydroxyl would be in contact with the aqueous phase217. Also, spin labeling studies show that \(\alpha\)-Toc scavenges lipophilic radicals close to the membrane–aqueous surface218. The reduced activity of lipophilic phenols like \(\alpha\)-Toc in aqueous SDS micelles was attributed to a limiting diffusion between micelles136.

The lower antioxidant activity of \(\alpha\)-Toc in bilayers cannot be due to hydrogen bonding by water alone because the hydrogen bond accepting ability of water, as measured by the value \(\beta = 0.31205\), is less than the value for tert-butyl alcohol, \(\beta = 1.01219\), and the kinetic data for \(\alpha\)-Toc in tert-butyl alcohol and aqueous DLPC are not at all in agreement with this \(\beta\) parameter. In order to obtain measurable rates in bilayers, rather high concentrations of antioxidants were used (Table 10, about \(10^{-4}\) M). This means that local concentrations of aryloxy radicals could initiate chain transfer reactions or pro-oxidant effects. In order to avoid such effects we determined the antioxidant activity of \(\alpha\)-Toc in palmitoyl, linoleoyl phosphatidyl choline (PLPC) bilayers by an independent method of product analyses220. This method involved (1) determination of the cis/trans to trans/trans \((c,t/t,t)\) ratio of the 9- and 13-linoleate hydroperoxides as the membrane concentration of PLPC varied, and (2) the variation of this \(c,t/t,t\) ratio for various \(\alpha\)-Toc concentrations in the presence of excess ascorbate and homocysteine to keep the antioxidant in its reduced form. The \(k_{\text{inh}}\) value for \(\alpha\)-Toc in PLPC bilayers by this method was \(4.7 \times 10^4\) M\(^{-1}\) s\(^{-1}\), which better reflects its ‘intrinsic’ activity in biomembranes. This value represents a factor of 68 times less active in lipid membranes than in styrene, while it was estimated that the actual effect due to hydrogen bonding by water should reduce the activity of \(\alpha\)-Toc by only 3.9 times205. The larger drop in activity is probably due to some ‘unique behaviors’ of \(\alpha\)-Tocs in lipid membranes. For example, it was suggested that in mixed water–lipid systems, the small magnitude of \(k_{\alpha\text{-Toc/ROO}^*}\) is due to non-uniform distribution of the \(\alpha\)-Toc so that much of it was ‘physically inaccessible’ to the lipid peroxyl radicals205. This would explain why induction periods found for \(\alpha\)-Toc in bilayers typically do not give sharp breaks like those observed for other chromanols like PMHC (Va in Figure 5) or even DBHA. Some of the lipid particles may not contain \(\alpha\)-Toc, so they undergo rapid oxidation while oxidation is completely suppressed in others. The result is that the rate does not return quickly to the uninhibited rate. There is other evidence that diffusion of \(\alpha\)-Toc between and within lipid bilayers is limited. Earlier, Niki and coworkers discovered that the phytyl side tail enhances the retention of vitamin E in liposomes so that it did not transfer, as other smaller molecules do (e.g. PMHC), between liposomes221. Later, Kagan and coworkers observed intermembrane transfer of \(\alpha\)-Toc, but transfer was incomplete and it did not transfer to give a homogeneous distribution222. Barclay and coworkers found that \(\alpha\)-Toc transferred only very slowly from a water-soluble protein complex into liposomes52, and quantitative studies showed that it took nearly ten hours for it to transfer completely from saturated liposomes into DLPC liposomes60. In contrast, chromanols like PMHC transferred readily between liposomes and this was a very efficient method to incorporate such antioxidants into liposomes for determination of antioxidant activities compared to the more conventional co-evaporation from solvents (see Figure 6)60.

There is independent physical evidence for non-uniform distribution and restriction from transmembrane diffusion of \(\alpha\)-Toc in lipid membranes. Differential scanning calorimetry results indicated that it partitioned into the most fluid domains in lipid vesicles223. Fluorescence studies showed that \(\alpha\)-Toc has a very high lateral diffusion rate in egg lecithin224 but it does not take part in transbilayer (flip-flop) migration even over ‘many hours’225. It is not known if this behavior of \(\alpha\)-Toc extends to natural biomembranes where actual structures and conditions may dramatically change migration phenomena.
FIGURE 6. Comparison of oxygen uptake profiles for co-evaporated and transferred PMHC during oxidation of DLPC bilayers at 37°C, pH 7.0, initiated with 2.8–3.0 µmol ADVN: U = uninhibited oxidation of DLPC, C = 15.0 nmol PMHC co-evaporated with 5.76 × 10⁻⁵ mol DLPC, T = 9.44 nmol PMHC transferred into liposomes containing 7.43 × 10⁻⁵ mol DLPC. Reproduced by permission of Elsevier Press from Reference 60

For example, flip-flop transfer of phospholipids in membranes is usually also very slow, from hours to days. However, there are exceptions: for example, phosphatidylethanol undergoes rapid and reversible transbilayer distribution in unilamellar PC vesicles in the presence of multivalent cations, including calcium.

Electrostatic Effects: Membranes and Antioxidants. Phospholipid bilayers bearing surface charges, such as negatively charged phosphatidyl acids and phosphatidyl glycerol, are significant mimics of charged natural membranes. We found that charged watersoluble antioxidants like ionized Trolox (COO⁻), 38, and 2,5,7,8-tetramethyl-2-(β-trimethylammoniumethyl)-chromanol, 39, exhibit some unique behavior as antioxidants on charged bilayers compared to zwitterionic ones.

\[
\text{HO} \quad \text{COO}^- (38) \quad \text{HO} \quad \text{N(CH}_3)_3^+ \text{X} (39)
\]
Ordinary Trolox is an effective antioxidant for inhibition of peroxidation in micelles and lipid bilayers. This was attributed in part to its partitioning between the aqueous and lipid phases of PC membranes, according to 14C tracer studies. It was proposed that Trolox traps peroxy radicals near the lipid–water interface because peroxy radicals may diffuse towards the aqueous phase due to their high polarity, as illustrated in Figure 7. It is not surprising to find that Trolox does not function as an antioxidant at pH = 7 and when the bilayer contains a surface with negatively charged groups such as phosphatidyl glycerols, whereas the positively charged antioxidant, 39, is very effective under these conditions. Natural biomembranes having charged head groups exhibit important interactions with other constituents, such as proteins and it is important to elucidate the efficiency of water-soluble antioxidants in these systems.

Synergistic Effects between Antioxidants. A synergistic effect operates between antioxidants when the total inhibition period observed when two (or more) antioxidants are present is greater than the sum of the inhibition periods when they act singly. Synergism between two phenolic antioxidants during hydrocarbon oxidation was observed by Mahoney and DaRooge. The conditions and the magnitude of synergism with two phenols, such as a hindered, BH, phenol and a non-hindered one, AH, are reviewed by Mahoney. In particular, the most important factor is the rate of regeneration of the non-hindered phenol (equation 45) compared to chain transfer reactions that may be started by reaction of the non-hindered A^\cdot with the substrate or hydroperoxides that are formed.

$$A^\cdot + B \longrightarrow H \quad \longrightarrow \quad A - H + B^\cdot$$

The ‘reinforcing action’ of ascorbic acid with α-Toc during inhibition of oxidation of fats was observed by Golumbic and Mattill as early as 1941. The regeneration of α-Toc (α-Toc) from the α-To$^\cdot$ by reduction with vitamin C (ascorbate) has attracted a great

![Figure 7](image-url)
deal of interest since Tappel proposed in 1968 that the nutritional relationship between these vitamins could be explained if vitamin C reduced the oxidized form of vitamin E in vivo. Since 1968 there have been kinetic and spectroscopic evidence to show that vitamin C does in fact regenerate α-Toc from the α-To* radical in solution, and during inhibited oxidation of methyl linoleate by combinations of α-Toc and vitamin C.

In 1983 we reported synergism between α-Toc and vitamin C during inhibited peroxidation of linoleic acid in the biphasic system of SDS micelles and quantitative studies in micelles showed that vitamin C regenerates a mole of α-Toc (or Trolox) per mole of vitamin C introduced. The next year ESR results showed that ascorbate recycled α-Toc from α-To* in DLPC liposomes. In 1985, two independent reports appeared to demonstrate that vitamin C acts synergistically with α-Toc during peroxidation of phosphatidylcholine membranes in aqueous dispersions. These reports are of particular interest because they showed that ascorbate, which resides in the aqueous phase, is able to regenerate α-Toc from the α-To* radical across the interface in the hydrophobic phase of membranes. In addition to vitamin C, other natural hydrogen atom donors are known to act synergistically with α-Toc, such as cysteine, although glutathione appears to react cooperatively, not synergistically, during inhibited peroxidation of DLPC liposomes.

Natural thiols, such as homocysteine or glutathione, are known to regenerate ascorbic acid from dehydroascorbic acid and it was found that combinations of the two inhibitors, thiols and ascorbate, interact with a phenolic antioxidant during inhibited peroxidation of linoleate in micelles, to extend the inhibition further than any two combined. These results provided evidence for a ‘cascade’ of antioxidant effects as illustrated in Scheme 6. It is possible that interactions observed between endogenous antioxidants in human blood plasma or in rat hepatocytes involve cascades of this type.

These various in vitro synergistic interactions between vitamins E and C can be summed up in equations 46–48.

\[\text{ROO}^* + \alpha\text{-Toc} \longrightarrow \text{ROOH} + \alpha\text{-To}^* \] (46)
While there is much clear and convincing evidence for this synergistic interaction between these two vitamins in vitro, such compelling evidence is lacking to date in vivo. Indeed, at least one detailed study using guinea pigs showed that vitamin C does ‘not’ spare vitamin E in vivo\(^{241}\). So one cannot immediately assume that the laboratory in vitro findings on interactions between antioxidants are applicable to living systems.

Pro-oxidant Effects of Antioxidants. Our review to this point has concentrated on the beneficial effects of phenolic antioxidants through their efficiency in trapping damaging oxygen-centered radicals. However, there are limitations in these beneficial effects. Under certain conditions, phenols which normally act as antioxidants can display pro-oxidant activity. This pro-oxidant effect can be attributed to two quite different phenomena:

1. Phenoxy radicals formed in the inhibition step (equation 10) are normally terminated by rapid reaction with peroxyl radicals (equation 11). However, phenoxy radicals, particularly unhindered ones, are also able to participate in chain transfer reactions by hydrogen atom abstraction from hydroperoxides which build up (equation 21), which is the reverse of equation 10, or initiate new reaction chains by hydrogen atom abstraction from substrate (\(R_s\)) (equation 20).

2. In certain ‘media’, even normally unreactive aryloxyl radicals participate in these so-called pro-oxidant reactions due to local high concentrations of ArO• or certain physical restrictions which prevent their termination by radical–radical reactions.

It has been known for some decades that phenoxy radicals will initiate hydrogen atom abstraction in solution from hydrocarbons and they exhibit high selectivity; e.g. the 4-methoxyphenoxy radical is more selective than phenoxy\(^{232}\). More recently, the unsubstituted phenoxy radical, \(C_6H_5O^-\), was discovered to possess ‘surprisingly high reactivity’, being approximately 100–300 times more reactive than peroxyl radicals, on hydrogen atom abstraction from phenols\(^{112}\). Storozhok and coworkers\(^{243}\) used pulse radiolysis methods to estimate rate constants for hydrogen atom abstraction by the \(\alpha\)-tocopheroxyl radical (Ar-O•) from lipids and reported that rate constants \(k_{\text{effective}}\) varied with the degree of unsaturation but their ‘\(k_{\text{effective}}\)’ values do not appear reliable by this method. Nagaoka, Mukai and coworkers\(^{244,245}\) reported rate constants for hydrogen atom abstraction from fatty acid esters by several 5,7-dialkyltocopheroxyl radicals using stopped flow methods, that also depended on the degree of unsaturation, with varying \(k_{\text{abstr.}}\) being 1.04 × 10\(^{-5}\), 1.82 × 10\(^{-5}\), 3.84 × 10\(^{-2}\) and 4.83 × 10\(^{-2}\) M\(^{-1}\) s\(^{-1}\) for oleate, linoleate, linolenate and arachidonate, respectively. The \(k_{\text{abstr.}}\) rate constants per active H were lower in \(t\)-butyl alcohol compared to benzene, but large in Triton X-100 compared to \(t\)-butyl alcohol. The \(k_{\text{abstr./H}}\) values were approximately the same in benzene and in \(t\)-butyl alcohol for lipids containing 2, 3, 4 and 6 double bonds. However, \(k_{\text{abstr./H}}\) actually decreased along this series. This interesting effect in the micelles was attributed to local restriction of motion between the attacking radicals and the ‘tail’ of a polyunsaturated lipid chain. They reported that rate constants for hydrogen atom abstraction from alkyl hydroperoxides (equation 21) by these \(\alpha\)-To• radicals were approximately an order of magnitude larger\(^{246}\) and the value for abstraction from linoleate hydroperoxide was 2.5 × 10\(^{-1}\) M\(^{-1}\) s\(^{-1}\)\(^{247}\). It is expected that the \(\alpha\)-To• radical would be less reactive than \(C_6H_5O^-\) towards hydrogen abstraction. There is some evidence to support this; hydrogen atom abstraction from ubiquinol by 5,7-diethyl-To• in hexane is estimated to be at least two orders of magnitude less than the value (8–9 × 10\(^7\) M\(^{-1}\) s\(^{-1}\)) using \(C_6H_5O^-\) in benzene.
During the inhibited self-initiated autoxidation of methyl linoleate by \(\alpha \)-Toc in solution, Niki and coworkers\(^7\) made the interesting observation that \(\alpha \)-Toc acts as an antioxidant at low concentrations, but high concentrations (up to 18.3 mM) actually increased hydroperoxide formation due to a pro-oxidant effect. The pro-oxidant effect of \(\alpha \)-Toc was observed earlier by Cillard and coworkers\(^2\) in aqueous micellar systems and they found that the presence of co-antioxidants such as cysteine, BHT, hydroquinone or ascorbyl palmitate 'inverted' the reaction into antioxidant activity, apparently by reduction of \(\alpha \)-Toc to \(\alpha \)-Toc\(^2\). Liu and coworkers\(^2\) found that a mixture of linoleic acid and linoleate hydroperoxides and \(\alpha \)-Toc in SDS micelles exhibited oxygen uptake after the addition of \(\alpha \)-Toc. The typical ESR spectrum of the \(\alpha \)-Toc\(^2\) radical was observed from the mixture. They attributed the rapid oxidation to decomposition of linoleate hydroperoxides, resulting in the formation of linoleate oxy radicals which initiated reactions on the lipid in the high concentration of the micellar micro-environment. Niki and coworkers reported pro-oxidant activity of \(\alpha \)-Toc when it was added with metal ions, \(\text{Fe}^{3+}\) or \(\text{Cu}^{2+}\), in the oxidation of phosphatidyl choline liposomes. \(\alpha \)-Toc was found to reduce the metal ions to their more reactive valence states. These in turn reacted with hydroperoxides to give reactive alkoxyl radicals which accelerate the oxidation (equations 49–51).

\[
\begin{align*}
\text{Cu}^{2+} + \alpha \text{-Toc} & \rightarrow \text{Cu}^{1+} + \alpha \text{-Toc}^{2+} \quad (49) \\
\alpha \text{-Toc}^{2+} & \rightarrow \alpha \text{-Toc}^{+} + \text{H}^{+} \quad (50) \\
\text{ROOH} + \text{Cu}^{1+} & \rightarrow \text{RO}^{+} + \text{Cu}^{2+} + \text{OH}^{-} \quad (51)
\end{align*}
\]

These observations on the pro-oxidant behavior of the antioxidant (normally) \(\alpha \)-Toc in micelles and lipid membranes provide some insight into the remarkable pro-oxidant activity of \(\alpha \)-Toc in low density lipoprotein, LDL, under \emph{in vitro} conditions. The radical initiated oxidation of LDL is of great interest because it is implicated in heart disease. The tocopherol-mediated peroxidation (TMP) of LDL was reported on in detail by Bowry and Stocker\(^2\) and is also the subject of timely, detailed reviews\(^1\),\(^2\),\(^3\). This interesting story will not be reviewed again here, but these articles are highly recommended since they provide important insight into the ‘unique behavior’ of \(\alpha \)-Toc.

\(\text{b. Di- and polyhydroxy phenols in membranes. Ubiquinols and flavonoids.}\) The ubiquinols (40, UQH\(_2\)) consist of a series of 2,3-dimethoxyhydroquinones which differ in the number of isoprenoid (C\(_5\)) units in a side chain. As their name implies, the ubiquinols are widely distributed in nature, especially the \(n = 6–10\) types, as are the corresponding \emph{para}-quinones which are referred to as Coenzyme Q, CoQ. Ubiquinol is an effective scavenger of peroxy radicals during lipid peroxidation and can regenerate \(\alpha \)-Toc in lipoproteins and other lipid membranes\(^1\),\(^15\). Thus the ubiquinols are of great interest as antioxidants in LDL\(^1\),\(^2\),\(^3\),\(^4\). As pointed out in Section III.C.1, the internal hydrogen bond in \emph{ortho}-methoxyphenols is an important factor in their antioxidant activity. In particular, internal hydrogen bonding from the phenolic hydrogen to an \emph{ortho}-methoxy does not prevent hydrogen atom abstraction by oxygen-centered radicals in the same way that external hydrogen bonds to solvents do\(^1\). To illustrate the difference, de Heer and coworkers reported that the rate constant for hydrogen atom abstraction by tert-butoxyl from 4-methoxyphenol, which is susceptible to external hydrogen bonding only, in tert-butyl alcohol is only about 2 percent of the value in hexane, whereas for ubiquinol-0 the drop is to 20 percent\(^1\). Consequently, ubiquinol has eight to nine times the activity in tert-butyl alcohol compared to the externally hydrogen-bonded 4-methoxyphenol.
The antioxidant properties of the ubiquinols in lipid membranes as well as in solution and of other ‘biological hydroquinones’ (e.g. of the α-Toc hydroquinone class) is the subject of a recent review\(^\text{183}\). We will add only two points by way of emphasis at this time, concerning the relationship between experimental conditions, structure (hydrogen bonding) and the antioxidant efficiencies of the ubiquinols. First, Niki and coworkers\(^\text{255}\) re-examined the antioxidant properties of ubiquinol-10 compared to α-Toc during peroxidation of linoleate in solution and during oxidation of liposomes. The results showed that α-Toc was more effective as an antioxidant than ubiquinols in acetonitrile solution, but their antioxidant properties were similar in membranes and micelles. However, in liposomes the stoichiometric factor (\(n\)) for ubiquinol was typically less than 1, being around 0.61, whereas on hydrogen atom donation to the galvinoxyl radical in solution the \(n\) factor for ubiquinols UB\(H_2\) was 2 (while for α-Toc \(n\) was 1). The low \(n\) factor for ubiquinol in oxidation by lipid peroxyl radicals LOO\(^•\) was interpreted in terms of a competition with its autoxidation. When the attacking radicals are in comparative low concentration, as is usual for the steady-state concentration of peroxyl radicals during autoxidation, oxygen may compete with the reactive semiquinone radical, UQH•, forming ubiquinone, UB according to the sequence outlined in equations 52–55.

\[
\begin{align*}
 \text{LO}_2^• + \text{UQH}_2 & \rightarrow \text{LOOH} + \text{UQH}^• \quad (52) \\
 \text{UQH}^• + \text{O}_2 & \rightarrow \text{UQ} + \text{HO}_2^• \quad (53) \\
 \text{HO}_2^• + \text{LH} & \rightarrow \text{H}_2\text{O}_2 + \text{L}^• \quad (54) \\
 \text{L}^• + \text{O}_2 & \rightarrow \text{LO}_2^• \quad (55)
\end{align*}
\]

Secondly, we consider again the effect of structure, in particular hydrogen bonding with adjacent methoxy groups. It has been suggested by others that the effect of the ortho-methoxy groups is to decrease the antioxidant activity of the 1,4-hydroquinone system due to a decrease in the stereoelectronic effect of these groups because they are expected to become non-planar with the aromatic ring\(^\text{182,183}\). Calculations by de Heer and coworkers\(^\text{153}\) do show that the methyls of the two ortho-methoxyl groups are tilted out of the phenyl plane, but the non-planarity of the methoxy groups has little if any impact on the strength of the hydrogen bonds. This conclusion was recently confirmed by observing the FTIR spectrum of UQ-0 in CCl\(_4\) which showed only one absorption band at 3554 cm\(^{-1}\), indicating that both phenolic groups are hydrogen-bonded to methoxyls, since this absorption appeared in this region for ortho-methoxyphenol at 3558 cm\(^{-1}\)\. Consequently, we propose again that it is intramolecular hydrogen bonding that lowers the
reactivity of ubiquinols in organic solvents but provides protection against intermolecular hydrogen bonding in aqueous dispersions, and thus antioxidant activity is significant in lipid membranes.

Flavonoids as antioxidants have been reviewed several times161,257,258, including an outline of many claims to their beneficial health effects259. Due to their complex structures and different classes (eight thousand different compounds are known258), researchers often resorted to qualitative screening methods to evaluate their antioxidant potentials in mixed aqueous/lipid phases. For example, the so-called Trolox equivalent antioxidant capacity (TEAC), the concentration of Trolox with ‘equivalent antioxidant activity’ of a 1 mM concentration of the substrate, is frequently used in heterogeneous systems. Unfortunately, this can be an unreliable measure of the activity of the substance, especially if initiation is also carried out in the aqueous phase. Nevertheless, there have been some efforts made to evaluate antioxidant activities of specific flavonoids using more quantitative methods in heterogeneous systems in order to mimic natural environments. A few examples are cited below to illustrate some approaches to determine flavonoid activities in micelles or lipid membranes.

Several groups have used aqueous micelles as the heterogeneous media for determining the activity of flavonoids260–262. Mukai and coworkers260 determined the effect of pH on the hydrogen atom donating ability of quercetin and rutin (see Chart 1, rutin is the rutinose derivative of quercetin at position 3) to their hindered ArO* radical (k_s) and the 5,7-dioisopropyltocopheroxyl, Toc\ast (k_t) in Triton X-100 micelles. The values of both k_s and k_t increased with increasing pH 7–10, $k_s = 2.28 \times 10^2–3.89 \times 10^3$ and $k_t = 5.48 \times 10^2–3.38 \times 10^5$ M$^{-1}$ s$^{-1}$ for rutin, and $k_s = 3.73 \times 10^4–3.38 \times 10^5$ M$^{-1}$ s$^{-1}$ for quercetin at pH 8–10. Calculations were made of k_s values for the different ionic species of rutin at different pK$_a$ levels. From the dependence on pH, they concluded that the reaction rates increased with the electron-donating ability of the flavonoids. Roginski and coworkers261 reported that typical flavonoids like quercetin did not behave as classical phenolic antioxidants during azo-initiated peroxidation of methyl linoleate in chlorobenzene nor in 0.2 M SDS micelles, and the classical rate law for autoxidation was not followed. Contrary to other investigators, they found that flavonoids showed only ‘moderate’ chain-breaking activity. For example, in chlorobenzene, quercetin was less active even than BHT. However, in SDS micelles they reported higher relative activities, where that for quercetin was about 38 percent of the value for α-Toc. Various explanations were offered for the non-classical behavior of flavonoids as antioxidants, including their pro-oxidant effects. Foti and coworkers262 used the spectral method reported by Pryor and coworkers67 to determine the ‘relative antioxidant efficiencies (RAE)’ of ten flavonoids in 0.1 M SDS micelles containing linoleic acid. Quercetin, the most active by this method, gave an RAE 90% of α-Toc, whereas Pryor and coworkers67 reported 19% by this method. The lower activity of other flavonoids (e.g. catechin, 36, RAE = 22) was attributed to the lack of conjugation with ring C (see Chart 1) as suggested for similar structural effects on flavonoid activities observed in solution (\textit{vide supra})262.

Although phospholipid bilayers are better mimics of biomembranes than are micelles, there are few reliable quantitative data on flavonoid antioxidant activities in lipid bilayers. Terao and coworkers263 compared the antioxidant efficiency of quercetin and catechins (epicatechin and epicatechin gallate) with that of α-Toc in egg yolk PC liposomes using initiation by the water-soluble initiator, ABAP, and analysis of hydroperoxide formation and antioxidant consumption by HPLC. Based on the length of the induction periods and the profile of suppressed hydroperoxide formation, they concluded that quercetin and the catechins were more efficient antioxidants than α-Toc in these bilayers. Apparently the ‘unique behavior’ of α-Toc in bilayers is responsible for these results (\textit{vide supra}). In hexane and alcohols solution during suppressed peroxidation of methyl linoleate, the relative antioxidant activities reversed so that the flavonoids were 5–20 times less active.
than α-Toc. Arora and coworkers used a fluorescent probe to determine the antioxidant efficiencies of flavonoids in 1-stearoyl-2-linoleoyl PC vesicles during initiation by ABAP. They found t-butylhydroquinone to be more effective as an antioxidant and quercetin to be more active among the six flavonoids examined. A number of groups used ferrous or ferric ion as initiator in aqueous/bilayer systems. However, it is not clear whether the effects observed with flavonoids are due to radical scavenging or iron chelating properties and we have not reviewed these in detail. The water-soluble flavonoid gluconide, isoorientin-6′-O-glucoside, inhibited the copper ion initiated peroxidation of LDL and may be useful in ‘antioxidant therapy’.

To sum up the state of antioxidant efficiencies of the flavonoids, a few general conclusions can be reached.

(1) The structural features responsible for their antioxidant properties: (a) the catechol structure in ring B is most important, (b) the 2,3-double bond in conjunction with the 4-oxo function provides additional, beneficial electron delocalization and (c) coplanarity of the system is beneficial and the 3-hydroxyl group may help lock a coplanar configuration.

(2) Reliable quantitative studies of flavonoid antioxidant activities in model membranes are lacking.

(3) Flavonoids can exhibit pro-oxidant activities. This could be due to redox cycling of semiquinones, which is well known. Also, we point out that isolated phenolic groups in ring A could form reactive phenoxy radicals by chain transfer processes and contribute to pro-oxidant effects, especially during local high concentrations. In any event, the enthusiasm for the incorporation of large quantities of flavonoids in the diet of humans should be tempered with the knowledge that they can have mutagenic effects.

IV. CHEMICAL CALCULATIONS ON PHENOLS

A. Introduction

In Sections I–III our review of antioxidant activities is based entirely on experimental observations with interpretations of relative activities based upon classical concepts of electronic and steric effects operating on phenoxy radicals. In the last decade there have been some applications of chemical calculations on phenols as antioxidants, with applications to interpretation on known phenols and extension of this to predictions of activities of novel molecules. In general, the thrust of the theoretical approaches endeavor to: (1) clarify the antioxidant mechanism of phenols, (2) calculate antioxidant activities and (3) make predictions on potentially new antioxidants.

Four kinds of quantitative information are useful for evaluating (or predicting) antioxidant activities of phenols: Bond dissociation energies (BDE) of phenolic −O−H bonds, ionization potentials (IP) of phenols or one-electron reduction potentials, E°, and overall molecular geometry. The antioxidant activities of substituted phenols can be related to the bond dissociation enthalpies of the O−H bonds since the weaker the O−H bond, the more rapidly it will donate the hydrogen atom to an attacking radical. For different phenols, the BDE is influenced by electron-donating and electron-withdrawing substituent effects, steric effects and hydrogen bonding of the OH group. Various strategies are used to obtain useful BDE values, including theoretical calculations using ‘full basis methodology’, and locally dense basis sets (LDBS) as described by Wright and coworkers. Others have been able to use simple empirical correlations of known BDE values with Brown–Okamoto σ^+ Hammett values for substituents to calculate BDE for a molecule with ‘unknown’ BDE (see Section IV.B.2).

The ionization potential (IP) of phenols is a measure of how readily an electron can be donated from the OH group to yield the phenolic cation. As pointed out before, the IP
is related to the energy of the HOMO and the global molecular geometry, therefore a full-basis calculation is used for both the phenol and cation. The IP values are important, since they may indicate how readily a phenol will enter into the single electron transfer (SET) mechanism (vide infra).

The one-electron reduction potential \(E^\circ \) also provides redox information to predict the direction of free radical processes since the change, \(\Delta E^\circ \), indicates the position of the equilibrium \(^{270}\). For example, if one considers hydrogen atom abstraction from polyunsaturated lipids (PUFA-H) by peroxy radicals (PUFA-OO\(^* \)), information on the two redox couples can be used, where for PUFA-OO\(^* \), H\(^+ \)/PUFA-OOH, \(E^\circ = 1000 \text{ mV} \) and for PUFA\(^* \), H\(^+ \)/PUFA-H, \(E^\circ = 600 \text{ mV} \), so the reaction in equation 56

\[
\text{PUFA} \rightarrow \text{OO}^* + \text{PUFA} \rightarrow \text{H} \quad \text{PUFA} \rightarrow \text{OOH} + \text{PUFA}^*, \Delta E^\circ = +400 \text{mV}
\]

is favorable and (of course) so is the reaction in equation 57.

\[
\text{PUFA} \rightarrow \text{OO}^* + \alpha\text{-Toc} \quad \text{PUFA} \rightarrow \text{OOH} + \alpha\text{-To}^*, \Delta E^\circ = +500 \text{mV}
\]

The \(\Delta E^\circ \) do not provide data on the reaction rates which will depend on the free energy of activation. It is well known that the rate constant for reaction of peroxy radicals with \(\alpha\text{-Toc} \) (equation 57) is much larger than the chain propagation rate constant (equation 56).

Calculations of molecular geometry are important when intramolecular hydrogen bonding is involved, and more complex, polycyclic molecules are being considered for calculations, such as the flavonoids. Some specific examples will be reviewed briefly to illustrate how the various methods have been applied to elucidate the mechanisms and in particular predict the effects of substituents and overall structure on the antioxidant activities of phenols.

B. Application to Antioxidants

1. **Antioxidant mechanisms by phenols: Hydrogen atom transfer (HAT) and single electron transfer (SET)**

 It would be very significant if theoretical methods could resolve the question of the antioxidant mechanism, HAT or SET, for a given antioxidant under known conditions. An attempt to do this for a different reaction, that of formation of substituted benzylic radicals from para-substituted toluenes, concluded that radical cation formation (SET) is subject to strong substituent effects whereas hydrogen atom transfer is ‘mainly independent’ of the nature of the substituent \(^{271}\). A decision on the mechanism might be made on this basis. It is true that calculated \(\Delta IP \) values relative to phenol for \(\alpha, \beta, \gamma \) and \(\delta \) tocopherols, of \(-36.1, -33.6, -32.9 \) and \(-30.5 \text{ kcal mol}^{-1} \), are significantly higher than the corresponding \(\Delta BDE \) values of \(-11.3, -9.4, -8.9 \) and \(-7.3 \text{ kcal mol}^{-1} \); however, these trends can be used to support either mechanism! It has been suggested as cut-off values, that up to \(\Delta IP \) of \(36 \text{ kcal mol}^{-1} \) and for \(\Delta BDE \) of \(-10 \text{ kcal mol}^{-1} \), the mechanism is dominated by hydrogen atom transfer in aqueous solution, whereas for \(\Delta IP > -45 \text{ kcal mol}^{-1} \) the mechanism is predominantly SET\(^{154}\). As already pointed out, solvent polarity (see Section III.C.1) may be the deciding factor about the determination of the predominant pathway. As we pointed out in Section III.B.1, Mukai and coworkers\(^{146–148} \) interpreted experimental results from deuterium isotope effects and correlation of rate constants with ionization and activation energies in terms of a antioxidant mechanism involving a charge transfer complex and proton tunneling.
When considering effects which may promote either the HAT or SET mechanisms, attention should also be paid to the attacking radicals, especially peroxyl radicals. The reactivities of peroxyls are strongly influenced by substituents on the alkyl or aryl group. Recent calculations on solvated peroxyl radicals by water showed a strong increase of the dipole moment of alkyl peroxyls in water, indicative of quite high polarizability. We are not aware of such studies on other oxygen-centered radicals such as hindered aryloxyls, but speculate that polar solvent effects should not be as significant as with peroxyls due to their polarity.

2. Calculations of substituent effects for monophenols

Some empirical methods have provided useful correlations concerning the effects of substituents on thermochemical properties of phenols. Griller and coworkers developed a photoacoustic method for measuring bond dissociation energies (BDE) of phenols and showed for the first time a linear relationship between the Hammett σ^+ para-substituent constant and BDEs. Wayner and coworkers found a correlation between experimental ΔBDE values for a series of substituted phenols compared with phenol and the Hammett σ^+ constants (equation 58).

$$\Delta\text{BDE}(O-H) \text{ kcal mol}^{-1} = 7.32[\Sigma(\sigma_{o}^+ + \sigma_{m}^+ + \sigma_{p}^+)] - 0.64 \quad (58)$$

This relationship was then used to calculate the BDE for α-Toc, giving a value of 77.2 kcal mol$^{-1}$, in excellent agreement with the experimental value of 77.3 kcal mol$^{-1}$. This empirical method does depend on the electronic effects of groups (methyls and para-ether) around the phenyl ring and provides some confirmation of the role these play in weakening the O–H bond and thus raising the antioxidant activity. In a similar manner, Jovanovic and coworkers obtained a correlation between the measured reduction potentials and the σ^+ constants for twenty-one substituted phenols at pH 7 (equation 59) and pH 0 (equation 60).

$$E_7 = 0.95 + 0.31\sigma^+ \quad (59)$$

$$E_0 = 1.34 + 0.32\sigma^+ \quad (60)$$

From equation 59, the derived reduction potential of the phenoxy radical is 0.95 V and $\rho = 0.31$. This calculated value E_7 was in good agreement with the experimental value of 0.97 V. They noted in particular that strong electron-donating substituents (having negative σ^+ values) reduced the redox potential of the phenols and increased their efficacy as antioxidants. Strong electron-withdrawing substituents (high positive σ^+ values) increased the redox potential, ‘disqualifying’ such phenols as antioxidants.

Actual theoretical calculations of the O–H bond strengths of a group of 35 phenols using density functional theory (DFT) were reported in 1997 by Wright and coworkers. More recently, the calculations were extended to other phenols and to calculations of ionization potentials (IP). In the earlier report, an additivity scheme was found for most methyl and methoxy phenols but not for 3,5-dimethyl-4-methoxyphenol nor for 2,3,5,6-tetramethyl-4-methoxyphenol. However, this was readily explained by the effect of two meta methyls which forced the para-methoxy group out of plane, which almost eliminates the normal substituent effect of this group. Thus the BDE results were in agreement with antioxidant activities reported earlier (see also Section III.B.1). It is also interesting to note that the BDE values for the dihydrobenzofuranols were 1.0 kcal mol$^{-1}$ smaller than for the corresponding chromanols (for structures see Table 2). This added further support...
to the stereoelectronic explanation for the high antioxidant activities of these furanols and chromanols of the vitamin E class\(^\text{18}\).

It was found that calculations of BDEs for substituted phenols using the less rigorous locally dense basis sets (LDBS) gave results similar to those with full basis set (FB), with good agreement with experimental values for phenol and 12 alkyl and methoxy derivatives\(^\text{154}\). The exception was compounds bearing ortho-di-t-butyl groups, where large errors appeared due to ‘excessive destabilization’ as a result of strain in the parent compound. Wright and coworkers\(^\text{154}\) calculated the ΔBDEs compared with phenol for a series of substituted phenols bearing substituents at the ortho, meta or para positions ranging from the very strong electron-supplying (NH\(_2\)) to the strongest electron-attracting (NO\(_2\)). They proposed ‘additivity values’ for combinations of 12 types of substituents. As already noted in Section IV.B.1, the calculations for the tocopherols were of particular interest in that the calculated order of ΔBDE (compared to phenol, 87.1) for \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\)-tocopherol was \(-11.3\), \(-9.4\), \(-8.9\) and \(-7.3\) kcal mol\(^{-1}\), so that the predicted order of antioxidant activity in a non-polar solvent, \(\alpha > \beta \approx \gamma > \delta\), is the same as that found by experiment\(^\text{18}\). This can be taken as evidence in support of the HAT mechanism for reaction with peroxyl radicals. However, the ΔIP values showed the same trend: \(\alpha\), \(\beta\), \(\gamma\) and \(\delta\) values were \(-36.1\), \(-33.6\), \(-32.9\) and \(-30.5\) kcal mol\(^{-1}\) or a drop of 3 kcal mol\(^{-1}\) per methyl group, and this could be taken as support of the SET pathway! Their calculations for ortho-substituted phenols subject to hydrogen bonding (e.g. \(\sigma\)-methoxy, \(\sigma\)-hydroxy) were of particular application to our interpretation of the antioxidant activities of these compounds in terms of stabilization of the resulting radicals, compared to the parent compounds (Section III.B.2).

3. Calculations of more complex polyhydroxy phenols

Owing to their very common occurrence in nature and widespread use as dietary supplements, there have been several approaches to calculate relative antioxidant properties of the flavonoids. Lein and coworkers\(^\text{164}\) used an empirical relationship based on calculated parameters such as heat of formation and the number of OH groups to estimate antioxidant properties of a large number (42) of flavonoids. General agreement was found with the Trolox equivalent parameter (TEAC), but unfortunately this parameter is not a reliable measure of antioxidant efficiency. Jovanovic and coworkers approached this (rather complex) problem by selecting simpler structural models for rings A and B of the flavonoids\(^\text{163}\). Reduction potentials were then obtained for these models (e.g. substituted catechols or derivatives for ring B and 5,7-dihydroxy compounds or derivatives for ring A) compared to some typical flavonoids. As expected, the flavonoid ring whose radical had the lower reduction potential was ring B for the catechol group including hesperidin, rutin, dihydroquercetin and quercetin, whereas in galangin, a 5,7-dihydroxy compound (modeled by 2,4-dihydroxyacetophenone), ring A has the lower reduction potential and takes over the antioxidant property. Van Acker and coworkers\(^\text{169}\) carried out \textit{ab initio} quantum mechanical calculations using heats of formation and the geometry of the parent flavonoids and their corresponding radicals. In addition, calculated spin densities were compared with ESR data. They concluded that oxidation of flavonoids takes place in ring B in those containing the catechol structure and that ring B is the site of antioxidant activity for the catechol flavonoids. Also, they concluded that the ‘extremely good’ antioxidant activity of the flavonols was due to an intramolecular hydrogen bond between the hydroxyl at position 3 on ring C and ring B. As pointed out in Section III.B.2, this interesting conclusion is not always supported by experimental results. Russo and coworkers\(^\text{276}\) carried out semiempirical calculations at the AM1 and PM3 levels on quercetin and the radical species. Their AM1 optimized structure gave a non-planar structure with ring B out of
plane. They reported that two radicals derived by hydrogen atom transfer from the 3’−OH (ring C) and 4’−OH (catechol ring B) were almost isoenergetic. This result implies that the enolic hydrogen (3−OH) is more readily abstracted than the second hydrogen in the catechol ring B. This (3’−OH) is now strongly hydrogen-bonded to the adjacent radical site, which could possibly make abstraction more difficult. However, a radical site at oxygen on carbon 3 would be very unfavorable due to the adjacent carbonyl. It would be interesting to observe high level calculations comparing the two proposed isoenergetic sites.

Wright and coworkers applied their ‘additivity of substituent effects’ to calculate relative BDEs of the catechin flavonoids, and consequently their order of antioxidant activity, by selecting model structures representing rings A, B and C separately. Then, by additivity of BDEs they applied these calculations to the more complex tricyclic flavonoids in order to establish their expected order of antioxidant activity. The reactivity order was in agreement with experimental results on the reactivities with superoxide radical observed by Jovanovic and coworkers.

V. FUTURE PROSPECTS FOR ANTIOXIDANTS

Most of our review to this point has focused on well-defined quantitative aspects of the mechanism and efficiency of phenolic antioxidants. In this final section, we will attempt to raise some long-term qualitative questions on future prospects or expectations for antioxidants. Some of the questions may be worthy of future pursuits while others will be of a more provocative nature.

(1) Is there a practical limit to the antioxidant activity of a phenolic antioxidant?

We have already commented on examples of the search for antioxidants more active than Vitamin E and actually encountered one exhibiting an order of magnitude higher activity than α-Toc in solution (see Table 2). However, is there a practical limit? To restate the problem in terms of ΔBDE: Is there a limit in the magnitude of ΔBDE above which the antioxidant itself undergoes autoxidation directly with oxygen? This can be answered in part by the example of the weak O−H bond in the semi-para-quinone radical, which is known to react with oxygen, giving rise to toxicity of such compounds (Section III.B.2). The enthalpy for this reaction (cf. equation 61) has recently been calculated by Johnson using density functional theory. This gave a BDE for the O−H bond in the semi-quinone radical QH 2 of 59.0 kcal mol −1 and a BDE of 52.4 kcal mol −1 for the O−H bond in H−O−O.

\[
Q^- + O_2 \rightarrow Q + H-O-O^-, \Delta H = 6.6 \text{ kcal mol}^{-1}
\]

(61)

Consequently, this reaction is endothermic in the gas phase. Also, ΔG was calculated to be +5.3 kcal mol −1 in the gas phase. However, in the aqueous phase, solvation by water of the H−O_2 radical provides some driving force for this reaction and, using a known solvent model, it is estimated that ΔG_{aqueous} will drop to 1.6 kcal mol −1 due to solvation effects. Substituent effects on the Q^−−H could make ΔG negative and accelerate the reaction even further. Consequently, a very weak phenolic O−H bond (BDE < 60 kcal mol −1) can cause the phenolic antioxidant to turn into a pro-oxidant, since the HO_2^* formed will start new oxidation chains.

Despite a practical limit on antioxidant activity, as determined by the strength of the O−H bond, the search will continue for more efficient antioxidants, especially those that are active but non-toxic. With this in mind we are currently investigating the 1,8-naphthalenediol, and derivatives. The derived radical is stabilized by a strong
intramolecular hydrogen bond, like that in the ortho-semiquinone radical, but formation of a quinone and the associated toxicity are not possible for the radical.

Pratt and coworkers\(^\text{(41)}\) recently used both calculations and syntheses to develop a novel and promising group of antioxidants by incorporating nitrogens into the aromatic ring of hydroxy aromatics. For example, one of their compounds bearing a para-dimethylamino group and two nitrogens is \(43\), possessing a higher ionization potential but a lower O–H BDE than \(\alpha\)-Toc. As a result, it is more stable in air than \(\alpha\)-Toc, but reacts about twice as fast with peroxyl radicals than \(\alpha\)-Toc.

\[\text{(43)}\]

It should be realized that there are factors other than activity that determine the efficacy of an antioxidant. As outlined recently by Noguchi and Niki\(^\text{(42)}\), ‘the potency of antioxidants... is determined by many factors...’

1. the chemical reactivity towards radicals,
2. localization of antioxidants,
3. concentration and mobility at the microenvironment,
4. fate of antioxidant-derived radical,
5. interaction with other antioxidants, and
6. absorption, distribution, retention, metabolism, and safety.’

The natural RRR-\(\alpha\)-Toc isomer meets the above criteria\(^\text{(43)}\), with the possible exception of ‘mobility’, and more than this it has been shown that \(\alpha\)-tocopheryl quinone, the common oxidation product of \(\alpha\)-Toc, is converted back into vitamin E in man\(^\text{(44)}\).

(2) Is there a preferred method to determine antioxidant activity?

We have reviewed briefly the many different methods to evaluate antioxidants indicating advantages or limitations where appropriate. It is emphasized again that in order to determine the antioxidant activity, one must control the rate of free radical initiation. A preferred way to do this is by using azo initiators which decompose to form peroxyl radicals at a known, controlled rate. The advantages of the simple oxygen uptake method
were given. While this method is not suitable for rapid, qualitative ‘screening’ for antioxidants, in fact these popular screening methods can give completely unreliable results. For example, the so-called Trolox Equivalent Antioxidant Capacity (TEAC) method measures the concentration of Trolox with the same antioxidant capacity as a 1 mM concentration of unknown antioxidant. However, Trolox is water-soluble, so if peroxyl radicals are generated in an aqueous phase for this test, Trolox will trap them there for the most part and one may not know the real function of the unknown. In addition, this method, and one like it called ORAC, the oxygen radical absorbing capacity versus Trolox, will not usually distinguish between an antioxidant and a retarder. This can lead to erroneous conclusions about the efficiency of a compound as antioxidant compared to Trolox or vitamin E, for example in the case of melatonin283.

(3) How are radical reactions initiated in vivo?

The many methods to initiate lipid peroxidation in vitro, such as azo initiators, metal ions, pulse radiolysis, photoinitiation (Type I), enzymes (oxidases), to mention a few, have been reviewed279. However, as Bucala emphasized in a review111, ‘oxidation initiation is a pivotal first step and there is little understanding of how initiation proceeds in vivo.’ Transition metal ions, iron or copper, are frequently used to initiate lipid oxidation, but free (unchelated) redox-active transition metals are virtually absent from biological systems110 and appear to have little bearing on known pathological processes111.

We have found that the DNA/RNA bases, purine and pyrimidine, will photoinitiate the radical peroxidation of lipids in a model heterogeneous system (e.g. micelles)284 but the relevance of this in vivo is not known. As Pryor pointed out some years ago285, superoxide is found in all aerobically metabolizing cells, but at physiological pH only a small portion, 1%, will exist as the conjugate acid, the hydroperoxyl radical HOO•, which can initiate lipid peroxidation. Of course, it would not seem to be possible to directly test the overall significance of initiation of radical reactions in the living cell by HOO•. In a different approach to this problem, Salvador, Antunes and coworkers developed a mathematical kinetic modeling procedure as applied to the mitochondrial inner membranes286,287. Their model was based on certain known rate constants and possible relevant reactions in mitochondria. Their results included the importance of the HOO• radical compared with HO• in the initiation, with an order of magnitude higher rate of initiation by HOO• of \(10^{-7} \text{ M}^{-1} \text{s}^{-1}\) in mitochondrial membranes.

(4) Are there specific benefits (or dangers) from nutritional additives like flavonoids?

Flavonoids that possess the catechol structure (ring B) are active antioxidants. The intake level of the human diet is high, ranging from about 50–500 mg per day, compared to vitamins C and E258. However, it appears that little is known about the bioavailability or efficiency in vivo. The percentage absorbed according to blood levels is only a few percent of flavonoids ingested258. It was suggested that their in vivo antioxidant effect may be tested by measuring the increase in the total antioxidant potential of blood plasma after a single, large intake of flavonoid-containing food or beverages. The antioxidant capacity of plasma can be determined by measuring TRAP, the total radical trapping antioxidant parameter and the contribution of each antioxidant to TRAP evaluated by analysis258. It is reported that long-term consumption of green tea improves the levels of α-Toc in red blood cells and LDL; that is, the flavonoids apparently have a sparing effect on other antioxidants258.

The modern media hype on nutritional additives has put their use very much into the general public domain. In 1995 the NIH set up an Office of Dietary Supplements and the first Director, Dr. Bernadette Marriott, on the occasion of launching a new journal, Antioxidants and Redox Signaling10, wrote in the Introduction: ‘For the public, antioxidants embody a solution to most health problems and to living a long life without looking old!’.
VI. REFERENCES

12. Phenols as antioxidants

12. Phenols as antioxidants

256. L. R. C. Barclay, Unpublished results.

277. E. Johnson, Unpublished results.

CHAPTER 13

Analytical aspects of phenolic compounds

JACOB ZABICKY

Institutes for Applied Research, Ben-Gurion University of the Negev, P. O. Box 653, Beer-Sheva 84105, Israel
Fax: +972–8-6472969; e-mail: zabicky@bgumail.bgu.ac.il

I. ACRONYMS .. 912
II. INTRODUCTION 913
 A. Phenols in Nature and the Technological World 913
 B. Some Considerations in Modern Analysis 928
 C. Scope of the Chapter 929
III. GAS CHROMATOGRAPHY 930
 A. Sample Preparation 930
 1. General .. 930
 2. Solid phase extraction vs. liquid–liquid extraction 930
 3. Simultaneous distillation and extraction 931
 4. Solid phase microextraction 932
 5. Supercritical fluid extraction 932
 B. Derivatization 933
 1. General .. 933
 2. Acylation 933
 3. Silylation 934
 4. Alkylation 935
 5. Bromination 937
 C. End Analysis 937
 1. General .. 938
 2. Environmental samples 938
 3. Foodstuff samples 938
 4. Miscellaneous industrial samples 941
IV. LIQUID CHROMATOGRAPHY 942
 A. Sample Preparation 942
 1. General .. 942

The Chemistry of Phenols. Edited by Z. Rappoport

909
2. Solid phase extraction vs liquid–liquid extraction
 a. General aspects
 b. Environmental samples
 c. Foodstuffs
 d. Miscellaneous industrial products
 e. Biological and biomedical samples
3. Other preconcentration methods

B. Derivatization
 1. General
 2. Formation of azo dyes
 3. Formation of imino dyes
 4. Fluorescent tags and fluorescence enhancement

C. End Analysis
 1. General
 2. Foodstuffs
 a. General
 b. Fruit juice
 c. Wine and liquors
 d. Oils and fats
 e. Miscellaneous
 3. Environmental samples
 a. General
 b. Water
 c. Soil
 4. Biological and biomedical samples
 a. Plant extracts
 b. Effects of food intake
 c. Physiological and toxicological monitoring
 5. Miscellaneous industrial products
 a. Polymeric materials
 b. Disinfectants
 c. Liquid fuels
 d. Dyestuffs
 6. Structural and functional characterization

V. ELECTROPHORESIS
 A. Environmental Samples
 1. Water
 a. Sensitivity enhancement
 b. Miscellaneous samples
 2. Soil
 3. Air
 B. Foodstuffs
 1. General
 2. Wine and beer
 3. Honey
 C. Biological Samples
 D. Miscellaneous Industrial Samples
 1. Wood and paper
 2. Fuels
13. Analytical aspects of phenolic compounds

E. Structural and Functional Characterization ... 974

VI. BIOSENSORS ... 974
A. Electrochemical Detection .. 974
 1. Working principles .. 974
 2. Biosensors based on tyrosinase .. 974
 3. Biosensors based on peroxidases and other enzymes .. 977
 4. Biosensors incorporating tissues and microorganisms .. 978
 5. Amplification processes .. 979
B. Spectrophotometric and Colorimetric Detection ... 980

VII. ELECTROCHEMICAL METHODS ... 981
A. Voltammetric Detection ... 981
 1. Quantitative analysis .. 981
 2. Structural and functional characterization .. 982
B. Amperometric Detection .. 983
 1. Quantitative analysis .. 983
 2. Structural and functional characterization .. 984
C. Polarography .. 984
D. Potentiometric Titrations .. 984
 1. Quantitative analysis .. 984
 2. Structural and functional characterization .. 984

VIII. ULTRAVIOLET-VISIBLE DETECTION METHODS ... 984
A. Spectrophotometry and Colorimetry ... 984
 1. Direct determination .. 984
 2. Derivatization ... 985
 a. Halogenation ... 985
 b. Oxidative coupling ... 985
 c. Coupling with diazonium ions ... 987
 d. Complex formation ... 988
 e. Miscellaneous color-developing methods .. 990
 3. Structural and functional characterization .. 991
B. Fluorescence Detection ... 993
 1. Direct determination .. 993
 2. Fluorescent labelling ... 995
C. Chemiluminescence Detection .. 995

IX. INFRARED AND RAMAN SPECTRAL METHODS .. 997
A. Quantitative Analysis .. 997
B. Structural and Functional Characterization .. 997

X. NUCLEAR MAGNETIC RESONANCE .. 997
A. Quantitative Analysis .. 997
B. Structural and Functional Characterization .. 998

XI. MASS SPECTROMETRY .. 999

XII. MISCELLANEOUS METHODS ... 1000
A. Surface Plasmon Resonance ... 1000
B. Miscellaneous Titrations ... 1000
C. Piezoelectric Detection ... 1001
D. Thermal Analysis ... 1002
E. Phenol as a Measuring Stick ... 1002

XIII. REFERENCES ... 1002
I. ACRONYMS

AED atomic emission detector
AMD amperometric detector/detection
APCI-MS atmospheric pressure chemical ionization MS
BET Brunauer–Emmett–Teller method
CE capillary electrophoresis
CLD chemiluminescence detector/detection
CPE carbon paste electrode
CZE capillary zone electrophoresis
DA-UVD diode array UVD
DPV differential pulse voltammetry
DRD differential refractometric detection
ECD electron capture detector/detection
ELD electrochemical detector/detection
EPA U.S. Environmental Protection Agency
ESI-MS electrospray ionization MS
FA”MS fast atom bombardment MS
FIA flow injection analysis
FID flame ionization detector/detection
FLD fluorimetric detector/detection
GCB graphitized carbon black
GCE glassy carbon electrode
GPC gel permeation chromatography
IEC ion exchange chromatography
ISP-MS ion spray MS
ITD-MS ion trap detector MS
LLE liquid–liquid extraction
LOD limits of detection
LOQ limits of quantitation
MALDI matrix assisted desorption-ionization
MAP microwave assisted process
MEC micellar electrokinetic chromatography
MLC micellar liquid chromatography
MS mass spectrum/spectra/spectrometry
PBEI-MS particle-beam electron-impact MS
PCR principal components regression
PLS partial least squares
RP- reversed phase, for example RP-HPLC
SAX strong anion exchanger
SDE simultaneous distillation and extraction
SFC supercritical fluid chromatography
SFE supercritical fluid extraction
SIA sequential injection analysis
SIM selected ion monitoring
SNR signal-to-noise ratio
SPR surface plasmon resonance
SPE solid phase extraction
SPME solid phase microextraction
TSP-MS thermospray-MS
UVD ultraviolet-visible detector/detection
UVMA ultraviolet multiwavelengths absorptiometry
UVV ultraviolet-visible
II. INTRODUCTION

A. Phenols in Nature and the Technological World

Phenolic compounds are extensively distributed in living organisms. Only a small sampling of the intense research activity involving these compounds will be mentioned here. L-Tyrosine (1) is a protein-building amino acid present in all cells. Some of the simple phenolic plant constituents yield polymeric materials such as lignins and procyandins. Lignin is a macromolecular substance derived from \(n \)-propylbenzene building blocks. Together with cellulose and other polysaccharides lignin forms the woody tissues that constitute the mechanical support of higher plants. Humic acids are phenolic degradation products of plant debris found in the soil. Flavonoids are polyphenolic compounds derived from 1,3-diphenylpropane, where the aliphatic chain is part of a six-membered heterocyclic ring. Various classes are distinguished, depending on the structure of the heterocyclic ring: Catechins, such as \((-\)-epicatechin (2) and \(\pm\)-catechin (3), flavones, such as apigenin (4), flavanones, such as naringenin (5) and flavonols, such as kaempferol (6); many of these compounds appear as glycosides. Flavonoids and other phenolic constituents may contribute to leaf or seed resistance to insect, or pathogenic fungal attack\(^{1\text{-}4}\). Tannins are polyhydic phenolic compounds of complex structure, found in extracts from many parts of the plants; for example, corilagin (7) is formed from gallic acid (8) and glucose blocks. GC-MS identification of gallic acid and inositol in extracts from an Egyptian mummy pointed to the use of tannins in the embalming process\(^5\).

A plethora of simpler phenolcarboxaldehydes and phenolcarboxylic acids are found in plant extracts that contribute to the organoleptic properties of derived foodstuffs, such as fruit juices, wine and oil. The state of ripening of a cultivar may also affect these properties, by changing the nature and concentration of the relevant phenolic compounds\(^6\text{-}7\). The distribution of phenolic compounds usually varies from tissue to tissue in the same individual, from variety to variety for the same species\(^8\text{-}15\) and from species to species for the same genus\(^16\text{-}17\). A close correlation between the phenolic compound patterns and the botanical origin of plants was found\(^18\). An individual hybrid plant tends to reproduce the characteristics of the parental taxa\(^19\), thus, for example, the genetic composition of *Equisetum* hybrids in the British Isles could be determined not only from their morphological characteristics, but also based on HPLC and TLC determination of their phenolic constituents, such as caffeic acid conjugates, flavonoids and styrylpyrones. The involved analytical profiles shown by the phenolic compounds present in certain tissues may serve for forensic identification. Thus, reversed phase HPLC (RP-HPLC) analysis with diode-array ultraviolet-visible detection (DA-UVD) of the phenolic extracts from samples of Portuguese quince jams showed that certain specimens contained arbutin (9), suggesting adulteration with pear puree\(^20\).

Important phenolic compounds that can be found in the animal kingdom are the catecholamines (e.g. dopamine, 10a; dopa, 10b) that are essential to the physiology of the nervous system, steroidal hormones such as estrone (11), amino acid hormones such as thyroxine (12) and polypeptidic hormones containing tyrosine (1) residues such as the drugs shown in Table 1 carrying note \(f\).

Development of analytical methods for certain classes of phenolic compounds is necessary in support of food related clinical investigations. A monograph appeared on biologically active oxidants and antioxidants\(^21\) and the effects of the latter on the food intake\(^22\). Interest in the flavonoids, isoflavonoids and other phenolic constituents arose for their varied potential pharmacological action, such as anticarcinogenic properties\(^23\text{-}25\). Tea catechins and flavonoids have been reported as antioxygenic\(^26\text{-}27\), antimutagenic\(^28\) and possessing prophylactic activity against hypertension\(^29\). Caffeic (25), coumaric (26) and protocatechuic (27) acids were investigated \textit{in vitro} for their inhibitory action on the oxidation of human low-density lipoprotein in serum\(^30\). The antioxidant action of 25, 26\(^30\).
and flavonoids27 has been linked to the lower incidence of coronary disease in populations with high red wine intake. Resveratrol (28a) has been attributed many properties of clinical relevance. This compound and its 3\(\beta\)-glycoside (picein, 28b) are found in groundnuts (\textit{Arachis hypogaea}) and grape products31.

 Phenol is a heavy chemical used to manufacture phenolic resins and organic intermediates such as bisphenol A (29), salicylic acid (21), alkylphenols, aniline, xylenols and cyclohexanone (as a precursor of adipic acid, 30). Natural and synthetic phenolic
13. Analytical aspects of phenolic compounds

(7)

(8)

(9)

(10) (a) R = H
(b) R = CO₂H

(11)

(12)
<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS registry number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>[103-90-2]</td>
<td></td>
</tr>
<tr>
<td>Albuterol</td>
<td>[18558-94-9]</td>
<td>b</td>
</tr>
<tr>
<td>Apomorphine hydrochloride</td>
<td>[41372-20-7]</td>
<td></td>
</tr>
<tr>
<td>Bismuth subgallate</td>
<td>[99-26-3]</td>
<td>c</td>
</tr>
<tr>
<td>Buprenorphine hydrochloride</td>
<td>[53152-21-9]</td>
<td></td>
</tr>
<tr>
<td>Butorphanol tartrate</td>
<td>[58786-99-5]</td>
<td>c</td>
</tr>
<tr>
<td>Carbidopa</td>
<td>[28860-95-9]</td>
<td>b</td>
</tr>
<tr>
<td>Cefadroxil</td>
<td>[13] [119922-85-9]</td>
<td></td>
</tr>
<tr>
<td>Cefoperazone sodium</td>
<td>[14] [62893-20-3]</td>
<td></td>
</tr>
<tr>
<td>Cefpiramide</td>
<td>[70797-11-4]</td>
<td></td>
</tr>
<tr>
<td>Cefprozil</td>
<td>[12] [121123-17-9]</td>
<td></td>
</tr>
<tr>
<td>Chlorotetracycline hydrochloride</td>
<td>[64-72-2]</td>
<td></td>
</tr>
<tr>
<td>Chloroxylenol</td>
<td>[88-04-0]</td>
<td>d</td>
</tr>
<tr>
<td>Cloquinol</td>
<td>[130-26-7]</td>
<td></td>
</tr>
<tr>
<td>Demeclocycline</td>
<td>[127-33-3]</td>
<td>d</td>
</tr>
<tr>
<td>Dienestrol</td>
<td>[84-17-3; 13029-44-2]</td>
<td></td>
</tr>
<tr>
<td>Diethylstilbestrol</td>
<td>[56-53-1]</td>
<td></td>
</tr>
<tr>
<td>Dioxybenzone</td>
<td>[131-53-3]</td>
<td></td>
</tr>
<tr>
<td>Dobutamine hydrochloride</td>
<td>[49745-95-1]</td>
<td>b</td>
</tr>
<tr>
<td>Dopamine (10a) hydrochloride</td>
<td>[62-31-7]</td>
<td></td>
</tr>
<tr>
<td>Doxycycline</td>
<td>[17086-28-1]</td>
<td></td>
</tr>
<tr>
<td>Doxylamine succinate</td>
<td>[562-10-7]</td>
<td></td>
</tr>
<tr>
<td>Dronabinol</td>
<td>[1972-08-3]</td>
<td></td>
</tr>
<tr>
<td>Edrophonium chloride</td>
<td>[116-38-1]</td>
<td></td>
</tr>
<tr>
<td>Epinephrine (15a)</td>
<td>[51-43-4]</td>
<td>b</td>
</tr>
<tr>
<td>Epitetracycline hydrochloride</td>
<td>[23313-80-6]</td>
<td></td>
</tr>
<tr>
<td>Equilin</td>
<td>[474-86-2]</td>
<td>d</td>
</tr>
<tr>
<td>Estradiol</td>
<td>[50-28-2]</td>
<td>e</td>
</tr>
<tr>
<td>Estriol</td>
<td>[50-27-1]</td>
<td>e</td>
</tr>
<tr>
<td>Estrone</td>
<td>[53-16-7]</td>
<td>e</td>
</tr>
<tr>
<td>Ethinyl estradiol</td>
<td>[57-63-6]</td>
<td>e</td>
</tr>
<tr>
<td>Eugenol</td>
<td>[97-53-0]</td>
<td></td>
</tr>
<tr>
<td>Fluorescein (16)</td>
<td>[2321-07-5]</td>
<td></td>
</tr>
<tr>
<td>Glucagon</td>
<td>[16941-32-5]</td>
<td>f</td>
</tr>
<tr>
<td>Hexylresorcinol</td>
<td>[136-77-6]</td>
<td></td>
</tr>
<tr>
<td>Homosalate</td>
<td>[118-56-9]</td>
<td>g</td>
</tr>
<tr>
<td>Hydroxymorphone hydrochloride</td>
<td>[71-68-1]</td>
<td></td>
</tr>
<tr>
<td>Hydroxyamphetamine hydrochloride</td>
<td>[306-21-8]</td>
<td></td>
</tr>
<tr>
<td>Hydroxyzine pamoate</td>
<td>[10246-75-0]</td>
<td>h</td>
</tr>
<tr>
<td>Insulin</td>
<td>[11070-73-8, 11061-68-0]</td>
<td></td>
</tr>
<tr>
<td>Iodoquinol</td>
<td>[83-73-8]</td>
<td>f</td>
</tr>
<tr>
<td>Isoetharine hydrochloride</td>
<td>[2576-92-3]</td>
<td>b</td>
</tr>
<tr>
<td>Isoproterenol hydrochloride</td>
<td>[51-30-9]</td>
<td>b</td>
</tr>
<tr>
<td>Isoxsuprine hydrochloride</td>
<td>[579-56-6, 34331-89-0]</td>
<td></td>
</tr>
<tr>
<td>Labetalol hydrochloride</td>
<td>[32780-64-6]</td>
<td>b</td>
</tr>
<tr>
<td>Levodopa</td>
<td>[59-92-7]</td>
<td>b</td>
</tr>
<tr>
<td>Levonordefrin</td>
<td>[18829-78-2, 829-74-3]</td>
<td></td>
</tr>
<tr>
<td>Levorphanol tartrate</td>
<td>[125-72-4]</td>
<td>c</td>
</tr>
<tr>
<td>Levothyroxin sodium</td>
<td>[25416-65-3, 55-03-8]</td>
<td></td>
</tr>
<tr>
<td>Liothyronine sodium</td>
<td>[55-06-1]</td>
<td>i</td>
</tr>
<tr>
<td>Meclocycline sulfosalicylate</td>
<td>[73816-42-9]</td>
<td>d, g</td>
</tr>
<tr>
<td>Mesalamine</td>
<td>[89-57-6]</td>
<td>g</td>
</tr>
<tr>
<td>Metacresol (17)</td>
<td>[108-39-4]</td>
<td></td>
</tr>
<tr>
<td>Metaproterenol sulfate</td>
<td>[5874-97-5]</td>
<td></td>
</tr>
<tr>
<td>Metamnirin bitartrate</td>
<td>[33402-03-8]</td>
<td></td>
</tr>
<tr>
<td>Methacycline hydrochloride</td>
<td>[3963-95-9]</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>CAS registry number</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Methyldopa</td>
<td>[41372-08-1, 555-30-6]</td>
<td>b</td>
</tr>
<tr>
<td>Methyldopate hydrochloride</td>
<td>[5123-53-5, 2509-79-4]</td>
<td>b</td>
</tr>
<tr>
<td>Methyrosine</td>
<td>[672-87-7]</td>
<td>i</td>
</tr>
<tr>
<td>Minocycline hydrochloride</td>
<td>[13614-98-7]</td>
<td>d</td>
</tr>
<tr>
<td>Morphine (18) sulfate</td>
<td>[6211-15-0, 64-51-3]</td>
<td></td>
</tr>
<tr>
<td>Nalorphine hydrochloride</td>
<td>[57-29-4]</td>
<td>c</td>
</tr>
<tr>
<td>Naloxone hydrochloride</td>
<td>[357-08-4]</td>
<td>c</td>
</tr>
<tr>
<td>Naltrexone hydrochloride</td>
<td>[16676-29-2]</td>
<td>c</td>
</tr>
<tr>
<td>Norepinephrine (15b) bitartrate</td>
<td>[69815-49-2]</td>
<td>b</td>
</tr>
<tr>
<td>Octyl salicylate</td>
<td>[118-60-5]</td>
<td>g</td>
</tr>
<tr>
<td>Oxymorphine hydrochloride</td>
<td>[57-07-3]</td>
<td>c</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>[6153-64-6]</td>
<td>d</td>
</tr>
<tr>
<td>Oxynoradrenaline</td>
<td>[50-56-6]</td>
<td>f</td>
</tr>
<tr>
<td>Parachlorophenol</td>
<td>[106-48-9]</td>
<td>c</td>
</tr>
<tr>
<td>Pentazocine</td>
<td>[359-83-1]</td>
<td></td>
</tr>
<tr>
<td>Phenol [108-95-2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenolphthalein (19)</td>
<td>[77-09-8]</td>
<td>j</td>
</tr>
<tr>
<td>Phenylephrine hydrochloride</td>
<td>[61-76-7]</td>
<td></td>
</tr>
<tr>
<td>Potassium guaiacolsulfonate</td>
<td>[78247-49-1]</td>
<td></td>
</tr>
<tr>
<td>Propranolol [23288-49-5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrantel pamoate</td>
<td>[22204-24-6]</td>
<td>h</td>
</tr>
<tr>
<td>Pyridoxine hydrochloride</td>
<td>[58-56-0]</td>
<td>k</td>
</tr>
<tr>
<td>Pyrimidine pamoate</td>
<td>[3546-41-6]</td>
<td>h</td>
</tr>
<tr>
<td>Raclopride C-11</td>
<td></td>
<td>l</td>
</tr>
<tr>
<td>Receptinephrine</td>
<td>[329-65-7]</td>
<td>b</td>
</tr>
<tr>
<td>Resorcinol [20]</td>
<td>[108-46-3]</td>
<td></td>
</tr>
<tr>
<td>Rifampin [13292-46-1]</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Ritodrine hydrochloride</td>
<td>[23239-51-2]</td>
<td></td>
</tr>
<tr>
<td>Rosebengal sodium I-131</td>
<td></td>
<td>l</td>
</tr>
<tr>
<td>Roxarsone [121-19-7]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicylamide</td>
<td>[65-45-2]</td>
<td>g</td>
</tr>
<tr>
<td>Salicylic acid (21)</td>
<td>[69-72-7]</td>
<td></td>
</tr>
<tr>
<td>Salsalate [552-94-3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sargamostim [123774-72-1]</td>
<td></td>
<td>f</td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>[599-79-1]</td>
<td></td>
</tr>
<tr>
<td>Sulisobenzone</td>
<td>[4065-45-6]</td>
<td>g</td>
</tr>
<tr>
<td>Terbutaline sulfate</td>
<td>[23031-32-5]</td>
<td></td>
</tr>
<tr>
<td>Tetracycline (22)</td>
<td>[60-54-8]</td>
<td>b</td>
</tr>
<tr>
<td>Tubocurarine chloride</td>
<td>[41354-45-4]</td>
<td></td>
</tr>
<tr>
<td>Tyrosine (1)</td>
<td>[60-18-4]</td>
<td></td>
</tr>
<tr>
<td>Vancomycin [1404-93-9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasopressin [50-57-7]</td>
<td></td>
<td>f</td>
</tr>
</tbody>
</table>

a The United States Pharmacopeia⁴². Entries are presented with quality control analytical procedures.

b A catecholamine. Model compound: Dopamine (10a).

c A morphine (18) alkaloid analogue.

d A tetracycline (22) antibiotic analogue.

e A steroidal hormone. Model compound: Estrone (11).

f A polypeptide hormone with at least one tyrosine (1) residue.

g A derivative of salicylic acid (21).

h Pamoic acid (23) is a phenolic compound.

i A phenolic α-amino acid. Model compound: Tyrosine (1).

j This pharmaceutical was removed from the USP⁴² but it is still listed in its British counterpart⁴³.

k A phenolic derivative of pyridine.

l A radioactive isotope carrier.

m A rifamycine (24) antibiotic analogue.
13. Analytical aspects of phenolic compounds

(18)

(19)

(20)

(21)

(22)

(23)

(24)
compounds that have found pharmaceutical application are listed in Table 1. The dyes are an important class of industrial products, including hundreds of organic compounds of varied structure, many of which contain phenolic moieties. In Table 2 appear commercially available dyes listed in the Color Index. Although compounds containing the azo group are predominant in this list, several other classes of dyes are represented. Synthetic antioxidants such as those appearing in Table 3 are added to foods, drugs and other manufactured products to inhibit autooxidation. As these additives are somewhat toxic, it is necessary to control the amount added to any food or drug. A plethora of computational methods have been developed to correlate structure and properties of compounds, including many aspects of biological behavior (toxicity, pharmacological activity, growth promotion and inhibition, etc.)32. The presence of phenolic compounds in urine points to exposure to aromatic hydrocarbons, such as benzene and condensed polycyclic hydrocarbons, frequent in gasoline station operators and tar-related industries33–35.

The appearance of simple phenolic compounds in water points to pollution stemming from industrial sources, such as manufacturers of dyes, drugs, antioxidants, pulp and paper, or may be the result of pesticide application. The presence of certain phenols in
TABLE 2. Commercially available phenolic dyes listed in the Color Index (CI)

<table>
<thead>
<tr>
<th>Dyes [CAS registry number] and Color Index number</th>
<th>λ_{max}</th>
<th>I(2)</th>
<th>U</th>
<th>SR(2)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Alizarin Violet N [2092-66-9] CI 15670</td>
<td>663 nm</td>
<td>997C</td>
<td>U1</td>
<td>SR(2)2747B, DB7012000</td>
<td>b</td>
</tr>
<tr>
<td>Acid Blue 45 [2861-02-1] CI 63010</td>
<td>595 nm</td>
<td>1017D</td>
<td>U8</td>
<td>SR(2)2773F, CB5048500</td>
<td>b</td>
</tr>
<tr>
<td>Acid Orange 8 [5850-86-2] CI 15575</td>
<td>490 nm</td>
<td>981D</td>
<td>U25</td>
<td>SR(2)2747A,</td>
<td>b</td>
</tr>
<tr>
<td>Acid Red 88 [1658-56-6] CI 15620</td>
<td>505 nm</td>
<td>986D</td>
<td>U35</td>
<td>SR(2)2751A, QK2420000</td>
<td>b</td>
</tr>
<tr>
<td>Acid Red 97 [10169-02-5] CI 22890</td>
<td>498 nm</td>
<td>993D</td>
<td>U36</td>
<td>SR(2)2765C, GC5787480</td>
<td>b</td>
</tr>
<tr>
<td>Acid Red 114 [6459-94-5] CI 23635</td>
<td>514(365) nm</td>
<td>993B</td>
<td>U38</td>
<td>SR(2)2761O, QK6784500</td>
<td>b</td>
</tr>
<tr>
<td>Acid Red 183 [6408-31-7] CI 18800</td>
<td>494 nm</td>
<td>1001B, U40</td>
<td>SR(2)2755K</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Acid Violet 7 [1658-56-6] CI 18055</td>
<td>520 nm</td>
<td>999D</td>
<td>U42</td>
<td>SR(2)2749E, QK6000000</td>
<td>b</td>
</tr>
<tr>
<td>Acid Yellow 99 [10343-58-5] CI 13900</td>
<td>445 nm</td>
<td>984D</td>
<td>U56, SR(2)2743I</td>
<td>b, d</td>
<td></td>
</tr>
<tr>
<td>Alizarin [72-48-0] CI 58000</td>
<td>556(596) nm</td>
<td>984D</td>
<td>U56, SR(2)2743I</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Alizarin Blue Black B [1324-21-6] CI 63615</td>
<td>548 nm</td>
<td>993B</td>
<td>U77</td>
<td>SR(2)2217H, QK6550000</td>
<td>e</td>
</tr>
<tr>
<td>Alizarin Red S [130-22-3] CI 58005</td>
<td>556(596) nm</td>
<td>2510D, U80</td>
<td>SR(2)2717D, CB1095300</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Alizarin Yellow GG [584-42-9] CI 14025</td>
<td>362 nm</td>
<td>972A</td>
<td>U84</td>
<td>SR(2)2741H, DH2528550</td>
<td>b</td>
</tr>
<tr>
<td>Allura Red AC [25956-17-6] CI 16035</td>
<td>504 nm</td>
<td>972A</td>
<td>U84</td>
<td>SR(2)2741H, DH2528550</td>
<td>b</td>
</tr>
<tr>
<td>Amaranth [915-67-3] CI 16185</td>
<td>521 nm</td>
<td>988B</td>
<td>U92</td>
<td>SH118A, SR(2)2751K, QK6550000</td>
<td>b</td>
</tr>
<tr>
<td>Aurintricarboxylic acid trisodium salt [13186-45-3] CI 43810</td>
<td>525 nm</td>
<td>1031B, U106</td>
<td>SR(2)2775D, DG4975325</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Biebrich Scarlet [4196-99-0] CI 26905</td>
<td>505 nm</td>
<td>986B</td>
<td>U137</td>
<td>SH413A, SR(2)2763D</td>
<td>b</td>
</tr>
<tr>
<td>Bordeaux R [5858-33-3] CI 16180</td>
<td>518 nm</td>
<td>999D</td>
<td>U148</td>
<td>SR(2)2751I, QJ6479500</td>
<td>b</td>
</tr>
<tr>
<td>Brilliant Black BN [2519-30-4] CI 28440</td>
<td>570(407) nm</td>
<td>998A</td>
<td>U150, SR(2)2763M, QJ5950000</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Brilliant Crocein MOO [5413-75-2] CI 27290</td>
<td>510 nm</td>
<td>989D</td>
<td>U158</td>
<td>SR(2)2763C</td>
<td>b</td>
</tr>
<tr>
<td>Brilliant Yellow [3051-11-4] CI 24890</td>
<td>397 nm</td>
<td>980A</td>
<td>U164</td>
<td>SR(2)2759H</td>
<td>b</td>
</tr>
<tr>
<td>Carmine [1390-65-4] CI 75470</td>
<td>531(563) nm</td>
<td>999D</td>
<td>U148, SR(2)2751I, QJ6479500</td>
<td>d, e</td>
<td></td>
</tr>
<tr>
<td>Carminic acid [1260-17-9] CI 75470</td>
<td>495 nm</td>
<td>246D, U193, SR(2)1835E</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celestine Blue [1562-90-9] CI 51050</td>
<td>642 nm</td>
<td>1041B</td>
<td>U196, SR(2)2811J</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>Chicago Sky Blue 6B [2610-05-1] CI 24410</td>
<td>618 nm</td>
<td>996D</td>
<td>U198, SR(2)2765H, QJ6430000</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Chrome Azurol S [1667-99-8] CI 43825</td>
<td>458 nm</td>
<td>1032B</td>
<td>U203, SR(2)2775E</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Chromotrope FB [3567-69-9] CI 14720</td>
<td>515(383) nm</td>
<td>998C</td>
<td>U204, SR(2)2751J, QK1925000</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>Dyes [CAS registry number] and Color Index number</th>
<th>Properties<sup>a</sup></th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromotrope 2B [548-80-1] CI 16575</td>
<td>λ<sub>max</sub> 514 nm, I(2)986A, U206, SR(2)2747N</td>
<td></td>
</tr>
<tr>
<td>Chromotrope 2R [4197-07-3] CI 16570</td>
<td>λ<sub>max</sub> 510(530) nm, I(2)982D, U207, SR(2)2747K, Q6418000.</td>
<td></td>
</tr>
<tr>
<td>Chromoxane Cyanine R [3564-18-9] CI 43820</td>
<td>λ<sub>max</sub> 512 nm, I(2)1031C, U209, SR(2)2791C.</td>
<td></td>
</tr>
<tr>
<td>Crocein Orange G [1934-20-9] CI 15970</td>
<td>λ<sub>max</sub> 482 nm, I(2)981B, U238, SR(2)2745M</td>
<td></td>
</tr>
<tr>
<td>Crystal Scarlet [2766-77-0] CI 16250</td>
<td>λ<sub>max</sub> 510 nm, I(2)987D, N(3)550B, SR(2)2751H</td>
<td></td>
</tr>
<tr>
<td>Diazine Black [4443-99-6] CI 11815</td>
<td>λ<sub>max</sub> 584 nm</td>
<td></td>
</tr>
<tr>
<td>4',5'-Dibromofluorescein [396-03-2] CI 45370.1</td>
<td>λ<sub>max</sub> 450 nm, I(2)1011A, U249, SR(2)2793N, LM5200000</td>
<td></td>
</tr>
<tr>
<td>Diodofluorescein [31395-16-1] CI 45425.1</td>
<td>λ<sub>max</sub> 522 nm, I(2)1011B, U257, SR(2)2793O</td>
<td></td>
</tr>
<tr>
<td>Direct Blue 71 [4399-55-7] CI 34140</td>
<td>λ<sub>max</sub> 594 nm, I(2)992C, U268, SR(2)2767F</td>
<td></td>
</tr>
<tr>
<td>Direct Red 23 [3441-14-3] CI 29160</td>
<td>λ<sub>max</sub> 507 nm, I(2)996B, U270, SR(2)2763O</td>
<td></td>
</tr>
<tr>
<td>Direct Red 75 [2829-43-8] CI 25380</td>
<td>λ<sub>max</sub> 522 nm, I(2)995D, U272, SR(2)2765B</td>
<td></td>
</tr>
<tr>
<td>Direct Red 80 [2610-10-8] CI 35780</td>
<td>λ<sub>max</sub> 528 nm, SR(2)2767G</td>
<td></td>
</tr>
<tr>
<td>Direct Red 81 [2610-11-9] CI 28160</td>
<td>λ<sub>max</sub> 508(397) nm, I(2)994D, U274, SR(2)2763G, QK1370000</td>
<td></td>
</tr>
<tr>
<td>Direct Violet 51 [5489-77-0] CI 27905</td>
<td>λ<sub>max</sub> 549 nm, I(2)995B, U276, SR(2)2763F</td>
<td></td>
</tr>
<tr>
<td>Disperse Orange 13 [6253-10-7] CI 26080</td>
<td>λ<sub>max</sub> 427 nm, SR(2)2759k</td>
<td></td>
</tr>
<tr>
<td>Disperse Yellow 3 [2832-40-8] CI 11855</td>
<td>λ<sub>max</sub> 357 nm, I(2)969A, U293, SR(2)2741J</td>
<td></td>
</tr>
<tr>
<td>Disperse Yellow 7 [6300-37-4] CI 26090</td>
<td>λ<sub>max</sub> 385 nm, I(2)969A, U293, SR(2)2759C, SM1140030</td>
<td></td>
</tr>
<tr>
<td>Eosin B [548-24-3] CI 45400</td>
<td>λ<sub>max</sub> 514(395) nm, I(2)1011D, U300, SR(2)2797L</td>
<td></td>
</tr>
<tr>
<td>Eosin Y [17372-87-1] CI 45380</td>
<td>λ<sub>max</sub> 517 nm, I(2)1011C, U304, SR(2)2795C, LM5850000</td>
<td></td>
</tr>
<tr>
<td>Eriochrome Black T [1787-61-7] CI 14645</td>
<td>λ<sub>max</sub> 503 nm, I(2)997D, U308, SR(2)2751F, QK2197000</td>
<td></td>
</tr>
<tr>
<td>Eriochrome Blue Black B [3564-14-5] CI 14640</td>
<td>λ<sub>max</sub> 528 nm, I(2)987C, U310, SR(2)2751D, QK2195000</td>
<td></td>
</tr>
<tr>
<td>Erythrosin B [16423-68-0] CI 45430</td>
<td>λ<sub>max</sub> 525 nm, I(2)1014D, U314, SR(2)2795L, LM5950000</td>
<td></td>
</tr>
<tr>
<td>Ethyl Eosin [6359-05-3] CI 45386</td>
<td>λ<sub>max</sub> 532 nm, I(2)1012B, U320, SR(2)2795G</td>
<td></td>
</tr>
<tr>
<td>Evans Blue [314-13-6] CI 23860</td>
<td>λ<sub>max</sub> 611 nm, I(2)996C, U327, SH1673A, SR(2)2765G, Q6440000</td>
<td></td>
</tr>
<tr>
<td>Fast Green FCF [253-45-9] CI 42053</td>
<td>λ<sub>max</sub> 622(427) nm, I(2)1033C, U345, SH1678A, SR(2)2779L, BQ4425000</td>
<td></td>
</tr>
<tr>
<td>Fluorescein sodium salt [518-47-8] CI 43350</td>
<td>λ<sub>max</sub> 491 nm, I(2)1010B, U375, SH1688C, SR(2)2793B, LM5425000</td>
<td></td>
</tr>
<tr>
<td>Galloccyanine [1562-85-2] CI 51030</td>
<td>λ<sub>max</sub> 601 nm, I(2)888A, U386, SR(2)2811L, SP7692000</td>
<td></td>
</tr>
<tr>
<td>Dyes [CAS registry number] and Color Index number</td>
<td>Properties</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>8-Hydroxy-1,3,6-pyrenetrisulfonic acid, trisodium salt [6358-59-6] CI 59040</td>
<td>(\lambda_{\text{max}} = 403 \text{ nm, UR2700000})</td>
<td></td>
</tr>
<tr>
<td>Indoine Blue [4569-88-4] CI 12210</td>
<td>(\lambda_{\text{max}} = 589 \text{ nm, U409, SH1981B, SR(2)2809E, SG1608000})</td>
<td>(b, j)</td>
</tr>
<tr>
<td>Methylene Violet [2516-05-4] CI 52041</td>
<td>(\lambda_{\text{max}} = 580 \text{ nm, I(2)1036D, U453, SR(2)2815A})</td>
<td>(b, k)</td>
</tr>
<tr>
<td>Methyl Eosin [23391-49-3] CI 45385</td>
<td>(\lambda_{\text{max}} = 520 \text{ nm, I(2)1012A, U456, SR(2)2795F})</td>
<td>(i)</td>
</tr>
<tr>
<td>Mordant Blue 9 [3624-68-8] CI 14855</td>
<td>(\lambda_{\text{max}} = 622(427) \text{ nm, I(2)1033C, U473, SR(2)2747L})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Brown 1 [3564-15-6] CI 20110</td>
<td>(\lambda_{\text{max}} = 373(487) \text{ nm, I(2)990B, U474, SR(2)2763A})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Brown 4 [6247-27-4] CI 11335</td>
<td>(\lambda_{\text{max}} = 500(374) \text{ nm, I(2)967D, U475, SR(2)2739L})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Brown 24 [5370-46-3] CI 11880</td>
<td>(\lambda_{\text{max}} = 373(487) \text{ nm, I(2)978A, U477, SR(2)2741K})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Brown 33 [3618-62-0] CI 13250</td>
<td>(\lambda_{\text{max}} = 442 \text{ nm, I(2)977D, U478, SR(2)2743F})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Brown 48 [6232-63-7] CI 11300</td>
<td>(\lambda_{\text{max}} = 492 \text{ nm, I(2)968A, U479, SR(2)2739M})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Orange 1 [2243-76-7] CI 14030</td>
<td>(\lambda_{\text{max}} = 385 \text{ nm, I(2)972B, U480, SR(2)2741I, VO5310000})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Orange 10 [6406-37-7] CI 26560</td>
<td>(\lambda_{\text{max}} = 386 \text{ nm, I(2)978D, U483, SR(2)2759G})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Red 19 [1934-24-3] CI 18735</td>
<td>(\lambda_{\text{max}} = 413 \text{ nm, I(2)1000C, U484, SR(2)2753I})</td>
<td>(b, c)</td>
</tr>
<tr>
<td>Mordant Yellow 10 [6054-99-5] CI 14010</td>
<td>(\lambda_{\text{max}} = 354 \text{ nm, I(2)977A, U486, SR(2)2743G, GB4450000})</td>
<td>(b)</td>
</tr>
<tr>
<td>Mordant Yellow 12 [6470-98-0] CI 14045</td>
<td>(\lambda_{\text{max}} = 380 \text{ nm, I(2)968D, U487, SR(2)2741G})</td>
<td>(b)</td>
</tr>
<tr>
<td>Naphthochrome Green [5715-76-4] CI 44530</td>
<td>(\lambda_{\text{max}} = 362 \text{ nm, I(2)1031D, U490, SR(2)2775F})</td>
<td>(f)</td>
</tr>
<tr>
<td>Naphthol Blue Black [1064-48-8] CI 20470</td>
<td>(\lambda_{\text{max}} = 618 \text{ nm, I(2)990C, U496, SH2505A, SR(2)2759, Q16196000})</td>
<td>(b)</td>
</tr>
<tr>
<td>Naphthol Green B [19381-50-1] CI 10020</td>
<td>(\lambda_{\text{max}} = 714 \text{ nm, I(2)954B, U498, SR(2)2833N})</td>
<td>(d)</td>
</tr>
<tr>
<td>Naphthol Yellow S [846-70-8] CI 10316</td>
<td>(\lambda_{\text{max}} = 428 \text{ nm, I(2)954A, U500, SH1685A, SR(2)2833O, QK1813000})</td>
<td>(b)</td>
</tr>
<tr>
<td>New Coccine [2611-82-7] CI 16255</td>
<td>(\lambda_{\text{max}} = 506(350) \text{ nm, I(2)988D, U506, SH2534A, SR(2)2751L, Q16530000})</td>
<td>(b)</td>
</tr>
<tr>
<td>Nitrazine Yellow [5423-07-4] CI 14890</td>
<td>(\lambda_{\text{max}} = 586 \text{ nm, I(2)985A, U500, SH2446A, SR(2)2749A})</td>
<td>(b)</td>
</tr>
<tr>
<td>Nuclear Fast Red [6409-77-4] CI 60760</td>
<td>(\lambda_{\text{max}} = 518 \text{ nm, I(2)511A, U532, SR(2)2217E})</td>
<td>(e)</td>
</tr>
<tr>
<td>Oil Red EGN [4477-79-6] CI 26120</td>
<td>(\lambda_{\text{max}} = 521 \text{ nm, I(2)975C, U536, SH2651C, SR(2)2761L})</td>
<td>(b)</td>
</tr>
<tr>
<td>Oil Red O [1320-06-5] CI 26125</td>
<td>(\lambda_{\text{max}} = 518(359) \text{ nm, I(2)976B, U537, SH2651D, SR(2)2761M})</td>
<td>(b)</td>
</tr>
<tr>
<td>Orange G [1936-15-9] CI 16230</td>
<td>(\lambda_{\text{max}} = 475 \text{ nm, I(2)982C, U539, SH2655D, SR(2)2747H, Q16500000})</td>
<td>(b)</td>
</tr>
<tr>
<td>Orange II [633-96-5] CI 15510</td>
<td>(\lambda_{\text{max}} = 483 \text{ nm, U541, SH2656A, SR(2)2745N, DB7084000})</td>
<td>(b)</td>
</tr>
<tr>
<td>Dyes [CAS registry number] and Color Index number</td>
<td>Properties<sup>a</sup></td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Orange OT [2646-17-5] CI 12100</td>
<td>λ_{max} 505 nm, I(2)949C, SR(2)2745C, QL5425000</td>
<td>b</td>
</tr>
<tr>
<td>Palatine Chrome Black 6BN [2538-85-4] CI 15705</td>
<td>λ_{max} 569 nm, I(2)987A, U545, SR(2)2751B, QK2200000</td>
<td>b</td>
</tr>
<tr>
<td>Palatine Fast Black WAN [5610-64-0] CI 15711</td>
<td>λ_{max} 588 nm, I(2)989A, U547, SR(2)2751E</td>
<td>b, d</td>
</tr>
<tr>
<td>4-Phenylazophenol [1689-82-3] CI 11800</td>
<td>λ_{max} 347 nm, I(2)965B, U574, SH2763C, SR(2)2737C, SM8300000</td>
<td>b</td>
</tr>
<tr>
<td>Phloxine B [18472-87-2] CI 45410</td>
<td>λ_{max} 515(383) nm, I(2)1013A, U577, SR(2)2795J, LM5900000</td>
<td>i</td>
</tr>
<tr>
<td>Plasmocorinth B [1058-92-0] CI 16680</td>
<td>λ_{max} 527 nm, I(2)983A, U581, SR(2)2747M</td>
<td>b</td>
</tr>
<tr>
<td>Ponceau SS [6226-78-4] CI 27190</td>
<td>λ_{max} 514(351) nm, I(2)990A, U585, SR(2)2763B</td>
<td>b</td>
</tr>
<tr>
<td>Purpurin [81-54-9] CI 58205</td>
<td>λ_{max} 515(321) nm, I(2)913C, U592, SH2985D, SR(2)1689K, CB8200000</td>
<td>e</td>
</tr>
<tr>
<td>Quinizarin [81-64-1] CI 58050</td>
<td>I(2)87A, U606, SH3024A, SR(2)1689F, CB6600000</td>
<td>e</td>
</tr>
<tr>
<td>Reactive Orange 16 [12225-83-1] CI 17757</td>
<td>λ_{max} 494(388) nm, U616, SR(2)2749J</td>
<td>b</td>
</tr>
<tr>
<td>Rosolic Acid [603-45-2] CI 43800</td>
<td>λ_{max} 482 nm, I(2)1028D, U640, SH3055B, SR(2)2775A</td>
<td>f</td>
</tr>
<tr>
<td>Sudan I [842-07-9] CI 12055</td>
<td>λ_{max} 476(418) nm, I(2)969B, U653, SH3193C, SR(2)2745B, QL4900000</td>
<td>b</td>
</tr>
<tr>
<td>Sudan II [3118-97-6] CI 12140</td>
<td>λ_{max} 493(420) nm, I(2)976A, U654, SH3193D, SR(2)2745D, QL5850000</td>
<td>b</td>
</tr>
<tr>
<td>Sudan III [85-86-9] CI 26100</td>
<td>λ_{max} 507(354) nm, I(2)975B, U656, SH3194A, SR(2)2761L, QK4250000</td>
<td>b</td>
</tr>
<tr>
<td>Sudan IV [65-53-6] CI 26105</td>
<td>λ_{max} 520(357) nm, I(2)976C, U658, SH3194B, SR(2)2761J, QL5775000</td>
<td>b</td>
</tr>
<tr>
<td>Sudan Orange G [2051-85-6] CI 11920</td>
<td>λ_{max} 388 nm, I(2)965C, U662, SR(2)2737D, CZ9027500</td>
<td>b</td>
</tr>
<tr>
<td>Sudan Red B [3176-79-2] CI 25110</td>
<td>λ_{max} 521 nm, SR(2)2761K</td>
<td>b</td>
</tr>
<tr>
<td>Sunset Yellow FCF [2783-94-0] CI 15985</td>
<td>λ_{max} 482 nm, QR2450000</td>
<td>b</td>
</tr>
<tr>
<td>Toluidine Red [2425-85-6] CI 12120</td>
<td>λ_{max} 507(398) nm, I(2)974D, U716, SR(2)2745K, QK4247000</td>
<td>b</td>
</tr>
<tr>
<td>Tropaeolin O [547-57-9] CI 14270</td>
<td>λ_{max} 490 nm, I(2)977B, U 719, SR(2)2741N</td>
<td>b</td>
</tr>
<tr>
<td>Trypan Blue [72-57-1] CI 23850</td>
<td>λ_{max} 520(357) nm, U721, SH3552D, SR(2)2765F, QJ6475000</td>
<td>b</td>
</tr>
<tr>
<td>Xylidine Ponceau 2R [3761-53-3] CI 16150</td>
<td>λ_{max} 503(388) nm, U742, SH3622B, SR(2)2747I, QJ6825000</td>
<td>b</td>
</tr>
</tbody>
</table>

^aCodes beginning with I, N and U denote FTIR spectra in Reference 36, NMR spectra in Reference 37 and UVV spectra in Reference 38, respectively. Codes beginning with SH denote data for safety handling in Reference 39, while those beginning with SR are entries on safety regulations in Reference 40. A code of two letters followed by seven digits is a reference to a protocol in Registry of Toxic Effects of Chemical Substances (RTECS) of the National Institute for Occupational Safety and Health/Occupational Safety and Health Administration (NIOSH/OSHA). See also Reference 41 for toxicological data.

^bAzo dye. ^cPyrrole dye.
^dComplex with a metal ion. ^eAlizarin dye.
^fTriphenylmethane dye. ^gPhenoxazinium dye.
^hs-Triazine reactive dye. ⁱXanthene dye.
^jPhenazinium dye. ^lPhenothiazinium dye.
drinking water may have untoward effects even at ppb levels, because on chlorine disinfection they yield chlorophenols that confer bad odor and taste. Alkylphenols and their derivatives containing one or more \(-\text{CH}_2\text{CH}_2\text{O}−\) residues are water pollutants, related to the use of nonionic surfactants, recognized as estrogenic endocrine-disrupting chemicals. Over two score nonestrogenic anthropogenic compounds that mimic the action of 17β-estradiol (37) have been recently found in wastewaters even after treatment. These are the so-called xenoestrogens, many of which are simple phenol derivatives such as bisphenol A (29), BHA (31, Table 3), 4-nonylphenol, 4-\(t\)-octylphenol, 2-\(t\)-butyl-4-methylphenol, 2-hydroxybiphenyl, 4-hydroxybiphenyl, 4-chloro-3-methylphenol and 4-chloro-2-methylphenol. The condition for estrogenic activity of a pollutant seems to be the presence of an unhindered phenolic OH group in a \(\text{para}\) position and a molecular mass of 140 to 250 Da.

Quantitative structure–toxicity models were developed that directly link the molecular structures of a set of 50 alkylated and/or halogenated phenols with their polar narcosis toxicity, expressed as the negative logarithm of the 50% growth inhibitory concentration (IGC50) value in mM units. Regression analysis and fully connected, feed-forward neural networks were used to develop the models. The best model was a quasi-Newton neural network that had a root-mean-square error of 0.070 log units for the 45 training set phenols and 0.069 log units for the five cross-validation set of phenols. The toxicity and untoward organoleptic properties conferred by phenols has induced governmental agencies to limit their concentration in water for human consumption. The phenolic compounds listed in Table 4 are among the so-called priority pollutants defined by the U.S. Environmental Protection Agency (EPA) and the European Community, and should be of main concern in the detection of water and soil pollution. In the European Community the maximum admissible concentration of all phenols present in drinking water was set to 0.5 \(\mu\text{g L}^{-1}\), excluding those that do not react with chlorine, or to 0.1 \(\mu\text{g L}^{-1}\) for

Table 3. Some antioxidants used for foodstuffs

<table>
<thead>
<tr>
<th>Antioxidant</th>
<th>Properties(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butylated hydroxyanisole(^b) [25013-16-5] (BHA, 31)</td>
<td>SK1575000</td>
</tr>
<tr>
<td>Butylated hydroxytoluene [128-37-0] (BHT, 32a)</td>
<td>I(1)1094D, N(2)285A, SH1101C, SR(1)1285L, GO7875000</td>
</tr>
<tr>
<td>2,6-(t)-butyl-4-(hydroxymethyl)phenol [88-26-6] (Lonox 100, 32b)</td>
<td>DO0750000</td>
</tr>
<tr>
<td>(n)-Propyl gallate [121-79-9] (PG, 33a)</td>
<td>I(2)301A, N(2)1261B, SH2967D, SR(2)1909K, LW8400000</td>
</tr>
<tr>
<td>(n)-Octyl gallate [1034-01-1] (OG, 33b)</td>
<td>SH2648D, SR(2)1909L, LW8225000</td>
</tr>
<tr>
<td>(n)-Dodecyl gallate [1166-52-5] (DG, 33c)</td>
<td>SH2068D, SR(2)1909M, DH9100000</td>
</tr>
<tr>
<td>2,4,5-Trihydroxybutyrophenone [1421-63-2] (THBP, 34)</td>
<td>EU5425000</td>
</tr>
<tr>
<td>(t)-Butylhydroquinone [1848-33-0] (TBHQ, 35)</td>
<td>I(1)1108B, N(2)305B, SR(1)1301D, MX4375000</td>
</tr>
<tr>
<td>Nordihydroguaiaretic acid [500-38-9] (NDGA, 36)</td>
<td>I(1)1119D, N(2)325A, SR(1)1311H, UX1750000</td>
</tr>
</tbody>
</table>

\(^a\)Codes beginning with I, N and U denote FTIR spectra in Reference 36, NMR spectra in Reference 37 and UV-V spectra in Reference 38, respectively. Codes beginning with SH denote data for safety handling in Reference 39, while those beginning with SR are entries on safety regulations in Reference 40. A code of two letters followed by seven digits is a reference to a protocol in *Registry of Toxic Effects of Chemical Substances (RTECS)* of the National Institute for Occupational Safety and Health/Occupational Safety and Health Administration (NIOSH/OSHA). See also Reference 41 for toxicological data.

\(^b\)Mixed isomers of 31.
(31) OH

Bu-t

OMe

(32) (a) R = H
(b) R = CH₂-R

Bu-t

(33) (a) R = n-Pr
(b) R = n-C₈H₁₇
(c) R = n-C₁₂H₂₅

(34) O

Me

Pr-n

(35) OH

Bu-t

(36) OH

Me

(37) OH
TABLE 4. The priority phenol pollutants according to US-EPA⁵⁷,⁵⁸ and the European Community directives⁵⁹,⁶⁰

<table>
<thead>
<tr>
<th>Compound [CAS No.]</th>
<th>Properties¹</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol [108-95-2]</td>
<td>I(1)1069A, N(2)243A, SH2745A, SR(1)1265A, SJ3325000</td>
<td>b</td>
</tr>
<tr>
<td>2-Methylphenol [95-48-7]</td>
<td>I(1)1069B, N(2)243B, SH923B, SR(1)1265B, GO6300000</td>
<td></td>
</tr>
<tr>
<td>4-Methylphenol [106-44-5]</td>
<td>I(1)1075D, SH924B, SR(1)1269F, GO6475000</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylphenol [105-67-9]</td>
<td>I(1)1087B, SH1403C, SR(1)1277I, ZE5600000</td>
<td>b</td>
</tr>
<tr>
<td>2-Nitrophenol [88-75-5]</td>
<td>I(1)1331C, N(2)682C, SH2581B, SR(1)1553D, SM2100000</td>
<td>b</td>
</tr>
<tr>
<td>3-Nitrophenol [108-41-7]</td>
<td>I(1)1341B, N(2)696C, SH2582B, SR(1)1559J, SM2275000</td>
<td>b</td>
</tr>
<tr>
<td>2,4-Dinitrophenol [51-28-5]</td>
<td>I(1)1370C, N(2)750C, SH1439D, SR(1)1587J, SL2800000</td>
<td>b</td>
</tr>
<tr>
<td>2,4-Dinitro-6-methylphenol [534-52-1]</td>
<td>I(1)1375D, N(2)763A, SH1436C, SR(1)1595B, GO9625000</td>
<td></td>
</tr>
<tr>
<td>2-Chlorophenol [95-57-8]</td>
<td>I(1)1072A, N(2)246C, SH832C, SR(1)1256N, SK2625000</td>
<td>b</td>
</tr>
<tr>
<td>3-Chlorophenol [108-43-0]</td>
<td>I(1)1075A, N(2)249C, SH833A, SR(1)1267M, SK2450000</td>
<td></td>
</tr>
<tr>
<td>4-Chlorophenol [106-48-9]</td>
<td>I(1)1078B, N(2)253B, SH833B, SR(1)1271G, SK2900000</td>
<td>b</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol [59-50-7]</td>
<td>I(1)1086D, N(2)265B, SH807D, SR(1)1277H, GO7100000</td>
<td>b</td>
</tr>
<tr>
<td>2,4-Dichlorophenol [120-83-2]</td>
<td>I(1)1089C, N(2)274B, SH1150B, SR(1)1281J, SK8575000</td>
<td>b</td>
</tr>
<tr>
<td>2,6-Dichlorophenol [87-65-0]</td>
<td>I(1)1083B, N(2)260C, SH1151A, SR(1)1275F, SK8750000</td>
<td></td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol [95-95-4]</td>
<td>I(1)1097C, N(2)292C, SH3417A, SR(1)1289K, SN1400000</td>
<td>b</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol [88-06-2]</td>
<td>I(1)1095C, N(2)287C, SH3417C, SR(1)1287I, SN1575000</td>
<td>b</td>
</tr>
<tr>
<td>2,3,4,5-Tetrachlorophenol [879-39-0]</td>
<td>I(1)1100D, SH2696B, SR(1)1291E, SM6300000</td>
<td>b</td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol [58-90-2]</td>
<td>I(1)1228A, N(2)517B, SH789A, SR(1)1417F, SJ5700000</td>
<td></td>
</tr>
</tbody>
</table>

¹Codes beginning with I and N denote FTIR spectra in Reference 36 and NMR spectra in Reference 37, respectively. Codes beginning with SH denote data for safety handling in Reference 39, while those beginning with SR are entries on safety regulations in Reference 40. A code of two letters followed by seven digits is a reference to a protocol in Registry of Toxic Effects of Chemical Substances (RTECS) of the National Institute for Occupational Safety and Health/Occupational Safety and Health Administration (NIOSH/OSHA). See also Reference 41 for toxicological data.

²Belongs to the eleven priority phenols defined by EPA.
individual compounds. An evaluation of the odor threshold concentrations of the iodine derivatives of phenol, obtained on iodine disinfection of water, was carried out for the USA space program. A review appeared dealing with the determination of phenolic pollutants in water and wastewaters, where an evaluation was given of sample preparation methods such as liquid–liquid extraction (LLE), solid phase extraction (SPE) and solid phase microextraction (SPME), and end analysis by well established analytical methods such as LC with various detectors, as well as emerging techniques such as capillary zone electrophoresis (CZE), ELISA and biosensors.

Phenols derived from lignin degradation were used as markers to determine the origin of waters of the Seine estuary in France. Thus, fluvial run-off contains syringic, hydroxybenzoic and vanillic phenols, whereas upstream penetrating marine waters contain cinnamic phenols derived from the estuarine herbs. In the maximum turbidity zone the vanillic acid (38) to vanillin (39) ratio increases due to aerobic degradation of lignin.

\[
\begin{align*}
\text{CO}_2\text{H} & \quad \text{CHO} \\
\text{OH} & \quad \text{OH} \\
\text{OMe} & \quad \text{OMe}
\end{align*}
\]

B. Some Considerations in Modern Analysis

The analytical procedures in the chemical industry may include part or all of the following steps: Sampling, sample reduction, sample preparation, end analysis, disposal of analytical wastes, data processing and feedback into the control system. Automation of all stages of the analytical process is a trend that can be discerned in the development of modern analytical methods for chemical manufacture; however, the extent to which this has been applied varies from case to case, depending on reliability and cost-benefit considerations. Among the elements of reliability one counts conformity of the accuracy and precision of a method to the specifications of the manufacturing process, stability of the analytical system and closeness to real-time analysis. The latter is a requirement for feedback into automatic process-control systems. The investment in equipment for automatic on-line analysis of specific components may be high. Thus, this is frequently replaced by monitoring an overall property of the chemical mixture that is easy and inexpensive to measure, and correlating that property with the analyte of interest. Such compromise is usually supplemented by collection of samples that are sent to the analytical laboratory for determination, possibly at a lower cost.

A different approach is required to solve analytical problems related to fields such as biological research, pharmacology, forensic investigations, occupational hygiene and environmental protection. Often one confronts samples that are difficult to deal with because of their small size, instability, the low concentration of analyte or the nature of the matrix.
Many advances of modern analysis are concerned with pushing down the limits of detection and quantation (LOD, LOQ) to lower and lower concentrations, using smaller and smaller samples. Modern methods frequently deal with concentrations in the µM or nM range, or require only picomoles or even femtomoles of analyte for an accurate response. These advancements are the result of improved selectivity of chemical reagents and supporting media, development of sensors with increased sensitivity that are backed-up by reliable electronic systems, and optimization of the analytical methodology. Many publications show some concern for the efficiency and analytical throughput, and less frequently advances deal with making the analytical equipment cheaper, or easier to handle.

Application of the methods of chemometrics may help solving difficult analytical problems, and provide an alternative to methods based on separation and quantation of individual components of a mixture. Avoiding separation, when feasible, may afford considerable savings in labor and instrumental investment costs. The following computational techniques have been applied in problems involving analysis of phenolic compounds: Experimental design, information theory, evaluation of discriminating power, cluster formation, dendrograms, artificial neural networks, least squares, partial least squares (PLS), principal components regression (PCR), derivative spectrometry, double Fourier transform filtering, the Kalman filter algorithm, etc. Multivariate analysis and pattern recognition were applied to phenolic compounds to find correlations between physical and spectral properties.

International trade and regulations agencies have introduced a healthy tendency toward continuous revision of standards. Even well-established analytical fields are undergoing modification and shaping-up. Thus, the 1993 IUPAC nomenclature recommendations for chromatography have been revised, introducing definitions for chromatographic system and chromatographic process, modifying that of hold-up volume and discouraging the use of the terms corrected retention time, net retention time, total retention volume, total retention time, specific retention volume at 0°C and relative pressure.

C. Scope of the Chapter

The largest part of the literature included in this chapter belongs to the last decade of the 20th century and carries on until the first quarter of 2001. Analytical methods are heavily oriented toward those involving separation of individual components, such as chromatography, and especially LC, in accord with the intense research effort invested in this area. Electrophoresis of phenolic compounds is gaining popularity, and in some cases advantage over conventional chromatographic methods has been claimed. Biosensors are now in an intense phase of development, and some commercial applications for ultratrace analysis are emerging. Most biosensors involve electrochemical detection (ELD); however, design involving UVD, fluorometric detection (FLD) and other principles begin to appear. Of the other analytical methods, those based on ultraviolet-visible (UVV) spectrophotometry, including fluorescence effects and chemiluminescence detection (CLD), are probably the most useful, both for the spectral response of phenolic analytes themselves in the UVV region, and the easy production of intensely colored derivatives. Only brief accounts are given of the structural and functional characterization of phenolic compounds based on various analytical techniques, as this subject is more amply discussed elsewhere in this book. The LOD and LOQ concepts are used rather loosely in the literature, where LOD are given in extensive as well as intensive terms (e.g. µmol vs. nmol mL⁻¹). Except for cases where sample size was reported and a lower limit concentration could be discerned, extensive LOD values appear as reported in the original paper.
III. GAS CHROMATOGRAPHY

A. Sample Preparation

1. General

Many investigations have been carried out of procedures for improving the analytical quality of GC methods by changing the matrix, increasing the concentration of the pertinent analytes and reducing the interference of other compounds present in the sample. Preconcentration by LLE, before or after derivatization, is most frequently applied in GC trace analysis; however, other techniques, such as SPE, sample stacking (see Section V.A.1) and some of their modifications, such as simultaneous distillation and extraction (SDE) and SPME, are also mentioned. Application of microwave-assisted processes (MAP) during sample preparation seems to improve recoveries.

2. Solid phase extraction vs. liquid–liquid extraction

Twenty-seven phenols including mono-, di-, tri-, tetra- and pentachlorophenols, mono- and dinitrophenols, mono- and dinitrocresols and dimethylnitrophenols have been extracted from aqueous samples by solid phase extraction using both modified silica gel (C$_{18}$) and XAD resin-adsorbents. When a 1 L sample of spiked water was used, a considerable breakthrough was observed with phenol itself, while all other phenols were almost quantitatively extracted. The recovery of phenol itself can be improved by employing smaller sample volumes. End analysis was by GC using capillary columns with specially deactivated weakly polar phases. The extraction efficiency of hydrophobic solvents in LLE of phenols and other organic compounds may be rather poor. For example, the recoveries of phenol and aniline from water by LLE with n-octanol were 75.5% and 46%, respectively. The efficiency of hydrophilic solvents such as n-butyl and isobutyl alcohols was greatly improved by salting out with sodium sulfate or sodium chloride, attaining extraction efficiencies about 95% for phenol and nitroanilines. SPE on a C$_{18}$ sorbent phase followed by silylation showed better recoveries for the GC determination of phenolic compounds in olive oil than the usual LLE procedures; however, some interference was observed in the determination of oleyl epine (40). Despite these findings, total recovery after LLE of phenolic compounds was attained when DMF was used as solvent. Simultaneous LLE and derivatization of phenol and methylphenols in soil were much improved by MAP. Thus, soil samples immersed in hexane containing acetic anhydride and pyridine showed much higher recoveries and shorter extraction times when subjected to MAP as compared with ultrasonic treatment. End analysis by GC-MS was carried out without preliminary clean-up or concentration. LOD was in the lower ppb range.

Preconcentration of analytes in aqueous solution may be performed by a miscible organic phase followed by salting out. Thus, microextraction of anionic solutes such as phenol, cresols and xylenols in industrial effluents can be carried out with a small amount of isopropyl alcohol, followed by demixing of the phases with ammonium sulfate. End analysis of the extract by GC-MS in the selected ion monitoring (SIM) mode allowed a LOD of 1 ppb for 50 mL samples. The best conditions for eliminating petroleum products from the concentrate were found for the GC determination of volatile phenols in natural waters. Losses of volatile phenols due to preconcentration were insignificant and caused no increase in the relative error of determination by the internal-standard method. The concentration of phenol in the atmosphere can be determined by sorption on Chromosorb 102, desorption with benzene and 0.1 M NaOH and GC using a capillary column. LOD was about 1 µg m$^{-3}$, with accuracy within 15%.

A method for detection of exposure to aromatic hydrocarbons was based on simultaneous detection of metabolites such as phenol, and isomers of cresol, xylenol and naphthol...
in hydrolyzed urine by SPE preconcentration, followed by capillary GC on cross-linked 5% phenylmethylsilicone. For all the phenols tested LOD was 0.1 to 0.2 ppm, with RSD 2.6 to 16.6% and linearity from 5 to 100 ppm; recoveries were generally over 80%. Determination of phenolic flame-retardants in human plasma involved SPE with styrene–divinylbenzene copolymer, treatment of the SPE column with concentrated sulfuric acid to decompose the plasma lipids and GC end analysis with electron capture MS detection. The method was validated for 2,4,6-tribromophenol, pentabromophenol, tetrachlorobisphenol-A and tetrabromobisphenol-A in the concentration range 1.2–25, 0.4–40, 4–200 and 4–200 pg(g plasma)$^{-1}$, respectively. Analyte recovery was 51 to 85%, repeatability had RSD 4 to 39% and LOD was 0.3 to 0.8 pg(g plasma)$^{-1}$. A positive detection of these analytes points to potential occupational exposure.

Phenolic pollutants in the effluent from tertiary sewage treatment plants were preconcentrated by SPE on a styrene–divinylbenzene copolymer. The performance was superior to that of graphitized carbon black (GCB). Recoveries were good in spite of the wide polarity range of the phenols.

Determination of Irgasan DP 300 (41) in slaughterhouse wastewater involved alkalinization to pH 11, removal of fats and oils by LLE with petroleum ether, acidification to pH 1, LLE with benzene, further purification by sodium sulfate/silica gel adsorption, desorption, derivatization with diazomethane and end analysis by GC with electron capture detection (ECD). LOD was 8.2 ng L$^{-1}$; recovery was better than 88% regardless of concentration.

3. Simultaneous distillation and extraction

This sample preparation method involves steam distillation of the volatile organic components of a sample followed by preconcentration by LLE using a water-insoluble solvent. SDE served as unique clean-up and preconcentration step before derivatization, in the GC-MS determination of polycyclic aromatic hydrocarbons, phenols and aromatic amines in particulate phase mainstream cigarette smoke. Preconcentration by the SDE
4. Solid phase microextraction

A way of avoiding the use of solvents, either for LLE of analytes from a matrix or for their elution after SPE, is by SPME. In this technique, the analytes become adsorbed on suitably coated silica fibers, which are placed directly in the injector of a GC, where the analytes become thermally desorbed. SPME with poly(acrylate)-coated fibers was applied for preconcentration of phenols regulated by EPA wastewater methods 604 and 625 and Ontario MISA Group 20 regulations. LOD were in the sub-ppb range with RSD 5–12%, depending on the compound. Low pH levels and saturated salt conditions significantly increase the sensitivity of the method. SPME of phenolics from the headspace over water has also been investigated. SPME was applied to the detection of phenolic compounds in mainstream smoke of tobacco cigarettes. End analysis was by GC-MS in the SIM mode. The following compounds were detected: Phenol, cresols, xyleneols, methoxyphenols, ethylphenols, 2,4,6-trimethylphenol, vanillin and the naphthols. Recoveries were excellent, except for the naphthols in the 50% range. SPME with various sorbents was investigated for trace analysis of phenols in water. End analysis was by GC with FID. LOD was 0.3 to 2 µgL−1 for 100 mL of water at acid pH, with RSD 2.3–4.5% (n = 11). Conditions for the optimization of SPME of phenol and chlorophenol soil contaminants were investigated; end analysis was by GC-FID. The method was applied to soil analysis after acute contamination in industrial sites. The method was validated by comparison with an EPA certified extraction method. Soil samples were suspended in water and the extracted phenols were acetylated in situ with acetic anhydride in the presence of potassium bicarbonate. Acid was added after the end of the derivatization and SPME was performed by placing a poly(dimethylsiloxane) fiber in the headspace. End analysis was performed by introducing the fiber into the injector of a GC-MS apparatus. LOD was in the sub-ppm range, with good precision, sensitivity and linearity.

5. Supercritical fluid extraction

Chlorinated phenolic compounds in air-dried sediments collected downstream of chlorine-bleaching mills were treated with acetic anhydride in the presence of triethylamine. The acetylated derivatives were removed from the matrix by supercritical fluid extraction (SFE) using carbon dioxide. The best overall recovery for the phenolics was obtained at 110 °C and 37 MPa pressure. Two SFE steps had to be carried out on the same sample for quantitative recovery of the phenolics in weathered sediments. The SFE unit was coupled downstream with a GC for end analysis. Off-line SFE followed by capillary GC was applied in the determination of phenol in polymeric matrices. The sonication method recommended by EPA for extraction of pollutants from soil is inferior to both MAP and SFE techniques in the case of phenol, o-cresol, m-cresol and p-cresol spiked on soil containing various proportions of activated charcoal. MAP afforded the highest recoveries (>80%), except for o-cresol in a soil containing more than 5% of activated carbon. The SFE method was inefficient for the four phenols tested; however, in situ derivatization of the analytes significantly improved the performance.
B. Derivatization

1. General

Two main objectives are pursued when analytes are derivatized before GC analysis: Increasing volatility and attaining enhanced sensitivity when certain detection methods are used. Derivatization methods of phenolic compounds for GC analysis have been reviewed.98

2. Acylation

In situ acylation of phenolic compounds using acetic anhydride in the presence of a base is frequently applied as a precolumn derivatizing technique, and some applications were mentioned above95,99 (see also Sections III.B.2, 4, 5). Trace concentrations of mono-, di- and trihydroxybenzenes in water were directly acetylated and the acetates were concentrated on C18-silica SPE columns. End analysis was by GC-MS. Detection of phenols in the ng L⁻¹ range can be obtained with 500 mL water samples. The method is unsuitable for nitrophenols100. Phenolic compounds in bleached pulp and wastewater treatment plant sludges were subjected to Soxhlet extraction with ethanol–toluene. After concentration the phenols were acetylated, cleaned up with silica gel and determined by GC-MS; LOD was 0.5 ppm on dry basis101. Determination of polychlorinated biphenyls, chlorinated pesticides, chlorinated phenols, polycyclic aromatic-hydrocarbons and chlorophenoxyalkanecarboxylic acids in water began with in situ acetylation and pre-concentration on a SPE cartridge packed with 500 mg of Separon SGX C18. Recovery of pollutants at concentrations in the μg L⁻¹ to ng L⁻¹ level generally ranged from 54 to 109% (RSD 3–16%). End analysis was carried out by GC with ECD or HPLC with UVD or FLD, after elution from the cartridge with 2 mL of n-hexane and 2 mL of 1% NH₃/EtOH99. Direct acetylation of phenol, alkylphenols, chlorophenols and nitrophenols in environmental waters was followed by SPE of the acetates with a C18 disk. End analysis was by GC with ion trap detector MS (ITD-MS). In most cases recoveries were better than 80% at concentrations of 0.1 and 1.0 μg L⁻¹. LOD was in the 2–15 ng L⁻¹ range for phenol, alkylphenols and halogenated phenols, and in the 25–50 ng L⁻¹ range for nitrophenols102. The analysis of wastewaters of a coal gasification plant involved direct acetylation, SPE with a polystyrene resin, elution with n-hexane, concentration of the extract and end analysis by GC-MS. The following compounds were identified: Phenol and alkylated derivatives up to C3-phenol, catechol (42) and alkylated derivatives up to C2-catechol, vanillin (39) and a biphenyldiol103. Wetted soil samples were directly acetylated in vials, and the phenol and cresol acetates were determined by GC headspace analysis. LOD was 0.03–0.08 μg g⁻¹. The method is suitable for soils with carbon content below 5104. Pressurized LLE using acetic anhydride for simultaneous acylation was applied to the analysis of phenolic pollutants, sterols and carboxylic acids in environmental and microbial samples105.
The main GC advantages from analysis of trifluoroacetate esters as compared to plain phenols are enhanced volatility and improved resolution. The elution temperature of a given phenol is typically 50°C greater than that of the corresponding trifluoroacetate ester. The retention of compounds with two trifluoroacetate groups is only moderately greater than that of the monoesters, whereas underivatized dihydroxy compounds are very difficult to elute from any GC column. The GC-MS characteristics of trifluoroacetate esters of phenolic compounds were discussed. Linear temperature programmed retention indices and total ion current MS response factors of over 120 phenolic esters are reported. Complete resolution of isomeric C₆-, C₇- and C₈-alkylphenol esters is readily achieved on conventional fused silica GC columns; resolution of the corresponding underivatized compounds requires specialized GC columns with low temperature limits. In general, MS of trifluoroacetate esters are more characteristic of a given structure than those of the corresponding phenols and may be more rigorously interpreted toward structural elucidation. Some of the more important spectral features used in compound identification were summarized. Example applications in analysis of coal-, shale- and petroleum-derived materials were presented; SIM was used to determine individual phenolic components in whole distillates; reconstructed ion chromatograms were used to illustrate distributions of selected species as a function of fuel storage and thermal stress.

Parameters such as solvent, basic medium and reaction time, affecting the derivatization of alcohols and phenols with benzoyl chloride, were investigated. End analysis was by GC with UVD. A sensitive method proposed for trace determination of phenols in water consists of preconcentration by SPE with a commercial styrene–divinylbenzene copolymer, acylation with pentafluorobenzoyl chloride in the presence of tetrabutylammonium bromide and end analysis by GC with either ECD or ITD-MS. LOD was 3 to 20 ng L⁻¹ for ECD and 10 to 60 ng L⁻¹ for ITD-MS, with 500 mL samples. Acylation with the fluorinated glutaric acid derivative 43 was proposed for determination of urinary phenols, as indicative of exposure to benzene and other aromatic hydrocarbons. End analysis by GC-MS shows strong molecular ions of the derivatives by electron ionization. The protonated ions are the base peaks obtained by chemical ionization. LOD was 0.5 mg L⁻¹ and the linearity range 0–100 mg L⁻¹ for phenol.

3. Silylation

Silylation is an effective means for aiding volatilization of phenolic compounds. More than fifty substituted phenols of various types were determined by GC-MS, after derivatizing with N-((t-butyldimethylsilyl)-N-methyltrifluoroacetamide (44). The MS of all the examined analytes was dominated by the M–57 peak, resulting from the loss of t-butyl from the molecular ion. LOD of 5 pg could be achieved with electron ionization in the SIM mode. A method for separation and determination of flavonoids is based on preparation of the aglycons by acid hydrolysis in methanol, solvent evaporation, pH adjustment, SPE with a C₁₈ cartridge, elution with AcOEt, solvent evaporation under a nitrogen stream and derivatization with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide (45) and chlorotrimethylsilane (46). End analysis was by GC with FID. The method was applied to the analysis of flavonoids in tea leaves extract, where the following aglycons were identified: The catechins epicatechin (2) and catechin (3) and the flavonols kaempferol (6),

\[
\begin{align*}
\text{F}_2\text{C} & \rightarrow \text{COCl} \\
\text{F}_2\text{C} & \rightarrow \text{CO}_2\text{Et} \\
& (43)
\end{align*}
\]
quercetin (47) and myricetin (48). GC-MS analysis of polyphenols in wine, including the flavonoids, was carried out after a similar derivatization procedure. Pressurized LLE using 45 for simultaneous silylation was applied to the analysis of phenolic pollutants, sterols and carboxylic acids in environmental and microbial samples.

4. Alkylation

Bupivacaine (49a) and its phenolic metabolites (49b–c) were detected in urine after the samples underwent hydrolysis, LLE with ether, concentration by evaporation and derivatization with diazomethane, to obtain the methyl ethers (49d). End analysis was by GC-MS in the SIM mode. Another methylation reaction with this reagent was mentioned in Section III.A.2. On-site methylation with tetramethylammonium hydroxide was proposed for the analysis of phenolic additives in polymeric materials, by the pyrolysis-GC method. Pressurized LLE using phenytrimethylammonium hydroxide (50) or trimethylsulfonium hydroxide (51) for simultaneous methylation was applied to the
analysis of phenolic pollutants, sterols and carboxylic acids in environmental and microbial samples. Methylation of various phenolic xenoestrogens in MeOH solution was achieved at room temperature with \(\text{MeOH} \). The phenolic herbicides bromoxynil (52a) and ioxynil (52b) and the 2,4-dinitrophenol derivatives DNOC (53a), dinoseb (53b), dinoseb acetate (53c), binapacryl (53d), dinobuton (53e), dinoterb (53f) and dinoterb acetate (53g), become strongly adsorbed on GCB; however, the compounds with a free phenolic group cannot be eluted to any practical extent. Thus, after SPE preconcentration with a GCB, from spiked water samples and elution of esterified derivatives, the phenolic pesticides were treated in situ with diazomethane or trimethylsulfonium hydroxide (51), eluted with ethyl acetate and determined by GC-MS.

\[
\begin{align*}
\text{(49)} & \quad \text{(a) } R = \text{H} \\
\text{(b) } R = 3\text{-OH} \\
\text{(c) } R = 4\text{-OH} \\
\text{(d) } R = \text{OMe}
\end{align*}
\]

\[
\begin{align*}
\text{(50)} & \quad [\text{PhNMe}_3]^+\text{OH}^- \\
\text{(51)} & \quad [\text{Me}_3\text{S}]^+\text{OH}^-
\end{align*}
\]

\[
\begin{align*}
\text{(52) } & \quad \text{(a) } X = \text{Br} \\
\text{(b) } X = \text{OH}
\end{align*}
\]

\[
\begin{align*}
\text{(53) } & \quad \text{(a) } R = \text{Me}, X = \text{H} \\
\text{(b) } R = \text{s-Bu}, X = \text{H} \\
\text{(c) } R = \text{s-Bu}, X = \text{Ac} \\
\text{(d) } R = \text{s-Bu}, X = \text{CH}_2\text{HC(\text{==O)}} \\
\text{(e) } R = \text{s-Bu}, X = \text{i-PrOC(\text{==O)}} \\
\text{(f) } R = \text{t-Bu}, X = \text{H} \\
\text{(g) } R = \text{t-Bu}, X = \text{Ac}
\end{align*}
\]

After LLE of phenols and carboxylic acids in water, on-line methylation with 51 was applied together with large volume injection (100 µL). The solvent was removed before the analytes were transferred into the GC column with MS detection in full scan mode. Volatile fatty acids, dicarboxylic acids, benzoic acids and phenols in water, at concentrations of 0.4 to 0.1 µM, could be determined in 5 mL samples. Lactic, pyruvic and malonic acids required higher concentrations due to their higher water solubility and lower methylation rates. Samples of particulate matter were subjected to LLE with THF, and hydrolysis/methylation of the extract with tetramethylammonium hydroxide,
followed by GC. A linear correlation was found between the amount of methoxybenzene measured in the chromatogram and the concentration of phenolic resin in the particulate matter118.

On column benzylation of phenols was carried out with 3,5-bis(trifluoromethyl)benzyl-dimethylphenylammonium fluoride (54). Fluorinated benzyl derivatives allow very sensitive detection of phenols at ppt levels, by GC-MS in the negative ion chemical ionization mode84. Derivatizing with pentafluorobenzyl bromide (C\textsubscript{6}F\textsubscript{5}CH\textsubscript{2}Br) was proposed for GC-MS detection of airborne carboxylic acids and phenols119.

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{CH}_2 \quad \text{N}^+ \quad \text{Ph} \quad \text{F}^- \\
\text{Me} & \quad \text{Me} \\
\end{align*}
\]

(54)

5. Bromination

A very sensitive method for determination of phenol, methylated phenols and resorcinol is based on bromination in acidic solution, LLE with benzene and GC-ECD, with or without previous silylation. For phenol–cresol mixtures, RSD was 4.9–8.5\%, using 10 mL of 0.1 \(\mu\)M aqueous solution and 2 mL benzene for extraction. The method was applied for determination of phenols in cigarette smoke and human urine120. Conditions were investigated for precolumn quantitative bromination of phenols in water solution for subsequent determination by GC-ECD. Analytical errors of 5 to 25\% were found for concentrations in the 0.5 to 100 \(\mu\)g L−1 range121.

C. End Analysis

The present section is organized mainly according to the different matrix types related to the origin of the samples undergoing GC analysis. In Table 5 are summarized detection methods applied after the chromatographic separations mentioned in Sections III.A–C.

<table>
<thead>
<tr>
<th>Detection method</th>
<th>Subsection and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>\textbf{A.2} 79, 80, 83a; \textbf{A.3} 86; \textbf{A.4} 91, 94; \textbf{B.2} 100–103, 106, 108, 109; \textbf{B.3} 110, 112; \textbf{B.4} 84, 114, 116, 117; \textbf{C.2} 125, 126, 128; \textbf{C.3} 129, 130; \textbf{C.4} 131.</td>
</tr>
<tr>
<td>ECD</td>
<td>\textbf{A.2} 85; \textbf{B.2} 99, 108; \textbf{B.5} 120, 121.</td>
</tr>
<tr>
<td>FID</td>
<td>\textbf{A.3} 87; \textbf{A.4} 92, 93; \textbf{B.3} 111; \textbf{C.4} 132.</td>
</tr>
<tr>
<td>UVDb</td>
<td>\textbf{B.2} 107.</td>
</tr>
<tr>
<td>AED</td>
<td>\textbf{C.1} 123.</td>
</tr>
<tr>
<td>Hyperthermalc</td>
<td>\textbf{C.1} 124.</td>
</tr>
</tbody>
</table>

aElectron capture mass spectrometry.

bGas-phase molecular absorption spectrometry.

cHyperthermal negative surface ionization operating principle.
1. General

Besides MS detection, identification of unknown peaks in GC routine analysis of environmental samples can be aided by the use of correlations between physicochemical parameters and structure of the analytes to predict the retention times. The correlation between the boiling points and the retention times of chloro- and bromo-benzenes and of some chloro- and nitro-substituted phenols was investigated for nonpolar capillary columns and allowed tentative identification of many compounds belonging to these analogous series.\(^\text{122}\)

The use of an atomic emission detector (AED) coupled to a GC may provide under ideal conditions information about the empirical formula of the analyte corresponding to a GC peak. However, it was found that the AED responses of C, Cl and O of a series of phenols is related to the working condition of the AED. The elemental response of Cl is independent of molecular structure, but those of C and O are not, probably due to formation of CO in the plasma. The O response is also affected in nitrophenols, probably due to NO\(_2\) formation.\(^\text{123}\) A novel detector, based upon hyperthermal negative surface ionization, shows up to 100-fold higher sensitivity than that of the FID for alcohols and phenolic compounds.\(^\text{124}\)

2. Environmental samples

An automatic method for the analysis of trace phenolic pollutants in water consists of off-line acetylation with acetic anhydride followed by sampling (10 mL), SPE on a polydimethylsiloxane cartridge, loading, drying to remove water and derivatizing agent excess, thermal desorption and GC-MS in the SIM mode. LOD was about 1–5 ng L\(^{-1}\).\(^\text{125}\) A fast method was proposed for field screening of phenolic pollutants in soil. The method is based on thermal desorption GC-MS in the SIM mode, aided by a compound-specific data analysis algorithm.\(^\text{126}\) The phenolic resin content of particulate matter collected on roads can be correlated with the amount of asbestos present, as this type of particulate matter originates in brakes abrasion. The resin was extracted with tetrahydrofuran, and was estimated from the GC determination of the amount of phenol generated in a Curie-point pyroliser coupled to the chromatograph. In Figure 1 is shown a schematic representation of the pyrolysis of a phenol-formaldehyde resin, leading to the formation of various products, in their order of appearance in the chromatograph; the peak intensities of phenol and the cresols are preponderant.\(^\text{127}\)

Fly ash as obtained from the incineration of municipal waste was subjected to clean up, and extractions designed to isolate the phenolic compounds from more acidic and from neutral or basic components. More than sixty phenolic compounds belonging to various structural systems (55–61) were identified in the concentrated extracts by GC-MS, most of them containing chloro and bromo substituents, at three levels of confidence based on the MS of each peak in the chromatogram: Positive identification, presumed and tentatively presumed. Compounds of structures 59–61 belong to the latter two classes.\(^\text{128}\)

3. Foodstuff samples

Dried vanilla bean sections were subjected to ballistic heating in a short-path thermal desorber, and the volatiles so obtained were analyzed by GC and GC-MS. Over 60 flavor compounds, 18 of them phenolics, were detected by this technique. The method is
FIGURE 1. Schematic representation of the pyrolysis of a phenol-formaldehyde resin, showing possible fragmentation sites leading to simple aromatic products.
quantitative and reproducible. Determination of vanillin (39) and other compounds could be achieved by spiking with 2,6-dimethoxyphenol (62) as internal standard129.

A profiling protocol for the aliphatic carboxylic acid and phenolic compounds in distilled alcoholic beverages consisted of SPE on an ion exchange disk, simultaneous elution and silylation of the analytes and direct analysis of the extract by GC-MS. The profile consisted of fourteen open-chain mono- and dicarboxylic acids, up to C\textsubscript{12}, some carrying hydroxy or keto substituents, and vanillin (39), syringaldehyde (63), coniferaldehyde (64), vanillic acid (38) and gallic acid (8). Recovery of individual analytes was affected by the level of tannins in the spirit. For a given brand the contents of these analytes increased with aging130.
4. Miscellaneous industrial samples

Pyrolysis-GC with MS detection in the SIM mode was applied to the characterization of natural and industrial lignins of various species, as for the presence of \(p \)-hydroxyphenyl (65a), guaiacyl (65b) and syringyl (65c) moieties. This objective was achieved after permethylation of the lignin samples. Such moieties are characteristic of lignin in straw, softwoods and hardwoods, respectively.

Mannich base hardeners for curing epoxy resins may contain residual formaldehyde, phenol and benzyl alcohol, that can have undesirable effects when present in the final product. Determination of these compounds in the hardener was carried out by GC-FID of a 2% solution in chloroform–EtOH, using amyl alcohol as internal standard. LOD was 18, 30 and 26 ppm and LOQ was 75, 86 and 79 ppm of formaldehyde, phenol and benzyl alcohol, respectively.

Reaction mixtures containing phenol and hydrogen peroxide show high concentrations of \(p \)-quinone (67) when analyzed by GC, whereas only small concentrations of 67 are observed by HPLC analysis. The reason for this may be the reaction shown in equation 1 taking place in the gas phase, where phenol undergoes stepwise oxidation to hydroquinone (66) and 67. It is therefore proposed that such systems be analyzed by LC as long as hydrogen peroxide is present in the sample.

Isobutylene (2-methyl-1-propene) is used for catalytic alkylation of phenol, to produce \(t \)-butylated phenolic antioxidants to improve the shelf life of fuels and lubricants. Some of the alkyl groups found in these phenolics are dimeric (octyl) or trimeric (dodecyl) derivatives of isobutylene. A procedure was developed based on high resolution capillary GC for analysis of these antioxidants, using an SE-30 stationary phase.
IV. LIQUID CHROMATOGRAPHY

A. Sample Preparation

1. General

Many investigations have been carried out dealing with improvement of the analytical quality of LC methods by changing the matrix, increasing the concentration of the pertinent analytes (phenolic compounds) and reducing the interference by other compounds present in the sample. This section deals mainly with preconcentration by SPE, although the alternative LLE method is also mentioned, and sometimes its efficiency compared with that of SPE. This part of the analytical process may become very laborious due to factors such as complexity of the analyte, complexity of the matrix and required analytical quality. A critical review appeared on HPLC analysis of phenol and its chloro, methyl and nitro derivatives in biological samples, with special emphasis on sample preparation. The sample preparation methods adequate for determination of phenolic compounds in fruits have been reviewed. Certain phenolic compounds frequently serve as internal markers for the analysis of botanical extracts. Various factors affecting the concentration of such markers in the sample need consideration to improve the quality of analysis.

The sample preparation scheme shown in Figure 2 for the chromatographic determination of phenolic acids in wine may serve as illustrative example of the involved procedures sometimes applied. It should be pointed out that the four extracts obtained by this procedure have each a volume of 50 µL. The alkaline extract contains weakly acidic and basic analytes, while stronger acids, such as carboxylic acids, are retained in the aqueous solution; the acid extract contains all the neutral and acidic components that are soluble in ether, while the basic components are retained in the aqueous solution; the anionic extract was prepared for further refining the chromatographic analysis, as it is supposed to contain mainly compounds that bear the carboxyl group; the hydrolysate extract is used for further characterization of the depsides, that are derivatives of tartaric acid esterified by a phenolic carboxylic acid (group RCO₂ in 68), such as caffeic acid, coumaric acid and ferulic acid. It should be noted that caffeic acid is totally destroyed at pH 10 or in more alkaline solutions. End analysis of the acid extract was by RP-HPLC with UVD, on a Spherisorb ODS₂ microbore column, using a gradient of phosphate buffer (pH 2.4) and methanol. The presence of the following carboxylic acids was detected, in increasing order of retention time: the depside of caffeic acid, gallic acid, the depsides of coumaric or ferulic acids, and the following carboxylic acids: 3,4-dihydroxybenzoic, vanillic, syringic, caffeic, coumaric and ferulic. Appearance in wine of the cis forms of 26 and 69 was attributed to isomerization of the trans form caused by exposure to air and light.

Of course, no scheme for sample preparation is universal, and the operations have to fit the nature of the samples and the analytes in hand. Many separation schemes
FIGURE 2. Sample preparation scheme for the chromatographic analysis of nonvolatile phenolic acids and depsides in wine.
have been reported in the recent literature \cite{139,140,141}, e.g. four different extraction methods have been investigated for the determination of 4-hydroxybenzoic, protocatechuic (27), coumaric (26), caffeic (25) and vanillic (38) acids in the flowers of *Delphinium formosum*. End analysis was by RP-HPLC with DA-UVD. However, in contrast with the scheme of Figure 2, sample separation has been found to be superfluous in some cases, e.g. determination of phenolic compounds in white wine \cite{143}.

2. Solid phase extraction vs liquid–liquid extraction

 a. General aspects. The mechanism of phenol adsorption on activated charcoal was investigated by controlled transformation rate thermal analysis and high resolution argon adsorption at 77 K, processed by the derivative isotherm summation procedure. The most energetic sites for phenol adsorption were identified as micropores that are filled by argon at $-12 \leq \ln(P/P_s) \leq -7$. Larger and smaller pores are less energetic. This method may be applied to other adsorbents used in SPE \cite{144}. Activated carbons were prepared by carbonization of oxidized or unoxidized coals followed by activation in CO$_2$ to various degrees of burnoff. Both Brunauer–Emmett–Teller (BET) specific surface areas and pore volume affected the adsorption capacity of the activated carbons. Adsorption of phenols closely followed the Langmuir isotherm, pointing to monolayer formation. The amounts adsorbed on reaching surface saturation decreased with the burnoff extent and with the carbon particle size; the latter effect can be attributed to an increase of diffusion path. The adsorption capacity decreased with the carbonization temperature of unoxidized coals, while it increased for the oxidized coals; this is probably related to different populations of oxygen functional groups on the carbon surfaces \cite{145}. A detailed investigation of the adsorption mechanism was carried out for phenol and pentachlorophenol on carbonized slash pine bark \cite{146}. Analytes differing much in nature from the precolumns on which they are sorbed may give on elution broad chromatographic peaks. To avoid peak broadening, elution from the precolumn should be carried out only with the organic solvent used in the mobile phase \cite{147}.

 A comparison study of C$_{18}$-bonded silica cartridges and polystyrene–divinylbenzene copolymer membrane absorption disks showed that the latter were the more effective for SPE of phenols at the 0.5 ppb concentration levels (70–98% recoveries), whereas the C$_{18}$ cartridges were preferable for higher concentration levels (10 ppb) because smaller sample and solvent volumes were required and analysis time was therefore shorter. End analysis was by LC-ELD, with a phosphate buffer–acetonitrile–methanol mixture as mobile phase and coulometric detection at $+750$ mV \cite{148}. A study was carried on the preconcentration step of phenol, o-, m-, p-methylphenol, o-, m-, p-chlorophenol, 2,5-, 2,6-dichlorophenol, catechol (42), resorcinol (20) etc., at 0.5 and 5 µg L$^{-1}$ concentrations. SPE utilizing a divinylbenzene–hydrophilic methacrylate copolymer gel showed recoveries better than
90%, except for catechol and resorcinol. The performance of this gel was better than that of C\textsubscript{18}-bonded silica149.

\textit{b. Environmental samples.} The main disadvantage of using SPE with certain environmental samples is the presence of suspended matter that may clog the preconcentration devices. Filtration of such suspensions is to be avoided, lest part of the trace analytes be lost in the manipulations. Water samples can be preserved for a long time after adjustment at pH 5 with phosphoric acid and addition of copper sulfate to avoid bacterial and chemical degradation. Improvement of end analytical quality may be achieved by performing the desorption of the analytes preconcentrated on a precolumn using only the organic solvent that serves to modify the mobile phase. This modification allows determination of phenols in water at low ppb levels; LOD was 0.1 – 2 \(\mu\text{g L}^{-1}\) in tap water, for a 10 mL sample147. Operating variables such as concentration, pH and ionic strength of the influent, presence of concurrent solutes, fluid flow-rate and column length were investigated for their effect on the frontal analysis of phenols in water, undergoing SPE on Amberlite XAD-2 or XAD-4150. An investigation was carried out of the conditions for selective SPE of aromatic amines and phenols in environmental samples, prior to LC with amperometric detection (AMD)151.

Off-line SPE with a styrene–divinylbenzene copolymer gave better results than activated carbon, for the preconcentration of phenol, chloro- and nitrophenols, 2,6-dimethylphenol and 2,4,6-trimethylphenol in water, at 100 ppb concentration levels. Except for the last two, these are EPA priority phenols (Table 4). End analysis was by RP-HPLC with DA-UVD. Recoveries were better than 90% and the RSD for real samples was lower than 10%152. The breakthrough volumes and selectivity were studied for the SPE performance in the preconcentration of several phenolic water pollutants. An acetylated polystyrene resin and commercial sorbents such as PLRP-S, Amberchrom, Envi-Chrom P and LiChrolut EN were used. End analysis was by HPLC. Retention times increased for phenolic compounds adsorbed on the acetylated resin153. A styrene–divinylbenzene copolymer, derivatized with keto groups, was described as a selective SPE medium for phenols in environmental water samples. Various preconcentration techniques were discussed. End analysis was by LC with ELD154,155. Comparison between various materials for SPE preconcentration of the eleven EPA priority phenols showed better performance of functionalized polymer resins over carbon black. LOD was less than 35 ng L-1 for most analytes in tap water, with linearity range from 0.05 to 20 \(\mu\text{g L}^{-1}\); RSD for repeatability was lower than 8% and for reproducibility between days was lower than 10%, for samples spiked at 0.1 \(\mu\text{g L}^{-1}\)156. On-line PTFE membranes incorporating a cation exchange resin, based on cross-linked poly-(endo,endo-norborn-2-ene-5,6-dicarboxylic acid) (71), were investigated as SPE devices for the EPA priority phenolic pollutants. The efficiency of these membranes was better than that of C\textsubscript{18} or carboxypropylsilica157.

![Chemical Structure](image)
An SPE precolumn made of eight different sorbents was coupled on-line to LC with UVV detection, using 50–100 mL samples of ground water. The performance of this system was compared with that of an off-line method using Empore extraction disks and 1 L water samples. Recovery of phenols varied from <20 to 100% for concentrations in the range 0.1–10 µg L⁻¹ at an acid pH. The system was validated by interlaboratory exercises with samples containing 0.1 to 0.5 µg L⁻¹ of 2,4,6-trichlorophenol and pentachlorophenol.

The stability and recovery of phenolic pollutants in water after SPE was investigated. Three types of polymeric materials were used. Long-term storage of the phenol-loaded sorbants showed losses up to 70% at room temperature while recovery was complete after storing for two months at −20 °C. Stability depends on the water matrix, storage temperature, and the properties of each analyte such as water solubility and vapor pressure. End analysis was by LC with UVD.

A semiautomatic module was devised for alkaline extraction of phenols from soil samples, followed by SPE preconcentration on XDA-2. Average recoveries above 60% were obtained for 0.1 to 10 g soil samples, containing 50 to 5000 ppb of phenols, except for 2-t-butyl-4-methylphenol that showed a poor recovery. Soil composition affects in different ways the recovery of alkyl-, chloro- and nitrophenols. Microwave-assisted recovery of SPE-preconcentrated phenols on Empore C₁₈ disc membranes was carried out with water in a closed vessel. Under optimal conditions recoveries for eleven priority phenols were above 85%, except for phenol and 4-nitrophenol. Results were similar to those obtained by LLE or SPE on C₁₈ cartridge techniques. End analysis was by LC with UVD. An automated SPE method for determination of phenol, α-chlorophenol, 2-amino-4-chlorophenol, 2,4,6-trichlorophenol and pentachlorophenol was developed using a tandem of styrene−divinylbenzene copolymer and C₁₈ cartridges. The analytes were recovered with 1N NaOH solution, evaporated under N₂ at room temperature, acidified with glacial acetic acid and subjected to end analysis by HPLC with UVD. Recovery rates were from 54 to 78%; LOQ was less than 50 µg L⁻¹ for a signal-to-noise ratio (SNR) of 10. Excellent recoveries were reported for the same analytes in water, after SPE with Amberlite XAD-4 mixed with 10% Norit CN-1 (active carbon). Automated trace enrichment of phenolic compounds was achieved using a 10 × 2 mm ID precolumn packed with Polysphere RP-S, coupled on-line with RP-HPLC and ELD. Instead of gradient elution, that may be problematic with ELD, two different eluents were used to account for the different polarities of the phenols. When analyzing waters the sample volumes varied according to the origin. Thus, with 4 mL of tap water the LOD for phenolic compounds were between 1 and 10 ng L⁻¹, except for 2,4-dinitrophenol (75 ng L⁻¹) and 2,4-dinitro-6-methylphenol (50 ng L⁻¹); when river waters were analyzed only 1 mL samples could be used due to the interference of humic and fulvic acids, and the LOD were about four times higher.

Samples of drinking (2 L), ground (1 L) and river (0.5 L) water, containing eleven EPA priority pollutant phenols, were passed through a GCB cartridge (1 g), at ca 70 mL min⁻¹. After drying with MeOH (1.5 mL), the phenols were eluted with acidic CH₂Cl₂-MeOH and the solvent was partially removed. End analysis was by RP-HPLC with UVD. Recovery of phenols from drinking water, at 0.05 to 4 ppb levels, was higher than 90%. The extraction efficiency of GCB was better than that of C₁₈-bonded silica for the more water-soluble phenols. Interference of the presence of fulvic acids in the SPE of phenols was investigated. Preconcentration by SPE using styrene−divinylbenzene copolymer disks followed by LC-AMD at +1100 mV allowed recoveries of 80–100%, except for the more polar phenolic pollutants. LOD was 0.01 to 0.1 ppb for tap water and 0.1 to 1.0 ppb for river water.

The ability of a two-trap tandem system to extract trace amounts of phenols from environmental waters and isolate them from base-neutral species was evaluated. The first trap
contains 300 mg of GCB and the second one 50 mg of a strong anion exchanger (SAX), Sephadex QAE A-25. After the water sample had passed through the GCB cartridge, the latter was connected to the SAX cartridge and the base-neutral species were removed from the GCB surface by a neutral eluent. The very weakly acidic phenols were eluted and selectively readsorbed on the SAX surface. Still maintaining the two cartridges in series, an acidified eluent was allowed to flow through both cartridges to recover the most acidic phenols from the GCB cartridge and the least acidic phenols from the SAX cartridge. After partial removal of the solvent, the final extract was submitted to RP-HPLC with UVD. Recoveries of 17 phenols of environmental concern added to 21 of drinking water at levels between 0.2 and 2 μg L$^{-1}$ were higher than 90%. The effect of the presence of fulvic acids in water on the efficiency of the extraction device was assessed. The recovery efficiency of the GCB-SAX tandem system was compared to that of single extraction cartridges, one containing a chemically bonded siliceous material (C$_{18}$) and the other SAX material. The LOD of the analytes considered were well below 0.1 μg L$^{-1}$.

A porous membrane impregnated with organic solvent forming a barrier between two aqueous phases can be used for selective LLE of chlorophenols, that are transferred to the second phase for end analysis by LC with ELD. LOD was ca 25 ng L$^{-1}$ for 30 min extraction.

Various preconcentration methods were evaluated to monitor phenol and monochlorophenols in drinking and river waters. LLE showed large losses during solvent removal. SPE with Amberlite XAD-2, XAD-4, C$_{18}$ Si 100, Tenax and Polysphere RP-18 showed the best results with the latter solid phase. End analysis was by RP-HPLC with LiChrospher RP-18. An extensive study was performed on the factors affecting the analytical quality of the HPLC determination of phenolic pollutants in water at the 1 ppm level (44 compounds). A preconcentration step was carried out by LLE with n-C$_6$H$_{14}$, Et$_2$O, AcOEt, CHCl$_3$ and CH$_2$Cl$_2$. The latter solvent was found to give the best overall recoveries (55–99%).

A study was carried out for LLE by the Soxhlet method and microwave-assisted extraction for the determination of the priority phenols in soil samples. Recoveries varied from 67 to 97% with RSD between 8 and 14% for LLE, and >70% for the MAP, except for nitrophenols that underwent degradation when the latter method was applied. LOD was from 20 ng g$^{-1}$ for 2,4-dimethylphenol to 100 ng g$^{-1}$ for pentachlorophenol. The best detection method for LC was atmospheric pressure chemical ionization MS (APCI-MS). The most abundant ions obtained by this detection method were [M − H]$^-$ for the lowly chlorinated phenols and [M − H − HCl]$^-$ for tri-, tetra- and pentachlorophenols.

To determine phenolic acids in soil, samples were subjected to LLE with 0.1 M NaOH for 16 h, centrifugation, filtration and pH adjustment. End analysis was by RP-HPLC on a C$_{18}$ column with UVD at 280 nm. Recoveries were as follows: p-hydroxybenzoic acid 123%, vanillyl acid (38) 83%, syringic acid (70) 66%, coumaric acid (26) 100%, ferulic acid (69) 58% and caffeic acid (25) 0%. LOD was 0.5 ppm for the derivatives of benzoic acid and 1 ppm for those of cinnamic acid, excepting 25 that could not be detected by this method.

c. Foodstuffs. The HPLC determination of synthetic phenolic antioxidant additives (see Table 3) in food has been reviewed. On-line SPE was proposed where the samples of wine were injected and adsorbed onto polystyrene–divinylbenzene cartridges in a flow injection analysis (FIA) system. End analysis was by RP-HPLC with DA-UVD. Application of SPE was studied instead of the well established LLE for the volatile phenols in wine. Thus, percolation of clarified wine at pH 9 on the anion exchange resin AG 2-X8 permits adsorption of derivatives of phenol (e.g. 72a–e) and guaiacol (e.g. 73a,b). This left the organic acids in solution; the basic compounds were rinsed out with 1 N HCl.
and the adsorbed phenols were eluted with methanol, diluted with water and directly
determined by RP-HPLC with UVD at 280 nm, with high sensitivity (e.g. 20–40 ppb for
compounds 72a–d) and good recoveries (91%) and repeatability. No interference from
other compounds was noted in various wines.176

\[
\begin{align*}
(72) & \text{ (a) } R = H \\
& \text{ (b) } R = 2-\text{Me} \\
& \text{ (c) } R = 3-\text{Me} \\
& \text{ (d) } R = 4-\text{Me} \\
& \text{ (e) } R = 4-\text{Et}
\end{align*}
\]

\[
\begin{align*}
(73) & \text{ (a) } R = \text{Et} \\
& \text{ (b) } R = \text{Vi}
\end{align*}
\]

d. Miscellaneous industrial products. The SPE preconcentration step was simplified for
a series of 34 phenolic compounds used in plastic manufacture, that could contaminate
water which came into contact with plastic utensils. These compounds included phenol, its
alkyl and chloro derivatives, dihydroxybenzenes, their alkyl derivatives and other phenolic
compounds. After a single extraction of the SPE cartridges with MeOH, end analysis was
by LC with DA-UVD, at the 1–5 ppm level RSD 1–6% \((n = 3) \) with recoveries of
50–100%.177,178

A simplified method for determination of phenolic compounds in crude oils, gasoline
and diesel fuel consists of on-line SPE with a silicone membrane followed by LC with
ELD and UVD.179,180 On-line coupling of a preconcentration device to an HPLC analy-
zer with ELD or UVD, in an overall automatic operation, is claimed to substantially
improve analytical performance. A silicone membrane device has been used for SPE in
the determination of phenols dissolved in complex organic matrices such as gasoline and
kerosene.181

\(\bullet\)-Nonylphenol is a surfactant used in commercial sprays and aminocarb insecticide
formulations. After removing the insecticide by alkaline hydrolysis the surfactant was
extracted with \(n\)-heptane and determined with good reproducibility by LC using a Part-
tisol(R) ODS-2 column, 95% MeOH/water as mobile phase and UVD at 278 nm. LOQ
was 30 ppm with 10 \(\mu \)L injection.182

e. Biological and biomedical samples. Proanthocyanidins or condensed tannins consist
of chains of epicatechin (2) or epigallocatechin (74) of varying degree of polymerization
and mode of linking. Methanol or ethanol can be used to extract low molecular phenolics
and oligomeric proanthocyanidins from fresh tissue, while aqueous acetone is required
for larger polymeric units. The tannin fraction was separated by SPE on Toyopearl HW-
40 (F), and recovered with aqueous acetone. Size separation of the condensed tannins
was performed by HPLC on a Lichrospher Si 100 column. Although the retention times
increased with the degree of polymerization, no functional correlation could be developed for these parameters.183

Methods involving LLE were developed for determination of phenol184 and other phenolic compounds. For example, for simultaneous determination of phenol, hydroquinone (66) and catechol (42) in urine, the samples were subjected to acid hydrolysis, saturation with sodium sulfate and LLE with diethyl ether. End analysis was by RP-HPLC on a C\textsubscript{18} column, elution with sodium acetate–acetic acid buffer–acetonitrile gradients, and FLD. The recovery and reproducibility were generally over 90\%. The method appears to be more sensitive than GC or HPLC with UVD. It is proposed for cigarette smokers and refinery workers exposed to low benzene concentrations. Good recoveries of these metabolites was attained at 0.1 to 50 mg L−1 concentrations, with coefficients of variation of a few percent, both for within a day and between day determinations.33

3. Other preconcentration methods

A preconcentration method that bears some resemblance to SDE consists of isolating the volatile phenols by steam distillation, followed by freeze-drying of the distillate. End analysis was by HPLC with ELD. The method was applied for determination of such phenolic components in foodstuffs and packing materials.185 Determination of phenolic antioxidants in polyolefins was carried out by dissolving the polymer sample in a heptane–isopropanol mixture (1000/5, v/v), at 160–170°C, in an autoclave. The polymer precipitated on cooling the solution, and the dissolved antioxidant could be determined by LC with UVD. The advantage of the method is the relatively short time of analysis (about 2 h) and its reproducibility (RSD 3–5\%)186.

B. Derivatization

1. General

Various objectives are sought when preparing derivatives of phenolic compounds prior to performing a LC separation: Facilitating separation of the analytes from the matrix, modifying the chromatographic on-column behavior of the analytes and improving the sensitivity toward the analyte during detection. The most important modifications aiming at the latter objective consist of introducing chromophoric or fluorophoric groups that will enhance the response of UVDs and FLDs to the analyte.

Derivatization methods of phenolic compounds for LC analysis have been reviewed.98
2. Formation of azo dyes

Phenols in trace concentrations were derivatized by coupling with a 4-sulfobenzene-diazonium salt at pH 10.5. The azo dyes were combined with tetradeclidimethylbenzylammonium ions at pH 5.0 and, after SPE on a PTFE membrane filter, the end analysis was carried out by RP-HPLC with UVD at 352 nm. LOD was between 40 ppt (phenol) and 2 ppb (2,5-xylenol) for eight phenols tested. The method was used for determination of phenols in river water.[187]

A macroporous reactive polymer was prepared by copolymerization of the methacrylate esters [75] and [76], using the methacrylate ester [77] as crosslinking agent. After removal of the benzylidene protecting groups the polymer could be diazotized and used for immobilizing phenolic analytes by a coupling reaction. The azo dye formed on the polymer was split by hydrolysis of the ester and quantitatively determined by LC[188].

3. Formation of imino dyes

Phenols combine with 4-aminoantipyrine ([78]) in the presence of an oxidant to yield imino dyes, for example, according to equation 2 for phenol[189]. The dye product can be concentrated by LLE with chloroform or SPE on a C18-silica column, followed by LC-UVD. LOD was in the ppb range. The process can be carried out in a FIA system. Phenolics possessing additional acidic functional groups are in the anionic form and cannot be extracted and determined by this method[190].

4. Fluorescent tags and fluorescence enhancement

Reaction of 2-(9-anthrylethyl) chloroformate ([79]) with phenols (phenol, 4-methylphenol, 3,4-dimethylphenol and 4-t-butylphenol), to yield the corresponding carbonates ([80]).
(equation 3), was investigated as derivatizing method before RP-HPLC with FLD. LOD was 7 to 10 nM\(^\text{191}\).

\[
\begin{align*}
\text{Me} & \quad \text{NH}_2 \\
\text{Me} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Ph} & \\
\end{align*}
\]

\(78\)

\[
\begin{align*}
\text{Me} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Ph} & \\
\end{align*}
\]

\(79\)

\[
\begin{align*}
\text{Me} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Ph} & \\
\end{align*}
\]

\(80\)

\[
\begin{align*}
\text{Me} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{Ph} & \\
\end{align*}
\]

\(81\)

4-(\(N\)-Chloroformylmethyl-\(N\)-methyl)amino-7-(\(N\),\(N\)-dimethylaminosulfonyl)-2,1,3-benoxadiazone (81) was proposed as a precolumn derivatizing reagent for alcohols, phenols, amines and thiols, conferring a fluorescent tag (\(\lambda_{\text{ex}}\) 437–445 nm, \(\lambda_{\text{fl}}\) 543–555 nm). The presence of quinuclidine (82) was required to ensure complete reaction of analytes other than amines. End analysis was by RP-HPLC with FLD. LOD was in the femtomol range for the derivatives on column\(^\text{192}\). 4-(4,5-Diphenyl-1\(H\)-imidazol-2-yl)benzoyl chloride (83) was proposed as a precolumn fluorescent label for acylation of phenols. LOD for phenol and various chlorophenols was below 0.1 \(\mu\)M for 20 \(\mu\)L injections. The average concentration of free and total phenols in human urine is 4.3 ± 2.5 and 29.5 ± 14.0 \(\mu\)M, respectively\(^\text{193,194}\). A method for simultaneous determination of phenol and \(p\)-cresol (72d) in urine was based on acid hydrolysis, LLE with isopropyl ether and reaction with labeling reagents such as 84, to give fluorescent sulfonic acid esters (\(\lambda_{\text{ex}}\) 300–308 nm, \(\lambda_{\text{fl}}\) 410 nm) and RP-HPLC. LOD for the analytes (SNR 3) was about 0.2 pmol per injection for 84a and about 15 fmol per injection for 84b–d. The content of phenol and \(p\)-cresol in human urine is 12–294 and 8–246 nmol(mg creatinine)\(^{-1}\), respectively\(^\text{195,196}\).

Phenolic compounds form inclusion complexes with \(\alpha\)-cyclodextrin (85), enhancing the fluorescent properties of the aromatic analytes. For example, \(p\)-hydroxybenzoic acid (86a),

\[
\begin{align*}
\text{O}_2\text{CCl} & \quad + \quad \text{HOAr} \\
\end{align*}
\]

\(72\)

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\end{align*}
\]

\(73\)
methylenparaben (86b), ferulic acid (69) and vanillic acid (38) were determined by RP-HPLC with FLD, using as mobile phase a 10^{-2} M concentration of 85 in acetate buffer of pH 4.6. Formation constants of the complexes were calculated from retention parameters. LOD was in the 1–5 µg L$^{-1}$ levels. The method was applied to the analysis of phenolics in beer\cite{197}; see also a method for determination of β-cyclodextrin in Section VIII.A.2.d.

C. End Analysis

The present section is organized according to the different matrix types related to the origin of the samples undergoing LC analysis. In Table 6 are summarized the chromatographic techniques other than RP-HPLC, and in Table 7 the detection methods applied after the chromatographic separation mentioned in Sections IV.A–C.
TABLE 6. Liquid chromatography techniques mentioned in Section IV, other than conventional RP-HPLC

<table>
<thead>
<tr>
<th>Chromatographic technique</th>
<th>Subsection and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary electrochromatography (CEC)</td>
<td>C.3.c 265.</td>
</tr>
<tr>
<td>Gel permeation chromatography (GPC)</td>
<td>C.5.c 289.</td>
</tr>
<tr>
<td>Ion chromatography</td>
<td>C.1 214.</td>
</tr>
<tr>
<td>Ion exchange chromatography (IEC)</td>
<td>C.2.a 215; C.3.b 257.</td>
</tr>
<tr>
<td>Micellar liquid chromatography (MLC)</td>
<td>C.2.d 237, 238; C.6 292.</td>
</tr>
<tr>
<td>Microbore column</td>
<td>A.1 138; C.1 210.</td>
</tr>
<tr>
<td>Normal phase HPLC</td>
<td>C.2.a 215.</td>
</tr>
<tr>
<td>Reversed phase (RP) microcolumn</td>
<td>C.3.b 261; C.3.c 266.</td>
</tr>
<tr>
<td>Size exclusion chromatography</td>
<td>C.5.a 286.</td>
</tr>
<tr>
<td>Supercritical fluid chromatography (SFC)</td>
<td>C.1 207–209; C.3.b 256; C.5.a 285.</td>
</tr>
<tr>
<td>Thin layer chromatography (TLC)</td>
<td>C.3.a 250, 251; C.3.b 264; C.4.a 63, 271–273</td>
</tr>
</tbody>
</table>

aApplications of the micellar electrokinetic chromatography (MEC) technique appear in Section V, dealing with electrophoresis.

TABLE 7. Post-column detection methods for liquid chromatography mentioned in Section IV

<table>
<thead>
<tr>
<th>Detection method</th>
<th>Subsection and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA-UVD</td>
<td>A.1 142; A.2.b 152; A.2.c 175; A.2.d 179, 180; C.1 202; C.2.a 217; C.2.b 218, 219, 221, 222, 224, 225; C.2.c 229–234; C.2.e 241, 242; C.3.a 249; C.3.b 256; C.4.a 267, 269; C.5.b 287.</td>
</tr>
<tr>
<td>FLD</td>
<td>A.2.e 33; B.4 191–197; C.1 198; C.2.c 234; C.2.d 240; C.3.b 258; C.4.c 279, 232.</td>
</tr>
<tr>
<td>ELD</td>
<td>A.2.a 148f; A.2.b 151e, 154, 155, 164, 166e, 168; A.2.d 179–181; A.3 185; C.1 201, 202, 203d, 204a, 207a, 208, 210, 211, 212a, 214; C.2.a 216d, C.2.b 221, 222, 227b; C.2.e 244b; C.3.a 246, 248b; C.3.b 254a, 255e, 261, 262b, 263b; C.3.c 266; C.4.b 275; C.4.c 280, 282f, 283, 284f, C.5.c 288.</td>
</tr>
<tr>
<td>MS</td>
<td>A.2.b 171l, 172j; C.1 203k, 206j,k,1, C.2.b 224; C.2.e 236n, C.2.d 239k,n, 240b, C.4.a 269j, 270a, C.4.c 277n, 278j, C.5.a 285j.</td>
</tr>
<tr>
<td>DRD</td>
<td>C.5.a 286.</td>
</tr>
</tbody>
</table>

aSee also Reference 99 in Section III.B.2.
bDual wave-length spot densitometer for TLC.
cVideo image analysis for TLC.
dCoulometric detection.
eAmperometric detection.
fTyrosinase-based biosensor. See also Section VI.A.2.
gVoltammetric detection.
hMultiple electrode coulometric array.
iPhenoloxidase-based biosensor. See also Section VI.A.3.
jAPCI-MS.
kPBEI-MS.
lISP-MS.
mESI-MS.
nTSP-MS.
1. General

Experimental design methodology was applied for the optimization of the elution program for the RP-HPLC resolution of a mixture of nine phenols, with a ternary solvent system (water–AcOH–MeCN). Important factors were the initial isocratic elution, the gradient running time and the gradient curvature. Peaks with a large degree of overlapping can be resolved by the H-point standard additions method. The method was applied to the LC-FLD determination of phenol and some monosubstituted phenols (72b–d) in water, using as analytical signals the heights or the areas obtained at two selected emission wavelengths. Good results are obtained for highly overlapping peaks with highly overlapping fluorescence spectra. The principal benefits of the method are the ease of finding the required wavelengths and its insensitivity to changes in the retention time of the peak from one injection to another. The pK_a values of polychlorinated phenols (87–89) were computed by a nonlinear regression algorithm, and were applied to estimation of the capacity factors at various pH values, using a standard reversed-phase column and acetonitrile as organic modifier. The method can also be applied to mobile phase optimization. A resolution map is presented based on pK_a values obtained either from the literature or from chromatographic data.

Several physical-chemical properties of alkanes, polyaromatic hydrocarbons, alkylbenzenes, polychlorobenzenes, polymethylphenols and polychlorophenols were determined using various software packages. The ionization potentials calculated by the MOPAC program was the most suitable property with which to adjust the capacity ratios of polychlorobenzene, polymethylphenol and polychlorophenol isomers.

Comparative studies were carried out to determine the efficiency of the various detection methods in the analysis of phenolic compounds. On-line SPE of sixteen priority phenol pollutants in water on polystyrene was followed by HPLC separation and detection. The sensitivity of ELD was higher than that of UVD. LOD down to the ppt level was attained by ELD on 100 mL samples for all the chlorinated phenols; however, nitrophenols could not be equally determined because they require working potentials different from those...
chosen for the chlorinated phenols in this study. Phenol could be detected at 0.02 ppb on reducing the sample volume to 10 mL.

An extensive study was performed on the factors affecting the analytical quality of the HPLC determination of phenolic pollutants in water at the 1 ppm level (44 compounds). Various types of column were considered, taking advantage of certain modes of analyte–stationary phase interaction: for C18 dispersion forces, for diphenyl π-electron interactions and for propylnitrile dipole moment interactions. Although optimization of the operating conditions improved the resolution of the column, no single column was capable of separating the complete set. Single components in very complex mixtures could be analyzed without MS detectors applying multidimensional chromatography and PCR. LOD was in the ppb range at SNR 2.

A comparison of performance was carried out of DA-UVD and ELD for the determination of trace amounts of phenolic antioxidants, such as BHA (31), 2-tert-butylphenol, 2-tert-butyl-4-methylphenol, PG (33a) and OG (33b). The LOD were lower and the linearity ranges wider for ELD than UVD.

UVD, ELD by controlled-potential coulometry and particle-beam electron-impact MS (PBEI-MS) in the SIM mode were applied to the HPLC analysis of fifteen benzoic and cinnamic acid derivatives. LOD for ELD was in the range from 1 to 5 pg injected, RSD was 0.6 – 3.0% at the 0.1 ng level (n = 4), with linear dynamic range of at least 104; LOD for UVD was in the 5 – 50 ng range with linearity up to at least 15 μg for most analytes, RSD was from 1.2 to 3.1% at the 500 ng level (n = 4); LOD for PBEI-MS was 2 – 5 ng, with nonlinear behavior over the entire range investigated (from 10 ng to 10 μg), RSD was 0 – 1.8% at the 100 ng level (n = 4) except for caffeic acid (25, RSD 75% at the 50 μg level, n = 4).

The use of a carbon paste electrode (CPE) incorporating tyrosinase (see Section VI.A.2) as ELD for LC determination of phenols was investigated. The enzyme-modified electrode showed higher stability than the unmodified one.

Chlorinated phenols in solid matrices, at concentrations down to sub-ppm levels, could be determined without any sample clean up, by placing a SFE device in tandem with a LC instrument. The speed of analysis and selectivity of the system compared favorably with conventional methods.

Three LC-MS interfacing techniques were compared. When using the thermostray (TSP) interface, [M – H]− or [M + CH3COO]− were obtained as the main ions. APCI and ion spray (ISP) interfaces gave [M – H]− at 20 – 30 V as the main ion. Calibration graphs were linear from 1 to 100 ng for each compound with repeatability values of 15 – 20%. Instrumental LOD for APCI were 3 – 180 ng in full scan and from 0.001 – 0.085 ng in SIM mode. Instrumental LOD for ISP and TSP were larger by approximately one order of magnitude.

Supercritical fluid chromatography (SFC) with ELD, using CO2 or CO2–MeOH as mobile phase, was applied to simultaneous determination of 11 priority phenols and 13 polycyclic aromatic hydrocarbons. Voltammetric measurements allow low-nanogram detection limits of reducible and oxidizable analytes, even if they elute simultaneously from the chromatographic column. SFC with MeOH-modified CO2 was performed under isobaric and pressure-programmed conditions, combined with ELD. LOD was 250 μg of 2,6-dimethylphenol for oxidative ELD and 100 pg of 1,3-dinitrobenzene for reductive ELD. Various sorbents were investigated for SPE preconcentration prior to SFC.

Microbore columns are of advantage due to the low mobile phase volumetric flow rates involved, the reduced on-column samples and the reduced chromatographic dilution, conferring high efficiency. Microbore columns with ELD were applied to the analysis of antioxidants, which are usually electroactive compounds. This combination led to highly selective and sensitive analyses. A micro ELD was designed and tested with
catecholamines. LOD for noradrenaline (15b) was 1 pg per 0.2 µL injection (3 nM), on a 0.7 mm bore column. The tested antioxidants were gallic acid (8), its propyl ester (33a) and three dihydroxybenzenes (20, 42, 66). The dynamic range was of four orders of magnitude and LOD was down to 0.1 fmol (20 fg injected) with a 0.3 mm bore column210.

A great enhancement of sensitivity for phenols analyzed by LC with ELD was attained using a glassy carbon electrode (GCE) chemically modified with polymerized Ni-protoporphyrin IX (90). This modification can also suppress oxidation of substrates more polar than phenols, such as ascorbic acid (91) and potassium hexacyanoferrate(II) (92). LOD was 13 µg L\(^{-1}\) of \(p\)-nitrophenol with linearity up to 1.3 ppm211.

A nickel phthalocyanine (93) polymer-coated GCE, working at an applied potential of +0.70 V vs. Ag/AgCl, was used for AMD of phenolic antioxidants. LOD was 0.11, 0.60 and 0.15 mg L\(^{-1}\) for BHA (31), BHT (32a) and PG (33a), respectively, using 50 µL injections with TBHO (35) as internal standard212.

A possible instrumental source of error in the determination of organic analytes by LC methods or in FIA setups is adsorption on the tubing and ducts of the instrument.
Thus, for example, the deviations from the expected behavior for the higher homologs in the determination of the diffusion coefficients of the m-alkoxyphenol and alkyl p-hydroxybenzoate homologous series, in alkaline aqueous ethanol solution, was attributed in part to solute adsorption on the walls of the Teflon dispersion tube.

Pentachlorophenol, 4-chlorophenol, 2-nitrophenol and 4-nitrophenol, in 0.9 to 3.6 mM concentrations, were investigated as modifiers of the mobile phase (NaHCO_3, Na_2CO_3 and NaOH solutions) in the ion chromatographic determination of various anions. These included species that usually are determined by this technique, such as F^-, Cl^-, NO_3^- and PO_4^{3-}, and also ions that are strongly retained on the column, such as I^-, SCN^-, CrO_4^{2-}, MoO_4^{2-} and ClO_4^-. The phenols were effective in substantially reducing the retention times of the strongly adsorbed anions; e.g. the retention time of ClO_4^- changed from 93.0 to 15.2 min in the presence of 3.6 mM of 4-nitrophenol. NO_3^- and PO_4^{3-} both had a retention time of 9.10 min with the ordinary mobile phase, but could be resolved in the presence of pentachlorophenol and 4-nitrophenol.

2. Foodstuffs

a. General. A review appeared on normal phase HPLC, RP-HPLC and ion exchange chromatography (IEC) separation of phenolic compounds in food, including anthocyanins, flavones, carotenoids, beet pigments, curcumins, mangiferin, gingerol and phenolic components produced from degradation of natural products during food processing.

A general method for the evaluation of phenolic compounds in fermented beverages, fruit juices and plant extracts was developed using gradient HPLC and coulometric detection. In a 10 µL injection it was possible to identify and determine 36 different flavonoids and simple and complex phenols, without sample extraction, purification or concentration, in several kinds of beers, red and white wines, lemon juice and soya, forsythia and tobacco extracts. This may also be useful for the characterization of beverages and extracts.

An optimization strategy was presented for the validation of a unique LC method, including the use of a single solvent gradient, for the LC analysis with DA-UVD of the most representative phenolic compounds from different food sources.

b. Fruit juice. A method was described involving SPE and isocratic LC with DA-UVD, for rapid determination of five phenolic acids, namely gallic (8), caffeic (25), ferulic (69), ellagic (94) and chlorogenic (95), in fruit juices. A single-gradient RP-HPLC run was recommended for the initial investigation of phenolic compounds in plants, whereas multiple runs after optimization for individual components are recommended when chromatographic resolution is required. This approach was applied to the analysis of apple juice, where the principal components were chlorogenic acid (95), phloridzin (96), caffeic acid (25) and coumaric acid (26), and tomato juice, containing 95, 25, 26, naringenin (5) and rutin (97). Similar quantitative estimates were obtained for these components by both chromatographic approaches.

Phenolic and furfural compounds in apple juice were determined by HPLC using a combination of ELD and DA-UVD. LOD for ELD were 4 to 500 times greater than those for spectrophotometric detection. The content of phenolics varied from 30 to 115 mg L$^{-1}$, including major phenolic components such as chlorogenic acid (95), p-coumaroylquinic acid (98) and phloridzin (96) and minor ones such as caffeic acid (25), p-coumaric acid (26), ferulic acid (69), gallic acid (8), protocatechuic acid (27) and catechin (3). The same methods were also applied for the analysis of maple products. The phenolic content was dependent on the source of the product. Application of reverse osmosis to maple sap caused a relative decrease of aldehydes and alcohols and an increase of phenolic acids.
Thermal evaporation brought about an increase of ferulic acid (69), vanillin (39) and syringaldehyde (63) with an attendant drastic decrease in sinapic acid (99)222.

SPE on a CLX cartridge was applied to separate ‘acidic’ phenols such as chlorogenic acid (95) from ‘neutral’ phenols such as (−)-epicatechin (2), (+)-catechin (3), phloridzin (96) and quercitrin (100). The neutral phenols were determined in apple juice by capillary LC with UVD at 280 nm, as an alternative to conventional HPLC. LOD were from 9 pg for 96 to 97 pg for 3223. HPLC analysis with MS and DA-UVD showed that apple pomace is a good potential source for phenolics. The usefulness of arbutin (9) as specific marker for pear products was placed in doubt224 (see Section II.A20).

The following profile of phenolics in pear fruit was established by HPLC with DA-UVD: Quinic acid (101) esterified in various positions by caffeic (25), coumaric (26) and malic (102) acids, and a mixture of flavonols that included three quercetin (47) 3-\textit{O}-glycosides (rutinoside, glucoside and malonyl glucoside) and five isorhamnetin (103) 3-\textit{O}-glycosides (rutinoside, galactorhamnoside, glucoside, malonylgalactoside and malonylglucoside). Identification was aided by chemical and spectral methods, such as FAB-MS225.
13. Analytical aspects of phenolic compounds

\[\text{(98)} \]

\[\text{(99)} \]

\[\text{(100)} \]

\[\text{(101)} \]

\[\text{(102)} \]

\[\text{(103)} \]
After alkaline hydrolysis and acidification to pH 3.4, samples of juices (green grape, black grape and cherry) were subjected to LLE with AcOEt. End analysis was by isocratic RP-HPLC. Gallic (8), chlorogenic (95), caffeic (25) and ferulic (69) acids were separated and determined. Determination of ellagic acid (94) required a modification of the elution regime. The phenolic acids of cherry juice were shown to have anticancergetic properties.\(^{218,226}\)

A coulometric array consisting of sixteen detectors was set up to generate voltammetric data for ELD after RP-HPLC of phenolics and flavonoids in juice beverages. Such detection could be used for on-line resolution of compounds with similar retention times. Within each class of compounds (phenolics and flavonoids), the oxidation potential changed with the substitution pattern as depicted in equation 4. A mixture of twenty-seven reference compounds was resolved in a run of 45 min duration. LOD was in the low µg L\(^{-1}\) range with a linear response range of at least three orders of magnitude.\(^{227}\)

\[
\begin{align*}
\text{OH} & < \text{OMe} \\
\text{OH} & < \text{R} \\
\text{OH} & < \text{R}
\end{align*}
\]

\[(4)\]

c. Wine and liquors. Direct phase HPLC of an SPE preconcentrate of phenolic compounds in red wine has been attempted.\(^{228}\) The RP-HPLC analysis with DA-UVD of the polyhydroxy phenols in wine was carried out, after suitable preparation, using a series of solvent gradients and columns; detection was at 280, 313, 365 and 520 nm.\(^{229}\) Similar analyses were also carried out by direct injection of the wine in the column; more than fifteen phenolic compounds with antioxidant properties were detected, including flavan-3-ols, anthocyanins, cinnamic acid derivatives, flavonol derivatives and trans-resveratrol (28a).\(^{231}\)

After optimization of the solvent gradient, analysis of wine samples could be carried out by direct injection into the RP-HPLC column with DA-UVD in the 240–390 nm region. The following low molecular mass components could be detected, in increasing order of retention times: Gallic acid (8), furfural (104a), 5-hydroxymethylfurfural (104b), p-hydroxybenzaldehyde, vanillic acid (38), syringic acid (70), vanillin (39), syringaldehyde (63) and ellagic acid (94).\(^{232}\) Direct injection RP-HPLC with DA-UVD was applied to the detection of phenolic compounds and furans in fortified wines that underwent extended periods of wood ageing.\(^{233}\) A method was developed for optimal separation of trans-resveratrol (28a) and its cis-isomer, epicatechin (2), catechin (3), quercetin (47) and rutin (97) in wine, by RP-HPLC with DA-UVD. Application of FLD considerably lowered the LOD of 2, 3, and both isomers of 47.\(^{234}\)

Various HPLC-MS methods were examined to establish the optimal ion source and detector operating conditions for the detection or determination of low molecular mass phenols and flavan-3-ols. Atmospheric pressure electrospray ionization MS (ESI-MS) in
the negative ion mode for the low molecular mass phenols and both negative and positive ion modes for the flavan-3-ols were found most suitable. This was applied to the analysis of phenolic compounds in a complex matrix such as wine235.

A capillary-scale particle beam interface was used for the analysis of phenols in red wine by LC with MS detection. The interface allows very low mobile phase flows and sensitive detection of the analytes in complex matrices236.

d. Oils and fats. A cooperative study involving many laboratories was carried out for the determination of the phenolic antioxidants listed in Table 3, used in foodstuffs to stabilize animal fat. The limitations imposed by the standards on the concentration of antioxidant in the fats and the relative amounts of fats present in various types of foodstuffs require detection limits for the analytical methods in the ppm range. This made HPLC the method of choice, for AOAC LC method 983.1544,45.

A simple method for determination of antioxidants (31, 32a, 33a–c, 35) in oils and fats consists of dissolving the sample in \textit{n}-propanol, filtering and analyzing by micellar liquid chromatography (MLC) with UVD at 290 nm. LOD was 0.2 to 1.3 ng, corresponding to concentrations well below those allowed in food; with RSD 2\% for samples spiked at 200 ppm237,238.

HPLC with TSP-MS and ISP-MS detection methods was used to identify phenolic glycoside components of olive leaves, such as oleuropein (40), directly from crude extracts239. Phenolic compounds in extracts from freeze-dried olives were cleaned up by SPE and subsequently analyzed by HPLC with both fluorescence and ESI-MS detection. Oleuropein (40) was the major phenolic component in the fruit240.

e. Miscellaneous. The HPLC analysis of catechins in green tea leaves using DA-UVD has been described241,242. A rapid HPLC method for determination of phenolic antioxidants (31, 32a, 33a–c) in bakery products has been described243. The following phenolic esters were determined simultaneously by RP-HPLC with ELD: Methyl 4-hydroxybenzoate (105a), methyl vanillate (105b), methyl syringate (105c), methyl \textit{p}-coumarate (106a) and methyl \textit{trans}-ferulate (106b). An array of sixteen coulometric electrodes was used, with potentials increasing from 300 to 900 mV. These compounds were found in honey, in concentrations between 1.31 and 5044 ppb; LOD was 0.1 to 1.0 \textmu g(kg honey)−1 (SNR 3). The method was sensitive enough to discriminate between rape honey and other varieties244, HPLC analysis showed that honeys originating from heather contain ellagic (94), \textit{p}-hydroxybenzoic, syringic (70) and the \textit{ortho} isomer of coumaric (106c) acids while those originating from lavender contain gallic acid (8)245.

\begin{align*}
\text{(105)} \quad & \text{R = R' = H} \\
& \text{(b) R = OMe, R' = H} \\
& \text{(c) R = R' = OMe} \\
\text{(106)} \quad & \text{4-OH, R = Me, R' = H} \\
& \text{(b) 4-OH, R = Me, R' = OMe} \\
& \text{(c) 2-OH, R = R' = H}
\end{align*}
3. Environmental samples

a. General. After on-line enrichment on a styrene–divinylbenzene copolymer column end analysis followed RP-HPLC with ELD was applied to the determination of phenols in seawater and marine sediments, at ng L\(^{-1}\) levels. The effect of octylammonium phosphate as modifier of the water–MeCN mobile phase was investigated for the RP-HPLC analysis of the EPA priority pollutant phenols. LOD was lower than 30 ppb without pre-concentration, for UVD at 285 nm. Modifications of the ELD cell were reported for coulometric detection of phenolic pollutants, including methyl, chloro and nitro derivatives. An array of four GCE set at 550, 700, 750 and 800 mV vs. Ag/AgCl, respectively, was proposed. This type of ELD allowed the determination of 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol. Phenols derived from lignin present in environmental samples were determined by HPLC with DA-UVD. The use of the diode array allowed detection of impurities within individual chromatographic peaks.

Separation of eleven chlorophenols was attempted on RP-TLC plates. Best resolution was obtained for a 7 : 3 mixture of MeCN and water, although 3- and 4-chlorophenol were not resolved; other solvents separated this pair. Various stationary and mobile phases were investigated for TLC separation of phenol and its derivatives.

b. Water. A new type of polystyrene resin has been proposed as stationary phase for determination of ppb levels of priority water pollutants. After LLE of thirteen water pollutants, they were determined by RP-capillary chromatography with gradient elution and UVD. LOD was 0.10 to 0.81 ppm (100 nL injections). The effect of temperature programming was also investigated. The priority phenols listed in Table 4 were determined in drinking water at the concentration levels allowed in the European Union. The priority phenols (Table 4) in tap and river waters were determined by SPE on line with SFC with DA-UVD. Tetrabutylammonium bromide was used in the extraction process to increase breakthrough volumes. The mobile phase was CO\(_2\) at 40 °C, modified by a gradient of MeOH. LOD was 0.4 to 2 μg L\(^{-1}\), for 20 mL samples, with good repeatability and reproducibility between days (\(n = 3\)) for real samples spiked with 10 μg L\(^{-1}\). Seven pollutant phenols, 107a–f and pentachlorophenol, were determined by IEC with a basic SAX resin (styrene–divinylbenzene copolymer with quaternary ammonium groups) and single channel UVD. Resolution of overlapping peaks was carried out by inverse least-squares multivariate calibration. LOD was 0.6 to 6.6 ng, with better than 90% recovery from spiked pure water and 83% from river water. No extensive clean-up was necessary.

An ultrasensitive method for phenols in water consisted of several steps: LLE with dichloromethane, evaporation of the solvent, RP-HPLC on a C\(_{18}\) column with a water–acetonitrile gradient, and tandem UVD-FLD. Dinitrophenols are first determined by UVD; then an oxidation of phenols with Ce(IV) takes place in the FLD cell, where the fluorescence of the reduced Ce(III) ions is measured. LOD in the lower ppt range can be achieved. Quantation can be improved using internal standards. Phenolic constituents of industrial wastewaters could be detected by a post-column reaction after RP-HPLC. A color reaction with maximum absorbance at ca 500 nm takes place with many phenols in
the presence of 3-methyl-2-benzothiazolidinone hydrazone (108) and the cerium complex \(\text{Ce(NH}_4\text{)}_2(\text{SO}_4)_3 \) in highly acidic media. The spectra were independent of the eluents and the matrix complexity. Except for nitrophenols, LOD were about 1 to 20 ng of phenol per injection. Aldehydes are passive under these conditions. Interference of thiophenols can be eliminated under neutral to basic conditions. Aromatic amines show a large hypsochromic shift accompanied by a decrease of absorbance intensity\(^{259}\).

The presence in drinking water of phenol, cresol and various antioxidants (109–113) used for synthetic rubber preservation was tested by SPE with a C\(_{18}\) cartridge followed by RP-HPLC on a C\(_{18}\) column with UVD at 280 nm\(^{260}\). An automatic LC system was devised for determination of trace amounts of phenols in water, based on SPE preconcentration, RP microcolumns, isocratic methanol–water mobile phase and ELD in the autoincrement mode. LOD was 40–600 ng L\(^{-1}\), for eleven priority phenols\(^{261}\).
An array of two electrodes was set up with the first one at a low potential (250 mV) for sample clean up, while the second electrode served for measurements. This array allowed LOD in the ppt range for 5 mL samples of water, after applying an SPE preconcentration step. Simultaneous determination of phenol, 26 substituted phenols and herbicides was carried out by SPE followed by RP-HPLC using a gradient of a solvent modifier and a counter-ion with an array of ELDs. The identity of each chromatographic peak was based on its retention time and the peak height ratio across the electrode array, as compared with those of an authentic standard. The method was applied to determination of phenylurea herbicide residuals, phenol, chlorophenols and nitrophenols in waters of various origins. LOD for the less sensitive analyte, the herbicide Linuron, was 0.5 ng L\(^{-1}\) at SNR 3, much lower than the European Community specification.

The possibility of determining trace phenolic pollutants in water by TLC was investigated. The analytes were preconcentrated by SPE and subjected to both classical and multiple gradient development TLC. \textit{In situ} quantation was performed by UV absorption or by visible light absorption after treatment with Wuster’s reagent. LOD was
10–100 ng per band, with 60–80% recovery, and RSD 1.3–2.8% \((n = 3) \) at 10 \(\mu \text{g} \text{L}^{-1} \), for seven priority phenols\(^\text{264}\).

\[
\text{Me}_2\text{N} \quad \text{O} \quad \text{Cl} \quad \text{Me}
\]

\((115) \)

c. **Soil.** A combination of SFE with capillary electrochromatography (CEC) was proposed for determination of phenolic contaminants of soil. At optimal operation conditions baseline resolution was achieved for a mixture of ten compounds, including phenol, cresols, xylenols and other alkylated phenols\(^{265}\). A method for determination of total phenols in soil samples is based on extraction with sodium hydroxide solution. After pH adjustment the phenols present in solution were collected by SPE on a C\(_{18}\) cartridge. End analysis of the phenols was on a short RP-column using ELD. This allows fast elution of the phenolic species into a single peak, which can be integrated, while ELD provides both sensitivity and functional selectivity\(^{266}\).

4. Biological and biomedical samples

a. **Plant extracts.** In contrast to the sample simplification strategy illustrated in Figure 2, direct analysis of complex samples has also been attempted, based on finding the most adequate columns and operating conditions. For example, wood, bark and leaf extracts of *Eucalyptus* sp. were analyzed for phenolic acids, phenolic aldehydes and flavonoids by RP-HPLC with DA-UVD. The analytes were identified by retention time and spectrophotometric response against a set of 46 standards, including phenolic acids, phenolic aldehydes, catechins, isoflavones, flavones, flavanones, flavonols, dihydroflavonols and the glycosides of some flavonoids\(^{267}\). The methods for HPLC determination of resveratrol (28a) and piceid (28b) have been critically reviewed\(^{31}\).

The anthocyanins and colorless phenolics in eleven cultivars and hybrids of sweet cherries were characterized and quantified by HPLC and GC. All of the dark-colored cherry genotypes were found to contain the 3-rutinoside and the 3-glucoside of cyanidin (116b) as the major anthocyanins and the same glycosides of peonidin (116c) as minor anthocyanins. Another minor anthocyanin, pelargonidin (116a) 3-rutinoside, was identified in sweet cherries for the first time. The major colorless phenolics were characterized as neochlorogenic acid (enantiomer of 95) and \(p \)-coumaroylquinic acid (presumably 98). The total anthocyanin content ranged from 82 to 297 mg per 100 g of pitted cherry for the dark cherries and from 2 to 41 mg per 100 g of pitted fruit for the light-colored cherries. 98 and 95 ranged from 24 to 128 mg and from 23 to 131 mg per 100 g of pitted cherry,
respectively. The relative amounts of the two phenolic acids varied widely across the cherry cultivars examined in this study.\(^8\)

Aloesin (117), aloenin (118) and aloe-emodin (119) are among the phenolic constituents that were identified in MeOH extracts of various aloe species, by RP-HPLC with UVD at 290 nm, using a linear gradient of MeCN–water. LOD was 8 to 70 ppb for these and other compounds in the extract.\(^{268}\) The natural antioxidants present in crude aqueous mate leaf extracts (*Ilex paraguayensis*) were analyzed by LC with APCI-MS in the negative ion mode and DA-UVD. Among the identified polyphenolic compounds were isomers of quinic acid (101) mono- and diesterified with caffeic acid (25), such as chlorogenic acid (95), rutin (97) and various glucosides.\(^{269}\)

Plant extracts often contain compounds of biological and pharmaceutical interest as glycosides. MS investigation of these metabolites requires soft ionization techniques such as
desorption chemical ionization or fast atom bombardment (FAB) if information on molecular mass or sugar sequence is desired. Thermospray (TSP) provides MS results similar to those obtained with positive-ion desorption chemical ionization MS, using NH₃, and thus is potentially applicable to on-line analyses of these compounds and can be applied to plant extract analysis. Extracts of Gentianaceae (containing secoiridoids and xanthone monoglycosides), Polygalaceae (containing flavonol di- and triglycosides), Pedaliaceae (containing iridoids, phenylpropanoid glycosides) and Leguminosae (containing triterpene glycosides) were analyzed by RP-HPLC with TSP-MS detection, using methanol–water or acetonitrile–water gradients. Good optimization of the temperature of the source and the vaporizer was crucial for the observation of pseudomolecular ions of glycosides. For example, in Figure 3 rutin (97) shows an [M + H⁺] ion (m/e 611) that loses rhamnose and glucose residues, giving strong peaks at 465 and 303, respectively.

Information theory and numerical taxonomy methods were applied in the evaluation of the efficiency of mobile phases for the TLC separation of flavonoids and phenolic acids identified in a MeOH extract of *Rosmarini folium*. The optimal mobile phase was an AcOEt–HCO₂H–AcOH–H₂O mixture of 100 : 11 : 11 : 27 volumetric ratio. Multiple gradient development TLC was applied to the analysis of phenolic acids from *Lycopus europaeus L.* (Lamiaceae). For the first time 2,4-, 2,5-, 3,4- and 3,5-dihydroxybenzoic acids were detected in this genus. Thirteen TLC analyses by various methods were performed, of a methanolic extract of leaves of *Helleborus atrorubens Waldst. et Kit*. that contained fifteen flavonoids and phenolic acids. The results were subjected to numerical methods, including calculation of the information content, determination of discriminating power and formation of clusters and dendrogram. This allowed evaluation of the separating power of the various methods, and pointed to the AcOEt–HCO₂H–H₂O (65 : 15 : 20 v/v/v) mixture as the optimal one for the separation of the given compounds. The settings of a dual-wavelength spot densitometer and a video image analyzing system were investigated for their effect on the repeatability of these detection methods for TLC. The results of both methods at the optimal settings were equivalent for the analysis of...
phenolic compounds in the leaves of *Phyllantus emblica* L., separated by normal and RP-TLC, and determined at 254 and 366 nm\(^{273}\).

b. Effects of food intake. Seven flavonoid and two anthraquinone phenolic derivatives were found in human urine by RP-HPLC, after administration of the traditional Chinese herbal medicines Dachaihu-tang and Xiaochaihu-tang\(^{274}\). The accumulation of three antioxidants, PG (33a), BHA (31) and BHT (32a), in the omentum originating in dietary intake was demonstrated by HPLC with ELD. Evidence for peroxidase-catalyzed oxidation of 31 was obtained by detection of the dimeric oxidized metabolite 120. The method was sensitive to 0.1 to 1 \(\mu\)g L\(^{-1}\) antioxidant in plasma or tissue homogenate\(^{275}\).

\[
\begin{align*}
\text{t-Bu} & \quad \text{OH} & \quad \text{OH} & \quad \text{Bu-t} \\
\text{OMe} & \quad \text{OMe} \\
(120)
\end{align*}
\]

The determination of the human bioavailability of flavonoids and hydroxy derivatives of cinnamic acid, such as coumaric (26), caffeic (25), chlorogenic (95) and ferulic (69) acids, was carried out by HPLC analysis of urine\(^{276}\).

c. Physiological and toxicological monitoring. Antipyrine (121) was used as an exogenous marker for the damage caused in the organism by free radicals and oxidative stress. Antipyrine and its phenol derivatives were determined by RP-HPLC with ESI-MS detection, with the spectrometer operating in the multiple reaction mode. LOD for antipyrine was 25 ng L\(^{-1}\) for 20 \(\mu\)L injections\(^{277}\). The APCI-MS detection method was also investigated, in both the single ion and selective reaction modes. LOD for antipyrine was 300 ng L\(^{-1}\) for 20 \(\mu\)L injections\(^{278}\).

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{N} & \quad \text{N} & \quad \text{O} \\
\text{Ph} \\
(121)
\end{align*}
\]

A sensitive method was developed for determination of phenol and 4-methylphenol in serum, based on LLE with ethyl acetate and HPLC with FLD. This was simpler
than GC, as no derivatizing was required. This was applied to control hemodialysis of uremic patients, who have significantly higher concentration of these analytes than in normal blood279. A method for determination of phenolic compounds in plasma involved centrifugation, SPE with a polytetrafluoroethene membrane impregnated with a water immiscible organic solvent (Hex-O-Hex), redissolution in an alkaline phase, transfer to LC analysis via an ion exchange phase and detection with a phenoloxidase-based biosensor. LOD was below 50 μg(L plasma)$^{-1}$280. Phenol and p-cresol were determined in urine and feces by acid hydrolysis, LLE with ether and aqueous NaOH, evaporation under nitrogen and redissolution in water. Hydrolysis is necessary because phenols are usually conjugated by the liver and colonic epithelial cells as sulfates or glucuronates. End analysis was by RP-HPLC with UVD at 270 nm281. Determination of phenolic metabolites of benzo[a]pyrene (122) in water and urine was performed by SPE followed by HPLC with AMD. This detection method is 2 to 12 times more sensitive than UVD and FLD282.

![Image of compound 122](image)

Immobilized β-glucosidase served for enzymatically catalyzed hydrolysis of benzene metabolites in urine. End analysis of phenol was by RP-HPLC with ELD at 0.85 V vs. Ag/AgCl electrode. ELD avoids interference from other compounds present in urine. LOD was 10 μg L$^{-1}$ (20 μL injection, 0.2 ng), with RSD 1.16% and 3.38% for 1.2 ng and 2.0 ng, respectively283. A study was carried out of two FIA systems for enzymatically catalyzed determination of dopamine (10a). Thus, a combination of a packed bed reactor containing immobilized tyrosinase followed by photometric detection was compared with ELD based on a graphite electrode with its surface covered by immobilized tyrosinase. The former configuration was linear up to 0.75 mM while the latter reached 1 mM. LC separation and post-column detection with the bioelectrode was applied to analysis of spiked serum samples284.

5. Miscellaneous industrial products

 a. Polymeric materials. Low molecular weight species present in resol prepolymer were analyzed by SFC with APCI-MS detection, without derivatization. Thirty-four components were identified, including the initial phenol and cresol reagents and their oligomerization products, ranging from dimers to pentamers with varying amounts of methylol substitution285. Size exclusion chromatography with differential refractometric detection (DRD) apparently failed to yield monodisperse fractions of polybisphenol A carbonate. This is due to self-association by hydrogen bonding of phenol-terminated polymer chains, leading to formation of macromolecular aggregates of higher hydrodynamic volume (see also Section XI)286.
b. Disinfectants. Compounds 123–125 are used in combination as active ingredients in hospital disinfectant formulations. Their concentration can be determined by RP-HPLC with a C18 column, using an isocratic mobile phase consisting of methanol and phosphate buffer, and DA-UVD to help identification of the eluted fractions287.

\[
\begin{align*}
(123) & \quad \begin{array}{c}
\text{OH} \\
\text{Me} \\
\text{C} \\
\text{Et}
\end{array} \\
(124) & \quad \begin{array}{c}
\text{OH} \\
\text{Me} \\
\text{C} \\
\text{Et}
\end{array} \\
(125) & \quad \begin{array}{c}
\text{OH} \\
\text{Cl} \\
\text{CH}_2
\end{array}
\end{align*}
\]

c. Liquid fuels. Kerosene type fuels for jet aircraft contain phenolic antioxidants at 10 to 20 mg L\(^{-1}\) levels. An LC-ELD method was developed for determination of these additives. LOD was 0.1 mg L\(^{-1}\)288. Phenols in pyrolysis oils were determined by a combination of gel permeation chromatography (GPC) and multidimensional LC. GPC served to separate the high molecular mass ‘lignins’ from the phenolic fraction that remained adsorbed on the column. Subsequent elution from this precolumn followed by introduction into the LC analytical column completed the analysis289.

d. Dyestuffs. The presence of phenols and aromatic amines in dyestuffs was determined by dissolving the sample in water cleaning with a SAX cartridge, and HPLC with on-line preconcentration and UVD290.

6. Structural and functional characterization

The pK\(_a\) values of six polychlorinated phenolic compounds (87–89) were estimated by the Marquard–Levenberg algorithm, from the capacity factors of the compounds obtained on varying the pH of the mobile phase199. The pK\(_a\) values of 64 phenolic and 50 nitrogen-containing compounds were determined from their RP-HPLC behavior and by a computational method on the basis of the pK\(_a\) values of reference compounds and the Hammett equation. Good correspondence was found in general for the phenolic compounds, whereas the computational estimates were higher than the chromatographic values for the nitrogen-containing compounds. Substitution in the ortho position and a nitro group may disturb the computational method291.

MLC has been applied for the determination of partition properties and the hydrophobicity of monosubstituted phenols. The enthalpy and entropy of partition were estimated from the temperature dependence of the partition properties; these values were interpreted in terms of molecular size and the ability of the solute to establish a hydrogen bond. The \(\pi\), \(\pi(H)\) and \(\pi(S)\) constants were determined from the experimental partition properties and applied to quantitative structure–activity relationship (QSAR) analysis292.
13. Analytical aspects of phenolic compounds

V. ELECTROPHORESIS

A. Environmental Samples

1. Water

 a. Sensitivity enhancement. Preconcentration of very dilute phenolic analytes was achieved by on-line flow sample stacking. Thus, the sample is continuously delivered over the opening of a capillary containing a suitable electrolyte. On applying a high potential, phenols are stacked in the interface between the sample and the electrolyte. For example, up to 2000-fold preconcentration was attained from a sample of deionized water spiked with low concentrations of the eleven EPA priority phenols, on filling the capillary with a buffer made of 20 mM phosphate, 8% 2-butanol and 0.001% \(N,N,N',N',N'\)-hexamethyl-1,10-decanediammonium bromide at pH 11.95 and applying 2 kV for 240 s. No matrix removal was necessary to carry out the capillary electrophoresis (CE) analysis. Determination of the priority phenols and others in water, at the concentrations levels stated by the international regulations for the public supply, was carried out by off-line preconcentration followed by CE using the stacking procedure for matrix removal. A method involving field-amplified injections was proposed instead of off-line preconcentration, because of its simplicity, speed and the high enrichment factors achieved. This technique was applied to the CZE analysis of the eleven EPA priority phenols, LOD was in the ppb range, SNR between 1.4 and 8.8% for the tested phenols. A significant sensitivity enhancement was reported when using a nonaqueous running buffer for determination of the priority phenols by CE with AMD. A triacetlated derivative of \(\beta\)-cyclodextrin (126) served for selectivity enhancement in the analysis of phenolic water priority pollutants. CE with AMD (Pt vs. Ag/AgCl, poised at +1.6 V) using a nonaqueous solvent achieved 3- to 8-fold LOD diminution factors as compared to aqueous buffers. CZE with laser-induced fluorescence (LIF) for indirect FLD, using a sodium borate (\(Na_2B_4O_7\)) buffer containing fluorescein (16), achieved LOD in the \(10^{-7}\) to \(10^{-6}\) M range for eleven priority phenols.

 \[
 \begin{array}{c}
 \text{HOCH}_2 \\
 \text{O} \\
 \text{O} \\
 \text{H} \\
 \text{O} \\
 \text{HO} \\
 \end{array}
 \]

 \(\text{(126)}\)

 b. Miscellaneous samples. Application of CZE to the determination of chlorophenols in water samples was investigated, using UVD at 214 nm. The combination of a micromachined CE chip with a thick-film AMD was proposed for simultaneous determination of phenolic pollutants in water. At pH 8, LOD was 1–2 \(\mu\)M with linearity up to 0.2 mM and RSD was 3.7% \((n = 3)\) for seven priority chlorophenolic pollutants. Additional phenols could be determined on raising the pH to 10.5. A CZE method combined with AMD was developed for phenols in industrial wastewaters. The column had ID 50 \(\mu\)m and 62.5 cm length, operating at 9 kV, with a 20 mM buffer solution of \(N\)-cyclohexyltaurine.
(127) at pH 10.1. The detector was made of a 9 \(\mu \text{m} \) diameter carbon fiber microelectrode inserted at the end of the detection capillary, operating at +1.10 V vs. Ag/AgCl. LOD was at the \(\mu \text{M} \) level for eleven priority pollutant phenols, with linearity over two orders of magnitude.

\[
\begin{align*}
\text{NHCH}_2\text{CH}_2\text{SO}_3\text{H} \\
\text{(127)}
\end{align*}
\]

Double-chain surfactants with two sulfonate groups were proposed for micellar electrokinetic chromatography (MEC) analysis of phenolic pollutants in water. CE with ESI-MS detection was applied to the analysis of phenolic compounds in olive mill wastewaters. Quantitative analysis was performed in the negative SIM mode, using \(p \)-chlorophenol as internal standard. LOD ranged from 1 pg for 4-hydroxybenzaldehyde and protocatechuic acid (27) to 386 pg for vanillic acid (38). A modified montmorillonite served for SPE preconcentration of phenols, followed by EtOH desorption and CE end analysis.

2. Soil

Soil samples were extracted with 0.6 M NaOH in 95% MeOH and subjected to CZE for determination of chlorophenols. LOD were usually sub-ppm and recoveries were usually fair; however, in some cases they were very small and in others they were in excess of 200%.

3. Air

The analysis of phenolic pollutants in the atmosphere involves collection of the pollutants in a liquid film. End analysis is by MEC with direct UVD of the analytes.

B. Foodstuffs

1. General

MEC was investigated as an alternative to HPLC for the determination of simple phenolic constituents, e.g. vanillin (39), vanillic acid (38) and ferulic acid (69) in spirituous beverages and those of nutritional or pharmacological significance, such as catechol (42), hydroquinone (66), caffeic acid (25), catechin (3), chlorogenic acid (95) and vanillin (39).

2. Wine and beer

A simple CZE method, using a borate buffer at pH 9.5 and UVD at 280 nm, was applied for analysis of Spanish red wines. Although the electrophoretic profile was similar for different wines, the quantitative analysis varied much between them. The following phenolic components were identified: (−)-epicatechin (2), (+)-catechin (3), (−)-epigallocatechin (74), syringic acid (70), vanillic acid (38), gallic acid (8), protocatechuic
13. Analytical aspects of phenolic compounds

\[
\begin{align*}
&\text{HO} & - & & \text{CH}_2\text{CH}_2\text{OH} \\
&(128)
\end{align*}
\]

acid (27), coumaric acid (26), caffeic acid (25) and the depsides (68) derived from cis- and trans-coumaric acid and cis-caffeic acid\(^{309}\). A comparative study of HPLC and CZE for noncolored phenolic components in wine showed good agreement between both methods, but CZE was less sensitive for detection of flavonoids. However, \(p\)-hydroxyphenethyl alcohol (128) was detected by CZE for the first time in wine\(^{310}\).

The CE analysis of phenolic acids in complex matrices such as beer was investigated. The voltammetric end determination required separation of interfering components and optimization of pH at the various stages of the procedure\(^{311}\). Application of CZE and MEC with DA-UVD to the analysis of antioxidants was investigated. Gallic acid (8) and some of its derivatives (33a–c, the amide of 8 and its trimethyl ether), BHA (31) and BHT (32a) were only partially resolved by CZE, whereas full resolution was achieved by MEC\(^{312}\).

3. Honey

More than twenty phenolic compounds were found in honey extracts from various floral species, by CZE with DA-UVD. Individual compounds that were identified by total spectrum recording included, in order of increasing migration time, naringenin (5), chlorogenic acid (95), \(m\)-coumaric (129a) acid, quercetin (47), syringic acid (70), ferulic acid (69), \(o\)-coumaric acid (129b), kaempferol (6), \(p\)-coumaric acid (26), apigenin (4), vanillic acid (38), ellagic acid (94), \(p\)-hydroxybenzoic acid, caffeic acid (25), gallic acid (8) and 2,4-dihydroxybenzoic acid\(^{313}\).

\[
\begin{align*}
&\text{CO}_2\text{H} \\
&(129) (a) \text{ m-OH} \\
&(b) \text{ o-OH}
\end{align*}
\]

C. Biological Samples

A direct injection method was proposed for phenolic acid extracts from plant tissue or soil, based on CZE at pH higher than the \(pK_a\) of the acids. Tetradecyltrimethylammonium bromide was added to reverse the electroosmotic flow. LOD was 1–7 µM for eight phenolic acids at pH 7.20\(^{314}\).
D. Miscellaneous Industrial Samples

1. Wood and paper

Phenolic degradation products of lignin in Kraft black liquors were extracted with chloroform after acidification and separated by CE with UVD at 214 nm315. Simple CZE was insufficient for the separation of low molecular mass phenolic and neutral degradation products of lignin. Enhanced separation was attained on turning to the MEC technique, where the analytes interact with micelles present in the carrier buffer solution316.

2. Fuels

Biomass carbonization oils constitute an important source of chemicals and, more recently, an alternative to fossil oils as energy source. Phenol derivatives (alkyl- and methoxyphenols, alkylidihydroxybenzenes, hydroxybenzaldehydes) and naphthol derivatives were determined by the MEC method317.

E. Structural and Functional Characterization

The change in mobility as a function of pH, observed for phenolphthalein (19) during CZE, was used to estimate the pK_a values of this compound (8.64 and 9.40)318, see also Section VIII.A.3.

VI. BIOSENSORS

A. Electrochemical Detection

1. Working principles

A review appeared on determination of phenolic compounds by amperometric measurement, taking advantage of the catalytic properties of certain immobilized enzymes319. The operation principles of the most popular biosensors for phenol analysis are shown schematically in Figure 4. The reactive form E_{ox} of an oxidase is reduced to E_{red} by a phenol molecule (Ph). The enzyme is regenerated by oxygen or by hydrogen peroxide, as the case might be (e.g. tyrosinase or horseradish peroxidase, respectively). The measurements can be carried out electrochemically, following the consumption of the regenerating agent or the appearance of the phenol oxidation product, such as a reactive free radical (Ph$^\bullet$) or a quinone (Q).

The process depicted for phenol in equations 5 consists of an enzyme-catalyzed oxidation to a quinone, and a reduction process taking place at the electrode; these reactions may serve for electrode calibration. The development of AMD biosensors for detection of phenols in environmental waters has been described for phenoloxidases such as tyrosinases and laccases and less specific oxidases such as peroxidases. Such biosensors may be part of a FIA system for direct determination of phenols or may serve as detectors for LC320.

2. Biosensors based on tyrosinase

Various aspects of the kinetic behavior of the tyrosinase biosensor were investigated, including parameters affecting the enzyme activity and the rate of oxygen consumption. The Michaelis–Menten constant was determined for tyrosinase using several substrates and different experimental conditions. Performance parameters of the biosensor in the
FIGURE 4. Operation principles of a biosensor based on enzymatic oxidation of a phenol (top) and electrochemical detection by determining oxygen or hydrogen peroxide (bottom left) or the oxidation products derived from the phenol (bottom right). Ph denotes a phenol, Ph* an activated form of a phenol and Q a quinone.

\[
\begin{align*}
PH^* + O_2 &\rightarrow PH + H_2O_2 \\
PH + OH_2O &\rightarrow PH^* + O_2 \\
PH^* + O_2 &\rightarrow PH + H_2O_2 \\
PH + OH_2O &\rightarrow PH^* + O_2 \\
\end{align*}
\]

analysis of phenols were evaluated, such as sensitivity, linearity range, optimal temperature and pH operative conditions, and some interference effects321. The performance was evaluated of a graphite–epoxy electrode incorporating tyrosinase, working in an AMD flow cell. LOD was 1.0 µM of phenol and 0.04 µM of catechol (42) (SNR 3 and RSD <2%)322; the sensitivities of the electrode were 1.53, 1.28, 1.05, 0.687, 0 and 0 for catechol, phenol, \textit{p}-cresol, \textit{m}-cresol, \textit{o}-cresol and 2-chlorophenol, respectively323. A comparative study was carried out of the efficiency of tyrosinase-modified CPEs, using lyophilized powder of the enzyme purchased from different companies. Cyclic voltammetry and FIA measurements indicated that the response of the modified electrodes was limited by the rate of the enzymatic oxidation of the catechols. The highest sensitivity
for the studied phenols and catechols was obtained when the enzyme was directly mixed into the graphite powder doped with an osmium-based mediator. The best selectivity, on the other hand, was dependent on the source of enzyme used for electrode preparation. Tyrosinase combined with a CPE was found to be a more effective biosensor than the combination with immobilized laccase or coconut tissue; LOD were 72, 37 and 32 µg L⁻¹ for hydroquinone, phenol and catechol, respectively. A tyrosinase–modified electrode showed advantage over a GCE with or without modification with Ni-protoporphyrin IX methyl ester for determination of oleuropein in olive oil. Tyrosinase was immobilized on a zeolite modified with N-methylphenazonium ion and spread over a strip detector with a polyurethane hydrogel. This biosensor achieved subnanomolar LOD for priority phenolic pollutants (0.25 nM for phenol).

A study was made on the optimal immobilizing phase for tyrosinase in combination with a GCE and the experimental conditions for AMD of phenols. The apparent Michaelis–Menten constants and the stability of the biosensor were discussed. A study was made on the operational and storage stability of phenol-sensitive AMD electrodes, based on immobilized tyrosinase, varying the electrode material and mode of deposition of the enzyme. The electrode with the best performance was obtained for tyrosinase immobilized on Nafion, sensitivity being 11.51 nA µM⁻¹; LOD was 0.015 µM of catechol, with a throughput of 36 per hour. After 90 consecutive measurements of extremely contaminated wastewaters this electrode retained 70% of its initial response. Tyrosinase, covalently immobilized on the surface of a carbodiimide-activated graphite electrode, serves for the AMD of the enzymatic products at −50 mV vs. a standard calomel electrode. The biosensor responds to phenolic substrates with different conversion efficiencies in a FIA system. LOD for phenol is 3 nM (SNR = 3), LOQ 10 nM, RSD 3.7%, dynamic range up to 5 µM, with a throughput of 110 samples per hour. A specially designed electrode included tyrosinase immobilized on hydrophobic porous carbon, with a supply of gaseous oxygen. This afforded enhanced AMD signals and linear ranges (1 nM to 50 µM), as compared to dissolved oxygen. The gas-diffusion electrode may also be applied for determination of phenols in the gas phase. The efficiency dependence on the fabrication method of bulk-modified epoxy-graphite tyrosinase biosensors was investigated by cyclic voltammetry. On introducing Au/Pd into the epoxy-graphite body, current densities as high as 27.70 and 4.90 µA cm⁻² were achieved for catechol and phenol, respectively. Tyrosinase and laccase were immobilized on a GCE that was used for...
AMD of the enzymatic products derived from phenols in a FIA system. Measurements were carried out at 0.05 V vs. Ag/AgCl. The combination of the two enzymes allows analysis of many phenolic compounds.333

Biosensors based on a Clark oxygen electrode, coupled to tyrosinase immobilized by three different methods, were investigated for the determination of phenol in real matrices, such as water of various natural sources, industrial wastes and oil press. The feasibility study included direct use of the biosensors and in situ analysis.334 An integrated system, incorporating SPE, desorption, fractionation and biosensor detection, was validated for screening phenolic compounds in water. Two types of electrode were tested, solid graphite and CPE incorporating tyrosinase. Correct analyses were found for river water samples spiked with phenol (10 µg L⁻¹), p-cresol (25 µg L⁻¹) and catechol (1 µg L⁻¹).335 A multimembrane AMD biosensor based on immobilized tyrosinase on a Pt disk electrode was proposed for determination of multiple phenol mixtures in a FIA system. Simultaneous measurements with various biosensors of different selectivity were applied for determination of a mixture of phenol, catechol and m-cresol. Data processing was carried out by a three-layer artificial neural network with feed-forward connections, sigmoidal transfer function and back propagation learning algorithm. Best results were obtained for a network with 5 inputs, 3 neurons in the hidden layer and 10,000 learning cycles. Correlation coefficients for 36 analyzed samples are: catechol 0.96, phenol 0.88 and m-cresol 0.67. The latter result is only semiquantitative, due to the weak amperometric signals obtained with all the tested biosensors.64

3. Biosensors based on peroxidases and other enzymes

A calorimetric study pointed to peroxidase as a catalyst faster than tyrosinase, being therefore more suitable for biosensor applications.336 A study of the electrochemical determination of phenols in a FIA system, using solid graphite electrodes modified with peroxidases of various types, showed that, excepting the chloroperoxidase electrode, all the electrodes were sensitive to all the tested phenols.337 The sensitivity of tyrosinase-based biosensors for AMD of phenol at −0.2 V vs. Ag/AgCl can be improved by horseradish peroxidase in the presence of hydrogen peroxide.338 A GCE was developed, coated with horseradish peroxidase and a redox osmium polymer. The biosensor had low operating potential (0 V vs. Ag/AgCl) and high sensitivity in the determination of phenols. LOD was in the µM range.339 Horseradish peroxidase-catalyzed hydroxylation of phenol in the presence of dihydroxyfumaric acid (132) and oxygen should not be used as measuring process because introduction of hydroxy in the phenol groups is independent of the catalytic cycle of the enzyme, as indicated by a thermodynamic analysis of the process.340 The effect of the presence of phenols on the peroxidase activity toward o-dianisidine (133) can be used to estimate their concentration. Phenol and resorcinol (20) are inhibitors, whereas pyrogallol (134) and hydroquinone (66) produce a lag period on the kinetic curve, the duration of which depends on their concentration. The fungal peroxidase from Phellinus igniarius exhibited the highest sensitivity toward phenols, at concentration levels in the 10⁻⁷ to 10⁻⁶ M range.341 Also, peanuts were a good source of peroxidase for this method.342 A GCE modified by polyphenol oxidase immobilized on a pyrrole amphiphilic monomer served for the direct AMD of phenol, 3-chlorophenol and 4-chlorophenol. Determination of 2-chlorophenol and polychlorinated phenols could be carried out based on inhibitory effects of the analytes on the bioelectrode.343 Quinoprotein glucose dehydrogenase and recombinant tyrosinase from Streptomyces antibioticus were immobilized on polyvinyl alcohol and coupled to a Clark oxygen electrode. LOD was 5 nM for dopamine (10a), L-dopa (10b) and adrenaline (epinefrine, 15a).344 An electroimmunological biosensor for p-cresol was developed, based on the
production of antibodies to a \(p \)-cresol bovine serum albumin conjugate and their incorporation into a conducting polymer. Fast, sensitive and reproducible analysis of \(p \)-cresol and other phenols could be obtained in a FIA system by pulsed ELD. The sensor was reusable\(^4\). An AMD biosensor was developed by incorporating quinoprotein glucose dehydrogenase into a CPE. The oxidation of glucose was coupled to the regeneration of the enzyme by the oxidation product of a phenol at the electrode set at 500 mV (vs. a Ag/AgCl electrode). The presence of the enzyme allows very sensitive AMD measurements of redox species such as hydroquinone, \(p \)-aminophenol and catecholamines such as epinephrine (15a), norepinephrine (15b) and dopamine (10a). The highest sensitivity was observed for \(p \)-aminophenol and could be determined at sub-nM levels\(^4\). A comparative study of the response of peroxidases of various origins was carried out for the determination of phenol and its derivatives. The most sensitive enzyme was obtained from a fungus, \textit{Phellinus igniarius}, followed by those obtained from horseradish roots and a lucerne cell culture. LOD of various phenols were in the \(10^{-7} \) to \(10^{-6} \) M range\(^4\).

4. Biosensors incorporating tissues and microorganisms

Fruit tissues of a palm tree, \textit{Latania} sp., were used as immobilized polyphenol oxidase enzymes, for phenol oxidation, followed by AMD. Various modes of action were tested for the tissues: On-line fresh or dried tissue-based reactor in a FIA system and incorporation of the fresh or dried tissues in CPEs. Determinations of catechol (42) and dopamine (10a) showed that using these tissues endowed the biosensor with high sensitivity, reproducibility and long-term stability. This seems to be the first time dry tissues were used as enzyme source in biosensors\(^4\). A biosensor was designed based on mushroom tissue, as a source of polyphenol oxidase, and cobalt(II) phthalocyanine (135) dispersed in a CPE. Electrodes containing 135 give shorter response times and require a lower applied potential, as compared to conventional tissue biosensors\(^4\). Crude extract of sweet potato (\textit{Ipomoea-batatas} (L.) Lam.) was used as a source of phenol oxidases (polyphenoloxidase, tyrosinase, catecholoxidase, EC 1.14.18.1). A biosensor was produced by immobilizing the crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. A linear response in the 20 to 430 \(\mu \)M range was observed for phenol, \(p \)-cresol, catechol and pyrogallol. This biosensor was proposed for determination of phenols in industrial wastewaters\(^4\). Various biosensors have been developed, incorporating microorganisms instead of specific enzymes. An AMD biosensor was proposed that is more sensitive to chlorophenols, especially 3- and 4-chlorophenol, than to phenol, and does not respond to their benzoates. The sensor incorporates \textit{Trichosporon beigelii} (cutaneum). LOD was 2 ppb for all studied compounds, with RSD 5.5% and linearity up to 40 ppb for 4-chlorophenol\(^4\). An AMD biosensor incorporating \textit{Rhodococcus} was investigated for the determination of phenol and its three monochloro derivatives. A linear relationship between the current and the concentration of these compounds was observed up to 20 \(\mu \)M; LOD was 4 \(\mu \)M.
for all studied substrates. The current difference was reproducible within 5.5% for 40 µM phenol352. \textit{Pseudomonas putida} GFS-8 immobilized in poly(vinyl alcohol) cryogel was used as a biological transducer due to its capacity to oxidize phenol, pyrocatechol, mesityl oxide and aniline, but it does not react with a number of xenobiotics, sugars and alcohol. The relationship between phenol concentration in the activating medium and endogenic cell respiration is linearly dependent in the 0.1 – 1.0 mg L–1 range. A Clark membrane electrode was used as physiochemical transducer. The assay may be completed within 5 min. With the exception of aniline, most components found in wastewaters from phenol production do affect the cell ability to use phenol as exogenic respiratory substrate. The immobilized cells retained their activity for up to 1 month353. A membrane incorporating living \textit{Bacillus stearothermophilus} cells coupled to a dissolved oxygen electrode resulted in a biosensor for AMD of phenols over the 35 – 55°C temperature range, at pH 4.5 – 8.0, in matrices containing compounds that are toxic to most enzymes and microorganism used. Optimal performance was observed at 55°C and pH 7.2. Response was very fast and stable for months. This biosensor was proposed for on-line monitoring of phenols in industrial waste effluents354.

5. Amplification processes

Amplification factors of 8 to 12 were claimed for the determination of phenol in a FIA system by a cyclic process depicted in equations 5 (Section VI.A.1). Phenol is converted to \textit{o}-benzoquinone in contact with immobilized tyrosinase held in a fixed bed reactor; the quinone reacts with ascorbic acid (91) to yield catechol and dehydroascorbic acid (136); catechol can be enzymatically oxidized again to \textit{o}-benzoquinone and so forth. The accumulated dehydroascorbic acid forms with \textit{o}-phenylenediamine (137) a highly fluorescent product (\(\lambda_{\text{ex}}\) 345 nm, \(\lambda_{\text{fl}}\) 410 nm). LOD was \textit{ca} 0.02 µM for phenol and catechol; the linear range for phenol was 0.1 to 2 µM and for catechol 0.02 to 2 µM355.

An analogous amplification process for determination of phenols was proposed based on the kinetics of disappearance of \(\beta\)-NADH reacting with quinone, which is derived from a phenol in a tyrosinase-catalyzed oxidation. LOD was as low as 50 nM in a 10 min assay356. Amplification cycles were also achieved by combining a Pt electrode where phenols are oxidized with a polyurethane layer embedding pyrroloquinoline quinone-dependent glucose dehydrogenase, to catalyze the reduction of the oxidation products357.
B. Spectrophotometric and Colorimetric Detection

A portable disposable bioprobe for detection and semiquantitative determination of phenols consists of a mushroom polyphenol oxidase immobilized on a nylon membrane, acting in the presence of 3-methyl-2-benzothiazolinone hydrazone. Maroon to orange colored dyes of (138) are developed, as illustrated for phenol (equation 6), of intensity proportional to the concentration of the substrate, down to 0.05 mg L\(^{-1}\). Enzyme activity remained unscathed in the pH range 4 to 10, in the presence of various concentrations of salt and metal ions and at temperatures from 5 to 25° C\(^{358}\).

\[
\text{Me} \quad \begin{array}{c}
\text{N} \\
\text{S} \\
\text{N} \quad \text{N} \quad \text{N} \\
\text{N} \\
\text{N} \quad \text{Me} \\
\end{array} + \begin{array}{c}
\text{OH} \\
\text{HO} \\
\text{HO} \\
\text{HO} \\
\text{HO} \\
\end{array}
\]

\[(\text{NH}_4)_2\text{Ce(SO}_4)_4 \quad \text{dil. H}_2\text{SO}_4\]

\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{N} \quad \text{N} \quad \text{N} \\
\text{N} \\
\text{N} \quad \text{Me} \\
\end{array}
\]

\[(6)\]
A crude extract of sweet potato (*Ipomoea-batatas* (L.) Lam.) was used as a source of phenol oxidases (polyphenoloxidase, tyrosinase, catecholoxidase, EC 1.14.18.1). The extract was directly placed in the carrier of a FIA system with UVD, to promote oxidation of phenolic compounds to o-quinones that condense to form melanin-like pigments with a strong absorption at 410 nm. The determination of phenols in industrial wastewaters showed good agreement with conventional methods (correlation coefficient 0.9954); LOD was 10 µM, with RSD <2.7% (n = 6). Under optimal storage conditions the enzymatic activity did not vary for at least five months.

The enhanced chemiluminescence obtained with the horseradish peroxidase-H₂O₂-luminol (139) system was applied to the development of a CLD biosensor for p-iodophenol, coumaric acid (26), 2-naphthol and hydrogen peroxide. The enzyme was immobilized by microencapsulation in a sol-gel matrix. LOD for the phenolic compounds were 0.83 µM, 15 nM and 48 nM, respectively. A remote version of the enhanced biosensor was designed by directly immobilizing the enzyme on the tip of an optical fiber. This model was used for H₂O₂ assay. LOD was 52.2 µM, with RSD 4.7% (n = 4). A bioluminescent response was obtained for phenols with pKₐ > 7 in the presence of a recombinant *Escherichia coli* strain, DPD2540, containing a fabA::luxCDABE fusion; this behavior may have analytical applications.

VII. ELECTROCHEMICAL METHODS

A. Voltammetric Detection

1. Quantitative analysis

The results of the simultaneous differential pulse voltammetry (DPV) determination of an aqueous solution containing nitrobenzene, o-, m-, p-nitrophenol and 2,4-dinitrophenol were subjected to data processing by three chemometric methods: PLS, PCR and classical least squares, to resolve overlapping peaks. The relative prediction error of the former two was acceptable (ca 10%) whereas that of the latter was not (38%). The method was applied to the analysis of field samples. Binary mixtures of phenols were determined by DPV using a carbon fiber electrode with titania. The records of overlapping signals were processed using a Fourier transform filter and PCA for noise reduction and data compression and then as a neural network. Results of such calculations were better for hydroquinone than those obtained by PLS methods; however, for catechol errors were similar by both procedures. Phenol in the concentration range from 50 nM to 60 µM was determined by 2.5th order differential voltammetry, using a CPE/polyamide electrode. LOD was 5.6 nM, with RSD 4.5%. The method was applied for determination of phenol in cola drinks. A simultaneous voltammetric determination of the phenolic antioxidants BHA (31) and BHT (32a) was carried out in acetonitrile medium, using a...
carbon fiber microelectrode (8 µm × 8 mm). LOD for DPV of both analytes was about 70 ppb. Square-wave voltammetry with the microelectrode showed much higher current densities than with the conventional GCE. The background current observed for the microelectrode was several orders of magnitude lower. The voltammograms of 31 and 32a mixtures showed well-defined oxidation peaks, with a difference in potential of about 300 mV, allowing good simultaneous determination. The behavior of CPEs modified with bentonite was investigated for the DPV determination of phenols in seawater in a FIA system. Good electrode stability and recoveries were obtained for seawater spiked with EPA priority phenols in the 0.5 to 2.5 ppm range.

Using solid paraffin as binder for CPEs was claimed to improve electrode performance in the analysis of phenols. LOD was 50 nM of phenol, with RSD <3.5% (n = 6) and linear range from 0.25 to 5 µM. Modification of a GCE with Co(II) phthalocyanine (135) increased the oxidation currents and the electrode stability in the cyclic voltammetric determination of phenolic compounds. Analogs of 135 with other metal(II) species were less effective. A polypyrrole electrode modified with nickel phthalocyanine (93) was investigated for cyclic voltammetry and DPV determinations of the phenolic antioxidants TBHQ (35) and BHA (31), used as food preservatives. LOD was 2.1 ppm for both, using cyclic voltammetry. A CPE modified with β-cyclodextrin (126) was applied to the cyclic voltammetric determination of phenol and its derivatives. A complex was formed before the measurement by immersing the electrode in the sample for a few seconds. Regeneration of the electrode was achieved by immersion in 1 M nitric acid for a few seconds. LOD was 5 × 10^{-7} M for 25 min deposition, by DPV, with RSD 5.2% (n = 4). The presence of benzoic acid, hippuric acid (140a) and the isomers of methylhippuric acid (140b–d) interferes with the determination. Gradual passivation of GCEs takes place under flow conditions when a polymeric layer is formed on the electrode. This can be avoided by means of laser ablation of the surface.

\[
R \text{CONHCH}_2\text{CO}_2\text{H}
\]

(140) (a) R = H
(b) R = o-Me
(c) R = m-Me
(d) R = p-Me

2. Structural and functional characterization

The antioxidant efficiency of phenolic acids, as determined by the accelerated autoxidation of methyl linoleate and scavenging of the free radical 2,2-diphenyl-1-picrylhydrazyl (141) methods, was found to be inversely proportional to the maximal detector response potential in the voltammetric determination of these compounds. No similar correlation was found for the flavonoids. A good correlation was found between the O—H bond dissociation energy of a phenolic compound and its effectiveness as antioxidant, expressed as the rate constant of free radical scavenging. The bond dissociation energy of the phenol O—H bond was estimated by a three-dimensional quantitative structure–activity relationship method incorporating electron densities computed using the Austin Method 1 (AM1) followed by correlation of the
electron density with the relative bond dissociation energies. Such information is important in medicinal chemistry373.

B. Amperometric Detection

1. Quantitative analysis

Phenol and the three dihydroxybenzenes (20, 42, 66) in water were determined by LLE with a hydrophilic solvent followed by amperometric titration. LOD was in the ppm range374. A dual electrode in a FIA system has been used as detector for total phenols in wastewater. The upstream coulometric electrode has a large surface area and is used to eliminate compounds that cause interference and the second one is an amperometric electrode for oxidative detection of all phenols. Optimal results were found working with a phosphate buffer at pH 6.8, at potentials of +0.35 V and +0.78 V for the coulometric and amperometric electrodes, respectively. A high sample throughput of 60 per hour can be attained with RSD of 0.1–4%. This method is more reliable than the colorimetric method375. The concentration of fenobucarb (142) in drinking water was determined after a short alkaline hydrolysis, and oxidation of the resulting 2-s-butylphenol with a GCE at 750 mV, pH 3.5; LOD was 3.6 \times 10-6 M, RSD 3.74\% for 1 \times 10-5 M (n = 11, p = 0.05)376.

Pervaporation in a FIA system was proposed as a preconcentration step for the determination of phenol in water. This involves placing the sample in concentrated brine at pH 2, diffusion of the salted out phenol present in the headspace through the pervaporation membrane into a collecting alkaline solution and AMD using a GCE set at +0.6 V. At 20 °C, LOD was 0.9 mg L-1, with linearity in the 1–50 mg L-1 range and RSD 1–4\% (n = 3). The sample throughput was 5 per hour377.

The current response of a GCE used for AMD was greatly improved after modification with polyhistidine. LOD was 6 nM for dopamine (10\textsubscript{a}), 8 nM for epinephrine (15\textsubscript{a}) and 20 nM for catechol (42). The modified electrode has also been applied for AMD after CE378. PVC membranes were designed to serve as selective barriers for the amperometric detection of phenols and elimination of thiocyanate interference379.

\[\text{O}_2\text{CNHMe} \]
\[\text{Bu-}\text{s} \]
\[(142) \]
2. Structural and functional characterization

Henry’s law constants of phenols were determined dynamically by a nonequilibrium method based on pervaporation in a FIA system. Good agreement was found between these values and those determined by the single equilibrium static technique for 2-methylphenol, 3-methylphenol and 2,4,6-trichlorophenol380.

C. Polarography

A method for determination of phenols in air consisted of absorption on a membrane loaded with 2.0 M NaOH, coupling with \(p \)-bromobenzenediazonium ion and polarographic end analysis of the azo dye. Peak currents were proportional to concentration in the \(2 \times 10^{-5} \) to \(2 \times 10^{-5} \) M range; LOD was \(5 \times 10^{-9} \) M381.

D. Potentiometric Titrations

1. Quantitative analysis

Acid–base potentiometric titration of phenol in aqueous solution is precluded because of its high \(pK_a \) value (9.98), while 4-nitrophenol (7.41) and 2,4,6-trinitrophenol (0.71) can be directly titrated in that solvent. Nonaqueous titrations of phenol are possible; however, difficulties are met when nitrophenols are also present in the system382. The determination of carboxylic and phenolic groups in humic acids was carried out by acid–base potentiometric titrations in NaCl solutions up to 1 M. Titration data were processed by linear and nonlinear calculation techniques383.

2. Structural and functional characterization

An automated system was used for the potentiometric determination of the protonation constants of phenol, 2-chlorophenol, 2-nitrophenol, 2,4-dichlorophenol and 2-methylphenol in 1.0 mol L-1 NaCl at 25 °C. The estimation of the constants has been carried out using both graphical and numerical methods384.

VIII. ULTRAVIOLET-VISIBLE DETECTION METHODS

A. Spectrophotometry and Colorimetry

1. Direct determination

Application of UVV spectrophotometric methods to the analysis of waters and wastewaters has great practical interest. However, interference of certain species has to be eliminated, either by actual application of chemical or physical separation methods, or, alternatively, by computational balance of the interferences, based on reasonable assumptions. Simultaneous analysis of phenols in waters was carried out in an automatic sequential injection analysis (SIA) system. The method involved preconcentration by LLE, back extraction into a NaOH solution and DA-UVD. Data processing using multilinear regression and first derivative spectroscopic techniques yielded the concentrations of the various components67. Derivative spectrometry using the zero-crossing technique was applied for the simultaneous determination of binary mixtures of a series of phenols and herbicides at ppm levels. The method was extended to the resolution of overlapping peaks obtained in LC with DA-UVD68. A data processing method was proposed for simultaneous determination of a mixture of analytes, based on double Fourier transform
filtering and second ratio UVV spectra derivatives. This was applied to determination of phenol, catechol and hydroquinone in solution, in the concentration range of 10 to 50 mg L\(^{-1}\), with RSD from 0.07 to 5.4\%\(^{69}\).

The principles of ultraviolet multiwavelengths absorptiometry (UVMA) with computational balance of interferences, including turbidity, have been discussed and applied\(^{385,386}\). An application of UVMA for the determination of phenols has been proposed using the PLS algorithm. A simplification of practical importance was introduced, consisting of selecting three model compounds for the phenolic pollutants, based on their preponderance in actual cases: The catechol group (including resorcinol), the phenol group and the hydroquinone group. It is possible to analyze phenols selectively within three groups. The UV spectrum of a water sample polluted by phenols is resolved into the contribution of these three tracers instead of the more difficult analysis of individual components. Moreover, two methods of background correction have been explored, UVMA and the turbid standard solutions method. The described procedure provides advantages in the determination of polyhydric and para-substituted phenols. It can be used preferably for the analysis of phenolic wastewaters of the brown coal conversion industry. Furthermore, sample preparation is not required because turbidity does not interfere with the analysis. The method was used as an alternative to the definition of a phenolic index according to the German standard method DIN 38 409 H16, which is based on application of equation 2\(^{387}\).

The spectrophotometric method for determination of phenolphthalein (19, see Section VIII.A.3) as raw material and in pharmaceutical formulations recommended by the British Pharmacopeia\(^{43}\) was compared with the HPLC method recommended by older editions of the US Pharmacopeia\(^{42}\) (see Table 1). The former method was better for the raw materials, whereas the latter one was found to be better for routine analysis of formulations from the point of view of the linearity, sensitivity, reproducibility and lack of interference by other components present in the sample\(^{388}\).

Preconcentration by SPE of trace phenolic pollutants in water was recommended, prior to UVD, FLD or ELD\(^{389}\). The optimum extraction procedure was established for the spectrophotometric determination of phenol and aniline in water. LOD were in the approximate range of the maximum permissible concentrations (about 5 ppm for phenol)\(^{390}\).

2. Derivatization

\subsection*{a. Halogenation.} The precision and sensitivity of the UVV spectrophotometric determination of microgram amounts of phenols monosubstituted with methyl, ethyl, chloro and nitro groups, catechol (42), resorcinol (20), guaiacol (143a), 4-ethylguaiacol (143b), dimethylphenols, dichlorophenols, trichlorophenols and pentachlorophenol, after treatment with iodine monobromide, was improved by using iron(III) sulfate as catalyst. The interference of reducing compounds was eliminated by addition of a bromate solution, and that of certain organic acids was reduced by LLE of the analytes into cyclohexane. However, the interference of phenylamine compounds could not be removed. If the organic solution showed emulsification, this was eliminated by anhydrous sodium sulfate. It was proposed to prepare standard mixtures of phenols as comparison standards in the determination of total phenol content of wastewaters and whisky samples\(^{391}\).

\subsection*{b. Oxidative coupling.} Sub-\(\mu\text{g} \text{L}^{-1}\) levels of phenols in water and soil extracts were determined in a FIA system by preconcentration in an Amberlite XAD-4 column at pH 2.0 that did not retain interfering aromatic amines, followed by elution at pH 13.0 and spectrophotometric measurement of the analytes by the 4-aminoantipyrine (78) method, according to equation 2. LOD was 0.2 \(\mu\text{g} \text{L}^{-1}\), with linearity over the 0.5–60 \(\mu\text{g} \text{L}^{-1}\).
range. A throughput of 8 samples per hour was achieved, including 5 min preconcentration periods. A standard method for the determination of total phenols in oil can be improved by on-line SPE preconcentration followed by absorbance measurement at 500 nm of the color developed according to equation 2 in the presence of potassium persulfate (K$_2$S$_2$O$_8$) as oxidant, in a FIA system. LOD was 0.09 mg L$^{-1}$ of phenol, 0.18 mg L$^{-1}$ of o-cresol and 0.02 mg L$^{-1}$ of m-cresol. The dyes derived from trace phenolic pollutants in water according to equation 2 were concentrated by SPE on a finely divided ion-exchange resin. The color intensity of the dye was compared with a calibration curve to determine the phenol concentration in the sample. An SIA scheme for the simultaneous determination of nitrite, nitrate, sulfate and phenolic compounds in wastewaters was proposed, with equation 2 as part of the analytical scheme. The dye produced by 4-aminoantipyrine (78) at pH 9.0 with phenols in water was concentrated by SPE on a nitrocellulose filter, eluted with 2-methoxyethanol and determined at 480 nm. The linear range was from 0.25 to 6 mg of phenol in the final eluate. Phenolic compounds in wastewaters were determined in a fully automatic SIA system, by oxidative coupling with 4-aminoantipyrine (78), and UVD at 510 nm. The linear range was from 0.05 to 25 ppm, and the sample throughput was 24 per hour with RSD <0.6%. Modifications of 4-aminoantipyrine (78) were proposed as various combinations of substituents in formula 144. Phenol derivatives of the tested reagents had λ_{max} around 480 nm and good stability. No great advantage over 78 was observed in general. The effect of adding a poly(ethylene glycol) phase on the enhancement of equation 2 was investigated.

The dependence on the structure of the phenols of analytically useful color development by processes such as equation 6 was investigated. A fast method for monitoring phenols in water and wastewaters consisted of on-line SPE preconcentration at pH 2, followed by elution at pH 12 and spectrophotometric determination of the color developed.
in equation 6, using potassium hexacyanoferrate(III), $K_3[Fe(CN)_6]$, in a FIA system. For phenol, the linear calibration range was 0.01 to 1 mg L$^{-1}$, LOD 0.004 mg L$^{-1}$ (SNR 3), with RSD 2.4% for 0.2 mg L$^{-1}$. The throughput was 12 samples per hour. A comparative study of determination of phenolic compounds was carried out for the oxidative coupling of phenols with 4-aminoantipyrine (78), according to equation 2, and 3-methyl-2-benzothiazolinone hydrazone (108), according to equation 6. Both methods were found to be readily applicable in FIA systems, with an output of 40 to 60 analyses per hour. However, the sensitivity of reagent 108 may be significantly higher for phenol. Furthermore, some p-substituted phenols are nearly insensitive to reagent 78 but give good results with 108. Equation 6 was used to develop a method for determination of chlorine dioxide in water. Possible interference from metal ions and other oxychlorinated moieties, such as hypochlorite, chlorite and chlorate, can be avoided.

A kinetic method was applied for simultaneous determination of phenol, o-cresol, m-cresol, resorcinol and m-aminophenol at ppm levels, by reaction with p-aminophenol in basic solution and in the presence of potassium periodate. As color developed, UVV scans were recorded every few seconds between 400 and 700 nm for 600 s. The data were processed by the PLS method, using the UNSCRAMBLER program. A method for determination of phenol in water at the ng L$^{-1}$ level consists of a preconcentration step of the pollutants at the top of a solid probe, achieved by controlled freezing of the water sample. The upper end of the probe is collected by partial melting, and a dye is developed on addition of potassium iodate and N,N-diethyl-p-phenylenediamine (145). A method for simultaneous determination of phenolic compounds was proposed, based on kinetic measurement of the oxidative coupling of these analytes to reagent 145 in the presence of hexacyanoferrate(III), $K_3[Fe(CN)_6]$, following the appearance of dyes by changes in the absorbance at 660 nm. The kinetic data are processed by the Kalman filter algorithm. Phenols can be determined individually over the concentration range of 1.25 to 25 µM with RSD of ca 0.6–0.8%. Differences in the kinetic behavior of various phenolic species can be applied to analyze mixtures at the µM level, in a wide variety of concentration ratios with errors less than 10%.

$$\text{H}_2\text{N} - \text{NEt}_2 \quad (145)$$

c. Coupling with diazonium ions.
A scheme was proposed for determination of total phenols based on derivatization with a 4-nitrobenzenediazonium salt, SPE of the diazophenolate of cetyltrimethylammonium on polyurethane foam and UVV determination of the azo dyes mixture. Individual phenols can be determined by HPLC of the mixture with UVD. Spectrophotometric determination of phenols by measuring the diazo dye developed by coupling with a diazonium ion reagent may be accompanied by absorbance instability and large blank values. This is due to decomposition of the reagent into a phenolic byproduct that can also undergo a coupling reaction according to equation 7. Using 2,4,6-trimethylaniline (146) as source for the diazonium ion reagent avoids these analytic problems, because its byproduct is incapable of undergoing the coupling reaction with excess reagent. The method was applied in a FIA system to the UVV determination of thymol (147), guaiacol (143a), dopamine (10a), epinephrine (15a) and paracetamol (148) in pharmaceutical preparations, using a sodium dodecyl sulfate micellar medium to prepare the solutions of 146 and to catalyze the coupling reaction. LOD was in the sub-µM range, linear range from 15 to 170 µM, with RSD.
<1% \((n = 3)\)\(^{409,410}\). Coupling with diazotized \(p\)-aminoacetophenone (149) and measuring at 475 nm \((\varepsilon = 3.13 \times 10^5 \text{ Lmol}^{-1}\text{cm}^{-1})\) was proposed for the spectrophotometric determination of phenol liberated from certain pesticides, present in environmental and biological samples\(^{411}\). Similarly, diazotized benzocaine (150) couples with phenolic compounds to yield azo dyes. Thus, this reaction was applied to determination of phenolic antibiotics such as amoxicillin (151), cefadroxil (13) and vancomycin (152) in pharmaceutical preparations, yielding an orange yellow coloration that could be measured spectrophotometrically\(^{412}\).

\[
\text{Ar} \quad \xrightarrow{\text{N}_2^+} \quad \xrightarrow{\text{H}_2\text{O}} \quad \text{Ar} \quad \xrightarrow{\text{N}_2^+} \quad \text{Ar} \quad \xrightarrow{\text{N} \equiv \text{N}} \quad \text{Ar} \quad \xrightarrow{\text{OH}} \quad \text{(7)}
\]

Phenols and naphthols were derivatized by coupling with 4-nitrobenzenediazonium (153a) tetrafluoroborate. The diazo dyes were adsorbed on a polyurethane foam and measured photometrically. LOD are low\(^{413}\). Coupling of phenol with 153b, produced by diazotization of 2-cyano-4-nitroaniline, led to formation of a reddish dye that was extracted with 2-methyl-1-butanol and measured at 580 nm. Beer’s law held in the 0.05 to 0.4 ppm range\(^{414}\).

d. Complex formation. Blue to violet complexes are formed at pH 4.0–6.5, between Fe(III) ions, oxalate ions \((\text{C}_2\text{O}_4^{2–})\) and phenolic compounds carrying two hydroxyl groups on the same ring, with 1 : 2 : 1 stoichiometric ratio. The complex could be used for direct spectrophotometric quantation or as indicator for EDTA titration of the analytes. The method was applied for determination of catechol (42), pyrogallol (134), dopamine (10a), adrenaline (15a) and sulbutamol (154)\(^{415}\).
13. Analytical aspects of phenolic compounds

![Chemical structures](image)

(152)

(153) (a) R = H
(b) R = 2-CN

(154)
After LLE into ethanolic KOH, the antioxidant BHT (32a) used in aircraft fuel was determined in the presence of Cu(II) ions, by UVV spectrophotometry at 368 nm. Linearity was observed in the 0 to 30 ppm range, RSD ≤2%. A UVV spectrophotometric method for determination of β-cyclodextrin (126) is based on the formation of a complex with phenolphthalein (19, Section VIII.A.3). Both the intensity and linear range are affected by the pH and the concentration of 19 in solution. The method was considered to be inadequate for precise determinations of 126 of purity higher than 98%; see also application of α-cyclodextrin (85) for analysis of phenolics in Section IV.B.4. Phenol in the presence of sodium nitroprusside, Na2[Fe(CN)5NO], and hydroxylamine, at pH 10.26–11.46, developed a blue coloration that could be applied for quantitative analysis (λmax 700 nm, ε 1.68 × 10⁴ L mol⁻¹ cm⁻¹, Sandell sensitivity 0.0052 µg phenol cm⁻²). Beer’s law was found to be valid from 0.1 to 6.5 ppm.

e. Miscellaneous color-developing methods. A modification of the Folin–Ciocalteu method has been proposed for the colorimetric determination of total phenolic content of complex samples, such as wine. The main components of the Folin–Ciocalteu reagent are sodium tungstate (Na2WO4) and sodium molybdate (Na2MoO4) in acid solution; this reagent in the presence of phenolic compounds develops a measurable color. The Folin–Ciocalteu method was found to be inadequate for determination of phenolic compounds in citrate extracts of soil samples, due to strong interference by dissolved organic matter. The analogous Folin–Denis reagent was also frequently used for the colorimetric determination of total phenols, for example, in canola oil. Etilefrine (155), prenalterol (156) and ritodrine (157) were determined spectrophotometrically in their formulations using the Gibbs reagent (158a). The maximum absorbance is in the 610–650 nm region, obeying Beer’s law. LOD was 0.2–0.4 mg L⁻¹. The method was considered to be fast and simple to apply. The possible course of this process is shown in equation 8, using the Gibbs reagent (158a) or its bromo analogue (158b) to yield an indophenol dye (159) with certain labile para-substituted phenols in alkaline solution.
3. Structural and functional characterization

The UVV spectra of free, esterified and insoluble-bound fractions of phenolic acids isolated from *Trigon canola* were recorded between 250 and 520 nm. These spectra were analyzed as linear combinations of Gaussian bands using the CHAOS-B computer program. The spectra of the free and esterified fractions were derived from three separate component bands at approximately 280, 300 and 328 nm, and that of the insoluble-bound phenolic acid fraction from four bands at 254, 282, 319 and 384 nm. All three fractions displayed a shorter wavelength component that could be represented by a Gaussian band located between 217 and 235 nm. The second and fourth theoretical derivative spectra yielded a very good fit to the corresponding numerical derivatives of the experimental data; this analysis was applied to a model system consisting of mixtures of protocatechuic (27) and sinapic (99) acids. The content of 99 could be estimated with an accuracy of
The difference UVV spectra between phenols, naphthols, quinolines, aniline and its derivatives and pyridine and its derivatives, measured at the same concentrations at pH values from 8 to 13 and 1 to 2, presented similar features among analogous compounds. The pH dependence of the spectra was attributed to changes in the conjugated bond system related to acid–base equilibria. The torsional splitting caused by hindered rotation of water and methanol hydrogen-bonded to phenol was investigated by high resolution UV spectroscopy.

The effects of polar and nonpolar solvents on the peroxyl-radical-trapping antioxidant activity of some flavonoids, catechol derivatives, hydroquinone and monophenols have been studied. The inhibition rate constants k_{inh} of the antioxidants have been determined by following the increase in absorbance at 234 nm of a dilute solution of linoleic acid at 50 °C containing small amounts of antioxidant and radical initiator. Phenols with two ortho-hydroxyl groups are the most effective antioxidants in nonpolar solvents (k_{inh} up to 15×10^5 L mol$^{-1}$ s$^{-1}$ in cyclohexane); however, this rate constant significantly declines in strongly hydrogen-bonding acceptor solvents (e.g. t-BuOH); in polar solvents that are not strong hydrogen-bonding acceptors (e.g. MeCN) the peroxyl radical scavenging efficiency of ortho-dihydroxy phenols approaches that of these phenols in nonpolar solvents (see also Sections VII.A.2 and IX.B).

The structure of the various dissociation stages of phenolphthalein (H_2PP, 19) in phosphate buffers of pH 5 to 13, as depicted in equation 9, was correlated with the UVV spectrum. Thus, the aqueous solution of H_2PP is colorless; HPP^-, preserving the lactone structure, is colorless too; PP^{2-} (160), where the lactone is opened, is red; at higher pH colorless $PP(OH)^{3-}$ (161) is formed, where incorporation of the hydroxy group disturbs the conjugated structure of PP^{2-} (160). The dissociation of sulfonaphthalein (H_2PS, 162) in aqueous solution is shown in equation 10; at low pH, H_2PS has a zwitterionic structure and no lactone moiety, and the solution is orange-red; it dissociates to yellow HPS^-, and then to red PS^{2-} (163), of absorption spectrum similar to that of PP^{2-} (160).

$$\begin{align*}
H_2PP & \underset{\text{p }K_1 = 9.05}{\rightleftharpoons} HPP^- & \underset{\text{p }K_2 = 9.50}{\rightleftharpoons} PP^{2-} & \underset{\text{p }K_3 = 12}{\rightleftharpoons} PP(OH)^{3-} \\
H_2PS & \underset{\text{p }K_1}{\rightleftharpoons} HPS^- & \underset{\text{p }K_2}{\rightleftharpoons} SPP^{2-}
\end{align*}$$

(9) (10)

The host–guest structural relation in the complexes of β-cyclodextrin (126) and phenol or 2,4,6-trimethylphenol were studied by correlating simulated complexation trajectories with the induced circular dichroism measured for the solutions. The relative importance of various contributions to the solvation energy is discussed and it is shown that those terms arising from the interaction of hydrophobic groups with the aqueous environment are essential for the dynamic simulation model; the sign and strength of the calculated rotatory strength are in perfect agreement with induced circular dichroism obtained from experimentally determined averaged spectra. The equilibrium constants for the formation of 1 : 1 and 2 : 1 inclusion complexes of phenols with β-cycloextrin (126) and γ-cycloextrin (164), respectively, were correlated with the molecular polarizability of the guest molecules. Quantitative structure–affinity relationships have been established for the formation of inclusion complexes between para-substituted phenols and β-cyclodextrin (126) and formation constants of the complexes have been estimated. Experimental results came from potentiometry, circular dichroism, 1H NMR and UVV spectrophotometry. The contribution of van der Waals interactions is a significant factor, provided the para-substituent causes no large dipole moment difference.
13. Analytical aspects of phenolic compounds

B. Fluorescence Detection

1. Direct determination

Determination of phenolic and oil product contaminants in water using a FIA system was carried out with an intermittent water sample flow regime. The method involved LLE of the oily constituents with tributyl phosphate-hexane, SPE on a chromatographic absorption column and a PTFE membrane. In the case of natural waters the humic acids had to be eliminated before end analysis of the polluting phenols by LC with FLD ($\lambda_{ex} 270 \pm 10$ nm, $\lambda_{fl} 310 \pm 10$ nm)\(^{434}\). The excitation fluorescence spectrum in the 245–290 nm range with emission at 306 nm was used for the simultaneous determination of phenol, bisphenol A (29) and its diglycidyl ether (165) at ppb levels, after micro-LLE. As the spectra of the analytes considerably overlapped, a full-spectrum multivariate calibration method combined with a PLS calculation algorithm were applied\(^{435}\).

A fluorescein derivative (166) immobilized on a PVC membrane showed fluorescence enhancement in the presence of carboxylic acids and fluorescence quenching in the presence of phenols. This property was applied for development of a fluorescence sensor for
direct measurement of concentration of phenolic compounds in the \(\mu \)M to dM range\(^3\). A detection method for phenolic compounds was based on the strong fluorescence quenching caused by these compounds on a poly(ethylene glycol methacrylate) macroporous resin, crosslinked with the fluorescent monomer \(167\) (\(\lambda_{\text{ex}} 310\) nm, \(\lambda_{\text{fl}} 395\) nm). The quenching effect of phenols and anilines is much stronger than that of aliphatic alcohols and amines\(^4\).

Microspectrofluorometry was employed for mapping the location of phenolic substances in maize kernels. Autofluorescence due to phenolic acids was detected mainly in the embryo, aleurone and pericarp of maize kernel cross sections. Boric acid (\(\text{H}_3\text{BO}_3\)) reagent enhanced the fluorescence due to flavonoids in the aleurone layer. The amides of phenolic acids required derivatization with Ehrlich’s reagent \((168)\) to reveal fluorescence in the embryo and aleurone. The localization of phenolic amines was confirmed by HPLC analysis. Phenolic compounds are important in the resistance of maize kernels to pests. Resistant maize types showed higher intensities of phenolic fluorescence but no unusual distributions of these compounds\(^5\).

\[p\text{-Et}_2\text{N} \longrightarrow \text{C}_6\text{H}_4 \longrightarrow \text{CHO} \] \(168\)
2. Fluorescent labelling

The von Pechman–Duisberg condensation, illustrated for phenol in equation 11, was applied to the β-lactam phenolic antibiotics amoxicillin (151), cefadroxil (13) and cefoperazone (acid form of 14) to yield the corresponding coumarin derivatives. The determination was spectrofluorometric, with λ_{ex} at 401 to 467 nm and λ_{fl} at 465 to 503 nm. The method is of advantage as compared to established procedures.439

\[
\text{Phenol} + \text{MeCO}_2\text{Et} \rightarrow \text{Coumarin derivative} \quad (11)
\]

Sympathomimetic drugs can be determined by various procedures. Optimal reaction conditions have been developed for a FIA system with FLD, based on the reaction with 4-aminoantipyrine (78) in the presence of potassium hexacyanoferrate (equation 2). Pure samples or pharmaceutical formulations of etilefrine (155), orciprenaline (169), fenoterol (170), hexoprenaline (171) and reproterol (172) were determined, after dilution to the 2 to 50 ppm range. Results agreed with the official or the referee methods.440

C. Chemiluminescence Detection

A FIA system with CLD was proposed for determination of phenols in natural waters, based on the reaction with potassium permanganate in the presence of sulfuric acid. Precolumnation by SPE on XAD-4 resin lowers the LOD to 5 μg L$^{-1}$. The method has
very low consumption of reactives. The sample throughput was 60 per hour for water as received and 12 per hour when preconcentration was applied441. Phenols cause quenching of chemiluminescence of 4-chlorobenzenediazonium fluoroborate (173) in alkaline solution, in the presence of hydrogen peroxide. This is more sensitive than UVD of the analytes alone or in the presence of 4-aminoantipyrine (78). The following LOD and linearity ranges were determined: Phenol 15 ppb, 0–6.0 ppm (RSD 3.0\% for 1 ppm solution); 2-nitrophenol 20 ppb, 0–5.0 ppm; \textit{p}-cresol 25 ppb, 0–4.5 ppm; 2,4-xylenol 30 ppb, 0–8.0 ppm442. The sympathomimetic drugs etilefrine (155), isoxsuprine (174) and prenalterol (156) were determined by CLD in a FIA system, where a reaction with KMnO\textsubscript{4} in the presence of formic acid was induced. Linearity ranges were 0.2–9, 0.2–12.5 and 0.025–1.25 mg L−1, respectively443.
IX. INFRARED AND RAMAN SPECTRAL METHODS

A. Quantitative Analysis

The phenolic hydroxyl group content in acetylated milled wood lignins was determined by selective aminolysis of the aromatic acetoxy groups. FTIR spectra of the lignins and their acetylated derivatives were recorded. PCR and PLS calibrations were carried out to correlate between the aminolysis results and the FTIR spectra. Spectra of acetylated lignins and a PLS regression gave the best correlation between predicted and observed values; the standard error (SE) ± 0.06% (abs.) was about one sixth of the best SE obtained by a simple regression. PCR was slightly inferior to PLS. Calibration with nonacetylated lignins also gave satisfactory results. IR spectroscopy was applied for the determination of free phenol and the formaldehyde-to-phenol ratio in formaldehyde–phenol resol resins. Results were also correlated with 13C NMR spectroscopy data. The concentration of antioxidants of type 109 in low-density polyethylene, with the alkyl group varying from C$_0$ to C$_{17}$, was determined by FTIR of the polymer without extraction.

B. Structural and Functional Characterization

The structure of self assembled monolayers terminated with phenol and 2-chlorophenol moieties was studied by reflectance FTIR, X-ray reflectometry, solid state 13C NMR spectroscopy and measurements of contact angle with water. The pH values at half dissociation (pH$_{1/2}$) of the monolayers were \geq12.5 and \geq12, respectively, which is at least 2.5 pH units higher than those of half dissociation of the corresponding phenols in solution, as denoted by their pK_a values. The pH at which a certain contact angle was achieved was lower for the 2-chlorophenol moieties, in accordance with their higher acidity.

The H-bond complexes formed between phenol derivatives and bis-1,8-(dimethylamino)naphthalene (175) in 1,2-dichloroethane and tetrachloroethylene solution were characterized by FTIR spectroscopy. Compound 175 acts as an effective ‘proton sponge’ for its ability to form a six-membered chelate-type structure including a N···H···N moiety. The stability constants of the 1 : 1 and 2 : 1 complexes are strongly dependent on the pK_a value of the phenols and increase also with the polarity of the solvent. No complex formation was detected in tetrachloroethylene when H was replaced by D.

\[
\text{Me}_2\text{N} \quad \text{NMe}_2
\]

(175)

The ultraviolet resonance Raman spectra of the phenolate anion and phenoxy radical in aqueous solution indicate that the C–O bond has a substantial double bond character and the carbon frame has substantial quinonoid character.

X. NUCLEAR MAGNETIC RESONANCE

A. Quantitative Analysis

The phenolic hydroxy groups of lignin were determined by two independent spectroscopic methods. The UVV method was based on the difference between the absorption
maxima near 300 and 350 nm of samples dissolved in alkaline and neutral solutions. The 1H NMR method was based on the integrated OH proton intensities of the sample dissolved in DMSO, before and after addition of D$_2$O451. One- and two-dimensional 1H NMR was used in the analysis of olive oil phenolic constituents452,453. Two-dimensional 1H NMR spectroscopy techniques were applied for the analysis of the phenolic acids in MeOH extracts of two oregano species454.

Labile hydrogen (phenolic OH and moisture) of coal liquefaction resids was determined using the 31P NMR tagging agent 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (176). Although the presence of organic free radicals in the resids contributed to the breadth of the derivatized phenolic 31P resonances, the results were in excellent agreement with the phenolic contents obtained by FTIR spectroscopy. The best results were obtained by processing the 31P NMR spectra with an NMR-matched filter apodization program455. Coal liquefaction products were separated into a nonpolar and a polar fraction. The latter was analyzed for phenols after derivatizing with 176, separating by RP-HPLC and determining the emerging fractions by 31P NMR. The quantitative analysis of phenols was in accord with independent FTIR determinations456. The use of 176 as a phosphitylation reagent in quantitative 31P NMR analysis of the hydroxyl groups in lignins has been thoroughly examined, and an experimental protocol recommended for spectra acquisition has been developed. Quantitative analysis of diverse lignin samples gave results comparable to those obtained by other analytical methods. Excellent resolution was obtained for the various phenolic hydroxyl environments including those present in condensed moieties. However, resolution in the aliphatic hydroxyl region was poor and no distinction could be made between primary, secondary, and the erythro and three forms of the secondary hydroxyls of the β-O-4 bonds457.

![Diagram](image_url)

Determination of phenol by 13C NMR spectroscopy has the advantage that each determination affords three independent results that can be averaged, allowing rejection of results with too large RSD. The method was applied to the determination of phenol in tars of the cumene process, and were correlated with those of 1H NMR, UVV spectroscopy and titration with bromine. RSD for single results was 0.8%458.

B. Structural and Functional Characterization

A 1H NMR study was carried out of the equilibrium 12. If P represents a phenol molecule, with the OH proton at frequency ν_1, and P_n is the preferred oligomer formed of n hydrogen-bonded phenol molecules, with the OH proton at frequency ν_n, in CCl$_4$ solution, then the equilibrium constant for oligomer formation is given by equation 13. If the rate of exchange between P and P_n is large in comparison with the frequency difference $|\nu_1 - \nu_n|$, as is indeed the case at room temperature, a single peak will be observed at the averaged frequency ν, as shown in equation 14. An experimental procedure was devised for the estimation of the preferred association number n and the equilibrium constant.
459. At concentrations in the 10^{-3} M range, formation of P_2 species appears to be the preferred oligomerization, as determined by IR measurements. In the solid phase the phenol hydroxy groups form extended linear chains.

\[n \text{C}_6\text{H}_5\text{OH} \quad \xrightarrow{\text{}} \quad [\text{C}_6\text{H}_5\text{OH}]_n \]

\[K_n = \frac{[P_n]}{[P]^n} \]

\[v = \frac{[P]}{[P] + n[P_n]} v_1 + \frac{n[P_n]}{[P] + n[P_n]} v_n = \frac{[P]v_1 + nK_n[P]^n v_n}{[P] + nK_n[P]^n} \]

A graphical method was proposed for the assessment of dimerization from the chemical shifts of the monomer and the dimer. The enthalpy and entropy of dimerization could be estimated from the effect of temperature on the dimerization constant.

The ^31P NMR spectra were investigated after carrying out phosphorylation of lignin-related model compounds, using 2-chloro-1,3,2-dioxaphospholane (177) or its tetramethylated analogue. The chemical shifts of phosphorylated carboxylic acids, phenols and aliphatic alcohols were clearly distinguished. A Hammett $\sigma - \rho$ linear relationship was obtained for the phosphorus chemical shifts of lignin-related phenols. In addition, a correlation between ^31P NMR chemical shifts for ortho- and para-substituted phosphorylated phenols was obtained. A set of empirical parameters was proposed for the accurate prediction of ^31P NMR chemical shifts of lignin-related phenolic compounds derivatized with reagent 176.

One- and two-dimensional ^1H NMR spectral analysis at 500 MHz showed that the site of hydroxy substitution in two metabolites previously reported as 3-nitrofluoranthen-8-ol (178b) and 3-nitrofluoranthen-9-ol (178c) had to be revised. A third and previously unidentified metabolite was shown to be 3-nitrofluoranthen-7-ol (178a). Analysis of NMR spectral data on 2- and 3-nitrofluoranthenes enabled confirmation of the previously reported structures of 2-nitrofluoranthen-8-ol (178d) and 2-nitrofluoranthen-9-ol (178e) from derived chemical shift substituent effects. Chemical shift data suggest that the nitro group is not strictly coplanar with the aromatic ring system in solution and that metabolism at a distant site can alter the conformation about the C-N bond of the nitro group. A correlation was attempted between reported mutagenicity data and various factors, such as imine quinone formation, chemical shift substituent effects, electronegativity effects and conformation.

XI. MASS SPECTROMETRY

In the application of ESI-MS for the analysis of phenols the use of negative and positive ion modes is complementary of each other. Thus, phenols are detected with greater sensitivity in the negative mode; however, the positive mode shows fragmentation that can
be correlated with the structure of the analyte. The latter feature allowed identification of phenolic components in olive oil that were not previously reported. A method for establishing the profile of phenolic components of edible oils, and especially crude olive oil, is based on APCI-MS of the methanolic extract. Water pollutants can be determined by CO$_2$ laser ablation of the frozen sample, followed by resonance-enhanced multiphoton ionization technique coupled with reflection time of flight MS. For phenol LOD was 0.1 pg L$^{-1}$, with linearity from 0.1 ppb to 10 ppm.

The self-association by hydrogen bonding of phenol-terminated polybisphenol A carbonate chains, leading to formation of macromolecular aggregates of higher hydrodynamic volume, was confirmed by MS, applying the matrix-assisted desorption-ionization (MALDI) method. MALDI is a sensitive method for detection of polymer association in dilute solution (see also Section IV.C.5.a).

XII. MISCELLANEOUS METHODS

A. Surface Plasmon Resonance

An optical sensing device for surface plasmon resonance (SPR) was proposed for determination of the concentration of phenolic compounds in water. The phenols become adsorbed on a thin gold or silver film that has been spin-coated with a sol-gel layer containing receptor molecules. Best SPR signals for phenolic compounds were obtained when the receptors were viologen-type polymers with polymeric counterions. The SPR signal intensity was concentration dependent and had to be calibrated for individual phenolic compounds.

B. Miscellaneous Titrations

Thermometric titrations and back-titrations of gallic acid and tannic acids with various oxidants were investigated for their possible application in the analysis of polyhydric phenols in wine. Consistent results were obtained using as titrants potassium permanganate (to the first equivalence point) and potassium hexacyanoferrate(III) (181), with the latter providing sharper end points at higher analyte concentrations. However, use of excess and back titration with Mohr’s salt, Fe(NH$_4$)$_2$(SO$_4$)$_2$, is precluded. Titration of tannins with cerium(IV) sulfate were in agreement with the results obtained by the classical volumetric titrations with potassium permanganate (180) using indigo carmine (183) as indicator (Löwenthal’s method) and cerium(IV) sulfate (181) (the Folin–Ciocalteu method). As
opposed to L"owenthal’s method, thermometric titrations with 181 and 182 do not require oxidation restrictors or matrix correction. The faster titrations make the method more selective for tannin, as proteins and reducing sugars have slower oxidation kinetics. The presence of sulfur dioxide in wine has a much lower interference effect in thermometric titrations than with the Folin–Ciocalteu method; however, the presence of ascorbic acid is undesirable. The Folin–Ciocalteu method for determination of total phenolic content is still being investigated for various applications.

C. Piezoelectric Detection

A review appeared on piezoelectric quartz crystals used as detectors for phenols in air, after coating with Triton X-100 and 4-aminoantipyrine (78), or with activated carbon cloth impregnated with various compounds, such as poly(vinyl pyrrolidone). A piezoelectric sensor was proposed for determination of trace amounts of phenol and alkylphenols in air. The problems attaining selectivity of the adsorption membranes and operating conditions were addressed. An AT-cut quartz crystal, coated with a hydrophobic PVC layer and operating in the thickness shear mode, has been used to detect 4-aminophenol, after conversion to a hydrophobic indophenol dye and adsorption on the polymer layer. The mode of preparation of the PVC coating affects the sensitivity of the detector. A
bulk acoustic wave device sensor oscillating in a thickness shear mode was developed for detecting phenols in the atmosphere, based on a piezoelectric quartz crystal coated with various materials for selective binding of the analytes. The highest sensitivity was achieved for a 4-aminoantipyrine (78) coating, and the maximal frequency response was about 100 Hz for 20 μg of coating and for a phenol concentration of 0.05 mg L⁻¹ in air.

D. Thermal Analysis

The constituents of binary phenol mixtures can be identified by differential thermal analysis of a sample to which any of the aroyl chlorides 184–186 has been added. The thermogram is compared with a bank of differential thermograms of phenols, binary phenol mixtures and binary phenol derivatives. Most such systems show well-resolved endotherms corresponding to the melting points of the phenols and their acylated derivatives. The method is proposed for rapid identification of phenols in the solid state.

Differential scanning calorimetry was applied to investigate the kinetic behavior and to evaluate the effect of lignin addition on the curing behavior of phenolic resins. Heat evolution was increased when methylolated lignins were used instead of lignin in the formation of lignin–phenol–formaldehyde thermosets. The curing process followed the Borchardt and Daniel’s nth-order kinetic model and showed a 50% to 100% order increase when using methylolated lignin instead of lignin.

E. Phenol as a Measuring Stick

Adsorption of phenol in aqueous solution has been applied to the estimation of the specific surface area of granulated activated carbon. The values obtained according to the Langmuir or the BET methods are in agreement with estimations made by other methods. More than 97% of the surface in the activated carbon samples used can be assigned to the micropores of diameter below 7 nm. Phenol adsorption on inorganic carbon-supported microfiltration membranes followed Langmuir and BET isotherm equations, and therefore formed unimolecular adsorption layers. This characteristic could be applied to the determination of specific surface area of porous materials. The results obtained by this method were in close agreement with those derived from mercury porosimetry measurements.

XIII. REFERENCES

13. Analytical aspects of phenolic compounds

13. Analytical aspects of phenolic compounds

CHAPTER 14

Photochemistry of phenols

WILLIAM M. HORSPOOL

Department of Chemistry, The University of Dundee, Dundee DD1 4HN, Scotland, UK
Telephone: 44(0)1382 360478; e-mail: william.horspool@tesco.net

I. INTRODUCTION 1016
II. GENERAL OBSERVATIONS 1016
 A. Spectral and Luminescent Properties 1016
 B. Photooxidation and Phenoxyl Radicals 1017
 C. Electron Transfer Processes 1019
III. HYDROGEN TRANSFER REACTIONS 1020
 A. Hydrogen Transfer in Acyl and Related Phenols 1020
 B. Addition Reactions of Alkenyl Phenols 1022
 C. Hydrogen Transfer in Salicylidene Derivatives 1024
 D. Hydrogen Transfer in Heterocyclic Systems 1025
 E. Hydrogen Transfer and Cyclization 1027
IV. CHALCONES .. 1027
 A. Hydrogen Transfer Reactions 1027
 B. Cyclizations .. 1028
 C. Other Processes 1030
V. QUINONEMETHIDES FROM PHENOL DERIVATIVES 1032
 A. o-Quinonemethides 1032
 B. m- and p-Quinonemethides 1035
 C. Quinonemethides from Biphenyl Derivatives 1035
 D. Quinonemethides from Fluorenols 1038
VI. CYCLIZATIONS WITHIN o-ALLYLPHENOLS 1038
 A. Miscellaneous Reactions 1042
 B. Photolabile Protecting Groups 1043
 C. Other Hydrogen Transfers 1045
VII. REARRANGEMENTS 1048
 A. Skeletal Rearrangements 1048
 B. Side-chain Rearrangement 1048
 C. Side-chain Migration 1055
VIII. CARBENE FORMATION 1057

The Chemistry of Phenols. Edited by Z. Rappoport

1015
I. INTRODUCTION

This chapter deals with some of the photochemical processes undergone by phenols. The original article in this series dealing with these compounds was published in 1971. One of the principal sources of reference material is the useful annual compendia of photochemical results published by the Royal Society of Chemistry. These were used as the starting point to assemble the key areas dealing with this subject area. Much has been reported since 1971 and there is insufficient space here to record all of it. Thus the references cited are usually in the period 1980–2001. In addition a sifting process was used. The decision of whether to include an article or not was based on the reactivity exhibited by the phenol. If in the author’s judgement the reaction type did not involve the phenolic system in the prime photochemical event, then usually it was excluded. Hopefully this treatment will give a flavour for the work that has been carried out and what is going on at the present time.

II. GENERAL OBSERVATIONS

A. Spectral and Luminescent Properties

Several studies have been reported that have examined the spectral and luminescent properties of phenol. These have examined the photoinduced OH bond cleavage processes occurring on excitation and the neutral, anionic (PhO\(^-\)) and cationic (PhOH\(_2\)^+ and PhOH\(_3\)^2+) forms of phenol were observed in the pH range 4–9. The photoionization of phenols, such as the parent molecule and p-cresol, in alkaline aqueous solution occurs from the singlet-excited state of the phenolates. Other researchers have reported that following irradiation of phenol in water, the fluorescence quantum yield decreases with...
increasing excitation energy and this is attributable to an enhancement of the OH cleavage reaction\(^5\). The effect of chlorine substitution on the spectral and luminescent properties and photolysis of phenol and its $1:1$, $1:2$ and $1:3$ complexes with water was studied by quantum chemical methods. Substitution of chlorine in the para position of phenol decreases the fluorescence quantum yield and makes it dependent on excitation energy, in the absence of any phototransformations. Photodissociative states do exist and these lead to photocleavage of OH and CCl bonds\(^6\). The adsorption and photochemistry of phenol on Ag(111) has also been investigated and irradiation brings about photochemical transformations on the surface, It is likely that this is a charge transfer induced dissociation of the OH bond of phenol\(^7\). Furthermore, two-photon processes permit the population of highly excited states of phenol\(^8\). Photoelectron spectra have also been recorded. In these, after the primary excitation, a second photon excites the species to what is described as a set of superexcited molecular states\(^9,10\).

B. Photooxidation and Phenoxy Radicals

The transients formed from phenol (irradiation at 266 nm in ethanol) have been identified as solvated electrons, phenoxy radicals (an absorption around 400 nm) and the triplet state of phenol (450 nm)\(^11\). The formation of phenoxy radicals and hydrated electrons display a low-frequency/high-field absorption and a high-frequency (low-field) emission polarization pattern generated by a radical pair mechanism. Phenoxy radicals have also been observed following electron transfer from phenols (as solutes) to molecular radical cations of some non-polar solvents (cyclohexane, \textit{n}-dodecane, 1,2-dichloroethane, \textit{n}-butyl chloride)\(^12\). This study used pulsed radiolysis and the formation of the phenoxy radicals is thought to involve Scheme 1.

\[
\begin{align*}
c-\text{C}_6\text{H}_{12}^{++} + \text{ArOH} & \rightarrow c-\text{C}_6\text{H}_{12} + \text{ArOH}^{++} \\
\text{ArOH}^{++} & \rightarrow \text{ArO}^+ + \text{H-solv}^+
\end{align*}
\]

SCHEME 1

A CIDEQ study of the photooxidation of a range of phenols by benzophenone has concluded that the reaction proceeds by abstraction of a hydrogen atom to give the corresponding phenoxy radicals\(^13\). Others\(^14\) have reported that aromatic ketones such as 3-methoxyacetophenone and 2-acetonaphthone mediate efficiently the photooxidative degradation of phenols by a one-electron process producing the radical cations of the phenols in aerated aqueous solution. A possible reaction sequence is shown in equation 1.

\[
\text{PhOH} + [\text{Ar}_2\text{CO}^3] \rightarrow \text{PhOH}^{++} + \text{Ar}_2\text{CO}^-
\]

Rates of quenching of excited state triplets have been measured and the influence of substituents on the phenols studied has shown that electron-donating substituents enhance the degradation process ($\phi > 0.5$) while phenol itself has a quantum yield for disappearance of only 0.1.

The photooxidation of 2,6-dimethylphenol\(^15\) with UO\(_2^{2+}\) and with the oxidant\(^16\) [Co (NH\(_3\))\(_5\)N\(_3\)]\(^{2+}\) has been investigated and the first step has been shown to be the formation of the phenoxy radical. 2,6-Dimethylphenol gives the corresponding p-quinone and the dimer \textbf{1c}. In degassed solutions only the dimer is formed\(^15\). Dimerization of o-phenylphenol can also be brought about by irradiation in the presence of [Co(NH\(_3\))\(_3\)N\(_3\)]\(^{2+}\) with concomitant reduction of Co\(^{3+}\) to its Co\(^{2+}\) state\(^17\). Similar dimerization has been
reported for \(m \)- and \(p \)-phenylphenols. The irradiation affords the corresponding phenylphenoxy radicals that react efficiently to give phenolic dimers as the major product\(^{18} \). \(o \)-, \(m \)- and \(p \)-phenylphenol all undergo oxidation with \(\text{UO}_2^{2+} \). The \(o \)-phenylphenol yields two dimers and a \(p \)-quinone. In degassed solutions, however, only the dimer is formed\(^{19} \). Another study has shown that isoeugenol also undergoes dimerization and is converted into a \(7,7' \)-linked lignan\(^{20} \). Phenoxy radicals also arise as key intermediates in photosensitization of hindered phenols (2,6-di-\(t \)-butyl, 2,6-di-\(i \)-propyl, 2,6-dimethyl and 2-\(t \)-butyl) using acridine as the sensitizer. A triplet excited-state radical pair is formed following transfer of hydrogen to acridine. An electron transfer does not occur in this system and it is proposed that the presence of \(o \)-substituents promote the dimerization to afford \((1a–d)\) by inhibiting electron transfer\(^{21} \). As can be seen from the yields quoted, the dimer can be produced in 75% yield when the reaction is carried out in acetonitrile. When \(o \)-substituents are absent, e.g. with phenol, the dimerization fails. The oxidation of 2,6-di-\(t \)-butylphenol in the crystalline phase produces triplet phenoxy radical pairs\(^{22} \). Radical pairs produced by the photolysis of 4-bromo-2,6-di-\(t \)-butylphenol single crystals doped with 2,6-di-\(t \)-butyl-\(p \)-quinone have been studied by EPR spectroscopy. The mechanism of radical pair generation changes from hydrogen-atom transfer to electron transfer (without proton transfer)\(^{23} \). Lead dioxide will oxidize 4,4′-(trimethylene)bis(2,6-di-\(t \)-butylphenol) \((2)\) leading to formation of a dispiro-compound \((3)\) by intramolecular cyclization at the 4,4′-positions. The spiro compound \((3)\) is photochemically reactive and, on irradiation in a methycyclohexane matrix at \(-150^\circ\text{C}\), gives 4,4′-(trimethylene)bis(2,6-di-\(t \)-butylphenoxy) diradical as a stable triplet species\(^{24} \).
C. Electron Transfer Processes

Photoelectron transfer oxidation of phenols, 3,5-dimethyl and 2,6-dimethylphenol, takes place using 2-nitrofluorene as the electron-accepting sensitizer in both acetonitrile and cyclohexane solution. In acetonitrile the anion radical of 2,6-dimethylphenol is observed as the final product. Other phenols such as the 2,4,6-trimethyl derivative also undergo electron transfer reactions with 1,1′-, 1,2′- and 2,2′-dinaphthyl ketones. Other sensitizers such as 1,4-dicyanonaphthalene with biphenyl as a co-sensitizer in acetonitrile have also been used. The resultant phenol radical cations (4a–h) have absorption maxima in the 410–460 nm region with the exception of 4i that absorbs at 580 nm. When the reactions are carried out in the presence of a trace of water, the radical cations are not observed. Instead, phenoxy radicals are detected. This presumably is due to the reaction shown in equation 2.

\[
\text{PhOH}^{**} + \text{H}_2\text{O} \rightarrow \text{PhO}^+ + \text{H}_3\text{O}^+
\]

<table>
<thead>
<tr>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>R^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>(b) H</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>(c) MeO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>MeO</td>
</tr>
<tr>
<td>(d) H</td>
<td>H</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>(e) H</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>(f) MeO</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>(g) Me</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>(h) H</td>
<td>MeO</td>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
</tr>
<tr>
<td>(i) H</td>
<td>MeO</td>
<td>H</td>
<td>MeO</td>
<td>H</td>
</tr>
</tbody>
</table>

Electron transfer oxidation of 4-methoxyphenol using meso-tetraphenylporphyrin as the electron acceptor brings about dehydrodimerization of the phenol to yield 5. The presence of the radical cation of the phenol has been detected by CIDNP techniques. The same product is obtained by irradiation of the tetraphenylporphyrin/benzoquinone/p-methoxyphenol system. Pyrimidinopteridine N-oxide has been used as a sensitizer to effect the hydroxylation of phenols, also involving the radical cation of the phenol. Thus phenol can be converted to catechol and hydroquinone while cresol yields 4-methylcatechol. Hydroquinone can itself be oxidized by the cobalt azide complex in aqueous
acidsic solution to generate the semiquinone radical\(^{31}\). There is also some interest in
electron transfer between sterically hindered quinones and quinhydrone. In these cases
the outcome can often result in either a proton transfer from the phenol to the quinone or
an electron transfer in the same direction. Prokof’ev\(^{32}\) has shown that in glassy media the
formation of radical pairs, two paramagnetic species in the triplet state, results. In other
studies in the crystalline phase with quinhydrone formed between, for example \(p\)-quinone
and \(2\)-phenylhydroquinone, the mechanism of hydrogen transfer and the involvement of
charge transfer has been investigated\(^{33}\). Rate constants \((8.0 \times 10^8 \text{ s}^{-1})\) have been mea-
sured for photoinduced electron transfer between the hydroxyl groups of a non-covalent
assembly of a calix[4]-arene (6)-substituted Zn(II) metalloporphyrin and benzoquinone in
methylen chloride solution\(^{34}\).

III. HYDROGEN TRANSFER REACTIONS

A. Hydrogen Transfer in Acyl and Related Phenols

Intramolecular hydrogen transfer in phenol systems has been studied in considerable
detail over the years\(^1\). A review dealing with this subject area has also been published\(^{35}\). In
the earlier studies the mechanistic details were not worked out in great detail. However,
in the last decade or so considerable advances have been made in our understanding of such processes. Much of the work has been associated with photochromicity associated with the intramolecular hydrogen transfer. A laser flash study examined the process in \(o \)-hydroxyacetophenone and methyl salicylate where it is clear that a triplet state is involved\(^3\). Other \(o \)-acylphenols also undergo excited state hydrogen transfer and a theoretical investigation of this has been published\(^4\). Interest has also been shown in the photophysics of such systems and the influence that the position of the phenolic OH group can exercise on the overall processes. In this regard the \(o \)-, \(m \)- and \(p \)-derivatives (7) have been studied\(^5\–\(^7\)). The proton transfer has been shown to be solvent sensitive\(^8\) and there is a tendency for the formation of CT complexes in protic solvents. This involves the \(S^1 \) state of the carbonyl function. In this regard earlier work has examined the intermolecular hydrogen abstraction from phenolic hydroxy groups by photoexcited ketones\(^\text{42,43} \)\(^,\) such as the reaction between benzophenone and \(p \)-cresol\(^\text{43} \). Another study related to this has examined geometrical effects on intramolecular quenching of aromatic ketone \(\pi \pi^* \) triplets using alkoxyacetophenone derivatives (8) and (9) with remote phenolic groups. The triplet lifetimes of the phenolic ketones vary with the positions of attachment (\(meta \) or \(para \)) of the oxyethyl spacer with respect to the carbonyl and phenolic moieties. This indicates a very strong dependence of the rate of intramolecular H-abstraction on geometric factors. In these cases hydrogen-bonded triplet exciplexes are thought to be involved. A hydrogen transfer is the key chemical step in this quenching process. In the intermolecular processes the proton transfer must involve a transition state with a cyclophane-like geometry\(^\text{44} \).

\[
\begin{align*}
(7) & \quad \text{Ar}^1 \quad \text{OH} \\
(8) & \quad \text{R}^1 = \text{Me, R}^2 = \text{H, Ar}^1 = \text{p-HOC}_6\text{H}_4 \\
& \quad \text{R}^1 = \text{Me, R}^2 = \text{OMe, Ar}^1 = \text{p-HOC}_6\text{H}_4 \\
& \quad \text{R}^1 = \text{Ph, R}^2 = \text{H, Ar}^1 = \text{p-HOC}_6\text{H}_4
\end{align*}
\]

\[
\text{(9)}
\]

The ground and excited state proton transfer processes of 4-methyl-2,6-diacetylphenol\(^\text{45–47} \) and the influence of polar solvents on the outcome of the photochemical transformation of 2,6-diformyl-4-methylphenol (10) has been evaluated\(^\text{48,49} \). The results obtained from the study of (10) indicate that the CO-\(\cdot \cdot \cdot \text{HO} \) hydrogen bond is stronger in
the diacetyl derivative than in the diformyl compound. The hydrogen transfer occurs from both the S_1 and T_1 states. The analogous process in the more constricted environment of hydroxyindanone (11) in its triplet state has also been studied.50 Excited state proton transfer from 4-methyl-2,6-diamidophenol has been studied in alcoholic solvents, using steady-state and nanosecond spectroscopy, at room temperature.51

B. Addition Reactions of Alkenyl Phenols

One of the interesting synthetic applications of proton transfer is the ability to bring about photochemical addition of solvents (water, alcohols and amines etc.) to the double bond adjacent to the hydroxy group. One of the early examples of this is the photohydration of 2-hydroxyphenylacetylene and 2-hydroxystyrene.52,53 The study showed that the quantum yield for the formation of the product from the alkyne was at its highest at pH 7. It is clear that the hydration to yield o-hydroxyacetophenone from the alkyne and 2-(1-hydroxyethyl)phenol from the styrene arises by an intramolecular proton transfer from the phenolic OH under these conditions. Interestingly, the hydration of the styrene is more pH sensitive and the detailed studies have shown that the reaction can also be brought about by an intermolecular proton transfer.53 A similar addition reaction occurs with the o-alkenyl phenols (12, 14 and 16). These undergo amination in good yields as shown below the structures when irradiated in the presence of alkyamines. The products formed were identified as 13, 15 and 17, respectively. The formation of the products involves the S_1 state of the phenol resulting in transfer of the phenolic proton to the amine to afford the ion pair. Proton transfer to the alkenyl group then yields the corresponding benzylic cation that is trapped by the amine, as illustrated in Scheme 2.54,55
14. Photochemistry of phenols

\[
\begin{align*}
\text{OH} & & \text{HO} \\
\text{Me} & & \text{Me} \\
\text{Me} & & \text{Me} \\
\end{align*}
\]

(14)

\[
\begin{align*}
\text{OH} & & \text{OH} \\
\text{Me} & & \text{Me} \\
\text{Me} & & \text{Me} \\
\end{align*}
\]

(15) 90% yield

\[
\begin{align*}
\text{OH} & & \text{R}^1 \\
\text{Me} & & \text{Me} \\
\text{R}^2 & & \text{R}^2 \\
\end{align*}
\]

(16)

\[
\begin{align*}
\text{OH} & & \text{R}^1 \\
\text{Me} & & \text{Me} \\
\text{Me} & & \text{Me} \\
\end{align*}
\]

(17)

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>(R^4)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Me</td>
<td>Et</td>
<td>Et</td>
<td>64</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>62</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>i-Pr</td>
<td>H</td>
<td>71</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>35</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>CH(=\text{CH}–\text{CH}_2) & 88</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Et</td>
<td>Et</td>
<td>71</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>i-Pr</td>
<td>H</td>
<td>92</td>
</tr>
<tr>
<td>Me</td>
<td>H</td>
<td>i-Pr</td>
<td>H</td>
<td>58</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{CH}_2=\text{CH}–\text{CH}_2 & & + \\
\text{i-PrNH}_3^+ & & \text{H} \\
\rightarrow & & \text{H} \\
\rightarrow & & \text{Product} \\
\end{align*}
\]

SCHEME 2
Hydration has also been recorded by Fischer and Wan56,57, who reported that the phenol derivatives 18, 19 and 20 undergo addition of water to the double bond when they are irradiated in acetonitrile/water. The study has shown that the proposed mechanism of m-quinonemethide (see later for further discussion of quinonemethides) formation probably involves a solvent-mediated proton transfer of the phenolic hydrogen to the β-carbon of the alkene moiety. This must occur with the participation of a so-called water trimer. This yields the zwitterion 21 that is responsible for the formation of the products, e.g. 22 from 18. The reactions are efficient with quantum yield values of 0.1–0.24.

\textbf{C. Hydrogen Transfer in Salicylidene Derivatives}

Studies associated with proton transfer in the salicylidenes and related systems have been carried out over the years. Fundamentally, the process involves the migration of the phenol proton to a neighbouring heteroatom. This simple process, that often leads to photochromism, is illustrated schematically in Scheme 3. In specific terms a solid-state study58 and semiempirical PM3 calculations59,60 have been carried out on the light-induced transformations of N-salicylideneaniline. Such isomerism has also been investigated in N-salicylidene-(4-N,N-dimethylamino)aniline61 and also for the hydrogen transfer in N-salicylidene-(2-methyl-5-chloro)aniline in the solid state62. Intramolecular hydrogen transfer is reported for N-(R-salicylidene)alkylamines where the process was studied using UV-visible absorption spectroscopy63. Others64 have used 15N NMR to examine this proton transfer. Intramolecular proton transfer reactions in internally hydrogen-bonded Schiff bases such as N,N'-bis(salicylidene)-p-phenylenediamine and N,N'-l-bis(2-hydroxy-1-naphthylmethylene)-p-phenylenediamine were studied by \textit{ab initio} and semiempirical methods65. The photochromic properties and the influence that substituents have on such processes have been studied for the bis imines (23)66.
D. Hydrogen Transfer in Heterocyclic Systems

Proton transfer also arises from phenolic groups to the nitrogen of several heterocyclic compounds. Thus the pyridine derivative 24 shows photochemical proton transfer and the influence of restricted rotation on the process was assessed using the locked derivatives 25 and 26. Proton transfer is also observed in [2,2′-bipyridyl]-3,3′-diol and within the anil of hydroxyindanone. Benzimidazole derivatives such as 27, X = CH also undergo proton transfer in ethanol solution. Such a process had been suggested from earlier work that had detected the enhanced acidity of the phenolic hydrogen. The resultant enol is in the S1 state and deactivation results in fluorescence. Enhanced acidity has also been observed with 27, X = N. The analogous processes in the imidazoles 28 have also been studied and this yields the keto tautomers. Solvent effects in the proton transfer processes in 27 have been examined by Monte Carlo simulations. Apparently, polar solvents stabilize the keto forms. The benzoxazole 30 undergoes facile conversion into the tautomer 31. An analogous process occurs for the corresponding benzothiazole derivatives. The quantum yield for the process is unity at 280 K, but falls with decreasing temperature to a value of 0.01 at 170 K. The influence of substituents on the phototransformation was assessed in the derivatives 32. Calculations concerning these molecules have also been reported. Ground and excited state pK data have also been determined for such molecules. Interestingly, photochemically induced proton transfer in the related
2-hydroxyphenyllapazole occurs from the singlet state, but the efficiency of the process is an order of magnitude greater than for 2-hydroxyphenylbenzoxazole. Intramolecular hydrogen bonding is also shown in the 2-(2′-hydroxyphenyl)-4,6-diaryl-1,3,5-triazines. These compounds are phosphorescent in polar solvents at 77 K. It is likely that the phosphorescence emission arises from open conformers that have intermolecular hydrogen bonds.
E. Hydrogen Transfer and Cyclization

In some rigid planar systems such as 34 photochemically induced proton transfer occurs in benzene as solvent, but this is followed by cyclization resulting in the formation of the acridine 35. The cyclization is a common oxidative process in cis-stilbenoid systems. The proton transfer is an essential feature in the cyclization, since it was demonstrated that the reaction fails with the methoxylated analogue. With the bis hydroxy compound 34, $X^1 = X^2 = \text{OH}$, a second cyclization affords 36 albeit in lower yield (14%).

<table>
<thead>
<tr>
<th>X^1</th>
<th>X^2</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>HO</td>
<td>64</td>
</tr>
<tr>
<td>HO</td>
<td>H</td>
<td>18</td>
</tr>
</tbody>
</table>

IV. CHALCONES

A. Hydrogen Transfer Reactions

Irradiation of 37 at 366 nm is reported to give no observable reaction. The failure to react at this wavelength is thought to be due to the intramolecular hydrogen bonding, since the corresponding 4-hydroxy derivative does undergo facile trans,cis-isomerism around.
the double bond. However, the compound 37 is reactive using 308 nm light from an excimer laser or laser flash photolysis in n-hexane. This treatment brings about proton transfer from the phenolic OH with the formation of the keto-enol 38. A later study of 37 suggests that irradiation brings about irreversible cis,trans-isomerism of the double bond.

\[\text{(37)} \quad \text{(38)} \]

B. Cyclizations

Others have reported that there is a definite effect of aryl substituents and that the derivative 39 undergoes cyclization in the presence of dissolved oxygen to yield the hydroxyflavone 40. The cyclization involves the formation of a biradical 41 that cyclizes in the presence of oxygen to yield the hydroxyflavone 42. The cyclization of such chalcones has been known for many years and studied in some detail. Research showed that the derivatives 43 undergo efficient cyclization to 44 (Scheme 4) on irradiation at wavelengths >365 nm in dioxan or ethyl acetate solution. The reaction is solvent-dependent and poorer yields are obtained in benzene or chloroform solution. Further studies demonstrated, for the conversions shown in Scheme 5, that the cyclizations probably arose from a $\pi\pi^*$ transition.
With the double bond of the chalcone systems adjacent to the hydroxy-substituted ring, cyclization is often the outcome of irradiation. This is demonstrated for the chalcone 45 that cyclizes to the flavylum salt 46 in acidic medium100,101. A more recent study of the cyclization of 45 has established that the precursor to the cyclic species is the ground state enol 47102. The cyclization brings about a marked colour change both in solution and in plastic films. This photochromicity is substitution-dependent, as can be seen from the influence of methoxy substitution (Scheme 6) where the quantum yields vary from 0.02–0.12 depending on the position of the substituent100. A variety of substituents have been examined and the presence of a \textit{p}-dimethylamino group appears to give the best results. The examples tested for photochromism are shown as 48. Any variations on the aryl group were demonstrated to be effective. The influence of substituents on the photoreactions of the related photochromic chalcone 49 in both neutral and acidic solution has been investigated. The quantum yields for the cyclizations in both acid and neutral
solution were determined and these are shown below the structure. The influence of the substituents on the process can be seen from these results.\(^\text{103}\)

![Structure](image1)

![Structure](image2)

![Structure](image3)

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>(\phi_{\text{cyclization}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeO</td>
<td>MeO</td>
<td>H</td>
<td>0.08</td>
</tr>
<tr>
<td>MeO</td>
<td>H</td>
<td>MeO</td>
<td>0.02</td>
</tr>
<tr>
<td>MeO</td>
<td>H</td>
<td>H</td>
<td>0.12</td>
</tr>
</tbody>
</table>

SCHEME 6

C. Other Processes

In some instances double-bond isomerism is the principal event on irradiation, as with the chalcones.\(^\text{50}\) The quantum yields for this process are in the range 0.2–0.4 in neutral aprotic solvents.\(^\text{104}\) A study of the photochemistry of some chalcone derivatives using a variety of wavelengths (313, 334, 366 and 406 nm) has been reported.\(^\text{105}\) Other reactivity
14. Photochemistry of phenols

\[
\text{(48)}
\]

\[
\begin{array}{cccc}
R^1 & R^2 & R^3 & Ar \\
H & H & H & \text{Ph} \\
H & H & H & o-\text{MeOC}_6\text{H}_4 \\
H & H & H & m-\text{MeOC}_6\text{H}_4 \\
H & H & H & p-\text{MeOC}_6\text{H}_4 \\
\text{MeO} & H & H & p-\text{MeOC}_6\text{H}_4 \\
H & H & H & p-\text{Me}_2\text{NC}_6\text{H}_4 \\
H & \text{benzo} & - & p-\text{Me}_2\text{NC}_6\text{H}_4 \\
H & H & H & 3(\text{2-cyano-dimethylpyrrolyl}) \\
H & H & H & 3(\text{2,5-dimethylthienyl}) \\
H & H & H & 2\text{-thienyl} \\
H & H & H & 2\text{-furyl} \\
H & H & H & 3(\text{2-methylbenzo}[b]\text{thienyl}) \\
\end{array}
\]

\[
\text{(49)}
\]

\[
\begin{array}{ccc}
R & \phi_{\text{cycl in H}^+} & \phi_{\text{cycl, no acid}} \\
H & 0.34 & 0.36 \\
4-\text{Cl} & 0.35 & 0.38 \\
4-\text{Me} & 0.36 & 0.34 \\
4-\text{OMe} & 0.36 & 0.31 \\
4-\text{NMe}_2 & 0.33 & 0.072 \\
\end{array}
\]
V. QUINONE METHIDES FROM PHENOL DERIVATIVES

A. o-Quinonemethides

Earlier, a reference was made to the hydration of o-hydroxy-α-phenylstyrene and the amination of alkenes. The mechanism of these reactions has been probed in some depth. It is clear that proton transfer takes place on the irradiation of such systems and the transfer takes place to the alkenyl carbon and results in the formation of a quinonemethide such as 53. Early work on the results of irradiation of o-hydroxybenzyl alcohol showed that a quinonemethide was formed. In the absence of other trapping agents phenol/formaldehyde resin-like materials were formed. Minor products such as 54 and 55 were also produced.
that did give some justification for the intermediacy of the quinonemethide107. The ultimate proof for the formation of an intermediate of this type comes from laser-flash studies and fluorescence measurements108. The quinonemethide 53 is formed from \(o\)-hydroxybenzyl alcohol and some \(\alpha\)-substituted derivatives on irradiation at 254 nm and is the result of elimination of a molecule of water. When these reactive species are formed in methanol the ethers 56 (Scheme 7) are produced with reasonable photochemical efficiency. With change of solvent to water/acetonitrile and with added methyl vinyl ether the Diels–Alder adducts 57 are obtained almost quantitatively. Again this is good evidence for the involvement of quinonemethide intermediates109,110. A further example of photoelimination of water, this time from diol 58, affords the quinonemethide 59 that undergoes
intramolecular cycloaddition to yield the hexahydrocannabinol 60. The intermediate 59, with an absorption at \(\lambda_{\text{max}} \), ca 400 nm, was detected by laser-flash studies\(^{111}\).

Elimination of simple amines from Mannich bases such as 61 also brings about the formation of \(o \)-quinonemethide intermediate such as 62 (from 61, \(\text{Ar} = \text{4-Ph}, \text{X} = \text{NMe}_2 \)) using irradiation at \(\lambda > 300 \text{ nm} \) in acetonitrile/water. Interestingly, the position of the aryl substituent in 61 is important and the best yields (the details are shown below the structure) were obtained when the phenyl group was \(p \)- to the OH. In the specific case, the formation of 62, the quinonemethide can be trapped readily in a Diels–Alder reaction with ethoxyethene to yield the adduct 63 in 71\%\(^{112}\). Other systems 64 and 65 were also studied and these again undergo elimination with the formation of the corresponding quinonemethide that also afford Diels–Alder adducts in 38\% and 17\% yields, respectively\(^{113}\). Other laser-flash studies have also reported the generation of \(o \)-quinonemethide from the phenol derivatives 66. In these examples elimination of water, \(p \)-cyanophenol or an ammonium salt afforded the quinonemethide\(^{113}\).

<table>
<thead>
<tr>
<th>Ar</th>
<th>X</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-Ph</td>
<td>NMe(_2)</td>
<td>76</td>
</tr>
<tr>
<td>5-Ph</td>
<td>NMe(_2)</td>
<td>36</td>
</tr>
<tr>
<td>4-Ph</td>
<td>NMe(_2)</td>
<td>71</td>
</tr>
<tr>
<td>4-Ph</td>
<td>NEt(_2)</td>
<td>64</td>
</tr>
<tr>
<td>4-Ph</td>
<td>N</td>
<td>57</td>
</tr>
<tr>
<td>4-Ph</td>
<td>HO</td>
<td><2</td>
</tr>
<tr>
<td>4-Ph</td>
<td>MeO</td>
<td><2</td>
</tr>
</tbody>
</table>
B. \textit{m-} and \textit{p-}Quinonemethides

As mentioned earlier, quinonemethides other than the \textit{ortho}-isomers can also be formed, such as (67) from (18). In the cases cited previously, elimination of water from an appropriate hydroxy-substituted benzyl alcohol was the path followed. Other research has demonstrated that the irradiation of \textit{p}-hydroxyphenyl ketones in water/acetonitrile mixtures brings about singlet excited-state proton transfer to afford the quinonemethide (67). Apparently this proton transfer occurs in competition with intersystem crossing.\(^{114}\)

\[
\begin{align*}
\text{O} & \quad \text{Ph} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

\[(67)\]

C. Quinonemethides from Biphenyl Derivatives

It is also possible to form quinonemethides involving the phenyl groups of biphenyl derivatives. The simplest of these has been shown for 2-hydroxybiphenyl. This undergoes excited state intramolecular proton transfer from the phenol moiety to the 2'-carbon position of the phenyl ring (not containing the phenol hydroxy group), to generate the corresponding quinonemethide (68).\(^{115}\) The transfer of hydrogen, in some respects, resembles the formation of the two keto-tautomers cyclohexa-2,4-dienone (69) and cyclohexa-2,5-dienone (70) of phenol that can be generated by flash photolysis.\(^{116}\) In earlier work Shi and Wan\(^{117}\) reported that the biphenyls (71) underwent deuterium exchange at the \textit{ortho}-position of the ring distant from the oxygen substituent. In this case they proposed that the \textit{S}^1 state of the biphenyl was strongly polarized. Related to this study is the report that laser
flash photolysis of the biphenyls 72 and 73 brings about their transformation into the quinonemethides 74 and 75, respectively. This postulate is substantiated by preparative irradiation of the biphenyls in methanol/water when the ethers 76 and 77 are obtained with quantum yields of 0.24 and 0.03, respectively. Quinonemethides are also involved in the photoconversion of the three biarylmethyl alcohols 78, 79 and 80 into the corresponding pyrans 81, 82 and 83 on irradiation at 254 nm in acetonitrile or acetonitrile/water. The singlet excited state is thought to be involved in these transformations. Irradiation brings about elimination of water and the formation of 84 takes place from 78. Cyclization of this quinonemethide intermediate affords the final product. The same is so for the other examples. Interestingly, compound 80 is highly twisted from planarity. Even so the quantum yield for the conversion to the pyran 83 is reasonable at 0.17. The biphenylmethanol 85 is also twisted from planarity and the X-ray crystal structure shows it to have a dihedral angle of 80° between the rings of the biphenyl ring system. Again, this compound cyclizes efficiently when it is irradiated in acetonitrile solution or in the solid state to afford the corresponding pyran 86. In solution, the mechanism of the reaction involves intramolecular proton transfer from the phenolic OH to the benzyl alcohol function. In the solid state the proton transfer is thought to occur intermolecularly. Earlier work had shown that such cyclizations were feasible with the conversion of the less heavily substituted derivative 87 into 88 again by way of the quinonemethide.
14. Photochemistry of phenols

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)
D. Quinonemethides from Fluorenols

The elimination of water from the biphenyl systems has been extended to include the hydroxyfluorenols 89. Irradiation in 1:1 water/methanol results in conversion to the ether 90. While the ether-forming reaction is thought to involve the generation of the fluorenyl cation by heterolysis of the CO bond the production of the quinonemethide 91 also takes place. This intermediate can be trapped by ethyl vinyl ether as the cis-adduct 92. Triplet state characteristics of 2,2′- and 4,4′-biphenyldiols have been investigated in different organic solvents using 248 nm nanosecond laser flash photolysis technique. The differences observed in the two diols is explained on the basis of the presence and the absence of intramolecular hydrogen bonding.

VI. CYCLIZATIONS WITHIN o-ALLYLPHENOLS

The earlier work on the photochemical cyclizations of o-allylphenol (93a) were commented upon in the original article in this series. Some further studies have examined the influence of aryl substituents on the reaction and the ionic nature of the process. The photochemical cyclization of the corresponding phenoxides has also been examined. Others have examined the trans,cis-isomerism of 93b and its subsequent cyclization.
into 94 and 95. The whole area has also been the subject of a review. The cyclization exhibited by 93b is the result of phenolic proton transfer to the alkene followed by cyclization within the resultant zwitterion. The yields for the formation of the two products are shown under the illustrations and it can be seen that the best yields are obtained in benzene in the presence of oxygen. The influence of aryl substituents on the reaction of such systems was studied using the phenol 96a. Here again photochemical cyclization into a mixture of the dihydrofuran (97a) and the dihydropyran (98a) occurs. The corresponding cis-alkene is also formed. Interestingly, the outcome of the reaction is substituent-dependent and 96b affords the furan 97b as the main product (see yields). The compound 96b apparently reacts via an SET process. With an acetyl substituent the cyclization process of 96c fails and the reaction is diverted along the trans,cis-isomerism path.

\[
\begin{align*}
&\text{(93) } (a) \ R = H \\
&(b) \ R = \text{Ph}
\end{align*}
\]

\[
\begin{align*}
&(94) \\
&(95)
\end{align*}
\]

<table>
<thead>
<tr>
<th>yield (%)</th>
<th>conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td>62</td>
<td>23</td>
</tr>
<tr>
<td>Ar, $\lambda > 200$ nm, hexane</td>
<td>O$_2$, $\lambda > 200$ nm, hexane</td>
</tr>
<tr>
<td>O$_2$, $\lambda > 200$ nm, benzene</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
&(\text{96}) (a) \ R = \text{Ph} \\
&(b) \ R = \text{MeO} \\
&(c) \ R = \text{COMe}
\end{align*}
\]

\[
\begin{align*}
&(\text{97}) (a) \ R = \text{Ph} \\
&(b) \ R = \text{OMe}
\end{align*}
\]

<table>
<thead>
<tr>
<th>yield (%)</th>
<th>97</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td>86</td>
</tr>
<tr>
<td>c</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Direct irradiation of the arylalkenes (99) again results in their conversion into the cyclic ethers (100) and (101) (see also the conversions of 93 and 96). Under different photochemical conditions, using 2,4,6-triphenylpyrylium tetrafluoroborate as an electron-accepting sensitizer, the compounds (99, R = CH₃) and (99, R = MeO) undergo oxidative cleavage of the double bond with the formation of the corresponding aldehyde. This occurs even though the reactions are carried out under argon¹²⁴. In addition to cis,trans-isomerism, irradiation of the allylnaphthols 102a, b brings about photochemical cyclization to afford the two products 103a and 104a, and 103b and 104b, respectively¹²⁵. Cyclization also occurs with phenyl derivatives such as 105. Again the cyclizations observed follow two paths to yield a mixture of the cyclized derivatives 106 and 107. The influence on the photochemistry of substituent groups attached to the styryl moiety has been evaluated. It is clear that a charge transfer (CT) is involved and that the outcome of the reactions is solvent-dependent. The CT in the excited state brings about a proton transfer followed by cyclization to yield the products 106 and 107, where the latter is predominant. When acetone is used as sensitizer no reaction is observed¹²⁶.
14. Photochemistry of phenols

\[
\begin{align*}
\text{(103a)} & \quad \text{(103b)} \\
\text{yield (\%)} & \\
R = H & 81 & 11 \\
R = \text{Ph} & 55 & 44 \\
\end{align*}
\]

\[
\begin{align*}
\text{(104a)} & \quad \text{(104b)} \\
\text{yield (\%)} & \\
R = H & 38 & 45 \\
R = \text{Ph} & - & 92 \\
\end{align*}
\]

\[
\begin{align*}
\text{(105)} & \quad \text{R} = \text{Ph, Me, OMe} \\
\text{(106)} & \\
\end{align*}
\]
A. Miscellaneous Reactions

The competition between dehalogenation and cyclization within the derivatives 108 has been studied. Here, fission of C−Cl and C−Br bonds occurs and addition of solvent to the aromatic ring takes place. Direct irradiation through a quartz filter of the trans-cyclopropane 109 in cyclohexane populates the singlet state. Within this excited state the acidity of the phenolic hydrogen is enhanced. This leads to the formation of the two tight zwitterions 110 and 111. Reaction within these affords the principal products 112 and 113. Other products 114–116 are also formed in low yield and the authors suggest that an electron transfer mechanism is involved. The irradiation of o-allylphenol has also been reinvestigated in cyclohexane as solvent. A di-π-methane reaction was observed with the formation of a photolabile cyclopropyl derivative 117. This fragments on excitation to afford a carbene 118 which inserts into a solvent molecule to yield 119 (Scheme 8).

\[
\begin{array}{l}
R = \text{Ph} & 21 & 64 \\
R = \text{Me} & 20 & 40 \\
R = \text{MeO} & 22 & 59 \\
\end{array}
\]
B. Photolabile Protecting Groups

The passing of the years has not diminished the interest in photolabile protecting groups. Many such systems are available130 and have been described in the literature. A new method has been proposed for the protection of amino acids. This involves the conversion of the amino acid into the phenacyl derivatives120. Irradiation of these derivatives in a buffered aqueous solution results in the release of the amino acid and the transformation of the phenacyl group into a phenylacetic acid. This occurs via the triplet state within which there is intramolecular displacement of the amino acid moiety as represented in 121. The resultant intermediate 122 undergoes ring opening by attack by water to afford the...
p-hydroxyphenylacetic acid as the by-product of the deprotection. The photolabile silyl-based protecting group has also been described. The photochemical reaction involves the trans,cis-isomerism of the double bond at 254 nm followed by interaction between the phenolic OH group and the double bond. Some of the alcohol derivatives used are shown below structure 123. This results in photochemical proton transfer and the formation of the isomer 124 (Scheme 9). Transfer of the silyl group and subsequent hydrolysis releases the protected alcohol. Additional study has demonstrated the feasibility of the hydrogen transfer by experiments using 125. In this case deuterium transfer is the outcome yielding 126. A detailed account of photochemical reactions of alcohol
C. Other Hydrogen Transfers

An intramolecular excited state proton transfer occurs on irradiation of hypericin \(128^{136-139}\). Excitation of hypericin in lipid vesicles results in excited state regioselective transfer of a proton to the substrate from one of the peri-hydroxyl groups\(^{140}\). Hypericin in its triplet state reacts with reducing agents to afford a long-lived transient presumed to be the resultant radical anion\(^{141}\). Both electron donors and acceptors can quench the fluorescence of hypericin\(^{142}\). A detailed review of the reactions of the photosensitizer ‘hypericin’ has been published. Some of the work described dealt with its photochemical deprotonation in the excited state\(^{143}\).
The photochemically induced proton transfer in 2-hydroxy-6-methyl-\textit{m}\textendash phthalic acid has been studied\cite{144}. Guha and his coworkers have also investigated the proton transfer processes in the isomeric diacid\cite{129} as well as in the corresponding diester and diamide\cite{145}. The photochemically induced hydrogen transfer reactivity in the salicylate derivatives\cite{130} has been studied\cite{146,147} as has the photoinduced proton transfer within 3-hydroxy-2-naphthoic acid (131). In this latter case a large Stokes-shifted emission is observed. This shift is dependent upon pH, solvent, temperature and excitation wavelength. The large Stokes shift is the result of intramolecular hydrogen transfer\cite{148}. A detailed study of the photoinduced proton transfer within the acetonaphthol 132 has been carried out. The work investigated the internal twisting processes within the molecule. Interestingly, the H-bonded structure in the S\textit{1} state is stabilized by about 2 kcal mol−1\cite{149}. Photoke-tonization of the hydroxyquinoline derivative 133 occurs on irradiation\cite{150}. Excited-state intermolecular hydrogen bonding has been observed (emission at 400 nm) for aqueous solutions of \textit{p}\textendash \textit{N},\textit{N}\textendash dimethylaminosalicylic acid\cite{151}.

\begin{table}[h]
\centering
\begin{tabular}{ccc}
R1 & R2 & R3 \\
H & H & H \\
Me & H & H \\
H & H & Me \\
H & H & MeO \\
Me & Me & H \\
H & Me & Me \\
H & Me & MeO
\end{tabular}
\end{table}

\begin{align*}
\text{(130)}
\end{align*}
VII. REARRANGEMENTS

A. Skeletal Rearrangements

The structural rearrangement of the phenol skeleton can be brought about photochemically. Childs and coworkers152 were among the earliest to report the low-yield photoisomerization of phenols using FSO\textsubscript{3}H at low temperatures. The process involves the protonation of the phenol at the \textit{para}-position. A better reaction system was found that made use of CF\textsubscript{3}SO\textsubscript{3}H153. Under these acidic conditions and ambient temperatures irradiation gives good yields of the bicyclic enones154. The wavelengths required to bring this about depend on the substitution on the phenol. Thus, for the parent phenol 254 nm light is used while for 2,3,5,6-tetramethylphenol 300 nm light is sufficient (Scheme 10). Others also demonstrated the formation of umbellulone 134 by irradiation of 2-isopropyl-5-methylphenol. The yield of 134 is low at 9.5% and this product is accompanied by 2-methylbicyclo[4.1.0]hex-2-enone in 5% yield. Other processes were reported, notably the group migration reactions to yield the isomeric phenols 135 that are formed by intermolecular alkylation processes155. The initial reports of these photochemical transformations demonstrated that there was a wavelength dependence upon the isomerization. Thus, the irradiation at $\lambda > 320$ nm of alkylphenols 136 in the presence of FSO\textsubscript{3}H at -78°C leads to structural isomerism with the formation of isomeric phenols shown in Scheme 11152. The reaction is wavelength-dependent and, for example, irradiation of 2,4,6-trimethylphenol 137 under the same conditions as above but using 360 nm leads to the formation of the bicyclic ketone 138 as well as the alkyl migrated phenol 139. Indeed, the reaction path to these bicyclic ketones is quite general and an example is shown in Scheme 12. From these investigations it is clear that the reaction path involves protonation at C4 of the phenol and irradiation converts this into a bicyclic ion that rearranges to ion 140 by migration of C4. These ions can be quenched to afford the bicyclohexenones or can undergo photochemical rearrangement to the isomeric phenols (Scheme 13). Quantum yields for the rearrangements have been measured and are in the 0.65 to 0.018 range156. Some idea of the scope of the process and the regioselectivity exhibited of the rearrangement of the protonated phenol into the bicyclic cation can be seen in Scheme 14. Chadda and Childs157 also noted that phenols underwent photochemical isomerization in the presence of AlBr\textsubscript{3}. Fundamentally, the outcome is the same as the use of acids described above. There is the involvement of the p-protonated ion 141 and irradiation converts this to the bicyclic ion 142 that can be isolated as the enone 143 or can undergo further photochemical reaction to yield the isomeric phenols (Scheme 15). Kakiuchi and coworkers158 also examined the reactivity of differently substituted phenols in the presence of AlBr\textsubscript{3}. This, like the earlier work, involves the formation of cation 144 from the phenol 145. This cation undergoes photochemical conversion into the bridged ion 146 and it is from this that the bicyclohexenones 147 are formed. The reaction is substitution-pattern-dependent and only 145a and 145b undergo the rearrangement158. They also examined some alkylated phenols, the 3-, 4- and 5-methyl derivatives that are also photochemically reactive under the same conditions. Thus independent irradiation of the three phenols 148, 149 and 150 affords a mixture of all three. The reason for this is that the ions undergo methyl migrations and undergo transformation via the three species shown in Scheme 16. Earlier work by the same group159 demonstrated that rearrangement of this type took place with 2-naphthols.

B. Side-chain Rearrangements

Rearrangement within side-chains has also been observed. Eugenol is photochemically reactive and irradiation in methanol brings about conversion of the side-chain into a cyclopropyl moiety (Scheme 17). The path to this product is a π-methane process that brings
14. Photochemistry of phenols

\[\text{SCHEME 10} \]

\[\text{SCHEME 11} \]
about the rearrangement via the biradicals 151 and 152. Photoaddition of alcohol to the double bond takes place when the reaction is carried out in methanol160. The alkene Latiofolin (153) is also photochemically active by a di-\pi-methane reaction mode and converts on irradiation in CCl\textsubscript{4} into the cyclopropane derivative 154, 58\%161. Conversion of a side-chain to a three-membered ring is also reported for the irradiation at wavelengths >300 nm of 1,2-diaryl-2-bromoalkenes 155 along with NaH in a 18-crown-6 ether. This reaction
SCHEME 14
Scheme 15
14. Photochemistry of phenols

(148)

(149)

(150)

(151)

(152)

SCHEME 16

SCHEME 17
involves excitation of the corresponding phenoxide with intramolecular displacement of the bromo substituent. This reaction path affords the products 156162.

4-Hydroxybenzonitrile is converted on irradiation in deoxygenated water, methanol or ethanol into 4-hydroxybenzoisonitrile in high chemical yield. A two-photon process is involved and the intermediate 157 is the key to the reaction163. An analogous process is observed on irradiation of 4-nitrosophenol164. This yields \(p \)-benzoquinone as the final product. The rearrangement is thought to follow the path shown in Scheme 18. Again the rearrangement of the side-chain involves a three-membered ring.

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(R^2)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-MeO</td>
<td>Ph</td>
<td>74</td>
</tr>
<tr>
<td>4-Me</td>
<td>Ph</td>
<td>38</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>89</td>
</tr>
<tr>
<td>2-Me</td>
<td>Ph</td>
<td>51</td>
</tr>
<tr>
<td>4-MeO</td>
<td>2-MeOC(_6)H(_4)</td>
<td>83</td>
</tr>
<tr>
<td>4-Me</td>
<td>2-MeOC(_6)H(_4)</td>
<td>54</td>
</tr>
<tr>
<td>H</td>
<td>2-MeOC(_6)H(_4)</td>
<td>69</td>
</tr>
<tr>
<td>4-Br</td>
<td>2-MeOC(_6)H(_4)</td>
<td>33</td>
</tr>
<tr>
<td>4-MeO</td>
<td>Me</td>
<td>20</td>
</tr>
</tbody>
</table>
C. Side-chain Migration

One of the ubiquitous reactions of phenol derivatives is the photo-Fries process. This has been studied in great detail over the years since it was first uncovered in the 1960s. Examples of this process are the photochemical conversion of the salicylate into the 2,2′-dihydroxyketone in a low yield of 8% and the chlorosalicylate into. The mechanistic details have demonstrated that the reaction is basically an intramolecular process. If radical pairs are involved, there appears to be little escape from the cages in which they are formed and little or no intermolecular products are formed. In more recent times the reaction of phenols with free radicals has been investigated. The radicals are formed by the irradiation (λ > 280 nm) of benzene solutions of pinacolone. The authors suggest that the products obtained (Scheme 19) are the result of Norrish Type I fission of the ketone to afford a t-butyl radical. This then abstracts hydrogen from the phenol to yield a phenoxy radical. Coupling between this and the acetyl radical forms...
\[
\text{Scheme 19}
\]
the final products. The reaction is interpreted as an intermolecular photo-Fries process.

An \textit{ab initio} MO study on twisting around the carbons of the double bond and around the aryl-alkene bond of coumaric acid (\textit{p}-hydroxycinnamic acid) has calculated the potential energy surfaces for such a process170.

VIII. CARBENE FORMATION

A. Elimination of Hydrogen Halides from Phenols

Elimination of hydrogen halides from \textit{p}-substituted halophenols has provided a path to the triplet carbene 4-oxocyclohexa-2,5-dienylidene (\textbf{163}). Initially, 4-chlorophenol in aqueous solution was subjected to nanosecond laser-flash photolysis171. Other studies using FT-EPR on this species indicate that a mechanism involving free radicals does not operate and most likely the elimination of HCl is a concerted process172. Other halophenols, i.e. 4-fluoro, 4-bromo and 4-iodophenol, have been studied using both steady-state and time-resolved photolysis and again the carbene \textbf{163} is formed by loss of HX. Reaction between the carbene and oxygen produces benzoquinone O-oxide that ultimately rearranges to 1,4-benzoquinone. This path is the same as that described for 4-chlorophenol173. Substituted carbenes can also be formed from this reaction mode and the irradiation of 5-chloro-2-hydroxybenzonitrile (\textbf{164}) in aqueous solutions results in the formation of the triplet carbene \textbf{165} by loss of HCl174. In oxygenated solutions the oxide \textbf{166} is formed by trapping of the carbene and it is this compound that leads to the quinone. In the absence of oxygen the main products observed are the isomeric biphenyls \textbf{167} and \textbf{168} and the hydroquinone \textbf{169}. Carbenes are presumably also involved in the photochemical conversion of 2-chlorophenolate175,176 or 2-chlorophenol177 to cyclopentadiene 5-carboxylic acid as illustrated in Scheme 20. Substituted phenolate derivatives behave similarly as do \textit{di-} and \textit{tri-}chlorophenolates175. This process is reminiscent of the Wolff rearrangement of \textit{\alpha-}diazoketones.

\[
\begin{align*}
\text{O} & \quad \text{OH} & \quad \text{CN} & \quad \text{O} & \quad \text{O} \\
\text{\textbf{163}} & \quad \text{\textbf{164}} & \quad \text{\textbf{165}} & \quad \text{\textbf{166}} \\
\text{\text{NC}} & \quad \text{\text{NC}} & \quad \text{\text{OH}} & \quad \text{\text{NC}} & \quad \text{\text{Cl}} \\
\text{\textbf{167}} & \quad \text{\textbf{168}}
\end{align*}
\]
SCHEME 20

SCHEME 21
B. Other Carbenes

Carbenes on sites adjacent to the phenolic group have also been generated. Thus, 2-hydroxyphenyl carbene 170 has been obtained by the pathway shown in Scheme 21. The carbene reacts with the hydroxy group to afford the oxetene (171). This itself is photochemically labile and undergoes ring opening to a quinonemethide178,179.

IX. CYCLOADDITIONS

A. Intermolecular Addition Reactions

Gilbert and his coworkers180 have demonstrated the intermolecular addition of alkenes to phenols. The example shown in Scheme 22 is an example of the [3 + 2]-addition of trans-1,2-dichloroethene to phenol. The reaction is efficient and yields the principal adduct 172 in 70% yield. The reaction follows the path shown in Scheme 22. The cresols (o-, m- and p-) also undergo this mode of addition and from this study the orientation of the alkene to the cresol is as shown in 173. This mode of addition yields the adduct 174180.

\[
\text{OH} + \text{Cl}_2\text{Cl} \rightarrow \text{CHCl}_2\text{Cl} \rightarrow \text{O} \text{Cl}_2\text{Cl} \rightarrow \text{O} \text{Cl}_2\text{Cl}
\]

SCHEME 22

(2 + 2)-Intermolecular photocycloaddition also occurs between alkenes and simple phenols. The swing from meta addition illustrated above in the [3 + 2]-mode to ortho-addition is a result of charge-transfer interactions between the alkene and the phenol and a greater charge transfer favours the ortho-addition mode. These aspects have been the subjects of reviews181,182. This reaction mode is exemplified by the addition of acrylonitrile
to \(p \)-cyanophenol and \(p \)-carboxymethylphenol. The product from the first addition is the cyclooctadienone \(175 \) that arises from ring opening of the \((2 + 2)\)-adduct \(176 \). The addition of \(p \)-carboxymethylphenol affords the bicyclic adduct \(177 \). An increase in the electron-donating ability of the phenol changes the reaction path between the phenol and acrylonitrile and substitution results. Thus, with hydroquinone, \(178 \) is formed while \(p \)-methoxyphenol affords \(179 \) and \(180 \)183.

Intermolecular addition accounts for the formation of the products \(181 \) in Scheme 23. Here, irradiation brings about addition of the cyano group of the naphthalene derivative to the phenol immediately adjacent to the hydroxy group. The resultant \((2 + 2)\)-cycloadduct is unstable and ring-opens readily to yield the azocines184,185.

\[
\begin{align*}
(173) & \\
(174) & \\
(175) & \\
(176) & \\
(177) & \\
(178) & R^1 = R^2 = H \\
(179) & R^1 = H, R^2 = OMe \\
(180) & R^1 = OMe, R^2 = H
\end{align*}
\]
B. Intramolecular Addition Reactions

Intramolecular addition is also reported for the quinhydrone derivative 182. This cyclophane apparently can exist in two conformations 182 and 183 but the intramolecular addition involves 182 only. The addition product formed is the meta-product 185 that arises
via the zwitterionic intermediate 184. When the alkene group is more heavily substituted, as in 186 $R = \text{MeO or Me}$, the interconversion between the conformational arrangements is slowed down. However, the addition mode is the same with these derivatives and irradiation affords the adducts 188, $R = \text{MeO or Me}$ via the corresponding zwitterions 187, $R = \text{MeO or Me}$186. Intramolecular cycloaddition is also exhibited by the irradiation of the phenol derivative 189 in benzene. This treatment affords the crystalline product 190 in 25% yield187.

The reaction has been developed further since these earlier observations. This reaction mode of phenols has provided a useful synthetic path for the synthesis of complex molecules. The UV irradiation of the phenols 191, 192 in the presence of acid affords the adducts 193 where addition has taken place at C3$-C4$ of the phenol. This can be readily ring-opened to yield 194. To a lesser extent addition also follows the C2$-C3$ addition path that yields 195, which can be ring-opened to afford 196188,189. Interestingly, the addition only occurs with either a 2 or 3 carbon chain separating the alkene from the phenol. With a longer chain the addition fails. The study also examined disubstitution on the terminal carbon of the alkene moiety. Addition does occur with methyl and ethyl substituents, but fails with isopropyl groups (Scheme 24)189. Additional studies (Scheme 25) have demonstrated that the addition can be quite general. Thus irradiation of the phenol derivative 197 in acetonitrile with dilute sulphuric acid affords the enone 198. This can be treated further to bring about cleavage of the cyclic enol ether moiety. This undergoes
acid-catalysed ring opening in methanol to yield the two products 199 and 200\(^{190}\). Other examples of this elegant approach to such molecules are illustrated by the conversion of 201 into 202 and 203. The yields of 203 are given. Intramolecular addition also occurs on irradiation of the cyanophenols 204\(a, b\). This yields the enones 205\(a, b\) in 62% and 39%, respectively. Interestingly, another product is obtained in 11% from the derivative 204\(b\) and this was identified as the phenol 206. This arises from the biradical 207, which either cyclizes to yield 205\(b\) or undergoes attack on the cyano function. This on hydrolysis affords the phenol 206\(^{191}\).

C. Cyclizations Involving Aryl Radicals

One of the more common cyclization processes of phenols is the formation of the phenanthrene skeleton. These processes utilize the fission of a C–X bond to yield aryl radicals that then attack a neighbouring aryl group. Typical of this is the bromo or iodo derivative of 208 that cyclizes to afford the lactam 209 in moderate yields\(^{192}\). The
bromophenol derivative 210 is also reactive and the cyclization of this has been used as an approach to the phenanthrene skeleton 211 of the alkaloid bulbocapnine. Cyclization is also observed with the isomeric compound 212 that yields the aporphine alkaloid domesticine 213193. Interestingly, the irradiation of the stilbene system 214, $X = \text{Br}$ also follows the same reaction path, i.e. loss of a bromine atom. However, the resultant radical does not cyclize but merely undergoes reduction to 214, $X = \text{H}$. Further irradiation of 214, $X = \text{H}$ does bring about cyclization via the stilbene-type reaction mode and affords
The free radical obtained on irradiation of 216 undergoes both modes of addition to the phenol moiety and affords the two cyclized products 217 and 218. The first of these (217) arises by radical formation at the site *para* to the OH group while 218 arises by attack at the methoxy-bearing carbon. The intermediate obtained loses the substituents to afford 218. Two reports have been made concerning the use to which such cyclisations
can be put to synthesize 11-membered ring lactams196,197. Specifically, the irradiation of the amide 219 follows the CBr fission path and the resultant radical cyclises to yield the two products (220 and 221) by both possible addition modes197. The major product 221 can be transformed into the alkaloid dysazecine.
D. Other Cyclizations

Other cyclizations, this time of the stilbene type, have been reported for the naphthalene derivatives \(222\). This provides a route to the highly fluorescent azaphenanthrenoid \(223\)\(^{198}\).

The phenol derivative \(224\) undergoes cyclization to afford \(225\). The other cyclized derivative \(226\) is also formed. Nitrene intermediates have also been suggested and these give
(214) $X = \text{Br}$
$X = \text{H}$

(215)

(216) $R = \text{Me}$
$RR = \text{CH}_2$

(217) 22.6% 9.6%

(218) 6.4% 7.4%

(219)
14. Photochemistry of phenols

\[R^1 = \text{OH}, R^2 = \text{H} \] \hspace{1cm} \text{(220)}

\[R^1 = \text{H}, R^2 = \text{OH} \] \hspace{1cm} \text{(221)}

\[X = \text{N} \]

\[X = \text{OCH}_2\text{Ph} \]

\[(222) \]

2-, 3- or 4-pyridyl

\[(223) \]

\[(224) \]

\[(225) \]
rise to the products identified as 227 and 228. The irradiation of the phenolic enone orientalinone 229 yields the two products isoboldine (230) and isothebaine (231) in low yields of 9% and 3%, respectively.

\[
\begin{align*}
\text{(226)} & \quad \text{(227)} \\
\text{(228)} & \\
\text{(229)} & \quad \text{(230)} \\
\text{(231)}
\end{align*}
\]
X. MISCELLANEOUS ADDITIONS AND ELIMINATIONS

A. Reimer–Tiemann Reaction and Related Processes

Photoformylation (the photo-Riemer–Tiemann reaction) of phenols (phenol, 2-methyl, 3-methyl, 4-methyl, 4-chloro, 4-bromo, 4-nitro and 4-phenyl phenol) has also been studied by irradiation in chloroform with KOH and pyridine. The yields reported are variable but formylation is reported only to occur in the 2-position201–203. This process involves the addition to phenol of radicals produced from chloroform. An electron transfer mechanism (transfer from excited state phenol to chloroform) is thought to be involved. The radical ion pair eliminates HCl and combination affords the products 232–234 (Scheme 26). The principal product is the ether and this undergoes partial conversion to the formate. The other products formed in low yield are the aldehydes204.

In another application of the photo-Riemer–Tiemann reaction, this time in cyclodextrin, the phenols can be converted into 4-hydroxybenzaldehydes with high selectivity205.

\begin{center}
\begin{tikzpicture}

\node (a) at (0,0) {\text{OH}};
\node (b) at (1,0) {\text{CHCl}_3};
\node (c) at (2,0) {\text{OCHCl}_2};
\node (d) at (3,0) {\text{OH}};
\node (e) at (4,0) {\text{CHO}};
\node (f) at (5,0) {\text{OH}};

\draw[->] (a) -- (b);
\draw[->] (b) -- (c);
\draw[->] (c) -- (d);
\draw[->] (d) -- (e);
\draw[->] (e) -- (f);

\end{tikzpicture}
\end{center}

\begin{table}
\centering
\begin{tabular}{ccc}
\hline
R & yield (%) & \\
\hline
H & 75 & 15 & 10 \\
Cl & 78 & 15 & — \\
CH\textsubscript{3} & 79 & 19 & — \\
CN & 87 & 5 & — \\
\hline
\end{tabular}
\caption{Yields for the reaction of phenols with chloroform.}
\end{table}

SCHEME 26

B. Reactions with Tetranitromethane and Nitrate Ion

A charge transfer complex is involved in the photochemical reaction between 4-cresol and tetranitromethane. Irradiation at 350 nm yields the o-nitrated product 235206. Other phenols such as phenol, 2- and 4-chlorophenol and 2- and 4-cresol behave in a similar manner and irradiation yields 2- and 4-nitrated products (236, 237)207. The quantum yields for product formation are in the range 0.12–0.31. Only the formation of 3-nitrophenol from phenol is inhibited, as might be expected from attack at the 3-position, and shows a low quantum yield. It has been reported that 2-hydroxy- or 4-hydroxybiphenyl and 4,4'-dihydroxybiphenyl are the primary products formed from the photochemical reaction of biphenyl with sodium nitrate in aqueous methanol208. Apparently the hydroxybiphenyls are prone to undergo photochemical nitration as a secondary process and yield the biphenyls 238 and 239 as well as 4,4'-dihydroxy-3,3'-dinitrobiphenyl, originally reported by Suzuki and coworkers209 under heterogeneous conditions.
Carbene formation was mentioned in an earlier section. This elimination of HCl from 4-chlorophenol or elimination of other hydrogen halides from halophenols could have been inferred from earlier photochemical studies on this and other derivatives. Boule and his coworkers irradiated 4-chlorophenol under deoxygenated conditions and obtained the corresponding quinhydrone and the 2,4′-dihydroxy-5-chlorobiphenyl177,210. Other research demonstrated that its irradiation in neutral aqueous solutions gave the corresponding quinone211 and also that de-aeration did not seem to affect the reaction212.
The same reactivity was shown for 4-bromophenol\(^{213,214}\). The herbicide bromoxynil 240 is photochemically reactive in the presence of chloride ion undergoing loss of the bromo substituents or else substitution of the bromo substituents. It is converted into 4-hydroxybenzonitrile, 3-bromo, 3-chloro and 3-bromo-5-chloro derivatives\(^{215}\). Others have shown that this herbicide can be oxidized using TiO\(_2\)\(^{216}\).

3-Chlorophenol is also reactive and irradiation in water leads to its conversion into resorcinol\(^{211,217}\) or in methanol to yield 3-methoxyphenol in 94% yield\(^{218}\). Photoamidation with N-methylacetamide of 3-chlorophenol is also efficient and results in the formation of the phenol 241 in a yield of 77%. Intramolecular amidation arises on irradiation of 242 in basic methanol. This results in the formation of the indole derivative 243 as well as the methoxylated product 244\(^{218}\). More complex halophenols such as 245 are also photochemically reactive, but this yields a complex mixture of products including a benzofuran. The formation of this must be similar to the cyclizations described earlier and involves the attack of a radical, produced by the C–I bond fission, on the other ring\(^{219}\).

3-Nitrophenol is converted on irradiation in aqueous solution into a variety of products such as nitrocatechols, nitroresorcinol and resorcinol itself\(^{220}\).

4-Chloro-1-hydroxynaphthalene is converted into the sulphonate 246 on eosin-sensitized irradiation in the presence of sodium sulphite\(^{221–223}\). A study of the chain substitution of the chloro group in 4-chloro-1-hydroxynaphthalene by aqueous sodium sulphite has shown that two mechanisms for the photoinitiation have been identified and two intermediates have been detected: a radical anion of 4-chloro-1-naphthoxide and the sulphite radical anion. Thus, an \(S_{RN}1\) mechanism is suggested and is one that involves reaction with the radical anion of sulphite\(^{224}\). An example of the \(S_{RN}1\) process between a phenol and the (2-cyanoaryl)azo-\(t\)-butylsulphides\(^{225}\) has been reported. The \(S_{RN}1\) reactivity of several compounds (Scheme 27) have demonstrated that 247 is a product; however, this is also photochemically reactive and is converted into the cyclic ether 248\(^{226}\).

Intramolecular loss of halide is observed when the phenoxide 249 is irradiated either directly or in the presence of triethylamine where an electron transfer mechanism
is involved. This affords the octachlorodioxin 250. Sensitized irradiation using \textit{m}-nitroacetophenone follows a different path and brings about the formation of ether cleavage products such as penta- and tetrachlorophenol227. Octachlorodioxin is also formed by irradiation of chlorophenoxyphenol 251228,229. The \textit{meta}-isomer 252 is also reactive and undergoes dechlorination and cyclization to yield230 a chlorinated dibenzofuran. The isomeric 2,3,5,6-, 2,3,4,5- and 2,3,4,6-tetrachlorophenols also undergo photoreactions to yield a series of chlorinated biphenyls such as hexachloro, heptachloro and octachlorodihydroxybiphenyls231.

SCHEME 27
D. Other Bond Fission Processes

The zwitterionic iodonium phenolate 253 is photochemically reactive and a variety of products can be obtained depending upon the substrate in which the reactions are carried out. The mechanism of formation of these products could be an electrophilic reaction of the iodonium species or could involve fission of the I–C bond to yield the phenolate zwitterion 254, which itself could undergo electrophilic reactions. Regardless of the route, addition of 254 to alkenes yields 255, to alkynes gives 256 and to arenes produces the arylated products 257. Pyridine, thiourea, phenyliminobenzoxathiole and phenyl isocyanate also act as addends.

E. Reactions of Hydroxyanthraquinones

1-Hydroxyanthraquinone (258a) undergoes photochemical amination on irradiation in the presence of n-butylamine. Two products, 258b and 258c, are formed in a ratio that is dependent on the reaction conditions used. In acetonitrile under an atmosphere of air the ratio of 258b : 258c is 5 : 1. This changes to 0.3 : 1 when the reaction is run under nitrogen. Interestingly, the corresponding 1-aminoanthraquinone does not undergo
amination. The quinones 259 also undergo amination with the same amine to yield the 4-butylationoquinone 259, R = NHBu-n[234]. The same quinone also undergoes amination at the 4-position on irradiation in the presence of ammonia or methylamine[235]. 1-Hydroxyanthraquinone can also undergo sulphonation with sodium sulphite on irradiation. The products obtained are the 2- and 4-sulphonates and 2,4-disulphonates, which are obtained in 34%, 18% and 24% yield, respectively[236]. From these results it can be seen that the selectivity is poor, perhaps as a result of ionization of the phenol group.
The calix[4]arene-based 2-naphthoate 260 undergoes photochemical cyclization to afford 261. Hydrogen bonding controls the cyclization of 262 into 263. If the hydrogen bonding is broken by carrying out the reaction in methanol, the cyclization follows the path where attack occurs at the phenolic carbon. The stilbene derivatives 264 have also been investigated. This study was associated with work to establish why some phenolic
(262)

(263)

(264)

\[
\begin{array}{c|c}
X & Y \\
\hline
H & O^- \text{ or } OH \\
O^- \text{ or } OH & \text{MeO}
\end{array}
\]

(265)
stilbenes do not cyclize239. Irradiation of the stilbene 265 at 254 nm in methanol transforms it into the corresponding \textit{cis}-isomer240. The dimerization of the enone 266 in the crystalline phase has been described241.

\begin{center}
\begin{tikzpicture}
 \node[above] at (0,0) {\textbf{266}};
 \node at (-2.5,0) {HO};
 \node at (2.5,0) {OH};
 \node at (-1.5,0) {OH};
 \node at (1.5,0) {OH};
 \node at (-0.5,-0.5) {C};
 \node at (0.5,-0.5) {C};
 \node at (-1,-1) {\textbf{O}};
 \node at (1,-1) {\textbf{O}};
\end{tikzpicture}
\end{center}

Homolytic C–S bond fission occurs in compounds such as 267. This process yields the 1,4-dihydroxybenzene in yields as high as 60\%. Desulphurization of the thio ethers 268 results on irradiation. This only occurs when hydroxy groups or the corresponding methoxy-substituted compounds are used242.

\begin{center}
\begin{tikzpicture}
 \node[above] at (0,0) {\textbf{267}};
 \node at (-2.5,0) {OH};
 \node at (-1.5,0) {\textbf{S}};
 \node at (-0.5,0) {CO\textsubscript{2}H};
 \node at (0.5,0) {NH\textsubscript{2}};

 \node[above] at (7,0) {\textbf{268 R = H}};
 \node at (5.5,0) {OR};
 \node at (6.5,0) {S};
 \node at (7.5,0) {R = Me}
\end{tikzpicture}
\end{center}

\section*{XI. HYDROXYCARBOXYLIC ACIDS}

\subsection*{A. Decarboxylation}

2-Hydroxy-4-trifluoromethylbenzoic acid is pharmacologically active and has been shown to be photolabile under various conditions. Its major photodegradation pathway is nucleophilic attack on the trifluoromethyl moiety. The triplet state is involved in the photodegradation243. The use of photochemically induced degradation of benzoic acid derivatives (syringic, gallic, veratric, vanillic, protocatechuic and \textit{p}-hydroxybenzoic) using electron transfer to pyrylium salts has been reported. The degradation observed was significant (20–40\%), even though this was contra-indicated by the presence of an electron-withdrawing carboxyl group attached to the aromatic ring244. The photochemical decomposition of 4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid has been studied, and in the presence of the sensitizer anthraquinonesulfonate, the degradation is accompanied with chloride ion release. In addition, decarboxylation is also observed245. Other studies have reported the retarded decomposition of 2,4-dichlorophenoxyacetic acid in mixed industrial effluent in the presence of copper246.
B. Reactions in the Presence of TiO\(_2\)

The photochemically induced reaction of 2,4-dichlorophenoxyacetic acid in the presence of a suspension of TiO\(_2\) follows an apparent first-order rate process\(^{247}\). Others have demonstrated that TiO\(_2\) is a powerful oxidant for carboxylic acids and have shown that salicylic acid undergoes ready decomposition\(^{248,249}\). Salicylic acid can also be oxidized by ferric oxalate and molecular oxygen. Under these conditions hydroxylation occurs, perhaps involving hydroxy radicals with the formation of the two isomeric dihydroxyacids 269 and 270\(^{250}\). Others have also studied the photooxidation of salicylic acid and have observed that the formation of 270 is not proof of the involvement of singlet oxygen\(^{251}\). Furthermore, the rate of decomposition of this acid in TiO\(_2\) can be enhanced by the use of ultrasound during photolysis\(^{252}\). 2,4-Dihydroxybenzoic acid also undergoes decomposition in water catalysed by titanium dioxide\(^{253}\). Other carboxylic acids can also be decomposed in wastewaters using other oxidants in conjunction with photolysis. For example, hydroxyl radicals from Fenton’s reagent can bring about the decomposition of \(p\)-hydroxyphenylacetic acid\(^{254}\) while protocatechuic acid will also undergo photooxidation\(^{255}\) as will vanillic acid when it is irradiated in the presence of ozone\(^{256}\).

Over the last decade there is little doubt that the oxidation of phenols has been an area of considerable interest. While this chapter does not deal in detail with this subject area it is nevertheless of considerable importance. Thus, some of the material from the last ten or so years has been included. This will give the reader a flavour of what has and is going on in this area.

A. Phenol

The phenol derivative 271 undergoes oxidation to the quinone 272 by constant current electrolysis. Concomitant irradiation of this quinone transforms it into the novel (2 + 2)-cycloaduct 273. This was the key intermediate in a synthetic approach to racemic isoitalicene 274\(^{257}\). The oxidation of \(\alpha\)-tocopherol 275 can be brought about using Methylene Blue as the sensitizer for the production of \(\text{O}_2(\Delta_g)\). This converts the compound into the previously unknown enedione 276 as well as the usual quinone\(^{258}\). The reaction of phenols with \(\text{O}_2(\Delta_g)\) is a common process. This involves attack on the phenol, usually at the \(p\)-position. A typical example of this is the conversion of the phenols 277 and 278 into the corresponding cyclohexadienones 279 and 280\(^{259}\). The oxidation of phenols has been the subject of reviews\(^{260,261}\).

Perhaps the largest area of research on the chemistry of phenols relates to methods for their photodegradation. The methods used are many and varied, such as the combination of ozone and UV irradiation. This is an effective method for degradation and is more
efficient than the use of peroxide. That aside, there are several reports on the use of UV irradiation and peroxide as a means for the removal of phenol from wastewaters. The only by-product from this treatment was carbon dioxide. A kinetic model for the photooxidative degradation of phenol by hydrogen peroxide has been derived. A heterogeneous copper-based catalyst has been developed for the removal of phenol using peroxide as the oxidant. The photo-Fenton oxidation of phenol is also useful for the degradation of phenol in wastewaters.
Oxygen and suitable catalysts can also be used for the conversion of phenol to benzoquinone. Thus, irradiation of phenol in the presence of \([\text{Cu(bpy)}_2]^{2+}\) or \([\text{Cu(1,10-phenanthroline)}]^{2+}\) brings about degradation by a path that shows both pH and solvent dependency\(^{270,271}\). Thus in acetonitrile benzoquinone predominates, but in water carbon dioxide is the sole product\(^{272}\). Benzoquinone can also be formed from phenol by continuous irradiation in the presence of the catalysts \([\text{Cr(bpy)}_3]^{3+}\) or less effectively with \([\text{Ru(bpz)}_3]^{2+}\) and \([\text{Ru(bpy)}_3]^{2+}\). The reaction path involves \(\text{O}_2(1\Delta_g)\) as the oxidant\(^{273–275}\). Porphyrins such as 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin and chlorins can also be used to convert naphthols and phenols to the corresponding quinones (Scheme 28)\(^{276}\). Phthalocyanines immobilized on polymers have also been used as the catalyst system to effect photooxidation\(^{277}\).

Much research has been carried out to establish the efficiency of \(\text{TiO}_2\) systems for catalysing decomposition of phenol. An examination of the product distribution and reaction pathway in the photocatalytic oxidation of phenol on \(\text{TiO}_2\) particles reveals that the reaction proceeds in three stages, namely hydroxylation, carboxylation and mineralization\(^{280}\). Titania colloids and particles for the sol-gel technique have been assessed as a suitable method for photooxidation\(^{281,282}\). The sol-gel technique has been used to prepare \(\text{TiO}_2\) films in a variety of substrates, such as a fibreglass cloth\(^{283}\) or glass fibre\(^{284}\) on \(\gamma-\text{Al}_2\text{O}_3\)\(^{285}\) or silica gel\(^{286}\) stoichiometric membranes\(^{287,288}\), and evidence has been collected that suggests that such sol-gel preparations show higher activity than commercial \(\text{TiO}_2\) catalysts\(^{289}\). In general, sol-gel methods of preparation provide a catalyst with a high surface area\(^{290}\). Modified catalysts have also been developed, such as a \(\text{ZnFe}_2\text{O}_4/\text{TiO}_2\) nanocomposite\(^{291}\).
A kinetic model for the oxidation of phenol on titania has been published. An FT-IR study has examined the photocatalytic decomposition of phenol on TiO$_2$ powders in an effort to demonstrate the existence of intermediates. A study of 3-aminophenol has suggested that 1,4-dihydroxy-3-aminocyclohexa-2,5-dienyl is the most likely intermediate. Pulsed-laser oxidation of phenol on TiO$_2$ in a variety of aqueous acidic media has endeavoured to identify the transients involved. In HCl, Cl$_2$ is the main oxidant arising from surface-absorbed Cl$^-$ on the titania, or from TiCl$_4$ if that has been used to produce the colloidal TiO$_2$. Oxygen radicals are formed on irradiation of hydrated TiO$_2$ at 77 K and their interaction with adsorbed phenol has been monitored using ESR spectroscopy. The results imply that irradiation generated HO$_2^-$ and O$_2^-$ that reacts with adsorbed phenol.

A study of the photoreactivity ($\lambda = 350$ nm) of phenols in a suspension of TiO$_2$ as a function of pH shows that the initial rate and the Langmuir–Hinshelwood kinetic parameters are comparable from pH 3–9 and at pH 13.7, but change at pH 1 and pH 11. This has been interpreted in terms of speciation of the reactants and changes in the TiO$_2$ surface as a function of pH. At pH >12, the oxide radical anion is thought to participate. The formation of a hydroxylated intermediate is in line with a study that has shown that the photochemical oxidation of phenol at low concentration on TiO$_2$ surfaces involves hydroxylation by transfer from the immobile surface oxidant. Kinetic data have also been obtained for the TiO$_2$ photocatalytic degradation of phenol. Again, oxidation is thought to occur by direct hole-oxidation of the substrate on the pre-absorbed catalyst.

The photocatalytic oxidation of phenol and p-substituted phenols also takes place at a positive hole and this leads to the loss of the p-substituent. The influence of additives to the oxidizing media has also been evaluated and the presence of aromatics tends to have a profound effect on the oxidation. Interestingly, the photooxidation of phenol using TiO$_2$ is greatly accelerated by the presence of Fe$^{3+}$/Fe$^{2+}$. Others have reported that both Fe$^{3+}$ and Cu$^{2+}$ affect the rate of oxidation of phenol using peroxide and TiO$_2$.

Several reactors based on TiO$_2$ catalytic systems have been described for the phototreatment of wastewater, such as Pt/TiO$_2$-coated ceramics pipes, systems using potassium modified TiO$_2$ and a batch reactor using either TiO$_2$ and air or peroxide and solar.
irradiation. The configuration for such systems has also been discussed. Flat plate photoreactors have also been described as has a study in shallow ponds. The decomposition rate for the oxidation of phenol using a Pt/TiO$_2$ catalyst and by solar radiation ($\lambda > 360$ nm) has been studied. Other batch reactors have also been described using Pyrex or Quartz jackets depending upon the wavelength being used for the study. Another apparatus has been described that can be used to determine total carbon in wastewaters using photooxidation of phenol on titania.

B. Alkylphenols

All six isomeric xylenols undergo degradation when irradiated in air using TiO$_2$ dispersions as the catalyst. The aqueous photolysis of trifluoromethylphenols such as 3-trifluoromethyl-4-nitrophenol has indicated that it undergoes photohydrolytic degradation under actinic radiation to yield trifluoroacetic acid. 2,4,6-Trimethylphenol can be oxidized using O$_2$(1Δ_g). An FT-IR study has shown the presence of intermediates in the oxidation of this phenol on TiO$_2$ powders. The rate of sensitized oxidation of 2,4,6-trimethylphenol in aqueous humic acid has been determined. Other polyalkylated phenols also undergo oxidation.

C. Miscellaneous Phenols

The degradation of 2-phenylphenol, commonly used as fungicide, can be photocatalysed by TiO$_2$, although the oxidation is more efficient using ZnO. The principal photoproducts identified are hydroquinone, p-benzoquinone, phenylhydroquinone, phenylbenzoquinone, 2,2'- and 2,3-dihydroxybiphenyls. A minor product, 2-hydroxydibenzoferan, is also formed and this arises by the photocyclization of phenylbenzoquinone. Other p-substituted phenols (4-methoxyphenol, 4-methylphenol, 4-chlorophenol, 4-bromophenol, 4-fluorophenol, 4-acetylphenol, 4-trifluoromethylphenol and 4-cyanophenol) undergo photooxidation catalysed by TiO$_2$. The results indicate that a number of mechanistic paths may be involved.

Various 4-(arylazo)phenols and naphthols have been photooxidized using O$_2$(1Δ_g) involving a type II mechanism. 1,1'-Binaphthol undergoes enantioselective oxidation (5.2% ee) when the chiral complex Δ-[Ru(4,4'$'$-dimenthoxycarbonyl-2,2'$'$-bipyridine)$_3$]$^{2+}$ is used as the photocatalyst.

Efficient photocatalytic degradation of p-nitrophenol can be brought about using ZnS or, less efficiently, in TiO$_2$. A laboratory experiment has been devised to demonstrate TiO$_2$ catalytic decomposition of p-nitrophenol. Experiments have also been described detailing the decomposition of nitrophenol on TiO$_2$ doped with Fe(III). Oxidation of 2,6-dichloroindophenol (sodium salt) can be carried out on TiO$_2$ with unit quantum efficiency. This particular reaction has been suggested as a method for testing for photocatalytic activity of semiconductor powders.

D. Dihydroxyphenols

Photocatalytic degradation of 1,3-dihydroxy-5-methoxybenzene in the presence of TiO$_2$ follows zero-order kinetics. The product formed from this process is CO$_2$ with the best results obtained at pH 9. Other dihydroxybenzenes can also be photooxidized using dye-mediated oxidation involving O$_2$(1Δ_g). A charge transfer mechanism is thought to be
operative. The suggestion has been made that this process could be used for degradation of phenols in the environment. The photooxidation of polyhydroxylated phenols and methoxylated phenols has also been studied.

E. Chlorophenols

The oxidation efficiency of hydroxyl radicals towards chlorophenol has been assessed. The reaction has been shown to proceed via hydroquinone, catechol and resorcinol intermediates. Oxidation of chlorophenol can also be brought about using a Xe-excimer laser irradiating at 172 nm. Hydroxy radicals formed from the photolysis of water bring about the degradation. Chlorophenols have been removed from water by TiO\textsubscript{2}-catalysed oxidation. Texier and coworkers have investigated the solar-induced photodecomposition of aqueous solutions of 2-chlorophenol in the presence of both titanium dioxide and sodium decatungstate Na\textsubscript{4}W\textsubscript{10}O\textsubscript{32}. The influence of pH and cadmium sulphide on the action of TiO\textsubscript{2} on 2-chlorophenol has been assessed. Apparently, the addition of the semiconductor to the reaction mixture diminishes the efficiency of the photodegradation. Chlorocatechol, hydroquinone, benzoquinone and phenol were identified as the predominant products from the degradation. Interestingly, research has also shown that the pseudo-first-order rate constant falls as the pH rises. The same chlorophenol has been subjected to oxidation using a variety of methods, such as sonication and photocatalysis.

Oxidation of 4-chlorophenol can be brought about by single photodecomposition by hydroxy radicals generated from Fenton’s reagent (H\textsubscript{2}O\textsubscript{2} plus Fe2+ ions). Irradiation in the 320–400 nm range with Fenton’s reagent is also effective in the oxidation of 4-chlorophenol. Continuous irradiation at 365 nm has identified two different reaction pathways with formation of the 4-chlorodihydroxycyclohexadienyl radical and also of the chlorophenoxyl radical. The quantum yields of these processes have been determined to be 0.056 and 0.015, respectively. Reaction of 4-chlorophenol with ozone leads to the formation of 4-chloro-1,3-dihydroxybenzene and 4-chloro-1,2-dihydroxybenzene. The latter product is produced in quantity in the presence of hydroxyl radicals.

Titania catalysts on a metallic support are useful for the photodegradation of 4-chlorophenol. The immobilized titania was about twice as efficient as UV photolysis but was less efficient than suspensions of TiO\textsubscript{2}. Other photocatalyst systems are also effective, such as modified sol-gel preparations of TiO\textsubscript{2} using different alkoxide precursors. The catalysts prepared in this fashion have good stability. Generally, degradation of 4-chlorophenol on TiO\textsubscript{2} slurries using oxidative γ-radiolysis occurs by combination of HO+ oxidation and surface oxidation by valence-band holes. The usual products detected were 4-chlorocatechol and hydroquinone. Solar photodegradation of 4-chlorophenol can be brought about by oxidation in the presence of TiO\textsubscript{2} or sodium decatungstate Na\textsubscript{4}W\textsubscript{10}O\textsubscript{32}. Interestingly, the decatungstate anion becomes as efficient or even more efficient than TiO\textsubscript{2}. Online monitoring of the photocatalytic degradation of 4-chlorophenol can be carried out using cyclic voltammetry and UV-Vis spectrometry. Riboflavin can be used as a catalyst for the degradation of 4-chlorophenol in the pH range 4–10. It is suggested that riboflavin-modified electrodes could be used for photodegradation. The complexes zinc and aluminium tetrasulphophthalocyanines are also effective as catalysts. Riboflavin-modified electrodes could be used for photodegradation. The phototransformation of 4-chloro-2-methylphenol was studied in distilled, natural or water containing humic substances under a variety of irradiation conditions and wavelengths (monochromatic light at 280 nm, polychromatic
light with lamps emitting within the wavelength ranges 290–350 nm and 300–450 nm and solar light). When 4-chloro-2-methylphenol is irradiated in pure water, dechlorination occurs with a good efficiency ($\phi = 0.66$). Methylbenzoquinone is the main primary photoproduct in oxygenated solution while other products, methylhydroquinone and methylhydroxybenzoquinone, are produced via a second photochemical step357.

Photooxidation of 2,4-dichlorophenol can also be carried out using CdS in the presence or absence of thiourea. There is a marked pH dependence observed in the oxidation. Thus, at pH < 6, oxidation is favoured by positive holes in the semiconductor while with pH > 6, negative holes are involved358. Electron-transfer oxidation of chlorophenols is also reported using uranyl ion as the electron acceptor. The presence of oxygen is important to ensure that the quantum yield for the disappearance of the phenol is high359. As with the oxidation of other phenols, chlorophenols can be readily oxidized by the photo-assisted Fenton system. In the case of the oxidation of 2,4-dichlorophenol, the process can be brought about using a low-energy (36 watt) black fluorescent mercury light360. The same phenol can be readily oxidized using near-visible light with polyoxometallate catalysts. As with the Fenton system the main oxidant is the hydroxy radical. There are several principal products formed361,362. Other polyoxometalates such as $[\text{W}_{10}\text{O}_{32}]^{4-}$ and $[\text{SiW}_{12}\text{O}_{40}]^{4-}$ are also effective362. 2,4-Dichlorophenol can also be completely mineralized using a combination of photolysis and ozonation363. Other dichlorophenols have also been subjected to study364,365.

2,4-Dichlorophenol also undergoes oxidation in the presence of a TiO$_2$ suspension. The influence of additional reagents such as hydrogen peroxide on the efficiency of TiO$_2$ oxidation has been assessed366. The yield of oxidation product is dependent on irradiation time while pH and temperature have little effect367. It is reported that there is a good relationship between the disappearance of dichlorophenols and the Hammett σ-constants using titania in aqueous suspensions368. Heterogeneous photocatalysis with TiO$_2$ nanoparticles also brings about degradation of 2,4-dichlorophenol in an oxygen-free system. However, the degradation is inhibited by the presence of electron donors such as polyethyleneimine, triethanolamine or 2-propanol. In the presence of EDTA, degradation of 2,4-dichlorophenol still takes place by dechlorination369. Photocatalytic degradation using TiO$_2$ with Fenton’s reagent of 2,4-dichlorophenol takes place more slowly than by direct photolysis370. The decomposition of 2,4-dichlorophenol in an aqueous system using TiO$_2$ supported on a film has been analysed using an electrochemical method371. A study using solar irradiation has examined the decomposition of 2,4-dichlorophenol in the presence of TiO$_2$336. Others have investigated the solar irradiation process at the pilot plant scale372.

Photolysis of pentachlorophenol in water can be brought about using a high-pressure mercury arc lamp. This treatment results in several photodegradation products such as less-chlorinated phenols, catechol and trihydroxylated products. The formation of the hydroxylated products is the result of attack by hydroxyl radicals. Other minor products were also observed such as polychlorinated biphenyl ethers, hydroxylated polychlorobiphenyl ethers and polychlorinated dibenzo-p-dioxins373. The phenol can also be degraded in artificial fresh water streams374. Hydroxyl radicals react with the pentachloro-, pentafluoro- and pentabromophenolates either by addition of hydroxy radicals or by an electron transfer process375. Hydroxyl radical addition to the pentachlorophenolate is followed by rapid halide elimination, giving rise to hydroxytetrachlorophenoxy radical anions. The use of the photo-Fenton system in peroxide solution with pentachlorophenol leads to the formation of octachlorodibenzo-p-dioxin and its precursor 2-hydroxynonachlorodiphenyl ether376. Polychlorinated phenols can be dechlorinated using poly(sodium styrenesulphonate-co-N-vinylcarbazole) as the sensitizer377. Trichlorophenols have also been subjected to degradation studies378–380. For example, the rate of decomposition of 2,4,6-trichlorophenol on TiO$_2$ increases with rising
14. Photochemistry of phenols 1087

pH values up to 7.0. The photodegradation of sodium pentachlorophenolate has been studied using TiO$_2$ prepared from tetra-Bu titanate hydrolysis and on TiO$_2$ prepared by a sol-gel method.

XIII. REFERENCES

14. Photochemistry of phenols

14. Photochemistry of phenols

I. INTRODUCTION

Ionizing radiation (γ- and X-rays, high energy electrons and other particles) is absorbed by molecules rather indiscriminately, so that most of the energy is absorbed by the solvent and not by the solutes that are present at low concentrations. Thus radiation chemistry involves in most cases the reactions of solvent radicals with the solutes. Deposition of ionizing radiation leads, as the name implies, to ionization of the solvent, i.e. formation of electrons and radical cations. These undergo subsequent processes to form a complex mixture of species. In many solvents, however, the primary events are followed by solvent-specific reactions, which result in the formation of one or two main radicals that can undergo simple reactions with the solute. Thus, despite the complexity of the early events, radiation chemistry may provide a means to study reactions of simple radicals or reduction...
and oxidation reactions in relatively simple systems. The field has been summarized in several books and we recommend the excellent book by Spinks and Woods as an introductory text.

The effect of ionizing radiation on phenols has been studied mainly in aqueous solutions under oxidizing conditions, where the phenols are reacted with hydroxyl radicals or with transient one-electron oxidants to yield, indirectly or directly, phenoxy radicals. The reactions leading to formation of phenoxy radicals, as well as the properties and reactions of phenoxy radicals in aqueous solutions, are discussed in the chapter on transient phenoxy radicals. In this chapter, other aspects of the radiation chemistry of phenols are summarized. These include studies with phenols in organic solvents and in the solid state, reactions leading to reduction of substituted phenols in various media and radiation treatment of phenols for detoxification purposes.

II. RADIATION CHEMISTRY OF PHENOLS IN AQUEOUS SOLUTIONS

Radiolysis of water produces hydrogen atoms, hydroxyl radicals and hydrated electrons, along with the molecular products hydrogen and hydrogen peroxide (equation 1).

\[
\text{H}_2\text{O} \rightarrow \text{H}^+, \cdot \text{OH}, \text{e}^{-}\text{aq}, \text{H}_2, \text{H}_2\text{O}_2
\]

All phenols react very rapidly with \(\cdot \text{OH} \) radicals via addition and the adducts undergo water elimination to form phenoxy radicals (as discussed in the chapter on transient phenoxy radicals). All phenols also react very rapidly with H atoms via addition to the ring to form hydroxycyclohexadienyl radicals (equation 2).

\[
\text{C}_6\text{H}_5\text{OH} + \text{H}^+ \rightarrow \cdot \text{C}_6\text{H}_6\text{OH}
\]

The rate constants for such reactions are generally of the order of \(10^9 \text{ M}^{-1} \text{ s}^{-1} \). The adducts of the simple phenols exhibit absorption maxima near 300 to 350 nm and decay via second order reactions to form various isomeric dimers (equation 3).

\[
2 \cdot \text{C}_6\text{H}_6\text{OH} \rightarrow \text{HOC}_6\text{H}_6 \rightarrow \text{C}_6\text{H}_4\text{OH} \rightarrow \text{HOC}_6\text{H}_5\text{C}_6\text{H}_5\text{OH}
\]

The initial dimers generally undergo aromatization by oxidation or water elimination to form substituted biphenyls.

Most phenols do not react rapidly with solvated electrons unless another substituent enhances such reaction by serving as the electron sink. The rate constant for reaction of phenol with \(\text{e}^{-}\text{aq} \) is \(2 \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \) and the adduct undergoes very rapid protonation to yield the hydroxycyclohexadienyl radical, the same radical produced by addition of hydrogen atoms. At the other extreme, \textit{ortho-}, \textit{meta-} and \textit{para-}nitrophenols react with \(\text{e}^{-}\text{aq} \) with very high rate constants, \(\text{ca} \ 2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1} \) and cyanophenols react only slightly more slowly. These reactions produce the radical anions, which are similar to those derived from nitrobenzene and cyanobenzene (equation 4).

\[
\text{HOC}_6\text{H}_4\text{NO}_2 + \text{e}^{-}\text{aq} \rightarrow \text{HOC}_6\text{H}_4\text{NO}_2^-\cdot
\]

Another example that has been studied in detail is that of the halogenated phenols. Chloro-, bromo- and iodo-phenols, like their benzene analogues, react rapidly with solvated electrons to undergo dehalogenation and produce hydroxyphenyl radicals (equation 5).

\[
\text{X}\text{C}_6\text{H}_4\text{OH} + \text{e}^{-}\text{aq} \rightarrow \text{X}^- + \cdot \text{C}_6\text{H}_4\text{OH}
\]
Hydroxyphenyl radicals are very different from phenoxyl radicals in that the electron is localized on the ring carbon where the halogen was located and the radical is a σ- rather than a π-radical. As a result, phenyl and hydroxyphenyl radicals are very reactive in hydrogen atom abstraction and addition reactions but not in electron transfer reactions. Hydrogen abstraction is favored in many cases because the aromatic C–H bond is stronger than most aliphatic C–H bonds and phenolic O–H bonds. This high reactivity along with the fact that phenyl radicals absorb only in the UV region made it more difficult to detect and characterize the hydroxyphenyl radicals by pulse radiolysis, as compared with phenoxyl radicals.

Early γ-radiolysis experiments with p-bromophenol have shown that reaction with solvated electrons yields Br$^-$ ions quantitatively and that the organic products include hydroxylated biphenyl and terphenyl. From pulse radiolysis experiments it was concluded that the hydroxyphenyl radical, formed by reaction of e_{aq}^- with p-bromophenol, adds rapidly ($k = 7 \times 10^7$ M$^{-1}$ s$^{-1}$) to the parent compound (equation 6).

$$\text{C}_6\text{H}_4\text{OH} + \text{BrC}_6\text{H}_4\text{OH} \rightarrow \text{HOCl}_6\text{H}_4\text{Cl}_6\text{H}_4(\text{Br})(\text{OH})^*$$ (6)

This adduct is the precursor of the polyphenyl products. The hydroxyphenyl radical also can abstract hydrogen atoms from alcohols (equation 7).

$$\text{C}_6\text{H}_4\text{OH} + (\text{CH}_3)_2\text{CHOH} \rightarrow \text{C}_6\text{H}_5\text{OH} + (\text{CH}_3)_2\text{COH}$$ (7)

The rate constant for 2-propanol was determined by competition kinetics based on the addition rate constant and found to be $k = 3 \times 10^7$ M$^{-1}$ s$^{-1}$. The competition was determined by quantifying the yields of hydroxylated biphenyl vs the yield of phenol as a function of the relative concentrations of the p-bromophenol and the alcohol.

Reaction of e_{aq}^-, produced by pulse radiolysis, with bromophenols in alkaline solutions exhibited completely different pathways. When the hydroxyl group of the hydroxyphenyl radical is dissociated, the negative charge is partly delocalized from O$^-$ to the site of the radical on the aromatic ring and this site then undergoes very rapid protonation by water to form a phenoxyl radical (equation 8).

$$\text{C}_6\text{H}_4\text{OH}^- + \text{H}^+ \rightarrow \text{C}_6\text{H}_5\text{O}^- + \text{H}_2\text{O}$$ (8)

This first order protonation was rapid with p-hydroxyphenyl ($k = 1.7 \times 10^5$ s$^{-1}$) and o-hydroxyphenyl ($k = 5 \times 10^4$ s$^{-1}$) radicals at pH 11.5 but was much slower for the m-hydroxyphenyl radical and was not observed in neutral solutions. As a result, the reductive radiation chemistry of bromophenols in neutral and acid solutions becomes the chemistry of phenoxyl radicals in alkaline solutions. Moreover, it was observed that the phenoxyl radical thus produced oxidizes another molecule of bromophenol to produce the bromophenoxyl radical (equation 9).

$$\text{C}_6\text{H}_5\text{O}^- + \text{BrC}_6\text{H}_4\text{O}^- \rightarrow \text{C}_6\text{H}_5\text{O}^- + \text{BrC}_6\text{H}_4\text{O}^-$$ (9)

The reaction of e_{aq}^- with diiodotyrosine was found to lead to elimination of I$^-$ as well as NH$_3$. Iodide ions were formed at all pH values studied (pH 4 to pH 12) whereas NH$_3$ was produced only at pH ≤ 7, i.e. when diiodotyrosine is in the protonated (NH$_3$$^+$) form.

Monofluoro aromatic compounds do not react rapidly with e_{aq}^- and do not undergo dehalogenation. Polyfluorinated derivatives, however, react very rapidly. Thus, pentafluorophenol was found to react with e_{aq}^- with a diffusion-controlled rate constant and...
to undergo defluorination. The hydroxytetrafluorophenyl radical formed by this reaction undergoes rapid protonation at the ring carbon to yield the tetrafluorophenoxyl radical. Unlike the case of \(p \)-bromophenol, where such protonation occurs only at high pH, protonation of the perfluoro analogue takes place even in neutral solution because the \(pK_a \) of the phenolic OH group in pentafluorophenol is much lower than that in bromophenol. In alkaline solutions, the tetrafluorophenoxyl radical undergoes replacement of one fluoride with a hydroxide group (\(k = 3 \times 10^4 \text{ M}^{-1} \text{ s}^{-1} \)) to yield the trifluorobenzosemiquinone radical. Reaction of pentafluorophenol with hydrogen atoms also produces the tetrafluorophenoxyl radical, but the mechanism in this case was suggested to be different than that of the \(e_{\text{aq}}^- \) reaction; it involves hydrogen addition to the ring and HF elimination (H from the OH group and F from the \(\text{ortho or para} \) addition sites).

All the phenyl radicals, phenoxyl radicals and hydroxycyclohexadienyl radicals produced from phenols by various reactions react with each other and with other radicals to form, at least in part, new \(\text{C}--\text{C} \) or \(\text{C}--\text{O} \) bonds. As a result of these reactions, irradiation of phenols can lead to dimeric and polymeric products and irradiation of phenols in mixtures with other compounds can lead to crosslinking of the two materials. For example, irradiation of tyrosine or dopa with albumin in aqueous solutions leads to binding of these phenols to the protein\(^{20}\). Similarly, irradiation of tyrosine and its peptides\(^{21,22}\) or mixtures of tyrosine and thymine\(^{23}\) led to various dimerization products. The latter case was studied as a model for radiation-induced crosslinking between proteins and DNA.

Chlorinated phenols are common environmental pollutants, introduced as pesticides and herbicides. Studies have been carried out on the potential use of radiation to destroy these compounds as a means of environmental cleanup\(^{8,24--32}\). While these studies were concerned with mechanisms (and are discussed in the chapter on transient phenoxyl radicals), other studies involved large-scale irradiation to demonstrate the decomposition of phenol in polluted water\(^{33,34}\). Continuous irradiation led to conversion of phenol into various degradation products (formaldehyde, acetaldehyde, glyoxal, formic acid) and then to decomposition of these products. At high phenol concentrations, however, polymeric products were also formed.

III. RADIATION CHEMISTRY OF PHENOLS IN ORGANIC SOLVENTS

Radiolysis of organic solvents can lead to reducing and/or oxidizing radicals, as is the case with water. Water is inert to its radiolytic species and thus it is necessary to use additives to create purely reducing or oxidizing conditions. Many organic solvents, however, are reactive toward some of their radicals and thus lead to reducing or oxidizing conditions without added solutes. For example, radiolysis of alcohol solutions generally results in the reduction of added solutes while radiolysis of halogenated alkanes leads to oxidation of the solutes. Since phenols are difficult to reduce, their radiolysis in alcohol solutions is ineffective and has not been studied in detail. In contrast, their radiolysis in halogenated alkanes has been thoroughly examined and is known to lead to oxidation. These studies are summarized in the following section. In a subsequent section the radiolysis of phenols in alkane solutions will be discussed.

A. Halogenated Solvents

Radiolysis of CCl\(_4\) solutions has been shown to lead to one-electron oxidation of many solutes. While the detailed mechanisms of the radiolysis of this solvent have been under study by several groups and some contradictory conclusions have been drawn, it is certain that many compounds are readily oxidized in this solvent. Oxidation may be effected by solvent or fragment cations, by chlorine atoms or chlorine complexes and,
in the presence of oxygen, by chlorinated peroxyl radicals. In the case of phenols, it has been shown that 2,4,6-tri-tert-butylphenol is oxidized in irradiated CCl₄ solutions to form the phenoxyl radical with a radiolytic yield of 0.20 μmol J⁻¹₃₅. In a later study, phenol and p-methoxyphenol have been shown to form the respective phenoxyl radicals when irradiated in CCl₄ solutions₃₆. In deoxygenated solutions, the yield of phenoxy radical increased with phenol concentration and reached a value of 0.35 μmol J⁻¹ at 1 mol L⁻¹ phenol. In oxygen-saturated solutions the maximum yield was higher by a factor of two and was more strongly dependent on concentration. Also, the phenoxy radicals in oxygenated solutions were produced in two steps, a rapid step due to oxidation by solvent cations and Cl atoms, and a slower step due to oxidation by the CCl₃O₂⁻ peroxy radicals. The rate constant for oxidation of p-methoxyphenol by the CCl₃O₂⁻ radical in this solvent was only ≈8 × 10⁶ M⁻¹ s⁻¹; the rate constant for phenol was 100 times lower₃₆. It should be noted, however, that these reactions take place much more rapidly in aqueous solutions, as discussed in the chapter on transient phenoxy radicals.

Similar radiolytic yields of phenoxy radicals have been found in CH₂Cl₂ solutions₃₇. The radiolysis of this solvent appeared to be simpler than that of CCl₄ and permitted determination of rate constants for reactions of Cl atoms. Both phenol and p-methoxyphenol react with diffusion-controlled rate constants (2.5 × 10¹⁰ and 5 × 10⁸ M⁻¹ s⁻¹). The slower oxidation steps were interpreted as reactions of two types of peroxy radicals that can be formed in this solvent, i.e. CHCl₂O₂⁻ and CH₂ClO₂⁻. These radicals oxidize p-methoxyphenol with rate constants of 6 × 10⁵ and 2 × 10⁶ M⁻¹ s⁻¹, respectively. Phenol was oxidized more slowly by these peroxy radicals and its rate constants could not be measured under the experimental conditions used.

The very rapid oxidation of phenols by solvent radical cations can be expected to yield phenol radical cations as the first products. These species are short-lived, except in highly acidic solutions, and were not observed in the microsecond pulse radiolysis experiments described above. They were detected, however, in frozen matrices and with nanosecond pulse radiolysis₃₈–₄₀. Gamma irradiation of phenols in n-butyl chloride or in 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113) at 77 K produced phenol radical cations, which were detected by their optical absorption and ESR spectra₃₈. Annealing to 133 K resulted in deprotonation of the radical cations to yield phenoxy radicals. Pulse radiolysis of p-methoxyphenol and its 2,6-di-tert-butyl derivative in n-butyl chloride at room temperature produced both the phenol radical cations and the phenoxy radicals. The phenoxy radical cations were formed very rapidly (k = 1.5 × 10¹⁰ M⁻¹ s⁻¹) and decayed in a first-order process (k = 2.2 × 10⁸ s⁻¹) to yield the phenoxy radicals. The phenoxy radicals were partially formed in this slower process and partially in a fast process. The fast process of phenoxy formation probably involves proton transfer to the solvent along with the electron transfer. When the p-methoxy group was replaced with alkyl or H, the stability of the phenol radical cation was lower and the species observed at short times were more predominantly phenoxy radicals.

Similar results were obtained with naphthols and hydroxybiphenyls₃₉. However, the extended π-system of these compounds, as compared with the simple phenols, led to a red shift of the absorption peaks of the radical cations (from 400–450 nm to 550–650 nm) and increased their lifetime (from 0.2–0.7 μs to 1.5–2.5 μs). The radical cations of naphthols and hydroxybiphenyl were found to oxidize triethylamine rapidly (k = 4 × 10⁹ to 1.2 × 10¹⁰ M⁻¹ s⁻¹) and to transfer a proton to ethanol (k = 3 × 10⁸ to 6 × 10⁹ M⁻¹ s⁻¹).

Irradiation of bromoalkanes leads to formation of Br atoms, which can form complexes with the solvent, e.g. Br⁺CH₂Br₂. This complex was found to oxidize p-methoxyphenol very rapidly to form the corresponding phenoxy radical₄¹. In a later study, rate constants were determined for the oxidation of a series of p-substituted phenols and found to vary from 5 × 10⁸ to 6 × 10⁹ M⁻¹ s⁻¹. A Hammett correlation between log k and σᵣ
gave a reasonably straight line with a slope of $\rho = -1.9$. Similar measurements were carried out in bromoethane and bromoform solutions; the Hammett plots gave a higher slope for Br$^+$ and a lower one for Br$^+\cdot$CHBr$_3$, $\rho = -1.3$. The Br atom complex with benzene was produced by pulse radiolysis of benzene solutions containing CBBr$_4$. The rate constants for oxidation of phenols by this complex were determined for a more extended series of p-substituted phenols, which included the less reactive acetyl- and cyanophenol. The values varied from 3×10^5 to 6×10^9 M$^{-1}$ s$^{-1}$ and the slope of the Hammett plot ($\rho = -4.2$) was larger than those of the aliphatic complexes. The Br complexes are clearly dipolar and bear partial negative charge at the Br atom. The extent of this negative charge was related to the variations in the ρ values.

In the same study, Br atom complexes with a series of substituted benzenes were prepared and the rate constants for their reactions with phenol were determined. The rate constants for *BrC$_6$H$_5$, *BrC$_6$H$_5$F, *BrC$_6$H$_5$Br, *BrC$_6$H$_5$CF$_3$ and *BrC$_6$H$_5$CN increased gradually from 3.5×10^7 to 2×10^8 M$^{-1}$ s$^{-1}$. In the same manner, the rate constants for oxidation of phenol by *ClC$_6$H$_5$, *ClC$_6$H$_5$Cl and *ClC$_6$H$_5$CCl$_3$ were determined to be 1×10^9 M$^{-1}$ s$^{-1}$, with variations of only 10%. The rate constant for oxidation of phenol by *IC$_6$H$_5$ was found to be only ca 10^5 M$^{-1}$ s$^{-1}$. The extreme variations between the different halogens are of course due to the differences in electron affinity, and the reactivity is further modified by the electron-withdrawing effect of substituents on the benzene.

While the above studies concentrated on kinetics and mechanisms, other studies were aimed at measuring the yield of final products following γ-radiolysis of nitrophenols and other nitro compounds in CCl$_4$ solutions. The gaseous products derived from the solvent included mainly HCl, COCl$_2$, CHCl$_3$, Cl$_2$C=CCl$_2$ (ca. 0.01 μmol J$^{-1}$) and C$_2$Cl$_6$ (ca. 0.05 μmol J$^{-1}$). The products derived from o-nitrophenol included mainly chloronitrophenol (by ring chlorination), dichloro- and trichlorophenols (by ipso and other chlorination), and dichloroisocyanatobenzene (via attack of carbene on the nitro group).

B. Alkane Solvents

Pulse radiolysis of 2,6-di-tert-butyl-4-methylphenol (BHT) in n-heptadecane led to production of the phenoxyl radical. The rate constant for the formation reaction was 8×10^9 M$^{-1}$ s$^{-1}$ and the process was ascribed to hydrogen abstraction from the phenol by alkyl radicals. The reaction of the phenol with alkylperoxyl radicals was too slow to be observed in this system. Another reaction observed in deoxygenated solutions was that of the phenol with hydrogen atoms, leading to formation of both the phenoxyl radical and the hydrogen adduct. This reaction was suppressed in the presence of O$_2$ because of the very fast reaction of hydrogen atoms with O$_2$. The same phenoxyl and hydrogen-adduct radicals were also observed in the pulse radiolysis of the same phenol in n-hexadecane and the assignment of the optical spectra was further confirmed. When the phenol contained a carboxylic ester or a phenylthio group at the p-position, an additional reaction was observed in the pulse radiolysis and was ascribed to reaction of these phenols with solvated electrons to produce phenolate anions and hydrogen atoms (equation 10). The rapid decay of the anions was ascribed to charge neutralization with a solvent radical cation to produce phenoxyl radicals (equation 11).

\[
\text{R'C}_6\text{H}_4\text{OH} + e_{\text{solv}}^{-} \rightarrow \text{R'C}_6\text{H}_4\text{O}^{-} + \text{H}^{+} \quad (10)
\]
\[
\text{R'C}_6\text{H}_4\text{O}^{-} + \text{RH}^{+} \rightarrow \text{R'C}_6\text{H}_4\text{O}^{+} + \text{RH} \quad (11)
\]

The same results on the radiolytic oxidation of BHT were also obtained in cyclohexane solutions. In this case, the rate constant for oxidation of this phenol by the
cyclohexylperoxyl radical was estimated to be around \(10^4 \text{ M}^{-1} \text{s}^{-1}\). Furthermore, the final radiolytic products were analyzed and found to include products of dimerization as well as a product formed by coupling of the phenol with the cyclohexyl radical. The yield of the latter product was considerable in the absence of \(O_2\) but very low in the presence of \(O_2\), clearly due to the fast reaction of the alkyl radical with oxygen.

The rate constants for hydrogen abstraction from BHT by alkyl radicals, as suggested in the above studies, are much higher than expected on the basis of related literature values. In fact, later studies by the same authors and by other authors demonstrated that the fast reactions discussed above are due to a different process and that the reactions of the alkyl radicals with BHT are quite slow (\(k < 10^7 \text{ M}^{-1} \text{s}^{-1}\))\(^{48}\). The main reactions leading to phenoxyl radical formation are hydrogen abstraction by the hydrogen atoms and scavenging of electrons (equation 10) followed by reaction of the phenolate with a solvent radical cation. Scavenging of electrons by BHT was determined to have a rate constant of \(3 \times 10^8 \text{ M}^{-1} \text{s}^{-1}\) and the reaction of the resulting phenolate anion with the solvent radical cation must be diffusion-controlled. Phenoxyl radicals may be produced also via direct electron transfer from the phenol to the solvent radical cation, followed by deprotonation of the phenol radical cation.

It should be pointed out in this context that deprotonation of phenols to phenolate anions upon irradiation was also detected in aqueous solutions\(^{49}\). Pulse radiolysis of \(N_2O\)-saturated neutral solutions containing \(\alpha\)-naphthol produced a high initial concentration of \(OH^-\), which reacted rapidly with the naphthol to form the anion (observed through increased UV absorption). The anion decayed back to the neutral naphthol by reacting with \(H^+\) with a rate constant of \(5.9 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}\).

IV. RADIATION CHEMISTRY OF NEAT PHENOLS (AND IN SOLID MATRICES)

Radiolysis of liquid cresols under vacuum was found\(^{50}\) to produce \(H_2\) as the main gaseous product; the radiolytic yield varied from 0.019 for \(m\)-cresol to 0.031 \(\mu\text{mol J}^{-1}\) for the \(o\)-cresol. Small amounts of \(CH_4\) were also detected. Radiolysis of cyanophenols produced less \(H_2\), only \(ca 0.003 \mu\text{mol J}^{-1}\), various yields of \(CO\) and \(CO_2\), mainly from the \(ortho\) isomer, and minute amounts of \(N_2\). The difference in the yield of \(H_2\) may be due to reaction of hydrogen atoms with the methyl group of the cresols to form \(H_2\) as compared with addition to the CN group and to the ring, which do not produce \(H_2\). No mechanistic details were derived from these studies.

In other studies, the phenols were irradiated in the solid state and the radicals were identified by ESR. Several aromatic compounds, including resorcinol, hydroquinone and hydroxybenzoic acids, were found to produce the hydrogen adducts upon irradiation\(^{51}\). Other phenols (amino, nitro, chloro) did not exhibit the expected ESR spectra upon irradiation. In a subsequent study, resorcinol was \(\gamma\)-irradiated at 77 K as a powder and as a single crystal and the ESR spectra were interpreted in terms of two types of radical pairs in which the \(m\)-hydroxyphenoxyl radical is the main component\(^{52}\). The mechanism of radical formation involves ionization of a resorcinol molecule and capture of the electron by another resorcinol molecule, followed by proton transfer from the cation to the anion to form phenoxyl radicals and \(H_2\). The difference between the two pairs was suggested to be related to their position in the lattice relative to other molecules but could not be determined with certainty. Upon warming the solid to room temperature, the ESR spectra disappeared. However, irradiating the solid at room temperature was found to produce cyclohexadienyl-type radicals\(^{53}\). These were suggested to be formed not by addition of hydrogen atoms, since exposure of the crystal to external hydrogen atoms did not yield the same radical. Possibly, they were formed by protonation of electron adducts. In fact, addition of photochemically produced electrons to phenol and tyrosine in glassy NaOH
or LiCl concentrated aqueous solutions produced radicals, which were identified as the hydrogen adducts by their ESR spectra54. \(\gamma\)-Irradiation of \(p\)-bromophenol in aqueous or methanolic glass at 77 K produced a radical, which exhibited a large hyperfine interaction with Br and was suggested to be the hydrogen adduct55, although the exact structure remained in doubt.

Gamma irradiation of single crystals of 2-\textit{tert}-butyl-4-methylphenol and 2,6-di-\textit{tert}-butyl-4-methylphenol at room temperature produced the corresponding phenoxyl radicals, which were identified by their ESR spectra56. Similar irradiation of 2-amino-4-methylphenol did not give a resolved ESR spectrum, but after warming the crystal until it melted a resolved spectrum of the corresponding phenoxyl radical was observed. ESR spectra of phenoxyl radicals were observed also after X-ray irradiation of tyrosine and thyroxine and their iodo derivatives as compressed pellets at 100–300 K57. Gamma irradiation of nitrophenols at 77 K produced two types of radicals, the nitrophenoxyl radical and a nitroxide radical58. The mechanism of formation was suggested to involve initial ionization, electron and proton transfer from nitrophenol to an adjacent radical cation and finally rearrangement and recapture of the electron by the latter product to yield the nitroxide radical.

ESR spectra in frozen matrices have been used also to monitor the reactions of lipid-derived alkyl and alkylperoxyl radicals with antioxidants59. Gamma irradiation of the lipids at 100 K produces alkyl radicals and annealing to about 137 K permits migration of O\textsubscript{2} within the matrix and formation of peroxyl radicals. Further warming to 170 K permits reactions of these radicals with the phenols as well as self-reactions of the peroxyl radicals and warming to higher temperatures leads to decay of the phenoxy radical. The rates of formation of phenoxy radicals in this system were found to decrease in the order \textit{BHT} > \textit{tert}-butylhydroquinone > \(\alpha\)-tocopherol > propyl gallate > BHA; the extremes differ by a factor of 10. This order does not necessarily reflect the antioxidant activity, since these rates depend on the rate of migration of the molecule within the viscous lipid.

V. RADIATION CHEMISTRY OF PHENOLS IN THE GAS PHASE

Since phenols are solid under ambient conditions, few studies were concerned with the radiation chemistry of phenols in the gas phase. An early study demonstrated the acetylation of phenols when irradiated in a specific gaseous mixture. Gas-phase \(\gamma\)-irradiation of a mixture of CH\textsubscript{3}F and CO was found to form the acetyl cation, CH\textsubscript{3}CO+, and to lead to acetylation of substrates60. Gaseous phenol, cresols and xylenols present in such a mixture were acetylated mainly at the OH group to form 80–97% aryl acetate. The remaining products, hydroxyacetophenones, were mainly the \textit{ortho} and \textit{para} derivatives.

In a more recent study61 pulse radiolysis was utilized to produce the phenoxy radical in the gas phase and to measure some reaction kinetics. The irradiated gas mixture contained mainly SF\textsubscript{6} (at 980 to 1000 mbar), which served as a source of F atoms. Phenol was present at 0.1 mbar. The rate constant for reaction of phenol with F atoms was determined to be \(1.9 \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}\). This reaction led to formation of the phenoxy radical (45%) and other products, probably fluorine-adducts to the ring. When HCl (20 mbar) was added to the mixture, most fluorine atoms reacted with HCl to produce chlorine atoms and these reacted with phenol to produce the phenoxy radical as the predominant product. The rate constant for reaction of chlorine atoms with phenol, derived from several competition kinetic experiments, was \(1.2 \times 10^{11} \text{ M}^{-1} \text{ s}^{-1}\), slightly lower than the value for fluorine atoms. The spectrum of the phenoxy radical in the gas phase was very similar to that recorded in aqueous solutions. It exhibits several peaks between 350 nm and 400 nm and much more intense absorptions in the UV, the main peak being at 235 nm (molar absorption coefficient \(2.3 \times 10^{3} \text{ M}^{-1} \text{ cm}^{-1}\)). By following the decay
of the phenoxy radical absorption, rate constants were determined for the reaction of phenoxy with NO (1.1 × 10^9 M^{-1} s^{-1}) and NO₂ (1.3 × 10^9 M^{-1} s^{-1}). No reaction was detected between phenoxy and O₂. This is similar to the reactivity of phenoxy radicals in aqueous solutions.

Rate constants for reactions of phenols with several other radicals in the gas phase were determined by techniques not involving ionizing radiation and the results are relevant for understanding the behavior of phenols in irradiated gaseous systems. For example, the rate constants for reactions of H⁺ atoms and *OH radicals with phenol at high temperatures were determined by single-pulse shock tube experiments. The rate constant for *OH radicals was found to be 6 × 10^9 M^{-1} s^{-1}, close to that determined in aqueous solutions, and independent of temperature. The reaction produces phenoxy radical. On the other hand, the reaction of H⁺ atoms with phenol was suggested to take place via two paths, each one with a significant activation energy: (a) hydrogen abstraction from the phenolic group to form phenoxy, with k = 1.15 × 10^11 e^{-51.9/RT} M^{-1} s^{-1}, and (b) displacement of the OH group to form benzene, with k = 2.21 × 10^{10} e^{-33.1/RT} M^{-1} s^{-1}. The rate constant for reaction of NO₂⁺ radicals, formed by thermal decomposition of N₂O₅, with phenol in the gas phase at 298 K was determined by competition kinetics and found to be 2.3 × 10^9 M^{-1} s^{-1}, several orders of magnitude higher than the values for p-methoxyphenol, benzaldehyde and toluene. The reaction was suggested to involve mainly the functional group or side chain, not addition to the aromatic ring. These and other rate constants for reactions of phenols with radicals (including phenyl and methyl radicals) in the gas phase are summarized in recent compilations and in the NIST kinetics database (http://kinetics.nist.gov/index.php).

VI. REFERENCES

Transient phenoxyl radicals: Formation and properties in aqueous solutions

S. STEENKEN

Max-Planck-Institut für Strahlenchemie, D-45413 Mülheim, Germany
Fax: 208-304-3951; e-mail: steenken@mpi-muelheim.mpg.de

and

P. NETA

National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Fax: 301-975-3672; e-mail: pedatsur.neta@nist.gov

I. INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1108</td>
</tr>
<tr>
<td>II. FORMATION OF PHENOXYL RADICALS</td>
<td>1108</td>
</tr>
<tr>
<td>A. Oxidation of Phenols by Metal Ions</td>
<td>1109</td>
</tr>
<tr>
<td>B. Oxidation of Phenols by Free Radicals</td>
<td>1110</td>
</tr>
<tr>
<td>C. Oxidation of Phenols by Radical Cations</td>
<td>1113</td>
</tr>
<tr>
<td>D. Reaction of Phenols with Hydroxyl Radicals. The Addition/Elimination Mechanism</td>
<td>1113</td>
</tr>
<tr>
<td>E. Formation of Phenoxyl Radicals by Oxidative Replacement of Substituents</td>
<td>1116</td>
</tr>
<tr>
<td>F. Formation of Phenoxyl Radicals by Intramolecular Electron Transfer</td>
<td>1117</td>
</tr>
<tr>
<td>G. Formation of Phenoxyl Radicals from Phenols and Hydroxyphenols by Reaction with O_2 and/or $O_2^{•−}$ (Autoxidation)</td>
<td>1118</td>
</tr>
<tr>
<td>III. PROPERTIES OF PHENOXYL RADICALS</td>
<td>1120</td>
</tr>
<tr>
<td>A. Electron Spin Resonance Spectra of Phenoxyl Radicals</td>
<td>1120</td>
</tr>
<tr>
<td>1. Phenoxy1 and monosubstituted phenoxy1 radicals</td>
<td>1120</td>
</tr>
<tr>
<td>2. Phenoxy1 radicals with extended π-systems</td>
<td>1124</td>
</tr>
<tr>
<td>3. Kinetic ESR measurements</td>
<td>1125</td>
</tr>
<tr>
<td>4. Comparison with isoelectronic radicals</td>
<td>1127</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Phenoxyl radicals are the intermediate products from a large variety of thermochemical, photochemical, radiation chemical and biochemical processes which involve the oxidation of phenols or the reduction of quinones. Phenolic and quinonoidic compounds are found among the groups of hormones, vitamins, antibiotics and antioxidants (including natural and synthetic food antioxidants). The mechanism by which phenols function as antioxidants has to do with their ability to scavenge reactive radicals by the transfer of an electron or a hydrogen atom. By such processes the phenol is converted into a phenoxyl radical\(^1\)–\(^{10}\). The phenol may be regenerated by reaction of the phenoxyl radical via hydrogen or electron transfer (followed by proton transfer) from another molecule, which again may be a phenol. In this case one is dealing with the phenomenon of synergism. An additional example is the involvement of phenols and phenol-like substances, such as flavins, in biological redox processes. Furthermore, phenoxyl radicals are involved in the biosynthesis of numerous natural products (predominantly by oxidative coupling)\(^{11}–^{13}\), including many alkaloids. Oxidative coupling of phenols has been explored with respect to its general preparative value\(^7\). The phenoxyl radical from tyrosine serves a very important (catalytic) function in the enzyme ribonucleotide reductase (RNR)\(^{14}\) and also in photosystem II\(^{14}–^{17}\).

For these reasons, there has been a large and still growing interest in the chemistry of phenoxyl radicals and the earlier results have been summarized in a series of excellent reviews\(^1–^6\),\(^8\),\(^18–^{20}\). In this review the emphasis will be placed on results obtained by direct and fast detection techniques for phenoxyl radicals, mainly in aqueous solutions. Results for other solvents, however, will be included if they appear relevant to the aqueous phase chemistry of phenoxyl or if they are of general interest.

II. FORMATION OF PHENOXYL RADICALS

Oxidation of phenols may proceed by hydrogen atom abstraction from the phenolic OH group (equation 1),

\[
A + \text{ArOH} \xrightleftharpoons[k_1]{k_{-1}} AH^* + \text{ArO}^*
\]

or by electron transfer to an acceptor with a sufficiently high electron affinity (equation 2),

\[
A + \text{ArOH} \xrightleftharpoons[k_2]{k_{-2}} A^*^- + \text{ArOH}^{**+}
\]

where \(A\) is any atom or molecule able to accept an electron or a hydrogen atom. The former process is thermodynamically feasible when the bond dissociation energy for \(\text{ArO-H}\) (2.6–3.7 eV)\(^{21}–^{25}\) (see also Section III.E) is lower than that for \(A-H\). The electron transfer reaction is possible with many electron acceptors due to the low gas-phase ionization
16. Transient phenoxyl radicals: Formation and properties in aqueous solutions

Potentials of phenols, which are normally \(\leq 9 \) eV. The ease of oxidation of phenols is considerably increased upon deprotonation to give the phenoxide anion (equation 3).

\[
A + \text{ArO}^- \xrightleftharpoons[k_3]{k_3} A^- + \text{ArO}^* \tag{3}
\]

From a product point of view, hydrogen and electron transfer are not always easy to distinguish due to the acid–base equilibria of equations 4 and 5.

\[
\text{ArOH}^+ \xrightleftharpoons{\text{H}^+}{\text{ArO}^-} + \text{H}^+ \tag{4}
\]

\[
\text{AH} \xrightleftharpoons{\text{H}^+}{A^-} + \text{H}^+ \tag{5}
\]

However, with respect to oxidation mechanism a distinction can be made between hydrogen and electron transfer on the basis of the kinetic isotope effect for the rate of oxidation, which is expected to be large (\(k_H/k_D \gg 1.5 \)) for \(k_1 \) and small (\(k_H/k_D \ll 1.5 \)) for \(k_2 \).

The redox reactions 1–3 may be reversible or proceed predominantly in one direction. Equilibrium reactions will be discussed in Section III.E. In what follows, reactions will be discussed that proceed essentially to completion.

A. Oxidation of Phenols by Metal Ions

PbO\(_2\) has been used as an oxidant in some of the earliest ESR studies on sterically hindered phenoxyl radicals. Later, the method found wider application to include anilinyl and semiquinone radicals. PbO\(_2\) can be replaced by Ag\(_2\)O or MnO\(_2\). The unsubstituted phenoxyl radical was first produced by oxidation with Ce(IV) in aqueous solution at low pH, and this oxidant was subsequently used to produce substituted phenoxyl radicals including semiquinones, phenol radical cations and oxypyrones. In basic solution also [Fe\(_{III}\)(CN)\(_6\)]\(^3\)\(^−\) can be used to oxidize phenols. Various other oxidants have been used in studies related to oxidative coupling of phenols. This area has been reviewed by Musso.

The bimolecular rate constants for oxidation of phenols by metal ions in high oxidation states can readily be determined, since the production of the oxidized metal ions can be carried out in \(\leq 1 \) µs using the pulse radiolysis method and the rate of formation of the phenoxyl radical can then be measured as a function of phenol concentration. Metal ions in unusual (and unstable) oxidation states can be produced by reaction with OH in aqueous solution and can react with phenols. Tl\(^{2+}\) and Ag\(^{2+}\) were found to react with 4-methoxyphenol and 3,5-dimethoxyphenol by 100% electron transfer (equation 2), whereas with TiOH\(^+\) the efficiency of electron transfer is only ca 75%. The ease of oxidation increases considerably in going from the neutral phenols to the phenolates: even the weak oxidants Tl(OH)\(_2\) and Ag(OH)\(_2\) are able to oxidize the phenolates with 100% yield to give the corresponding phenoxyl radicals. In going from phenol to the dihydroxybenzenes the oxidizability increases: hydroquinone and resorcinol are oxidized with 100% yield not only by Tl\(^{2+}\) but also by the weaker oxidant TiOH\(^+\). Catechol forms a complex with Tl\(^{II}\), which has the same structure as that produced by reaction of ortho-semiquinone radical with Tl\(^+\) or by reaction of ortho-benzoquinone with Tl\(^{II}\). The rate constants for reaction of the Tl\(^{II}\) and Ag\(^{II}\) species are between \(10^8 \)–\(10^9 \) M\(^{−1}\) s\(^{−1}\) (see Table 1).

Phenol is also oxidized by ferrate(V) ions and ferrate(VI) ions. It has been suggested that ferrate(VI) ions oxidize phenol by a one-electron transfer mechanism...
was concluded that the reaction proceeds by electron transfer to its reaction with tyrosine. A delayed formation of tyrosinoxyl radical was not found and it reacts with I\(_2\) to produce phenoxyl via hydrogen or electron transfer. An example for this is SO\(_3\)\(^-\) by an addition/elimination mechanism (see Section II.D), most of the other radicals seem to react more slowly with phenols (equation 7). These reactivity differences can be related to differences in the electron-donating power of the substituent to give a multiple charge to the conjugate base of the substituted phenolates by Cl, Br, I, SCN, react efficiently with phenols and phenolate ions to give the corresponding phenoxyl radicals (equation 6).

\[
X_2^{*-} + \text{ArOH} \rightarrow \text{ArO}^+ + \text{H}^+ + 2X^- \quad (6)
\]

For the case of Cl\(_2\)\(^-\), the rate constants have been measured at pH 1 for a series of \(p\)-substituted phenols, the value for phenol being 2.5 \(\times\) 10\(^8\) M\(^{-1}\) s\(^{-1}\). The rate constants increase with increasing electron-donating power of the substituent. A plot of the rate constants vs the Hammett \(\sigma\) values yields \(\rho = -1.5\), indicating an electron transfer mechanism for the formation of the phenoxyl radicals\(^{52}\). The weaker oxidant Br\(_2\)\(^+\) reacts with phenol more slowly, \(k = 6 \times 10^6\) M\(^{-1}\) s\(^{-1}\). However, upon increasing the reducing power by going from phenol to phenolate, the rate constant increases to ca. 4 \(\times\) 10\(^8\) M\(^{-1}\) s\(^{-1}\). (SCN)\(_2\)\(^-\) and I\(_2\)\(^-\) are even weaker oxidants than Br\(_2\)\(^-\) and thus oxidation of phenol was not observed (\(k < 10^7\) M\(^{-1}\) s\(^{-1}\))\(^{53,54}\). However, phenolate reacts with I\(_2\)\(^-\) with \(k = 5.7 \times 10^7\) M\(^{-1}\) s\(^{-1}\) and with (SCN)\(_2\)\(^-\) the rate constant is ca. 3 \(\times\) 10\(^8\) M\(^{-1}\) s\(^{-1}\)\(^{53,54}\). The rate constants for the reactions of Br\(_2\)\(^-\) and (SCN)\(_2\)\(^-\) with \(p\)-substituted phenolates follow a Hammett relationship with \(\rho = -1.1\) for Br\(_2\)\(^-\) and \(-1.2\) for (SCN)\(_2\)\(^-\), demonstrating the electrophilic nature of these radicals.

The aminyl radical *NH\(_2\) is also able to produce phenoxyl radicals from substituted phenolates\(^{55}\). The rate constants for this reaction (\(k = 3.0 \times 10^6\) M\(^{-1}\) s\(^{-1}\) for phenolate) increase strongly with increasing electron-donating power of the substituent to give a Hammett \(\rho = -3.3\), from which it was concluded that the reaction proceeds by electron transfer\(^{55}\). The value \(\rho = -3.3\) is more than twice that determined for the oxidation of substituted phenols by Cl\(_2\)\(^-\) or of phenolates by Br\(_2\)\(^-\) or (SCN)\(_2\)\(^-\). This increased selectivity of the *NH\(_2\) radical is in line with its lower reactivity. The radical N\(_3\)\(^-\), produced in the reaction of N\(_3\)\(^-\) with *OH, gives the phenoxy-type radical on reaction with phenols and phenolate ions\(^{56,57}\), whereby N\(_3\)\(^-\) shows very little tendency to perform hydrogen-abstraction reactions from C–H bonds additionally present.

A large number of oxygen-centered radicals react with phenols to yield phenoxy radicals (Table 1). Whereas *OH, the simplest of the oxygen-centered radicals, reacts mainly by an addition/elimination mechanism (see Section II.D), most of the other radicals seem to produce phenoxy via hydrogen or electron transfer. An example for this is SO\(_4\)\(^-\). In its reaction with tyrosine, a delayed formation of tyrosinoxyl radical was not found and it was concluded that the reaction proceeds by electron transfer\(^{58}\). The oxide radical, O\(^-\), the conjugate base of the *OH radical, also has been proposed to react with phenolate by electron transfer\(^{59}\).

In the reaction of (CH\(_3\))\(_3\)CO\(^+\) with \(p\)-substituted phenols to yield phenoxy radicals\(^{26}\) (for rate constants see Table 1) a large kinetic isotope effect was observed, i.e. \(k_H/k_D = 3–5\), which means that in the transition state an O–H bond is broken as in a hydrogen-abstraction reaction. However, there is also an increase in the rate constant with increasing electron-donating power of the substituent (Hammett \(\rho = -0.9\), which indicates that there is charge separation in the transition state with partial positive and negative charge on the aromatic ring and on tert-butoxy, respectively.

As compared to tert-butoxy radical, peroxyl radicals RO\(_2\)\(^+\) react more slowly with phenols (equation 7). These reactivity differences can be related to differences in the
O–H bond dissociation energies which are ca. 440 kJ mol\(^{-1}\) for \(\text{RO}–\text{H}\) but only ca. 360 kJ mol\(^{-1}\) for \(\text{ROO}–\text{H}\). The rate constants for reaction 7,

\[
\text{ROO}^* + \text{ArOH} \rightarrow \text{ROOH} + \text{ArO}^* \quad (7)
\]

which describes the antioxidant action of phenols, do not depend on the nature of \(\text{ROO}^*\) (for a particular phenol)\(^{5,61–63}\) but are quite sensitive to the nature of the phenol\(^7\). For example, for reaction of a peroxyl radical from styrene with phenol \(k_7 = 5 \times 10^3\) M\(^{-1}\) s\(^{-1}\), for reaction with 2,5-di-\(\text{tert}\)-butyl-4-methylphenol \(k_7 = 1.2 \times 10^4\) M\(^{-1}\) s\(^{-1}\), and for \(\alpha\)-tocopherol (Vitamin E) \(k_7 = 2.35 \times 10^6\) M\(^{-1}\) s\(^{-1}\). An explanation for this trend has been given in terms of \(\text{ArO}–\text{H}\) bond strengths\(^65\) and of stereoelectronic factors that determine the stabilization of the phenoxyl radical\(^7\). As expected for a hydrogen-abstraction mechanism, reaction 7 exhibits a large kinetic isotope effect (\(k_\text{H}/k_\text{D} = 4–11\))\(^7\).

Alkylperoxyl radicals substituted at the \(\alpha\)-position by halogens show a higher reactivity with respect to oxidation of phenolates (equation 8).

\[
\text{CH}_3-n\text{Cl}_n\text{O}_2^* + \text{C}_6\text{H}_5\text{O}^- + \text{H}_2\text{O} \rightarrow \text{CH}_3-n\text{Cl}_n\text{O}_2\text{H} + \text{C}_6\text{H}_5\text{O}^* + \text{OH}^- \quad (8)
\]

The rate constant increases from \(1.1 \times 10^7\) M\(^{-1}\) s\(^{-1}\) for \(n = 1\) to \(2.3 \times 10^8\) M\(^{-1}\) s\(^{-1}\) for \(n = 3\), due to the withdrawal of electron density from the reaction center by the electronegative halogens\(^66\). Halogenated peroxyl radicals have been suggested\(^{67,68}\) as intermediates involved in the toxic effects of \(\text{CCl}_4\) on the liver. In general, rate constants for oxidation by methylperoxyl radicals substituted at the \(\alpha\)-position with various groups are greatly dependent on the electron-withdrawing power of these groups\(^69\). The rate constants for halogenated peroxyl radicals are highly influenced also by the solvent\(^{70,71}\); variations of nearly two orders of magnitude have been observed for the reaction with \(\text{Trolox C}\) (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, a Vitamin E analogue), the rate constant generally increasing with solvent polarity. Rate constants for the reactions of chlorinated methylperoxyl radicals with \(\text{Trolox C}\) in aqueous solutions have been measured as a function of temperature and the activation energies were found to be 6.4 kJ mol\(^{-1}\) for \(\text{CH}_2\text{ClO}_2^*\) and 17 kJ mol\(^{-1}\) for the dichloro- and trichloromethylperoxyl radicals\(^72\).

From the reactivity point of view, 2-alkanonyl radicals may be considered as oxygen-centered (vinoxyl) radicals (cf hybrid \(\text{b}\))\(^73\).

\[
\begin{align*}
\text{(a)} & & \leftrightarrow & & \text{(b)} \\
\cdot & & \text{O} & & \text{O}^* \\
\end{align*}
\]

For the case of the 2-cyclohexanonyl radical the contribution of the mesomeric structure \(\text{b}\) has been estimated\(^74\) to be ca. 15%. 2-Alkanonyl radicals react with substituted phenolates to yield the corresponding phenoxyl radicals\(^73,75,76\) (equation 9).

\[
\text{CH}_2\text{CHO} + \text{ArO}^- + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{CHO} + \text{ArO}^* + \text{OH}^- \quad (9)
\]

The rate constant of this reaction (\(k = 4.3 \times 10^6\) M\(^{-1}\) s\(^{-1}\) for \(\text{CH}_2\text{CHO} + \text{phenolate}\)) increases strongly with increasing electron-donating power of the substituent to give Hammett \(\rho = -7.9\)\(^73\). This value indicates that the reaction proceeds by electron transfer.
The value is more than twice that \((-3.3)^{55}\) for oxidation of phenolates by \(^\ast\)NH2. The rate constants for oxidation of (unsubstituted) phenolate by \(^\ast\)NH2 and \(^\ast\)CH2CHO are, however, approximately equal (Table 1). This shows that conclusions relating to mechanism cannot be based solely on reaction rate constants.

The rate constants for oxidation of the hydroquinone anion by 2-alkanonyl radicals (R\(^1\)C\(^\bullet\)HCOR\(^2\)) decrease from \(2.2 \times 10^9\) to \(5.6 \times 10^8\) \(\text{M}^{-1}\ \text{s}^{-1}\) on going from \(R^1 = R^2 = \text{H}\) to \(R^1 = R^2 = \text{CH}_3^{53}\). This effect is a result of the decrease of the electron deficiency in the 2-alkanonyl radical, as expected for an electron transfer mechanism. Steric hindrance may reduce the rate constant but its effect is not decisive. This is shown by the fact that the rate constant is \(1.2 \times 10^9\ \text{M}^{-1}\ \text{s}^{-1}\) for \(R^1 = R^2 = \text{CH}_2\text{OH}\), which is even more bulky than CH\(_3\), but which, in contrast, is electron-withdrawing (\(-I\) effect).

TABLE 1. Rate constants and \(\rho\) values (in parentheses) for reactions of radicals with phenols and phenolate ions\(^a\)

<table>
<thead>
<tr>
<th>Radical</th>
<th>C(_6)H(_5)OH</th>
<th>C(_6)H(_5)O(^-)</th>
<th>4-CH(_3)OC(_6)H(_4)OH</th>
<th>4-CH(_3)OC(_6)H(_4)O(^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon_{eq})</td>
<td>(2 \times 10^7)</td>
<td>(4 \times 10^6)</td>
<td>(4 \times 10^6)</td>
<td>(4 \times 10^6)</td>
</tr>
<tr>
<td>H(^+)</td>
<td>(2 \times 10^9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^\ast)OH</td>
<td>(1 \times 10^{10})</td>
<td>(1 \times 10^{10})</td>
<td>(3 \times 10^{10})</td>
<td>(3 \times 10^{10})</td>
</tr>
<tr>
<td>O(^-)</td>
<td>(7 \times 10^8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(^2-)</td>
<td>(6 \times 10^2)</td>
<td></td>
<td>2 (\times 10^4)</td>
<td></td>
</tr>
<tr>
<td>(^1)O(_2^\ast)</td>
<td>(2 \times 10^6)</td>
<td>(2 \times 10^8)</td>
<td>1 (\times 10^7)</td>
<td>7 (\times 10^8)</td>
</tr>
<tr>
<td>O(_3)</td>
<td>(1 \times 10^3)</td>
<td>(1 \times 10^9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^\ast)NH(_2)</td>
<td>(3 \times 10^8) ((-1.5)^{52})</td>
<td>(3 \times 10^6) ((-3.3)^{55})</td>
<td>(1 \times 10^9)</td>
<td>9 (\times 10^6)</td>
</tr>
<tr>
<td>Cl(_2)(^\ast)</td>
<td>(6 \times 10^6)</td>
<td>(5 \times 10^8) ((-1.1)^{53})</td>
<td>(8 \times 10^7)</td>
<td>1 (\times 10^9)</td>
</tr>
<tr>
<td>I(_2)(^-)</td>
<td>(3 \times 10^7)</td>
<td></td>
<td>1 (\times 10^8)</td>
<td></td>
</tr>
<tr>
<td>(SCN)(_2)(^-)</td>
<td>(1 \times 10^6)</td>
<td>(3 \times 10^8) ((-1.2)^{53})</td>
<td>(5 \times 10^7)</td>
<td></td>
</tr>
<tr>
<td>N(_3)(^+)</td>
<td>(4 \times 10^7)</td>
<td>(4 \times 10^9)</td>
<td>4 (\times 10^4)</td>
<td>4 (\times 10^9)</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td>(2 \times 10^{10})</td>
<td>(2 \times 10^7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I(^-)</td>
<td>(2 \times 10^7)</td>
<td>(2 \times 10^7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClO(_2)(^+)</td>
<td>(0.2)</td>
<td>(4 \times 10^7)</td>
<td>(3 \times 10^4)</td>
<td>1 (\times 10^9)</td>
</tr>
<tr>
<td>BrO(_2)(^+)</td>
<td>(3 \times 10^5)</td>
<td>(3 \times 10^9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO(_2)(^-)</td>
<td>(2 \times 10^7)</td>
<td>(2 \times 10^7)</td>
<td>(2 \times 10^8)</td>
<td></td>
</tr>
<tr>
<td>CO(_2)(^-)</td>
<td>(1 \times 10^7)</td>
<td>(3 \times 10^8) ((-1.0)^{77})</td>
<td>(1 \times 10^9)</td>
<td></td>
</tr>
<tr>
<td>PO(_2)(^+)(^-)</td>
<td>(6 \times 10^8) ((-0.7)^{78})</td>
<td>(8 \times 10^8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO(_2)(^+)(^-)</td>
<td>(3.0 \times 10^9)</td>
<td>(6 \times 10^5)</td>
<td>(4 \times 10^7)</td>
<td></td>
</tr>
<tr>
<td>SO(_3)(^+)(^-)</td>
<td>(10^9)</td>
<td>(10^9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ts(^+)</td>
<td>(10^9)</td>
<td>(10^9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ts(OH)(^+)</td>
<td>(10^9)</td>
<td>(10^9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag(_{2}^+)</td>
<td>(10^8)</td>
<td>(10^8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^\ast)CH(_2)CHO</td>
<td>(4 \times 10^6) ((-7.9)^{73})</td>
<td>(1 \times 10^9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH(_2)OO(^+)</td>
<td>(<1 \times 10^6)</td>
<td>(9 \times 10^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF(_3)OO(^-)</td>
<td>(2 \times 10^6)</td>
<td></td>
<td>(5 \times 10^7)</td>
<td></td>
</tr>
<tr>
<td>CCl(_3)OO(^-)</td>
<td>(<1 \times 10^5)</td>
<td>(2 \times 10^8)</td>
<td>(3 \times 10^8)</td>
<td>(8 \times 10^8)</td>
</tr>
<tr>
<td>C(_6)H(_2)OO(^-)</td>
<td>(2 \times 10^8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CH(_3))(_2)CO(^+)</td>
<td>(2.2 \times 10^7) ((-0.9, -1.2)^{b})</td>
<td>(1.1 \times 10^8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)The rate constants, in \(\text{M}^{-1}\ \text{s}^{-1}\), are taken from References 79 and 80 and the NDRL-NIST Solution Kinetics Database. The values in parentheses are the Hammett \(\rho\) values derived from substituent effects, given with their respective references.

\(^b\)The rate constants for this radical were measured in methanol and the \(\rho\) values were measured in benzene/di-\(t\)-butylperoxide, \((-0.9)^{26}\) and in CCl\(_4\) \((-1.2)^{31}\).
C. Oxidation of Phenols by Radical Cations

Radical cations of methoxybenzenes efficiently oxidize phenols and other reductants. For example, the radical cations of anisole, 1,3-dimethoxybenzene (DMB), and 1,3,5-trimethoxybenzene (TMB), produced in \(\geq 90\% \) yield by reaction of OH with the methoxybenzenes at pH 1, can oxidize phenols and other reductants\(^{48} \). The product radicals were identified in most cases by their known absorption spectra and extinction coefficients. The rate constants, determined by monitoring the buildup of the product radical and/or the decay of the radical cation as a function of the concentration of reductant, are summarized in Table 2. The rate constants are high for phenols bearing electron-donating substituents and much lower for phenols bearing strong electron-withdrawing substituents.

D. Reaction of Phenols with Hydroxyl Radicals. The Addition/Elimination Mechanism

Early work\(^{82} \) on the radiation chemistry of aqueous phenol solutions indicated that dihydroxycyclohexadienyl (OH adduct) and phenoxyl radicals were formed. In the first pulse radiolysis investigation concerning phenol\(^{83} \) it was concluded that only dihydroxycyclohexadienyl radicals were produced. In contrast, from the first ESR study\(^{84} \) on reactions of phenol with *OH radicals, generated by the Ti(III)/H\(_2\)O\(_2\) method\(^{85} \), it appeared that the phenoxyl radical was the only radical formed in that reaction. These apparently conflicting observations were reconciled by pulse radiolysis\(^{86,87} \) and later by ESR\(^{88} \) studies. These studies showed that the *OH radical reacts by addition to yield dihydroxycyclohexadienyl radicals, which then may undergo a ‘spontaneous’, an acid-catalyzed or a base-catalyzed dehydration to yield phenoxyl radical\(^{86} \) (equation 10). From the kinetics of formation of phenoxyl radical at pH 3–5 there was evidence for more than one OH adduct isomer responsible for phenoxyl production\(^{86} \). The isomer distribution from the reaction of *OH with phenol was later determined\(^{89} \) by a combination of product analysis and pulse radiolysis methods using specific scavengers for the isomeric dihydroxycyclohexadienyl radicals. On this basis, the reactions leading to the formation and decay by dehydration of the OH adducts are as shown in equation 10.

\[
\text{OH} + \text{Ph} \rightarrow \text{PhOH} \rightarrow \text{PhO} + \text{H} \\
\text{PhO} \rightarrow \text{PhO} + \text{PhO} \rightarrow \text{PhOH} \rightarrow \text{PhO} + \text{H}
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Anisole(^{**})</th>
<th>1,3-DMB(^{**})</th>
<th>1,3,5-TMB(^{**})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Hydroxyphenol</td>
<td>3.6 (\times) 10(^9)</td>
<td>4.8 (\times) 10(^9)</td>
<td></td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>4.6 (\times) 10(^9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Carboxyphenol</td>
<td>4.0 (\times) 10(^9)</td>
<td>1.1 (\times) 10(^9)</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>4.9 (\times) 10(^9)</td>
<td>2.4 (\times) 10(^9)</td>
<td>4.8 (\times) 10(^9)</td>
</tr>
<tr>
<td>4-Chlorophenol</td>
<td>3.7 (\times) 10(^9)</td>
<td>4.4 (\times) 10(^9)</td>
<td></td>
</tr>
<tr>
<td>4-Bromophenol</td>
<td>4.3 (\times) 10(^9)</td>
<td>3.7 (\times) 10(^9)</td>
<td></td>
</tr>
<tr>
<td>4-Formylphenol</td>
<td>(<10^7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Acetylphenol</td>
<td>(<10^7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Cyanophenol</td>
<td>(<10^7)</td>
<td>1.7 (\times) 10(^8)</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3.4 (\times) 10(^9)</td>
<td>1.8 (\times) 10(^9)</td>
<td>2.4 (\times) 10(^9)</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>2.8 (\times) 10(^9)</td>
<td>2.4 (\times) 10(^9)</td>
<td></td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>2.1 (\times) 10(^9)</td>
<td>2.3 (\times) 10(^9)</td>
<td>2.5 (\times) 10(^9)</td>
</tr>
<tr>
<td>3,5-Dimethoxyphenol</td>
<td>3.5 (\times) 10(^9)</td>
<td>4.2 (\times) 10(^9)</td>
<td>4.4 (\times) 10(^9)</td>
</tr>
</tbody>
</table>

\(^{a}\)The rate constants are given in M\(^{-1}\) s\(^{-1}\).
From the yields of the isomeric OH adducts, the probabilities p for attachment of OH to one ring position are calculated to be $p(\text{para}) : p(\text{ortho}) : p(\text{meta}) = 9 : 6 : 1^{89}$, which shows the pronounced preference of the electrophilic *OH radical for addition at the positions activated by the phenolic OH group. This selectivity is remarkable in view of the fact that the rate constant for reaction of *OH with phenol is very high, i.e. 1.4×10^{10} M$^{-1}$ s$^{-1}$.86

The para-isomer undergoes H$^+$ catalyzed dehydration a factor of 10 more rapidly than does the ortho-isomer89,90. This explains the observation by ESR88 of only the less reactive (with respect to dehydration) ortho-isomer in slightly acid solutions. The mechanism for the ‘spontaneous’ (k_{sp}) and the H$^+$ (k_a)47 and OH$^-$ catalyzed (k_b) dehydration steps may be formulated as in equation 11, taking the para-isomer as an example.
For $R = H$, k_a is $1.6 \times 10^6 \text{s}^{-1}$ \cite{91}, in agreement with the earlier estimate of $\geq 5 \times 10^5 \text{s}^{-1}$ \cite{86}. As expected by the heterolytic mechanism of formation of the phenoxyl radical from the OH adduct, there is a strong influence of R on the rates of the individual steps. For example, as compared to $k_{sp} = 4.7 \times 10^5 \text{s}^{-1}$ for $R = H$ \cite{86}, for $R = OH$ (hydroquinone) and $R = OH$ (resorcinol) $k_{sp} = 4.6 \times 10^4 \text{s}^{-1}$ and $4.3 \times 10^4 \text{s}^{-1}$, respectively \cite{92}, and $k_{sp} = 2.4 \times 10^3 \text{s}^{-1}$ if $R = CH_3$ (p-cresol) \cite{86}, and $1 \times 10^4 \text{s}^{-1}$ if the ring is substituted by two methoxy groups \cite{47}. Concerning the k_b values, substitution of the phenol by the electron-withdrawing groups CN, CHO and COCH$_3$ results in values of $3 \times 10^5 \text{s}^{-1}$, $4 \times 10^5 \text{s}^{-1}$ and $7 \times 10^5 \text{s}^{-1}$, respectively, as compared to $\geq 10^7 \text{s}^{-1}$ for unsubstituted phenol \cite{98}. This dependence of k_b on substituent is part of a more general reaction mechanism of formation of oxidized species by elimination of OH$^-$ from the corresponding (ionized) OH adducts. In this connection it may be mentioned that the rate constants for OH$^-$ elimination increase in a systematic way with decreasing ionization potential of the parent compounds \cite{93}.

The addition/elimination mechanism (equation 11) for formation of phenoxyl radicals by $^\cdot$OH reaction with phenols is now documented for a vast number of substituted phenols \cite{47,86,88,94–98}, catechols \cite{97,99–102}, resorcinol \cite{94}, hydroquinones \cite{92,97} and hydroxylated heterocyclics \cite{103–107}. The addition/elimination mechanism is also operative in $^\cdot$OH reactions with anilines to yield the nitrogen-centered anilinyl radicals (equation 12) \cite{93,97,108–111}.

\begin{equation}
\text{ArNH}_2 + ^\cdot\text{OH} \rightarrow (\text{HOArNH}_2)^\cdot \rightarrow \text{ArNH}^\cdot + \text{H}_2\text{O} \quad (12)
\end{equation}

An essential part of the driving force of the elimination step \cite{86} is the recovery of the aromatic resonance energy in going from the cyclohexadienyl to the benzene system.

The OH adduct of 4-nitrophenol or 4-nitrophenolate is the only phenolic OH adduct which does not observably undergo water or OH$^-$ elimination (equation 13) \cite{112}. In this case the heterolytic elimination step is slowed down to $<1 \text{s}^{-1}$ by the pronounced withdrawal of electron density by the NO$_2$ group.
E. Formation of Phenoxyl Radicals by Oxidative Replacement of Substituents

The *OH radical may add to a substituted benzene at the ipso position, i.e. at the carbon carrying the substituent X (equation 14).

\[
\begin{align*}
\text{HO}^+ + \text{X} & \rightarrow \text{HOX} + \text{HX} \\
\text{HO}^- & \rightarrow \text{O}^- + \text{H}^+
\end{align*}
\]

(14)

If X is a good leaving group, the resulting OH adduct undergoes elimination of HX to yield a phenoxyl radical. Reaction 14 has been demonstrated to occur for X = halogen, OH, NH₂, NO₂ and alkoxyl, benzyloxyl and phenoxyl substituents. The driving force for elimination of HX from the ipso adduct is probably the reconstitution of the aromatic system in going from the OH adduct to the phenoxyl radical. There may also be a contribution from the heat of formation of HX.

With monosubstituted benzenes, the tendency of OH to undergo ipso addition seems to be small (<10%). However, if the ipso position is activated by a second substituent like CH₃O, HO or O⁻, ipso addition may contribute up to 25% to the overall reactivity. Due to the small size of the *OH radical, steric effects (i.e. the size of X) do not seem to be of much importance in determining the probability of *OH attack at the ipso position. Oxidative replacement of halogen has been observed also with pentafluoro-, pentachloro-, pentabromo- and 2,4,6-triiodo-phenol, where it occurs in parallel to electron transfer.

A mechanism analogous to that of equation 14 has been proposed to account for the observation by ESR of the predominant production of phenoxyl radical on reaction of *OH with fluorobenzene at pH 1.8, where the fluorobenzene radical cation is assumed to be an intermediate (equation 15).

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{H}_2\text{O}^{-}\text{H}^+ & \quad \text{HO}^- \\
\text{HO}^- & \rightarrow \text{O}^-
\end{align*}
\]

(15)
16. Transient phenoxy radicals: Formation and properties in aqueous solutions

This idea is based on the assumption that hydration of the radical cation occurs predominantly at the ipso position. This is reasonable on the basis of estimates of the charge distribution in fluorobenzene radical cation. The mechanism in equation 15 is, however, not likely for oxidative dehalogenation of halophenols at pH 4.5 since the halophenol radical cations would deprotonate before they had a chance to react with water. With substituted phenols, therefore, the observed semiquinones are probably produced via equation 14.

A mechanism analogous to equation 14 has been observed with respect to reactions with halouracils and nitouracils, nitro- and bromofurans and chloroethylenes, e.g. in the case of uracil (equation 16).

\[
\text{HO}^* + \text{HN} \rightarrow \text{HN} \rightarrow \text{O}^* \quad (16)
\]

F. Formation of Phenoxy Radicals by Intramolecular Electron Transfer

It has been shown by pulse radiolysis that in peptides and enzymes containing both tryptophan (Trp) and tyrosine (Tyr) the radical produced by oxidation of tryptophan can efficiently oxidize tyrosine to yield the tyrosine phenoxy radical TyrO* (equation 17).

\[
\text{Trp}^* \rightarrow \text{TyrOH} \rightarrow \text{TrpH} \rightarrow \text{TyrO}^* \quad (17)
\]

The rate constants of this intramolecular process, which constitutes a transfer of charge and unpaired spin, decrease with increasing distance between tryptophan and tyrosine in an inverse-square distance relationship. Deprotonation of the OH group of tyrosine and protonation of the indolyl radical enhance the electron transfer rates. This is due to the pH-dependent changes in the redox potentials of tyrosine and tryptophan. From the low activation energy (0.22 eV) for the electron transfer in Trp-Tyr it was concluded that an electron-tunneling mechanism is operative. The electron transfer reaction 17 was also observed in enzymes. Rate constants vary from \(10^2\) s\(^{-1}\) (in lysozyme) to \(2 \times 10^4\) s\(^{-1}\) (in trypsin). For \(\beta\)-lactoglobulin, the activation energy is ca. 0.5 eV. On this basis charge conduction along the polypeptide chain and any mechanism involving temperature-labile hydrogen bonds was excluded, and electron tunneling was proposed. Moreover, the rate of electron transfer in peptides was found to depend also on the microenvironment. Electron transfer from tyrosine to methionine radicals also has been observed in peptides. The possibility of electron transfer means that the initial site of damage produced by reaction of a free radical with an enzyme is not necessarily the site responsible for a consequent loss of activity. More recently, oxidation of tyrosine by the tryptophan radical or radical cation was studied in a series of synthetic peptides using a varying number of proline residues as spacers. The mechanism was suggested to involve both through-bond and through-space electron transfer, depending on distance and orientation.
The autoxidation of hydroquinone is accompanied by the formation of the p-semiquinone radical; this was shown as early as 1938 by Michaelis and coworkers. Since then numerous additional examples of this type of reaction have been described, relating not only to hydroquinones but also to catechols, resorcinols, pyrogallols, naphthols and substituted phenols. Most of this material has been reviewed, including that relating to synthetic application of phenol oxidation and to phenoxyl radicals involved in the biosynthesis of natural products.

The autoxidation of phenols is slow in neutral and, especially, in acid solution but becomes very noticeable in alkaline solutions. This base catalysis of phenol oxidation is of course due to the conversion of the neutral phenols to the phenolate ions, which are more easily oxidized by the oxidant Ox (equation 18) than their conjugate acids.

$$\text{ArO}^- + \text{Ox} \rightarrow \text{ArO}^* + \text{Ox}^-$$ \hspace{1cm} (18)

At present, the exact nature of the oxidant Ox is not yet clear. O_2^- or its conjugate acid, HO_2^-, have been suggested as candidates by several groups. When one looks, however, at the rate constants collected from these sources for reduction of O_2^- by some phenols, mostly catechols, a reasonable correlation between the structure of the electron donor and the rate constant cannot be discerned. For example, if a simple electron transfer mechanism was involved, substitution of the catechol molecule with electron-withdrawing substituents like CHO, COCH$_3$, COCH$_2$NHCH$_3$, and SO$_3^-$ should decrease and not (as is experimentally observed) increase the rate constant for its oxidation. Furthermore, reported rate constants for reaction of O_2^- with 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron), a compound proposed as a specific O_2^- scavenger, vary between 1×10^7 and 5×10^8 M$^{-1}$ s$^{-1}$. The nature of the radical produced from Tiron is not agreed upon either.

It has been shown that, in dimethylformamide solutions, oxidation of Trolox anion or of di-tert-butylcatechol monoanion by one-electron transfer to O_2^- is thermodynamically not possible. Therefore, the authors suggested that the experimentally observed oxidation of the substrates occurs by electron transfer to molecular oxygen as the primary oxidant (equation 19), followed by further reactions (equations 20 and 21) that yield the experimentally observed H_2O_2.

$$\text{ArO}^- + \text{O}_2 \rightleftharpoons \text{O}_2^{2-} + \text{ArO}^*$$ \hspace{1cm} (19)

$$2 \text{ArO}^- + \text{O}_2 + 2\text{H}^+ \rightleftharpoons \text{H}_2\text{O}_2 + 2\text{ArO}^*$$ \hspace{1cm} (20)

$$2\text{O}_2^{2-} + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$$ \hspace{1cm} (21)

For reaction 19, taking hydroquinone (H_2Q) as an example, and using the standard electrode potentials (in H$_2$O, for unit concentration) for the $\text{O}_2/\text{O}_2^{2-}$ (-0.16 V), $\text{Q}^-/\text{Q}_2^{2-}$ (0.023 V), and Q^-/QH_2 (0.459 V), we calculate $\Delta E = -0.18$ V at pH 13.5 (where hydroquinone exists as the dianion) and $\Delta E = -0.62$ V at pH 7. Thus, the reaction is endothermic. For catechol and Trolox, reaction 19 is even more endothermic. However, since reaction 21 is very rapid in the presence of H^+, equilibrium 19 is pulled to the right. An alternative mechanism is the oxidation of phenols by O_2 via a hydrogen-atom transfer process (equation 22) which also is endothermic.
Even if reactions 19 and 22 are very slow, the oxidation of hydroquinone by \(\text{O}_2 \) may still be rapid, due to autocatalysis by the quinone formed as reaction product or present as impurity. The reactions suggested to occur are shown in equations 23–27.

\[
\begin{align*}
\text{HQ}^- + \text{O}_2 & \rightarrow \text{Q}^- + \text{HO}_2^- \\
\text{HO}_2^- & \rightleftharpoons \text{H}^+ + \text{O}_2^{-} \\
\text{Q}^- + \text{O}_2 & \xrightleftharpoons[k_{25}]{k_{-25}} \text{Q} + \text{O}_2^{-} \\
\text{Q} + \text{H}_2\text{Q} & \xrightleftharpoons[k_{26}]{k_{-26}} 2\text{Q}^- + 2\text{H}^+ \\
\text{H}^+ + \text{HO}_2^- + \text{Q}^- & \rightarrow \text{H}_2\text{O}_2 + \text{Q}
\end{align*}
\]

The Q formed in equation 25 will be consumed by reaction with H\(_2\)Q (equation 26) giving rise to Q\(^-\) which (in a reversible reaction) is oxidized by O\(_2\) to recover Q (equation 25). Reaction 27 presents an additional path to Q in which also H\(_2\)O\(_2\) is produced.

Reversible electron transfer between semiquinone anions and O\(_2\) (equation 25) has been established by the method of pulse radiolysis\(^{154,155}\). The rate constants \(k_{25} \) and \(k_{-25} \) and the equilibrium constants \(K = k_{25}/k_{-25} \) are known for many different quinones Q\(^{-}\)\(^{155,156}\). The \(k_{25} \) values are typically in the range \(10^4 - 10^9 \) M\(^{-1}\) s\(^{-1}\) and the \(k_{-25} \) values are ca 1–100, i.e. for many quinones (e.g. \(p \)-benzoquinone) the equilibrium 25 is in favor of Q\(^-\) and O\(_2\). However, due to the ‘cross’ reaction 27, whereby Q\(^-\) and HO\(_2\)^\(-\)/O\(_2\)^\(-\) are removed from reaction 25, O\(_2\) is consumed and ends up oxidizing H\(_2\)Q to give H\(_2\)O\(_2\). In reaction 26, for which the forward rate constant \(k_{26} = 2.6 \times 10^8 \) M\(^{-1}\) s\(^{-1}\)\(^{136,137}\), two Q\(^-\) are produced for every Q\(^-\) consumed in reaction 25. The Q\(^-\) can re-enter the reaction cycle at equation 25, thus propagating a chain reaction initiated by traces of Q\(^-\). Q\(^-\) does not necessarily have to be produced via reaction 23; it could also be generated by reduction of Q by reducing impurities or, more likely, by QH\(_2\) (equation 26). The reaction sequence 23–27 explains a large part if not all of the earlier data\(^{20,140,157,158}\) on quinol oxidations, such as hydrogen peroxide formation in the air oxidation of phenols\(^{159}\), the accelerating effect of quinones\(^{140,157,158}\) and the inhibiting effect of superoxide dismutase (SOD) on, e.g., the autoxidation of catecholamines\(^{101,146,160–163}\), of pyrogallop\(^{164}\), of 6,7-dihydroxytryptamine\(^{162}\), of reduced flavins\(^{165}\) and of tetrahydropteridines\(^{166}\). A very similar, but more detailed mechanism for oxidation of hydroquinones by O\(_2\) has recently been proposed\(^{167}\).
III. PROPERTIES OF PHENOXYL RADICALS

A. Electron Spin Resonance Spectra of Phenoxy radicals

Electron spin resonance spectra of phenoxy radicals were first recorded with the persistent 2,4,6-tri-substituted phenoxy, produced by PbO$_2$ oxidation of the corresponding phenol29,168. Autoxidation of 3,4-dihydroxyphenyllalanine allowed the observation of ESR spectra of some long-lived secondary radicals169, while enzymatic oxidation of pyrogallol and other compounds by peroxidase in a flow system enabled the observation of some phenoxy-type radicals170. The first recording of detailed ESR spectra of transient phenoxy radicals was carried out by Stone and Waters36, who oxidized phenol and several substituted phenols with ceric ions in a rapid-mix system. Similarly, the reaction of phenol with OH radicals, from the Ti$^{3+}$–H$_2$O$_2$ system, afforded a resolved ESR spectrum of the transient phenoxy radical84. Since then, many experiments have been carried out in which phenoxy radicals were produced in situ in the ESR cavity, by chemical$^{37–39,42,44,88,171–174}$, photochemical$^{115,179–185}$ or radiolytic47,94,97,186,187 reactions. In numerous cases, the primary phenoxy radicals were observed along with secondary radicals of the longer-lived semiquinone type, which were produced from hydroxylated products$^{34,37,39,97,115,171–174,179}$.

Phenoxy and semiquinone radicals are important intermediates in numerous biological systems and ESR spectroscopy has been used to detect and identify them in such systems. Studies were carried out on enzymatic reduction of quinone derivatives and enzymatic oxidation of hydroquinone and phenol derivatives. This topic has been reviewed before$^{34,188–190}$.

1. Phenoxy and monosubstituted phenoxy radicals

The proton hyperfine splitting constants (hfs) for the unsubstituted phenoxy radical are (in millitesla, mT) as indicated below at the corresponding positions with $g = 2.00461^97$.

These values indicate that the spin density is mostly at the ortho and para carbon atoms (ca 27% and ca 43%, respectively) with a negative spin density at the meta position (ca −8%) and only ca 25% remaining on the oxygen atom. In other words, all the mesomeric structures shown below are of somewhat similar importance.

The assignment of the proton hyperfine constants to the particular positions of phenoxyl was supported by the ESR parameters for substituted phenoxyls, for example the carboxylates.

\[
\begin{align*}
\dot{\text{O}} & 0.653 & 0.653 \\
\text{CO}_2^- & 0.193 & 0.193 \\
\end{align*}
\]
\[g = 2.00477 \]

\[
\begin{align*}
\dot{\text{O}} & 0.656 & 0.682 \\
\text{CO}_2^- & 0.183 & 0.999 \\
\end{align*}
\]
\[g = 2.00472 \]

\[
\begin{align*}
\dot{\text{O}} & 0.639 & 0.178 \\
\text{CO}_2^- & 0.184 & 0.998 \\
\end{align*}
\]
\[g = 2.00476 \]

Many substituents exert only a mild effect on the proton hyperfine splittings; strong influence is observed in the case of \(\text{O}^-\), OH, OR and NH\(_2\). It has been suggested that the effect of substituents on the proton hf's follows the same order as the electron donating or withdrawing effects of these substituents. However, correlation between \(a^H\) and Hammett’s \(\sigma\) substituent constants fails because the electron distribution in the radical is different from that in the molecule. Table 3 summarizes the proton hf's constants for a selected set of substituted phenoxyl radicals. The values are taken from Dixon and coworkers, who demonstrated qualitative correlations among the various ESR parameters. These correlations allowed assignment of coupling constants to the particular protons even where differences among them were small. Table 3 lists only the ring proton hf's.

<table>
<thead>
<tr>
<th>Substituent</th>
<th>(a^H_2)</th>
<th>(a^H_3)</th>
<th>(a^H_4)</th>
<th>(a^H_5)</th>
<th>(a^H_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.66</td>
<td>−0.18</td>
<td>1.02</td>
<td>−0.18</td>
<td>0.66</td>
</tr>
<tr>
<td>(p)-NO(_2)</td>
<td>0.70</td>
<td>−0.24</td>
<td>−0.24</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>(p)-COCH(_3)</td>
<td>0.675</td>
<td>−0.21</td>
<td>−0.21</td>
<td>0.675</td>
<td></td>
</tr>
<tr>
<td>(p)-CH(_3)</td>
<td>0.61</td>
<td>−0.14</td>
<td>−0.14</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>(p)-Cl</td>
<td>0.64</td>
<td>−0.19</td>
<td>−0.19</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>(p)-OCH(_3)</td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>(p)-NH(_2)</td>
<td>0.40</td>
<td>0.05</td>
<td>0.05</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>(p)-O(^-)</td>
<td>0.237</td>
<td>0.237</td>
<td>0.237</td>
<td>0.237</td>
<td></td>
</tr>
<tr>
<td>(o)-NO(_2)</td>
<td></td>
<td>−0.12</td>
<td>1.025</td>
<td>−0.24</td>
<td>0.725</td>
</tr>
<tr>
<td>(o)-COCH(_3)</td>
<td></td>
<td>−0.15</td>
<td>1.025</td>
<td>−0.20</td>
<td>0.70</td>
</tr>
<tr>
<td>(o)-CH(_3)</td>
<td></td>
<td>−0.20</td>
<td>0.97</td>
<td>−0.15</td>
<td>0.60</td>
</tr>
<tr>
<td>(o)-Cl</td>
<td></td>
<td>−0.20</td>
<td>0.98</td>
<td>−0.16</td>
<td>0.60</td>
</tr>
<tr>
<td>(o)-OCH(_3)</td>
<td></td>
<td>−0.19</td>
<td>0.85</td>
<td>0.00</td>
<td>0.43</td>
</tr>
<tr>
<td>(o)-NH(_2)</td>
<td></td>
<td>−0.09</td>
<td>0.662</td>
<td>0.15</td>
<td>0.26</td>
</tr>
<tr>
<td>(o)-O(^-)</td>
<td></td>
<td>0.075</td>
<td>0.375</td>
<td>0.375</td>
<td>0.075</td>
</tr>
<tr>
<td>(m)-NO(_2)</td>
<td>0.735</td>
<td>0.98</td>
<td>−0.21</td>
<td>0.675</td>
<td></td>
</tr>
<tr>
<td>(m)-COCH(_3)</td>
<td>0.71</td>
<td>0.99</td>
<td>−0.19</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>(m)-CH(_3)</td>
<td>0.59</td>
<td>1.05</td>
<td>−0.19</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>(m)-Cl</td>
<td>0.62</td>
<td>1.05</td>
<td>−0.21</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>(m)-OCH(_3)</td>
<td>0.35</td>
<td>1.14</td>
<td>−0.23</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>(m)-NH(_2)</td>
<td>0.31</td>
<td>1.09</td>
<td>−0.20</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>(m)-O(^-)</td>
<td>−0.07</td>
<td>1.12</td>
<td>−0.28</td>
<td>1.12</td>
<td></td>
</tr>
</tbody>
</table>
for one consistent set of substituted phenoxy radicals studied under identical conditions. The hfs’s for the substituent protons and for other nuclei are omitted and can be found in the original work38. Furthermore, a multitude of substituted phenoxy radicals, studied by ESR under varying conditions, are given in comprehensive compilations192,193.

Phenoxy radicals substituted with O^-, i.e. semiquinone radical anions, should be viewed as a special case because of the equivalence of the two oxygens. Even in the meta isomer the two oxygens appear to be equivalent in the ESR spectra (but see below for further details). The ESR parameters are48,97,186:

\[
\begin{align*}
\dot{O} & \quad 0.238 \\
\cdot & \quad 1.144 \\
\cdot & \quad 0.068 \\
\end{align*}
\]

\[g = 2.00455\]

Quantitatively, however, the meta isomer is different in that the spin density on its oxygen atoms is at least 3 times smaller than the 60–65% spin density found on the oxygens of o- and p-semiquinones37. Protonation of the O^- destroys this equivalence so that the hydroxyphenoxy radicals shown below38,39,186,194,195:

\[
\begin{align*}
\dot{O} & \quad 0.482 \\
\cdot & \quad 0.177 \\
\cdot & \quad 0.177 \\
\cdot & \quad 0.177 \\
\cdot & \quad 0.482 \\
\cdot & \quad 0.869 \\
\cdot & \quad 0.226 \\
\cdot & \quad 0.226 \\
\end{align*}
\]

\[OH \quad (0.02) \quad OH \quad (0.02) \quad OH \quad (0.15)\]

become similar to the methoxyphenoxy radicals47.

\[
\begin{align*}
\dot{O} & \quad 0.505 \\
\cdot & \quad 0.020 \\
\cdot & \quad 0.207 \\
OCH_3 & \quad 0.505 \\
OCH_3 & \quad 0.020 \\
OCH_3 & \quad 0.207 \\
\cdot & \quad 0.505 \\
\cdot & \quad 0.897 \\
\cdot & \quad 0.232 \\
OCH_3 & \quad 0.505 \\
OCH_3 & \quad 0.020 \\
OCH_3 & \quad 0.207 \\
\cdot & \quad 0.505 \\
\cdot & \quad 0.345 \\
\cdot & \quad 0.130 \\
OCH_3 & \quad 0.505 \\
OCH_3 & \quad 0.020 \\
OCH_3 & \quad 0.207 \\
\cdot & \quad 0.505 \\
\cdot & \quad 0.426 \\
\cdot & \quad 0.426 \\
\cdot & \quad 0.426 \\
\end{align*}
\]

\[g = 2.00449 \quad g = 2.00431 \quad g = 2.00439\]

Phenoxy radicals substituted with OH, NH$_2$ or OR have intermediate properties between those of the semiquinones and of the simple phenoxy, due to the contribution of mesomeric
structures with a negative charge on the phenoxy oxygen and a positive charge on the
substituent heteroatom.

\[
\begin{align*}
&\text{OCH}_3 & \text{OCH}_3 & \text{OCH}_3 & \text{OCH}_3 \\
&\text{O} & \text{O} & \text{O} & \text{O}^-
\end{align*}
\]

This effect decreases the total spin density on the ring and increases that on the oxygens,
as compared with unsubstituted phenoxy.

The hfs's for the aminophenoxyl radicals97,196 resemble those of the semiquinones more
closely than do the methoxyphenoxyl:

\[
\begin{align*}
&0.276 & 0.276 & 0.177 & 0.177 \\
&0.177 & 0.276 & 0.177 & 0.294 \\
&(0.521) \text{NH}_2 (0.553) & 0.101 & 0.294 & (0.476) \text{NH}_2 (0.530) \\
&0.431 & <0.01 & 0.294 & 0.294
\end{align*}
\]

\[g = 2.00377 \quad g = 2.00372\]

It should be noted that the \(g\) factors are considerably lower than those observed with the
semiquinones or the methoxyphenoxyl radicals. This indicates a considerable transfer of
spin density to the nitrogen atom97. (For further considerations and theoretical calculations
on the \(p\)-aminophenoxyl radical, see References 197 and 198).

The hfs constants for the nitrogen atoms \((a^N)\) in aminophenoxyl radicals30,38,97,196 are
slightly lower than the proton hfs \((a^H)\) in the same position, while \(a^N\) for nitrophenoxyl
is considerably lower38,42. The halogen hfs’s of halophenoxyl radicals were determined
in several cases38,42,180,199–201. It was noticed that replacement of H by F or Cl had little
effect on the spin density distribution and that the ratio of hfs’s \(a^H : a^F : a^Cl\) at the same
position on the ring was approximately 5 : 15 : 1 in all cases.

The hfs constants for \(^{13}\text{C}\) were determined for several stable semiquinones202–206 and
sterically hindered persistent phenoxyls207–215. In several persistent phenoxyl radicals, the
hfs’s for \(^{13}\text{C}\) were found to be in the range of 1.1–1.3 mT for the \textit{para} carbon, 0.8–1.0 mT
for the \textit{meta} and \textit{ipso} and 0.2–0.5 mT for the \textit{ortho} carbon, with slight variations depending
on the nature of the substituents207,209,211,216. The hfs’s were used to derive the various
\(Q\) values that affect them \((Q_{C-C}^C, Q_{C-H}^C, Q_{C-O}^O, Q_{O-C})\) and to confirm the validity of
calculated spin densities. Although the values reported vary considerably211,216, it is clear
that the unpaired spin is distributed mainly at the \textit{ortho} and \textit{para} carbons and the oxygen,
with 20–30% at each site.

The \(^{13}\text{C}\) hfs’s for \(m\)-benzosemiquinone206 are in the same range as those for the
phenoxy radical. In contrast, the \(o\)- and \(p\)-semiquinones exhibit much lower \(^{13}\text{C}\) hfs’s. It is
interesting to note that while the proton hfs constants of \(p\)-benzosemiquinone were not
sensitive to solvent composition, the 13C hfs was extremely sensitive to water content. This was explained by the formation of radical–solvent complexes and their effect on spin density.

The spin density on the phenoxyl oxygen was also confirmed by measurements of 17O hfs. In fact, the observation of the 17O hfs ($\alpha = 1.023$ mT for the 2,4,6-tri-t-butylphenoxyl radical and $\alpha = 0.97$ mT for the 2,4,6-triphenylphenoxyl radical) was the first direct experimental evidence for an appreciable spin density on the phenoxyl oxygen. McLachlan SCF calculations estimated the spin density on the oxygen at 26% which, combined with the experimental hfs's, leads to $Q_O \approx 3.8$ mT. Experiments with 17O-enriched semiquinones also indicated a $Q_O \approx 0.9$–1.0 mT for several benzosemiquinones (and slightly lower a^O for naphtho- and anthra-semiquinones) which again lead to an estimated $Q_{OC} \sim 4.0$ mT (the spin density on the oxygen is the main contributor to a^O). Variations in a^O for p-benzosemiquinone between 0.95 and 0.87 mT with varying water mole fraction from 0 to 1 were rationalized on the basis of the π-electron spin densities calculated from the known proton and 13C hfs’s.

2. Phenoxyl radicals with extended π-systems

ESR spectra were reported for various phenoxyl-type radicals with extended π-systems, e.g. biphenyl, tetraphenyl, naphthalene, anthracene and phenyl systems conjugated with aliphatic double bonds or triple bonds. In all these cases, the ESR parameters indicate spin density distribution over the extended π-system with presumably lower spin density on the phenoxyl oxygen. For example, the hfs constants (in mT) for α- and β-naphthoxyl are:

![Image of hfs constants for naphthoxyl](image)

and for anthroxyl:

![Image of hfs constants for anthroxyl](image)

In general, these follow the same pattern as phenoxyl, with ortho and para positions bearing high spin density and meta having little or negative spin density. In these polycyclic phenoxyls the general trend of alternating ‘high’ and ‘low’ spin densities appears to hold although β-naphthoxyl is quite different from the α-isomer. ESR spectra of naphthosemiquinones and anthrasemiquinones also have been reported.

The radical derived from α-tocopherol (Vitamin E) may be mentioned in this category, although it is basically a p-alkoxyphenoxyl. The hfs’s for H or CH$_3$ ortho to the phenoxyl
oxygen are in the range of 0.5–0.6 mT, similar to those in \(p\)-methoxyphenoxyl\(^{47}\), with a similar \(g\) factor of 2.0046. The effect of the hetero ring is to make the two positions ortho to \(O^\bullet\) inequivalent, with 20% higher spin density on the ortho carbon near the hetero ring than the one on the opposite side\(^{245}\). The length of the side chain had little effect on the ESR parameters.

3. Kinetic ESR measurements

ESR experiments were used to measure the kinetics of several types of reactions, those that can be monitored only by ESR, such as proton exchange or electron exchange reactions of radicals, and some that can be measured by other techniques as well, e.g. decay kinetics. Although most decay kinetics of phenoxy radicals were followed by pulse radiolysis or flash photolysis by monitoring optical absorption, kinetics for some long-lived radicals were frequently monitored by ESR. For example, the second-order decay rates of 4-alkyl-2,6-di-\(t\)-butylphenoxyl radicals were measured to be 2200, 500 and 2 M\(^{-1}\) s\(^{-1}\) for the 4-methyl, 4-ethyl and 4-isopropyl derivatives, respectively, in benzene solutions at room temperature\(^{247}\). Cross-disproportionation between different phenoxy radicals\(^{248}\) and the reaction of persistent phenoxy with oxygen, peroxyl radical and hydroperoxide\(^{249}\) were also followed by ESR.

Intermolecular and intramolecular proton exchange reactions in hydroxyphenoxyl radicals were studied by several authors\(^{195,250–255}\). In aqueous solutions\(^{250–252}\), the proton transfer was considered to take place between the radical and the solvent, and the ESR line broadening effects were analyzed in terms of equilibria such as that shown in equation 28 yielding \(k(R^\bullet + H^+ = RH^+) \sim 10^9\) M\(^{-1}\) s\(^{-1}\). On the other hand, experiments in aprotic solvents indicated intramolecular proton transfer via an internal hydrogen bridge\(^{255}\) (equation 29) with \(k \sim 10^3\) to \(10^7\) s\(^{-1}\) between \(-100\) and \(+22^\circ C\). A later study\(^{195}\) of the \(\alpha\)-semiquinone radical in different media has shown that the effects of both inter- and intramolecular proton transfer processes on the ESR spectra have to be taken into account in such a system. While the intramolecular process is always present, intermolecular hydrogen bonding may predominate in protic solvents. For this reaction the OH proton hfs of \(\alpha\)-hydroxyphenoxyl was observed in aprotic solvents\(^{255}\) but not in water\(^{250–252}\). In the case of pyrogallol radical the OH proton hfs was observed even in water\(^{250}\), apparently because of stronger intramolecular hydrogen bonding due to the presence of two OH groups ortho to the \(O^\bullet\) site.
Intermolecular proton exchange between 3,6-di-t-butyl-2-hydroxyphenoxyl radical and a variety of organic acids and bases was studied under various conditions. Line broadening was analyzed in terms of a mechanism shown in equation 30 for amine as the base, which involves a proton transfer to the amine and oscillation of the hydrogen bonds between the nitrogen and either of the two oxygens. In the absence of hydrogen bonding compounds, intramolecular hydrogen migration takes place as discussed above.

Alternating line-width effects were found in the ESR spectra of some protonated phenoxyl radicals and were interpreted in terms of jumps between geometrical isomers involving the direction of the O⁺-H group in relation to the ring.

Another type of line broadening is caused by electron exchange reactions between the radical and its parent compound, for example between phenoxyl radical and phenolate ion (equation 31, where the labels 1 and 2 mark individual molecules).

\[
\text{Ph}^1\text{O}^- + \text{Ph}^2\text{O}^- \rightleftharpoons \text{Ph}^1\text{O}^- + \text{Ph}^2\text{O}^-
\]

Such self-exchange reactions cannot be followed by optical spectroscopy since no chemical change is involved. However, ESR spectroscopy provides a unique capability to do so because the spin states of the protons in the radical effectively label a particular radical. The reaction leads to broadening of the ESR lines, which is detectable at rates of transfer \(\geq 10^6 \text{ s}^{-1} \). From the dependence of line width on phenolate concentration it was calculated that the rate constant for this self-exchange reaction is 1.9 \(\times \) \(10^8 \) M\(^{-1}\) s\(^{-1}\). Similarly, the rate constants for the self-exchange reactions between semiquinone radical anions and their parent quinones were determined. They were found to be in the range of 0.5–2.0 \(\times \) \(10^8 \) M\(^{-1}\) s\(^{-1}\) for benzoquinone and its dimethyl and tetramethyl derivatives. These values were correlated with the rates of electron transfer between semiquinones and different quinones, according to the Marcus theory.
4. Comparison with isoelectronic radicals

The phenoxyl radical can be compared with the isoelectronic anilinyl and benzyl radicals:

\[
\begin{align*}
\text{O} & & \hat{H} & & \text{NH} & & \hat{H} & & \text{CH}_2 \\
1.022 & & 0.661 & & 0.618 & & 0.513 & & 0.617 \\
0.185 & & 0.185 & & 0.201 & & 0.177 & &
g = 2.00461 & & g = 2.00331 & & g = 2.00260
\end{align*}
\]

It is clear from the \(a^H_{\text{ortho}} \) and \(a^H_{\text{para}} \) that the spin density on the ring decreases in the order phenoxyl \(> \) anilinyl \(> \) benzyl and is presumably accompanied by a corresponding increase in spin density on the formal radical site. This trend was also confirmed by theoretical calculations that compare the three radicals\(^{265-267}\). Apart from being isoelectronic, the anilinyl radical resembles the phenoxyl in being oxidizing while the benzyl tends to be reducing.

B. Optical Spectra of Phenoxyl Radicals

Optical absorption spectra of transient phenoxyl radicals have been studied by the flash photolysis or pulse radiolysis techniques and for some stable phenoxyl radicals it was possible to record their spectra in a spectrophotometer. Flash photolysis was instrumental in carrying out the first spectral observations of transient phenoxyl radicals under various conditions\(^{268-272}\). Pulse radiolysis, however, gave more accurate extinction coefficients owing to the more precise determination of the radiolytic yields of phenoxyl radicals, as compared with the photochemical quantum yields. Pulse radiolysis was also used to obtain very detailed spectra of certain model phenoxyl radicals\(^{263,273}\) as shown, e.g., in Figure 1.

![Optical absorption spectrum of the phenoxyl radical in aqueous solution. Adapted from Reference 273](image)
TABLE 4. Absorption maxima (λ_{max}, in nm) and molar absorption coefficients (ϵ, in M$^{-1}$ cm$^{-1}$) of monosubstituted phenoxyl radicals in aqueous solutions

<table>
<thead>
<tr>
<th>Substituent</th>
<th>λ_{max}</th>
<th>ϵ</th>
<th>λ_{max}</th>
<th>ϵ</th>
<th>λ_{max}</th>
<th>ϵ</th>
<th>Referencea</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>402</td>
<td>3000</td>
<td>385</td>
<td>2100</td>
<td>290</td>
<td>~4000</td>
<td>58, 263 (86, 272)</td>
</tr>
<tr>
<td>o-CH$_3$</td>
<td>395</td>
<td>2430</td>
<td>380</td>
<td>1800</td>
<td>58 (57, 91, 272, 274)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-CH$_3$</td>
<td>414</td>
<td>2700</td>
<td>395</td>
<td>2100</td>
<td>58 (57, 91, 272, 274)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-CH$_3$</td>
<td>407</td>
<td>3550</td>
<td>390</td>
<td>2300</td>
<td>58 (57, 86, 91, 272, 274)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-F</td>
<td>407</td>
<td>3100</td>
<td>390</td>
<td>2500</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-F</td>
<td>390</td>
<td>2920</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Cl</td>
<td>393</td>
<td>1800</td>
<td>376</td>
<td>1620</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Cl</td>
<td>417</td>
<td>2220</td>
<td>400</td>
<td>1950</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Cl</td>
<td>417</td>
<td>5100</td>
<td>400</td>
<td>4100</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Br</td>
<td>402</td>
<td>2450</td>
<td>383</td>
<td>1950</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Br</td>
<td>426</td>
<td>2000</td>
<td>407</td>
<td>1500</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Br</td>
<td>430</td>
<td>5500</td>
<td>417</td>
<td>4100</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-I</td>
<td>428</td>
<td>5400</td>
<td>412</td>
<td>4100</td>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-OCH$_3$</td>
<td>383</td>
<td>2340</td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-OCH$_3$</td>
<td>430</td>
<td>2580</td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-OCH$_3$</td>
<td>420</td>
<td>6360</td>
<td>400</td>
<td>290</td>
<td>13310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-NH$_2$</td>
<td>417</td>
<td>7030</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-N(CH$_3$)$_2$</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-OH</td>
<td>428</td>
<td>3000</td>
<td>408</td>
<td>2400</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-OH</td>
<td>410–415</td>
<td>4400</td>
<td>399</td>
<td></td>
<td>155, 278 (92, 269)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-O$^-$</td>
<td>430</td>
<td>3100</td>
<td></td>
<td></td>
<td>155, 32, 92, 278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-O$^-$</td>
<td>447</td>
<td>ca 2600</td>
<td>ca 425</td>
<td>ca 2400</td>
<td>ca 316</td>
<td>ca 4000</td>
<td>76, 187</td>
</tr>
<tr>
<td>p-O$^-$</td>
<td>430</td>
<td>6100</td>
<td>ca 404</td>
<td>ca 5000</td>
<td>316</td>
<td>40000</td>
<td>155 (32, 92, 278)</td>
</tr>
<tr>
<td>o-C$_6$H$_5$</td>
<td>500</td>
<td>360</td>
<td></td>
<td></td>
<td>279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-C$_6$H$_5$</td>
<td>545</td>
<td>365</td>
<td></td>
<td></td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-I</td>
<td>560</td>
<td>350</td>
<td></td>
<td></td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-CH=CHCO$_2$</td>
<td>595</td>
<td>18000</td>
<td>545</td>
<td>15000</td>
<td>281</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aReferences in parentheses report similar data to those listed in the Table.

The main absorption maxima and extinction coefficients for a series of monosubstituted phenoxyl radicals in aqueous solutions are summarized in Table 4. Most phenoxyl radicals exhibit a relatively intense absorption (ϵ ca 2000–6000 M$^{-1}$ cm$^{-1}$) in the region of 380–450 nm. An additional very intense peak around 300 nm was recorded for some of the phenoxyl radicals. The exceptions are the o-benzoquinone anions, which have little absorption above the 300 nm peak, and phenoxyl radicals derived from polycyclic or highly conjugated compounds, which absorb at higher wavelengths (see Tables 5 and 6).

Substituents exert pronounced effects on the absorption spectra. In general, meta- and para-substituted phenoxyl radicals exhibit absorption maxima at higher wavelengths than the ortho analogues. On the other hand, the para-substituted phenoxyl radicals have extinction coefficients considerably higher than those of either the ortho or the meta analogues. These general trends hold for the methyl-, bromo-, methoxy- and hydroxyphenoxyl radicals, and for the semiquinones.
TABLE 5. Absorption maxima (λ_{max}, in nm) and molar absorption coefficients (ε, in M$^{-1}$ cm$^{-1}$) of selected phenoxy radicals produced by oxidation of phenols

<table>
<thead>
<tr>
<th>Phenol</th>
<th>λ_{max}</th>
<th>ε</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Aminophenol (protonated on O)</td>
<td>437</td>
<td>7300</td>
<td>197</td>
</tr>
<tr>
<td>(neutral)</td>
<td>444</td>
<td>6100</td>
<td>197</td>
</tr>
<tr>
<td>(deprotonated at NH$_2$)</td>
<td>474</td>
<td>7500</td>
<td>197</td>
</tr>
<tr>
<td>4-Aminoresorcinol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(neutral)</td>
<td>430</td>
<td>3800</td>
<td>283</td>
</tr>
<tr>
<td>2,6-Dimethylphenol</td>
<td>375, 390</td>
<td>2950, 3150</td>
<td>284</td>
</tr>
<tr>
<td>3,4-Dimethylphenol</td>
<td>400, 415</td>
<td>2900, 3300</td>
<td>284</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>430</td>
<td>3600</td>
<td>285</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>440</td>
<td>2400</td>
<td>286</td>
</tr>
<tr>
<td>2,4-Dibromophenol</td>
<td>420</td>
<td>3700</td>
<td>286</td>
</tr>
<tr>
<td>Pentabromophenol</td>
<td>470, 330</td>
<td>3200, 3900</td>
<td>286</td>
</tr>
<tr>
<td>Eugenol</td>
<td>390, 300</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>Isoeugenol</td>
<td>530, 350</td>
<td></td>
<td>287</td>
</tr>
<tr>
<td>4-t-Butylcatechol (acid form)</td>
<td>390, 290</td>
<td>1850, 7700</td>
<td>102</td>
</tr>
<tr>
<td>4-t-Butylcatechol (anion form)</td>
<td>313, 350sh</td>
<td>12200, 2400</td>
<td>102</td>
</tr>
<tr>
<td>1,2,4-Trihydroxybenzene (neutral)</td>
<td>400</td>
<td>4500</td>
<td>288</td>
</tr>
<tr>
<td>(monoanion)</td>
<td>430</td>
<td>5200</td>
<td>288</td>
</tr>
<tr>
<td>(dianion)</td>
<td>425</td>
<td></td>
<td>288</td>
</tr>
<tr>
<td>1,3,5-Trihydroxybenzene (neutral)</td>
<td>495</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>(monoanion)</td>
<td>550</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>(dianion)</td>
<td>640</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>2,5-Dihydroxybenzoate ion</td>
<td>432, 408</td>
<td>7400, 6600</td>
<td>290</td>
</tr>
<tr>
<td>2,4-Dihydroxybenzoate ion</td>
<td>460</td>
<td>3300</td>
<td>290</td>
</tr>
<tr>
<td>Tetrafluorohydroquinone</td>
<td>430, 404</td>
<td>6850, 5000</td>
<td>291</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>337</td>
<td>3500</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>340, 400</td>
<td></td>
<td>292</td>
</tr>
<tr>
<td>2,4-Dihydroxyacetophenone</td>
<td>460</td>
<td></td>
<td>293</td>
</tr>
<tr>
<td>2,4,6-Trihydroxyacetophenone</td>
<td>515</td>
<td></td>
<td>294</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>407</td>
<td>3200</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>395</td>
<td>2400</td>
<td>(56, 95, 122, 295–299)</td>
</tr>
<tr>
<td></td>
<td>260, 405</td>
<td>6000, 2600</td>
<td>300</td>
</tr>
<tr>
<td>3-Iodotyrosine</td>
<td>275, 405</td>
<td>8400, 3300</td>
<td>301</td>
</tr>
<tr>
<td>3,5-Diiodotyrosine</td>
<td>350, 410</td>
<td>4300, 1700</td>
<td>302</td>
</tr>
<tr>
<td>3,4-Dihydroxyphenylalanine</td>
<td>310</td>
<td>5800</td>
<td>76</td>
</tr>
<tr>
<td>5-Hydroxydopamine</td>
<td>315</td>
<td>4800</td>
<td>76</td>
</tr>
<tr>
<td>6-Hydroxydopamine</td>
<td>440, 420, 345</td>
<td>3500, 2700, 7600</td>
<td>76</td>
</tr>
<tr>
<td>2,5-Dihydroxyphenylacetic acid</td>
<td>430, 405, 310</td>
<td>6000, 5200, 11000</td>
<td>76</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>310</td>
<td>5400</td>
<td>76</td>
</tr>
<tr>
<td>3-Hydroxykynurenine</td>
<td>460, 690</td>
<td>1300, 700</td>
<td>303</td>
</tr>
<tr>
<td>7-Hydroxycoumarin</td>
<td>575, 525</td>
<td>2700, 1750</td>
<td>76</td>
</tr>
<tr>
<td>6,7-Dihydroxycoumarin</td>
<td>530</td>
<td>2400</td>
<td>76</td>
</tr>
<tr>
<td>α-Tocopherol</td>
<td>425</td>
<td></td>
<td>246, 304</td>
</tr>
</tbody>
</table>
The absorption bands of phenoxyl and semiquinone radicals are ascribed to $\pi - \pi^*$ transitions and some of the splittings are thought to be due to C–O stretching vibrations in the excited state32,318. Photoexcitation of certain phenoxyl radicals at lower wavelengths (<300 nm) often yields a reactive quartet state which can abstract a hydrogen atom from aliphatic solvents319. Photolysis at higher wavelengths does not yield such reactive species. Certain semiquinone radicals were also found to be stable toward photolysis at $\lambda > 330$ nm320.

Absorption spectra of phenoxyl radicals derived from biologically important molecules were recorded in numerous cases. The tyrosyl radical was studied by many investigators56,58,86,95,122,295–299,321 and its spectrum was used to detect tyrosine oxidation in a protein322 and to follow intramolecular electron transfer from tyrosine to the tryptophan radical in dipeptides and polypeptides122–125. A number of catecholamines, such as adrenaline and dopa, were also studied by kinetic spectrophotometric pulse radiolysis76,99,101,143,147,323. The absorption spectra of most of these substituted o-semiquinone anion radicals76,99,101,102,143,147,323 were similar to those of the unsubstituted radical. The phenoxyl radicals derived from oxidation of Vitamin E324 and a simpler analogue, Trolox C76 were found in pulse radiolysis experiments to have an absorption maximum at 430 nm, similar to that of the p-methoxyphenoxyl radical. Absorption spectra of semiquinone radicals derived from reduction of riboflavin325,326 and FAD327,328 were also reported. The spectra of many of the compounds mentioned above were used in pulse radiolysis electron transfer experiments aimed at determinations of reduction potentials76,326,328.

The ultraviolet and visible spectra of persistent phenoxyl radicals have been reviewed19. The spectrum of tri-t-butylphenoxyl was also recorded in the infrared region329.

<table>
<thead>
<tr>
<th>Phenol</th>
<th>λ_{max}</th>
<th>ε</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trolox C</td>
<td>435, 320</td>
<td>6700, 6500</td>
<td>305–308</td>
</tr>
<tr>
<td>Catechin</td>
<td>315</td>
<td>5800</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>10000</td>
<td>309</td>
</tr>
<tr>
<td>Quercetin</td>
<td>520</td>
<td>17000</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>525</td>
<td>18000</td>
<td>309</td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>525</td>
<td>6400</td>
<td>76</td>
</tr>
<tr>
<td>Kaempferol</td>
<td>545</td>
<td>25500</td>
<td>309</td>
</tr>
<tr>
<td>Silybin</td>
<td>370, 395</td>
<td></td>
<td>293, 294</td>
</tr>
<tr>
<td>5-Hydroxyindole</td>
<td>470, 390</td>
<td>4000, 3800</td>
<td>76</td>
</tr>
<tr>
<td>5-Hydroxytryptophan</td>
<td>480, 390, ca 270</td>
<td>3600, 3700, ca 12000</td>
<td>76</td>
</tr>
<tr>
<td>Isobarbituric acid</td>
<td>360</td>
<td>4400</td>
<td>76</td>
</tr>
<tr>
<td>4,4'-Biphenol</td>
<td>385, 620</td>
<td>2200, 900</td>
<td>310</td>
</tr>
<tr>
<td>4,4'-Biphenolate ion</td>
<td>445, 730</td>
<td>2900, 1700</td>
<td>310</td>
</tr>
<tr>
<td>4,4'-Thiodiphenol</td>
<td>$700–760, 500, 335$</td>
<td>ca 3000, 7100, 15600</td>
<td>311</td>
</tr>
<tr>
<td>1-Naphthol</td>
<td>400, 530</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>2-Naphthol</td>
<td>360, 490</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>2,3-Dihydroxynaphthalene</td>
<td>366</td>
<td>8500</td>
<td>309</td>
</tr>
<tr>
<td>1,4-Dihydroxy-9,10-anthraquinone</td>
<td>540, 390</td>
<td>7000, 3000</td>
<td>312</td>
</tr>
<tr>
<td>1,5-Dihydroxy-9,10-anthraquinone</td>
<td>472</td>
<td>10500</td>
<td>312</td>
</tr>
<tr>
<td>1,8-Dihydroxy-9,10-anthraquinone</td>
<td>482</td>
<td>8300</td>
<td>312</td>
</tr>
<tr>
<td>Quinalizarin</td>
<td>720</td>
<td>17000</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 5. (continued)
Table 6

Absorption maxima (λ_{max}, in nm) and molar absorption coefficients (ε, in M$^{-1}$ cm$^{-1}$) of selected semiquinone radicals produced by reduction of quinones.

<table>
<thead>
<tr>
<th>Quinonea</th>
<th>λ_{max}</th>
<th>ε</th>
<th>λ_{max}</th>
<th>ε</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methyl-1,4-benzoquinone</td>
<td>430</td>
<td>6200</td>
<td>405</td>
<td>4500</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>6800</td>
<td>315</td>
<td>16000</td>
<td>279</td>
</tr>
<tr>
<td>2-t-Butyl-1,4-benzoquinone</td>
<td>432</td>
<td>6500</td>
<td>319</td>
<td>16000</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>7000</td>
<td>319</td>
<td>16000</td>
<td>279</td>
</tr>
<tr>
<td>2,3-Dimethyl-1,4-benzoquinone</td>
<td>430</td>
<td>6700</td>
<td>415</td>
<td>5100</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>6800</td>
<td>319</td>
<td>13700</td>
<td>279</td>
</tr>
<tr>
<td>2,5-Dimethyl-1,4-benzoquinone</td>
<td>435</td>
<td>6800</td>
<td>415</td>
<td>5000</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>6800</td>
<td>319</td>
<td>16000</td>
<td>279</td>
</tr>
<tr>
<td>2,6-Dimethyl-1,4-benzoquinone</td>
<td>430</td>
<td>6100</td>
<td>405</td>
<td>4900</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>7000</td>
<td>319</td>
<td>14400</td>
<td>279</td>
</tr>
<tr>
<td>2,3,5-Trimethyl-1,4-benzoquinone</td>
<td>435</td>
<td>6700</td>
<td>410</td>
<td>4300</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>431</td>
<td>6700</td>
<td>319</td>
<td>12900</td>
<td>279</td>
</tr>
<tr>
<td>Tetramethyl-1,4-benzoquinone (duroquinone)</td>
<td>440</td>
<td>7600</td>
<td>420</td>
<td>4700</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>445</td>
<td>7100</td>
<td>319</td>
<td>13400</td>
<td>155</td>
</tr>
<tr>
<td>2,6-Dimethoxy-1,4-benzoquinone</td>
<td>431</td>
<td>5200</td>
<td>329</td>
<td>13300</td>
<td>279</td>
</tr>
<tr>
<td>2,3,5-Trimethoxy-1,4-benzoquinone</td>
<td>435</td>
<td>6000</td>
<td>315</td>
<td>12200</td>
<td>279</td>
</tr>
<tr>
<td>1,4-Naphthoquinone</td>
<td>390</td>
<td>12500</td>
<td>370</td>
<td>7100</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>13000</td>
<td>370</td>
<td>7100</td>
<td>278</td>
</tr>
<tr>
<td>2-Methyl-1,4-naphthoquinone</td>
<td>390</td>
<td>12500</td>
<td>370</td>
<td>9500</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>395</td>
<td>12000</td>
<td>370</td>
<td>7100</td>
<td>278</td>
</tr>
<tr>
<td>2,6-Dimethoxy-1,4-naphthoquinone</td>
<td>430</td>
<td>5200</td>
<td>329</td>
<td>13300</td>
<td>279</td>
</tr>
<tr>
<td>2,3,5-Trimethoxy-1,4-naphthoquinone</td>
<td>435</td>
<td>6000</td>
<td>315</td>
<td>12200</td>
<td>279</td>
</tr>
<tr>
<td>1,4-Naphthoquinone</td>
<td>390</td>
<td>12500</td>
<td>370</td>
<td>7100</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>13000</td>
<td>370</td>
<td>7100</td>
<td>278</td>
</tr>
<tr>
<td>2-Methyl-1,4-naphthoquinone</td>
<td>390</td>
<td>12500</td>
<td>370</td>
<td>9500</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>395</td>
<td>12000</td>
<td>370</td>
<td>7100</td>
<td>278</td>
</tr>
<tr>
<td>2,3-Dimethyl-1,4-naphthoquinone</td>
<td>400</td>
<td>11000</td>
<td>380</td>
<td>7300</td>
<td>155</td>
</tr>
<tr>
<td>Ubiquinone</td>
<td>445</td>
<td>8600</td>
<td>425</td>
<td>5300</td>
<td>155</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>400</td>
<td>10200</td>
<td>380</td>
<td>9900</td>
<td>155</td>
</tr>
<tr>
<td>2-Hydroxy-1,4-naphthoquinone</td>
<td>390</td>
<td>6300</td>
<td>380</td>
<td>9900</td>
<td>155</td>
</tr>
<tr>
<td>1,2-Naphthoquinone</td>
<td>265</td>
<td>4000</td>
<td>380</td>
<td>9900</td>
<td>155</td>
</tr>
<tr>
<td>2-Hydroxy-AQ (AQ$^<$)$^-$</td>
<td>480</td>
<td>7300</td>
<td>395</td>
<td>7800</td>
<td>278</td>
</tr>
<tr>
<td>2-Hydroxy-AQ (AQ$^<$)$^-$</td>
<td>490</td>
<td>5200</td>
<td>385</td>
<td>6700</td>
<td>278</td>
</tr>
<tr>
<td>2,6-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>500</td>
<td>8000</td>
<td>400</td>
<td>8000</td>
<td>278</td>
</tr>
<tr>
<td>2,6-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>505</td>
<td>7600</td>
<td>405</td>
<td>8000</td>
<td>278</td>
</tr>
<tr>
<td>2,6-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>500</td>
<td>5700</td>
<td>420</td>
<td>14700</td>
<td>278</td>
</tr>
<tr>
<td>2,6-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>505</td>
<td>7600</td>
<td>405</td>
<td>8000</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>445</td>
<td>7900</td>
<td>390</td>
<td>8100</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>520</td>
<td>11000</td>
<td>390</td>
<td>10500</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>460</td>
<td>5100</td>
<td>405</td>
<td>6500</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>450</td>
<td>4400</td>
<td>400</td>
<td>6600</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>500</td>
<td>5700</td>
<td>420</td>
<td>14700</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>505</td>
<td>7600</td>
<td>405</td>
<td>8000</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>475</td>
<td>13700</td>
<td>388</td>
<td>5800</td>
<td>278</td>
</tr>
<tr>
<td>1,5-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>440</td>
<td>13000</td>
<td>390</td>
<td>11000</td>
<td>278</td>
</tr>
<tr>
<td>1,8-Dihydroxy-AQ (AQ$^<$)$^-$</td>
<td>450</td>
<td>14700</td>
<td>380</td>
<td>8500</td>
<td>278</td>
</tr>
</tbody>
</table>

aAQ = 9,10-Anthraquinone.
Resonance Raman spectra have been recorded for transient phenoxyl radicals by pulse radiolysis. From the spectra recorded for various substituted and deuteriated radicals, it was possible to analyze the peaks in terms of the C–O and C–C stretching modes and C–C bending modes and to draw conclusions about the structures of the radicals. For example, the frequency assigned to the C–O bond in benzosemiquinone was found to be intermediate between those for the C=O in benzoquinone and the C–O in hydroquinone, which led to the conclusion that the bond order in semiquinone is about 1.5. Raman spectroscopy also yielded information on the excited states of the radicals by examining which frequencies are resonance-enhanced. Furthermore, time-resolved experiments with Raman spectroscopy allowed kinetic measurements on a specific intermediate unmasked by changes in other species.

Comparison of the Raman bands of p-benzosemiquinone anion with those of the monoprotonated species (p-hydroxyphenoxyl) indicated certain features in the spectrum of the p-hydroxyphenoxyl that are close to those of the unsubstituted phenoxyl, but the general pattern suggested a stronger similarity with the semiquinone. The diprotonated species (hydroquinone radical cation) was more similar in structure to the semiquinone anion. From the Raman spectrum of the p-aminophenoxyl radical, it was concluded that this radical also is very similar in structure to the p-benzosemiquinone anion rather than to a substituted phenoxyl radical. This was confirmed by ESR parameters and MO considerations. Furthermore, the Raman spectrum recorded by pulse radiolysis at pH < 2 indicates that the radical is protonated on the oxygen (and not on the nitrogen) to form the p-aminophenol radical cation. The pKₐ for this process was determined to be 2.2. In strongly alkaline solutions, both the absorption spectrum and the Raman spectrum change considerably.

A study of the Raman spectra of other p-substituted (CH₃, F, Cl, Br, OCH₃) phenoxyl radicals indicated a progression from the phenoxyl to the semiquinone character as the substituent becomes a stronger electron donor.

The m-benzosemiquinone radical anion exhibits a Raman spectrum that has a CO stretching frequency similar to that of phenoxyl radical and another band at a much lower frequency that is ascribed to a second CO stretching. This suggested that the two CO groups are not equivalent and that the m-benzosemiquinone anion is more similar to a 3-hydroxyphenoxyl. ESR spectra of the m-semiquinone anion, however, indicate complete symmetry, probably due to rapid spin interchange.

Comparison of p-benzosemiquinone with the tetrafluoro derivative led to the conclusion that fluorination induces an increase in the quinonoidic character of the radical.

While transient phenoxyl radicals for the above resonance Raman measurements were produced by radiolysis, other investigators used photolysis to produce phenoxyl radicals for Raman studies. Such studies were carried out with several tocopherols in various organic solvents and in micellar solutions and phospholipid bilayers. From the solvent effect on the Raman frequencies and the spectra observed in sodium dodecyl sulfate micelles it was concluded that the chromanoxyl group of tocopherol was located in a highly polar environment. However, the spectra in neutral and positively charged micelles and in the membranes suggested that the chromanoxyl group is in an environment of intermediate polarity.

C. Acid–Base Equilibria of Phenoxyl Radicals

The acid–base equilibria of phenoxyl radicals may involve (a) protonation on the phenoxyl oxygen (equation 32), which is important only in strongly acidic solutions,

\[
\text{PhOH}^{+*} \rightleftharpoons \text{PhO}^{*} + \text{H}^{+}
\] (32)
and (b) dissociation of substituents on the ring of the phenoxyl radical, such as OH and CO$_2$H (equation 33), which take place under mildly acidic or alkaline conditions.

$$\text{HOArO}^* \rightleftharpoons \text{OArO}^+ + \text{H}^+$$ (33)

The method most commonly applied to determine pK_a values of radicals is based on the difference in the absorption spectra of the acid and basic forms of the radicals. By monitoring the absorbance at a certain wavelength, where the difference between the two species is large, as a function of pH, one obtains the typical sigmoidal curve with an inflection point at $pH = pK_a$. It is necessary, however, to ascertain that the spectral change is due only to the acid–base equilibrium and that the yield of the radicals in the pulse radiolysis does not change with pH. This technique was applied to the determination of most of the pK_a values for semiquinones. Other pulse radiolytic methods, involving changes in conductance or in reaction rates, were rarely used with phenoxyl radicals.

The ESR technique can be applied to the determination of accurate pK_a values if the acid and basic forms of the radical undergo rapid exchange so that the ESR parameters at any pH are the weighted average of those of the two forms. This method is not dependent on the overall yield of the radicals and is not sensitive to chemical complications as is the optical method. The ESR method has been applied to measure the pK_a for protonation of phenoxyl radicals in strongly acidic solutions$^{40-42}$. The main results of these measurements are summarized in Table 7.

It is clear from Table 7 that most of the phenoxyl radicals protonate on the oxygen to form phenol radical cations with pK_a values about -1 to -2, i.e. ≥ 10 units lower than the pK_a values of the parent phenols. Because of the strong acidities involved and the choice of the appropriate acidity functions, the pK_a values are not as accurate as those measured under milder conditions (pH 2–12). There is no simple correlation between the pK_a values and the σ substituent constants. This is not surprising, since the σ constant reflects the electron distribution in the molecule while the pK_a value depends on the electron distribution in the radical, which is different from that in the parent molecule. There appears to be some correlation between the effect of substituents on the pK_a values and their effect on the spin density distribution in the radical, but not all the substituents

<table>
<thead>
<tr>
<th>Substituent</th>
<th>p</th>
<th>m</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-2.00</td>
<td>-2.00</td>
<td>-2.00</td>
</tr>
<tr>
<td>COCH$_3$</td>
<td>-1.86</td>
<td>-1.81</td>
<td>-2.40</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>-1.79</td>
<td>-1.78</td>
<td>-1.98</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>-1.60</td>
<td>-1.85</td>
<td>-1.99</td>
</tr>
<tr>
<td>F</td>
<td>-1.59</td>
<td>-1.95</td>
<td>-1.69</td>
</tr>
<tr>
<td>CF$_3$</td>
<td>-1.46</td>
<td>-1.53</td>
<td>-1.56</td>
</tr>
<tr>
<td>OCH$_3$</td>
<td>-1.41</td>
<td>-2.21</td>
<td>-1.63</td>
</tr>
<tr>
<td>OH</td>
<td>-1.30</td>
<td>-2.22</td>
<td>-1.62</td>
</tr>
<tr>
<td>Cl</td>
<td>-1.30</td>
<td>-1.75</td>
<td>-1.27</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>$+2.2^b$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aFrom References 40–42, except where noted.
bFrom Reference 335, determined by optical measurements. The pK_a for deprotonation of the NH$_2$ group was determined to be 14.5397. The pK_a for deprotonation of the NH group in the N-acetyl-p-aminophenoxyl radical was found to be lower, 11.1328,340.

\[\text{HOArO}^* \rightleftharpoons \text{OArO}^+ + \text{H}^+\]
TABLE 8. Dissociation constants of semiquinone radicals

<table>
<thead>
<tr>
<th>Radical</th>
<th>pK_a</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-Benzosemiquinone</td>
<td>5.0</td>
<td>94</td>
</tr>
<tr>
<td>4-t-Butyl-1,2-benzosemiquinone</td>
<td>5.2</td>
<td>102</td>
</tr>
<tr>
<td>1,3-Benzenosemiquinone</td>
<td>7.1</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>186</td>
</tr>
<tr>
<td>4-Carboxy-1,3-benzosemiquinone</td>
<td>7.9</td>
<td>290</td>
</tr>
<tr>
<td>5-Hydroxy-1,3-benzosemiquinone</td>
<td>6.5; 8.6</td>
<td>289</td>
</tr>
<tr>
<td>4-Amino-1,3-benzosemiquinone</td>
<td>3.4; 6.4</td>
<td>283</td>
</tr>
<tr>
<td>1,4-Benzenosemiquinone</td>
<td>4.0</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>278, 347</td>
</tr>
<tr>
<td>2-Carboxy-1,4-benzosemiquinone</td>
<td>6.5</td>
<td>290</td>
</tr>
<tr>
<td>2-Methyl-1,4-benzosemiquinone</td>
<td>4.5</td>
<td>155</td>
</tr>
<tr>
<td>2-t-Butyl-1,4-benzosemiquinone</td>
<td>4.3</td>
<td>313</td>
</tr>
<tr>
<td>2,3-Dimethyl-1,4-benzosemiquinone</td>
<td>4.7</td>
<td>155</td>
</tr>
<tr>
<td>2,5-Dimethyl-1,4-benzosemiquinone</td>
<td>4.6</td>
<td>278, 348</td>
</tr>
<tr>
<td>2,6-Dimethyl-1,4-benzosemiquinone</td>
<td>4.8</td>
<td>155</td>
</tr>
<tr>
<td>2,3,5-Trimethyl-1,4-benzosemiquinone</td>
<td>5.0</td>
<td>155</td>
</tr>
<tr>
<td>Durosemiquinone</td>
<td>5.1</td>
<td>278, 348</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>155</td>
</tr>
<tr>
<td>2-Hydroxy-1,4-benzosemiquinone</td>
<td>4.8; 8.9</td>
<td>288</td>
</tr>
<tr>
<td>1,2-Naphthosemiquinone</td>
<td>4.8</td>
<td>278</td>
</tr>
<tr>
<td>1,4-Naphthosemiquinone</td>
<td>4.1</td>
<td>278, 348</td>
</tr>
<tr>
<td>2-Methyl-1,4-naphthosemiquinone</td>
<td>4.4</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>348</td>
</tr>
<tr>
<td>2,3-Dimethyl-1,4-naphthosemiquinone</td>
<td>4.3</td>
<td>155</td>
</tr>
<tr>
<td>Vitamin K semiquinone</td>
<td>5.5</td>
<td>155</td>
</tr>
<tr>
<td>2-Hydroxy-1,4-naphthosemiquinone</td>
<td>4.7</td>
<td>278</td>
</tr>
<tr>
<td>Ubisemiquinone</td>
<td>5.9</td>
<td>155</td>
</tr>
<tr>
<td>4,4′-Biphenol semiquinone</td>
<td>7.5</td>
<td>310</td>
</tr>
<tr>
<td>9,10-Anthrasemiquinone</td>
<td>5.3</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>314</td>
</tr>
<tr>
<td>9,10-Anthrasemiquinone-1-sulfonate</td>
<td>5.4</td>
<td>316</td>
</tr>
<tr>
<td>9,10-Anthrasemiquinone-2-sulfonate</td>
<td>3.2</td>
<td>316</td>
</tr>
<tr>
<td>9,10-Anthrasemiquinone-2,6-disulfonate</td>
<td>3.2</td>
<td>348</td>
</tr>
<tr>
<td>1-Hydroxy-9,10-anthrasemiquinone</td>
<td>4.6; >14</td>
<td>317</td>
</tr>
<tr>
<td>2-Hydroxy-9,10-anthrasemiquinone</td>
<td>4.7; 10.7</td>
<td>314</td>
</tr>
<tr>
<td>2,6-Dihydroxy-9,10-anthrasemiquinone</td>
<td>5.4; 8.7</td>
<td>314</td>
</tr>
<tr>
<td>1,4-Dihydroxy-9,10-anthrasemiquinone</td>
<td>3.3; >14</td>
<td>314</td>
</tr>
<tr>
<td>1,5-Dihydroxy-9,10-anthrasemiquinone</td>
<td>3.7; >14</td>
<td>314</td>
</tr>
<tr>
<td>1,8-Dihydroxy-9,10-anthrasemiquinone</td>
<td>4.0; >14</td>
<td>314</td>
</tr>
<tr>
<td>Lumiflavin radical</td>
<td>8.4</td>
<td>349</td>
</tr>
<tr>
<td>Riboflavin radical</td>
<td>8.3</td>
<td>325</td>
</tr>
<tr>
<td>FMN radical</td>
<td>8.5</td>
<td>349</td>
</tr>
<tr>
<td>FAD radical</td>
<td>8.8</td>
<td>349</td>
</tr>
</tbody>
</table>

give a good correlation. Further discussion on the determination of these pK_a values is found in the original papers$^{40–42}$. Optical absorption spectra have not been utilized to measure these pK_a values, although the radical cations of several phenols have been observed by pulse radiolysis$^{341–343}$ and by laser flash photolysis341,344 in organic solvents. The spectra were found to be different than those of phenoxyl radicals, and in the presence of water they underwent very rapid deprotonation to form the corresponding phenoxyl radicals.
The dissociation constants for semiquinone radicals, measured by spectrophotometric pulse radiolysis, were reviewed before and are summarized in Table 8. Protonation of semiquinone anion radicals takes place in most cases with pK_a 4–5 with several higher and lower values. The simple benzosemiquinones show a strong effect of the relative positions of the oxygens on the pK_a, i.e. 4 for 1,4-benzosemiquinone, 5 for the 1,2-isomer and ca 7 for the 1,3-isomer. The relatively high pK_a for m-benzosemiquinone is clearly related to the lower spin density on the oxygens of this radical.

This effect is also manifested in electron transfer reactions of the m-semiquinone (see below). The pK_a of ca 7 is somewhat lower than that for the parent resorcinol (9.8) owing to electron withdrawing from OH by the radical. The o- and p-benzosemiquinones have higher spin densities on the oxygens than the $meta$ isomer and therefore exhibit lower pK_a values. The o- and p-benzosemiquinones are expected to have similar charge densities on the oxygens and therefore the slightly higher pK_a observed for the $ortho$ isomer must be the result of an intramolecular hydrogen bridge between the two oxygens. The same effect is also exhibited by the 1,2- and 1,4-naphthosemiquinones, which have pK_a values of 4.8 and 4.1, respectively. A strong effect of internal hydrogen bonding on the pK_a is also evident in a series of dihydroxyanthrasemiquinones. In all semiquinones, substitution by the electron-donating methyl groups increases the pK_a values of the radicals.

The pK_a of a carboxyl group on the phenoxy radical o-O$\text{C}_6\text{H}_4\text{CO}_2\text{H}$ was estimated to be ca 3, i.e. similar to that of the carboxyl group in the parent phenol o-HOC$_6$H$_4$CO$_2$H. It is expected that the pK_a for an amino group on phenoxy radicals should be considerably lower than that on phenol (pK_a 4–5). This appears to be the case, since ESR spectra of the aminophenoxy radicals indicated the absence of NH$_3^+$ even in strongly acidic solutions.

By comparison with phenoxy radicals, the isoelectronic anilinyl radicals protonate much more readily; pK_a values in the range 4–7 have been reported for the equilibria between various anilinyl radicals and their corresponding aniline radical cations.

D. Reactions of Phenoxy Radicals

Most phenoxy radicals are short-lived intermediates, which react with each other and with other radicals relatively rapidly. Steric hindrance may lower the rates of such reactions to an extent that certain phenoxy radicals are completely persistent. Some phenoxy-type radicals are stabilized by thermodynamic factors and may be long-lived or completely stable under certain conditions, such as the semiquinone radicals in anaerobic alkaline solutions.

Phenoxy radicals react with each other mainly by coupling (or dimerization). Second-order decay of transient phenoxy radicals takes place with rate constants of the order of 10^5 M$^{-1}$ s$^{-1}$ and leads to formation of dimeric products. Various dimers are formed by combination at the various radical sites. Since the unpaired spin is delocalized on the oxygen and on the $ortho$ and $para$ carbons, dimers result from combination of O with C and of C with C (equation 34). Dimers containing O–O bonds are less stable and generally were not detected.

$$C_6H_5O^* + C_6H_5O^* \rightarrow \text{HOC}_6\text{H}_4\text{OC}_6\text{H}_4\text{OH} (80\%) + C_6\text{H}_5\text{OC}_6\text{H}_4\text{OH} (10\%) \quad (34)$$

For example, the products of decay of phenoxy radical in aqueous solutions are 80% C–C dimerization products, 10% C–O dimerization products and 10% were not identified, possibly including some peroxide products. The major group of products includes 2,2', 2,4'- and 4,4'-dihydroxybiphenyl with ratios of 0.7 : 1.7 : 1.0. The second group includes both 2- and 4-phenoxyphenol. The relative abundance of the various products does not correspond to the relative spin populations at the oxygen and the various carbon atoms and
suggests that additional factors influence the product distribution. An explanation for these findings may be provided by a suggested dimerization mechanism, which involves a diketo intermediate dimer in equilibrium with the starting radicals. The same mechanism has been invoked to explain the variations in activation energies and pre-exponential factors determined from the temperature dependence of the rate of decay of various substituted phenoxyl radicals.

Oxidative coupling of phenols is an important process in biological systems. For example, lignin is formed by coupling of the phenoxyl radicals derived from coniferyl alcohol. The first step, i.e. the dimerization, was shown to take place via radical–radical combination, although addition of the phenoxyl radical to another phenol molecule has been suggested to occur under certain conditions. Another example is the oxidative polymerization of 3,4-dihydroxyphenylalanine (dopa) to form melanin. In this case the mechanism was suggested to involve oxidation of this phenol to an ortho-quinone, which undergoes cyclization and further oxidation before forming the polymeric materials.

Phenoxyl radicals react rapidly with O$_2$•$^-$ radicals (Table 9). The reaction has been suggested to proceed via two parallel mechanisms: addition of the O$_2$•$^-$ to the ortho or para positions of phenoxyl, followed by rearrangement and possibly ring opening, and electron transfer from O$_2$•$^-$ to phenoxyl to form O$_2$ and phenolate ion. The contribution of the latter reaction depends on the reduction potential of the phenoxyl

<table>
<thead>
<tr>
<th>Phenoxyl radical</th>
<th>Other reactant</th>
<th>Conditions</th>
<th>k (M$^{-1}$ s$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhO*</td>
<td>PhO*</td>
<td>pH 11</td>
<td>1.3×10^9</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>4-MeC$_6$H$_5$O*</td>
<td>N$_3^-$, KOH</td>
<td>1.0×10^9</td>
<td>353</td>
</tr>
<tr>
<td>substituted PhO*</td>
<td>O$_2$•$^-$</td>
<td>pH 1</td>
<td>1.2×10^9</td>
<td>352</td>
</tr>
<tr>
<td>TyrO* (Tyrosine)</td>
<td>O$_2$•$^-$</td>
<td>pH 1</td>
<td>1.5×10^9</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>O$_2$•$^-$</td>
<td>pH 1</td>
<td>1.0×10^9</td>
<td>362</td>
</tr>
<tr>
<td>PhO*</td>
<td>O$_2$•$^-$</td>
<td>pH 1</td>
<td>1.0×10^9</td>
<td>362</td>
</tr>
<tr>
<td>2-OC$_6$H$_5$O*</td>
<td>O$_2$</td>
<td>pH 11.5</td>
<td>2.0×10^9</td>
<td>364</td>
</tr>
<tr>
<td>PhO*</td>
<td>4-BrC$_6$H$_5$OH</td>
<td>pH 11</td>
<td>6.9×10^8</td>
<td>365</td>
</tr>
<tr>
<td>2-FC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>9.5×10^8</td>
<td>365</td>
</tr>
<tr>
<td>3-FC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>9.7×10^8</td>
<td>365</td>
</tr>
<tr>
<td>4-FC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>4.6×10^8</td>
<td>365</td>
</tr>
<tr>
<td>2-CIC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>1.1×10^9</td>
<td>365</td>
</tr>
<tr>
<td>3-CIC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>1.3×10^9</td>
<td>365</td>
</tr>
<tr>
<td>4-CIC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>7.3×10^8</td>
<td>365</td>
</tr>
<tr>
<td>2-BrC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>7.7×10^8</td>
<td>365</td>
</tr>
<tr>
<td>3-BrC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>8.9×10^8</td>
<td>365</td>
</tr>
<tr>
<td>4-BrC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>8.3×10^8</td>
<td>365</td>
</tr>
<tr>
<td>4-IC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>1.1×10^9</td>
<td>365</td>
</tr>
<tr>
<td>4-NCIC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>2.0×10^9</td>
<td>365</td>
</tr>
<tr>
<td>4-(CO$_2$–)C$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>4.6×10^8</td>
<td>365</td>
</tr>
<tr>
<td>3-HOC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>1.1×10^8</td>
<td>365</td>
</tr>
<tr>
<td>4-H$_2$NCIC$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>5.1×10^7</td>
<td>365</td>
</tr>
<tr>
<td>3,5-Cl$_2$C$_6$H$_5$O*</td>
<td>ascorbate</td>
<td>pH 11</td>
<td>1.6×10^9</td>
<td>78</td>
</tr>
</tbody>
</table>
radical. More recently, however, it was argued that the direct electron transfer route is of minor importance and that the reaction proceeds predominantly via addition to the ring.

Restitution of the phenol is then suggested to occur in a subsequent step, by elimination of O$_2$ from unstable hydroperoxides. In an earlier study the rate constant for reaction of the Trolox C phenoxyl radical with O$_2^{•−}$ was determined to be 4.5 × 108 M$^{−1}$ s$^{−1}$ and the reaction was suggested to proceed mainly via electron transfer, i.e. the superoxide radical can repair vitamin E radicals. Phenoxyl radicals do not react with O$_2^{•−}$, but semiquinone radicals may transfer an electron to O$_2$, depending on their reduction potential relative to that of O$_2$. Phenoxyl radicals can oxidize various compounds by electron transfer. These reactions depend on the reduction potential of the phenoxyl radical and the other reactant and may appear as equilibrium reactions or may proceed predominantly in one direction. Examples of the latter group of reactions are shown in Table 9 and examples of equilibrium reactions are in Table 10.

It is seen in Table 9 that many phenoxyl radicals oxidize ascorbate (vitamin C, Asc$^{−}$) and Trolox C (a water-soluble analogue of vitamin E, TxOH) with rate constants of the order of 108 to 109 M$^{−1}$ s$^{−1}$. The reactions take place by electron transfer. Taking into account the associated proton transfer equilibria, the reactions at pH 7 can be written as equations 35 and 36.
Such reactions make vitamins C and E better antioxidants than many other phenols. Moreover, the Trolox C radical was found to oxidize ascorbate with a rate constant close to $10^7 \text{ M}^{-1} \text{ s}^{-1}$308. This leads to a synergistic antioxidant effect in the presence of both vitamins (equation 37).

$$\text{TxO}^\cdot + \text{Asc}^- + \text{H}^+ \rightarrow \text{TxOH} + \text{Asc}^\cdot \quad (37)$$

Rate constants for electron transfer equilibrium reactions of phenoxyl radicals (Table 10) have been determined in conjunction with measurements of reduction potentials of phenoxy radicals. Since most phenoxy radicals in aqueous solutions are relatively short-lived, it was not possible to determine their reduction potentials by cyclic voltammetry. Therefore, it was necessary to utilize the pulse radiolysis technique to determine the reduction potentials from equilibrium constants, using a reference compound with which a phenoxy radical can establish equilibrium conditions. Equilibrium concentrations were determined at short times, after the electron transfer equilibrium was achieved but before any significant decay of the radicals took place. The equilibrium constants were determined either from the concentrations at equilibrium, derived from absorbance, or from the rate constants for the forward and reverse reactions, derived from the rate of approach to equilibrium. Further details were given before24,75,76.

Most of the rate constants in Table 10 were measured at pH ≥ 11, where most phenols are dissociated into the phenolate ions. The reason is that electron transfer from phenolate ions takes place much more rapidly than from neutral phenols. Since it is imperative to establish equilibrium conditions before the radicals engage in subsequent decay reactions, the table below provides the rate constants for selected electron transfer equilibrium reactions involving phenoxy radicals ($\text{PhO}^\cdot + \text{Ref}^- = \text{PhO}^- + \text{Ref}^\cdot$)$^{\mu}$

<table>
<thead>
<tr>
<th>PhO$^-$</th>
<th>Ref$^-$</th>
<th>Conditions</th>
<th>k_f (M$^{-1}$ s$^{-1}$)</th>
<th>k_r (M$^{-1}$ s$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>phenol</td>
<td>phenol</td>
<td>pH 11.5</td>
<td>1.9×10^9</td>
<td>1.9×10^8</td>
<td>263</td>
</tr>
<tr>
<td>catechol</td>
<td>hydroquinone</td>
<td>pH 13.5</td>
<td>2.0×10^6</td>
<td>8.5×10^5</td>
<td>75</td>
</tr>
<tr>
<td>3,4-dihydroxybenzoate ion</td>
<td>hydroquinone</td>
<td>pH 13.5</td>
<td>6.0×10^6</td>
<td>1.2×10^5</td>
<td>75</td>
</tr>
<tr>
<td>2,3-dihydroxybenzoate ion</td>
<td>hydroquinone</td>
<td>pH 13.5</td>
<td>4.2×10^5</td>
<td>9×10^3</td>
<td>75</td>
</tr>
<tr>
<td>hydroquinone</td>
<td>p-phenylene-diamine</td>
<td>pH 13.5</td>
<td>2.5×10^5</td>
<td>1.4×10^6</td>
<td>75</td>
</tr>
<tr>
<td>resorcinol</td>
<td>2,3-dihydroxybenzoate ion</td>
<td>pH 13.5</td>
<td>4.7×10^7</td>
<td>5.2×10^4</td>
<td>75</td>
</tr>
<tr>
<td>resorcinol</td>
<td>3,4-dihydroxybenzoate ion</td>
<td>pH 13.5</td>
<td>2.5×10^8</td>
<td>1.9×10^5</td>
<td>75</td>
</tr>
<tr>
<td>resorcinol</td>
<td>TMPD</td>
<td>pH 13.5</td>
<td>1.7×10^9</td>
<td>3.6×10^5</td>
<td>75</td>
</tr>
<tr>
<td>4-MeOC$_6$H$_4$O$^-$</td>
<td>TMPD</td>
<td>pH 13.5</td>
<td>2.2×10^9</td>
<td>3.7×10^5</td>
<td>75</td>
</tr>
<tr>
<td>DMAP</td>
<td>hydroquinone</td>
<td>pH 13.5</td>
<td>1×10^9</td>
<td>3×10^5</td>
<td>76</td>
</tr>
<tr>
<td>DMAP</td>
<td>catechol</td>
<td>pH 13.5</td>
<td>3×10^7</td>
<td>2×10^5</td>
<td>76</td>
</tr>
<tr>
<td>DMAP</td>
<td>resorcinol</td>
<td>pH 13.5</td>
<td>2×10^4</td>
<td>7×10^7</td>
<td>76</td>
</tr>
</tbody>
</table>
TABLE 10. (continued)

<table>
<thead>
<tr>
<th>PhO⁻</th>
<th>Ref⁻</th>
<th>Conditions</th>
<th>k_f (M⁻¹ s⁻¹)</th>
<th>k_r (M⁻¹ s⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAP</td>
<td>TMPD</td>
<td>pH 13.5</td>
<td>1×10^7</td>
<td>5×10^8</td>
<td>76</td>
</tr>
<tr>
<td>Trolox C</td>
<td>catechol</td>
<td>pH 13.5</td>
<td>7×10^7</td>
<td>3×10^8</td>
<td>76</td>
</tr>
<tr>
<td>resorcinol</td>
<td>5-hydroxy-tryptophan</td>
<td>pH 13.5</td>
<td>4×10^6</td>
<td>5.5×10^5</td>
<td>76</td>
</tr>
<tr>
<td>4-MeOC₆H₄O⁻</td>
<td>5-hydroxy-tryptophan</td>
<td>pH 13.5</td>
<td>9.6×10^6</td>
<td>5×10^5</td>
<td>76</td>
</tr>
<tr>
<td>DMAP</td>
<td>2-tert-butyl-hydroquinone</td>
<td>pH 13.5</td>
<td>2.9×10^6</td>
<td>2.7×10^5</td>
<td>313</td>
</tr>
<tr>
<td>4-CH₃CONHC₆H₄O⁻</td>
<td>resorcinol</td>
<td>pH 12.4</td>
<td>1.7×10^7</td>
<td>2.3×10^6</td>
<td>282</td>
</tr>
<tr>
<td>PhO⁻</td>
<td>ClO₂⁻</td>
<td>pH 12</td>
<td>1.3×10^5</td>
<td>3.5×10^4</td>
<td>24</td>
</tr>
<tr>
<td>4-MeC₆H₄O⁻</td>
<td>ClO₂⁻</td>
<td>pH 12</td>
<td>2×10^6</td>
<td>2.4×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-FC₆H₄O⁻</td>
<td>ClO₂⁻</td>
<td>pH 12</td>
<td>7×10^6</td>
<td>5.1×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-ClC₆H₄O⁻</td>
<td>ClO₂⁻</td>
<td>pH 12</td>
<td>9×10^6</td>
<td>2.5×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-BrC₆H₄O⁻</td>
<td>ClO₂⁻</td>
<td>pH 12</td>
<td>1.8×10^6</td>
<td>1.7×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-IC₆H₄O⁻</td>
<td>ClO₂⁻</td>
<td>pH 12</td>
<td>2.8×10^6</td>
<td>3.5×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-CH₃COC₆H₄O⁻</td>
<td>ClO₂⁻</td>
<td>pH 12</td>
<td>1.2×10^6</td>
<td>1.4×10^5</td>
<td>24</td>
</tr>
<tr>
<td>PhO⁻</td>
<td>4-MeC₆H₄O⁻</td>
<td>pH 12</td>
<td>1.3×10^6</td>
<td>2×10^5</td>
<td>24</td>
</tr>
<tr>
<td>PhO⁻</td>
<td>tyrosine</td>
<td>pH 12</td>
<td>4.9×10^5</td>
<td>2.8×10^4</td>
<td>24</td>
</tr>
<tr>
<td>PhO⁻</td>
<td>4-IC₆H₄O⁻</td>
<td>pH 12</td>
<td>1.6×10^6</td>
<td>6×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-IC₆H₄O⁻</td>
<td>4-FC₆H₄O⁻</td>
<td>pH 12</td>
<td>1.4×10^6</td>
<td>9×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-IC₆H₄O⁻</td>
<td>4-CO₂⁻C₆H₄O⁻</td>
<td>pH 12</td>
<td>7×10^7</td>
<td>2.2×10^6</td>
<td>24</td>
</tr>
<tr>
<td>4-MeC₆H₄O⁻</td>
<td>4-MeOC₆H₄O⁻</td>
<td>pH 12</td>
<td>1.4×10^6</td>
<td>5.5×10^5</td>
<td>24</td>
</tr>
<tr>
<td>4-MeOC₆H₄OH</td>
<td>tryptophan</td>
<td>pH 7.5</td>
<td>1×10^6</td>
<td>5.5×10^5</td>
<td>369</td>
</tr>
<tr>
<td>4-MeOC₆H₄OH</td>
<td>tryptophan</td>
<td>pH 13</td>
<td>1×10^5</td>
<td>3.6×10^4</td>
<td>369</td>
</tr>
<tr>
<td>4-MeOC₆H₄OH</td>
<td>tryptamine</td>
<td>pH 7.5</td>
<td>9×10^5</td>
<td>4.8×10^4</td>
<td>369</td>
</tr>
<tr>
<td>4-MeOC₆H₄OH</td>
<td>tryptamine</td>
<td>pH 13</td>
<td>1×10^5</td>
<td>4.2×10^4</td>
<td>369</td>
</tr>
<tr>
<td>tyrosine</td>
<td>tryptophan</td>
<td>pH 13</td>
<td>2.4×10^6</td>
<td>1×10^5</td>
<td>369</td>
</tr>
<tr>
<td>3,4-Me₂C₆H₄O⁻</td>
<td>Fe(CN)₆⁴⁻</td>
<td>Br⁻, pH 13.5</td>
<td>6.5×10^5</td>
<td>2.7×10^4</td>
<td>370</td>
</tr>
<tr>
<td>3,5-Me₂C₆H₄O⁻</td>
<td>4-MeOC₆H₄O⁻</td>
<td>Br⁻, pH 13.5</td>
<td>8.0×10^6</td>
<td>1.8×10^5</td>
<td>370</td>
</tr>
<tr>
<td>3,5-Me₂C₆H₄O⁻</td>
<td>ferrocene-dicarboxylate</td>
<td>pH 8</td>
<td>7.0×10^6</td>
<td>2×10^5</td>
<td>370</td>
</tr>
<tr>
<td>3,4,5-Me₃C₆H₄O⁻</td>
<td>promethazine</td>
<td>pH 3</td>
<td>1×10^6</td>
<td>2.1 $\times 10^7$</td>
<td>370</td>
</tr>
<tr>
<td>PhO⁻</td>
<td>PhS⁺</td>
<td>pH 11–13.5</td>
<td>1.5×10^8</td>
<td>2.9×10^7</td>
<td>371</td>
</tr>
<tr>
<td>PhO⁻</td>
<td>4-BrC₆H₄S⁻</td>
<td>pH 11–13.5</td>
<td>1.7×10^9</td>
<td>7.4×10^7</td>
<td>371</td>
</tr>
<tr>
<td>4-MeC₆H₄O⁻</td>
<td>4-MeC₆H₄S⁻</td>
<td>pH 11–13.5</td>
<td>6.4×10^6</td>
<td>1.1×10^4</td>
<td>371</td>
</tr>
<tr>
<td>4-MeOC₆H₄O⁻</td>
<td>4-MeOC₆H₄S⁻</td>
<td>pH 11–13.5</td>
<td>1.6×10^6</td>
<td>4.6×10^4</td>
<td>371</td>
</tr>
<tr>
<td>4-H₂NC₆H₄O⁻</td>
<td>4-H₂NC₆H₄S⁻</td>
<td>pH 11–13.5</td>
<td>3.5×10^6</td>
<td>2.8×10^4</td>
<td>371</td>
</tr>
<tr>
<td>4-H₂NC₆H₄O⁻</td>
<td>4-OC₆H₄S⁻</td>
<td>pH 11–13.5</td>
<td>2.9×10^7</td>
<td>3.2×10^5</td>
<td>371</td>
</tr>
<tr>
<td>4-H₂NC₆H₄O⁻</td>
<td>TMPD</td>
<td>pH 11–13.5</td>
<td>3.4×10^7</td>
<td>1.3×10^5</td>
<td>371</td>
</tr>
</tbody>
</table>

*TMPD = N,N,N',N'-tetramethyl-p-phenylenediamine; DMAP = p-(N,N-dimethylamino)phenol.

It was necessary to carry out the experiments at high pH to achieve rapid equilibrium. The values of the rate constants vary over six orders of magnitude, the upper range being the diffusion-controlled limit and the lower range determined by competing radical—radical reactions. Radical—radical reactions may be minimized by the use of a low dose per pulse, i.e. low radical concentration, but this is restricted by the detection limit of the pulse radiolysis setup. The combined result is that the lower limit of the measured rate constants is of the order of 10^4 M⁻¹ s⁻¹.
The electron transfer rate constants are expected to increase with the driving force of the reaction, i.e. with the difference in reduction potentials of the two radicals involved in the process, according to the Marcus theory. An approximate correlation has been demonstrated76 for a wide group of reactions of this type.

In principle, phenoxyl radicals can react with other molecules also by a hydrogen-abstraction mechanism. The net result of such reactions may be equivalent to that of the electron transfer processes discussed above. It is likely that in aqueous solutions such reactions are much slower than the electron transfer reactions, as indicated by the fact that most reactions between phenoxyl radicals and other phenols are much slower with the neutral phenols than with the phenolate ions. It is possible that even reactions with neutral phenols in aqueous solutions involve an electron transfer mechanism. On the other hand, reactions in organic solvents may well take place by hydrogen abstraction, as discussed before5,372–374. These reactions take place with much lower rate constants than the electron transfer reactions; the most rapid hydrogen abstraction by a phenoxyl radical is probably five orders of magnitude slower than the diffusion-controlled limit and most of them are orders of magnitude slower than that.

E. Reduction Potentials of Phenoxyl Radicals

The reduction potentials of phenoxyl radicals have been determined by pulse radiolysis as discussed above and are summarized in Table 11. Reduction potentials estimated from cyclic voltammetric measurements of irreversible peak potentials, taking into account the decay of the phenoxyl radicals375, are considered to be less accurate and are not included in Table 11. The primary reference for pulse radiolysis measurements of reduction potentials in the lower range75,76 was p-benzosemiquinone, whose potential was determined from classical measurements154. The primary reference for most monosubstituted phenoxyl radicals24 was ClO$_2^-$, since both the ClO$_2^+$ radical and the ClO$_2^-$ anion are stable and the potential E(ClO$_2^+$/ClO$_2^-$) was determined very accurately by electrochemical measurements. Other inorganic radicals were sometimes used as reference; their potentials have been discussed before376. In certain cases, measurements using several reference compounds have been conducted to confirm the reduction potential. The values summarized in Table 11 are given at the pH of the measurement. They generally are for the PhO$^+$/PhO$^-$ pair. These values are independent of pH as long as no proton transfer accompanies the electron transfer.

The reduction potentials of p-substituted phenoxyl radicals were found to correlate very well with the Hammett σ^+ substituent constants24. Electron-donating substituents stabilize the phenoxyl radical, i.e. lower the reduction potential. A p-OH group has a strong stabilizing effect, but a p-O$^-$ group has a much stronger effect since the two oxygens become equivalent. Thus the reduction potentials of o- and p-benzosemiquinones are about 0.7 V lower than that of phenoxyl. The reduction potential of the m-benzosemiquinone also is considerably (0.4 V) lower than that of phenoxyl, although the effect of the m-O$^-$ group is only about half the effect of the o- and p-O$^-$ groups. The structure of the m-semiquinone has been discussed above. Trolox C is essentially a p-methoxyphenol, but the presence of the additional alkyl substituents results in a reduction potential for the Trolox C phenoxyl radical that is 0.35 V lower than that of the p-methoxyphenoxyl radical. Although this difference in potential may explain why Trolox C (and vitamin E) is a much better antioxidant than p-methoxyphenol, other structural differences also determine the antioxidant efficiency184.

The dependence on substituent of the reduction potential and other properties of p-substituted phenoxyl radicals has been compared with the properties of the analogous phenylthiyl radicals. From this comparison it is evident that the electronic interaction
TABLE 11. Reduction potentials of phenoxyl radicals \(\text{PhO}^\cdot + \text{Ref}^- \rightleftharpoons \text{PhO}^- + \text{Ref}^\cdot \)\(^a\)

<table>
<thead>
<tr>
<th>PhOH</th>
<th>pH</th>
<th>Ref(^-)</th>
<th>(E(\text{Ref}^-/\text{Ref}^\cdot))</th>
<th>(E(\text{PhO}^\cdot/\text{PhO}^-))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroquinone</td>
<td>0</td>
<td>1.041</td>
<td>1.041</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.459</td>
<td>0.459</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.057</td>
<td>0.057</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>0.023</td>
<td>0.023</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>2-(t)-Butyl-1,4-hydroquinone</td>
<td>7</td>
<td>0.489</td>
<td>0.489</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Catechol</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.043</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>hydroquinone</td>
<td>0.057</td>
<td>0.139</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.53</td>
<td>0.53</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.06</td>
<td>1.06</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trihydroxybenzene</td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>-0.110</td>
<td>76</td>
</tr>
<tr>
<td>Methoxyhydroquinone</td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>-0.085</td>
<td>76</td>
</tr>
<tr>
<td>Ethyl gallate</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>-0.054</td>
<td>76</td>
</tr>
<tr>
<td>Durohydroquinone</td>
<td>13.5</td>
<td>3,4-dihydroxybenzoate ion</td>
<td>0.119</td>
<td>-0.054</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.36</td>
<td>0.36</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>2,5-Dihydroxyphenylacetate ion</td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>-0.050</td>
<td>76</td>
</tr>
<tr>
<td>3,4-Dihydroxyphenylacetate ion</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.021</td>
<td>76</td>
</tr>
<tr>
<td>Quercetin</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>-0.037</td>
<td>76</td>
</tr>
<tr>
<td>Pyrogallol</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>-0.009</td>
<td>76</td>
</tr>
<tr>
<td>Ascorbate</td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>0.015</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.30</td>
<td>0.30</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>3,4-Dihydroxyphenylalanine</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.014</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.022</td>
<td>76</td>
</tr>
<tr>
<td>3-Hydroxytyramine</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.018</td>
<td>76</td>
</tr>
<tr>
<td>2,5-Dihydroxybenzoate ion</td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>0.033</td>
<td>76</td>
</tr>
<tr>
<td>5-Hydroxydopamine</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.042</td>
<td>76</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.044</td>
<td>76</td>
</tr>
<tr>
<td>Epicatechin</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.048</td>
<td>76</td>
</tr>
<tr>
<td>Catechin</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.079</td>
<td>76</td>
</tr>
<tr>
<td>Quininalizarin</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.073</td>
<td>76</td>
</tr>
<tr>
<td>3,4-Dihydroxycinnamate ion</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.084</td>
<td>76</td>
</tr>
<tr>
<td>2,5-Dihydroxycetophenone</td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>0.118</td>
<td>76</td>
</tr>
<tr>
<td>2,3-Dihydroxybenzoate ion</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.118</td>
<td>76</td>
</tr>
<tr>
<td>3,4-Dihydroxybenzoate ion</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.119</td>
<td>76</td>
</tr>
<tr>
<td>2,4,5-Trihydroxypyrimidine</td>
<td>13.5</td>
<td>TMPD</td>
<td>0.265</td>
<td>0.132</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>0.146</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.156</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TMPD</td>
<td>0.265</td>
<td>0.146</td>
<td>76</td>
</tr>
<tr>
<td>DMAP</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.174</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>0.174</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>2-(t)-butyl-hydroquinone</td>
<td>-0.08</td>
<td>0.10</td>
<td>313</td>
</tr>
<tr>
<td>N-Acetyl-4-aminophenol</td>
<td>12.4</td>
<td>resorcinol</td>
<td>0.386</td>
<td>0.44</td>
<td>282</td>
</tr>
<tr>
<td>Adrenalone</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.18</td>
<td>76</td>
</tr>
<tr>
<td>Trolox C</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.192</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>catechol</td>
<td>0.057</td>
<td>0.185</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.48</td>
<td>0.48</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>13.5</td>
<td>hydroquinone</td>
<td>0.023</td>
<td>0.187</td>
<td>76</td>
</tr>
</tbody>
</table>

(continued overleaf)
<table>
<thead>
<tr>
<th>PhOH</th>
<th>pH</th>
<th>Ref−</th>
<th>$E(\text{Ref}^+/\text{Ref}^−)$</th>
<th>$E(\text{PhO}^+/\text{PhO}^−)$</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Hydroxytryptophan</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.208</td>
<td>76</td>
</tr>
<tr>
<td>5-Hydroxyindole</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.216</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>TMPD</td>
<td>0.265</td>
<td>0.197</td>
<td>76</td>
</tr>
<tr>
<td>p-Aminophenol</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.217</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>11–13</td>
<td>TMPD</td>
<td>0.265</td>
<td>0.24</td>
<td>371</td>
</tr>
<tr>
<td>7-Hydroxycoumarin</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.315</td>
<td>76</td>
</tr>
<tr>
<td>Resorcinol</td>
<td>13.5</td>
<td>DMAP</td>
<td>0.174</td>
<td>0.392</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>5-hydroxytryptophan</td>
<td>0.208</td>
<td>0.379</td>
<td>76</td>
</tr>
<tr>
<td>Phenol</td>
<td>13</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.80</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.79</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>0.97</td>
<td>24</td>
</tr>
<tr>
<td>4-Methoxyphenol</td>
<td>11–12</td>
<td>4-methylphenol</td>
<td>0.68</td>
<td>0.54</td>
<td>24</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.68</td>
<td>24</td>
</tr>
<tr>
<td>4-Fluorophenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.76</td>
<td>24</td>
</tr>
<tr>
<td>4-Chlorophenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.80</td>
<td>24</td>
</tr>
<tr>
<td>4-Bromophenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.82</td>
<td>24</td>
</tr>
<tr>
<td>4-Iodophenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.82</td>
<td>24</td>
</tr>
<tr>
<td>4-Hydroxybenzoate ion</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.90</td>
<td>24</td>
</tr>
<tr>
<td>4-Acetylphenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>1.00</td>
<td>24</td>
</tr>
<tr>
<td>4-Cyanophenol</td>
<td>11–12</td>
<td>2$I^−$/I$_2^−$</td>
<td>1.06</td>
<td>1.12</td>
<td>24</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>11–12</td>
<td>2(SCN)$^−$/(SCN)$_2^−$</td>
<td>1.331</td>
<td>1.25</td>
<td>24</td>
</tr>
<tr>
<td>3-Methylphenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.80</td>
<td>378</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>11–12</td>
<td>ClO$_2^−$</td>
<td>0.936</td>
<td>0.76</td>
<td>378</td>
</tr>
<tr>
<td>3,5-Dimethoxyphenol</td>
<td>13.5</td>
<td>4-methoxyphenol</td>
<td>0.54</td>
<td>0.71</td>
<td>370</td>
</tr>
<tr>
<td>3,4-Dimethoxyphenol</td>
<td>13.5</td>
<td>Fe(CN)$_6$$^{3−}$</td>
<td>0.36</td>
<td>0.50</td>
<td>370</td>
</tr>
<tr>
<td>3,4,5-Trimethoxyphenol</td>
<td>3</td>
<td>promethazine</td>
<td>0.98</td>
<td>0.90</td>
<td>370</td>
</tr>
<tr>
<td>2,6-Dimethoxyphenol</td>
<td>13.5</td>
<td>TMPD</td>
<td>0.27</td>
<td>0.42</td>
<td>370</td>
</tr>
<tr>
<td>4,4′-Thiodiphenol</td>
<td>7</td>
<td>2$I^−$/I$_2^−$</td>
<td>1.03</td>
<td>0.98</td>
<td>311</td>
</tr>
<tr>
<td>4,4′-Biphenol</td>
<td>11.7</td>
<td>Fe(CN)$_6$$^{3−}$</td>
<td>0.46</td>
<td>0.46</td>
<td>310</td>
</tr>
<tr>
<td>4-Hydroxybiphenyl</td>
<td>10.8</td>
<td>2$I^−$/I$_2^−$</td>
<td>1.03</td>
<td>0.93</td>
<td>280</td>
</tr>
<tr>
<td>1-Naphthol</td>
<td>13</td>
<td>3-methylphenol</td>
<td>0.73</td>
<td>0.59</td>
<td>280</td>
</tr>
<tr>
<td>3-Methylphenol</td>
<td>13</td>
<td>phenol</td>
<td>0.79</td>
<td>0.73</td>
<td>280</td>
</tr>
<tr>
<td>2-Naphthol</td>
<td>13</td>
<td>phenol</td>
<td>0.79</td>
<td>0.69</td>
<td>280</td>
</tr>
<tr>
<td>2-Pyridol</td>
<td>13</td>
<td>4-cyanophenol</td>
<td>1.12</td>
<td>1.18</td>
<td>280</td>
</tr>
<tr>
<td>3-Pyridol</td>
<td>11</td>
<td>4-cyanophenol</td>
<td>1.12</td>
<td>1.06</td>
<td>280</td>
</tr>
<tr>
<td>4-Pyridol</td>
<td>13</td>
<td>4-cyanophenol</td>
<td>1.12</td>
<td>1.24</td>
<td>280</td>
</tr>
<tr>
<td>12.5</td>
<td>N$_3^−$</td>
<td>1.33</td>
<td>1.26</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td>11–12</td>
<td>phenol</td>
<td>0.80</td>
<td>0.71</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td>phenol</td>
<td>0.80</td>
<td>0.74</td>
<td>379</td>
</tr>
<tr>
<td>Tyrosineb</td>
<td>11</td>
<td>various</td>
<td>0.76</td>
<td></td>
<td>380</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>7</td>
<td>various</td>
<td>0.93</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>3-Iodotyrosine</td>
<td>11.5</td>
<td>various</td>
<td>0.73</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td></td>
<td></td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>3,5-Diiodotyrosine</td>
<td>7</td>
<td>cysteine</td>
<td>0.92</td>
<td>0.78</td>
<td>302</td>
</tr>
<tr>
<td>Silybin</td>
<td>11.3</td>
<td>4-methoxyphenol</td>
<td>0.54</td>
<td>0.58</td>
<td>293</td>
</tr>
</tbody>
</table>

aDMAP = p-(N,N-dimethylamino)phenol; TMPD = N,N,N',N''-tetramethylene-p-phenylenediamine.

bReference 380 contains data for several substituted tyrosines.
between the sulfur atom and the aromatic ring is much less than that which occurs with the oxygen atom371. An analogous comparison can be made for \textit{p}-substituted anilinyl radicals382.

The reduction potential changes with pH if either the radical or the molecule undergoes protonation or deprotonation upon pH change. For example, for dihydroxy compounds, where the two OH groups have dissociation constants K_1 and K_2, and the phenoxyl radical has a dissociation constant K_r for the second OH group, the potential at any pH, E_i, is related to the potential at pH 0, E_0, according to equation 38.

$$E_i = E_0 + 0.059 \log \frac{K_1 K_2 + K_1 [H^+] + [H^+]^2}{K_r + [H^+]}$$ \hspace{1cm} (38)

Using such equations and known pK_a values, the pH dependencies of the reduction potentials of phenoxyl radicals have been calculated for a number of cases.

From the reduction potentials at pH 0 and estimated values for the free energies of solvation of phenol and phenoxyl in water, gas-phase O–H bond dissociation energies have been calculated. The values derived from such calculations are given in Table 12. They are comparable to values determined by other methods which are discussed in Chapter 3.

IV. REFERENCES

47. S. Steenken, unpublished results.
16. Transient phenoxyl radicals: Formation and properties in aqueous solutions

16. Transient phenoxyl radicals: Formation and properties in aqueous solutions

380. M. R. DeFelippis, C. P. Murthy, F. Broitman, D. Weinraub, M. Faraggi and M. H. Klapper,

CHAPTER 17

Oxidation of phenols

SHOSUKE YAMAMURA

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan
Fax: 81-45-566-1697; e-mail: yamamura@chem.keio.ac.jp

I. INTRODUCTION 1154
II. CATALYTIC OXIDATION 1154
 A. Electrochemical Oxidation 1154
 1. Radical coupling reaction 1156
 2. Cationic reaction 1165
 B. Oxidation with Dioxgen, Hydrogen Peroxide and Alkyl Hydroperoxide Catalyzed by Metal–Base Complexes 1192
 1. Dioxygen–metal complexes 1192
 2. Hydrogen peroxide–and tert-butyl hydroperoxide–metal complexes .. 1207
 C. Enzymatic Oxidation 1216
III. OXIDATION WITH NONMETAL COMPOUNDS 1224
 A. Oxidation with Hypervalent Iodobenzenes 1224
 1. Reaction and reaction mechanism 1224
 2. Applications in natural products synthesis 1234
 B. Oxidation with 2,3-Dichloro-5,6-dicyano-p-benzoquinone 1247
 C. Oxidation with Dioxirane, Di-tert-butyl Peroxide and Di-tert-butyl Peroxyoxalate 1255
 D. Oxidation with Fremy’s Salt, Ammonium Nitrate–Acetic Anhydride, Dioxide-tert-butoxide, Sodium Periodate, Chlorous Acid and Other Oxidants .. 1259
IV. OXIDATION WITH METAL COMPOUNDS 1273
 A. Oxidation with Vanadium, Chromium and Molybdenum Compounds .. 1273
 B. Oxidation with Manganese and Rhenium Compounds 1278
 C. Oxidation with Iron, Ruthenium, Cobalt, Nickel and Rhodium Compounds 1287
 D. Oxidation with Copper and Silver Compounds 1305

The Chemistry of Phenols. Edited by Z. Rappoport

1153
I. INTRODUCTION

Birch reduction of aromatic ethers is well known to afford alicyclic compounds such as cyclohexadienes and cyclohexenones, from which a number of natural products have been synthesized. Oxidation of phenols also affords alicyclic cyclohexadienones and masked quinones in addition to C–C and/or C–O coupled products. All of them are regarded as promising synthetic intermediates for a variety of bioactive compounds including natural products. However, in contrast to Birch reduction, systematic reviews on phenolic oxidation have not hitherto appeared from the viewpoint of synthetic organic chemistry, particularly natural products synthesis. In the case of phenolic oxidation, difficulties involving radical polymerization should be overcome. This chapter demonstrates that phenolic oxidation is satisfactorily used as a key step for the synthesis of bioactive compounds and their building blocks.

On electrolysis, a symmetric tetra-substituted phenol \(1\) will undergo electrochemical \(1e\) oxidation followed by deprotonation resulting in the formation of the corresponding radical \(2\). This is also generated by oxidation of \(1\) with metal or nonmetal compounds as the oxidant. The resulting unstable species undergoes radical coupling reactions to give dimers \(3\), \(4\), \(5\), \(6\) and/or \(7\) or is further oxidized to generate a cation \(8\) which is attacked by a variety of nucleophiles to afford the \(2e\) oxidation products \(9\) and/or \(10\). The cation is also generated directly from the parent phenol through the intermediate \(11\) (Scheme 1). Herein, the formation of a radical or cation species depends on the choice of oxidants, oxidation conditions and other factors, particularly the substituents attached to the aromatic ring. In the case of thallium trinitrate \((M = \text{Tl}, X = \text{NO}_3, n = 3)\) mediated oxidation, the corresponding cation \(8\) is generated via such an aryloxy–metal intermediate as \(11\), while thallium trifluoroacetate-mediated oxidation often provides radical-coupled dimers.

II. CATALYTIC OXIDATION

From the viewpoint of organic synthesis, catalytic oxidation of phenols with high stereo- and regioselectivities and high yields is more favorable than other reactions using stoichiometric amounts of oxidants, because it is advantageous to obtain only the desired products without formation of byproducts originating from the oxidants used. In the 21st century, more efficient and ideal catalytic systems must be created.

A. Electrochemical Oxidation

Electroorganic chemistry is one of the most useful tools in organic synthesis. In principle, electroorganic reactions take place on the surface of electrodes (anode and cathode). At the anode one-electron transfer occurs from the substrate to the electrode to generate a radical cation. In the case of asymmetric tetra-substituted phenols such as \(12\), the resulting radical cation \(13\) is further deprotonated to the corresponding radical \(14\), which undergoes radical coupling reaction to afford dimerization products or is further oxidized to generate a cation \(15\), as shown in Scheme 2. Here, the radical coupled dimers are expected to be produced selectively when the oxidation potential for the first step \((E_1)\) is lower than that for the second step \((E_2)\). In contrast, if the oxidation potential \(E_1\) is higher than or comparable to \(E_2\), \(2e\) oxidation products will be formed in competition with the radical
SCHEME 1. Phenolic oxidation process

Ar = 2,6-R2-4-R1C6H3
Nu− = MeO− (MeOH), HO− (H2O), CN− and others
M = Tl, Pb, Mn and others
X = NO3, AcO, CF3COO and others
coupling reaction. In this case, if the dimers are required to be synthesized, they will be selectively obtained starting from the corresponding phenoxy anion 16 which has a lower oxidation potential (E_3).

As demonstrated in Scheme 2, it is not easy to obtain the desired product in a regio- and stereoselective manner, because several unstable species (Ar*, Ar**+, Ar+) are electro-generated and each one of them shows different reactivity and can react with a nucleophile or dimerize at three or four reactive centers shown by the arrows in the two structures in brackets. Therefore, it is quite important to find the optimum conditions by changing the oxidation potential, the electrode, the supporting electrolyte and other parameters. Particularly, the product selectivity is dependent on the substituents attached to the aromatic ring and the solvents used.

\[\text{Scheme 2. Oxidative generation of reactive species} \]

Generally, direct electrolysis is carried out at a controlled potential (CPE) or constant current (CCE) using both undivided and divided cells. In contrast, an indirect method using a mediator is effective for substrates with higher oxidation potentials beyond the achievable region.

Recently, a number of invaluable books on electroorganic chemistry have been published\(^1\text{-}^7\). Some of them discuss all aspects of the experimental arrangements, e.g. cells, electrodes, supporting electrolytes, solvents and other parameters, and there are many examples including a variety of both anodic and cathodic reactions followed by chemical reactions\(^8\text{-}^9\).

1. Radical coupling reaction

Generally, the electrogenerated radical species undergoes dimerization in competition with further 1e oxidation leading to the corresponding cation. On anodic oxidation of
phenol, electropolymerization is well known to take place resulting in the formation of a passivating film on the electrode surface10,11. Therefore, both \(p \)-benzoquinone (17) and 4,4\(^{\prime}\)-diphenoquinone (18) have been produced as minor products in 20 and 10% yields, respectively, as shown in Scheme 310. The latter is formed through biphenol 19, a radical coupled dimer. The 17/18 ratio could be varied widely; e.g. electrolysis at more anodic potential provided increased percentage of 17. Anodic oxidation of 2,6-dimethylphenol also leads to rapid formation of a linear polymer chain, but when phenols bearing a bulky alkyl substituent are used, the resulting radicals are expected to be stable. In fact, the detection of radical formation from 2,6-di(sec-butyl)phenol (20), based on multiple internal reflection Fourier transform infrared spectroscopy (MIRFTIRS), confirms the radical mechanism during the anodic oxidation of 20 leading to the corresponding 4,4\(^{\prime}\)-diphenoquinone 21 through 22 (Scheme 3)12. In these cases, it is difficult to obtain biphenols such as 19, 22 and 25.

On constant current electrolysis (1.0 mA cm\(^{-2}\); 2.5 F mol\(^{-1}\)) in MeOH–CH\(_2\)Cl\(_2\) using a divided cell, 2,6-di(tert-butyl)phenol (23) was converted to 4,4\(^{\prime}\)-diphenoquinone 24 in 84.7% yield. A subsequent electroreduction was performed just by changing the current
direction to afford biphenol 25 in 92.5% yield (Scheme 3). This example is one of the most characteristic features in electroorganic chemistry. Radical coupling reactions of a variety of phenols have been shown in a number of books. Some of these couplings were applied to biomimetic synthesis of natural products in view of the oxidative phenol coupling reactions in nature. Duplication will be avoided in this chapter.

From the biogenetic point of view, lignans and neolignans are produced by oxidative phenol couplings between two C6–C3 units. They have a variety of carbon skeletons as well as remarkable bioactivities. Several reviews on lignans and neolignans syntheses have appeared.

Lunarine (26), one of the typical neolignans, is biosynthesized by the ortho–para radical coupling between two molecules of p-hydroxycinnamic acid. In this connection, oxidative coupling reactions of 4-substituted phenols have been extensively studied using thallium trifluoroacetate (TTFA), potassium ferricyanide (K3[Fe(CN)6]) and other reagents. p-Cresol (27) was also electrolyzed at a controlled potential (+0.25 V vs. SCE) in a basic medium to afford Pummerer’s ketone in 74% yield. The suggested mechanism is given in Scheme 4.

Eugenol is one of the most simple C6–C3 units. As expected from the CV data of eugenol, it underwent constant current electrolysis (1.5 mA cm−2) in MeOH to afford three 2e oxidation products, together with small amounts of dehydrodieugenol (33), a radical coupled dimer (7.4%) (Scheme 5). Herein, 32 must be produced by the Diels–Alder reaction of the major product 31. As the oxidation potential (500 mV) at the second step is lower than that at the first step (780 mV), the resulting radical will be oxidized easily to the corresponding cation in competition with the radical coupling reaction. In contrast, anodic oxidation of 29 in 1M NaOH–MeOH provided 33 in almost quantitative yield. Electrochemical study on eugenol has also been carried out by Barba and coworkers.

trans-Isoeugenol (34), having a lower oxidation potential than eugenol (29), was electrolyzed at a controlled potential (+800 mV vs. SCE) in MeOH to afford four dimers, 35, 36, 37 and 38 in 6, 5, 29 and 18% yields, respectively (Scheme 6). Herein, the initially generated p-quinone methide radical will be dimerized by C−C or C−O coupling. Anodic oxidation of cis-isoeugenol provided similar results.

In the case of sinapic acid (39), the CV data indicate that the oxidation potential at the initial step is almost comparable to that at the second step. On controlled potential
electrolysis (+840 mV vs. SCE) in high concentration (10 mM), 39 was converted to
dilactone 40 and an isosatone-type compound 41 in 60 and 9% yields, respectively,
while a lower concentration (1 mM) provided 41 as a sole product (Scheme 7)25.

3,4-Methylenedioxy-6-propenylphenol (42) underwent 1e oxidation followed by rad-
cical coupling resulting in the formation of dimeric o-quinone methide 43, which was
further converted to carpanone (44) and seven-membered ether 45 in 11 and 44% yields,
respectively, as shown in Scheme 8. The former is produced by an intramolecular [4 + 2]
cycloaddition24,26. Carpanone has also been synthesized using oxidants such as palladium
chloride27 and molecular oxygen in the presence of Co(II)salen28.

From the biogenetic point of view, a series of electrochemical studies on coryalline
and related tetrahydroisoquinolines have been performed by Bobbitt and coworker29. On
controlled electrolysis (+40 mV vs. SCE) in excess base using a divided cell, the racemic
tetrahydroquinoline 46 was easily oxidized to generate the corresponding radical, which
underwent stereoselective dimerization to afford in 68.9% yield one of three possible iso-
mers (47, 48 and 49) (Scheme 9)29. In the case of the S-enantiomer 46, only one of two
rotational isomers, 47, was produced. In contrast, chemical oxidation of racemic 46 using
K3[Fe(CN)6] provided three dimers (47–49). From these results, it is evident that electro-
chemical reaction takes place on or very close to the surface of the electrode, which plays
an important role in product selectivity. Of three different kinds of electrodes (graphite
felt, platinum and carbon paste anodes) the best result was obtained using the graphite
felt anode and the other two electrodes provided very low yields of the carbon–carbon
coupled dimer. Benzylisoquinoline alkaloids synthesis has been performed using a variety
of oxidants rather than an electrochemical method, as described later.

During the last thirty-five years, a variety of biologically active substances bearing
a novel carbon skeleton have been found in marine organisms. Of them, a number of
highly brominated diphenyl ethers with antibacterial and antitumor activities were isolated
from Dysidea herbaceae and Ptychodera flava laysanica. These metabolites are regarded
as a self-defensive substance. In order to synthesize these metabolites, electrochemical
oxidation of bromophenols has been carried out30. Some typical examples are shown here.
SCHEME 5. Anodic oxidation of eugenol
SCHEME 6. Anodic oxidation of trans-isoeugenol
SCHEME 7. Anodic oxidation of sinapic acid
17. Oxidation of phenols

On controlled electrolysis (+880 mV vs. SCE; 2 F mol⁻¹) in MeOH, 2,6-dibromo-4-methoxyphenol (50) underwent 2e oxidation, followed by nucleophilic capture with MeOH to afford 2,6-dibromo-4,4-dimethoxy-2,5-cyclohexadien-1-one (51) in quantitative yield. 50 was also electrolyzed at a less positive potential (+440 mV; ca 1 F mol⁻¹) in MeOH containing AcOH–AcONH₄ to give two dienones (52 and 53) in 32 and 55% yields, respectively, as shown in Scheme 10. Herein, these products must be formed by C–O and C–C couplings with bromine substitution, respectively. Therefore, the selective formation of 2e oxidation products or radical coupling dimers depends on the choice of the solvent.

The highly brominated diphenyl ether 54, isolated from the marine organism *P. flava laysanica*, was synthesized starting from 2,3,5-tribromo-4-methoxyphenol (55). Substrate 55 was electrolyzed at +610 mV vs. SCE (1 F mol⁻¹) in 1:1 MeOH–CHCl₃ containing AcOH–AcONH₄ and then submitted to zinc reduction leading to two dimers 56 and 57 in 26 and 43% yields, respectively. The former was demethylated with boron tribromide to give rise to the natural 54.

From the viewpoint of biological activity as well as a novel peptide framework, isodityrosine-class natural products (piperazinomycin, OF 4949-III, K-13 vancomycin), sharing diaryl ethers, are quite attractive. Basic isodityrosine (58) itself, contributing cross-linked properties of glycoprotein of plant cell wall, has been synthesized by four groups. Three of them employed Ullman reactions of tyrosine derivatives and/or appropriate precursors. Fry adopted phenol-oxidation methodology using potassium ferricyanide to afford isodityrosine (58) and dityrosine (59), a component of native structural proteins, in 1.8 and 3.4% yields, respectively. Under these conditions, the electrochemical methodology provided the best results in efficiency and simplicity.

The 3,5-dibromotyrosine derivative 60, easily prepared from tyrosine, was submitted to anodic oxidation (5 mA; +1038–1228 mV vs. SCE) in MeOH, followed by zinc reduction to afford in 45% overall yield the corresponding diaryl ether 61, which was quantitatively...
SCHEME 9. Electrolysis of 1,2-dimethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline converted to isodityrosine (58) in 2 steps (1. Catalytic hydrogenation, 2. hydrolysis), as shown in Scheme 1135. Almost the same result was also obtained in the case of a 3,5-dichlorotyrosine derivative. In contrast, electrolysis of a 3,5-diiodotyrosine derivative 62, followed by zinc reduction, provided the corresponding diaryl 63 as a sole product (28\%), which was converted to dityrosine (59) in 2 steps. Furthermore, both isodiphenylglycine and diphenylglycine have also been synthesized based on electrochemical methodology.

As mentioned above, bromine substituents promote the diaryl ether formation, while iodine substitutions prefer to produce diaryls. The \textit{ab initio} calculations36 indicate that the O-radicals are stable in bromo derivatives, in contrary to the C-radicals in the iodo derivative, although solvent effects were not taken into consideration. Accordingly, the

\[(46) \]

\[(47) S, S \text{ rotamer A} \]

\[(48) S, S \text{ rotamer B}^* \]

\[(49) R, S \text{ isomer}^* \]

* One of the two antipodes in a racemic form is shown here.
C-radicals leading to the C−C coupled dimers were easier to form from diiodophenols than from dibromophenols.

2. Cationic reaction

The resulting phenoxonium ion \(15\), cited in Scheme 2, is attacked by a variety of nucleophiles to yield three cyclohexadienones (\(64, 65\) and \(66\)), as shown in Scheme 12, where \(X, X^1, Y\) and \(Z\) are suitable functional groups such as hydrogen atom, alkyl, aryl, alkoxy and/or hydroxyl group. Usually, these three compounds are competitively formed depending upon the substituents and their locations on the benzene ring. In the
SCHEME 11. Synthesis of isodityrosine and dityrosine
presence of a suitable olefin, a cationic [5 + 2] and formal [3 + 2] cycloaddition will take place to yield the corresponding bicyclo[3.2.1]octenone (67) and dihydrobenzofuran (68), respectively. Compounds 64–68 are promising synthetic intermediates for a variety of natural products.

On controlled current electrolysis (200 mA), 2,6-di(tert-butyl)-p-cresol (69) underwent nucleophilic hydroxylation, methoxylation or acetoxylation depending on the solvent system used (1M H₂O, MeOH or 0.2 M NaOAc–AcOH in MeCN) to afford the corresponding cyclohexa-2,5-dienones 70, 71 and 72 in 86, 88 and 91% yields, respectively. In the case of 2,4,6-tri(tert-butyl)phenol (73), 2,6-di(tert-butyl)-p-benzoquinone (74) was produced in 96% yield through cyclohexa-2,5-dienone 75, as shown in Scheme 13.
Anodic halogenation also takes place; e.g. the substrate 69 was electrolyzed at constant current (200 mA) in CH₂Cl₂–pyridine to afford 2,6-di(tert-butyl)-4-chloro-4-methylcyclohexa-2,5-dienone (76) in 56% yield (Scheme 14)\(^37\). From the viewpoint of biological activity, fluorinated arenes are quite important because they are used as medicines, agrochemicals and building blocks for the synthesis of such products. Anodic fluorination of phenol was performed at constant current (5 mA cm\(^{-2}\)) using Et\(_3\)N·3HF to afford 4,4-difluorocyclohexa-2,5-dienone (77) in 25% yield, as shown in Scheme 14. Herein, Et\(_3\)N·3HF is used as a supporting electrolyte as well as a source of fluorine and has good electrical conductivity\(^40\). The resulting dienone is a useful intermediate in the synthesis of substituted fluorophenols. For example, catalytic hydrogenation of 77 afforded...
SCHEME 14. Anodic halogenation of phenols

4-fluorophenol (78) in 90% yield. 77 also underwent Michael addition by KCN in DMF to give 6-fluoro-3-hydroxybenzonitrile (79) in almost quantitative yield.

Similarly, anodic oxidation of 2,4,6-tri(tert-butyl)phenol (73) in MeCN containing n-propylamine provided the corresponding cyclohexa-2,5-dienone 80 (47% yield). Furthermore, electrochemical oxidation of 73 in MeCN–pyridine (1:1) yielded two pyridinium salts 81 and 82 in 44 and 23% yields, respectively (Scheme 15). Here, pyridine works as a nucleophile. Anodic amination of phenols has been also studied.

From the viewpoint of synthetic organic chemistry, one of the most characteristic properties in electroorganic chemistry is a direct anodic alkoxylation introducing oxygen functionalities into aromatic rings, resulting in the formation of alkoxy-substituted aromatic
compounds, quinones, quinone mono- and bis-ketals. An excellent review on preparations, reactions and mechanistic considerations of both quinone mono- and bis-ketals has appeared\(^4\) and only some recent examples are shown here.

Anthracycline antibiotics represented by daunomycin and adriamycin are well known as anticancer agents and their reaction mechanisms with DNA have been extensively studied. However, an approach to understand the mechanism of drug action based on organic synthesis is still open.

The easily available protected phenol ether \(83\) was subjected to anodic oxidation (+1.3 V vs. SCE) in MeOH containing NaOAc and LiClO\(_4\) as a supporting electrolyte to afford in 53% yield quinone monoketal \(84\), which reacted with 5-fluoro-3-cyanophthalide \(85\) in the presence of LDA to give anthraquinone \(86\). This quinone was converted

SCHEME 15. Anodic amination of 2,4,6-tri(tert-butyl)phenols
straightforwardly to the target molecule 87 (Scheme 16)46. Compound 87 and its analogs showed inhibitory activities against P388 cell line (IC\textsubscript{50}: 0.2–0.4 \(\mu\)M).

Quinone imine ketals have also been recognized to be quite useful for heterocycle synthesis. In a series of quinone mono- and bis-ketal chemistry, Swenton and coworkers carried out anodic oxidation of trifluoroacetamido-substituted \textit{p}-methoxyphenols47. For example, the readily available \textit{p}-methoxyphenol derivative 88 underwent constant current electrolysis (60 mA) in 2\% LiClO\textsubscript{4} in methanol, followed by hydrolysis with 5\% aqueous KOH to afford quinone imine ketal 89 in 82\% overall yield, through quinone monoketal 90 (Scheme 17). Furthermore, acid treatment of 89 with TsOH provided 5-methoxyindole (91).

Several neolignans, found in \textit{Piper futokazura} Sieb. et Zucc., are quite interesting because of their antifeedant activity against insects. 4-Substituted 2-allyl-5-methoxyphenol 92 was submitted to constant current electrolysis (10 mA; +900–1090 vs. SCE) to afford isodihydrofutoquinol A (93) in 51\% yield, together with dienone 94 (15\%) and a spiro
compound 95 (2.3%)48. DDQ oxidation of 93 yielded selectively futoquinol (\textit{trans}-96), which underwent photochemical reaction in hexane to give rise to isofutoquinol A and B (97 and \textit{cis}-96) in 67 and 16% yields, respectively (Scheme 18).

Intramolecular nucleophilic substitution of electrogenerated phenoxonium ions has been investigated8,25. In connection with naturally occurring bromo compounds, methyl 3,5-dibromo-4-hydroxyphenyl pyruvate oxime (98) was subjected to anodic oxidation (+1.3 V \textit{vs.} SCE; 2.1 F mol-1) in MeOH to afford spiro-isoxazole 99 in almost quantitative yield49. Methyl 3-bromo-4-hydroxyphenyl pyruvate oxime (100) was also electrolyzed under similar conditions to give three compounds 101, 102 and 103 in 34, 14 and 17% yields, respectively. The latter two products are formed by C–O and C–C radical couplings, respectively, as shown in Scheme 1950.

Tyrosine spirolactones are not only promising synthetic intermediates for bioactive natural products such as alkaloids and antibiotics but also synthons useful in peptide chemistry. For example, N-protected tyrosine derivatives 104 and 105, prepared from 2,6-di(\textit{tert}-butyl)-4-chloromethylphenol, were electrolyzed at a controlled potential (+1.3–1.4 V \textit{vs.} Ag/Ag+) in MeCN to give spirolactones 106 and 107 (64 and 85%, respectively)51. These spirolactones are used for peptide synthesis, as shown in Scheme 19.
SCHEME 18. Isodihydrofutoquinol A, isofutoquinol A and related neolignans
SCHEME 19. Anodic oxidation of tyrosine derivatives

Fmoc = 9-C_{13}H_{19}CH_{2}OCO (9-fluorenylmethoxycarbonyl)
Z = COOCH_{2}Ph
Instead of nucleophiles such as H$_2$O, MeOH, RNH$_2$ and halide ions, both the aryl group and olefinic double bond will react with an electrogenerated phenoxonium ion to give carbon–carbon coupled products. In particular, electrooxidative coupling reactions of α,ω-diaryalkanes leading to cyclic diaryl ethers have been known to take place in a radical or cationic manner depending on the oxidation potential, the nature and location of substituents, the solvent systems and other factors, as cited in many books$^{1–9,14,52}$. Electrochemical carbon–carbon bond formations will be described here.

On constant current electrolysis (0.27 mA cm$^{-2}$; +180–600 mV vs. SCE) in Ac$_2$O containing ethyl vinyl ether, 4,5-dimethoxy-2-methylphenol (108) was converted to two cyclohexa-2,4-dienones 109 and 110 and cyclohexa-2,5-dienone 111, in 29, 18 and 8% yields, respectively53 (Scheme 20). The product 110 is formed by nucleophilic substitution at the C-6 position followed by acetal formation with EtOH molecule generated initially from the ethyl vinyl ether while the C-4 position is attacked by ethyl vinyl ether to yield 111.

SCHEME 20. Anodic oxidation of 4,5-dimethoxy-2-methylphenol in the presence of ethyl vinyl ether

Intramolecular carbon–carbon bond formation of phenols bearing an olefinic side chain at the C-2 position is effected by using an electrochemical method. Anodic oxidation of 4-(2-alkenylphenyl)phenols (112a–112c) in 4:1 MeCN–MeOH provided spirocyclic cyclohexa-2,5-dienones (113a–113c) in 85, 70 and 16% yields, respectively, in competition with MeOH addition to the C-4 position leading to 4-methoxycyclohexa-2,5-dienones (114a–114c) (Scheme 21)54. Only in the case of 112c was the corresponding dienone 114c produced in 19% yield. These observations and other results suggest that the remarkable differences between 112a and 112c are due to the buttressing effect of an ω-alkyl group. In this connection, compound 115 was electrolyzed at constant current in 4:1 MeCN–MeOH to afford a 1:1 mixture of dienones (116 and 117) in almost quantitative yield and no cyclization product was detected.
SCHEME 21. Anodic oxidation of 4-(2-alkenylphenyl)phenols
Two sesquiterpenes, γ- and δ-acoradiene (118 and 119), were synthesized efficiently using an electrochemical method as a key step. The readily available 4-substituted phenol 120 was submitted to constant current electrolysis in 2:1 MeOH–THF to afford three spiro compounds (121, 122 and 123) in 43% yield (relative ratio: 121/122/123 = 1:2:1). All of them were readily converted to both 118 and 119. However, the use of only THF as a solvent provided the corresponding dimer 124 in 80% yield (Scheme 22).

Similarly, the 4-substituted anisole 125 underwent constant current electrolysis (11.2 mA, 2F mol\(^{-1}\)) in 20% MeOH–CH\(_2\)Cl\(_2\) leading to a spiro compound 126 in 51% yield, as shown in Scheme 23.
Of physiologically active substances isolated from marine sources, the pyrroloiminoquinone alkaloids family exhibits antitumor activities derived from the unique highly-fused structure. The first synthesis of discorhabdin C (127) was performed by means of an electrochemical method as a key step. The key substrate 128, efficiently prepared starting from 4,4-dimethoxy-5-nitrobenzaldehyde, was submitted to constant current electrolysis (3 mA; +1.2–1.8 V vs. SCE) in anhydrous MeCN to give rise to discorhabdin C in 24% yield, together with a minor compound 129 (6%) (Scheme 24). After a while, discorhabdin C was also synthesized by using PhI(OCOCF₃)₂-promoted oxidation as a key step.

As already shown in Scheme 12, nucleophilic substitution takes place at ortho-positions leading to cyclohexa-2,4-dienones such as 65 and 66 in competition with para-substitution. In a synthetic study of neolignans isolated from Heterotropa takaoi M. and related plants, electrochemical oxidation of 4-allyl-2,6-dimethoxyphenol (130) was carried out at constant current (0.31 mA cm⁻², +620–660 mV vs. SCE) in MeOH containing LiClO₄ to afford in 36% yield the desired cyclohexa-2,4-dienone 131, which was readily converted to asatone (132), isoasatone (133), heterotropanone (134), heterotropatrione (135) and related neolignans, as shown in Scheme 25. 134 was synthesized by Diels–Alder reaction of 5-allyl-1,2,3-trimethoxybenzene (ATMB) with 131 regenerated from asatone (132) by a retro-Diels–Alder reaction.
SCHEME 25. Electrochemical synthesis of asatone and related neolignans
Silydianin (136), found in the fruits of *Silybum marianum* G., shows an antihapatotoxic activity and has a unique 9-oxaisotwistane skeleton. Generally, 9-oxaisotwist-8-en-2-ones have been synthesized from the corresponding phenols by means of the Wessely oxidation method using lead tetraacetate\(^6\). However, this method is not applicable to acid-sensitive phenols bearing a methoxymethyl ether group.

On controlled electrolysis (950 mV vs. SCE, 2 F mol\(^{-1}\)) in 2:1 MeOH–THF, the phenol 137 prepared from 3,4-dihydroxybenzaldehyde underwent 2e oxidation resulting in the formation of 9-oxaisotwist-8-en-2-one 138, in 82% yield, which was smoothly converted to deoxysilydianin methyl ether 139 (Scheme 26)\(^6\).

On controlled electrolysis (80 mA) in 8:1 MeCN–AcOH including LiClO\(_4\) as a supporting electrolyte, formal [3 + 2] cycloaddition took place between *p*-methoxyphenol (140a) and trans-1,2-dimethoxy-4-propenylbenzene (141) in equimolar amounts to afford dihydrobenzofuran 142a in 61% yield. The use of the cis-olefin also provided 142a in 50% yield, indicating that these reactions proceed in a stepwise manner (Scheme 27)\(^6\). In the case of 3,4-dimethoxyphenol (140b), equimolar amounts of 140b and 141 gave only a 14% yield of the adduct 142b. However, the yield of the reaction could be increased to 61% when a 3-fold excess of 141 was used. In particular, the 4-methoxy group is important for obtaining good yields of the cycloaddition products; neither phenol nor *m*-methoxyphenol gave isolatable amounts of product.

Similarly, anodic oxidation of *p*-methoxyphenol (140a) was carried out in the presence of the substituted propenylbenzene 143 using teflon-coated electrode to afford the corresponding dihydrobenzofuran 144 in 80% yield\(^6\) (Scheme 27). The hydrophobic coating on the electrode protected the highly reactive intermediate from the solvent and enhanced the reaction with 143.

p-Methoxyphenol (140a) underwent constant current electrolysis (0.27 mA cm\(^{-2}\); +400–800 mV vs. SCE) in Ac\(_2\)O containing dihydrofuran or tetrahydropyran to afford the corresponding dihydrobenzofurans 145a and 145b in 11 and 33% yields, respectively. Anodic oxidation of 4,5-dimethoxy-2-methylphenol (108) in the presence of furan yielded a 1:1 adduct 146 (30%), as shown in Scheme 28. Herein, the resulting phenoxonium ion must be attacked by furan\(^5\).

From the viewpoints of biogenesis and biological activity, the neolignans found in *Aniba* and *Magnolia* species are quite attractive. A pioneering work in this field was carried out by Büchi and Mak, who could successfully synthesize both guianin and futoenone in short reaction sequences\(^6\). Electrochemical methodology is used efficiently for syntheses of aniba and magnolia neolignans.

In a series of synthetic studies on these neolignans, 2-allyl-4,5-dimethoxyphenol (147) was submitted to constant current or controlled potential electrolysis in 90%aq. MeCN, MeOH and 2:1 MeOH–AcOH containing excess trans-isosafrole to afford 2-allyl-5-methoxy-*p*-benzoquinone (148), 2-allyl-4,4,5-trimethoxyoctahexa-2,5-dienone (149) and one of the Aniba neolignans (150) in 83, 87 and 81% yields, respectively. Here, the neolignan 150 is formed selectively by a cationic [5 + 2] cycloaddition. The use of cis-safrole instead of the trans-isomer provided an exo-addition product 151 and futoenone 152 in 25 and 15% yields, respectively\(^6\), as shown in Scheme 29. 152 must be produced from the initially formed endo-addition product 153.

4,5-Dimethoxy-2-methylphenol (108) which was electrolyzed in 2:3 Ac\(_2\)O–AcOH including trans-1,2-dimethoxy-4-propenylbenzene (140) underwent cationic [5 + 2] cycloaddition affording in 80% yield the corresponding bicyclo[3.2.1]oct-3-en-2,8-dione 154, which was readily converted to helminthosporal (155), a toxic sesquiterpene (Scheme 30)\(^6\).
SCHEME 26. Electrochemical synthesis of deoxysilydanin methyl ether

MOM = MeOCH₂
Ar = 2,4,5-tri(MeOCH₂)C₆H₅
SCHEME 27. Anodic oxidation of \(p \)-methoxyphenols in the presence of methoxy-substituted propenylbenzenes
3,4-Dimethoxyphenols such as 156 bearing a double bond at the side chain undergo anodic intramolecular cycloaddition resulting in the formation of three possible compounds 157, 158 and 159 (Scheme 31). These compounds are promising synthetic intermediates for a variety of sesquiterpenes.

Silphinene (160), a constituent of the roots of Silphium perfoliatum, has attracted considerable attention of synthetic chemists. Electrochemical methodology is used for its synthesis. On constant current electrolysis (1.18 mA; +750–1200 mV vs. SCE) in Ac$_2$O, the phenol 161, readily prepared from 3,4-dimethoxyphenol, underwent intramolecular [5 + 2] cycloaddition to give in 59% yield the desired tricyclic compound 162, which was successfully converted into silphinene through a bicyclic compound 163 (Scheme 32). Pentalenene (164) has the same carbon skeleton as that of silphinene (160). However, the methyl substituents are located in different positions. Anodic oxidation of the phenol 165 in 3:2 MeOH–AcOH was carried out at constant current (71.8 mA; +540–1500 mV vs. SCE) to afford two tricyclic epimers 166 and 167 in 64 and 16% yields, respectively (Scheme 32). The major one was further converted to the target molecule (164) through an intermediate 168.
SCHEME 29. Electrochemical synthesis of bioactive neolignans
Acourtia isocedrene (169) is one of the highly oxygenated isocedrenes first isolated from Acourtia Nana. Retrosynthetic pathways are shown in Scheme 33, where the resulting cycloaddition product (170) from penta-substituted phenol 171 has the same carbon skeleton as that of 169, while addition of one carbon unit to 172 is needed in the case of a tetra-substituted phenol 173.

On constant current electrolysis (9.4 mA; 2 F mol$^{-1}$), 171 underwent intramolecular cationic [5 + 2] cycloaddition to afford the β-isomer 170 as a sole product (34%). In the case of the tetra-substituted phenol 173, it was converted to a mixture of two stereoisomers (172a and 172b) in 70% yield (relative ratio: $\alpha/\beta = 3/1$), as shown in Scheme 3468. Both of them were converted successfully to the target molecule 16969.

SCHEME 30. Total synthesis of helminthosporal
SCHEME 31. Anodic oxidation of 6-substituted 3,4-dimethoxyphenols

8,14-Cedranoxide (174), a constituent of *Juiperus foetidissima* *W.*, has been synthesized efficiently starting from 3,4-dimethoxyphenol through 6-acetoxymethyl-2,6-dimethyl-9-methoxytricyclo[5.3.1.0²⁷]undec-9-en-8,11-dione (175), which can be prepared by means of an electrochemical method.

The phenol 176, prepared from 3,4-dimethoxyphenol, was submitted to constant current electrolysis (2.5 mA; +900–1200 mV vs. SCE) to afford two tricyclic stereoisomers 175 and 177. Their yields and relative ratio varied with the solvent systems (3:2 and 5:1 Ac₂O–AcOH and Ac₂O). Acetic anhydride as the solvent provided the best result (175: 64%; 177: 16%). The former was converted into 8,14-cedranoxide (Scheme 35)⁶²,⁷⁰.

2-epi-Cedrene-isoprenologue (178), first isolated from *Eremophila georgei* D, constitutes a new class of diterpenes bearing a tricyclic cedrane-type skeleton in their molecule, whose synthesis is shown in Scheme 36. The key intermediate (179) has been synthesized electrochemically from the corresponding phenol 180; electrolysis of 180 in Ac₂O provided a mixture of two tricyclic stereoisomers (179a and 179b) in 68% yield (α/β = 5/2). Both of them were further converted into the target molecule⁷¹.
From the viewpoint of natural products synthesis, retro-aldol condensation of the electrosynthesized tricyclic compounds 181 and 182 provided the selective formation of trans-hydroazulene 183 and triquinane 184 in good yields, respectively\(^72\) (Scheme 37). Herein, the selective attack of a methoxy anion to the \(\beta\)-diketone is due to the stereochemistry of the aryl group introduced to the C6-position.

In the case of 3,4-dimethoxyphenol (185) bearing an \(\alpha,\beta\)-unsaturated CO system, one-pot synthesis of the corresponding tricyclic compound (186) was performed in \(ca\) 80% yield by a combination of electro- and photochemical reactions, as shown in Scheme 38\(^73\). Here, intramolecular cationic [5 + 2] cycloaddition does not take place, because of the
electrons-deficient double bond. Compound 186 was further converted into angular and linear triquinanes such as 187 and 188.

One-pot synthesis of isoitalicene (189) was also accomplished by similar procedures. The phenol 161, cited in Scheme 32, was subjected to constant current electrolysis (0.9 mA; 510–1200 mV vs. SCE) in 5:1:3 EtOAc–i-PrOH–H₂O under irradiation to afford in 80% yield the desired tricyclic compound (190), which was readily converted to isoitalicene (Scheme 38)⁷⁴.
SCHEME 35. Total synthesis of 8,14-cedranoxide

SCHEME 36. Total synthesis of 2-epi-cedrene-isoprenologue
SCHEME 37. Synthesis of hydroazulene and triquinane derivatives

Ar = p-F, p-Cl and p-BrC₆H₄
SCHEME 38. Synthesis of triquinanes and isoitalicene
Finally, in the case of such a phenol as grandinol (191), an indirect method using a mediator is more favorable than a direct one. Euglobals isolated from *Eucalyptus* sp. show potent inhibitory activity against Epstein–Barr virus activation. From the biogenetic point of view, these euglobals are composed of grandinol and monoterpenic moieties.

The phenol 191 was submitted to controlled potential electrolysis (0.45 V vs. SCE) in nitromethane containing 0.2 equivalent DDQ in the presence of α-phellandrene (192) to afford the corresponding equilibrium mixture of o-quinone methide 193a and 193b. The redox cycle of DDQ was constructed on the teflon-fiber coated electrode. A Diels–Alder reaction between 193a or 193b and 192 afforded euglobal T1 (194) and euglobal IIc (195) in 51 and 28% yields, respectively (Scheme 39). In the case of pinene (196), both euglobal G-3 (197) and G-4 (198) were produced in 89% yield (G-3/G-4 = 1) in the reaction with 191. Of a variety of solvents examined, nitromethane was the most effective.

B. Oxidation with Dioxygen, Hydrogen Peroxide and Alkyl Hydroperoxide Catalyzed by Metal–Base Complexes

From the viewpoints of organic synthesis including industrial process and understanding the reaction mechanism of a variety of metalloenzymes, selective oxidations of phenols catalyzed by transition metal complexes capable of activating oxygen have long been studied, so that many efforts have been made to prepare more efficient metal complexes by a combination of metals and new ligands. In parallel, the oxygenation mechanism of phenols has also been examined by using simple phenols such as 2,4,6-tri-, 2,4-di- and 2,6-di(tert-butyl)phenol, because of both easy detection of products and simplification of the reaction pathways. A number of invaluable books on these topics have been published.

1. Dioxygen–metal complexes

Related to copper-containing enzymes such as laccase and tyrosinase, recent studies have been conducted on the structural characterization of the reactive species generated from molecular oxygen and copper complexes. A continuous effort has also been directed toward the efficient utilization of such oxygen–copper complexes as oxidants, in industrial processes, which will hopefully replace metal compounds such as chromate, manganate and others.

Phenol oxidation has been well known to be effected with cuprous chloride in the presence of nitrogen-containing compounds such as pyridine, oximes and others under an oxygen atmosphere. Oxidation of phenol was performed by CuCl in MeOH containing pyridine for 60 h to afford cis,cis-muconic acid monomethyl ester (199) as a sole product (44%), as shown in Scheme 40. It is believed that 199 is formed through the intermediacy of catechol (200). In fact, on oxidation with the pyridine methoxy cupric chloride complex PyCu(Cl)OMe, which exists as a dimer, in MeOH and pyridine, catechol was readily converted into 199 in 80–85% yield, thus representing a good nonenzymatic model reaction for pyrocatechase. Copper-promoted phenol oxygenation also provided the corresponding o-quinone, probably through catechol. However, in the case of 4-methoxycarbonylphenol (201), the corresponding o-benzoquinone (202) was proved to be formed directly from sodium 4-methoxycarbonylphenolate generated in situ from 201. On exposure of the complex formed from the binuclear Cu(I) complex of N,N,N′,N′′-tetra-[2-(N-methylbenzimidazol-2-yl)ethyl]-m-xylenediamine and the sodium phenolate to O₂ in MeCN, 40–50% conversion of 201 to 203 through the o-quinone...
SCHEME 39. Electrochemical synthesis of euglobals
202 was observed (Scheme 40). It should be noted that the p-methoxycarbonyl group retards the catechol to o-quinone oxidation under these conditions, indicating that 4-methoxycarbonylcatechol is not an intermediate during the oxidation82. Furthermore, the yield of 203 could rise to 60% simply by stirring an equimolar mixture of 201 and N,N′-bis[2-(2-pyridyl)ethyl]benzylamine with 1.5 equiv. of copper powder in MeCN under an oxygen atmosphere. In the case of 2,5-dimethylphenol (204), a combination of oxidation and Michael addition also provided a 90% yield of the corresponding o-quinone 205 (Scheme 40).

2,6-Dimethylphenol (206) bearing an electron-donating group shows a different behavior from that of phenol and is known to undergo oxidative C−C and C−O couplings catalyzed by copper−amine complexes to afford mainly 3,3′,5,5′-tetramethyldiphenooquinone (207) and a polymer, the linear poly(phenylene ether) (208), respectively83. Three mechanistic pathways (radical, electrophilic and nucleophilic) were proposed for the oxidative coupling of 206. Nucleophilic substitutions of the resulting phenoxonium ion from 206 leading to two C−C and C−O dimers were shown to be most plausible routes based on ab initio unrestricted Hartree−Fock calculations performed with a 6−31G* basis set on 206 and its deprotonated derivatives. Furthermore, ab initio calculations also support the quinone−ketal mechanism for a further C−O coupling oligomerization (Scheme 41). The quinone−ketal 209 may then be converted to a tetramer or split off phenoxy substituents to afford two dimers, a trimer and a monomer. The existence of 209 has been proposed based on several experimental studies84.

In contrast to 2,6-dimethylphenol (206), on Cu−amine complex catalyzed oxidation of 2,6-di(tert-butyl)phenol (23), only 3,3′,5,5′-tetra(tert-butyl)diphenooquinone (24) was produced in high yield and no C−O coupled polymer could be detected, because two bulky groups at the o,o'-positions presumably prevent the C−O coupling reactions leading to such a polymer as 208. For example, both stoichiometric and catalytic oxidations of 23 were carried out using a Cu(I)−O2 complex, prepared from the tetra-Shiff base L and Cu(MeCN)4PF6, and Cu(II)-L complex, prepared from CuCl2 and the ligand L, respectively, to afford the corresponding diphenooquinone (24). The stoichiometric oxidation reactions are generally first order in the binuclear Cu(I) macrocyclic dioxygen complex and in the substrate. It is evident that 2,6-di(tert-butyl)phenol is also catalytically oxidized to 24, as shown in Scheme 42. Herein, the Cu(II) complex involved in the proposed mechanism must be an effective oxidant85. In addition, the most plausible dimerization process is explained by the bridge formation between the phenols and the two Cu(II) centers84,86.

In connection with iron- and copper-containing metalloenzymes involved in O2 processing, three copper complexes (210, 211 and 212) have been synthesized and the corresponding O2−Cu complexes (213, 214 and 215) are formed reversibly at −80 °C in methylene chloride by addition of O2 (Scheme 43)87. Of these O2−Cu complexes, the peroxo group in both 213 and 214 reacts in a manner characteristic of the base/nucleophilic Mn−O2 compounds, while 215 behaves differently and shows a nonbasic/electrophilic reactivity of the peroxidocopper(II) moiety. Thus, 2,4-di(tert-butyl)phenol (216) acted as a protic acid toward 213 and 214, but in the presence of 215-(ClO4)2−, 3,3′,5,5′-tetra(tert-butyl)-2,2′-dihydroxybiphenyl (217) was produced in 93% yield, suggesting a similarity of 215 to the [Cu2−O2] structure in O2 coordinating or activating copper proteins.

Recent extensive studies have been performed on the formation and reactivities of a bis μ-oxodicopper(III) core, [L2Cu(III)2(O2)]2+, bearing weakly coordinating anions, at low temperature, where L is one of a variety of peralkylated-diamine or triamine ligands. For example, equimolar quantities of [Cu(I)(PhCN)4](ClO4) and N,N,N′,N′-tetramethyl-(1,3)-propanediamine (LTEMPO) reacted rapidly with dioxygen in CH2Cl2 at −80 °C.
17. Oxidation of phenols

[Equation and reaction conditions]

SCHEME 40. Copper-promoted phenol oxygenation
to generate $\left[\text{LTEMPO}_2\text{Cu(III)}_2\text{O}_2\right]^{2+}$ (ClO$_4$)$_2$, to which structure 218 was proposed (Scheme 44)88.

Complex 218 could oxidize rapidly and almost quantitatively (>95%) 2,4-di(tert-butyl)phenol (216) and 3,5-di(tert-butyl)catechol (219) at −80°C to the corresponding biphenyl and α-benzoquinone (217 and 220), respectively.

2,4,6-Trimethylphenol (221) was oxidized with dioxygen catalyzed by CuCl$_2$·2H$_2$O to afford 3,5-dimethyl-4-hydroxybenzaldehyde (222) and 2,6-dimethyl-α-benzoquinone (223) in low yields. However, the use of acetone oxime as an additive caused a dramatic change to afford both 222 and 223 in 91.5 and 6.5% yields, respectively89. These oxidation products are formed from α-quinone methide 225 through 2,6-dimethyl-4-(hexyloxymethyl)phenol (224) (Scheme 45).
The Cu–amine catalyzed oxidation of 2,6-di(tert-butyl)phenol

SCHEME 42.
On treatment with a Cu(I) complex of \(N,N\)-bis[2-(\(N\)-methylbenzimidazol-2-yl)ethyl]benzylamine in MeCN followed by exposure to \(O_2 \), the sodium salt of 4-carbethoxy-2,6-di(tert-butyl)phenol (226) was selectively oxidized to afford in ca 80% yield 4-carbethoxy-3,6-di(tert-butyl)-\(o \)-benzoquinone (227), which is probably produced from the Cu(I) peroxide 228 by a 1,2-migration of a tert-butyl group (Scheme 45).\(^90\)

From the viewpoints of reaction mechanism and efficiency in organic synthesis, oxidation of phenols with dioxygen catalyzed by cobalt–, manganese– and related metal–amine complexes has been studied.\(^76,77,91\). In particular, much effort has been directed toward constructing new efficient catalysts by a combination of metals with
new ligands. Several metal–ligand complexes (229–238) are shown in Chart 1. Of them \(N,N' \)-ethylenebis(salicylidene-iminato)cobalt(II) [(salen)Co(II), salcomine, 229] is the most popular.

Oxidation of 2,6-di(\(\text{tert} \)-butyl)phenol (23) provides a useful test for comparing the activity of various catalysts: 23 is oxidized with \(\text{O}_2 \) catalyzed by metal–amine complexes to give only two products, 2,6-di(\(\text{tert} \)-butyl)-\(p \)-benzoquinone (74) and 3,3',5,5'-tetra(\(\text{tert} \)-butyl)diphenooquinone (24) (Scheme 46). Of the cobalt catalysts 230, 231, 232 and 237, the use of Co(salN-Medpt)\(^{91} \) in MeCN (room temp., 1 h) provided the most effective results, in which 74 was obtained in 100% yield. The oxidation rate and yield were dependent on
SCHEME 45. Oxidation of 2,4,6-trialkylphenols with O$_2$ catalyzed by Cu(I) or Cu(II) complexes
CHART 1. Several metal(II) and (III)–amine complexes

the catalyst and on the solvent. All of these Co–amine complexes catalyze the oxidation of 23 to give 74 as the major product.\(^{92}\)

Manganese porphyrin, Mn^{III}(tpp)Cl (237), also catalyzes the oxidation of 23 in the presence of the reducing agent Bu_4NBH_4 (1 equiv. per mol of phenol) to afford in 90% yield the diphenoquinone (24) as a sole product. The role of Bu_4NBH_4 is to reduce Mn(III) porphyrin to Mn(II) porphyrin, which has an ability to bind O_2. Consequently, it is possible to convert selectively 23 to the quinone 74 or the diphenoquinone 24 by suitable choice of a catalyst.

On oxidation with O_2 catalyzed by a Co(II) complex of 6,6′-bis(benzyolamino)-2,2′-bipyridine (233) in toluene containing an appropriate base such as pyridine (20°C, 24 h), a quantitative conversion of 23 to 74 was observed. In addition, the durability of this complex as an oxygenation catalyst is much higher than that of 229 [Co(salen)]. Furthermore, the catalytic activity of 233 can be restored by heating it to 200 $^\circ\text{C}$ under reduced pressure because of its high thermal stability.\(^{93}\)
2,6-Di(tert-butyl)phenol (23) underwent catalytic oxygenation with aqua[N,N’-bis(2’-pyridinecarboxamido)-1,2-benzene]cobalt (II) (234) in DMF or DMSO (room temp., 1 h) to afford the corresponding quinone 74 in 100% yield: The metal complex 234 shows high selectivity and ability to work under mild conditions stirring at room temperature under an atmosphere of molecular oxygen.

Several phthalocyanines including Mn(II), Co(II), Ni(II) or Cu(II) as the central metal ion were nearly all inactive as the catalysts for the oxidation of 23, but only the Fe(II)–PC complex 238 showed a strong catalytic activity; catalytic oxidation of 23 in MeOH was effected with 238 under an oxygen atmosphere (room temp., 18 h) to give an almost quantitative yield of 3,3’,4,4’-tetra(tert-butyl)diphenoquinone (24). In contrast, the Co(II)(salen) (229) mainly provided the corresponding quinone (74). Interestingly, the selective autooxidation of 23 to 24 was accomplished at 35 °C by using Co(II)–phthalocyaninetetrasulfonate [Co(pcts)]4– intercalated into a Mg₅Al₂.₅-layered double hydroxide (LDH); under homogeneous reaction conditions the complex was deactivated within 25 catalytic turnovers, while the LDH-intercalated catalyst remained fully active even after more than 3200 turnovers. It was also possible to recover the catalyst by filtration and to add more reactants without deactivation of the catalyst.

The proposed reaction mechanism of phenols with O₂ catalyzed by Co–amine complexes is shown in Scheme 47. On oxidation of 2,6-dimethylphenol (206) to 2,6-dimethyl-p-benzoquinone (223), magnetic field effects in the cobalt(II)-catalyzed oxidations were examined by using two different high- and low-spin cobalt(II) complexes. The former complex, CoII bis(3-(salicylideneamino)propyl)methylamine, CoII SMDPT (S = 3/2), displays a maximum increase in the initial rate of ca 1000 G, while the low-spin cobalt complex, CoII N,N’-bis(salicylidene)ethylenediamine, CoII salen (S = 1/2), in a 1:10 ratio with pyridine displays a maximum decrease in the initial rate at ca 800 G. The difference in the magnetokinetics of both complexes is explained by magnetic field effects on the singlet–triplet (S–T) radical pair and triplet–triplet (T–T) annihilation reactions.
related to the catalytic regeneration step involving the initial encounter of the diamagnetic CoIIISMDPT(OH) and 2,6-dimethylphenol (206).\(^7^9\)

Bis(1-nitroso-2-naphtolato)manganese(II) (235) was synthesized by treatment of manganese(II) chloride with sodium 1-nitroso-2-naphthol. Similar reactions of cobalt(II), nickel(II), copper(II) and zinc(II) chlorides with sodium 1-nitroso-2-naphtholate afforded the corresponding bis(1-nitroso-2-naphtholato)metal(II) complexes. Of these complexes, 235 $[\text{Mn}^{II}(\text{1-nnap})_2]$ was proved to be the most effective catalyst in the oxidation of phenols such as 2,6-di(tert-butyl)phenol and 2,6-dimethylphenol under an oxygen atmosphere. Phosphine compounds are essential for this catalytic oxidation of phenols. When a mixture of 2,6-di(tert-butyl)phenol (23) and a catalytic amount of 235 was stirred in dry CH$_2$Cl$_2$ at 23°C under an oxygen atmosphere (1 atm), the corresponding diphenolquinone 24 was formed in only 5% yield. However, the addition of triphenylphosphine (1 equiv.) as a co-ligand provided the best results with yields of 93% attained after 20 h. The oxygen pressure is also important for product selectivity: Raising the oxygen pressure
from 1 to 20 atm provided after 6 h a mixture of 24 and 2,6-di(tert-butyl)-p-quinone (74) in 67 and 29% yields, respectively. The proposed oxidation mechanism of phenols using Mn(II)(1-nnap)₂ is shown in Scheme 48⁹⁸.

SCHEME 48. [Mn(II)(1-nnap)₂] catalyzed oxidation of 2,6-di(tert-butyl)phenol

Heteropolyanions such as H₅PV₂Mo₁₀O₄₀ and NPV₆Mo₆/C have also been found to catalyze the highly selective oxidation of dialkylphenols to diphenoquinones⁹⁹,¹⁰⁰. Oxidation of 2,6-di(tert-butyl)phenol (23) was carried out at 25 °C for 4 h in hexane containing the heteropolyanion (0.02 equiv.) under an oxygen atmosphere (1 atm) to afford the corresponding quinone 24 in 96% yield (Scheme 49). In the case of 2,3,5-trimethylphenol (239), 2,3,5-trimethyl-p-quinone (240) was obtained in lower yield (Scheme 49)⁹⁹, because of steric hindrance by the two methyl groups at the C3 and C5 positions. The similarity of H₅PV₂Mo₁₀O₄₀-catalyzed oxidations with that of CuCl₂ oxygenations is noted. However, the former has the significant advantage that the chlorinated side-products are eliminated.
Scheme 49. H$_3$PV$_2$Mo$_{10}$O$_{40}$ catalyzed oxidation of di- and trialkylphenols

Generally, catalytic oxygenation of trialkyl-substituted phenols such as 2,4,6-(tert-butyl)- and 2,4,6-trimethylphenol provides a complex mixture of products, as shown in Scheme 50. Herein, the oxidation products and their distribution vary with the central metal and ligands of the metal complexes, the solvent used, the oxygen pressure and the reaction conditions. Of the five metal complexes [230, 231, 232, 237 (Co) and 237 (MnCl)], the MnIII (tpp)Cl–Bu$_4$NBH$_4$ complex in toluene provided the best results, in which 2,4,6-tri(tert-butyl)phenol (73) was converted completely to 74, 243 and 244, in 51, 36 and 13% yields, respectively.92 In the case of Co(salN-Medpt) (231) in toluene, 30% conversion of 73 took place leading to 74, 75, 242, 243 and 244 in a ratio of 40:7:20:26:7. Oxygenation of 73 with PC-Fe(II) (238) as a catalyst yielded selectively 244 in 87% yield, together with small amounts of 74 and 241.95

As compared with the well known Co(salen) (229), a variety of metal–ligand complexes have been synthesized. Of three complexes [245, M = Mn(II), Fe(II) and Co(II)], the manganese complex provided the most efficient conversion of 73 to 74 (48%) together with the oxygenated products (242–244) (Scheme 50)101.

When the Co(bpb)H$_2$O complex 234 was used in MeCN under an oxygen atmosphere (room temp., 4 h), 2,6-di(tert-butyl)-4-methylphenol (69) was converted into a peroxy-p-quinalato–cobalt complex 246, as a sole product (47%), suggesting that 246 supports the intermediacy of Co(L)-OO* in the reaction (Scheme 51)$^{91, 94, 102}$.

Catalytic oxygenation of 73 with K[CoIII (salen)CO$_3$] in EtOH also yielded 74, 243 and 244 in 38, 11 and 42% yields, respectively. However, neither K[CoIII (salen)(CN)$_2$] nor Na[CoIII (salen)(CN)$_2$] gave any amount of the oxygenated products.103

In connection with lignan chemistry, oxygenation of syringyl alcohol (247) with O$_2$ in the presence of 10% of the 5-coordinate catalyst 231 or 229–pyridine complex afforded 2,6-dimethoxy-p-benzoquinone (248) in 71 and 88% yields, respectively (Scheme 52). A peroxy-p-quinalato–cobalt complex 249 is a plausible intermediate in the oxidation104.
Oxygenation of both 4-alkenyl- and 2-alkenyl-2,6-di(tert-butyl)phenols was studied using 1.1 equivalents of Co(salpr) (231: R = H) (Scheme 53)105. The phenol 250 underwent Co(salpr)-promoted oxygenation in CH\textsubscript{2}Cl\textsubscript{2} (0 °C, 1.0 h) resulting solely in the formation of 3,5-di(tert-butyl)-4-hydroxybenzaldehyde (251) (88%). In the case of 252, both 253 and 254 were produced in 28 and 72% yields, respectively. 2-Alkenylphenol 255 was oxidized under similar conditions (0 °C, 3.5 h) to the corresponding benzaldehyde 256 in quantitative yield, while the oxygenation of 257 gave selectively dihydrobenzofuran 258 (78%) together with 259 (5%). Further studies on 4- or 2-alkynylphenols have also been conducted105.

As already shown in Scheme 8, carpanone (44) has been synthesized by an electrochemical method. More efficient synthesis of 44 was effected with O\textsubscript{2} catalyzed by metal–Schiff base complexes. Of the four complexes, Co(II)(salpr), Co(II)(salen), Fe(II)(salen) and Mn(II)(salen), Co(II)(salen) provides the best results; its solution with 4,5-methylenedioxy-
2-propenylphenol (42) in CH$_2$Cl$_2$ was stirred under an oxygen atmosphere at room temperature for 1.5 h to afford carpanone in 94% yield (Scheme 54)28. The oxidant PdCl$_2$–NaOAc also provided a 46% yield of carpanone, although the yield is relatively low27.

2. Hydrogen peroxide– and tert-butyl hydroperoxide–metal complexes

In the previous section, oxygenation of phenols with dioxygen catalyzed by metal complexes was described. From industrial and biological points of view, metal-complex catalyzed oxidation of phenols has also been performed using hydrogen peroxide or tert-butyl hydroperoxide instead of dioxygen. Some examples are described briefly in this section.
SCHEME 52. Catalytic oxygenation of syringyl alcohol

SCHEME 53. Co(salpr)-promoted oxygenation of 4- and 2-alkenyl substituted phenols
Oxidation of phenols

\[
\text{SCHEME 54. Synthesis of carpanone using O}_2-\text{Co(II)(salen) complex}
\]

Of many copper complexes, one of the interesting Cu(II) complexes is di-\(\mu\)-hydroxodicopper(II) complex \([\text{Cu}_2(\text{OH})_2(\text{hexpy})_2][\text{X} = \text{ClO}_4 \text{ or CF}_3\text{SO}_3; \text{hexpy}: 1,2\text{-bis}[2-(\text{pyridyl})\text{methyl}-6\text{-pyridyl}]\text{ethane}] (260)\). Its structure has been determined by X-ray crystallographic analysis\(^{106,107}\). To a solution of 260 \((X = \text{CF}_3\text{SO}_3)\) were added 2,4-di(tert-butyl)phenol \((216)\) and 28% aq. \(\text{H}_2\text{O}_2\) with vigorous stirring. The reaction was completed in 5 min and afforded the corresponding biphenyl 217 in 86% yield. The suggested reaction mechanism is shown in Scheme 55. In the case of 2,6-dimethylphenol (206), almost the same result was obtained.

Co(salen)-catalyzed oxidation of phenols with tert-butyl hydroperoxide in \(\text{CH}_2\text{Cl}_2\) at room temperature provides predominantly tert-butylperoxylated products\(^{108}\). On catalytic oxidation of 2,6-di(tert-butyl)-4-acetylphenol oxime O-methyl ether (261), both \(o\)- and \(p\)-(tert-butylperoxy)quinol ethers (262 and 263) were obtained in 81.1 and 87.3% yields, respectively. On the other hand, catalytic oxidation of 264 provided the corresponding \(o\)- and \(p\)-quinol ethers (265 and 266) in 91.1 and 6.8% yields, respectively (Scheme 56). The remarkable difference of the \(o/p\) ratio in the reactions of 261 and 264 reflects clearly a combination of both steric and electronic factors.

In the case of 4-alkenyl-2,6-di(tert-butyl)phenols having three potential reaction sites for attack by \(t\)-BuOO\(^-\), three possible tert-butylperoxylated compounds will be produced depending on substituents on the olefinic side chain. Co(salen)-catalyzed oxidation of 267 with \(t\)-BuOOH provided quinomethane 268 and \(p\)-(tert-butylperoxy)quinol ether 269 (81.5 and 9.5%, respectively). In the case of the substrate 270 bearing a fully substituted olefin, the corresponding \(o\)-substituted quinol ether 271 was obtained as a sole product (73%) (Scheme 56). Detailed studies on Co(salen)-catalytic oxidation of 2-alkenyl-4,6- and 4-alkynyl-2,6-di(tert-butyl)phenols with \(t\)-BuOOH have also been conducted\(^{108}\).

Recently, structurally related dimeric Mn complexes with 1,4,7-trimethyl-1,4,7-triazacyclononane ligand (TMATC) were proved to act as potent catalysts for the selective oxidation of alkenes and other substrates. The reaction of [(TMATC)$_2$MnIV(μ-O)$_3$](PF$_6$)$_2$ (272) with electron-rich phenols such as 273 and 274 in aqueous solution at pH 10.5 was studied (Scheme 57)\(^{109}\). The reaction proceeds via a rapid overall one-electron process from the phenolate anion to the MnIV/MnIV species 272 to give, initially, a MnIII/MnIV species and the corresponding phenoxy radical. The MnIII/MnIV species is ultimately converted into monomeric MnII. The addition of \(\text{H}_2\text{O}_2\) accelerates a reoxidation of the manganese species, accompanied by an increase in the rate of the formation of the phenoxy radicals. For example, Trolox (273) underwent one-electron oxidation resulting in the formation of the corresponding radical 275, which was detected by ESR, since it is relatively long-lived. The radical further underwent
SCHEME 55. Oxidation of 2,4-di(tert-butyl)phenol catalyzed by di-μ-hydroxodicopper(II) complex disproportionation to afford the corresponding quinone (276) and the starting Trolox (273). In the case of 2,6-dimethoxyphenol (274), the resulting phenoxy radical further underwent dimerization, followed by one-electron oxidation to afford mainly 3,3′,5,5′-tetramethoxydiphenoquinone (277).
SCHEME 56. Co(salen)-catalyzed oxidation of phenols with tert-butyl hydroperoxide

From the viewpoint of the reaction mechanism, the reaction of oxoiron(IV) tetra(2-N-methylpyridyl)porphyrin (OFeIVT2MPyP), generated from iron(III) tetra(2-N-methylpyridyl)porphyrin and t-BuOOH, with phenols has been investigated110. Oxidation of Trolox (273) with OFeIVT2MPyP generated the ESR observable radical 275. In addition, kinetic studies on several phenols suggest that the rate-determining step in these oxidations involves hydrogen atom abstraction from the phenol by the oxoiron(IV) species. A plausible mechanism for phenolic oxidation by OFeIVT2MPyP in phosphate buffer (pH 7.7) has been proposed (Scheme 58). Here, the resulting radical species will be further converted into p-benzoquinones, dimers, trimers and/or polyphenols, whose distribution depends on the substituents on the phenol ring.

Chlorinated aromatic compounds such as 2,4,6-trichlorophenol (278) are well known recalcitrant pollutants because of their slow biodegradation by microorganisms. Hydrogen peroxide oxidation of (U-14C)-278 catalyzed by FePcS (iron tetrasulfophthalocyanine) was
SCHEME 57. One-electron oxidation of phenols by a dimeric Mn(IV/IV) triazacyclononane complex in the presence of H$_2$O$_2$

carried out in MeCN–0.5 M phosphate buffer (pH 7.0) to afford mainly chloromaleic acid (279) (69%), together with oxidative coupled products (13%), CO$_2$ (11%) and CO (3%), with 96% recovery of the radioactivity (Scheme 59)111.

In connection with bioactive quinones such as vitamin E, oxidation of 2,3,5-trimethylphenol (239) and related phenols with H$_2$O$_2$ or t-BuOOH has been carried out using a variety of metal catalysts. Of the typical catalysts examined (FeCl$_3$, RuCl$_3$·3H$_2$O, RuCl$_2$(PPh$_3$)$_3$, CuCl, CuCl$_2$, CoCl$_2$, RhCl$_3$·3H$_2$O, PdCl$_2$, CeCl$_3$·7H$_2$O, VO(acac)$_2$, MoO$_2$(acac)$_2$ and P$_2$O$_5$·24WO$_3$·nH$_2$O), RuCl$_3$·3H$_2$O provided the best results, in which 239 was selectively converted into the corresponding quinone 240 in 90%
17. Oxidation of phenols

\[
\text{ArOH} + \text{O} \overset{\text{Fe}^{\text{IV}}}{\longrightarrow} \text{ArO}^* + \text{HO} \overset{\text{Fe}^{\text{III}}}{\longrightarrow} \]

SCHEME 58. A plausible mechanism for phenol oxidation by OFe\(^{\text{IV}}\)T2MPyP

\[
\text{Cl} \quad \begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{Cl}
\end{array} \quad \text{OH}
\]

(278)

\[
\begin{array}{c}
\text{Cl} \\
\text{Cl}
\end{array} \quad \begin{array}{c}
\text{COOH} \\
\text{COOH}
\end{array}
\]

(279)

oxidative coupling products

+ CO\(_2\), CO

SCHEME 59. Catalytic oxidation of 2,4,6-trichlorophenol with H\(_2\)O\(_2\)–FePcS

yield\(^{112}\). This oxidation system (RuCl\(_3\)-3H\(_2\)O–H\(_2\)O\(_2\)–AcOH) is characteristic of \(p\)-oxygenation (Scheme 60).

Catalytic oxidation of 239 to the quinone 240 was also effected with H\(_2\)O\(_2\) catalyzed by methyltrioxorhenium(VII) (MeReO\(_3\)) (Scheme 60)\(^{113}\), where a small amount of hydroxy-substituted quinone 280 was produced in addition to 240 (70\%). In this reaction, MeReO\(_3\) is stepwise converted by H\(_2\)O\(_2\) into the mono- and bis(peroxo)rhenium complex MeRe(O\(_2\))\(_2\)O\(_2\)H\(_2\)O (281). This active oxidant then reacts with the phenol to give the epoxide 282, which is further converted to the two quinones (240 and 280).

Similarly, 2,3,5-trimethylphenol (239) was converted into the quinone 240 (ca 80\%) using H\(_3\)PMo\(_{12}\)O\(_{40}\)\(^{114}\) or titanium substituted aluminophosphate (TiAPO-5) molecular sieves\(^{115}\). Efficient oxidation of phenols to the corresponding quinones has also been effected with H\(_2\)O\(_2\)-V-HMS (vanadium-containing mesoporous molecular sieves)\(^{116}\).

Oxidation of \(p\)-substituted phenols with \(t\)-BuOOH catalyzed by heteropolyacids such as H\(_3\)PMo\(_{12}\)O\(_{40}\)-nH\(_2\)O (283) and H\(_4\)SiW\(_{12}\)O\(_{40}\)-nH\(_2\)O has been carried out\(^{117}\). When 2,6-di(\text{ tertbutyl})-4-methylphenol (69) was stirred with 80\% \(t\)-BuOOH in the presence of 283 in AcOH (30°C, 3 h), it afforded 2,6-di(\text{ tert-butyl})-4-(\text{ tert-butylperoxy})-4-methyl-2,5-cyclohexadiene (284) and 2,6-di(\text{ tert-butyl})-\(p\)-benzoquinone (74) in 62 and 13\%
SCHEME 60. Catalytic oxidation of 2,3,5-trimethylphenol with H_2O_2–metal catalysts yields, respectively. In the cases of 2,6-di(tert-butyl)phenols (285 and 286) bearing more eliminative substituents (CH$_2$OAc, MeO) than the methyl group at the para-position, 74 was obtained selectively in 65 and 91% yields, respectively (Scheme 61). Clearly, the quinone must be formed easily from 287 as well as from 288.

SCHEME 61. Oxidation of 2,4,6-trisubstituted phenols with t-BuOOH-heteropolyacid

In the case of p-alkyl-substituted phenols, of a variety of t-BuOOH–metal complexes investigated, RuCl$_2$(PPh$_3$)$_3$ has proved to be the most effective catalyst for the selective formation of 4-alkyl-4-(tert-butylperoxy)-2,5-cyclohexadienones118. Other ruthenium
catalysts such as RuCl₃·nH₂O also gave satisfactory results. To a solution of p-cresol (27) and RuCl₂(PPh₃)₃ in EtOAc was added a solution of t-BuOOH in dry benzene at room temperature over a period of 2 h and stirred for an additional 3 h to afford 4-(tert-butylperoxy)-4-methyl-2,5-cyclohexadienone (289) in 85% yield. When 289 was treated with TiCl₄ in CH₂Cl₂, it afforded 2-methyl-p-benzoquinone (290) in 82% yield (Scheme 62). The oxidation which begins with hydrogen abstraction from 27 by the oxoruthenium intermediate derived from the two reagents results in the formation of a phenoxy radical-Ru(III)(OH) intermediate. A further fast one-electron transfer from the phenoxy radical to the Ru(III) complex gives the corresponding phenoxonium ion and a Ru(II) complex. The former is attacked by t-BuOOH to afford selectively 289. Estrone (291) also underwent t-BuOOH-RuCl₂(PPh₃)₃ oxidation leading to a peroxide 292 (89%), whose subsequent reductive acetylation (ZnI₂, AcOH–Ac₂O) provided a diacetate 293 in 55% yield.

SCHEME 62. Ruthenium catalyzed oxidation of p-substituted phenols with t-BuOOH
C. Enzymatic Oxidation

Generally, the use of enzymes as catalysts in organic synthesis has provided a variety of chiral synths for bioactive compounds including natural products. A number of invaluable books have hitherto appeared\(^{119}\). However, from the viewpoint of organic synthesis, there are only a few examples of enzymatic reactions employed for phenolic oxidation except for biomimetic synthesis of isoquinoline alkaloids\(^{120-122}\). Lignans and neolignans\(^{123}\), which has been carried out using enzymes such as horseradish peroxidase, potato peelings and rat liver enzyme. Recently, a variety of enzymes have been employed to clarify biosynthetic pathways of these natural products.

(R)-Reticuline (294), one of the most fundamental isoquinoline alkaloids, has been known to be converted into morphine alkaloids by intramolecular oxidative phenol-coupling. Thus, 294 was treated with cytochrome P-450 linked microsomal Papaver enzyme in a buffer solution (pH 7.5) containing NADPH under aerobic conditions (25°C, 1 h) to afford in high efficiency and high selectivity salutaridine (295), which was chemically converted to thebaine (296), morphine (297) and related alkaloids. In contrast, the enzyme was not effective in reaction with (S)-reticuline (Scheme 63)\(^{124}\).

From the biosynthetic point of view, lignans and lignins differ fundamentally in their optical activity, although they are closely related in their chemical structures; the former is optically active, while the latter is inactive. Therefore, lignin biosynthesis must involve an enantioselective process. Thus, \(^{3}H\)-labelled coniferyl alcohol (298) underwent \(\text{H}_2\text{O}_2\) oxidation catalyzed by cell-free extracts of Forsythia koreana in potassium phosphate buffer (pH 7.0) containing NADPH, resulting in the enantioselective formation of (−)-secoisolariciresinol (299), (−)-lariciresinol (300) (88% e.e.) and (−)-pinoresinol (301) (91% e.e.). It is noted that both 300 and 301 are unnatural enantiomers, while the Forsythia koreana plant produces (+)-300 and (+)-301. The stereoselectivity for the formation of these lignans can be explained, at least in part, by the finding that the enzyme also catalyzed the stereoselective reduction of (−)-lariciresinol, but not of its (−)-enantiotomer, to (−)-secoisolariciresinol (299), as shown in Scheme 64\(^{125}\).

When two different phenols having almost the same oxidation potentials are used, both dimerization and cross-coupling reactions may take place. Coniferyl alcohol (298) was first oxidized alone with \(\text{H}_2\text{O}_2\), catalyzed by horseradish peroxidase (HRP) in a 20% buffer solution (pH 3.5) in acetone (room temp., 1 h) to afford three dimers (301, 302 and 303) in 12, 24 and 16% yields, respectively, as shown in Scheme 65, wherein the remaining starting phenol (36%) was further oxidized to oligomers (12%). In the case of a 1:1 mixture of 298 and apocynol (304), small amounts of cross-coupled products (305 and 306) were obtained in 5–10 and 0–1.5% yields, respectively, in addition to four dimers (301, 302, 303 and 307). Here, 45% of 304 remained (Scheme 65)\(^{126}\). On chemical oxidation of a 1:1 mixture of 298 and 304 with Mn(OAc)\(_3\) in AcOH (room temp., 30 min), the yield of 305 increased to 18%.

Biomimetic conversion of ferulic acid derivatives to phenylcoumarans was carried out by using a variety of oxidants, of which the oxidation system (\(\text{H}_2\text{O}_2\)–HRP) gave the best results. However, the enzyme did not effect any stereocontrol. To overcome this difficulty, enantiopure ferulic acid derivatives such as \(\text{N}\)-ferulyl (S)-alaninate (308) were synthesized. The substrate 308 was dissolved in dioxane and phosphate/citric acid buffer (pH 3.5) was added. Aqueous \(\text{H}_2\text{O}_2\) and HRP were added over 20 min. The mixture was stirred at room temperature for 2.5 h to yield a mixture of two phenylcoumarans 309 and 310 (70%) with a 1:4 ratio (Scheme 66)\(^{127}\). In the case of a camphor sultan derivative 311, a mixture of two phenylcoumarans was also obtained in 40% yield (312/313 = 1 : 9). Furthermore, oxidation of 311 with Ag\(_2\)O in CH\(_2\)Cl\(_2\) (room temp., 24 h) yielded the same phenylcoumarans (35%) in a 1:12 ratio. The observed enantioselectivity in the oxidation
step encompasses the range 65–84% and is consistent with the conformational analysis of the quinone methide intermediates at the PM3 level.

Resveratrol (314) has been known to undergo hydrogen peroxide oxidation catalyzed by HRP in aqueous acetone to afford dihydrobenzofuran 315 as a main product (41%)128. Recently, a variety of neolignans were isolated from the Vitaceaeous plants. Of them, both
SCHEME 64. Enzymatic oxidation of coniferyl alcohol by *F. koreana* extracts

(−)-vitisin B and (+)-vitisin C (316 and 317) were synthesized by enzymatic oxidation of (+)-ε-viniferin (318), although the yields (ca 5%) were very low (Scheme 67). In this case, a C–C radical coupling reaction takes place

From the viewpoint of organic synthesis, mushroom tyrosinase-mediated oxidation of 2,6-disubstituted phenols (206 and 274) was performed only in phosphate buffer (pH 6.8) to afford solely the corresponding 4,4′-diphenoquinones (207 and 277) in 96 and 98% yields, respectively. When acetonitrile was used as a co-solvent, biphenols (319 and 320) were obtained, though in lower yields (each 20%) than 207 (70%) and 277 (72%), respectively. In the case of 2,6-di(tert-butyl)phenol (23) bearing more hindered groups than 206, the corresponding 4,4′-diphenoquinone and biphenol (24 and 25) were obtained in rather low yields of 40% and 20%, respectively (Scheme 68). In contrast, 2,6-dichlorophenol did not undergo enzymatic oxidation at all. These results indicate that the efficiency of enzymatic oxidation depends on steric and electronic effects of the substituents.
Coumestans represented by 321 are an oxygenated class of aromatic natural products, which have phytoalexin and estrogenic activities. From the biogenetic point of view, 321 will be formed from two units, 4-hydroxycoumarin (322) and catechol. Thus, the first synthesis of 321 was carried out by an electrochemical method. Catechol was initially oxidized to o-quinone, which was attacked by 322 to afford 321 in 95% yield (Scheme 69).131

Generally, the regioselective formation of o-quinones has been known to be accomplished by using polyphenol oxidase in chloroform and not in water132, because of rapid inactivation of the enzyme in water. However, catechol underwent mushroom tyrosinase-catalyzed oxidation in phosphate buffer (pH 6.8) containing 4-hydroxycoumarin (322) to afford 321 in 96% yield133, as shown in Scheme 69.

Oxidation of a number of p-substituted phenols to the corresponding o-benzoquinones was first performed by Kazandjian and Klibanov132, using mushroom polyphenol oxidase and a quantitative conversion was achieved in CHCl₃ as a solvent. Other hydrophobic solvents such as methylene chloride, carbon tetrachloride, benzene, toluene, hexane and butyl acetate can be used, whereas the enzyme is inactive in more hydrophilic solvents such as ether, acetone, ethyl acetate, acetonitrile and other solvents. In addition, an immobilized enzyme on glass powder or beads is more efficient than a free enzyme.

Generally, reactive o-quinones are expected to react with a variety of dienophiles to afford the corresponding Diels–Alder products. The diene system of o-quinones is rather electron-deficient, so that electron-donating dienophiles such as ethyl vinyl ether must
be used. For example, the immobilized tyrosinase and phosphate buffer (0.5 mL, pH 7, 0.05 M) were added to a solution of \(p \)-cresol (27) (1 mM) in a mixed solution of CHCl₃ and ethyl vinyl ether [100 mL, 1:1(v/v)] and stirred at room temperature for 2.5 days to afford two isomers (323 and 324) (77%) in a 33:1 ratio, as shown in Scheme 70, indicating that the combination of enzymatic and nonenzymatic transformations in the three-step reaction cascade provides highly functionalized bicyclo[2.2.2]octenediones in an efficient manner.

4-Substituted 2,6-dimethylphenols (325–327) underwent enzymatic oxidation with mushroom tyrosinase in 50% MeCN–phosphate buffer (pH 6.8) (room temp., 48–72 h) resulting in the formation of the corresponding optically active compounds (328–330) in 50–60% yields. It is noted that the intramolecular cyclization of the initially formed quinone methide will take place in the hole of the enzyme or very close to the surface of
SCHEME 67. Hydrogen peroxide oxidation of stilbenes catalyzed by HRP

SCHEME 68. Mushroom tyrosinase oxidation of 2,6-disubstituted phenols
SCHEME 69. Electrochemical and enzymatic synthesis of 11,12-dihydroxycoumestan

SCHEME 70. Synthesis of bicyclic compounds by a combination of enzymatic and nonenzymatic reactions
the enzyme, leading to the final products, as shown in Scheme 71135. The less activated 331 was converted into the cyclization product 332 in only 16% yield. No cyclization product was detected in the case of the nonactivated compound 333.

Similarly, on mushroom tyrosinase-catalyzed oxidation of both 3,4-dihydroxy- and 4-hydroxybenzyl cyanides (334 and 335), the initially formed o-quinone (336) was converted into the corresponding quinone methide (337), which was not isolatable but was spectroscopically detected (Scheme 71)136.

Scheme 71. Mushroom tyrosinase-catalyzed oxidation of some phenols

325 R = OMe, 1R = H, \textit{n} = 2
326 R = OMe, 1R = H, \textit{n} = 1
327 R = 1R = OMe
331 R = H, 1R = OMe
333 R = 1R = H
Electrochemical oxidation of 3,5-dihalogenated tyrosine derivatives provided the C−O or C−C coupled dimers depending on the halogen substituents. As shown in Scheme 11, electrochemical oxidation of both dichloro- and dibromotyrosines provided the corresponding diaryl ethers such as 61, while the diaryl (63) was selectively produced from the 3,5-diodotyrosine derivative. Quite interestingly, almost the same results have been obtained by enzymatic oxidation. N-Acetyl-3,5-dichlorotyrosine (338) underwent hydrogen peroxide oxidation catalyzed by horseradish peroxidase (HRP) in a solution of phosphate buffer (pH 6.0) and MeCN (24 °C, 10 min) resulting in the formation of a mixture of two products (339 and 340), which was directly treated with NaHSO₃–NaOH to afford the recovered 338 and the corresponding diaryl ether (341) in 12 and 76% yields, respectively. Similar oxidation of N-acetyl-3,5-dibromotyrosine (342) provided the corresponding diaryl ether (343) in 42% yield, which was slightly lower than the 45% yield obtained by the electrochemical method. In contrast, N-acetyl-3,5-diiodotyrosine (344) was oxidized by a combination of H₂O₂ and HRP under similar conditions to afford a mixture of two C−C coupled products (345 and 346), which was directly reduced with NaHSO₃–NaOH to afford the dityrosine derivative (346) in 45% overall yield (Scheme 72). Enzymatic oxidation of N-protected D-phenylglycine derivatives has also provided similar results.

Oxidative polymerization of phenols has been carried out extensively by using horseradish peroxidase and other enzymes. However, these interesting topics lie far beyond the scope of this chapter.

III. OXIDATION WITH NONMETAL COMPOUNDS

In contrast to the catalytic oxidation of phenols, stoichiometric amounts of oxidants are generally used. Therefore, efficient recycle systems must be devised. In this section, phenolic oxidations using organic reagents is mainly described. In addition, some well known oxidants such as NaIO₄, Fremy’s salt and others are briefly described.

A. Oxidation with Hypervalent Iodobenzenes

Hypervalent iodobenzenes have long been known as oxidants and their chemistry is summarized in an early volume of the present series. Some of them are shown in Chart 2. Herein, both (diacetoxyiodo)benzene [PhI(OAc)₂] (347) and [di(trifluoroacetoxy)iodo]benzene [PhI(OOCF₃)₂] (348) are most frequently and widely used for phenolic oxidation. 1-[(tert-Butylperoxy)-1,2-benziodoxol-3(1H)-one (349) is also used for phenol oxidation. Many invaluable books and reviews on hypervalent iodobenzene-promoted oxidation of phenols have appeared.

1. Reaction and reaction mechanism

2,4-Disubstituted phenols such as 350 undergo PhI(OAc)₂-mediated oxidation in the presence of MeOH as a nucleophile resulting in the formation of two possible cyclohexadienones (351 and 352) (Scheme 73). The initially formed intermediate 353 is converted to the cyclohexadienones by two plausible routes. In route A, heterolytic dissociation generates a solvated phenoxyion ion 354, which further reacts with MeOH to afford 351 and/or 352. In route B, both 351 and 352 are produced by direct attack of MeOH on the intermediate (353). In the latter case, the reaction will be strongly influenced by steric factors and a homochiral environment using chiral solvents and chiral oxidants to induce some asymmetric induction, particularly in the formation of 352.
SCHEME 72. HRP-catalyzed oxidation of N-protected 3,5-dihalotyrosine derivatives
CHART 2. Some hypervalent iodosobenzenes used for organic synthesis

\[
\begin{align*}
H_2COCO\overset{\text{I}}{\text{O}}\text{COCH}_3 & \quad F_2\text{COCO}\overset{\text{I}}{\text{O}}\text{COCF}_3 & \quad \text{t-BuOO}\overset{\text{I}}{\text{O}}\text{O} \\
\text{(347)} & \quad \text{(348)} & \quad \text{(349)}
\end{align*}
\]

SCHEME 73. Mechanism of phenol oxidation with (diacetoxyiodo)benzene
17. Oxidation of phenols

Thus, oxidation of 2,3-isopropylidenepyrogallol (355) was effected with the chiral reagent 356 or 357 in dry CH₂Cl₂ to yield an only racemic mixture (358) in each case. In addition, when (S)-(−)-2-methylbutan-1-ol was used instead of MeOH as a nucleophile, only a 1:1 diastereomeric mixture (359) was obtained (Scheme 73). These experimental results are in good agreement with predictions based on the calculated Mulliken charge distributions and the size of LUMO coefficients for phenoxonium ions 354 in Scheme 73. Although hypervalent iodobenzene-promoted oxidation of phenols would take place via route B depending upon the substituents on the aromatic ring, the solvent systems and other factors, route A must be more favorable. The resulting phenonium ions are attacked by a variety of nucleophiles to afford the corresponding 2,5- and/or 2,4-cyclohexadienones. Some examples are shown below.

p-Alkylphenols such as 4-benzyl-, 2,4,6-trimethyl- and 2,4,6-tri(tert-butyl)phenol (360, 221 and 73) underwent Phl(OAc)₂-promoted oxidation in MeOH at room temperature to afford *p*-quinol alkyl ethers 361, 362 and 363 in 65, 72 and 94% yields, respectively. Oxidation of 2,6-dibromo-4-methylphenol (364) in MeOH-CH₂Cl₂ was also effected with Phl(OAc)₂ to give 2,6-dibromo-4-methoxy-4-methyl-2,5-cyclohexadienone (365) in 63% yield, while anodic oxidation of 364 at constant current (0.13 mA cm⁻²; +870–880 mV vs. SCE) provided 2,6-dibromo-4-methoxymethylphenol (366) in 52% yield. The remarkable differences in the product selectivity between the chemical and electrochemical reactions must be attributable to the environment surrounding the resulting phenonium ion. Oxidation of *p*-substituted phenols such as 367 and 368 with Phl(OCCF₃)₂ in MeCN produced preferably cyclic compounds 369 and 370 (86 and 59% yields respectively) (Scheme 74).

Oxidative fluorination of the *p*-substituted phenol 371 was effected with Phl(OCCF₃)₂ and pyridinium polyhydrogen fluoride (PPHF) to afford directly the hydroindolenone (372) (35%). In the case of 373, the corresponding 4-fluorinated cyclohexa-2,5-dienone (374) was produced in 43% yield. Cyclization of 374 to 375 was readily effected with Na₂CO₃, as shown in Scheme 75. When MeOH was used instead of PPHF the corresponding methoxy compounds were obtained. The yields are higher than that of the fluoro compounds.

Oxidation of the bicyclic compounds (376 and 377) provided the corresponding hydroquinolones (378 and 379) in 39 and 29% yields, respectively (Scheme 75).

p-Substituted phenols (27, 221, 380 and 381) were effected with Phl(OCCF₃)₂ in aqueous MeCN (0 °C, 5–15 min) to give quinols (382–385) in moderate and good yields. It is noted that higher yields were obtained when the corresponding tripropylsilyl ethers were used, as shown in Scheme 76. Here, the oxidation required 0.5–2 h to proceed to completion. As compared with *p*-cresol (27) and methyl 4-hydroxyphenyl acetate (381), the corresponding silyl ethers were more efficiently converted into the quinols.

On Phl(OAc)₂-promoted oxidation of phenols bearing an olefinic side chain at the C-4 position, the resulting phenonium ion underwent intramolecular cyclization resulting in the formation of the corresponding spiro compounds, although side reaction products were not avoided. Anodic oxidation also provided the same spiro compounds. However, the yields from the Phl(OAc)₂-promoted oxidation are quite different from those from electrochemical oxidation. For example, three 2'-isopropenyl-*p*-arylphenols (112a, 386 and 387) were subjected to Phl(OAc)₂-promoted oxidation and to electrochemical oxidation to afford the corresponding spiro dienones 113a, 388 and/or 389, respectively. In particular, the phenol 387 gave the spiro dienone 389 in 80% yield via the electrochemical method, but in only 24% yield by the Phl(OAc)₂ oxidation. In contrast, 388 was not detected in the electrochemical oxidation (Scheme 77). These differences are due to some environmental factors surrounding the resulting phenonium cation. The spiro dienones are regarded as promising synthetic intermediates for natural products synthesis.
SCHEME 74. Oxidation of \(p \)-substituted phenols with (diacetyloxyiodo)benzenes

In the case of \(p \)- or \(o \)-methoxyphenols, the corresponding quinones and quinone monoketals, which are quite useful in organic synthesis\(^\text{45} \), are produced usually in very high yields. \(p \)-Methoxyphenol \((390)\) was oxidized with PhI(OAc)\(_2\) in MeOH to afford 4,4-dimethoxycyclohexa-2,5-dienone \((391)\) in 99% yield\(^\text{142} \). PhI(OCOCF\(_3\))\(_2\)-mediated oxidation of 2,4,5-trimethoxyphenol \((392)\) in MeOH-MeCN yielded the corresponding dienone \((393)\) (86%)\(^\text{144} \). Interestingly, oxidation of 2-benzylphenol \((394)\) with 2 equivalents of PhI(OAc)\(_2\) in MeOH provided 2-benzyl-4,4-dimethoxycyclohexa-2,5-dienone \((395)\) (85%)\(^\text{142} \). When treated with PhI(OCOCF\(_3\))\(_2\) in MeCN-H\(_2\)O containing...
SCHEME 75. Oxidative fluorination of p-substituted phenols with bis(trifluoroacetoxy)benzenes and synthesis of hydroindolenones

SCHEME 76. Phl(OCOCF$_3$)$_2$-promoted oxidation of p-substituted phenols and silyl ethers
SCHEME 77. Formation of spiro dienones by PhI(OAc)$_2$-promoted oxidation and anodic oxidation of 2'-isopropenyl-p-arylaminoles

K$_2$CO$_3$, 4-methoxy-2-(tetrahydroxypranyloxy)methylphenol (396) was converted into the corresponding p-quinone 397 in excellent yield148 (Scheme 78).

3-Methoxycarbonyl-6-methoxyphenol (398) underwent PhI(OAc)$_2$-mediated oxidation in 2:1 MeOH–MeCN resulting in the formation of the corresponding meta-quinone monoketal 399, which was readily dimerized to afford a Diels–Alder product 400 (55%)149. A variety of cyclohexa-2,4-dienones such as 399 have been used for natural products synthesis, as shown later. On oxidation with PhI(OAc)$_2$ in CH$_2$Cl$_2$–AcOH (3:1), the phenol 398 was rapidly converted into 6-acetoxy-3-methoxycarbonyl-6-methoxycyclohexa-2,4-dienone (401) as a stable product (95%). On silica gel exposure, this compound was cleanly converted into two rearranged products (402 and 403) in 45 and 30% yields, respectively (Scheme 79). The former is probably formed by a [3,5] sigmatropic rearrangement. This is incompatible with the Woodward–Hoffmann rule. However, density functional theory calculations indicate that the [3,5] shift leading to 402 is pseudopericyclic, has a remarkably low activation energy of 20.1 kcal mol$^{-1}$ and is favored by 4.5 kcal mol$^{-1}$ over the pericyclic [3,3] shift leading to 403149.

In connection with protein tyrosine kinase inhibitors, 4-substituted 2-methoxycarbonylaminoles such as 404 and 405 were oxidized with PhI(OAc)$_2$ in MeNO$_2$–AcOH (25 °C, 10 min) to afford 2-acetoxy-2-methoxycyclohexa-2,4-dienones (406 and 407) in 72 and 61% yields, respectively. On BF$_3$·Et$_2$O treatment, both 406 and 407 were rearranged to phenols 408 and 409, respectively. When acetonitrile was used as a solvent, PhI(OAc)$_2$-promoted
oxidation of 404 provided biphenyl 410 in 52% yield. Substrate 405 was also converted into the corresponding biphenyl 411 (Scheme 80)150.

4-Hydroxybenzaldehyde (412) underwent Phl(OAc)\textsubscript{2}-mediated oxidation in AcOH under reflux conditions to afford 3-iodo-4-phenoxybenzaldehyde (413) in 32% yield. Similarly, methyl 4-hydroxybenzoate (414) was also converted into methyl 3-iodo-4-phenoxybenzoate (415) (76%). The suggested mechanism involves an initial formation of the zwitterionic intermediate 416 (Scheme 80).
SCHEME 79. Oxidation of 3-methoxycarbonyl-6-methoxyphenol with PhI(OAc)$_2$
SCHEME 80. Oxidation of \(p \)-substituted phenols with \(\text{PhI(OAc)}_2 \) in different solvents

Generally, hypervalent (diacyloxyiodo)benzenes such as 347 and 348 react with phenols to generate the corresponding phenoxyonium ions, which are attacked by a variety of nucleophiles. In contrast, 1-(\(\text{tert} \)-butylperoxy)-1,2-benziodoxol-3(1\(H \))-one (349) has been found to undergo homolytic cleavage of the hypervalent \(\text{t-BuOO}^-\text{I(III)} \) bond at room temperature to generate a \(\text{tert} \)-butylperoxy radical and a \(\text{s} \)-iodanyl radical, which act as an efficient radical oxidant for oxidation of benzylic and allylic C–H bonds\(^{151} \). Thus, a variety of \(p \)-substituted phenols were oxidized with a combination of the peroxyiodane 349 and \(t \)-BuOOH in EtOAc or benzene to afford the corresponding 4-(\(\text{tert} \)-butylperoxy)-2,5-cyclohexadienones in good yields\(^{152} \). \(p \)-Cresol (27) was oxidized with 349 (1.2 equiv.) and \(t \)-BOOH (6 equiv.) in EtOAc (50°C, 3.5 h) to afford 4-(\(\text{tert} \)-butylperoxy)-4-methyl-2,5-cyclohexadienone (289) (81%) (Scheme 81). The reaction was inhibited by the addition of such a radical scavenger as glavinoxyl. Similarly, both 417 and 418 were converted
into the corresponding cyclohexadienones 419 and 420 in 65 and 63% yields, respectively (Scheme 81).

SCHEME 81. Oxidation of \(p \)-substituted phenols with peroxyiodane 349 and \(t \)-BuOOH

2. Applications in natural products synthesis

From the viewpoint of organic synthesis, nature provides us with a number of target molecules, which have novel structures and a variety of biological activities. As already shown in Section II.A, electrochemical oxidation of phenols has been applied successfully to natural products synthesis. Hypervalent (diacyloxyiodo)benzenes have also been proved to be effective for natural products synthesis. Generally, oxidation of \(o \)- and \(p \)-methoxyphenols in MeOH provides the corresponding \(o \)- and \(p \)-quinone monoketals, respectively. They are utilized as promising synthons for natural products and related bioactive compounds, as demonstrated by Swenton.\(^\text{45}\) Recently, these quinone monoketals have been utilized for syntheses of terpenoids, neolignans, anthraquinones, alkaloids and related compounds.

4-Methoxycarbonyl-2-methoxyphenol (421) underwent PhI(OAc)\(_2\)-promoted oxidation in MeOH resulting in the formation of 4-carboxymethoxy-6,6-dimethoxycyclohexa-2,4-dienone (422), which was spontaneously dimerized to 423 in 85% yield.\(^\text{153}\) However, in
the presence of an excess (25 equiv.) of dienophiles such as methyl acrylate, the resulting dienone 422 reacted to give a Diels–Alder product 424 (85%) (Scheme 82).

Generally, on PhI(OAc)$_2$-promoted oxidation of o-methoxyphenols in MeOH containing a large excess of electron-rich dienophiles, the resulting o-quinone monoketals may undergo an intermolecular Diels–Alder reaction with the dienophiles to afford the corresponding dimers. 4-Methoxycarbonyl-2-methoxyphenol (421) was submitted to PhI(OAc)$_2$-promoted oxidation in MeOH containing benzyl vinyl ether (BVE) or dihydrofuran (DHF).
at 50°C to afford the adducts 425 and 426 in 83 and 36%, respectively\(^{154}\). Similarly, when dihydrofuran was replaced by 2-methylfuran, the corresponding Diels–Alder product 427 was readily obtained in 85% yield\(^{155}\) (Scheme 83). 2-Methylfuran acts here as a dienophile, although it is generally utilized as a diene. 2-Methoxyfuran gave similar results\(^{156}\). A variety of indoles are also utilized as a dienophile; the initially formed dienone (422) reacted with indole (428) at 0°C and then at room temperature to give 429 in 65% yield. In the case of 2-methylindole (430), the yield (24%) of the Diels–Alder adduct 431 is low. However, at higher temperature, 3-arylindoles 432 and 433 were obtained in 96 and 86% yields, respectively (Scheme 83)\(^{157}\). These 3-arylindoles are proposed to be formed via a Michael addition–aromatization sequence.

Scheme 83. Diels–Alder reactions of o-quinone monoketals with electron-rich dienophiles
Both linear and angular triquinanes constitute one of the large classes of sesquiterpenoids and have been attracting many synthetic organic chemists, because of their novel structures and biological activities.

Oxidation of 4-methoxycarbonyl-2-methoxyphenol (421) with PhI(OAc)₂ in MeOH was carried out in the presence of cyclopentadiene (CPD) to afford in 87% yield a Diels–Alder adduct 434, which was subjected to photochemical reaction followed by Ac₂O–BF₃·Et₂O treatment to give a linear triquinane 435 (47.6% in 2 steps).²⁵⁸

Similarly, the combination of PhI(OCOR₂)-promoted oxidation and photochemical reaction provided both linear and angular triquinane-type compounds. 2-Methoxyphenol (436) bearing an olefinic side chain at the C-3 position was subjected to PhI(OCOCF₃)₂-mediated oxidation in MeOH, followed by heating in mesitylene at 165°C to give selectively the corresponding tricyclic compound (437) (78%). Compound 437 was successfully converted into the two triquinane-type compounds 438 and 439 (Scheme 84).²⁵⁹

(--)-Eremopetasidione (440), isolated recently from rhizomes of Petasites japonicus MAXIM, has been used in the treatment of tonsillitis, contusion and poisonous snake bites in Chinese medicine. Recently, racemic 440 was synthesized in 9 steps (30% overall yield) starting from 2-methoxy-4-methylphenol (421) (Scheme 85).²⁶⁰ Oxidation of 421 with PhI(OAc)₂ in MeOH in the presence of ethyl vinyl ketone (EVK) afforded in 96% yield a Diels–Alder adduct 441, which was converted into silyl enolate 442 in 96% yield. This enolate further underwent Cope rearrangement to give regio- and stereoselectively the desired cis-decalin 443 (70%). Further conversion of 443 to the target molecule 440 was then accomplished.

On PhI(OAc)₂-promoted oxidation in CH₂Cl₂ containing alkenol (5 equiv.) at room temperature, 2-methoxyphenols such as 421 (R = Me and COOMe) were converted into the corresponding tricyclic compounds (444 and 445) in 77 and 75% yields, respectively (Scheme 86).²⁶¹ Via an intramolecular Diels–Alder reaction of the initially formed cyclohexa-2,4-dienones (446 and 447). These tricyclic compounds are recognized as promising synthetic intermediates for synthesis of natural products and related compounds.²⁶²

Pallescensins are a group of furanosesquiterpenoids isolated from the marine sponge Disidea pallescens. Of them, pallescensin B (448) presents the most complex architecture, with a unique bicyclo[4.2.2]decane system fused to a furan moiety. Thus, pallescensin B was synthesized starting from 2-methoxy-4-methylphenol (421). When 421 was submitted to PhI(OAc)₂-promoted oxidation followed by an immediate intramolecular Diels–Alder reaction in the presence of 2-methylallyl alcohol, it afforded a tricyclic compound 449 in 58% yield.²⁶³ Grignard reaction on the carbonyl of 449 was effected stereoselectively with vinylmagnesium bromide in the presence of ZnBr₂ to afford an 82% yield of 450, which underwent anionic [1,3]-rearrangement to afford in 80% yield the desired adduct (451) bearing the same carbon skeleton as that of pallescensin B. Further conversion of 451 provided pallescensin B (448) (Scheme 87).²⁶³

The plant hormone (+)-abscisic acid (ABA) (452) is well known to regulate a wide range of processes in plants, including transpiration through controlling stomatal aperture, responses to environmental stress, inhibition of germination and others. In connection with ABA, chiral synthesis of (+)-8′-demethyl abscisic acid (453) was accomplished starting from 2,6-dimethylphenol (206), as shown in Scheme 88.²⁶⁴ 2,6-Dimethylphenol in anhydrous ethylene glycol was oxidized with PhI(OAc)₂ in hexane (0°C–room temp., 2 h) to afford p-quinone monoketal 454 in 63% yield. This compound was submitted to yeast reduction to afford in 50% yield (6R)-2,6-dimethyl-4,4-ethylenedioxy cyclohexa-2-enone (455), which was further converted to the target molecule 453.
SCHEME 84. Synthesis of triquinane-type compounds

CPD = cyclopentadiene
TBS = t-butyldimethylsilyl
MEM = methoxyethoxymethyl
As already shown in Scheme 16, the electrochemically generated p-quinone monoacetal (84) reacted with 3-cyanophthalide anion 85 to give the anthraquinone 86. Similarly, PhI(OAc)$_2$-promoted oxidation of 4-substituted phenols in MeOH provides the corresponding cyclohexa-2,5-dienones, which react with the anion of 3-cyanophthalide to yield a variety of anthraquinones165. N-Acetyltyrosine ethyl ester 456 was subjected to
PhI(OAc)$_2$-mediated oxidation in MeOH at ambient temperature for 5 min to afford a mixture of crude dienones, which reacted directly with the phthalide anion to give the corresponding anthraquinone 457 in 62.5% overall yield (Scheme 89). In the case of o-quinone monoacetals165, similar results have been obtained.

2-Methoxycarbonyl-4-methoxyphenol (458) was oxidized with PhI(OAc)$_2$ in THF, CF$_3$COOH or CH$_2$Cl$_2$ containing sorbic alcohol (10 equiv.) to afford the corresponding cyclohexa-2,5-dienone (459), which immediately underwent an intramolecular Diels–Alder reaction to afford two endo- and exo-adducts 460 and 461, although the yields (15–27%) were low. In contrast, PhI(OAc)$_2$-promoted oxidation of 462 in MeOH provided the two same adducts in 87% yield (endo/exo = 1.2) (Scheme 90)166. In the case of other similar phenols, the endo-adducts were also obtained as either the sole or the predominant product.

Both katsurennone (463) and denudatin B (464) are representatives of neolignans and show an antifeedant activity. They were synthesized by phenolic oxidation with PhI(OCOCF$_3$)$_2$ in the presence of substituted styrene derivatives. Herein, a 4-allylphenol derivative 465 was oxidized with PhI(OCOCF$_3$)$_2$ in MeCN containing (E)-3,4-dimethoxypropenylbenzene to give in 30% yield the corresponding dihydrobenzofuran 466, which was further converted to both neolignans (Scheme 91)167. Electrochemical methodology has provided similar results (see Scheme 27).
SCHEME 87. Total synthesis of racemic pallescensin B

On 2e oxidation of phenols such as 467, the resulting phenoxonium ions are expected to undergo intramolecular nucleophilic substitution by the tertiary hydroxyl group, which is in a relatively rigid environment imparted by the presence of the (Z)-alkenyl group, to afford highly functionalized bicyclic compounds. Thus, oxidation of 467 with PhI(OAc)$_2$
in MeOH provided a 4e oxidation product 468 (83%) through 2H-chromene 469⁴⁶⁸. The desired compound 469 was obtained by DIBAL-H reduction of 468 (Scheme 92).

Similarly, in connection with the cytotoxic meroterpenoid sargaol, the phenol 470 was subjected to PhI(OAc)$_2$-promoted oxidation in MeOH, followed by DIBAL-H reduction to afford in 57% overall yield the target molecule 471 similar to sargaol.

From the biogenetic point of view, both lignan- and neolignan-type compounds are generated from two C6–C3 units. Generally, dibenzocyclooctadiene-type neolignans and their spirodienone precursors are biosynthesized by oxidative phenol coupling in a radical mechanism. In contrast, oxidative C–C couplings of phenols have been effected with hypervalent iodobenzenes in a heterolytic mechanism.

Arctigenin (472), prepared from 3,4-dimethoxybenzaldehyde, was submitted to PhI(OCOCF$_3$)$_2$-promoted oxidation in trifluoroethanol (TFE) (room temp., 24 h) to afford spirodienone 473 and a mixture of two cyclooctadienes (474 and 475) in 13 and 14% yields, respectively. When the reaction was repeated in hexafluoroisopropanol for 3.5 h, a 1:1 mixture of stegane 474 and isostegane 475 was obtained in 26% yield (Scheme 93). Acid-catalyzed rearrangement of 473 with HClO$_4$ in CHCl$_3$ provided a quantitative
SCHEME 89. Synthesis of an anthraquinone from N-acetyltlosine ethyl ester
yield of the cyclooctadienes. These reactions provide the first synthesis of spirodienones such as 473, which are recognized as plausible intermediates in the biosynthesis of dibenzocyclooctadiene-type neolignans.

In the case of prestegane A (476), the isostegane derivative 477 was directly produced as a major product (40%) together with three compounds 478, 479 and 480 (23, 24 and 3%, respectively), as shown in Scheme 93\(^{169}\).

From the viewpoints of biological activities and structural architectures, a variety of benzylisoquinoline alkaloids have been chosen as synthetic target molecules. These alkaloids are well known to be biosynthesized by oxidative phenol coupling via a radical mechanism. However, White and coworkers demonstrated that hypervalent iodobenzenes are effective oxidants for syntheses of morphinane-type alkaloids such as (−)-codeine\(^{170}\).

(R)-N-Trifluoroacetyl-6′-bromonorreticuline (481), readily prepared from (R)-norreticuline, was oxidized with PhI(OCOCF\(_3\))\(_2\) in CH\(_2\)Cl\(_2\) at −40°C to give the desired coupled product 482 in 21% yield. This compound was smoothly converted to (−)-codeine (483) (Scheme 94)\(^{170}\). Herein, the bromine atom at the C6′-position prevents a para–para coupling.

6a-Epipretazettine (484) was also synthesized by using PhI(OCOCF\(_3\))\(_2\)-promoted oxidation as a key step\(^{171}\). The labile compound 485, prepared from piperonal and racemic synephrine, was subjected to PhI(OCOCF\(_3\))\(_2\)-promoted oxidation in the presence of propylene oxide (10 equiv.) (−10°C, 0.5 h) to afford in 13% yield the corresponding para–para coupled product 486, which underwent Zn reduction in 10% 1 M NH\(_4\)OAc, resulting in the formation of a secondary amine 487. This amine was cyclized spontaneously to the tetra-cycle 488 (65%), which was readily converted to 6a-epipretazettine (484) (Scheme 94).

Similarly, the norbelladine derivative 489, prepared from L-tyrosine methyl ester and isovaniline, was oxidized with PhI(OCOCF\(_3\))\(_2\) in trifluoroethanol (TFE) at −40°C to afford in 64% yield an intramolecular coupled product 490. This is known as the key
SCHEME 91. Synthesis of katsurenone and denudatin B
SCHEME 92. Synthesis of 2H-chromenes

synthetic intermediate for (+)-maritidine (491)172 (Scheme 95). Furthermore, effective syntheses of Amaryllidaceae alkaloids such as galanthamine, narwédine, lycorámine, nor-galanthamine and sanguínine as a racemic form have also been accomplished173.

As already shown in the case of 489, the \textit{para–para}' coupled product 490 was selectively obtained. However, when the \textit{p}'-position is protected by an appropriate group, a
para--ortho' coupling is expected to take place. Thus, the phenol 492, bearing the TMS group at the \(p' \)-position, was treated with PhI(OCOCF\(_3\))\(_2\) in TFE at \(-40^\circ C\) to afford the para–ortho' coupled product 493 in 36% yield (Scheme 95)\(^{173}\). Herein, the two protecting groups are easily removed and the resulting hydroxyl group underwent Michael addition to afford a galanthamine-type compound 494. From this key intermediate, galanthamine (495) and related alkaloids have been synthesized.

B. Oxidation with 2,3-Dichloro-5,6-dicyano-\(p \)-benzoquinone

A variety of organic compounds such as 2,3-dichloro-5,6-dicyano-\(p \)-quinone (DDQ) and related benzoquinones, \(m \)-chloroperbenzoic acid, or dioxirane have been utilized as oxidants in organic synthesis. This section will focus on the synthesis of natural products and related compounds using DDQ.
SCHEME 94. Synthesis of (−)-codeine and 6a-epipretazettine
SCHEME 95. Synthesis of (+)-maritine, racemic galanthamine and related alkaloids
Quinone monoketals are usually prepared by oxidation of the corresponding p-alkoxyphenols using a variety of oxidants. Oxidation of a number of p-alkoxyphenols was performed by Büchi and coworkers using DDQ, ferric chloride and thallium(III) nitrate\(^{174}\). Of them, oxidation of 2-allyl-4,5-methylenedioxyphenol (496) and 2-allyl-3,4-dimethoxyphenol (497) in MeOH was effected with DDQ (1 equiv.) in the presence of catalytic amounts of p-nitrophenol (20°C, 30 min) to afford the corresponding p-quinone monoketals (498 and 499) in 88 and 75% yields, respectively. In the case of 497, neither FeCl\(_3\) nor Tl(NO\(_3\))\(_3\) could yield 499. Condensation of monoketal 498 with (E)-isosafrole in MeCN containing 2,4,6-trinitrobenzenesulfonic acid (0°C, 75 min) afforded bicyclo[3.2.1]octenone 500 and a mixture of diketone 501 and its enol 502 in 27% yields, respectively. Compound 500 was converted easily to guianin 503 by methylation followed by NaBH\(_4\) reduction. Burchellin (504) was also synthesized from the 501 and 502 mixture, as shown in Scheme 96\(^{64}\). When (Z)-isosafrole was used, futoenone (152) was obtained. This neolignan was not formed from (E)-isosafrole (see Scheme 29).

The quinone monoketal 499 reacted with (E)-isosafrole in MeCN–MeOH containing 2,4,6-trinitrobenzenesulfonic acid (dry ice temp., 30 min) to afford dihydrobenzofuran 505 and bicyclo[3.2.1]octenone 506 in 42 and 20% yields, respectively. The former was further converted to two neolignans (507 and 508) (Scheme 96)\(^{175}\). Herein, the dihydrobenzofuran 505 is formed from 509.

Both megaphone (510) and megaphone acetate (511), isolated from \textit{Aniba megaphylla} Mez., exhibit inhibitory activity against human KB cells \textit{in vitro}. In a series of Büchi’s ingenious studies, these two neolignans were also synthesized based on the same concept used for the synthesis of burchellin (504). The benzyl ether (512), prepared from 3,4-dimethoxyphenol, was hydrogenated and the resulting phenol 513 was submitted to DDQ oxidation in MeOH (room temp., 15 min) to afford the corresponding quinone monoketal 514, which was condensed directly with 1,2,3 trimethoxy-5-(1-(Z)-propenyl)benzene (515) using stannic chloride in CH\(_2\)Cl\(_2\) (−30°C, 20 min) to give the desired bicyclic compound 516 in 48% overall yield. The compound was further converted to both megaphone and megaphone acetate (Scheme 97)\(^{176}\).

The tricyclic sesquiterpene ginnnomitrol (517) was isolated as a major metabolite from the liverwort \textit{Gymnomitron obtusum} (Lindb.) Pears. An ingenious synthesis of ginnnomitrol bearing a novel structure was performed in a short sequence by using a cationic [5 + 2] cycloaddition methodology, as follows\(^{177}\). 4,5-Dimethoxy-2-methylphenol (108) was oxidized with DDQ in MeOH at 0°C to afford in 63% yield 2-methyl-4,4,5-trimethoxycyclohexa-2,5-dienone (518), which reacted with 1,2-dimethylcyclopentene (519) in MeNO\(_2\)−CH\(_2\)Cl\(_2\) containing stannic chloride to yield a mixture of two adducts. This mixture was reduced directly with NaBH\(_4\) in MeOH to give a separable mixture of 520 and 521 in 10% overall yield. The former was smoothly converted to the target molecule 517 (Scheme 98).

As shown above, Büchi and coworkers accomplished the total synthesis of neolignans and ginnnomitrol based on the concept of a cationic [5 + 2] cycloaddition. However, the yields associated with these cycloaddition reactions are not always satisfactory. Recently, this difficulty has been overcome by using trimethylsilyl triflate as an effective reagent. For example, condensation of 2-methyl-4,4,5-trimethoxycyclohexa-2,5-dienone (518) with 2,3-dimethyl-2-butene (522) was effected with TMSOTf (1.05 equiv.) in 3.0 M LiClO\(_4\)−EtOAc (−23°C, 5 min) to afford the corresponding bicyclo[3.2.1]octenone 523 in high yield (84%)\(^{178}\). However, when (E)-isosafrole was used as an olefin the initially formed bicyclic compound 524 was readily converted to tetrahydrobenzofuran 525 (89%) under the reaction conditions (Scheme 99).

Phenols bearing an olefinic side chain have been known to be oxidized electrochemically and the resulting cyclohexa-2,5-dienones undergo intramolecular cationic [5 + 2]...
SCHEME 96. Synthesis of guianin, burechellin and related neolignans
SCHEME 97. Synthesis of megaphone and megaphone acetate
cycloaddition to afford the corresponding tricyclic compounds (see Scheme 31). Thus, a
3,4-dimethoxyphenol derivative 526 was oxidized with DDQ in MeOH at 0 °C to yield
cyclohexa-2,5-dienone 527 (>87%). This dienone was treated with TMSOTf in 3.0 M
LiClO₄–EtOAc at −23 °C to give the desired tricyclic compound 528 (89%), which was
further converted to the triquinane isocomene (Scheme 99).
Scheme 98. Synthesis of gymnomitrol

Generally, oxidations of phenols having an appropriate alkyl group at the \(o \)- or \(p \)-position are performed using DDQ and other oxidizing reagents in aprotic solvents such as benzene and ether to afford the corresponding quinone methide, which are useful synthons in organic synthesis.
SCHEME 99. Cationic [5 + 2] cycloaddition reactions promoted by trimethylsilyl triflate in 3.0 M lithium perchlorate–ethyl acetate
17. Oxidation of phenols

-o-allylphenols 529 and 530 were oxidized with DDQ (1.1 equiv.) in ether (room temp., 2 h) to give chrom-3-enes 531 and 532 in 85 and 90% yields, respectively (Scheme 100). Potassium dichromate was also an effective oxidant for the conversion of o-allylphenols to chrom-3-enes in good yields.

Oxidation of cinnamylsesamol (533) was effected with Ag₂O in ether or by DDQ in acetone to give an almost quantitative yield of the extended o-quinomethane 534 as orange-red plates. On heating under reflux in benzene, this compound underwent intramolecular cyclization to afford 6,7-methylenedioxyflav-3-ene (535) (77%). Similarly, 2-(4′-methoxybenzyl)-4,5-methylene-dioxyphenol (536) was converted to the corresponding quinone methide 537 (50%). A benzene solution of 537 was heated under reflux to yield a dimer 538 (65%) (Scheme 100).

1-(2-Hydroxyphenyl)-2-(4-hydroxyphenyl)ethane (539) was oxidized with DDQ (1 equiv.) in benzene (room temp., 24 h) to afford both benzofuran (540) and dihydrobenzofuran (541) (27 and 22%, respectively). With 2 equivalents of DDQ the yield of the former increased and that of 541 decreased (Scheme 100). The p-quinone methide 542 is recognized as a plausible reaction intermediate.

A variety of unsymmetrically substituted biaryls exhibiting a variety of bioactivities have been found in nature. Although 4-substituted phenols undergo oxidative coupling to yield symmetrical 3,3′-disubstituted 2,2′-dihydroxybiaryls, the chemoselective direct cross-coupling of different phenols remains an open problem. Thus, the oxidative cross-coupling of p-methylphenol (27) and p-methoxyphenol (140) was carried out using different reagents in the presence of AlCl₃ (Scheme 101). The desired selective cross-coupling could be best performed by using DDQ in the presence of 2 equivalents of AlCl₃, which probably stabilized the resulting biaryl (543) by the formation of aluminum chelates. However, when an alkyl group was introduced at the ortho-position of the phenol 27, cross-coupling was inhibited. In cases of phenols substituted by electron-withdrawing groups such as COMe and CN, no cross-coupling reaction took place.

C. Oxidation with Dioxirane, Di-tert-butyl Peroxide and Di-tert-butyl Peroxyoxalate

Excellent reviews on dioxirane-mediated oxidations have appeared. One of the most characteristic points is that dioxiranes can be applied to the epoxidation of labile olefins such as enol ethers, enol acrylates, allenes and others. Dioxiranes have also been utilized for phenolic oxidation, but in relatively rare cases. Oxidation of simple phenols and anisoles with dimethyldioxirane (544) provided only a complex mixture, so that hindered phenols are more favorable. On treatment with dimethyldioxirane (4 equiv.) in acetone, 2,4-di(tert-butyl)phenol (216) was oxidized to afford in 79% yield the corresponding o-benzoquinone 220, which reacted with 544 and aq. NaHSO₃ to give catechol 545. Dimethyldioxirane-promoted oxidation of 545 provided again a quantitative yield of 220. Further oxidation of 220 produced a 52% yield of two epoxides 546 and 547 in a ratio of 1:20. Oxidation of thymol (548) was effected with dimethyldioxirane in acetone to afford the four oxidation products 549–552 in 10, 20, 10 and 10% yields, respectively (Scheme 102).

Oxidation of 2,6-di(tert-butyl)phenol (23), both ortho-positions of which are blocked by the bulky tert-butyl groups, was effected with 4 equivalents of methyl(trifluoromethyl)dioxirane (553) at 0°C for 1 min to afford three oxygenated products (554, 74 and 555) in 4, 24 and 70% yields, respectively. Dimethyldioxirane-promoted oxidation of 23 required much longer reaction time (48 h) to yield the
SCHEME 100. Syntheses and reactivities of o- and p-quinomethanes
corresponding dehydridimer 25 (10%) together with 74 and 555 (48 and 34%, respectively), as shown in Scheme 102. Here, 25 must be formed by dimerization of the initially generated radical species. From these results, it is evident that methyl(trifluoromethyl)dioxirane (553) is more reactive than dimethyldioxirane (544).

In relation to copper-containing enzymes, biomimetic oxidation of catechol (200) was performed using dioxirane 553 in acetone-1,1,1-trifluoropropanone (TFP) (−20 °C, 1 h) to produce selectively cis,cis-muconic acid (556) (88%) (Scheme 102). This result resembles the oxygenation assisted by metal complexes (see Scheme 40).

Organic peroxides such as di-tert-butyl peroxide are effective for radical coupling of phenols. 3,5-Dimethylphenol (557) having free ortho- and para-positions was oxidized by heating with di-tert-butyl peroxide at 140 °C to afford mainly an ortho–ortho coupled product 558 (77%) together with an ortho–para coupled product 559 (16%). In contrast, on oxidation of 557 by di-tert-butyl peroxyxalate at 25 °C, the yield (40%) of the ortho–para coupled product 559 increased, while the yield (17%) of 558 decreased. In addition, the para–para coupled product 560 was produced, although the yield (8%) was low (Scheme 103). In the case of phenol, a similar result was also obtained. These results and MINDO-3 calculations with standard parametrization show that stereoelectronic factors can explain the preferred formation of the ortho–ortho or ortho–para coupled products.

Reactions of substituted bis(3-alkoxybenzoyl) peroxides in neat phenols afford mainly 8-alkoxy-6H-dibenzo[b,d]pyran-6-ones and ortho-benzoyloxylation products of the phenol. For example, bis(3,4-dimethoxybenzoyl) peroxide (561) in neat p-methylphenol was completely decomposed in 1 h at 60 °C with the formation of a dibenzo-α-pyrene derivative 562 (60%) together with an ortho–ortho coupled product 563 (21%) and benzoate 564 (5%). In contrast, dibenzoyl peroxides having no meta-electron-releasing substituents gave mainly ortho-benzoyloxyphenols. For example, decomposition of bis(4-methoxybenzoyl)
SCHEME 102. Dioxirane-promoted oxidation of phenols
peroxide \((565)\) in neat \(p\)-methylphenol provided the corresponding phenol \(566\) (71\%) together with \(563\) (5\%) and benzoate \(567\) (20\%) (Scheme 104)\(^{188}\). Biphenols were always observed when either \(\alpha\)-pyrones or \(ortho\)-benzoyloxylation products were formed as a major product. The yields of the \(ortho\)–\(ortho\) coupled products were found to decrease linearly in all solvents on decreasing the concentration of the phenols. Furthermore, of a variety of solvents used in these reactions, a higher selectivity of the \(\alpha\)-pyrone \(562\) could be reached in nujol. This has higher viscosity than other solvents such as \(\text{CHCl}_3\), benzene and hexane.

Finally, the formation of biaryls by \(\text{C}–\text{C}\) coupling can take place through two different mechanisms referred to as radical–radical (RRD) and radical–substrate (RSD) dimerization. A mechanism involving 1e oxidation of the phenol by the peroxide and biaryl coupling by preferential addition of the phenol radical cation to the \(ortho\)-positions to the alkoxy group of the diaroyl peroxide has been suggested.

Many phenols are oxidized efficiently to quinones by acyl \(tert\)-butyl nitroxides in organic solvents. \(2,6\)-Dimethylphenol \((206)\) was oxidized with benzoyl \(tert\)-butyl nitroxide in \(\text{CH}_2\text{Cl}_2\) at room temperature to afford \(2,6\)-dimethyl-\(p\)-benzoquinone \((223)\) in 86\% yield. Oxidation of \(2,4,6\)-trimethylphenol \((221)\) was also effected with the same reagent in ether to afford the \(N\)-\(tert\)-butylbenzohydroxamic acid \(568\) in 98\% yield (Scheme 105)\(^{189}\).

D. Oxidation with Fremy’s Salt, Ammonium Nitrate–Acetic Anhydride, Dioxygen-\(tert\)-butoxide, Sodium Periodate, Chlorous Acid and Other Oxidants

This section is focused on phenolic oxidation using a variety of oxidants such as Fremy’s salt, \(\text{O}_2\text{-NO}_2\), \(\text{O}_2\text{-}\text{BuOK}\), chlorous acid, \(\text{NaIO}_4\) and others. These reagents have long been known, so that some typical examples are presented briefly.
Generally, Fremy’s salt [\(\text{O-N}(\text{SO}_3\text{K})_2\)] is used for oxidative conversion of phenols (569) to the corresponding \(o\)- and/or \(p\)-benzoquinones (570 and 571) depending on substituents on the aromatic ring. The reaction mechanism of Fremy’s salt-mediated oxidation of phenols has been determined as consisting of three steps, as shown in Scheme 106. The initially formed phenoxy radical undergoes radical coupling with another Fremy’s salt at \(o\)- and/or \(p\)-positions to yield coupled products 572 and 573, which release \(\text{HN}(\text{SO}_3\text{K})_2\) with the formation of quinones.

Simple phenols (574, 575, 576 and 247) were treated with Fremy’s salt in acetone and buffer solution to afford the corresponding benzoquinones (577, 578, 579 and 248) in 53, 60, 58 and 87\% yields, respectively. In the cases of both 576 and 247, the initially formed phenoxy radicals were attacked by the second Fremy’s salt at the \(ortho\)- and \(para\)-positions, respectively. The resulting radical coupled products were further converted into the corresponding quinones (Scheme 107). From these data, the product selectivity seems to be due to the finely balanced situation of electronic and steric factors.
SCHEME 105. Oxidation of phenols with benzoyl tert-butyl nitroxide

Of many syntheses of quinone using Fremy’s salt, a few examples of natural product syntheses using this reagent will be described herein. Miltirone (580), a tricyclic diterpene isolated from the roots of Salvia miltiorrhiza B, has been synthesized starting from p-bromoanisole. The starting phenol was converted into 1,2,3,4-tetrahydro-1,1-dimethyl-6-methoxy-7-isopropylphenanthrene (581) through 6-isopropyl-7-methoxy-1-tetralone (582). Finally, Fremy’s salt-mediated oxidation of 581 provided miltiron in 37% yield (Scheme 108). Scabequinone has been similarly synthesized.
SCHEME 106. Reaction mechanism of Fremy’s salt-mediated oxidation of phenols

Epoxyquinomicin B (583), an antirheumatic agent, was synthesized in 22% overall yield in 8 steps starting from commercially available 3-hydroxy-4-nitrobenzaldehyde (584), which was easily converted to the amidophenol 585. Fremy’s salt oxidation of 585 in EtOAc–H₂O was carried out at room temperature overnight to afford selectively in 82% yield the desired p-benzoquinone (586). This was treated with H₂O₂–NaHCO₃ in MeOH to yield the target molecule 583 (Scheme 109).
SCHEME 107. Fremy’s salt-mediated oxidation of some phenols
Makaluvamine C (587) is a member of pyrroloiminoquinone alkaloids isolated from marine sponges. These alkaloids show topoisomerase II inhibitory activity and cytotoxic activity against human colon tumor cell line HCT-116. Thus, makaluvamine C was synthesized starting from p-anisidine through a dinitro compound 588 in 13 steps (13.1% overall yield). One of the key steps included in this synthesis is the novel use of Fremy’s salt. When the protected indole 589, prepared from 588, was treated with ceric ammonium nitrate (CAN), only decomposition was observed and attempts to deprotect two functional groups (Boc and OMe) also failed. However, treatment of 589 with TMSCl – NaI in MeCN followed by in situ oxidation of the resulting amine with Fremy’s salt afforded the target molecule 587 in 73% yield (Scheme 110)196.

Generally, metal nitrates in trifluoroacetic anhydride have been known to nitrate many aromatic compounds in high yields. Oxidation of substituted phenols with NH$_4$NO$_3$–(CF$_3$CO)$_2$O affords quinones. 2,6-Dimethylphenol (206) was oxidized with NH$_4$NO$_3$–(CF$_3$CO)$_2$O in AcOH to give 3,3’,5,5’-tetramethylidiphenooquinone (207) (45%). Oxidation of 2,6-di(tert-butyl)phenol (23) with the same reagent in CHCl$_3$ provided the corresponding diphenooquinone 24 in high yield (83%) (Scheme 111)197.
Treatment of pentachlorophenol (590) with NH₄NO₃-(CF₃CO)₂O in CH₂Cl₂ resulted in the predominant formation (80%) of tetrachloro-o-benzoquinone 591 (Scheme 111).

Related to a model for oxidative conversion of lignin to valuable products, a series of para-substituted phenols were oxidized with catalytic amounts of NO₂ under O₂ in MeOH to afford the corresponding benzoquinones in moderate to high yields 198. Syringyl alcohol (247) was treated with a stoichiometric amount of NaNO₂ and conc. HNO₃ (a convenient source of NO₂) in MeOH under argon at −20°C to afford the p-benzoquinone 248 in low yield. However, in the presence of O₂, only catalytic amounts of 20% NaNO₂ were sufficient for the conversion of 247 to 248 (80–90%). Similarly, 4-hydroxymethyl-2,6-dimethylphenol (592) was converted to 2,6-dimethyl-p-benzoquinone (223) in quantitative yield (Scheme 112).

Oxygenation of para-substituted 2,6-di(tert-butyl)phenols with a tert-butoxide anion in protic and aprotic solvents has been studied extensively by Nishinaga and coworkers 199. The dioxygen incorporation depends on the nature of the para-substituents and the solvent used. 2,4,6-Tri-(tert-butyl)phenol (73) was oxygenated in the presence of t-BuOK–t-BuOH (0°C, 30 min) to afford mainly the corresponding cyclohexa-2,5-dienone 242 (84%) together with cyclohexa-2,4-dienone 593 (14%). At 30°C for 10 min, the yield of the former decreased, while 293 was produced in 65% yield. In addition, a new epoxide 594 (8%) was detected. The amount of 242 (3%) further decreased on additional rise in the reaction temperature (40°C, 10 min), while the amount of 594 (39%) increased.
and 593 was produced in 59% yield (Scheme 113). Evidently, the selective formation of 594 from 242 involves the effective isomerization of 242 to 593.

Iodine is generally used for iodination of phenols. However, phenolic oxidation has also been effected with iodine in MeOH containing a base such as KOH; 2,4,6-trimethylphenol (221) was treated with iodine (1 equiv.) and KOH in MeOH (room temp., 10 min) to afford 2,6-dimethyl-4-(methoxymethyl)phenol (595) and 3,5-dimethyl-4-hydroxybenzaldehyde (222) in 84 and 5% yields, respectively. The use of 2 equivalents of iodine (room temp., 2 h) provided mainly the aldehyde 222 in 83% yield (Scheme 114)²⁰⁰.

Cacalol (596), a major constituent of *Cacalia delfiniifolia* Sieb. et Zucc., was oxidized with iodine (1 equiv.) and NaOMe in MeOH to give 11-methoxycacalol (597) in 62% yield. With 2 equivalents of iodine, a similar reaction provided cacalal (598), another sesquiterpene isolated from the same plant, although the yield (0.8%) was very low (Scheme 114).

SCHEME 110. Synthesis of makaluvamine C
Phenolic oxidation is known to be effected with sodium periodate or periodic acid to yield o- and p-quinols, quinones and other products, depending on substituents attached to the aromatic ring. 2,4,6-Trimethylphenol (221) was subjected to NaIO₄ oxidation in 80% aq. AcOH to afford the four products 383, 599, 600 and 601 (10, 17, 28 and 31%, respectively). Of these products, the dimer 601 must be formed from the corresponding cyclohexadienone 602 (Scheme 115)²⁰¹.

2,6-Dimethylphenol (206) underwent NaIO₄ oxidation in 1:1 EtOH–H₂O containing p-benzoquinone resulting mainly in the formation of a 1:1 adduct 603 (68%) together with the o-quinol dimer 604 (6%) (Scheme 115)²⁰².
SCHEME 112. Oxidation of p-substituted phenols with NO$_2$ in the presence of O$_2$

(SCHEME 113. Oxygenation of 2,4,6-tri(tert-butyl)phenol with t-BuOK–t-BuOH)
SCHEME 114. Oxidation of phenols with iodine and base in MeOH
SCHEME 115. Oxidation of phenols with sodium periodate or periodic acid
2,4,6-Tri(tert-butyl)phenol (73), a sterically hindered phenol, was treated with periodic acid (1 equiv.) in MeOH at room temperature to yield 2,4,6-tri(tert-butyl)-4-methoxy-2,5-cyclohexadienone (363) (62%), whereas periodic acid oxidation of 73 in 40:1 MeOH–pyridine under an oxygen atmosphere provided selectively the corresponding peroxide 244 (71%) together with small amounts of 363 (5%) (Scheme 115)\(^\text{203}\).

Oxidative ring cleavage of catechol is well known to provide cis,cis-muconic acid or its monomethyl ester (see Schemes 40 and 102). Similar oxidation of phenols is performed by using chlorous acid. The oxidation products vary with the nature and location of the substituents attached to the aromatic ring. 4-Hydroxy-3-methoxybenzaldehyde (404) was treated with NaClO\(_2\) in a citrate–phosphate buffer solution (pH 4.0) at 0°C to afford two isolatable products 605 and 606 (22 and 2%, respectively) through a ring-cleaved intermediate 607. On the other hand, \(o\)-methoxyphenol (608) was oxidized with NaClO\(_2\) in aq. H\(_2\)SO\(_4\) (pH 0.5) to yield 2-methoxy-\(p\)-benzoquinone (609) (45%) (Scheme 116)\(^\text{204}\).

![Scheme 116. Oxidation of phenols with chlorous acid](image-url)
From the viewpoint of the biological significance of fluorinated steroids, chlorous acid oxidation of (trifluoromethyl)phenols have been examined. In particular, \(o \)- (trifluoromethyl)phenol (610) was oxidized with \(\text{NaClO}_2 \) in 0.3 M \(\text{H}_2\text{SO}_4 \) (5°C, 30 min) to afford mainly 5-chloro-4-oxo-5-(trifluoromethyl)cyclopent-2-en-1-ol carboxylic acid (611) and 2-chloro-2-(trifluoromethyl)cyclopentene-1,3-dione (612) in 60 and 9% yields, respectively. On simple melting or refluxing in MeCN, the former was decarboxylated quantitatively to a diketone 613 (Scheme 117). Presumably, the acid 611 is produced through the initially formed 3-trifluoromethyl-\(o \)-benzoquinone 614, although 2-trifluoromethyl-\(p \)-benzoquinone 615 is not always ruled out. Compounds 611 and 613, prepared in good yields, are recognized as valuable intermediates for the synthesis of steroids and other five-membered ring molecules containing a trifluoromethyl group.

\[
\begin{align*}
\text{OH} & \text{CF}_3 \\
\text{NaClO}_2 & 0.3 \text{ M } \text{H}_2\text{SO}_4 \\
(5^\circ\text{C}, \text{30 min})
\end{align*}
\]

\[
\begin{align*}
\text{O} & \text{Cl} \text{CF}_3 \\
+ & \text{COOH} \\
(612) & \text{Cl} \text{CF}_3
\end{align*}
\]

\[
\begin{align*}
\text{O} & \text{Cl} \text{CF}_3 \\
(614) & \text{O} \text{CF}_3 \\
\text{or} & \text{O} \text{COOH} \\
(615) & \text{Cl} \text{CF}_3 \\
\end{align*}
\]

\[
\begin{align*}
\text{SCHEME 117. Oxidation of 2-trifluoromethylphenol with chlorous acid}
\end{align*}
\]

Sodium perborate is effective for oxidation of a variety of functional groups. This oxidant is not a mixture of hydrogen peroxide and sodium borate, but its molecular structure has been proved to be represented by 616. Oxidation of hydroquinone derivatives was effected with sodium perborate in AcOH to afford \(p \)-benzoquinones in 64–96% yields. However, in the case of phenols bearing no substituent at the C4-position, the corresponding \(p \)-benzoquinones were obtained, although the yields (42–53%) were relatively low. Both 2,3,5-trimethylhydroquinone (617) and 2,3,5-trimethylphenol (239) were treated with
IV. OXIDATION WITH METAL COMPOUNDS

A. Oxidation with Vanadium, Chromium and Molybdenum Compounds

Tetra- and pentavalent vanadium compounds such as VCl₄ and VOCl₃ are generally used for phenolic oxidation. Phenol was oxidized with VCl₄ in CCl₄ to afford two *ortho–para* and *para–para* coupled biphenyls 622 and 19 in 18 and 34% yields,
respectively. Similarly, oxidation of 2,6-dimethylphenol (206) with VCl$_4$ provided the corresponding para–para coupled biphenyl 319, while VOCl$_3$-promoted oxidation of 206 afforded mainly 3,3′,5,5′-tetramethylldiphenoquinone 207 (35%) together with small amounts of 319 (6%) (Scheme 119)208.

\[
\text{phenol (R} = \text{H)} \quad \text{(206) R} = \text{Me} \\
\text{VCl}_4 \text{ or VOCl}_3 \\
\text{CCl}_4 \quad (25^\circ \text{C}, 1 \text{ h}) \\
\text{OH} \\
\text{R} \quad \text{R} \\
\text{OH} \\
\text{(622)} \\
\text{(19) R} = \text{H} \\
\text{(319) R} = \text{Me} \\
\text{O} \\
\text{Me} \\
\text{O} \\
\text{Me} \\
\text{(207)} \\
\]

SCHEME 119. Oxidation of simple phenols with vanadium compounds

On oxidation with VOCl$_3$ in CH$_2$Cl$_2$ containing TFA and TFAA (room temp., 3 h), 2-methoxy-4-methylphenol (421) was converted into 2-chloro-6-methoxy-4-methylphenol (623) in 83\% yield. The use of VOF$_3$ as an oxidant also provided 623 under mild conditions (−10°C, 20 min) and in high yield (91\%)209. Similarly, there have been another two reports on ring chlorination with VOCl$_3$.210 Oxidation of 2-methoxy-5-methylphenol (624) with VOCl$_3$ afforded the para–para coupled biphenyl 625 in 81\% yield (Scheme 119). In the case of 2,4,6-tri(tert-butyl)phenol, several oxidation products such as o- and p-benzoquinones, diphenoquinones, major amounts of dealkylated phenols and C–C coupled dimers were produced211.

Of phenolic oxidations using vanadium compounds, intramolecular oxidative phenol-coupling reactions are quite attractive from the viewpoint of natural products synthesis. A number of benzylisoquinoline alkaloids, lignans and neolignans are well known to be produced, in a key step, by oxidative radical coupling of open phenolic precursors.
In particular, extensive studies on biomimetic syntheses of benzylisoquinoline alkaloids using vanadium compounds were made independently by Kupchan and Schwartz.

From the viewpoint of biogenetic consideration, intramolecular oxidative coupling reactions of the benzylisoquinolines such as (626) leading to quinonoid oxoaporphines such as (627) were performed by using a variety of metal compounds. Of them, both VOF$_3$ and MoOCl$_4$ provided good results, as shown in Scheme 120.

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>Medium</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnO$_2$</td>
<td>CF$_3$COOHa</td>
<td>30</td>
</tr>
<tr>
<td>CrO$_3$</td>
<td>aq. H$_2$SO$_4$-AcOHa</td>
<td>25</td>
</tr>
<tr>
<td>Tl(OCOCF$_3$)$_3$</td>
<td>CF$_3$COOHb</td>
<td>12</td>
</tr>
<tr>
<td>VOF$_3$</td>
<td>CF$_3$COOHa</td>
<td>59</td>
</tr>
<tr>
<td>MoOCl$_4$</td>
<td>CF$_3$COOH-CHCl$_3$</td>
<td>62</td>
</tr>
</tbody>
</table>

a 0°C. b 25°C.

SCHEME 120. Oxidative coupling of benzylisoquinoline 626 with metal compounds

Monophenolic benzylisoquinoline 628 was treated with VOF$_3$ in EtOAc–TFA (CF$_3$COOH)–TFAA [(CF$_3$CO)$_2$O] at -10°C to afford mainly trifluoroacetylwilsonirine (629) (70%) together with morphinan-type diene (630) as a minor product (8%) (Scheme 121). The initially formed intermediate 631 undergoes ortho–para and para–para couplings to yield 629 and 630, respectively. In contrast, VOCl$_3$-mediated oxidation of triphenolic hydroxy norreticuline 632 in ether provided predominately the corresponding morphinan-type diene (633) (64%). Furthermore, this compound was smoothly converted to racemic noroxycodeine (634). Similar oxidative coupling reactions have also been reported.

Biomimetic syntheses of dibenzoazonines 635 and 636 were carried out by VOF$_3$-mediated oxidation of diphenolic benzylisoquinoline 637 and its methyl ether 638, respectively. The diphenolic compound 637 was submitted to VOF$_3$-mediated oxidation at -10°C to afford in 40% yield the para–para coupled spirodienone 639, which was further converted to dibenzoazonine 635 (Scheme 122). Similar coupling reactions have also been carried out.
SCHEME 121. Oxidation of phenolic benzylisoquinolines with vanadium compounds
SCHEME 122. Biomimetic synthesis of dibenzoazonines
A nonphenolic compound 638 also underwent VOF₃-mediated oxidation in CH₂Cl₂–TFA at −30°C to give two coupled products 640 and 641 in 55 and 7%, respectively. The former was converted to an erybidine derivative 636²¹⁸. Another interesting example is a biomimetic synthesis of maritidine (491)²¹⁹. When treated with VOCl₃ in Et₂O (reflux, 10 h), a diphenolic compound 642 underwent oxidative para–para coupling to afford 37% yield of the desired product 643, which was readily converted to the target molecule (491) (Scheme 123). (+)-Maritidine was also synthesized by a similar procedure except for the use of FeCl₃ instead of VOCl₃, as shown in Scheme 123, wherein the diphenolic compound 644, prepared from L-tyrosine methyl ester and isovanillin, was oxidized with FeCl₃·DMF to give the corresponding coupled product 645 as an optically active form, although the yield (14%) was low. Compound 645 was successfully converted to (+)-maritidine²²⁰. According to essentially the same synthetic route as shown in Scheme 123, (+)-maritidine (491) was also synthesized (see Scheme 95)²²². In the latter case, the phenolic oxidation was performed using PhI(OCCF₃)₂ instead of the FeCl₃·DMF complex.

Naturally occurring neolignans, represented by shizandrins and steganes, exhibit a variety of biological activities such as antifeedant against insects and antitumor activities. Deoxyschizandrin and its related compound (646 and 647) have a novel dibenzocy clooctadiene framework, which will be constructed in vivo by oxidative phenol-coupling. Thus, the diarylbutane 648, prepared from ethyl 3,4,5-trimethoxyphenyl ketone, underwent VOF₃-mediated oxidation in CH₂Cl₂–TFAA at −10°C with intramolecular cyclization resulting in the formation of deoxyschizandrin (646) (54%) (Scheme 124)²²¹.

Recently, a combination of metal oxides such as Re₂O₇ and fluoro acid media such as CF₃COOH was found to be effective for nonphenolic biaryl oxidative couplings²²². The phenolic diarylbutane 649 was treated with metal oxides in trifluoroacetic acid medium at 20°C to afford two epi-deoxyschizandrin derivatives 647 and 650 in relatively low yields (24–47%), as shown in Scheme 124. Of three metal oxides (Tl₂O₃, RuO₂–H₂O and V₂O₅), V₂O₅ provided the best result (47%)²²³.

Steganacin (651) exhibits highly cytotoxic and antileukemic activities. The first synthesis of steganacin was performed by Kende and Liebeskind²²⁴. Homopiperonyl alcohol was converted in 3 steps to a diarylbutane derivative 652, which was subjected to VOF₃-mediated oxidation in CH₂Cl₂–TFAA at 25°C to yield the desired diarylcylooctadiene 653 (45%). Further short step manipulations provided the target neolignan 651. In contrast, oxidation of the diarylbutenolide precursor 654 with VOF₃ in CH₂Cl₂–TFA provided only unnatural isostegane 655 (65–70%) through a plausible spiro intermediate 656, and no steganacin-type compound was detected (Scheme 125)²²⁵.

Similarly, a variety of metal oxides in CF₃COOH or C₂F₅COOH were effective for oxidation of monophenolic diarylbutenolide 657 to the corresponding isostegane-type dibenzocylooctadiene 658 (64–18%). Of them, a combination of Tl₂O₃ and CF₃COOH provided the best yield (64%) (Scheme 125)²²³.

As already shown in Scheme 120, both chromium and molybdenum compounds were used for phenolic oxidation²¹². In addition, inexpensive chromium reagents such as CrO₂Cl₂ and Na₂Cr₂O₇·2H₂O have been used for the conversion of alkylphenols to the corresponding alkylquinones (30–84%)²²⁶,²²⁷. However, they are scarcely used for phenolic oxidation.

B. Oxidation with Manganese and Rhenium Compounds

Manganese compounds, widely used in organic synthesis, are among the most popular oxidants. Generally, these compounds are recognized as a one-electron oxidant, but in some cases, they act as a two-electron oxidant²²⁶. On oxidation of 2,6-dimethylphenol (206) with excess of MnO₂ in benzene (reflux, 2 h), the initially generated phenoxy radical
was further polymerized to afford head-to-tail polymers 659 (60–90%) together with small amounts of 3,3′,5,5′-tetramethylphenoxoquinone (207). The molecular weight of the polymer varied from 2,000 to 20,000 by the selection of reactant ratios, methods of MnO₂ preparation, the solvent and other factors. The use of a limited amount of MnO₂ (206–MnO₂ mole ratio, 20:1) mainly gave 3,3′,5,5′-tetramethylbiphenol (319) and a C—O coupled product 660 in 60 and 30% yields, respectively, based on MnO₂ (Scheme 126)²²⁷.

Manganese dioxide and silver oxide are effective for oxidative formation of quinomethanes from the corresponding p-alkylphenols. For example, 2,4,5-trialkylphenols such as 661 were submitted to MnO₂-mediated oxidation in benzene at room temperature.
SCHEME 124. Biomimetic synthesis of schizandrin-type compounds
SCHEME 125. Biomimetic synthesis of steganacin and related compounds
SCHEME 126. MnO₂-mediated oxidation of 2,6-dimethylphenol to afford fuchosones 662 (84–99%) (Scheme 127)²²⁸. A number of quinone methide have been converted electrochemically to such a peroxide as 663²²⁹.

SCHEME 127. MnO₂-mediated oxidation of 2,4,6-trialkylphenols to quinomethanes
Manganese dioxide like other oxidants is effective for oxidative conversion of o- and p-hydroquinones into o- and p-benzoquinones, respectively. However, when unstable benzoquinones such as 664 and 665 are produced, the yields are not satisfactory. The synthesis of these quinones could be performed successfully by oxidation of the corresponding hydroquinones 200 and 666 with MnO$_2$ impregnated with nitric acid in CH$_2$Cl$_2$ in 68 and 86% yields, respectively (Scheme 128)230. Selection of the solvent used is quite important; generally, methylene chloride is preferred over benzene.

![Scheme 128. MnO$_2$-mediated oxidation of hydroquinones to benzoquinones](image)

Manganese dioxide as an oxidant has been used for biomimetic syntheses of benzylisoquinoline alkaloids and other natural products, but the yields are low121,122. Potassium or sodium permanganate under protic and aprotic conditions231 is well known to be effective for phenolic oxidation leading to quinones and C–C and/or C–O coupled products. Some typical examples demonstrate the utility of barium manganate and methyltributylammonium permanganate in phenolic oxidation.

Barium manganate (BaMnO$_4$), a useful alternative to MnO$_2$, NiO$_2$ and Ag$_2$O as a heterogeneous oxidant, has several advantages over other oxidants such as easy preparation, simple reaction procedure, nontoxicity, and being free from explosion hazards232. 2,4,6-Tri(tert-butyl)phenol (73) was oxidized with BaMnO$_4$ in benzene to afford peroxide 244 in high yield (75–87%). In contrast, 2,6-di(tert-butyl)-4-methylphenol (69) was treated with the same reagent in benzene at 60°C to give 3,3′,5,5′-tetrat(tert-butyl)diphenooquinone (24) and 2,6-di(tert-butyl)-p-benzoquinone (74) (63 and 24%, respectively). Interestingly, BaMnO$_4$-promoted oxidation of 2,4,6-trichlorophenol (667) in CH$_2$Cl$_2$ provided selectively two diaryl ethers 668 and 669 (81 and 6%, respectively) (Scheme 129).

In studies on a variety of neolignans, oxidative coupling reactions of 4-substituted 2-methoxyphenols were carried out using methyltributylammonium permanganate (MTBAP) in CH$_2$Cl$_2$, because the permanganate ion is known to exhibit a lower oxidizing power
SCHEME 129. Oxidation of some phenols with BaMnO₄
in organic solvents than in aqueous solution. This means that the oxidative couplings of phenols bearing easily oxidized functional groups will take place selectively.

Eugenol (29) was treated with MTBAP (0.5 equiv.) in CH$_2$Cl$_2$ (0–5°C, 15 min) to afford the corresponding dimer 33 in 52% yield. Another two 4-alkyl-2-methoxyphenols (670 and 671) were also oxidized with MTBAP under similar conditions to give dimers 672 and 673 in 52 and 55% yields, respectively (Scheme 130). In this oxidation, the free phenolic OH group is essential, because the methyl ether of 671 was almost completely recovered on MeBu$_3$NMnO$_4$-promoted oxidation. In addition, a phenol such as vanillin bearing an electron-attracting group was also resistant to the oxidant.

[Diagram showing the oxidation of phenols with MeBu$_3$NMnO$_4$.]

As manganese(III) compounds are lower in reactivity when compared with other oxidants, higher selectivities in phenolic oxidation can be obtained with these manganese oxidants such as manganese(III)acetate [Mn(OAc)$_3$] and manganese(III)acetylacetonate [Mn(acac)$_3$]. Similarly, trans-1,2-diaminocyclohexanetetraacetatomanganate(III) [KMnCyDTA(H$_2$O)] is used for phenolic oxidation. Generally, phenolic oxidation with these oxidants initially generates the phenoxy radical. The radical undergoes C−O and/or C−C radical couplings leading to dimers or further oxidation providing hydroquinones, quinones and other compounds.

2,6-Disubstituted phenols such as 23 and 274 were oxidized with Mn(acac)$_3$ in AcOH to afford the corresponding biphenols 25 and 320 in high yields (91 and 80%, respectively), while oxidation of both phenols with Mn(OAc)$_3$ in AcOH provided selectively the corresponding diphenoquinones 24 and 277 (98 and 79%, respectively) (Scheme 131).

As already shown in Scheme 101, oxidative cross-coupling reactions of two different phenols using DDQ are quite interesting from the viewpoint of natural products synthesis. A mixture of 2,6-di(tert-butyl)phenol (1 equiv.) and 2,6-dimethylphenol (1 equiv.) was also oxidized with Mn(OAc)$_3$ (4 equiv.) to give the desired cross-coupled dimer 674, although the yield (26–10%) was not satisfactory (Scheme 131).

On treatment with Mn(acac)$_3$ in MeCN, 2-allyl-4-(tert-butyl)phenol (675) undergoes one-electron oxidation to afford a phenoxy radical. The radical is expected to react with the ortho-allyl group to yield a dihydrobenzofuran derivative 676. However, Mn(acac)$_3$-promoted oxidation of 675 provided a spiro compound 677 (25%) (Scheme 132).

In connection with bioactive neolignans such as schizandrin and steganacin, systematic studies on the oxidative coupling of bis(benzo)cyclooctadiene precursors were carried out.
using a variety of metal oxides in fluoroacids (CF$_3$COOH and C$_2$F$_5$COOH)223. A combination of Re$_2$O$_7$ and CF$_3$COOH was found to be the most effective for the oxidative coupling of prestegane A (678) to the corresponding bis(benzo)cyclooctadiene 679. When V$_2$O$_5$, Cu(OAc)$_2$·H$_2$O or RuO$_2$·2H$_2$O was used as an oxidant, good yields (75–90\%) were also obtained. However, Mn(OAc)$_3$ provided a low yield of 679. In the case of the substrate 657 bearing a methylenedioxy group, Tl$_2$O$_3$ was the best oxidant (see Scheme 125),
17. Oxidation of phenols

because of the instability of the methylenedioxy group (Scheme 133). Both CF₃COOH and C₂F₅COOH provide similar results.

C. Oxidation with Iron, Ruthenium, Cobalt, Nickel and Rhodium Compounds

Of a variety of metal compounds described in this section, iron compounds represented by ferric chloride (FeCl₃) and potassium ferricyanide [K₃Fe(CN)₆] have long been used for phenolic oxidation, particularly for biomimetic syntheses of benzylisoquinoline alkaloids and neolignans.¹²⁰–¹²²

Generally, on oxidation with Fe(III) compounds, phenol undergoes one-electron oxidation followed by H⁺ loss, resulting in the formation of the phenoxy radical. The radical undergoes C–C coupling leading to dimers, trimers and polymers, or subsequent oxidation to generate the corresponding phenoxonium ion which is attacked by nucleophiles such as H₂O to afford p-hydroquinone. Further oxidation provides p-benzoquinone (see Scheme 3).²³⁸

Oxidative aryl–aryl coupling reactions are effected with FeCl₃, Fe(ClO₄)₃, Fe(III) solvates and silica-bound FeCl₃. The Fe(III) solvate, [Fe(DMF)₃Cl₂][FeCl₄], is prepared by addition of DMF to a solution of FeCl₃ in dry Et₂O. On treatment with this oxidant in H₂O
SCHEME 133. Phenolic oxidation of bisbenzocyclooctadiene precursors with metal oxides

(reflux, 1 h), a 1,3-diarylp propane 680 underwent intramolecular para–para coupling reaction to afford the corresponding spiro compound 681 in good yield (67%) (Scheme 134). Similarly, oxidation of p-cresol (27) provided Pummer’s ketone 28, although the yield (28%) is low as compared with the electrochemical oxidation (see Scheme 4).

Furthermore, oxidative aryl–aryl coupling reactions of phenols and phenol ethers were performed by Tobinaga and coworkers by using tris(2,2'-bipyridyl)iron(III) perchlorate, Fe(bpy)$_3$(ClO$_4$)$_3$·3H$_2$O and some Fe(III) solvates such as Fe(ClO$_4$)$_3$·9H$_2$O in MeCN, Fe(MeCN)$_3$(ClO$_4$)$_3$, Fe(ClO$_4$)$_3$ in A$_2$O and FeCl$_3$ in A$_2$O. Solvated FeCl$_3$ in MeCN and A$_2$O have been clarified to be Fe(MeCN)$_6$(FeCl$_4$)$_3$ and Fe(A$_2$O)$_3$(FeCl$_4$)$_3$, respectively. 1-(4′-Hydroxyphenyl)-3-arylpropane 682 was oxidized with Fe(bpy)$_3$(ClO$_4$)$_3$·3H$_2$O in MeCN containing 42% aq. HBF$_4$ to yield the corresponding para–para coupled spiro compound 683 (95%). No reaction took place in the absence of aq. HBF$_4$. 1-(4′-Methoxyphenyl)-3-arylpropane (684) was also oxidized to 683 (56%) with the same reagent in MeCN (Scheme 134).

Similarly, oxidative aryl–aryl coupling reactions of a norbelladine derivative 685 and its methyl ether 686 were carried out using several different Fe(III) solvates to afford the
corresponding spiro compound 687 or its rearranged products 688 and 689 depending on the oxidant. Compounds 688 and 689 may be produced from 687 by the route shown in Scheme 135. On treatment with Na₂CO₃, the spiro compound 687 was further converted easily to crininone (690), a precursor of the Amaryllidaceae alkaloid crinine²⁴⁰.

Silica-bound FeCl₃ can act as a one-electron-transfer oxidant, which is very effective for oxidative coupling reactions of aromatic ethers and phenols. 1,2-Diarylethane 691 was oxidized with FeCl₃ supported on silica gel in CH₂Cl₂ to give the corresponding para–para coupled product 692 in almost quantitative yield (98%). Similar oxidation of 2-methoxy-p-hydroquinone (693) provided a dibenzofuran 694 (35%) (Scheme 136)²⁴¹.

Oxidative coupling reactions of phenols are usually performed by treatment of phenols in solution with more than an equimolar amount of metal salts such as FeCl₃. However, the coupling reaction of some phenols with FeCl₃ was demonstrated to proceed much faster and more efficiently in the solid state than in solution²⁴² and the reaction in the solid state is accelerated by irradiation with ultrasound. For example, the irradiation with ultrasound of a mixture of finely powdered p-hydroquinone and [Fe(DMF)₃Cl₂][FeCl₄] (2 equiv.) in the solid state (50 °C, 1 h) provided 695 in 64% yield (Scheme 137).

Similarly, oxidation of 2-naphthol (696) with [Fe(DMF)₃Cl₂][FeCl₄] (1 equiv.) in the solid state (50 °C, 2 h) gave 2,2′-dihydroxy-1,1′-binaphthol (697) in 79% yield (Scheme 137). Interestingly, a mixture of 696 and FeCl₃·6H₂O which was kept stationarily at 50 °C for 2 h gave a 95% yield of 697.
As already described, potassium ferricyanide can act as a one-electron oxidant in pheno-
lic oxidation. From the viewpoint of chemical reactivity, extensive studies on the oxidation
of hindered phenols bearing bulky groups such as a tert-butyl group have been conducted
using K$_3$Fe(CN)$_6$ and in rare cases using H$_3$Fe(CN)$_6$ and (Bu$_4$N)$_3$Fe(CN)$_6$. Some
interesting examples are shown herein.

On oxidation with K$_3$Fe(CN)$_6$ in benzene–aq. KOH (room temp., ca 10 min), 3,3′-
di(tert-butyl)-5,5′-ditritylbiphenol (699), prepared from 2-tert-butyl-4-tritylphenol (698),
was converted into the corresponding o-diphenooquinone 700 (68%). Further thermal
isomerization of 700 in isooctane (70°C, 95 min) provided a quantitative yield of the
thermodynamically more stable benzoxete 701 (Scheme 138).

Oxidation of 2-iodo-4,6-di(tert-butyl)phenol (702) with K$_3$Fe(CN)$_6$ in aq. KOH (room
temp., 20 min) also provided in 82% yield the corresponding benzoxete 703 probably
through o-diphenooquinone. In contrast, similar oxidation of three 2-halo-4,6-di(tert-
butyl)phenols (704, 705 and 706) mainly afforded a dibenzofuran derivative 707 (81%), a
mixture of 708 and 709 (23 and 53%, respectively) and a diaryl ether 710 (63%),
respectively (Scheme 138). Clearly, iodine and bromine substituents promote the diaryl
formation, while chlorine and fluorine substituents prefer to produce diaryl ethers. These
results seem to be in good agreement with the ab initio calculations.

\[\text{Scheme 135. Oxidation of norbelladine derivatives with Fe(III) solvates} \]
SCHEME 136. Oxidation of phenols with silica-bound ferric chloride
From the structural point of view, the acetylenic phenol 711 was oxidized with K₃Fe(CN)₆ or PbO₂ in benzene to undergo radical coupling at the β-position leading to the bis-quinobutadiene 712 (40%). Thermal isomerization of 712 further led to the first synthesis of diquinocyclobutene 713 (Scheme 139). Oxidation of amidine 714 bearing two sterically hindered phenol moieties was performed using K₃Fe(CN)₆ in benzene at ambient temperature to afford a dispirocyclohexadienone derivative 715 in 95% yield. During the reaction two stable phenoxy radicals (716 and 717) were detected by the ESR spectrum of the reaction mixture, wherein the latter underwent an intramolecular para–para coupling leading to 715 (Scheme 140).

In relation to enzyme stereospecificity at the oxidative phenol coupling step, (S)-(+-)-2-hydroxy-3,4,8-trimethyl-5,6,7,8-tetrahydronaphthalene (718) was submitted to K₃Fe(CN)₆-promoted oxidation (22°C, 2 h) to afford the corresponding optically active (S,S)-(+-)-trans-dinaphthol 719 (62%) in a stereospecific manner (Scheme 141). This stereoselectivity and other results using racemic 718 (see Scheme 9) indicated that steric interactions play an important role in the stereochemical control during the intermolecular ortho–ortho coupling of two molecules 718 leading to the least hindered isomer 719.

Lunarine (26), a constituent of Lunaria biennis M., is a member of neolignans (see Scheme 4). Biomimetic synthesis of tetrahydrolunarine (720) was performed by K₃Fe(CN)₆-promoted oxidation of methyl p-hydroxyphenylpropionate (721) as a key step. 721 was oxidized with K₃Fe(CN)₆ in aq. Na₂CO₃ (0°C, 3.5 h) to give in 14% yield an ortho–para coupled product 722, which was further converted to the target molecule 720 (Scheme 142).

As already shown in Scheme 101, an oxidative cross-coupling of two different phenols takes place, but the yield is relatively low. In order for satisfactory cross-coupling to occur it is essential that the phenoxy radicals will be generated to a comparable extent from each of the substrates. Based on biogenetic consideration of benzylisoquinoline alkaloids, extensive studies on oxidative cross-coupling of two different phenols have been undertaken.
SCHEME 138. Oxidation of some hindered phenols with $K_3Fe(CN)_6$
SCHEME 139. Oxidation of 4-acetylenic 2,6-di(tert-butyl)phenol with $K_3Fe(CN)_6$ or PbO$_2$

by Bird and coworkers. A mixture of 2-(p-hydroxyphenyl)ethanol (723) and 2-naphthol (696) was treated with $K_3Fe(CN)_6$ in aq. Na_2CO_3 (0–10°C, 4 h) to afford the desired ortho–para coupled product 725 (15%) through an intermediate 724 (Scheme 143)253. From the viewpoint of organic synthesis, oxidation of a variety of p-substituted phenols, bearing three- or four-carbon chains terminated by enolic or enolizable groups, at alkaline pH using $K_3Fe(CN)_6$ or K_2IrCl_6 leads to the corresponding spiro cyclization products. For example, phenolic indandione 726 was subjected to $K_3Fe(CN)_6$-mediated oxidation in dilute KOH to afford a spirocyclic compound 727 (88%). When a simple cyclohexa-1,3-dione was used instead of the indandione, oxidative coupling of 728 with alkaline $K_3Fe(CN)_6$ proceeded poorly. In contrast, the use of the more powerful K_2IrCl_6 as an oxidant provided 43% yield of the spirocyclic triketone 729. In the case of phenolic malononitrile 730, only K_3IrCl_6 was effective for the oxidative cyclization leading to the corresponding spiro compound 731 (31%), as shown in Scheme 144. Herein, the initially generated enol radical reacts with the phenolate ring or with the phenoxy radical to initiate the cyclization process254.

SCHEME 140. Oxidation of amidine bearing hindered phenol moieties with K$_3$Fe(CN)$_6$
SCHEME 141. Stereoselective oxidative coupling of a chiral tetrahydronaphthol

SCHEME 142. Biomimetic synthesis of tetrahydrolunarine
Biomimetic syntheses of benzylisoquinoline alkaloids have been performed by intramolecular oxidative phenol-coupling reactions using a variety of oxidants. Of them, K$_3$Fe(CN)$_6$ has long been used for alkaloid syntheses$^{120-122,255}$. The amine 732 bearing two phenol moieties was subjected to K$_3$Fe(CN)$_6$-mediated oxidation in a mixed solvent of CHCl$_3$ and aq. Na$_2$CO$_3$ to afford erysodienone 733 (35%) through para–para coupled dibenzoazonine 734 and then biphenoquinone (Scheme 145)256. Addition of benzyltriethylammonium chloride provided an increased yield (44%) of erysodienone257. This compound was further converted to dihydroerysodine (735)256. The K$_3$Fe(CN)$_6$-mediated oxidation of the corresponding amide 736 yielded a biphenyl derivative 737 (12%) (Scheme 145). In this case, no spirodienone like 733 was detected257, while similar oxidation of 734 provided the corresponding spirodienone 733 in 80% yield.

A variety of B-homoerythrina alkaloids such as schelhammeridine (738) have been found in Schelhammera and Cephalotaxus plants. When the amide 739 was treated with K$_3$Fe(CN)$_6$ in a mixed solvent of aq. NaHCO$_3$ and CHCl$_3$, it underwent intramolecular radical coupling to afford the corresponding homoerysodienone 740 (68%)258. This compound was readily converted to a dibenzoazonine derivative 741, which was treated again with the same oxidant to give a schelhammeridine-type compound 742 (61%) (Scheme 146)259. Synthetic studies on some interesting alkaloids have also been made using K$_3$Fe(CN)$_6$.260

Flavonoids with a variety of biological activities constitute a large group in nature. Related to these natural products, the reaction of a chalcone derivative 743 with 3,5-dimethoxyphenolate (744) was effected with K$_3$Fe(CN)$_6$ in aq. NaOH to afford a diastereomeric mixture of 2-substituted 4,6-dimethoxybenzo[b]furan-3(2H)-ones (745) (26%) and 4′-hydroxy-4,6-dimethoxyaurone (746) (23%). A radical species 747 is a plausible intermediate (Scheme 147)261.

As compared with Fe(III) oxidants, other metal compounds are scarcely used for phenolic oxidation. Both iron and ruthenium are members of the same group of the Periodic
SCHEME 144. Intramolecular radical cyclization of phenolic enolates
SCHEME 145. Intramolecular oxidative phenol-coupling reactions with K₃Fe(CN)₆
Table. Their reactions have been shown to proceed via radical intermediates262,263. Ruthenium dioxide (RuO$_2$) in fluoro acid medium was effective for intramolecular oxidative phenol coupling reactions leading to the formation of steganacin-type neolignans264. In fact, both prestegane A and B (678 and 748) were treated with RuO$_2$·2H$_2$O (1.5 equiv.) in CH$_2$Cl$_2$ containing TFA–TFAA and BF$_3$·Et$_2$O to afford the corresponding isosteganacins (679 and 749) in 82 and 80% yields, respectively (Scheme 148).
SCHEME 147. Reaction of a chalcone with 3,5-dimethoxyphenol in aq. NaOH–K₃Fe(CN)₆
Ruthenium tetroxide (RuO$_4$) is also utilized for phenolic oxidation. Sodium 2,6-dichlorophenoxide (750) was oxidized with RuO$_4$ in H$_2$O to afford 2,6-dichloro-p-benzoquinone (751) (60%), while the use of acetone as a solvent provided the corresponding biphenol 752 as the only isolatable product (20%)265 (Scheme 148).

Cobalt(III) acetate is an effective reagent for phenolic oxidation. On oxidation with Co(OAc)$_3$ in AcOH, 2,6-disubstituted phenols (753; R = Me, i-Pr, t-Bu, MeO) were converted into the corresponding diphenoquinones (754; R = i-Pr, t-Bu, MeO) in 91–97% yields. In the case of 2,6-dimethylphenol (753; R = Me), 2,6-dimethyl-p-benzoquinone (223) was obtained in 23% yield together with the diphenoquinone (754: R = Me) (75%) (Scheme 149).266

Oxidation of 2,6-disubstituted 4-methylphenols (221 and 69) with Co(OAc)$_3$ in AcOH afforded the corresponding benzyl acetates 755 (49%) and 285 (73%) and benzaldehydes 222 (27%) and 756 (7%), respectively. These results are remarkably different from those of electrochemical and NaIO$_4$-promoted oxidations.

Nickel dioxide (NiO$_2$) is a one-electron oxidant similar to Co(III) acetate. 2,6-Di(tert-butyl)phenol underwent NiO$_2$-promoted oxidation in benzene (room temp., 5 h) to afford a quantitative yield of the dibenzoquinone 754 (R = t-Bu). In the case of 4-methyl-2,6-di(tert-butyl)phenol (69), an extended diquinone 757 was produced in 31% yield267 (Scheme 149).

Oxidation of p-cresol (27) with NiO$_2$ in benzene was performed under the same conditions as above to afford nearly quantitatively polymeric products together with Pummer’s ketone (28) (1.7%) and trace amounts of a dimer and a trimer (758 and 759) (Scheme 150)268.
SCHEME 149. Phenolic oxidation with cobalt(III) acetate and nickel dioxide
SCHEME 150. Phenolic oxidation with nickel dioxide or catalytic rhodium complex
Oxidative coupling reaction of \(p \)-cresol (27) was effected with rhodium(III) complex (760) and \(\text{Cs}_2\text{CO}_3 \) in bromobenzene (90°C, 24 h) to give selectively 2,2′-dihydroxy-5,5′-dimethylbiphenyl (758) (51–67%). Oxidation of 2,3-dimethylphenol (761) also provided the corresponding biphenyl 762 (59%)\(^{269}\) (Scheme 150).

D. Oxidation with Copper and Silver Compounds

As already described in Section II.B, a combination of cuprous chloride (CuCl) and nitrogen-containing ligands is generally used for phenolic oxidation under oxygen atmosphere. In the absence of these ligands CuCl is also effective for phenolic oxidation. When treated with CuCl in dry MeCN containing \(n \)-hexanol and CaSO\(_4\) under oxygen atmosphere, methyl 2,5-dihydroxybenzoate (763) was converted into 3-alkoxylated quinone 764 (88%), as shown in Scheme 151\(^{270}\). Herein, the reaction of CuCl with dioxygen

\[
\begin{align*}
\text{4 Cu}^{\text{II}}\text{Cl} & \rightarrow \text{2 ClCu}^{\text{II}-\text{O}}\text{-Cu}^{\text{II}}\text{Cl} \\
\text{ClCu}^{\text{II}-\text{OR}} & \rightarrow \text{ClCu}^{\text{II}-\text{OR}} + 2 \text{H}_2\text{O}
\end{align*}
\]

\[
\begin{align*}
\text{(763)} & \xrightarrow{\text{O}_2/\text{MeCN/MeOH/MeCN}} \text{(765)} \\
\text{(765)} & \xrightarrow{\text{ROH, MeCN}} \text{(764) R = n-hexyl}
\end{align*}
\]

SCHEME 151. Phenolic oxidation with \(\text{O}_2/\text{CuCl} \) and \(\text{CuSO}_4/\text{Al}_2\text{O}_3 \)
may generate a reactive species \((\text{ClCu}^{II})_2\text{O}\), which reacts with \(\text{ROH}\) to yield an oxidant \(\text{ClCu}^{II}–\text{OR}\). This compound oxidizes \(763\) to the quinone \(765\), which undergoes nucleophilic attack by \(\text{ROH}\) at the C3-position, followed by further oxidation to yield the quinone \(764\).

\(p\)-Hydroquinones such as 2,3,4,5-tetramethyl-\(p\)-hydroquinone (766) were oxidized efficiently to 1,4-benzoquinones such as 767 (92–98%) under air bubbling with catalytic amounts of supported catalyst \(\text{CuSO}_4/\text{Al}_2\text{O}_3\) (Scheme 151). In the case of 2,6-di(tert-butyl)phenol, 3,3',5,5'-tetra(tert-butyl)-4,4'-diphenooquinone was produced in 94% yield.

In the biosynthesis of benzylisoquinoline alkaloids, a plausible N-oxide intermediate is suggested. Thus, reticuline \(N\)-oxide (768) was treated with \(\text{CuCl}\) in \(\text{MeOH}\) in the absence of dioxygen and then with \(\text{NaHSO}_3\) to afford corytuberine (769) (61%), while the use of excess \(\text{FeSO}_4\) provided coreximine (770) and scoulerine (771) in 42 and 23% yields, respectively (Scheme 152).

In a synthetic study on antibiotics such as BE-10988 (772), 3-methoxycarbonylindole-4,7-quinone (773) was treated with benzhydrylamine and \(\text{Cu(OAc)}_2\) (1 equiv.) in

Scheme 152. Reaction of reticuline N-oxide with CuCl or FeSO₄

In a synthetic study on antibiotics such as BE-10988 (772), 3-methoxycarbonylindole-4,7-quinone (773) was treated with benzhydrylamine and \(\text{Cu(OAc)}_2\) (1 equiv.) in
MeOH–CHCl₃ (10 °C, 40 min) to afford two adducts 774 and 775 in 82 and 10% yields, respectively (Scheme 153)²⁷³.

Silver compounds have been used for oxidation of alcohols to aldehydes and ketones. Phenols, p-hydroquinones and catechols are also oxidized with Ag₂CO₃ or Ag₂O under mild conditions to afford the corresponding p- and o-benzoquinones in almost quantitative yields, respectively. Oxidation of 2,6-dimethylphenol (206) with Ag₂CO₃/Celite in benzene (reflux, 30 min) afforded a 98% yield of 3,3′,5,5′-tetramethyldiphenooquinone (207). Similar oxidation of 2,4,6-trimethylphenol (221) provided the corresponding stilbenequinone (776) in 93% yield. Furthermore, chemical transformation of the quinone 776 to a stilbene 777 was readily carried out and *vice versa* (Scheme 154)²⁷⁴. An excellent review on silver carbonate on Celite oxidations has appeared²⁷⁵. Oxidative phenol-coupling reactions have also been performed using Ag(I)–gelatin complex²⁷⁶.

As already shown in Schemes 126 and 129, oxidation of phenols with manganese compounds provides diaryl ethers, dimers, trimers and polymers. Similarly, oxidation of phenols with Ag₂O also affords diaryl ethers²⁷⁷,²⁷⁸. However, one of the most characteristic points is that phenolic oxidation using Ag₂O provides a synthetic method for quinomethanes. 4- Allyl-2,6-dimethoxyphenol (139) underwent rapid oxidation with Ag₂O in benzene or CHCl₃ (room temp., 6–9 min) to the extended p-quinone methide 778 in quantitative yield (Scheme 155)²⁷⁹. This compound is unstable, but isolatable in a pure state.
SCHEME 154. Oxidative phenol coupling reactions with silver carbonate/Celite

Subsequent acid-catalyzed methoxylation provided two regioisomers 779 and 780 (47 and 39%, respectively). The quinone methide 778 also underwent nucleophilic acetoxylation with AcOH–AcONa followed by LiAlH₄ reduction to afford sinapyl alcohol (781) in 80% overall yield.

Highly reactive quinone methide can be utilized as intermediates in organic synthesis. From the viewpoint of biomimetic synthesis, silybin (782) bearing a benzodioxane skeleton was synthesized in 44.5% yield, together with isosilybin (784) (33.5%), by Ag₂O-mediated oxidation of equimolar amounts of 2R,3R-dihydroquercetin (783) and coniferyl alcohol (298) in benzene–acetone. The p-quinone methide 785 must be generated as a reactive intermediate (Scheme 156)⁶³⁸.

Biomimetic synthesis of model compounds for dibenzodioxocines occurring in wood lignins was carried out, as follows. On oxidation with Ag₂O in CH₂Cl₂ (room temp., 45 h), the reaction of dehydrodipropylguaiacol (786) with coniferyl alcohol (298) provided
two dibenzodioxocine derivatives (787 and 788) in 34 and 19% yields, respectively (Scheme 157)²⁸₁.

2,4-Di(tert-butyl)-6-[(4-methoxyphenyl)methyl]phenol (789) sterilizes female house fly and screw worm fly species, because microsomal oxidation of 789 may produce the corresponding reactive o-quinone methide (790). Thus, the phenol 789 was submitted to Ag₂O-promoted oxidation in MeOH–Me₂NH (reflux, 1 min) to afford an adduct 791 (60%) through the quinone methide intermediate 790 (Scheme 158)²⁸².

SCHEME 155. Oxidation of 4-allyl-2,6-dimethoxyphenol with silver oxide
SCHEME 156. Biomimetic syntheses of silybin and isosilybin
Oxidation of 2-(3′-methyl-2′-butenyl)-4,5-(methylenedioxy)phenol (792) was performed using Ag₂O in CH₂Cl₂ to give the bright red o-quinone methide 793, which on reflux in benzene subsequently underwent intramolecular cyclization leading to 2,2-dimethyl-6,7-(methylenedioxy)-2H-chromene (794) in 80% overall yield (Scheme 158). Carpanone has also been synthesized using Ag₂O as an oxidant instead of PdCl₂ and O₂–Co(II)(salen) complex (see Scheme 54).

E. Oxidation with Thallium, Lead and Bismuth Compounds

Of these three metal compounds, thallium compounds such as Tl(NO₃)₃ and Tl(OOCF₃)₃ have been widely utilized in organic synthesis. Both Tl⁺⁺ and Pb⁺⁺ ions are isoelectronic and the former is a less powerful oxidant than the Pb(IV) ion. Oxidizing reactivities of Tl⁺⁺ salts vary with the anion associated with the metal, the solvent and other factors. On treatment with Tl(NO₃)₃ [TTN], phenols generally undergo two-electron oxidation forming phenoxonium ions which will be attacked by a variety of nucleophiles.
SCHEME 158. Syntheses and reactivities of o-quinomethanes

In contrast, phenolic oxidation with Tl(OCOCF$_3$)$_3$ [TTFA] often provides phenoxy radical cations, which undergo C–C or C–O couplings, leading to a variety of natural products. A series of pioneering works on phenolic oxidation using Tl$^{3+}$ salts was carried out by McKillop and Taylor and they have written excellent reviews on the subject284. A recent review on the applications of Tl$^{3+}$ salts in organic synthesis has also appeared and covered exhaustively the literature published between 1989 and 1998285. Therefore, some typical examples will first be shown in this section and details concerning new synthetic methods of diaryl ethers using TTN in MeOH will be then discussed.

Biomimetic syntheses of benzylisoquinoline alkaloids have been performed by applying oxidative phenol coupling reactions284. Morphinane-type alkaloids were synthesized from reticuline or its derivatives using enzyme and other oxidants such as PhI(OCOCF$_3$)$_2$ and VOF$_3$ (see Schemes 63, 94 and 121). Similarly, TTFA was utilized for morphine alkaloids synthesis286. However, some differences in the coupling mode are observed between TTFA and VOCl$_3$. For example, a diphenolic compound 795 was treated with TTFA in CH$_2$Cl$_2$ to afford a para–ortho coupled product 796 (15%), whereas the use of VOCl$_3$ as an oxidant provided selectively both para–para and ortho–para coupled products 797 and 798 in 54 and 46% yields, respectively (Scheme 159)287. Compound 796 was further converted to cepharamine (799). Other interesting benzylisoquinoline alkaloids have also been synthesized using TTFA284.
SCHEME 159. Oxidative phenol-coupling reactions with TTFA or VOCl$_3$
Similarly, nonphenolic oxidative coupling reactions with TTFA are effective for the synthesis of benzylisoquinoline alkaloids and neolignans. TTFA-promoted oxidation of 3,4,5-trimethoxycinnamic acid (800) was carried out in TF₂Cl₂ containing BF₃·Et₂O at room temperature to afford 2,6-bis(3,4,5-trimethoxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-4,8-dione (801) in 54% yield through the intermediate radical cation which presumably undergoes C–C coupling to the dimer (802) (Scheme 160). 3-(3,4,5-Trimethoxyphenyl)propionic acid (803) underwent rapid TTFA-mediated oxidation in TFA containing a catalytic amount of BF₃·Et₂O to give only the spirocyclohexadienone (804). The reaction mechanism is shown in Scheme 160.

The diaryl ester (805) was also submitted to TTFA-promoted oxidation in TFA to afford a 13-membered ring lactone (806) (65%) through a conjugated lactone intermediate (807), as shown in Scheme 160, where on quenching with MeOH instead of H₂O the corresponding lactone (808) bearing a MeO group was obtained in 53% yield.

SCHEME 160. Nonphenolic oxidative coupling reactions using TTFA
Aerobin (809), homoaerobin (810) and aerophobin-1 (811), metabolites of sponges such as Aplysia fistularis and Veronica thionia, have a unique spiroisoxazoline framework. These metabolites must be biosynthesized in nature from a common phenylpyruvate oxime intermediate.

On treatment with TTFA in TFA (room temp., 4 h), methyl 2-hydroxyimino-3-(3′,5′-dibromo-2′-hydroxy-4′-methoxyphenyl)propionate (812) was converted into the desired spiro compound 813 (27%) together with two compounds (814 and 815) in 21 and 3% yields, respectively (Scheme 161). The compound 813 was converted successfully to the three target molecules.

As compared with TTFA, TTN-mediated oxidation of phenols proceeds by two-electron transfer. On TTN-mediated oxidation in MeOH, 2- and 4-methoxyphenols are converted into quinone monoketals usually in high yields (Scheme 162). As already demonstrated in Schemes 16, 17, 25 and 78–80, these cyclohexa-2,4- and 2,5-dienones have been utilized for natural products synthesis.

Similarly, TTN-mediated oxidation of 4-alkylphenols in MeOH provided 4-alkyl-4-methoxy cyclohexa-2,5-dienones292 (see Scheme 74). Thallium perchlorate [Tl(ClO₄)₃] was also applied to the oxidation of phenols 816 and 817 leading to cyclohexadienones 818 and 819, respectively, each in 80% yield (Scheme 163). However, when 4-alkylphenols such as 27 and 820 were treated with Tl(ClO₄)₃–60% HClO₄ in CH₂Cl₂, they gave 2-alkyl-p-benzoquinones 290 and 821 in 70 and 66% yields, respectively (Scheme 163).

Both TTNA and TTA [Tl(OAc)₃] have been known to act as electrophiles toward olefinic double bonds, enolizable ketones and nitrogen-containing compounds to afford a variety of natural products or their synthons283. As already shown in Scheme 162, TTN was applied to phenolic oxidation by Yamamura and Nishiyama31,32. In particular, this method which consists of TTN oxidation in MeOH followed by Zn reduction in AcOH is effective for the construction of macrocyclic diaryl ethers from the corresponding open-ring precursors, which are required to possess two o,o′-dihalophenol moieties.

The first successful application of this method was used for the synthesis of bastadin-6 (822) having an inhibitory activity against inosine 5′-phosphate dehydrogenase. The appropriately protected substrate 823, prepared from two tyramines and brominated phenylpyruvate oximes, was submitted to the TTN-mediated oxidation in MeOH to afford macrocyclic dienones 824 and 825, in 20 and 11% yields, respectively (Scheme 164). Interestingly, the natural cyclization mode product 824 is preferred to its antipode 825 even in the 28-membered macrocyclic compounds. TTN-promoted oxidation of the benzyl ether (826) also provided the corresponding two dienones 827 and 828. They were further submitted to zinc reduction, followed by hydrolysis with Pd-black to give bastadin-6 (822) and its antipode 829, respectively. In contrast, anodic oxidation of 823 in MeOH yielded acyclic cyclohexadienone 830 (10%) as the only isolatable product. Presumably, the TTN-mediated oxidation initially generates the bisphenoxide intermediate (A) which enables an intramolecular cyclization by bringing the two phenols to juxtaposition (Scheme 165). In the case of anodic oxidation, two phenols are oxidized independently to the corresponding dienones. Additionally, highly strained cyclization, as in the case of piperazinomycin (831)297, can take place by passing through the intermediate B bearing an sp³ carbon.

Isodityrosine natural products, such as piperazinomycin (831), OF 4949-I (832), K-13 (833), deoxybouvardin (834) and vancomycin (835), are known to possess interesting biological activities such as antifungus, enzyme-inhibitory, antitumor, antimicrobial and other activities (Chart 3). Structurally, the direction of the diaryl linkage shared by all of these natural products is classified into two types represented by 832 and 833, respectively.

In order to obtain the desired macrocyclic diaryl ethers, the effect of halogen substituents is utilized to control the directions of intramolecular cyclization reactions mediated by TTN. As shown in Scheme 166, on TTN-mediated oxidation of a compound
SCHEME 161. Syntheses of aerothionin, homoerothionin and aerophobin-1
 bearing different halogen couples, the ether linkage is introduced at a halogen atom of weaker electronegativity. For example, TTN-mediated oxidation of compound C bearing Cl and I atoms affords macrocyclic diaryl ether D with two chlorine and one iodine atoms (Scheme 166).

The tripeptide 836, prepared easily from L-tyrosine, was treated with TTN (3 equiv.) in MeOH (0°C, then room temp., overnight) to give the corresponding cyclization product 837 (25%). This was further converted to OF 4949-I (832) (Scheme 167).
Based on the same protocol as above, piperazinomycin (831)297, K-13 (833)299 and deoxybouvardin (834)300 were synthesized successfully starting from L-tyrosine. Similarly, an excellent synthesis of dichlorovancomycin aglycone (838) was accomplished by Evans and coworkers301 who used TTN·3H\textsubscript{2}O in MeOH–CH\textsubscript{2}Cl\textsubscript{2} as an oxidation system and CrCl\textsubscript{2} as a reducing agent.

Vancomycin (835), one of the representative glycopeptide antibiotics, isolated from Streptomyces orientalis, is quite attractive from the viewpoints of physiological activity, molecular recognition and natural products synthesis. Recently, total synthesis of vancomycin was accomplished by two groups302,303. This antibiotic which is effective for methicillin-resistant Staphylococcus aureus (MRSA) is known to inhibit the biosynthesis of bacterial cell wall by high affinity (five hydrogen bondings) to the terminal D-Ala-D-Ala residue of the peptide glycan precursor (Chart 4). Recently, however, serious problems occurred with MRSA, because of the emergence of vancomycin-resistant strains (Enterococcus faecium and E. faecalis). These strains acquire the resistance by possessing the terminal D-Ala-D-lactate instead of D-Ala-D-Ala. Therefore, the finding of synthetic compounds that are able to bind with high affinity to D-Ala-D-Lactate will provide a powerful strategy for overcoming vancomycin-resistance.

Thus, Ellman and coworkers adopted the TTN-mediated oxidative cyclization strategy to synthesize the macrocyclic diaryl ether as a key compound304, because of the simple procedures and the ready availability of the amino acid starting materials as compared with other synthetic strategies305. The easily available tripeptide 839 was subjected to TTN-mediated oxidation, followed by zinc reduction under similar conditions as reported by Yamamura and coworkers306 to give a 45–60% overall yield of the desired diaryl ether 840, from which a number of receptors such as 841 were synthesized (Scheme 168). The oligopeptide 841 exhibited binding to tripeptide N-Ac\textsubscript{2}-L-Lys-D-Ala-D-Ala that is...
SCHEME 164. Synthesis of bastadin-6 using TTN-mediated oxidation as a key step.
SCHEME 165. Reaction mechanism of TTN-mediated oxidation of \(o,o' \)-dibromophenols
17. Oxidation of phenols

CHART 3. Selected isodityrosine natural products

SCHEME 166. Effect of halogen substituents on the directions of intramolecular cyclization
SCHEME 167. Synthesis of OF 4949-I (832)
SCHEME 168. Synthesis of receptors binding to N-Ac₂-L-Lys-D-Ala-D-Lactate
only 6-fold weaker than that of vancomycin. More significantly, 841 showed significantly increased binding to N-Ac2-L-Lys-D-Ala-D-Lactate when compared to vancomycin.

In the light of the molecular interaction of vancomycin with the cell wall models (see Chart 4), secoaglucovancomycin (842) was synthesized based on TTN-mediated oxidation protocol. The tetrapeptide (843), prepared from 3,5-dimethoxyphenylglycine, was treated with TTN (2 equiv.) in THF–MeOH containing CH(OMe)3 to afford the corresponding cyclic diaryl ether 844 (40%) (Scheme 169), wherein after TTN-promoted oxidation the zinc reduction procedure was not needed. Compound 844 was further converted to a heptapeptide 845, which was subjected to TTN-promoted oxidation, followed by Zn reduction to give the bicyclic compound 846 (40%). Further deprotection provided the target molecule 842, which was employed for binding experiments with N-Ac-D-Ala-D-Ala

CHART 4. The binding sites and complexation with cell wall models
as well as with N-Ac-D-Ala-D-Lactate together with MM/MD calculations, indicating that the interaction of \textbf{842} with the cell wall models is achieved at the back side of the molecule with five hydrogen bonds (Chart 4)310.

Lead tetraacetate, Pb(OAc)\textsubscript{4}, is well known to be effective for phenolic oxidation. From the viewpoint of organic synthesis, it is noted that Wessely oxidation of \textit{ortho}-substituted phenols with Pb(OAc)\textsubscript{4} provides a useful method for the synthesis of cyclohexadienones, as shown in Scheme 170311,312. Herein, heterolytic cleavage of the initially formed O–Pb bond followed by nucleophilic attack by RCOOH results in the preferential formation of 2-acyloxy-cyclohexa-2,4-dienones over 4-acyloxy-cyclohexa-2,5-dienones.
SCHEME 170. Phenolic oxidation with lead tetraacetate
The use of α,β-unsaturated carboxylic acids as a nucleophile provides the corresponding 2-(α,β-unsaturated acyloxy)cyclohexa-2,4-dienones, which on heating undergo an intramolecular Diels–Alder reaction to afford the bicyclo[2.2.2]octenones. 2,6-Dimethylphenol (206) was oxidized with Pb(OAc)$_4$ in the presence of unsaturated acids and then heated in boiling benzene to afford the corresponding bicyclo[2.2.2]octenones in ca 40% overall yields, respectively (Scheme 171). The best yield was obtained with a 4:1 molar ratio of the unsaturated acid and Pb(OAc)$_4$. Further treatment of the latter with aq. NaOH provided the lactonic acid.

Wessely oxidation of phenols has been applied successfully to natural product synthesis. Some examples are shown in Scheme 172.

Aeroplysinin-1 (852), a metabolite of marine organisms, shows antibiotic activity against Staphylococcus aureus and antileukemia activity against L-1210. This metabolite was synthesized by Pb(OAc)$_4$-mediated phenolic oxidation as a key step. Here, 3,5-dibromo-2-hydroxy-4-methoxyphenylacetonitrile (853) was oxidized with excess of Pb(OAc)$_4$ in AcOH to give in 35% yield the desired cyclohexa-2,4-dienone, which was converted to the target molecule in 2 steps.

Aspersitin (855) is a fungal metabolite of Aspergillus parasiticus NRRL 3260. This metabolite was synthesized successfully by Büchi and coworkers. The key compound (856), prepared from dimethylphloroglucinol in 5 steps, was treated with Pb(OAc)$_4$ in AcOH to afford the corresponding o-quinol acetate in 93% yield. Further treatment of with NH$_4$OH–MeOH provided two 1:1 diastereomers of 855.

The oxidation of tetrahydroisoquinolines 858 and 859 was carried out using Pb(OAc)$_4$ in CH$_2$Cl$_2$ (room temp., 0.5 h) to afford quantitatively the corresponding cyclohexa-2,4-dienones 860 and 861, respectively (Scheme 173). The former was further treated with
SCHEME 172. Syntheses of aeropylinin-1 and aspersitin
SCHEME 173. Oxidation of tetrahydroisoquinolines with Pb(OAc)$_4$
TFA in CH₂Cl₂ to give mainly N-formylwilsonirine (862) (60%)316. On treatment with AcOH at 20–30 °C the dienone 861 was converted into another regioisomer 863 (74%)317.

Bismuth belongs to the 5B group in the Periodic Table. Bismuth(V) and (III) salts and organobismuth reagents are employed as useful oxidants in organic synthesis318. In particular, the bismuth(V) in the form of NaBiO₃ is analogous to Pb(OAc)₄ in chemical properties, although the oxidizing power of NaBiO₃ is relatively weak. NaBiO₃ is also effective for phenolic oxidation. Phenols undergo two-electron oxidation with NaBiO₃ in AcOH resulting in the formation of quinol acetates. Some typical examples are shown herein.

2,6-Dimethylphenol (206) was treated with NaBiO₃ in benzene to afford polyphenylene oxide (659) and 3,3′,5,5′-tetramethyldiphenoquinone (207) in 74 and 12% yields, respectively319. This result is similar to that of MnO₂ oxidation (see Scheme 126). In contrast, the use of AcOH instead of benzene as a solvent provided the corresponding quinol acetate 864 and 207 in 38 and 15% yields, respectively (Scheme 174)320. Oxidation of 2,4,6-tri(tert-butyl)phenol (73) with NaBiO₃ in AcOH afforded the p-quinol acetate (865) as a major product (62%) and the o-quinol acetate (866) as a minor product (22%). In contrast, Pb(OAc)₄ oxidation of 73 in AcOH provided 866 as a main product (60%)321 (see Scheme 170). Oxidation of alkoxyphe- nols and other phenols has also been studied318,322.

Organobismuth salts such as Ph₃BiCl₂, Ph₃BiCO₃ and Ph₄BiOTs are also utilized for phenolic oxidation. The reactivity of these oxidants towards hindered phenols under basic conditions was examined by Barton and coworkers (Scheme 175)323. 2,6-Di(tert-butyl)phenol (23) was treated with Ph₃BiCl₂ in the presence of N-(tert-butyl)-N′,N′′-tetramethylguanidine (BTMG) in THF to afford 3,3′,5,5′-tetra(tert-butyl) diphenoquinone (24) (37%), while the use of Ph₃BiOTs provided a 38% yield of 4-phenyl-2,6-di(tert-butyl)phenol (867) through a plausible bismuth intermediate 868. In both cases, no reaction took place in the absence of BTMG.

When oxidized with Ph₃BiCl₂–BTMG in MeOH–THF, 2,6-di(tert-butyl)-4-methylphenol (69) was converted into 2,6-di(tert-butyl)-4-methoxymethylphenol (869) (45%). In the case of Ph₄BiOTs, phenylation also took place at the p- and o-positions to give two compounds 870 and 871 in 22 and 20% yields, respectively.

F. Oxidation with Other Metal Compounds

Selenium is a member of the 6B group in the Periodic Table. Selenium reagents as an oxidant were initially shown by Barton and coworkers324 to be effective for phenolic oxidation325,326.

Generally, oxidation of phenols with benzeneselenenic anhydride, (PhSeO)₂O, provides selectively o-benzoquinones, while benzeneselenenic acid (PhSeOOH) can effect phenolic oxidation to afford selectively the corresponding p-benzoquinones326. In the first case, the oxidant is a moisture-sensitive compound, so that the resulting PhSeOOH can influence the regioselectivity of the oxidation. Barton and coworkers carried out oxidations of 3,5-di(tert-butyl)phenol (872) with both selenium reagents in a variety of solvents to afford both o- and p-benzoquinones (220 and 74) in a different ratio; THF and benzene are the best solvents for ortho-oxidation with (PhSeO)₂O (220: 73 and 82%, respectively; 74: 8 and 13%, respectively) and CH₂Cl₂ is the best solvent for para-oxidation with PhSeOOH (220 and 74: 6 and 77%, respectively) (Scheme 176). Oxidation of thymol (548) with (PhSeO)₂O provided selectively tynmoquinone (549) and the regioisomer
SCHEME 174. Oxidation of phenols with sodium bismuthate
SCHEME 175. Oxidation of hindered phenols with organobismuth salts

(550) was mainly produced by using PhSeOOH. On oxidation of 2,6-di(tert-butyl)phenol (23) with (PhSeO)2O in THF, both 2,6-di(tert-butyl)-p-benzoquinone (74) and 3,3′,5,5′-tetra(tert-butyl)diphenoquinone (24) were obtained in 11 and 76% yields, respectively. Herein, the radical mechanism of this reaction was supported by ESR experiments. Oxidations of 2,4,6-trimethylphenol and related compounds with (PhSeO)2O have also been studied325,326.
SCHEME 176. Oxidation of phenols with benzeneseleninic anhydride and benzeneseleninic acid

In Scheme 176, the ortho-selectivity with (PhSeO)\textsubscript{2}O is mainly due to the initial formation of aryl benzeneselenates followed by [2,3] sigmatropic rearrangement leading to the corresponding 6-phenylselenoxycyclohexa-2,4-dienones. On oxidation with PhSeOOH, a direct para-substitution reaction may take place326. In the case of phenol itself, however, another possible mechanism was suggested by Henriksen327. Oxidation of phenol with PhSeOOH in CH\textsubscript{2}Cl\textsubscript{2} at 24 °C afforded, beside diphenyl diselenide, \(p \)-benzoquinone (17), 2-(phenylseleno)-\(p \)-benzoquinone (873) and 2,6-bis(phenylseleno)-\(p \)-benzoquinone (874) in the approximate molar ratio 3:4:3 (Scheme 176). The initial addition of diphenyl diselenide to the reaction mixture changed this ratio to 2:5:4 in favor of selenylated products (873 and 874). Based on these results together with solvent effects that indicate the participation of an acidic hydrogen atom, ene-reactions may play an important role in both ortho-selenylation and para-oxidation sequence (Scheme 177).

Cerium is a member of the lanthanides in the Periodic Table and adopts tetra- and tri-positive states in its electronic configuration. Among cerium reagents, ceric ammonium nitrate (CAN) is most widely used in organic synthesis. It is well known to convert phenol derivatives to quinones in high yields under mild conditions. An excellent review on cerium(IV) oxidation of organic compounds is available328, and only a few examples will be described herein.

Oxidation of dihydrobenzofuran 875 with CAN in aq. MeCN afforded the corresponding \(p \)-benzoquinone 876 in 60% yield (Scheme 178)329. Similarly, other substituted \(p \)-methoxyphenols were converted into the corresponding \(p \)-benzoquinones in high yields328. However, aryl ethers rather than phenols are generally used as the substrates due to the lower reactivity and the easier handling.
SCHEME 177. Oxidation of phenol with benzene seleninic anhydride in methylene chloride

\[\text{PhSeOOH} \rightarrow \text{PhSeSePh} \]

\[\text{PhSeOH} + \text{(PhSe)}_2\text{O} \rightarrow \text{PhSeOOH} + \text{PhSeSePh} \]
Treatment of a 2,5-disubstituted 1,4-dimethoxybenzene 877 with CAN provided a 97% yield of \(p \)-benzoquinone 878. The fully substituted 1,4-dimethoxybenzene derivative 879 was treated with CAN to afford in 64% yield the quinone monoketal 880. This was submitted to catalytic hydrogenation to give the precursor of \(\alpha \)-tocopherol 881 (Scheme 178). A variety of substituted 1,4-dimethoxybenzenes were also oxidized with CAN to give high yields of \(p \)-benzoquinones.
SCHEME 179. Syntheses of isobatzelline C and makaluvamine E

Z = benzyloxycarbonyl
Oxidation of 1-amino-4-methoxybenzenes with CAN is expected to afford \(p \)-iminoquinones. Thus, batzellines, makaluvamines and discorhabdins, isolated from marine organisms, possess a pyrroloiminoquinone moiety and can be synthesized by CAN-mediated oxidation of the corresponding 4-amino-7-methoxyindole derivative.

The indole derivative 882, derived from 3-benzyloxy carbonylamino-4,5-dimethoxybenzaldehyde (883), was treated with CAN in 70% aq. acetone to afford the desired iminoquinone 884 in 64% yield. Finally, amination of 884 with \(\text{NH}_4\text{Cl} \) provided isobatzelline C (885) (Scheme 179)\(^{57} \). Similarly, the indole lactam 886 was reduced with \(\text{BH}_3\cdot\text{SMe}_2 \) followed by CAN-mediated oxidation in aq. MeCN to give iminoquinone 887 in 60% overall yield. The key compound 887 was further converted to makaluvamines represented by makaluvamine E (888) (Scheme 179)\(^{332} \).

In this chapter, reagents are classified mainly into three categories: (1) for catalytic oxidation of phenols, (2) for phenolic oxidation with nonmetallic compounds and (3) for phenolic oxidation with metallic compounds. In the 21st century, regardless of metallic or nonmetallic compounds, catalytic oxidation systems with high efficiency must be constructed. If stoichiometric amounts of reagents are employed, efficient oxidation–reduction systems should be invented.

This chapter does not cover all of the literature on phenolic oxidation, but typical examples have been taken up based on the systematization of phenolic oxidation. In addition, phenolic oxidation methodology has been shown to be quite useful for syntheses of natural products and related compounds with a complex structure.

V. REFERENCES

17. Oxidation of phenols 1339

17. Oxidation of phenols

17. Oxidation of phenols

17. Oxidation of phenols

CHAPTER 18

Environmental effects
of substituted phenols

VICTOR GLEZER

National Public Health Laboratory, Ministry of Health, 69 Ben Zvi Rd., Tel Aviv, Israel
Fax: 972-3-6826996; e-mail: victor.glezer@phlta.health.gov.il

I. INTRODUCTION
Phenols are highly important, well-known and widely used compounds in different fields of the chemical industry. This group of compounds found its application in the manufacture of plastics and plasticizers, explosives, drugs, colors and detergents\(^1\),\(^2\). Different substituted phenols are included among herbicides, insecticides, algacides, bactericides, molluscicides, fungicides etc.\(^3\). Many pharmaceuticals contain phenol fragments displaying different kinds of biological activity\(^4\). They are also widely used in the petrochemical industry and as wood preservative agents\(^5\)–\(^8\).

II. PRODUCTION AND USE

III. ANALYSIS OF PHENOLS, THEIR CONCENTRATION AND SPECIATION IN THE NATURAL ENVIRONMENT

IV. TOXICITY AND HEALTH EFFECTS

V. DETOXIFICATION AND DEGRADATION

VI. REFERENCES

1. The Chemistry of Phenols. Edited by Z. Rappoport

1347
Widespread use of phenols, often in large-scale production, leads to their unavoidable appearance in the environment. Large amounts of phenols are generated from lignin degradation in paper production9. Nitrophenols are formed photochemically in the atmosphere from vehicle exhausts10. Phenols can also be formed by degradation of organophosphorous insecticides and chlorophenoxyacetic acids11. High solubility of phenols in water12 explains their easy migration within different aqueous environments and contamination of groundwater13. Their toxicity and unpleasant organoleptic properties (a concentration of a few μg l$^{-1}$ affects the taste and odor of water and fish) was the reason to classify 11 phenols as ‘priority pollutants’ by the US Environmental Protection Agency (EPA)14,15. The European Union (EU) has also classified several phenols as priority contaminants with a maximum concentration of 0.5 μg l$^{-1}$ of total phenols in drinking water, demanding that each individual concentration be under 0.1 μg l$^{-1}$16,17. Appearance of phenols in surface water or groundwater leads to formation of more toxic chlorinated phenols during water disinfection processes. One chlorinated phenol representative, i.e. pentachlorophenol, has been used throughout the world as a wood preservative and general biocide18. Its residue is widespread in the environment. In an EPA study pentachlorophenol was found in 80% (!) of human urine specimens18. Even though pentachlorophenol is included in the EPA priority pollutant list15, its pyrolysis and combustion reaction products, i.e. polychlorodibenzo-furans and polychlorodibenzodioxins, are considerably more toxic19. One of the major surfactant groups is alkyl phenol ethoxylates. The surfactants themselves show very low toxicity, but their degradation products, nonyl- and octylphenols, adsorb readily onto suspended soils and are known to exhibit estrogen-like properties, possibly linked to carcinogenic effects and to a decrease in males’ sperm count20. The wide-ranging use of phenols, combined with their toxicity and unavoidable discharge of considerable amounts into the environment, has promoted extensive research on phenolic compounds and their fate in the environment.

II. PRODUCTION AND USE

In the US, phenols are ranked in the top 50 major chemicals. In 1995 the total annual production of phenols was estimated at 4–5 billion pounds21–23. In Japan the production of phenols in the late nineties was estimated approximately on the same level—1,200,000 tons per year24. In 1995, 95% of US phenol production was based on oxidation of cumene, the exception being one company that used toluene oxidation and some companies that distilled phenol from petroleum23. Two major uses of phenols in 1995 were the production of Bisphenol-A [4,4′-isopropylidenediphenol] (35%) and the production of phenolic resins (34%). Other uses include production of caprolactam (15%), aniline, (5%), alklyphenols (5%), xylenols (5%) and other miscellaneous compounds (1%)25. Bisphenol A is one of the raw materials widely used in the production of epoxy resins26. Being inert, strong and adhesive with high insulator properties these polymers found their application in construction, coatings and bonding. In addition, Bisphenol A is used for production of polycarbonate plastics, found in such products as baby food bottles, food cans, dental sealants, food packing and coatings. In the US alone, 1.65 billion pounds of this polymeric compound are produced each year25, and in Japan its production is estimated nowadays at over 200,000 tons per year27. Another group of very widely used compounds is phenols with long aliphatic chains R like octyl or nonyl as shown below. These compounds are important intermediates in the production of polyethoxylate surfactants, which are compounds consisting of alkyl chains attached to a phenol ring and combined with a variable number of ethylene oxides. In 1994 their production in EC countries reached 110,000 tons28, mainly for industrial, agricultural and household uses29,30. Moreover, the annual production in all developed countries has been estimated at 0.35 Mton11.
These compounds yield by their biodegradation the more toxic 4-nonylphenol32–34. Owing to their poor ultimate biodegradability and the possible environmental hazard of their metabolites, alkylphenol ethoxylates have been replaced in household applications, mainly by alcohol ethoxylates. However, for industrial applications, this replacement has not been carried out yet due to the excellent performance of alkylphenol ethoxylates and their low production costs35.

![Bisphenol A](image)

Formula of polyethoxylate surfactants, \(R = \text{octyl or nonyl} \)

3-\textit{tert}-Butyl-4-methoxyphenol, 2,6-bis(1,1-dimethyl)-4-methylphenol and some other sterically hindered phenols with methyl and \textit{tert}-butyl substituents are generally used as antioxidants in the food industry, primarily in foods with fats, planned for long storage periods, like pastries, cakes, biscuits, frozen meat, frozen fruits, potato chips etc. Alkylphenol compositions are also used in the manufacture of food packing materials such as waxed paper, paperboard and polyethylene. Members of this group of alkylphenols have synergistic effects on antioxidant activity, and influence each other’s behavior when more than one is used in the same system36. 2,6-Bis(1,1-dimethyl)-4-methylphenol is widely used as an additive in lubricants, turbine and insulating oils, natural and synthetic rubbers, paints, plastics and elastomers. It protects these materials from oxidation by atmospheric oxygen during service and storage conditions36.

Phenol fragments are an integral part of drugs like analgetic, antipyretic (for example, acetaminophen, better known as paracetamol) and anti-inflammatory (Rowasa, Salsalate) agents, bronchodilators (Albuterol), semisynthetic antibiotics (Amoxyl) and for treatment of Parkinson’s disease (levodopa, carbidopa)4.

Besides alkyl-substituted phenols, other very widely used phenol derivatives are halogenated phenols. Chlorinated phenols, the most common in this group, are manufactured by chlorination of phenol. Likewise, the higher chlorinated phenols are produced by chlorination of less chlorinated phenols at high temperature37. Nineteen different chlorinated phenols are commercially available. Both \(o- \) and \(p- \) dichlorophenols are used as intermediates in dyestuffs, as preservatives and in the manufacture of disinfectants. The monochlorophenols have been used as antiseptics38, although in this role they have mostly been replaced by other chemicals37. 4-Chlorophenol has been used as a disinfectant for homes, hospitals and farms37 and as an antiseptic for root canal treatment39. 2,4-Dichlorophenol has been used for mothproofing and as a miticide, while the higher phenols have been used as germicides, algaeicides and fungicides37. 2,4-Dichlorophenol and 2,4,5-trichlorophenol are also used in the large-scale industrial synthesis of the herbicides 2,4-D
FIGURE 1. Examples of pesticides derived from phenols

and 2,4,5-T (Silvex), respectively. The BASF Corp. in Texas is the largest manufacturer of chlorophenols in the USA with 100,000–900,000 pounds on site. At the top of the list of large-scale produced chlorophenols is pentachlorophenol, used for the preservation of timber against fungal rots and wood-boring insects, and as a general herbicide or general disinfectant, e.g. for trays in mushroom houses. One of the main formulations of pentachlorophenol is creosote oil, which also includes polycyclic hydrocarbons.
Environmental effects of substituted phenols

In the US alone, the production of this oil has reached 800 million liters per year. Manufactured pentachlorophenol also contains 4% of tetrachlorophenol and 0.1% of trichlorophenol. 2,4,6-Trichlorophenol and tetrachlorophenols have also been used directly as wood preservatives. North America and Scandinavia are the main regions of the world where chlorinated phenols have been used as wood preservatives. However, the use of these compounds has been banned in Sweden since 1978, and production was banned in Finland in 1984. Some examples of different types of pesticides, based on phenol structure, are presented in Figure 1. These pesticides include mainly dihalophenols, dinitrophenols and diphenol derivatives. DNOC (2-methyl-4,6-dinitrophenol) is used as a herbicide, insecticide, ascaricide and fungicide, dichlorophen is used as an algaecide, bactericide and fungicide, pentachlorophenol is used as an insecticide, fungicide and herbicide, 2-phenylphenol is used as a fungicide and other phenols as herbicides.

Tetrabromobisphenol A, a brominated analog of Bisphenol A, is an important non-flammable additive in the production of synthetic resins, polycarbonates and plastics, used in the manufacture of computer and electronic housings, laminated electronic circuit boards, carpets, upholstery and many other consumer goods. Tetrabromobisphenol A is used as a flame retardant to a much larger extent than its chlorinated analog tetrachlorobisphenol A.

3-Fluoromethyl-4-nitrophenol can be used as an example of a large-scale local distribution of phenols. From 1958 this compound was employed to control the sea lamprey (Petromyzon marinus) in four of the North American Great Lakes (Superior, Michigan, Huron and Ontario) by using approximately 50,000 kg per year, such that by 1988 more than 1 million kg had been applied. This compound has also been introduced in order to control tadpole infestations in warm water ornamental fishponds.

A large amount of phenols is released in wastewater and can be lost to waste streams. A rapid increase in the distribution and abundance of plastic debris in the ocean around the world was reported, and the adverse influence of plastic’s phenol residues has been of great interest. Polluted water disinfection, enzymatic oxidation of chlorinated phenols, decomposition of alkylphenol polyethoxylates and combustion of phenols can lead to the formation of highly toxic compounds. High adsorption of phenols on sludge and sediments requires that their distribution in these systems also be followed. All of these facts have promoted extensive research on phenolic compounds and their fate in the environment.

III. ANALYSIS OF PHENOLS, THEIR CONCENTRATION AND SPECIATION IN THE NATURAL ENVIRONMENT

A. Introduction

Wastewaters from plastic and polymer production, fossil fuel refining, pharmaceutical and pesticide factories are the main sources of phenol pollution. Phenols discharged into municipal sewers or rivers can be transported over great distances because of their stability and water solubility. Nonchlorinated phenols are found in aquatic environments as biodegradation products of humic substances, lignins and tannins, or as derivatives of plastics, dye industries and pulp processing. Phenolic resins are utilized as binding materials in semiconductor industry products such as chipboards, paints and insulating materials. Phenolic compounds react rapidly with hypochloric acid by electrophilic attack on phenoxide anions forming the corresponding chlorophenols. Chlorophenols can be generated from phenols by chlorination of drinking water, or formed from different industrial activities (chemicals, conservation agents etc.) or degradation of other pollutants like pesticides etc. Being toxic and only partly biodegradable, phenols nevertheless were found in water.
baby food bottles and plastic wastes and living organisms like fishes, humans etc. Therefore, the detection, identification and quantitation of phenol compounds in water and their subsequent monitoring is of great importance for the control and protection of the environment and for emission control.

B. Solubility and \(pK_a \)

Distribution of hazardous materials depends not only on the amount produced and its leakage to the environment, but also on its solubility in water. High concentrations of phenols in water are possible only in the case of highly soluble derivatives. The solubility of phenols depends mainly on the amount and nature of their substituents. For example, the solubility of unsubstituted phenol in water is 77.9 g l\(^{-1}\), 2,4-dichlorophenol solubility is 9.7 g l\(^{-1}\), that of 2,4,6-trichlorophenol is 0.8 g l\(^{-1}\) and pentachlorophenol solubility is 14 mg l\(^{-1}\). However, these data are presented for molecular (acidic or unionized) forms of phenolic pollutants and are dramatically different in the case of the ionized form.

Solubility is also a function of the \(pK_a \). The \(pK_a \) values are: phenol 9.98, 2,4,6-trichlorophenol 6.15, tetrachlorophenol 5.16 and pentachlorophenol 4.75. As a rule, the solubility of the anionic form is much higher than that of the molecular form. For example, the solubility of the herbicide Ioxynil (\(pK_a = 3.96 \)) in water is 50 mg l\(^{-1}\) and that of its potassium salt solubility in water is 107 g l\(^{-1}\). The \(pK_a \) value of pentachlorophenol is 4.75, and its solubility in water is 14 mg l\(^{-1}\), whereas the solubility of the commercially produced sodium pentachlorophenoxide is 330 g l\(^{-1}\). This shows that pentachlorophenol is very soluble in nonacidic wastewater, and its leakage from factories can be very dangerous for the environment.

C. Analysis — Sample Preparation and Methods of Determination

One of the phenol determination methods described in ‘Standard Methods’, the so-called phenol index number, includes all, water stream distillable, phenolic compounds, which are detected photometrically after derivatization with 4-aminoantipyrine and extraction with chloroform. Here, only the total amount of phenols is measured. It is impossible to distinguish between individual phenols or to estimate the probable toxicity of the analyzed water sample. This method is important only for preliminary information about possible phenol pollution and to determine if further tests are necessary.

GC and LC provide a unique tool for the analysis of complicated aquatic environments, which contain many different classes of organic compounds. The main problems encountered during analysis are (1) separation of complicated and, as a rule, undesirable matrix components of the investigated samples, (2) achievement of low detection limits and (3) identification of unknown pollutants. The first two goals can be achieved by proper sample preparation, including concentration of phenols from large volumes of water samples to small volumes of organic solvents or water-organic mixtures, followed by matrix removal, elution of retained phenols with a minimum amount of organic solvents, maximizing the compatibility of the solvent with the analytical system and selectivity in the concentration and elution steps. The analytical method, which can provide the last goal, identification of the unknown pollutants, is MS or MS/MS, coupled with a suitable separation technique. For routine analysis, other detectors like ECD and FID in GC or UV in HPLC are widely used. Although high performance liquid chromatography methods are frequently used for the analysis of phenols, gas chromatography is often
preferred. However, liquid chromatography is necessary in some cases, such as for humic substances occurring in environmental samples, to overcome the matrix influence.

Generally, preconcentration of pollutants from water samples and sample preparation steps are accomplished by extraction techniques based on enrichment of liquid phase (liquid/liquid extraction) or solid phase (solid/liquid extraction). Historically, liquid/liquid extraction (LLE) was used exclusively to enrich phenols from water samples. LLE is still used as a preconcentration step. However, there is an increasing tendency to replace LLE by solid phase extraction (SPE) and solid phase microextraction (SPME). Among the reasons for replacing LLE are foam formation, the large volume of organic solvents needed, the length of the analysis time and difficulties in the automation of LLE procedures. On the other hand, SPE requires incomparably smaller amounts of solvents (SPME requires no solvent at all) and can be easily automated. Finally, SPE and SPME are cheaper in comparison with LLE.

Recently, the extraction of phenols has been performed by SPE using adsorbing materials, mainly of reverse phase, anion exchange and graphitized carbon black (GCB). GCB, known also as Carbopack B or Carbograph 1, was used in the selective extraction of substituted phenols from water. The recovery depends on the pK_a of the phenols. Basic phenols with $pK_a > 8.0$ can be eluted with an organic solution containing methanol; more acidic phenols with $pK_a = 7$ can be eluted with a $\text{CH}_2\text{Cl}_2-\text{CH}_3\text{OH}$ mixture (90:10, v/v) containing tetramethylammonium hydroxide. On the other hand, the extraction and recovery of phenols have been found to be independent of the amount of inorganic ions ($I = 0.6 \text{M}$). It is not an easy task to achieve these requirements due to the different behavior of phenols in terms of acidity and polarity. The variability of pK_a values makes a selective isolation, even in the case of 11 phenols from the EPA priority pollutant list with quantitative recoveries, an elusive goal. Some recent reviews of the sample preparation of phenols discuss the application of different sorbents (silica, polymeric, functionalized, carbon based and mixed sorbents), coatings and experimental configurations for SPME to the preconcentration and separation of phenols.

The high polarity of phenols can limit the application of GC to phenol analysis, tending to give broad, tailed peaks and decreasing the lifetime of the chromatographic column. It can be avoided relatively easily using phenol derivatization before or after SPE. Phenol acetylation with acetic anhydride in the presence of carbonate or hydrogen carbonate is one of the most studied and used derivatization methods. This reaction can be performed in aqueous samples before SPE with high efficiency. The acetates obtained are more easily extractable than nonderivatized phenols. Another way to decrease the polarity of phenolic compounds is the formation of ion pairs between phenolate anions and quaternary ammonium salts. Water samples are adjusted to pH 9 and $(C_4H_9)_4NBr$ is added to the sample. Elution is performed with methanol doped with 1% acetic acid to break the ion pairs. The final extract is compatible with HPLC and GC separation techniques. Both derivatization procedures are applied in water solution before extraction.

Another method is extraction with methylene chloride followed by derivatization with pentafluorobenzyl bromide or diazomethane and subsequent GC/ECD or GC/FID analysis. The extraction solvent has to be changed before analysis. More than 50 substituted phenols have been derivatized successfully with N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide by forming the corresponding t-butyldimethylsilyl derivatives. This study includes 21 chlorinated phenols, 13 nitrophenols, 3 aminophenols, 4 alklyphenols, o-phenylphenol, some other substituted phenols including 6 phenolic pesticides and the nonsubstituted phenol. Using SPE with polymeric adsorbents and GC/MS, phenols with very different substituents can be detected in environmental samples with high matrix content at the ppt level.
The American Water Work Association (AWWA) and US EPA developed a number of methods for phenol determination. EPA Method 528 is dedicated to the determination of phenols in drinking water by solid-phase extraction and GC/MS analysis and is developed for 12 phenols, mainly chlorophenols, nitro- and methyl-substituted phenols. Unfortunately, users have to take into account that the recommended internal standard tetrachlorophenol can also be found in water samples and has to be used with precaution or, better, substituted with another compound. The same problem applies in the case of the recommended surrogate 2,4,6-tribromophenol, which cannot be used in the analysis of water in areas with high bromine ion content. (Some examples of tribromophenol formation by humic or fulvic acid chlorination was mentioned by Richardson.)

Practically the same list of phenols can be determined by analysis of municipal and industrial wastewater detailed in EPA Method 604 (GC/FID or GC/ECD) and 625 (GC/MS). Method 8041 for determination of phenols in wastewater, presented by the EPA Office of Waste Water, describes the determination of ca 40 phenols specifying extraction and cleanup conditions, derivatization with diazomethane or pentafluorobenzyl bromide and analytical determination by GC/FID, GC/ECD or GC/MS.

Matrix effects also play an important role in phenol analysis. Surface and river water, containing fulvic and humic acids at a few mg l\(^{-1}\), give brown extracts after concentration over C18 and polymeric sorbents. In HPLC with UV or electrochemical detector, these extracts give huge peaks at the beginning of the chromatogram that hamper quantitation of less retained particles like phenol and 2-chlorophenol. The SPE procedure for phenol extraction can be widely used in different monitoring programs, analyzing a huge amount of samples.

Sample preconcentration in the field provides ample opportunity to transport and store in the lab SPE cartridges instead of large-volume water samples. It saves a lot of space and minimizes the risk of degradation. Analysis of phenols concentrated on C18 disks immediately after loading and after 28 days storage at 3 °C yields the same results. Analog stability studies in the case of pentachlorophenol demonstrate a negligible decrease in phenol peaks after 7 weeks of storage, independent of the moisture level in the environment, while only a 20% decrease of signal was observed at room temperature during the same time. Another concentration method applied mainly to the identification of semivolatile disinfection by-products (DBPs) is resin extraction. This method is used to concentrate large quantities of treated water (40–50 L), which is necessary to detect trace levels of by-products.

Besides GC and LC, capillary electrophoresis (CE) has been proposed as a separation technique in the environmental trace analysis of phenols. Sub-ppb levels of phenols can be analyzed in drinking water with GC-MS/MS. Pollutants can be detected from a 10-ml water sample by extraction of preliminary acetylated chlorophenols or by preconcentration of a 1 L sample using a graphite cartridge for solid extraction. Appropriate selection of parent ions and fragmentation conditions ensures high sensitivity and clean product ion spectra, allowing identification of small amounts. Application of liquid chromatography with thermospray MS in the single ion monitoring mode allows the identification of phenols in complex samples, avoiding interference of humic compounds usually present in river water.

Relatively simple electrochemical and amperometrical detectors have also been used in combination with reverse-phase LC separation for analysis of environmental water samples. Scrupulous studies of phenols’ electrochemical oxidation simplified this problem.

Determination of phenols in other matrices like food samples must also be mentioned. Capillary liquid chromatography was evaluated as an alternative to conventional HPLC to analyze complex phenolics and polyphenols in apple juice. Determination of polyphenols is of very high importance because of their biological properties, like...
anti-inflammatory, anti-histaminic and anti-tumor activities, free-radical scavenging and protection against cardiovascular diseases114–116.

D. Phenols in the Environment

Phenols are released in wastewater and can be lost to waste streams. This explains the many reports on determination of phenols in the environment. Phenols are included among drinking water disinfection by-products (DBPs)98. Table 1 lists specific disinfection by-products identified from the interaction of humic material with different kinds of disinfectants like chlorine, ozone, chlorine dioxide, chloramine and combinations thereof. Chlorine dioxide, alone or in combination with free chlorine, and chloramine do not produce any phenolic DBPs. However, after disinfection with free chlorine, different chlorophenols, mainly formed by the reaction of chlorine with phenols present as pollutants in raw water, were detected. High concentration of Br− in raw water leads to formation of brominated phenol analogs instead of the chlorinated phenols98–100. Much smaller amounts of phenols were produced by raw water treatment with ozone, ozone in combination with chlorine or chloramine. DBPs of a phenolic nature are more toxic in the case of free chlorine treatment than other water treatment technologies. While the presence of phenols leads to formation of different chloro- or bromo-phenol derivatives which are generally more toxic than the starting compound, the chlorine dioxide treatment leads to the total disappearance of phenols from surface water117. Here, phenols which are not \textit{para}-substituted are oxidized mainly to quinones or chloroquinones. \textit{Para}-substituted phenols undergo oxidative ring cleavage with formation of organic acids, such as oxalic, maleic or fumaric, and carbon dioxide. This generalization has some exceptions; for example, the oxidation of 2,4-dichlorophenol by chlorine dioxide leads to formation of 2,6-dichloro-1,4-benzoquinone.

There are many different studies of organic pollutants in environments like rivers, lakes and seas. Nontarget GC/MS screening of the river Elbe and its tributaries Mulde, Saale, Weisse Elster, Schwarze Elster, Havel was used in 1992–94118. 4-\textit{tert}-Butylphenol and different chlorinated phenols were detected in samples from the Elbe and the Mulde118. Organic pollutants have been studied in the Ter river and its system of reservoirs supplying water to Barcelona (Spain). During the sampling period 1986–1993, trichlorophenol in the 0.06–0.1 ppb range was found frequently. In more than 75% of the samples, polyethoxylated alkylphenols were found in concentrations of 5–450 ppb119. Transformation and biodegradation of alkylphenol polyethoxylates, present in detergents as nonionic surfactants, lead to formation of free alkylphenols. The nature, origin and trend of phenolic

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>By-products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>2-Chlorophenol, 3-bromophenol, 2,4-dichlorophenol, bromochlorophenol, 2,4,6-trichlorophenol, 2,4,6-tribromophenol, pentachlorophenol, dichlorodihydroxyphenol, dibromodihydroxyphenol</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>—</td>
</tr>
<tr>
<td>Chloramine</td>
<td>—</td>
</tr>
<tr>
<td>Ozone</td>
<td>Methylphenol, 4-methoxy-\textit{tert}-butylphenol</td>
</tr>
<tr>
<td>Ozone + chlorine</td>
<td>Trichlorophenol</td>
</tr>
<tr>
<td>Ozone + chloramine</td>
<td>2,6-\textit{Di-tert}-butyl-4-nitrophenol</td>
</tr>
<tr>
<td>Chlorine dioxide + chlorine</td>
<td>—</td>
</tr>
</tbody>
</table>
compounds were studied in the river Po (Italy) whose water is used as a source of drinking water. The sampling was carried out during a 3-year period (1994–1996) at 15-day intervals. The detected alkylphenols may be divided into two main groups: antioxidants and surfactants. In the antioxidant group 3-tert-butyl-4-methoxyphenol and its isomer 1,1-dimethylpropyl-4-methoxyphenol were found in all analyzed samples. The concentration of these two compounds and related phenols did not exceed 45 ppb. The presence of these compounds in surface water is undesirable, but presumably not dangerous, as these synthetic antioxidants have been used in the food industry and have been shown to possess low toxicity in animal and human testing. In the same study the low concentrations of chloro- and nitrophenols in the river Po were explained by their high degradation or by their reduced emission by industrial wastes.

Very interesting results were obtained from studies of urban storm water quality, based on point source discharges to receiving water bodies. The relative pollutant load contribution of nonpoint source discharges has gradually increased. Urban storm water runoff is one such nonpoint discharge. Traditionally, studies in the storm water field have focused on the quantity of water produced and on methods for its safe handling. Only recently has the quality and contamination level of storm water become a major concern. This interest arose from the understanding that the drinking water quality depends not only on the treatment technology, but also on the available raw water quality. This study is very important for Canada with large surface lakes. Phenol in storm water was found in concentrations of 3–10 µg l⁻¹. The surface water objective of the province of Alberta is 5 µg l⁻¹ for phenol and a limitation of 1 µg l⁻¹ appears in Canadian aquatic guidelines for total phenols. 2-Chlorophenol in storm water was detected at a concentration of 2 µg l⁻¹, and pentachlorophenol at 1–115 µg l⁻¹ while the Canadian guidelines limit them to 7 and 0.5 µg l⁻¹, respectively. Di- and trichlorophenols were not detected in storm water. On the basis of the results presented, and taking into account that pentachlorophenol was found in 15% of the samples and may contain as impurities dioxin and furan derivatives, making it a more dangerous contaminant, it must be concluded that pentachlorophenol is a possible problem compound in Canadian storm water.

Investigations in the South Italian Seas (Tyrrhenian Sea, Ionian Sea and Straits of Messina) were carried out in order to evaluate the anthropogenic inputs of some organic pollutants including phenols. Only the total phenols concentration was detected and was almost always higher than the threshold value of 3 ppb. A maximum concentration of 67 ppb was found in the Tyrrhenian Sea, 12 ppb in the Straits and 8 ppb in the Ionian Sea.

Nonylphenols were detected in the water and in sediments from the German Bight of the North Sea. Its concentration in seawater varied from 0.7 to 4.4 ng l⁻¹, while in the Elbe estuary 33 ng l⁻¹ was found. Different, independent studies of nonylphenol distribution in Japan allowed one not only to identify marine pollution in the Sea of Japan, but also to compare pollution in the deep-sea area (the so-called semi-enclosed ‘small ocean’) and in rivers and bays. Nonylphenols were found in the Sea of Japan in the 2–150 pg l⁻¹ range. An analogous study of the distribution of alkylphenols in wastewater effluents, river water and riverine and bay sediments was carried out in the Tokyo metropolitan area. The concentration of nonylphenol in Sumidagawa River was in the range 0.1–1.1 ppb. This concentration interval is much higher than in the Elba river studies, but less than that observed in some European and US rivers. In the secondary effluents the nonylphenol concentration reached 0.1–1.2 ppb. It is much lower than those reported for a Swiss sewage treatment plant.

Another way to study alkylphenol pollution is detection of these compounds in seafood. Four species of edible mollusks, two cephalopods and two bivalves, were studied in...
1998 in the Adriatic Sea (Italy). The highest concentration was found for nonylphenol, 200–300 ng g\(^{-1}\) in the case of mussels and clams and 400–700 ng g\(^{-1}\) in the case of squids\(^{130}\). (In comparison, sediments in Jamaica Bay on the Southwestern shore of Long Island, New York contained nonylphenol ethoxylate metabolites in the range 0.05–30 µg g\(^{-1}\).) Octylphenol levels were generally 30 times lower than those of nonylphenol\(^{130}\). This is because nonylphenol and the corresponding ethoxylate are far more widely used than octylphenol and its ethoxylate\(^{132}\). It is also expected that nonylphenol occurs at higher concentrations in fish tissues than its ethoxylate, as nonylphenol is more hydrophobic\(^{132}\). Although most chemical contamination originates in northern Italy, where most of the country’s population lives, the highest alkylphenol pollution is found in the central and not the northern part of the sea. This is explained by water circulation. Furthermore, the results indicate that alkylphenols are not isolated around urban areas and can be transferred over long distances\(^{132}\). This is consistent with the relative stability of nonylphenol in fresh water when it dissipates in 6–22 days\(^{133}\). The observed level of alkylphenol contamination does not appear to be harming the mollusks examined in the study and the risk to humans who eat these mollusks is considered low. However, researchers caution that it is difficult to predict the environmental and human health effects because there are insufficient data on the toxicity of alkylphenolic compounds\(^{130}\).

Four-week incubation of mussels followed by analysis was used in Finland as a sensitive method for monitoring chlorophenols in watercourses. This method was applied at 40 sites to study the influence of pulp mills and to detect possible chlorophenol leakage. Eight chlorophenol derivatives were found to accumulate quite strongly: tri-, tetra- and pentachlorophenols, di-, tri- and tetrachloroguaiacols, and trichlorosyringol. In the first group are wood preservatives and combustion products, while in the second group compounds formed during the bleaching of pulp\(^{134,135}\).

In agriculture, phenolic compounds are used as pesticides (Figure 1) and can also form from the degradation of chlorinated phenoxy carboxylic acids and organophosphorous insecticides\(^{11}\). The herbicide DNOC sorption in a sandy aquifer (Denmark) has been reported\(^{136}\).

Bisphenol A is a common raw material used to produce paper, such as thermal paper and carbonless copy paper. Therefore, many paper recycling factories are thought to release Bisphenol A into wastewater. Bisphenol A is easily chlorinated by sodium hypochlorite used as a bleaching agent in the paper industry as well as a disinfecting agent in sewage treatment plants. Thus it is important to investigate the release of chlorinated Bisphenol A into the environment. A Japanese research group analyzed the chlorinated Bisphenol A in the Shizuoka prefecture where 100 paper recycling plants are located\(^{137}\). In the final effluents of 8 plants chlorinated Bisphenol A was detected in the range from traces to 2 ppb\(^{137}\).

IV. TOXICITY AND HEALTH EFFECTS

A. Introduction

The current emphasis on the biological properties of natural or anthropogenic compounds depends on studies of possible health hazards or beneficial effects of agents to whom humans are exposed in everyday life. Phenolic compounds, which are ubiquitous among plants, used as food additives and ingested daily in milligram quantities, are a complicated system from this point of view. On the one hand, phenols induce DNA double-strand breaks, DNA adducts, mutations and chromosome aberrations in a great variety of test systems. On the other hand, they suppress the genotoxic activity of carcinogenic compounds \textit{in vitro} as well as \textit{in vivo} studies\(^{138}\). The dual function of dietary phenols also becomes evident from the studies of their carcinogenic or, the opposite,
anticarcinogenic potential. Some phenols induce precancerous lesions, papillomas and cancers, or act as cocarcinogens, but there are others which are potent inhibitors of carcinogenesis at the initiation and promotion stages. One example of this latter group is vitamin E (tocopherol), which plays an important role in blood cells and nervous system tissues. It must be concluded that health hazard versus protective activity of phenols contained in dietary mixtures remains an unresolved problem and their multiple, occasionally contradictory functions make it difficult to propose their use as chemopreventative agents. This means that each group of phenols has to be examined separately for its biological and toxicological activity.

B. Drinking Water Regulations. Taste and Odor

Drinking water regulations are periodically updated as more information becomes available. For current information it is recommended to check USEPA, WHO or EC guidelines. Some current examples will be presented here. While drinking water regulations are a matter of change, taste and odor standards generally remain constant, as taste and odor threshold concentrations in water seem to retain more or less constant values and will not be changed in time. Chlorophenols may be formed by chlorination of anthropogenic phenol traces or natural organic matter (fulvic and humic acids) even at low concentrations. Table 2 presents the drinking water regulations of the World Health Organization (WHO) and US EPA in µg L⁻¹ or ppb.

Taste and odor complaints from consumers are an important issue for drinking water suppliers. Taste and odor threshold concentrations in water were determined for 59 drinking water contaminants, including phenols. Their determinations are usually based on the WHO drinking water guidelines, US EPA or European Standards. The odor and taste description can change with concentration: for example, at 0.09 ppm the odor of 2-chlorophenol was described as ‘musty, sweet, floral’, but in the 0.5–1 ppm range as ‘chemical, medical’. In the case of 2,4,5-trichlorophenol, the description changed on increasing its concentration from ‘fruity’ to ‘antiseptic’. While the odor and taste threshold of 2-chlorophenol is 0.1 ppb, the US EPA guideline for drinking water recommends 40 ppb. This shows that there is no correlation between a compound’s taste and odor threshold and its health effects. Furthermore, published results show that phenols can produce taste or odor in drinking water at concentrations much lower than health-based regulations. This does not mean that it is acceptable to supply water that has an offensive taste or smell. Possible psychomatic effects, such as headaches, stress or upset stomach, must to be taken into account. Although there is an incomparable variation in the level and quality of taste and odor that consumers would regard as acceptable, such effects cannot be ignored and in particular cases a warning to the public not to drink the water must be issued. In order that the concentration of chlorophenols will be lower than can

<table>
<thead>
<tr>
<th>Compound</th>
<th>WHO drinking water standard (µg L⁻¹)</th>
<th>EPA drinking water standard (µg L⁻¹)</th>
<th>EPA taste recommendation (µg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>10</td>
<td>40</td>
<td>0.1</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>40</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>200</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>—</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>9</td>
<td>22</td>
<td>—</td>
</tr>
</tbody>
</table>
be tasted, EPA recommends taste and odor threshold concentrations for these compounds (Table 2). There is practically no difference between taste and odor thresholds.

Short-term exposure limits of pentachlorophenol are higher than long-term limits, namely not more than 1.0 mg l\(^{-1}\) for 1 day and 0.3 mg l\(^{-1}\) for 10 days. The EPA also decided that any release of more than 10 pounds of pentachlorophenol to the environment should be reported\(^{142}\).

C. Toxicity

Wide use of phenol and its derivatives led to studies of its occupational exposure and toxicity. Phenol toxicity in humans is not a big surprise, as this compound is toxic to most microorganisms, which explains its common use as a general disinfectant. This fact complicates treatment of phenol-containing wastewater by conventional biological processes\(^{145}\). Phenol genotoxicity was determined using Syrian hamster embryo cells. Phenol induced morphological transformation, gene mutation, chromosomal aberrations, sister chromatid exchanges and unscheduled DNA synthesis\(^{146}\). 2,4,6-Trichlorophenol induced mononuclear cell leukemia in male rats and liver tumors in mice\(^{147}\). In another study, genotoxicity of this compound was established in V79 Chinese hamster cells\(^{148}\). Conversely, 2,4-dichlorophenol did not cause any increase in tumors in rats or mice in the 2-year study. In fact, mononuclear cell leukemia in rats and lymphomas in mice were decreased in these studies\(^{149}\).

The damaging effect of long-term exposures (6+ months) to pentachlorophenol (PCP) on the immune system was studied in 190 patients. The distribution of PCP levels in blood was: 0–10 µg l\(^{-1}\) (69%), 11–20 µg l\(^{-1}\) (20%), and >20 µg l\(^{-1}\) (11%). The patients had various clinical symptoms and complained of the following: general fatigue (64%), rapid exhaustion (59%), sleeplessness (53%), headache (44%), mucous membrane, throat and noise irritation (39%), frequent common diseases (36%), bronchitis (30%) and nausea (13%)\(^{150}\). Analogous symptoms were described in previous studies\(^{151,152}\). Blood levels of PCP were associated negatively with total lymphocyte counts and several other blood immune parameters. These data provide clear evidence that immunological abnormalities are associated with high levels of PCP in plasma of individuals with long-term exposure\(^{150}\). PCP also induces chromosomal aberrations in mammalian cells \textit{in vitro} and in lymphocytes of exposed persons \textit{in vivo}\(^{153}\). Several case-control studies have shown significant associations of polychlorophenols with several types of cancer, with the most consistent findings being non-Hodgkin lymphoma and soft-tissue sarcoma\(^{154}\). Occupational exposure to chlorophenols can be a risk factor for nasal and nasopharyngeal cancer\(^{155}\). In the studies of polychlorophenols, great importance is attached to a compound’s purity as its contaminants can include very toxic and carcinogenic dioxins. One has to be sure that the observed toxicity effect is connected with the main compound and not with the impurity\(^{154}\). Polychlorophenols are also known to uncouple oxidative phosphorylation\(^{156}\), alter the electrical conductivity of membranes and inhibit cellular enzymes, such as ATPase, β-galactosidase etc\(^{157,158}\). The genotoxicity of the rodent carcinogen 2,4,6-trichlorophenol was studied in V79 Chinese hamster cells. This compound did not induce mutation or structural chromosome aberrations; however, it did produce dose-related increases in hyperdiploidy and micronuclei. It appears that it causes chromosome malsegregation as a major mode of genotoxic action\(^{148}\).

As mentioned above, pentachlorophenol has different solubility at acid and neutral pH. It was shown that this compound toxicity also depends on pH\(^{159}\). Studies of wastewater from a Baikalsk pulp and paper mill allowed one to evaluate a ‘pure’ cellulose bleaching process pollution, as Lake Baikal, where it is located, has no agriculture and only little municipal pollution\(^{160}\). Although mutagenic activity was effectively decreased during
biological and chemical treatment, even modern wastewater purification systems do not totally abolish potential toxicity and mutagenity of the effluents160.

Chlorinated phenols can degrade with formation of highly carcinogenic dibenzo-p-dioxin and dibenzofuran derivatives. It can occur by thermolysis, slow combustion, photocatalytically, by photochemical degradation and by photolysis161–166. Even in the presence of TiO$_2$, which in many cases leads to the total degradation of organic compounds, photocatalytic degradation includes formation of polychlorinated dibenzo-p-dioxins and dibenzofurans166. It was shown that the level of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in commercial animal products, raised near incinerators, are elevated compared to products from areas with no such industrial sources. It is related primarily to meat, milk from cows and eggs from chicken167–170.

Some phenol derivatives can act like hormones (e.g. estrogens) and interact with the human hormonal system. Two main phenol groups must be mentioned here—Bisphenol A and octyl- and nonylphenols. Bisphenol A might be a factor in decreasing sperm count in males and increasing rates of breast cancer in women171. It was also shown that increased sensitivity to Bisphenol A during the perinatal period causes an increase in body weight soon after birth and in adulthood and a decrease of plasma luteinizing hormone level in adulthood172. Octyl- and nonylphenols are formed during anaerobic biodegradation of the corresponding alklyphenol ethoxylates. These compounds are known to cause proliferation of breast cancer cells by acting as estrogenic mimic33,34. They also cause endocrine-disrupting effects and ‘feminization’ of male species173,174.

In the context of health effects with an emphasis on cancer, phenols, as an independent class of organic compounds, are generally not genotoxic. This means that they cannot modify genes and therefore are not considered to be a direct cancer risk. Laboratory studies have demonstrated that while not genotoxic, phenols can be co-carcinogens or promoters, increasing the effect of environmental genotoxic carcinogens. This promoting effect is highly dependent on the dosage and chronicity of exposure. Recent studies have demonstrated that some phenols found in fruits and vegetables, as well as synthetic phenolic antioxidants, exert protective effects against cancer, demonstrating antimutagenic, anticarcinogenic properties, and can also antagonize the effect of promoters. However, in a high dose range some of them can cause cancer in animals through mechanisms like cytotoxicity, regenerative cell duplication and hydroxyl radical generation175. Generally, the neoplastic effects of phenolic antioxidants can be observed at high dietary levels and occur only after effective biological defense mechanisms are overloaded176. Therefore, the public needs to be much more aware of the importance of dosage and exposure time. The role of phenols in the mutagenicity of white grape juice in the Ames mutagenicity test was studied. It was concluded that polyphenol oxidase-catalyzed oxidation of phenolic compounds generates toxic species that are responsible, at least partly, for the mutagenicity of grape juice177.

3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone, better known as MX, is one of the DBP and was found to be one of the most potent direct-acting mutagens ever tested in Ames tester strain178. Although the concentration of MX usually reaches only some ng l$^{-1}$, it comprises 15–57\% of the total mutagenicity of drinking water179. It was shown that MX formation proceeds via chlorine interaction on the aromatic or phenolic rings of humic substances with subsequent fragmentation180,181. Further studies demonstrated that the main MX precursors could be 4-hydroxybenzaldehyde, vanillin (4-hydroxy-3-methoxybenzaldehyde) and syringaldehyde (4-hydroxy-3,5-dimethoxybenzaldehyde), which were formed by humic and fulvic acid mild oxidation182–184. These phenol-fragment-containing compounds are the constituent parts of lignin, a phenolic polymer, which is a major component of woody tissues and thought to be a precursor for humic substances180. Another possible precursor of MX can be diphenols, like catechol, resorcinol (o- and m-hydroxyphenols, respectively) and p-hydroxyphenol182,185. However,
these data were not confirmed by any other study186. Unfortunately, in each case the exact mechanism of MX formation from substituted phenols, containing aldehyde or an additional hydroxyl group, under disinfection conditions remains unknown.

D. ‘Nontoxic’ Biological Activity of Phenols

It was demonstrated that the plant phenolic compound’s chlorogenic acid and ellagic acid have protective effects against liver, colon and tongue carcinogenesis187. According to some data, onion, lettuce, apples and red wine are important sources of dietary flavanoids, which are probably responsible for the anti-mutagenic activity associated with food and beverages188. It was further suggested that smokers ingesting dietary phenols, probably flavonoids, are partly protected against harmful effects of tobacco carcinogens within their bladder mucosal cells188. It is in good agreement with data demonstrating that smoking increases plasma vitamin E disappearance189. These conclusions require additional studies and, if confirmed, it will allow the use of a new chemoprevention strategy.

V. DETOXIFICATION AND DEGRADATION

A. Chemical and Physicochemical Degradation

Contamination of aquatic bodies by different harmful organic pollutants including phenols has stimulated research activity in the development of various treatment technologies to remove, or better to degrade, these pollutants from water and wastewater. Several chemical processes are carried out for this purpose. Generally, these technologies involve oxidation of organic pollutants with various oxidizing agents like ozone, UV radiation, electrochemical methods, hydrogen peroxide etc. Chlorination is not applicable, as it leads to formation of more toxic chloroorganics.

Electrochemical oxidation of chlorinated phenols on different oxide electrodes (PbO\textsubscript{2}, SnO\textsubscript{2}, IrO\textsubscript{2}) was suggested190. The same process can also be realized on carbon black-slurry electrodes191. A significant increase in carbon black amount achieves full mineralization of 4-chlorophenol191. The opposite process—electroreduction under conditions of electrocatalytic dehydrogenation of pentachlorophenol—leads to formation of cyclohexanol (98\%) with 2\% of cyclohexanone. This means that electrocatalytic hydrogenolysis can accomplish total dehalogenation and further saturation of the chlorinated phenol192.

Another method, very effective for in situ degradation of organic compounds, is ultrasonic irradiation of aqueous solutions, mainly in combination with photochemistry (UV radiation). Sonolysis of aqueous solutions results in the formation and adiabatic collapse of bubbles, generating local high temperatures and pressures and reactive free radicals in the bubble. Application of this method to phenol degradation has been reported193–195. Among the various products of phenol degradation identified were maleic acid, polyhydroxybenzenes and quinones195. The presence of dissolved oxygen in aqueous solutions was reported to play a very important role in the generation of highly oxidative hydroxyl free radicals and thus might enhance the decomposition of chlorophenols196,197. On the other hand, dissolved nitrogen scavenges the free radicals and inhibits their interaction with chlorophenols197. These data are confirmed by identification of the first intermediates of chlorophenol photosonochemical degradation. The first intermediates indicate that OH+ radicals are involved in the reaction and form compounds containing second OH substituent like hydroquinone, catechol and resorcinol198. Addition of ozone did not affect the sonication process of pentachlorophenol degradation199. This unexpected result was explained by the theory that O\textsubscript{3} molecules first dissolve in solution and then diffuse into cavitation bubbles, where they undergo thermolytic decomposition200. Chemical oxidation
by ozone alone is also used for chlorophenol destruction201,202. In this process complete removal of chlorophenols and rupture of aromatic rings were reported, but additional UV irradiation leads to complete degradation producing carbon dioxide203.

Another system—Fenton’s reagent—and its advanced form, the photo-Fenton system, is widely used for organic compound degradation. This system includes generation of hydroxyl radicals via the reaction of Fe2+ with H\textsubscript{2}O\textsubscript{2} and is an effective degradation system also in the case of phenols204–207. Extensive mineralization of pentachlorophenol and its total dechlorination was observed in the photo-Fenton reaction204. The use of the Fenton process can be recommended also for detoxification of the wood preservative cresote oil used together with pentachlorophenol. This process effects elimination of the acute toxicity of the treated solution to fathead minnows (\textit{Pimephales promelas}) and reduction of its toxicity to daphnia (\textit{Daphnia pulex})204. Besides the use in the Fenton reaction, H\textsubscript{2}O\textsubscript{2} is also applied for treatment of phenolic contaminants in combination with horseradish peroxidase. This enzymatic system also has the ability to transform and detoxify aqueous phenolic solutions208 and soils209.

A very effective and cheap system for water purification from organic compounds is photocatalytic oxidation of organic species by UV illuminated titania, involving two simultaneous processes—oxidation of the target compound and reduction of dissolved oxygen. In order to promote photocatalytic oxidation of organic compounds, four components are necessary: a target compound, oxygen, solar irradiation or artificial source of light and photocatalyst, mainly using TiO\textsubscript{2} aqueous suspension210. In the case of the photocatalytic degradation of Bisphenol A, an endocrine disruptor, its total degradation was reached in 20 hours without generation of any serious secondary pollution. The transcriptional estrogenic activity in response to human estrogen receptors in a yeast hybrid assay decreased drastically to less than 1% of the initial Bisphenol A activity211. The same system was applied also to different chlorinated phenols; 360 min irradiation destructive efficiency was 97%212. Short UV exposure time leads to formation of different oxidation intermediates, like 2,3,5,6-tetrachlorophenol, tetrachloro-1,4-hydroquinone and p-chloranil in the case of pentachlorophenol212. Dichlorophenols can also be formed during the photocatalytic degradation of some organic molecules; for example, 2,4-dichlorophenol was detected in the case of photocatalytic oxidation of phenoxyacetic acids210. Removal of phenols from aqueous solutions can also proceed by adsorption using Amberlite XAD-4 resins213, dual–cation organobentonites214, activated carbon215 etc.

B. Biodegradation and Biomethylation

Biodegradation would be an effective pathway for detoxification of phenolic compounds. Molasses (residue after sucrose crystallization in the sugar industry) are used further for alcohol production. Vinasse remains after fermentation, and alcohol production forms a number of phenolic compounds which are degraded through \textit{Aspergillus Terreus} and \textit{Geotrichum Candidum} treatment216. \textit{Burkholderia} sp. RASC c2 was used for 2,4-dichlorophenol detoxification in soils217. Algae blooms also can lead to the disappearance of phenols, as was demonstrated with green algae \textit{Volvox aureus} blooming218.

Biological processes in nature can also create the opposite effect—formation of more stable, less degradable compounds. Phenols are biomethylated in the environment to their corresponding anisoles which are more stable and lipophilic. This means that phenol pollution studies must also take into account formation and bioaccumulation of anisoles. Biomethylation of phenols to more bioaccumulating anisoles has not only environmental, but also economic consequences, as chloroanisoles are extremely bad-tasting compounds. For example, in sensory panel studies of water solutions, the concentration limit of detectable odor was lowered 3 to 10 orders of magnitude during anisole formation in
the phenols methylation process219. Analysis in combination with a taste panel study of fish showed that chlorinated anisoles together with veratroles were the main tainting substances of fish in pulp mill recipient waters220.

VI. REFERENCES

38. Hazardous Substances Data Bank, National Library of Medicine, National Toxicology Information Program, Bethesda, MD, 1998.
18. Environmental effects of substituted phenols

96. *ENA Method 528*, Determination of phenols in drinking water by solid phase extraction and capillary column GC/MS, EPA, Cincinnati, 2000.
148. *Bioassays of 2,4,6-Trichlorophenol for Possible Carcinogenicity, TR-155, National Cancer Institute, Bethesda, MD, 1979.*
150. *Toxicology and Carcinogenesis Studies of 2, 4-Dichlorophenol in F344/N Rats and B6C3F1 Mice (Feed Studies), TP 353 National Toxicology Program, Research Triangle Park, NC, 1989.*
CHAPTER 19

Calixarenes

VOLKER BÖHMER

Johannes Gutenberg-Universität, Fachbereich Chemie und Pharmazie, Abteilung Lehramt Chemie, Duesbergweg 10–14, D-55099 Mainz, Germany
Fax: +49 6131 3925419; e-mail: vboehmer@mail.uni-mainz.de

I. INTRODUCTION AND DEFINITIONS .. 1370
II. SYNTHESSES OF CALIXARENES 1371
 A. One-pot Procedures .. 1371
 1. Standard compounds (calixphenols) 1371
 2. Modification of the phenolic compound 1372
 3. Larger calixarenes ... 1372
 B. Stepwise Syntheses ... 1373
 C. Fragment Condensations .. 1374
 D. Calixarene-like Macrocycles with Other Bridges 1376
 1. Homocalixarenes .. 1376
 2. Homooxa- and homoaazacalixarenes 1378
 3. Thiacalixarenes .. 1380
 E. Syntheses of Resorcarenes (Calixresorcinols) 1381
III. CONFORMATIONAL PROPERTIES 1384
 A. Calixphenols ... 1384
 B. Calix[4]resorcinols .. 1385
IV. REACTIONS OF THE HYDROXY GROUPS IN CALIXPHENOLS 1387
 A. Complete Conversions .. 1387
 B. Conformational Isomers .. 1389
 C. Partial Conversions ... 1392
 1. Monoethers and -esters 1392
 3. Partial ethers (or esters) of larger calixarenes 1394
 D. Reactions with Di- and Multifunctional Reagents 1395
 2. Calix[5]arenes .. 1396
 E. Replacement of the Hydroxy Groups 1401
The name ‘calix[n]arenes’ was coined by C. D. Gutsche originally to describe cyclic oligomers built up by (4-substituted) phenolic units linked in 2- and 6-position via methylene bridges (I). It is deduced from the calix or cup-like conformation assumed especially by the tetra- and pentamer, which resembles an ancient Greek vase, known as ‘calix crater’, while ‘arene’ refers to the aromatic units, the number of which is indicated by [n]. All hydroxy groups in the general formula I are found in endo-position at the ‘narrow rim’ of the macrocycle.

The basic skeleton of these compounds, calixarenes in the original (narrow) sense, is that of a [1n]metacyclophane and it is appropriate to include into the family of calixarenes also those cyclic oligomers, in which the phenolic hydroxy groups are situated in exo-position at the ‘wide rim’. Here especially cyclic compounds (nearly exclusively tetrarimers) built up by resorcinol units (eventually substituted in the 2-position) are important and will be called ‘resorcarenes’ within this article. Alternatively ‘calixresorcinols’ is used for II, in distinction to ‘calixphenols’ for I.

The present chapter will concentrate on these two types, including more or less close modifications of their structure, while cyclic oligomers derived from pyrocatechol which are [1n]orthocyclophanes and various other cyclooligomers for which meanwhile the prefix ‘calix’ is used will be excluded. The main emphasis will be also on the synthesis and the chemical modification of calixarenes and some basic properties, such as their conformational behaviour. Their host properties towards cations, anions or neutral guests.
and various applications in sensors, separation processes, mono- and multilayers are not treated in detail.

II. SYNTHESES OF CALIXARENES

A. One-pot Procedures

1. Standard compounds (calixphenols)

The rapid development of calixarene chemistry in the 1980s followed by an explosion-like development in the 1990s is due to the ease by which larger amounts of \(t \)-butyl calixarenes are available on a laboratory scale by alkali-catalysed condensation of \(p-t \)-butylphenol \(1 \) with formaldehyde (Scheme 1).

Especially well elaborated procedures exist for the three ‘major’ calixarenes \(2a, 2c \) and \(2e \):

(i) Pre-condensation of \(1 \) with aqueous HCHO using a 0.045 molar amount of NaOH followed by 2 h reflux in diphenyl ether produces about 50% of \(2a^7 \).

(ii) Heating of \(1 \) and formalin with a 0.34 molar amount of KOH followed by 4 h reflux in xylene yields 83–88% of \(2e^8 \).

(iii) Refluxing a solution of \(1 \) with paraformaldehyde and a 0.030 molar amount of NaOH in xylene produces \(2e \) in 62–65% yield\(^9\).
These yields (obtained without dilution techniques) are remarkable, if not unique, considering the fact that, for instance, 16 covalent links are newly formed in the synthesis of 2e. Even the less favourably formed cyclic penta- and heptamers are available now in milligram quantities in yields of 15–20% for 2b10 and 11–17% (LiOH as base) for 2d11.

Although it is generally accepted that the \(t \)-butylcalix[8]arene is the kinetically and the -calix[4]arene the thermodynamically controlled product while the formation of the -calix[6]arene seems to be due to a template effect, not much is really known about the mechanism of calixarene formation. The hypothesis that 2a is formed from 2e by an intramolecular step (‘molecular mitosis’) could not be confirmed by isotopic labelling, which proves a more or less statistical fragmentation and recombination12.

2. Modification of the phenolic compound

Various other \(p \)-alkylphenols have been studied in one-pot procedures. However, the yields of calixarenes are generally lower than with 1, and individual compounds often can be isolated only by chromatography. Table 1 gives a survey. As a rule of thumb it may be concluded that calixarene formation is favoured for those alkylphenols, where a tertiary carbon is attached to the \(p \)-position13. Calixarenes \(p \)-substituted by electron-withdrawing residues have not been obtained by one-pot syntheses starting with the single phenol, while \(p \)-benzyloxy- and \(p \)-phenylphenol were used with some success.

| TABLE 1. Yields of the main calix[\(n \)]arenes (\(n = 4 \) to 8) available by one-pot syntheses |
|---|---|---|---|---|---|
| R | \(n = 4 \) | \(n = 5 \) | \(n = 6 \) | \(n = 7 \) | \(n = 8 \) |
| Me | 7414 | 2215 |
| Et | 1016 |
| i-Pr | 2616 |
| \(t \)-Bu | 497 |
| \(t \)-Pent | 6–717 |
| \(t \)-Oct | 3118 |
| \(n \)-Alkyl | 3019, 1618 |
| 1-Adamantyl | 1020 |
| Benzyl | 6022 |
| Phenyl | 1025 |

3. Larger calixarenes

Although larger oligomers than calix[8]arenes have been isolated from one-pot reactions under alkaline conditions23,27,28 the method of choice to obtain these higher oligomers seems to be an acid-catalysed (\(p \)-toluenesulphonic acid) condensation of 1 with \(s \)-trioxane in chloroform29, where the total yield of calixarenes is nearly quantitative. Procedures to prepare a single, individual compound are not available in this case, but all \(t \)-butylcalix[\(n \)]arenes up to \(n = 20 \) have been isolated by chromatographic techniques27,30.
B. Stepwise Syntheses

Calixarenes prepared by one-pot procedures necessarily consist of the same ‘repeating unit’ (usually a phenol). The stepwise synthesis outlined in Scheme 2 allows one in principle to build up calix[n]arenes with \(n \) different \(p \)-substituted phenolic units. After protection of one \textit{ortho}-position, usually by bromination, a sequence of hydroxymethylation and condensation steps furnishes a linear oligomer which, after deprotection, is

\[
\begin{align*}
\text{Br} & \quad \text{OH} \\
& \quad \text{Br} \quad \text{OH} \\
& \quad \text{Br} \quad \text{OH} \\
\text{R} & \quad \text{R} & \quad \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{OH} & \quad [\text{OH}] \\
& \quad [\text{OH}] \\
& \quad [\text{OH}] \\
\text{R} & \quad \text{R} & \quad \text{R} \\
& \quad \text{n-2} & \quad \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{R} & \quad \text{OH} \\
& \quad \text{Br} \\
& \quad \text{OH} \\
\text{OH} & \quad [\text{OH}] \\
& \quad [\text{OH}] \\
& \quad [\text{OH}] \\
\text{R} & \quad \text{R} & \quad \text{R} \\
& \quad \text{n-2} & \quad \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{R} & \quad \text{R} & \quad \text{R} \\
\text{H} & \quad \text{O} & \quad \text{H} \\
& \quad \text{H} & \quad \text{H} \\
\text{R} & \quad \text{R} & \quad \text{R} \\
& \quad \text{n-3} \\
\end{align*}
\]

\text{SCHEME 2.} Synthesis of calixarenes by the stepwise strategy. In principle, each phenolic unit can have a different substituent (mainly alkyl groups) in the \(p \)-position.
cyclized under high dilution conditions. Thus, \(2n+2\) steps are necessary to obtain a calix\([n]\)arene. Today this strategy is mainly of historical interest, but the single steps may serve also to built up precursors useful for more convergent strategies.

The last step, for instance, the cyclization of a linear precursor under dilution conditions, was used recently for the synthesis of calix[4–6]arenes \(3a–c\) with a single carbonyl bridge\(^{31}\).

\[
\begin{align*}
(3a) \quad n &= 4 \\
(3b) \quad n &= 5 \\
(3c) \quad n &= 6
\end{align*}
\]

C. Fragment Condensations

A calix\([n]\)arene may be obtained by condensation of two independently synthesized fragments as generally illustrated in Scheme 3. Various calix[4]arenes have been obtained by \(3+1\) or \(2+2\) approaches\(^{32}\) using TiCl\(_4\) as catalyst in yields up to 25–30\%\(^{33}\). For larger calixarenes, however, these conditions are hampered by side reactions (e.g. the cleavage of existing methylene bridges) although some calix[5]–\(\) or -[6]arenes\(^{35}\) have been prepared. A simple ‘heat induced’ condensation using bishydroxymethylated compounds seems advantageous for the synthesis of calix[5]arenes either by \(3+2\) or \(4+1\) approaches. Its suitability for the synthesis of larger oligomers has still to be checked. Only one example is known for the synthesis of a calix[8]arene in 9\% yield by \(7+1\) condensation of a linear heptamer with a bishydroxymethylated phenol\(^{38}\), but various calix[4]– (4)\(^{39}\) and calix[5]arenes (5)\(^{34,37}\) with substituted bridges (\(-\text{CHX}\)–) have been prepared by fragment condensations, following \(2+2\) or \(3+2\) strategies.

The condensation of bisbromomethylated phenols with \(p\)-bridged diphenols 6 (TiCl\(_4\), dioxane, 100 °C) leads to calix[4]arenes 7, in which two opposite \(p\)-positions are connected by an aliphatic chain (Scheme 4)\(^{40}\). The yield reaches 30–35\% and double calix[4]arenes have been observed as side product in some cases\(^{41}\).

A regular incorporation of the phenolic units into calix[4]arenes has been observed, if 2- or 6-hydroxymethyl derivatives of 3,4-disubstituted phenols (including cyclic compounds like \(\beta\)-naphthol) are condensed under these conditions (Scheme 5)\(^{42,43}\). The resulting calix[4]arenes 8 assume an inherently chiral, \(C_4\)-symmetrical cone conformation which can be fixed by O-alkylation (see below). In an analogous manner a 2-hydroxymethyl phenol substituted at the 4-position with a porphyrin moiety has been converted to the corresponding calix[4]arene 9 in 60\% yield by treatment with NaOH in refluxing diphenyl ether\(^{44}\).
SCHEME 3. Synthesis of calix[n]arenes by fragment condensation ‘k + m’
(6) $n > 4, R = \text{alkyl, Ph, Cl}$

SCHEME 4. Synthesis of \(p \)-bridged calix[4]arenes by a ‘2 + 2 × 1’ approach

\[
\text{4 HO} \quad \text{OH} \quad \text{R}^1 \quad \text{R}^2 \\
\text{4 HO} \quad \text{OH} \quad \text{R}^1 \quad \text{R}^2
\]

\[
\text{(TiCl}_4\text{)} \quad -4 \text{H}_2\text{O} \\
\text{(8)}
\]

<table>
<thead>
<tr>
<th>R(^1)</th>
<th>R(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) CH(_3)</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>(b) CH(CH(_3))(_2)</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>(c) Cl</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>(d) Br</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>(e) (-(\text{CH}_2)_3)-</td>
<td></td>
</tr>
<tr>
<td>(f) (-(\text{CH}_2)_4)-</td>
<td></td>
</tr>
<tr>
<td>(g) (-\text{CH} = \text{CH} = \text{CH} = \text{CH}-)</td>
<td></td>
</tr>
</tbody>
</table>

SCHEME 5. Synthesis of \(C_4 \)-symmetrical calix[4]arenes by ‘1 + 1 + 1 + 1’ (‘4 × 1’) condensation

D. Calixarene-like Macrocycles with Other Bridges

1. *Homocalixarenes*

Calixarene-like macrocycles such as 10, 11 and 12 have been also prepared by condensation of the respective bisphenols with formaldehyde under alkaline conditions (Scheme 6).
A template effect is concluded from the observation that CsOH favours the formation of the larger macrocycle 11b in the case of \(x = 2 \) while the smaller oligomer 11a is predominant with NaOH as catalyst\(^{45} \). For \(x = 0 \) a cyclic dimer is not formed, but again the trimer 10b is formed with NaOH and the tetramer 10c with CsOH as base\(^{46} \).
The rigid cyclobutano-bridged bisphenols 13 furnish only the calix[4]arene-like compounds 14 (Scheme 6). The yield is highest for \(n = 5 \) with LiOH (89%) and for \(n = 6 \) with CsOH (78%) while the cyclization fails completely for \(n = 4 \). Not only does this suggest a template effect by the alkali cation, it also clearly demonstrates that further factors (such as rigidity) can be important\(^{47}\).

‘All-homo’ calix[4]arenes 16 ([2,\(n \)]metacyclophanes) were obtained by Müller–Röscheisen cyclization of bisbromomethylated anisole (which furnished a chromatographically separable mixture of the methyl ethers 15 \([n = 5–8]\)) and subsequent demethylation\(^{48}\).

\[
\text{(15)} Y = \text{CH}_3 \\
\text{(16)} Y = \text{H}
\]

\(n = 3–8 \)

The acid-catalysed condensation of bisphenols with formaldehyde has been used also to prepare various calix[4]arenes with substituted bridges (4, \(X = X' \))\(^{49}\) as well as exo-calix[4]arenes 17\(^{50}\). In both cases and in the synthesis of exo–endo calix[4]arenes 18\(^{51}\) linear tetramers have been also cyclized by condensation with (para)formaldehyde\(^{37}\).

\[
\text{(17)}
\]

\[
\text{(18)}
\]

\(R^1, R^2 = \text{H, alkyl} \)

2. Homooxa- and homoazacalixarenes

As a side product of the one-pot synthesis of calixarenes, compound 23 was isolated already in early studies. Here four \(t \)-butylphenol units were linked by three \(-\text{CH}_2-\)bridges and one \(-\text{CH}_2-\text{O}-\text{CH}_2-\)bridge\(^{52}\) which explains the name ‘bishomooxacalix[4]arene’. Various other macrocyclic compounds are known now, in which the \(-\text{CH}_2-\)bridges
of calixarenes are (completely or partly) replaced by \(-\text{CH}_2\text{-O-CH}_2-\) (homooxacalixarenes) or \(-\text{CH}_2\text{-NR-CH}_2-\) (homoazacalixarenes)\(^{53}\). The longer (and flexible) bridges allow also the formation of cyclic trimers, e.g. the hexahomotrioxacalix[3]arenes \(20\). They are usually prepared in yields up to 30\% by thermal dehydration of bishydroxymethylated phenols \(19\) \((n=1)\) in apolar solvents such as xylene (Scheme 7)\(^{54}\). Alternatively,

\[
\begin{align*}
\text{R} & \quad \text{R} \\
\text{R} & \quad \text{R} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{O}
\end{align*}
\]

\((20)\)

\[
\begin{align*}
\text{R} & \quad \text{R} \\
\text{R} & \quad \text{R} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{O}
\end{align*}
\]

\((21)\)

\[
\begin{align*}
\text{R} & \quad \text{R} \\
\text{R} & \quad \text{R} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{O}
\end{align*}
\]

\((22)\)

\[
\begin{align*}
\text{R} & \quad \text{R} \\
\text{R} & \quad \text{R} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{O}
\end{align*}
\]

\((23)\)

SCHEME 7. Homooxacalixarenes by thermal dehydration of bishydroxymethylated phenols or oligomers (in most cases \(R = t\)-Bu)
an acid-catalysed cyclization has been proposed, which however requires high dilution conditions. A stepwise procedure using protective groups allowed the synthesis of trimers with three different p-substituents. The thermal dehydration was also possible for the bishydroxymethylated dimers to tetramers. The main products (21, 22, 23) are indicated in Scheme 7. Various side products containing $-\text{CH}_2-$ instead of $-\text{CH}_2\text{O}-\text{CH}_2-$ bridges are also formed.

Homoazacalixarenes have been prepared in a similar manner reacting bis-hydroxymethylated (or bis-chloromethylated) phenols (or oligomers) with amines, a strategy that has been used also to synthesize N,N-bridged homoazacalixarenes 24a and 24b. The formation of cyclic Schiff bases followed by reduction is a possibility to obtain macrocycles with bridges containing secondary amino groups ($-\text{CH}_2\text{NHCH}_2-$), such as 25 (Scheme 8).

3. Thiacalixarenes

A new and rapidly developing field was opened by the one-step synthesis of tetrathia t-butylcalix[4]arene 26 by reaction of 1 with sulphur at 230°C in tetraethylene glycol dimethyl ether catalysed by NaOH, which makes larger quantities of this interesting material available in yields up to 54%. The corresponding p-t-octyl compound was obtained under similar conditions (250°C) in 14%. The reaction obviously furnishes (almost exclusively) the cyclic tetramer, and only traces of the corresponding hexathia t-butylcalix[6]arene have been isolated.

Interestingly, also in this case t-butylcalix[4]arenes in which one to four methylene bridges have been replaced by sulphur were prepared initially by stepwise procedures. Very recently the cyclization of a sulphur-bridged dimer of 1 (S_8, NaOH, Ph$_2$O, 130–230°C) was reported to yield 26 in 83%, while the thiacalix[6]- and -[8]arenes were obtained in 5% and 4%, respectively.
E. Syntheses of Resorcarenes (Calixresorcinols)

The acid-catalysed condensation of resorcinol with different aldehydes than formaldehyde leads (often in high yield) to cyclic tetramers of the general formula II. Under typical conditions the reactants are kept for several hours at 80°C in aqueous ethanol using HCl as catalyst\(^65\). A solvent-free synthesis has been recently described\(^66\). Four diastereomeric products are possible in this case which differ in the relative configuration of the \(-\text{CHR}–\)bridges. For their distinction the following convention is most appropriate: If the macrocycle is considered ‘planar’ the residues R are found at one or the other side of this plane. If now one of these residues is taken as reference (r) the position of the other residues may be cis (c) or trans (t). This situation is illustrated in Figure 1.
Usually only the \textit{rccc} and \textit{rctt} isomers are formed, and often conditions were found under which the \textit{rccc} (or ‘all-cis’) is the only product, e.g. after prolonged heating. The formation of the \textit{rcct} isomer was less frequently observed and the \textit{rtct} isomer has not yet been isolated. The reaction is possible with a large variety of aldehydes (or synthetic equivalents) as shown by the examples given in Figure 2, although the optimal conditions have to be elaborated for each case. 2-Methylresorcinol67c, other 2-alkyl derivatives and pyrogallol68 react in a similar fashion. Formaldehyde (or its equivalents like 1,3,5-trioxane or diethoxymethane) can be also used in this case and methylene-bridged macrocyclic products with five or six resorcinol units were obtained in addition to the tetramer69.

Cyclic products were not obtained with electron-withdrawing substituents like NO\textsubscript{2} or COOH in the 2-position70. However, cyclic tetramers of the resorcarene type (27) were recently prepared in yields up to 70% from 2,6-dihydroxypyridine and aliphatic or aromatic aldehydes by HCl-catalysed condensation in glycol monoisopropyl ether71. Attempts to prepare resorcarene-like macrocycles with 2,7-dihydroxynaphthalene units failed. A 3,5-connected trimer was isolated in 23% yield from the condensation of 3-hydroxymethyl-2,7-dimethoxy-1,8-dipropynaphthalene72. Monoethers of resorcinol (3-alkoxyphenols) react with aldehydes in the presence of Lewis acids to form \(C_4 \)-symmetrical compounds 28 (as confirmed by X-ray analysis for one example) in high yield (80%)73.

The fragment condensation of alkylidene-linked dimers with another aldehyde led to resorcarenes with two residues R in alternating order74; however, mixtures of the \textit{rccc}, \textit{rctt} and \textit{rcct} isomers which had to be separated chromatographically were obtained under all conditions.
A different access to the resorcarene skeleton was found in the Lewis acid (BF₃ · Et₂O) catalysed tetramerization of 2,4-dimethoxycinnamic acid esters or amides (Scheme 9). 2,6-Dimethoxy derivatives rearrange during the reaction and may be also used. A mixture of stereoisomers of 29 is usually obtained in yields of 65–80%, the composition of which depends on R and on the reaction conditions. The ‘parent’ methylene-bridged resorcarene (II, R = H) was recently obtained by treatment of 2,4-bis(allyloxy)benzyl alcohol with Sc(OTf)₃ in acetonitrile, followed by deallylation by ammonium formate and PdCl₂(PPh₃)₂.
III. CONFORMATIONAL PROPERTIES

A. Calixphenols

Characteristic of calix[\(n\)]arenes and their derivatives is the conformational diversity, which may cause difficulties in the synthesis of narrow rim derivatives (see Section IV), but also offers many additional chances to fine-tune the desired properties. Four basic conformations may be distinguished for a calix[4]arene [differing by the relative orientation of the (endo) OH and the \(p\)-positions] for which Gutsche introduced the names ‘cone’, ‘partial cone’, ‘1,2-alternate’ and ‘1,3-alternate’ (Figure 3).

![Figure 3](image.jpg)

FIGURE 3. The four basic conformations of a calix[4]arene with their symmetry classes

The parent calix[4]arenes are (exclusively) found in the so-called *cone* conformation\(^77\), where all the OH groups point in one direction which is therefore stabilized by an intramolecular array of hydrogen bonds. From variable temperature NMR studies (showing at low temperature a pair of doublets and at high temperature a singlet for the protons of the methylene bridges) the energy barrier, \(\Delta G^\#\) for the interconversion between two
identical cone conformations (Scheme 10) can be determined. Values for ΔG^\neq range from 14.6 to 15.7 kcal mol\(^{-1}\) for calix[4]arenes with different p-substituents in CDCl\(_3\). They are lower (11.8–12.4 kcal mol\(^{-1}\)) in the hydrogen bond breaking [D\(_3\)]pyridine. The NMR-spectroscopic pattern (a singlet or a pair of doublets for the methylene protons) is identical for calix[5]- and surprisingly also for calix[8]arenes\(^{78}\), where even analogous energy barriers are found in CDCl\(_3\) ($\Delta G^\neq = 15.2–15.7$ kcal mol\(^{-1}\)) which, however, drop drastically in [D\(_5\)]pyridine ($\Delta G^\neq < 9$ kcal mol\(^{-1}\)).

Three pairs of doublets are found for calix[6]arenes at low temperature, indicating a conformation with three different methylene bridges\(^{79}\), while an asymmetric conformation with seven different methylene bridges is found for calix[7]arenes. For the larger calix[n]arenes the ΔG^\neq values determined from the coalescence temperature of the methylene proton signals show slight maxima for $n = 12$, 16 and 20\(^{27}\).

The conformational mobility of calixarenes can be restricted by bridging of phenolic units (see Section IV) or, for the smaller members of the family, by the introduction of O-alkyl or O-acyl groups, which are too large to pass the annulus of the macrocycle (see Section IV). Methoxy groups are small enough to pass and tetramethoxy calix[4]arenes have a similar flexibility as the tetrahydroxy compounds. However, due to the absence of hydrogen bonding, the partial cone conformer is the most stable and the three other conformers are also found\(^{80}\), e.g. 85.6% para, 6.1% 1,2-alt, 5.5% cone, 2.8% 1,3-alt for the tetramethyl ether of 2a in CDCl\(_3\) at 243 K\(^{81}\). It was even possible to determine the rate constants and the activation parameters for the single interconversion steps\(^{82}\). Scheme 11 gives a survey.

Although hydroxy as well as methoxy groups can pass the annulus of a calix[4]arene, all partially O-methylated derivatives are found only in the cone conformation in the crystalline state as well as in solution up to the highest available temperatures (ca 120°C). No coalescence of the signals of the methylene protons was observed, thus precluding a determination of ΔG^\neq by variable temperature NMR. For inherently chiral calixarenes the cone-to-cone inversion (which occurs with a similar barrier) means enantiomerization. In fact, the mono-, 1,3-di- and trimethyl ether of 8a could be resolved by chromatography on Chiralpak AD or Chiralcel OD as chiral stationary phase, and the kinetics of the racemization could be followed as a function of the temperature\(^{83}\). This led to the energy barriers collected in Table 2, which are distinctly lower than those calculated with the CHARMM force field\(^{84}\), while the values calculated with MM3 are in better agreement\(^{85}\).

B. Calix[4]resorciols

The preferred conformation of resorcarenes is different for the various diastereomers. The $rccc$ isomer assumes a cone (crown) conformation with an axial orientation of the residues R, which can be distorted to a so-called boat conformation where two opposite rings are more or less parallel, while the remaining two are bent away from the cavity becoming nearly coplanar. The cone conformation with an all-equatorial orientation of R was never observed. The $rctt$ isomer is always found in a chair conformation, in which
Scheme 11. Conformational interconversion of the tetramethyl ether of \textit{t}-butylcalix[4]arene 2a. Rate constants are reported for the conversion of the \textit{partial cone} into the other conformations.

Table 2. Energy barriers (in kcal mol\(^{-1}\)) for the \textit{cone-to-cone} ring inversion of partially \textit{O}-methylated calix[4]arenes

<table>
<thead>
<tr>
<th></th>
<th>Experimental values for ethers of 8a</th>
<th>Calculated values MM3(92)(^{85})</th>
<th>CHARMM(^{84})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Delta H^\ddagger)</td>
<td>(\Delta G^\ddagger)</td>
<td>ethers of 8a</td>
</tr>
<tr>
<td>mono-Me</td>
<td>20.7</td>
<td>24.3</td>
<td>28.8</td>
</tr>
<tr>
<td>1,2-di-Me</td>
<td>15.6</td>
<td>23.3</td>
<td>27.3</td>
</tr>
<tr>
<td>1,3-di-Me</td>
<td>15.7</td>
<td>22.7</td>
<td>23.3</td>
</tr>
</tbody>
</table>

Two opposite rings are nearly coplanar, while the other two are nearly parallel pointing up and downwards. The \textit{rcct} isomer assumes a \textit{diamond} conformation (analogous to the \textit{1,2-alternate} conformation of calix[4]phenols).

The reason for these conformations is the tendency of R to avoid the neighbourhood of the OH groups\(^{86}\). This tendency was also found in calix[4/5]phenols with \textit{endo} and \textit{exo} hydroxy groups and one (or two) –CHR–bridges\(^{51,87}\). However, although these conformations (\textit{chair}, \textit{diamond}) are strongly preferred, they are not fixed, which follows for the \textit{rctt} and \textit{rcct} isomers from the fact that cavitands (see Section VII.D) with a (now
fixed) cone conformation are available, where then two or one of the residues R are/is in equatorial position. Unfortunately the two aspects, (a) the relative configuration at the —CHR—bridges and (b) the conformation adopted by a given diastereomer, are often confused in the literature, probably due to the fact that under drastic conditions (e.g. 140°C, aqueous solution containing bipyridine) an isomerization can take place.88

Methylene-bridged calix[4]resorcinols (for synthetic reasons derived from 2-alkylresorcinols) assume a cone conformation at lower temperatures, and ΔG° = 12.0 kcal mol−1 was found at 298°C for the cone → cone interconversion.89 This lower value in comparison to those for calixphenols like 2a reflects the fact that no substituents have to pass the annulus during the ring inversion. In addition, the intramolecular hydrogen bonds between exo-OH groups are distinctly weaker than those of the cyclic array of endo-OH groups in 2a as shown by NMR (δ = 6.30 vs. 10.2) and IR (ν = 3420 vs. 3140 cm−1).

IV. REACTIONS OF THE HYDROXY GROUPS IN CALIXPHENOLS

A. Complete Conversions

The exhaustive O-alkylation or O-acylation of calix[n]arenes is usually not difficult and has been achieved for all ring sizes and a multitude of residues Y (attached to the oxygen) and R (attached to the p-position); see general formula Ia.

\[
\begin{array}{c}
\text{Y} \quad \text{Y} \\
\text{O} \\
\text{R} \quad \text{R} \\
\text{n} \\
\end{array}
\]

The introduction of simple O-alkyl groups (methyl to octadecyl) usually requires a strong base (typically NaH in DMF/THF), an excess of the alkylating agent and sometimes elevated temperatures. As an example, the hexamethyl ether of 2c was obtained in 99% yield under sonification.90 Direct O-alkylation was successful also with bulky ‘dendritic wedges’ leading to dendrimers up to the third generation (30a) in about 20% yield.91 More reactive reagents such as allyl bromide, benzyl or picolyl chloride (or bromide) or bromoacetates can be introduced, using carbonates (e.g. K2CO3) as base in refluxing acetone or acetonitrile. The hexa-2′-pyridylmethyl ether, Y = CH2C5H4N-2, for instance, was prepared in 81% in DMF at 70°C with K2CO3 as base.92 Phase transfer conditions have also been applied.93 Compounds with Y = CH2COR (for R = O-alk often called tetra- to octaester, although the link to the calixarene is an ether link) have been extensively studied as ligands for spherical cations, especially for alkali and alkaline earth metals and for f-elements.94

Very recently, the first examples of aryl ethers derived from 2a were reported. While S_N-Ar-type reactions with various fluorobenzenes only led to partial etherification, the tetra-p-nitrophenyl ether was obtained with K2CO3/CuO in refluxing pyridine (46% partial cone, 16% 1,2-alternate, see below)95. Reaction of 2a or 2_Ha with 2-bromopyridine or 2-bromo-4-methylquinoline in refluxing diphenyl ether in the presence of CsCO3 gave the tetraaryl ether in the 1,3-alternate conformation.96
Exhaustive \(O \)-acylation was less frequently studied. The octaphosphate \((Y = \text{PO(OEt)}_2)^{97} \), the octamesylate \((Y = \text{SO}_2\text{Me})^{98} \), the octaesters with \(Y = \text{C(O)CH}_8\text{H}_3(\text{OMe})_2-2,4^{99} \) or \(Y = \text{C(O)CHBr}\text{CH}_3^{100} \) may be taken as recent examples for calix[8]arenes\(^{101}\). The synthetic conditions described there may be used also in similar cases and with other calixarenes. The octa-\(\alpha \)-bromopropionates have been used as initiators for the synthesis of star polymers (atomic transfer polymerization), and the hydrolysis of the ester links was used to analyse the branches\(^{100}\).

Functional groups attached via ether links to the narrow rim can be further modified. Especially, ester groups were used to introduce a multitude of further residues via ester or amide links. The aminosugar dendrimer \(30b \) is a spectacular recent example, showing high affinity to carbohydrate binding proteins\(^{102}\), while the cholesteryl hexaester \(31 \) was only prepared to inhibit the rotation of the oxygen functions through the annulus\(^{103}\). Reduction of the ester groups followed by tosylation and substitution by various nucleophiles (=Nuc) is another possibility, as shown below.

\[
\begin{align*}
Y = &\, \text{CH}_2\text{COOH} & Y = &\, \text{CH}_2\text{COCl} & Y = &\, \text{CH}_2\text{CONR}^1\text{R}^2 \\
Y = &\, \text{CH}_2\text{COOEt} & Y = &\, \text{CH}_2\text{CH}_2\text{OH} & Y = &\, \text{CH}_2\text{CH}_2\text{OTs} & Y = &\, \text{CH}_2\text{CH}_2\text{Nuc}
\end{align*}
\]

Aminoethyl ether groups were obtained by using azide as a nucleophile and subsequent reduction. Longer aminoalkyl ethers were prepared by \(O \)-alkylation with \(\omega \)-bromonitriles or \(N-(\omega \)-bromoalkyl)phthalimides followed by reduction or hydrazinolysis, respectively.
Subsequent acylation of the amino functions is another general route to attach various functional groups, as demonstrated by the (thio)urea derivatives 32 (anion receptors)104 or the CMPO derivatives 33 (ligands for lanthanides and actinides)105.

B. Conformational Isomers

As already mentioned, the conformational interconversion of calix[4]arenes requires the oxygen function at the narrow rim to pass the annulus and consequently can be hindered by O-alkyl or O-acyl groups of sufficient size. Thus, the molecule can be fixed in one of the four basic conformations by exhaustive O-alkylation or O-acylation if the residues
introduced are of sufficient size. The same is true for \(p \)-substituted calix[5]arenes, while a slow rotation of the wide rim through the annulus (\(\Delta G^\neq = 17.9-18.8 \text{ kcal mol}^{-1} \)) has been observed for derivatives of the \(p \)-unsubstituted calix[5]arene\(^\text{106} \). For calix[4]arenes, it can be definitely stated that no rotation through the annulus occurs for ether groups equal to or larger than propyl and ester groups larger than acetyl, while the threshold size for calix[5]arenes is slightly larger than \(n \)-butyl or \(n \)-butanoyl\(^\text{107} \). A pentaether/ester with \(Y = \text{CH}_2\text{COOCH}_2\text{CH}_3 \) is obviously conformationally fixed, while a pentaether with \(Y = \text{CH}_2\text{CH}_2\text{OCH}_2\text{CH}_3 \) exists as a slowly interconverting (\(\Delta G^\neq = 17.8 \text{ kcal mol}^{-1} \)) mixture of partial cone/cone (19:1)\(^\text{108} \). For the larger calixarenes, a passage of the wide rim becomes more and more an alternative, depending of course on the ring size and the size and shape of the \(p \)-substituents\(^\text{109} \). Finally, a conformational fixation is only possible by bridging (see below).

The existence of stable conformational isomers (atropisomers) may be a complication, since mixtures can be formed during a derivatization but it offers (in principle) additional synthetic possibilities which have already been widely used in the calix[4]arene series, where the four basic conformers are easily distinguished by NMR (Table 3).
TABLE 3. 1H NMR signals in conformational isomers (atropisomers) of calix[4]arene tetraethers \(\text{Ia} \) with \(Y = \text{CH}_2R' \) (\(R' \) is a residue which shows no coupling with the adjacent CH\(_2\) group) and \(R = \text{C(CH}_3)\)

<table>
<thead>
<tr>
<th>Conformation</th>
<th>cone & partial cone</th>
<th>1,2-alternate</th>
<th>1,3-alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar-H</td>
<td>(C_{4v}) 1 s</td>
<td>2 s, 2 d(a)</td>
<td>2 d(a)</td>
</tr>
<tr>
<td>O-CH(_2)-R'</td>
<td>1 s</td>
<td>2 s, 2 d(b)</td>
<td>2 d(b)</td>
</tr>
<tr>
<td>Ar-CH(_2)-Ar</td>
<td>2 d(b)</td>
<td>4 d(b,c)</td>
<td>1 s, 2 d (2:1:1)</td>
</tr>
<tr>
<td>C(CH(_3)(_3))</td>
<td>1 s</td>
<td>3 s (1:2:1)</td>
<td>1 s</td>
</tr>
</tbody>
</table>

\(a \) meta-coupling.

\(b \) Geminal coupling.

\(c \) One pair of doublets shows a small difference in chemical shift.

The stereochemical result of a per-\(O \)-alkylation depends on
 (i) the residue \(Y \) to be attached,
 (ii) the calix[4]arene vis-a-vis its \(p \)-substituents \(R \) and
 (iii) the alkylation conditions (solvent, base, temperature).
Template effects by metal cations (due to the base applied) have been especially used to
direct the reaction towards a certain conformer.

Usually, the \textit{cone} isomer is formed in the presence of Na\(^+ \) cations. Na\(_2\)CO\(_3\) in acetone
or acetonitrile is often used for reactive alkylating agents such as bromo- or chloroac-
etates, -acetamides or -ketones (XCH\(_2\)COR, \(X = \text{Cl, Br} \)), while NaH in DMF or THF/DMF
(sometimes MeCN) is the standard for alkyl bromides, iodides or tosylates93,110–112. Deriva-
tives with four bulky residues such as \(Y = \text{P(C}_6\text{H}_5)\)\(_2\) 113 or \(Y = \text{CH(CO}_2\text{Et})\)\(_2\) 114 have been
obtained in the \textit{cone} conformation.

Larger alkali cations (K\(^+ \), Cs\(^+ \)) favour the formation of \textit{partial cone} and \textit{1,3-alternate}
isomers, although a general set of conditions is not available for the \(O \)-alkylation. For
example, replacement of Na\(_2\)CO\(_3\) by Cs\(_2\)CO\(_3\) leads to the quantitative formation of \textit{partial cone}
isomer instead of the \textit{cone} isomer in the alkylation of \textit{2a} with ethyl bro-
moacetate (acetone/reflux)115 while the effect is less pronounced for the \(p \)-unsubstituted
calix[4]arene \textit{2b}.\textit{H}. Alkylation of \(2a \) with propyl bromide (KO\textsubscript{Bu}-\textit{t}/benzene/reflux) leads
to a 1:1 mixture of \textit{partial cone} and \textit{1,3-alternate}112.
Use of KOSiMe\(_3\) or K\(_2\)CO\(_3\) gives predominately the tetrabenzyl ether in the \textit{partial cone} conformation116.

Usually, the \textit{1,2-alternate} isomer is the most difficult to obtain117,118. In the case of
propyl ethers of \textit{2a} it was synthesized from the \textit{syn}-1,3-dibenzyl ether by alkylation with
propyl iodide (NaH/THF/reflux; 67\% of the \textit{partial cone} isomer), cleavage of the benzyl
ether groups (Me\(_3\)SiCl/NaI/CHCl\(_3\)) and alkylation of the thus obtained \textit{anti}-1,3-dipropyl
ether with propyl bromide (Cs\(_2\)CO\(_3\)/DMF/70\(^\circ \)C)119.

Partially \(O \)-alkylated compounds (see below) may also be used as starting material
for the synthesis of tetraethers with different ether groups. Thus, tetraethers have been
obtained by exhaustive \(O \)-alkylation of mono-120, \textit{di-}93,121 and tri-ethers120c,122. In such
cases the sequence of \(O \)-alkylation steps can also be important for the stereochemical
result. Reaction of \textit{2b} with alkyl bromides (K\(_2\)CO\(_3\)/acetoacet/reflux) led to the \textit{syn}-1,3-di-
ethers, which were subsequently \(O \)-alkylated with methyl bromoacetate (NaH/THF)
to yield a mixture of \textit{cone} and \textit{1,3-alternate} isomers. The alternative \(O \)-alkylation
sequence (ethyl bromoacetate/K\(_2\)CO\(_3\)/acetone, reflux followed by alkyl bromide/NaH/
THF) gave the tetraethers in the \textit{partial cone} conformation with \textit{anti}-oriented alkyn
ether groups123. Reasonable to high yields of tetraethers in the \textit{1,3-alternate} conformation
were recently obtained from the 1,3-diethoxyethyl ether of \textit{2b} with chloroethoxyethyl
tosylate (Cs$_2$CO$_3$/acetone/reflux, 57%)124, from its 1,3-dibromo analogue (R1 = R3 = Br) with ethoxyethyl tosylate (Cs$_2$CO$_3$/DMF/80$^\circ$C, 82%)125 and from the 1,3-dibutyl ether with methyl bromoacetate (KH/DMF/RT, 88%)126. Different ether groups in combination with the partial cone conformation may lead also to inherently chiral compounds122b,127.

Less is known about tetraesters of calix[4]arenes128,129. Tetrabutanoates in partial cone, 1,2- and 1,3-alternate conformation have been obtained from 2a130, while all four isomers are known for the tetraacetates131. The tetratosylate (or p-bromophenylsulphonate) was used as protective group while modifying substituents in the p-position, and derivatives in the cone132,133 and 1,3-alternate conformation134 have been obtained in excellent yield, while the tetratriflate was recently prepared in low yield (11%) as cone isomer135. Metal ion control has also been used to direct the stereochemical outcome of the diacetylation of 1,3-diethers towards the cone (Na$^+$) and partial cone (Tl$^+$) conformations136.

Although for calix[5]arenes the number of potential conformational isomers is the same as for calix[4]arenes, special procedures to obtain pentaethers or -esters in conformations different from cone have not yet been reported. For calix[6]arenes conformational fixing is only achieved by bridging reactions.

C. Partial Conversions

Calixarenes, in which only some of the hydroxy functions are O-alkylated or O-acylated, are important derivatives by themselves and interesting intermediates for the construction of more sophisticated compounds. Selected 1H NMR spectroscopic properties of partial ethers of 2a have been summarized in Table 4. The distinction of regioisomers and conformational isomers becomes more and more complicated for the higher macrocycles.

1. Monoethers and -esters

Mono-O-alkylation of calix[4]arenes has been achieved using weak bases (K$_2$CO$_3$ in acetonitrile, or CsF in DMF)137, and monoethers of calix[5]arenes were synthesized under similar conditions107,138. 1.1 Equivalents of K$_2$CO$_3$ in acetone have been used also to prepare the monomethyl (1.1 mol MeI, 70$^\circ$C, 2 bar) or monobenzyl ether (1.1 mol BnCl, reflux) of calix[6]arene 2c90 in yields of ca 80%. Excess of MeI (15.5 mol), KH (1.9 equivalents) in THF (RT, sonification) is an alternative in the former case. The mono-O-alkylated 2e with a covalently attached C$_{60}$ moiety may be mentioned as an interesting example among the calix[8]arenes139.

Various other combinations of bases (NaH, KH, Ba(OH)$_2$) have been proposed for calix[4]arenes among which sodium methoxide in methanol (70–80% yield)122a and

Proton	Type of ether	Mono C$_s$, 1,2-Di C$_s$, 1,3-Di C$_{2v}$, Tri C$_s$		
Ar-H	2 s, 2 d (1:1:1:1)	4 d (1:1:1:1)	2 s	2 s, 2 d (1:1:1:1)
O-CH$_2$-R'	1 s	2 d	1 s	1 s, 2 d (1:1:1)
Ar-CH$_2$-Ar	4 d	6 d	2 d	4 d
C(CH$_3$)$_3$	3 s (1:2:1)	2 s (1:1)	2 s	3 s (1:2:1)
bis(butyltin)oxide in boiling toluene140 are recent examples. The controlled cleavage of 1,3-diethers (see below) or tetraethers by trimethylsilyl iodide (1 or 3 mol) has been also described141. \textit{O}-Alkylation of mono- or triesters (see below) and subsequent hydrolysis of the ester group(s) offers another rational access142–144. Reaction of 2a with tris(dimethylamino)methylsilane or trichloromethylsilane has been used to protect three OH functions. Methylation of the remaining fourth OH group (BuLi/CF\textsubscript{3}C(O)OMe) and cleavage of the silyl triether gave the monomethyl ether in 83\% overall yield145.

Monoesters have been obtained by direct acylation135,146,147, from 1,3-diesters by reaction with imidazole147 or from mono- and 1,3-dibenzyl ethers by acylation and subsequent hydrogenolysis of the benzyl protective groups148.

The functionalization of two hydroxy groups in calix[4]arenes may lead to two regioisomers (1,2 or A,B vs. 1,3 or A,C149) and for sufficiently large residues to two conformational isomers (syn/anti) for each case, while three conformational isomers exist for three residues (syn/syn, syn/anti and anti/syn)150. It must be emphasized, that in such partial ethers/esters the mutual orientation of the residues Y should not be mixed with the conformation. A syn-diether still can assume the cone (usually the most stable conformation), the partial cone, and one of the alternate conformations!

The syn-isomers of 1,3-derivatives are easily synthesized in high yields under a variety of conditions (often Na\textsubscript{2}CO\textsubscript{3} or K\textsubscript{2}CO\textsubscript{3} in refluxing acetone or acetonitrile). This comprises diethers151 and diesters147,152 with identical residues as well as those with different residues which are obtained in two steps via the respective mono-derivatives122a,b,153,154. Compounds with an ether and an ester group in the 1,3-position have been prepared either by acylation of a monoether155 or by \textit{O}-alkylation of a monoester144.

While all known examples of 1,3-diethers with an anti-orientation were obtained via protection/deprotection strategies156, the acylation with excess benzoyl chloride using NaH as base was reported to give the anti-isomer in boiling toluene, while the syn-isomer is formed in THF at 0\textdegree C152b.

The ease with which 1,3-derivatives are formed can be rationalized: From two possible monoanions (proximal/distal) of the monosubstituted intermediate the distal anion is formed, since a phenolate group at ring 3 is stabilized by two intramolecular hydrogen bonds. Steric reasons are also in favour of the 1,3-derivative while the 1,2-product would be statistically favoured. Consequently, 1,2-diethers are formed when an excess of a strong base (e.g. NaH in DMF/THF) is applied, while the extent of the \textit{O}-alkylation is controlled by the amount of alkylating agent (usually 2.2 mol). The dianion in which for electrostatic reasons two opposite hydroxy groups are deprotonated, or even the trianion, are likely intermediates. Although the selectivity is usually less pronounced than with 1,3-derivatives, various syn-1,2-diethers have been prepared by direct dialkylation with yields up to 90\% in special cases110,122b,157.

An alternative route to 1,2-diethers is the selective cleavage of neighbouring syn-ether groups in tetraethers by TiBr\textsubscript{4}158 or Me\textsubscript{3}SiI141, where a tetraether in the \textit{partial cone} conformation yields the inherently chiral 1,2-anti-diether159. Very recently an easy access to 1,2-diethers was found, using a protection of two adjacent oxygens by capping with a disiloxane bridge160. While the higher stability of the distal monoanion of a monoether explains the preferred formation of 1,3-derivatives, the monoanion of a 1,3-derivative itself should be less stable than the monoanion of the corresponding 1,2-derivative, which is again stabilized by an intramolecular hydrogen bond. Therefore, 1,3-derivatives should be rearranged into 1,2-derivatives under basic conditions, provided a reaction pathway is available. In fact, this rearrangement has been observed for 1,3-diphosphates161 and
1,3-ether/phosphates as well as for the 1,3-benzyl/(3,5-dinitrobenzoate) during the synthesis of further O-alkylation products (Scheme 12). At least for the phosphates an intramolecular migration of the phosphoryl residue seems reasonable.

\[
\begin{align*}
\text{Scheme 12. Rearrangement of 1,3- into 1,2-diesters under conditions where the monoanion is formed. No rearrangement takes place when the dianion is formed by an excess of a strong base.}
\end{align*}
\]

\[
\begin{align*}
X &= \text{PO(OR)}_2, \text{COC}_6\text{H}_5(\text{NO}_2)_2; Y = X, \text{alk}
\end{align*}
\]

Direct tri-O-alkylation of calix[4]arenes has been reported to lead to the syn/syn isomer using bases such as BaO, BaO/Ba(OH)$_2$ or CaH$_2$ in DMF. The tribenzoate of the p-unsubstituted calix[4]arene, one of the first examples of selectively derivatized calix[4]arenes, was obtained as the anti–syn isomer (benzoyl chloride/pyridine), while the tribenzoate of 2a obtained in toluene with N-methylimidazole as base (70% yield) was described as the syn–syn isomer, assuming a partial cone conformation with an inverted phenol ring. Both tris(3,5-dinitrobenzoates) of 2a were obtained by acylation with 3,5-dinitrobenzoyl chloride/1-methylimidazole. While 95% of the syn–syn isomer was formed in acetonitrile, 70% of the anti–syn isomer was obtained in chloroform.

The dependence on the reaction conditions was shown also for the syn-1,3-diethyl ether of 2Ha, which in CH$_3$CN gives syn–syn-diether/ester with PhCOCl/NaH, while reaction with PhCOCl in the presence of pyridine led to the anti–syn-diether/ester. The formation of an anti–syn 1,3-diether/ester derivative was also achieved by barium(II) ion assisted monodeacylation of a 1,3-crown-5 diacetate in the partial cone conformation.

Various syn–syn-triethers, among them inherently chiral derivatives, were prepared starting with mono-, 1,2- or 1,3-diethers. Allyl, benzyl or benzoyl groups have been used as protective groups in triether synthesis.

3. Partial ethers (or esters) of larger calixarenes

Efficient procedures for the regioselective functionalization of calix[5]arenes are scarce. Only recently was the 1,2,4-triestier obtained in 49% by reaction of 2b with camphorsulphonyl chloride. This contrasts with calix[6]arenes, where for instance all 12 methyl ethers and 10 of the possible 2′-pyridylmethyl ethers of 2e are known. The 1,3,5-trimethyl ether of 2e, available in 72% yield (3 K$_2$CO$_3$, 4 MeI, acetone, 70°C, 2 bar) is an important starting material for further O-alkylation products (e.g. the 2,4,6-tri-N-methylimidazolymethyl derivative 34, or the triurea derivative 35) and for selectivity transfer to the wide rim (see below). Its formation is favoured by reasons discussed above for di-O-alkylation products of calix[4]arenes, but also by an obviously favourable C_{3v}-symmetric conformation, in which the anisole moieties are inclined with their methoxy groups pointing to the centre. The 1,2-dimethyl ether was also prepared in 81% yield (3.1 KH, 20 Me$_2$SO$_4$, THF,
sonification), while the pentamethyl ether, available in 15% yield by direct methylation90, can be obtained in 76% yield by monobenzylation, subsequent exhaustive methylation and cleavage of the benzyl ether group177. Among the ethers available directly in reasonable yields (>50%) by partial O-alkylation are 1,4-diethers (Y = α-picoly), 1,2,3-triethers (Y = α-picoly) and 1,2,4,5-tetraethers (Y = α-picoly, Y = CH\textsubscript{2}CH\textsubscript{2}OCH\textsubscript{2}CH\textsubscript{2}OCH\textsubscript{3}) of 2c, but the reaction conditions reported do not allow any generalization.

The partial O-alkylation of larger calixarenes becomes more and more difficult due to the increasing number of possible products (16, 28 and 46 for calix[7 to 9]arenes). Nevertheless, various 1,3,5,7-tetraethers were obtained in yields up to 50% by alkylation of 2e in the presence of weak bases such as K\textsubscript{2}CO\textsubscript{3} or CsF178 and 19 out of the 28 possible methyl ethers have been isolated and identified178. The benzylation of 2e could be optimized to furnish heptabenzoates (with a variety of p-substituents in the ester group) in yields of 40–80\%99, which can be used as ‘protected calix[8]arenes’ for the synthesis of monosubstituted derivatives (for an example see Section VIII.A). Very recently, the first examples for the regioselective O-substitution of 2d were reported179.

D. Reactions with Di- and Multifunctional Reagents

As polyhydroxy compounds, calix[n]arenes can be reacted with multifunctional electrophilic reagents not only inter- but also intramolecularly. Some di- and multicalixarenes as examples of intermolecular reactions are reported in Section VIII. Intramolecular (i.e. bridging) reactions have been used to rigidify the calixarene skeleton, to protect hydroxy groups and to create ligands for metal cations, which in many cases show an unprecedented selectivity.

O-Alkylation of calix[4]arenes with ditosylates of oligoethylene glycols leads to 1,3-dihydroxy calix[4]crowns 36a, the first examples being described as early as 1983180. Alternatively, the 1,3-dimethyl ether of a calix[4]arene can be reacted with the ditosylate,
followed by selective removal of the methoxy groups with trimethylsilyl iodide in CHCl₃, a reaction sequence obviously accompanied by less by-products. Compounds 36a can be modified by further O-alkylation and derivatives fixed in the cone or partial cone conformation have been synthesized in this way, while the derivatives fixed in the 1,3-alternate conformation (37a) are usually prepared by reaction of the 1,3-diether with the oligoethylene glycol ditosylate. Further modifications, involving the oxidation of the phenolic units to quinone units, OH-depleted compounds, additional functionalities attached via ether residues in the p-positions or in the crown ether bridge, including their rigidification by benzocrown structures or the incorporation of conformationally switchable elements such as azobenzene structures, can be found in Figure 4. 1,3-Crown ethers with a dinaphthol segment incorporated into the crown part (36b) show chiral discrimination of guests, which can be developed into a visual distinction of enantiomers by colour in chromogenic derivatives. The barium complex of 36a (n = 5) shows catalytic activity in transacylase reactions and has been studied as a simple transacylase mimic.

1,2-Crown ethers 38 of calix[4]arenes have been also obtained by direct O-alkylation with ditosylates. Their mono- and 3,4-diether derivatives (partial cone) are inherently chiral. Various examples are known for all possible bis-crown ether derivatives from calix[4]arenes: 1,2;3,4-bis-crowns in the cone (39) and 1,2-alternate (40) and 1,3;2,4-bis-crowns in the 1,3-alternate conformation (41). Figure 5 gives a survey. Especially, the latter series is well developed, comprising examples with identical and different ether loops, including structures describable as calixcryptands (41g). Compounds 41a (n = 6) were studied as ligands for the removal of caesium from nuclear wastes in analogy to their mono-crown counterparts in the 1,3-alternate conformation (37). The 1,2;3,4-bis-crown-3 (39a, n = 3), on the other hand, is an important building block, since its calix[4]arene skeleton is fixed in a nearly perfect C₄ᵥ-symmetrical cone conformation.

Among various other 1,3-O-bridged derivatives calix[4]spherands 36f should be mentioned, which form kinetically very stable complexes with alkali cations (among which Rb⁺ is especially interesting for diagnostic purposes). 1,3-Bridged compounds have also been derived from 1,3-diethers bearing acid or amino functions in the ether residues.

Tri- and tetra-functional reagents have also been used to bridge or cap calix[4]arenes. An especially interesting example is the reaction with WOCl₄ or WCl₆, which involves all four phenolic oxygens. Two enantiomers of 42a are formed in the case of C₄-symmetric calix[4]arenes 8a, which were converted by reaction with a chiral enantiomerically pure diol into diastereomeric alkoxides (the formulas show only one enantiomer/diastereomer!). After chromatographic separation and cleavage of the diol, the pure enantiomers were obtained which, due to the capping by tungsten, possess an open, ‘permanent’ cavity. (For double calixarenes obtained with tetrafunctional reagents, see Section VIII.)

Reaction of 2b with oligoethylene glycol ditosylates leads predominantly to 1,3-crown ethers while 1,2-crowns are isolated only as side product in some cases. In contrast to the calix[4]arene derivatives (having C₅ and C₂ᵥ symmetry) both types are C₅ symmetric, but can be distinguished on the basis of their OH signals, one of which is strongly low-field shifted in the case of the 1,2-crowns, due to intramolecular hydrogen bonding. 1,2-Crown ethers, which are inherently chiral, are obtained as the main product in reasonable yield, starting with the mono-α-picoly ether of 2b. Chiral derivatives were obtained by selective O-alkylation or O-acylation of 1,3-crown ethers in the 4/5 position.
FIGURE 4. Selected examples of calix[4]-crowns and related compounds; usually R = H, t-Bu. In addition to the 1,3-alternate derivatives 37 further di- (cone or partial cone) and mono- (syn or anti) O-alkyl derivatives are known from 36, and analogously from 38a.

Various examples of the three possible monobridged derivatives of calix[6]arenes (2c or 2Hc) are known, including 1,3- and 1,4-crown ethers. Usually, the 1,4-bridged compounds are most easily formed, while the 1,2-bridging normally requires short bridges. An exception is the bis(chloroacetate) of ethylene glycols (n = 4–6), which gives 1,2-bridged derivatives in yields up to 30%, presumably due to a template effect by K⁺ ions.
FIGURE 5. Selected examples of the possible calix[4]-bis-crowns 39–41, usually R = H, t-Bu. Compounds of type 41 with identical and different bridges X are known.

Examples of 1,4-bridged compounds 43a–g are shown in Figure 6, which illustrates the diversity of compounds available.
Flexible bridges (e.g. crown ether 43a197b) are possible as well as rigid ones; ester bridges (e.g. the terephthalate in 43b200) as well as ether bridges and \textit{p}-bis(bromomethylated) aromatic compounds (e.g. 43c,d) work nearly as well as \textit{m}-bis(bromomethyl)benzenes/pyridines (e.g. 43e,f). Interesting conformational differences exist for the tetramethyl ethers derived from 43c and 43d, the former existing as a ‘self-threaded rotaxane’200b. Compounds 43e,f are interesting, since the 2’-position of the \textit{m}-xyylene bridge is sterically protected by the calix[6]arene ring, eventually after further \textit{O}-alkylation of the remaining OH groups. Thus, normally unstable groups \(Z\), such as sulphenic (\(−\text{SOH}\)), selenenic (\(−\text{SeOH}\)) and seleninic (\(−\text{SeO}_2\text{H}\)) acid functions, can be stabilized201. Compounds 43f are examples of ‘concave bases’ with basicities higher by three orders of magnitude in comparison to open-chain analogues202. The Cu(I) complexes of 43g showed surprising selectivities in comparison to other concave phenanthrolines when used as catalyst in the cyclopropanation of alkenes203.

Eight regioisomers are possible for doubly bridged calix[6]arenes (Figure 7) from which examples (mainly crown and benzocrown ethers) for five types have been realized (1,4;2,3-, 1,2;3,5-, 1,2;4,5- and the 1,3;2,5- and 1,4;2,5-derivatives with ‘crossed’ bridges). The situation may be even more complicated since two stable conformational isomers (all-up and uuuddd; \(u = \text{up}, d = \text{down}\)) have been obtained from the 1,4-diallyl ether by the introduction of diethylene glycol bridges204.

Capping of 2c may be achieved by trifunctional reagents, but the best results are obtained using its 1,3,5-trimethyl ether as starting material205. As a recent example the
FIGURE 7. Schematic representation of possible regioisomers for singly and doubly bridged calix[6]arenes

ether–ester compound 44 with a triethanolamine derived cap should be mentioned. Its structure was proved by X-ray analysis as the first example of this type. The molecule adopts a cone conformation with the anisole units bent outwards \(^{206}\). Yields up to 90\% were obtained for the capping with 1,3,5-tris(bromomethyl)benzene\(^{207}\) and 1,4 diethers could be capped analogously by alkylation with 1,2,4,5-tetrakis(bromomethyl)benzene\(^{208}\).

4. Calix[8]arenes\(^{101}\)

Although the situation is even more complicated with calix[8]arenes, crown ether derivatives with 1,2- 1,3-, 1,4- and 1,5- bridging have been obtained in good to excellent yields (88\% and 78\% for 1,5-crown-2 and 1,5-crown-3)\(^{209}\). 1,5-Bridged derivatives have been obtained with o- and p-bis(bromomethyl)benzene\(^{210}\), and 1,4-bridged derivatives...
with \textit{m}- and \textit{p}-bis(bromomethyl)benzene and with 2,7-bis(bromomethyl)naphthalene210a. This shows that the calix[8]arene skeleton is flexible enough to adopt various rigid spacers. The level of sophistication may be characterized by the introduction of an acridone-based bridge in 45211. Several biscrowns have been obtained by direct \textit{O}-alkylation212 among which the \textit{D}\textsubscript{2d}-symmetric 1,5;3,7-bis-crown-3 was confirmed by an X-ray structure determination213. Bridging via phosphoryl groups may lead to a triphosphate involving all eight phenolic oxygens214.

\begin{equation}
\text{(45)}
\end{equation}

\section{E. Replacement of the Hydroxy Groups}

Various attempts have been made to eliminate the \textit{endo}-OH groups or to replace them by \textit{NH}\textsubscript{2} or SH groups215. The complete reductive cleavage of phosphate groups was possible, for instance, for calix[4]-, calix[6]- and calix[8]arenes216, but the resulting ‘OH-depleted’ calixarenes could not be substituted again at the narrow rim. A \textit{partial} elimination of OH groups was also reported for calix[4]arenes217. Reaction of the diphosphate of 2a with liquid ammonia led to the introduction of only two amino groups218 (for the synthesis of amino derivatives of thiacalixarenes, compare Section VI. F).

The Newman–Kwart rearrangement of thiocarbamates has been used to replace all OH groups by SH groups to give \textit{46} in a reaction sequence outlined in Scheme 13219. The reaction seems to be sensitive with respect to the correct temperature (310–320°C being recommended219b) and partially rearranged products were also isolated219a, leading to calix[4]arenes with OH and SH groups.

The 1,3-dimercapto derivative could be obtained also in a rational way, via the bis(dimethylthiocarbamate) in which the remaining OH groups were protected against the rearrangement (360°C, 20–30 min) by methylation219a,220. Mercapto derivatives were also prepared from thiacalix[4]arenes (see Section VI. F), while larger calixarenes with SH instead of OH groups are not yet known.
SCHEME 13. Synthesis of mercaptocalix[4]arenes, conditions: (a) Me$_2$NC(S)Cl, NaH, DMF, 25°C, or K$_2$CO$_3$, acetone, reflux. (b) Heat 310–320°C. (c) LiAlH$_4$, THF. The tetramercaptocalix[4]arene 46 assumes the 1,3-**alternate** conformation. Partial conversions were possible in steps (a) and (b).

V. MODIFICATION OF CALIXPHENOLS ON THE WIDE RIM

A. Complete Substitution

The fact that the one-pot synthesis of calixarenes works best with *p*-t-butylyphenol221 was beneficial for the whole area, since the *t*-butyl groups are easily removed by trans-butylation with AlCl$_3$ in toluene (as solvent and acceptor), converting calixarenes 2a–e into the *p*-unsubstituted calixarenes 2H$_a$–e. Thus, the *p*-positions at the wide rim are available for virtually all kinds of electrophilic substitution reactions which are possible with phenols1c,222. Sulphonation, nitrification, bromination (or iodination), bromomethylation, aminomethylation, formylation, acylation and coupling with diazonium salts223,224 are examples.

The introduction of nitro225 and sulphonic acid groups226 has been achieved also in excellent yields by *ipso*-substitution of 2a, while *ipso*-acylation gave the tetraacetyl derivative in only 42% yield224c,227. Calixarenes consisting of hydroquinone units have been exhaustively perbrominated to yield compounds 47 with two bromine atoms per phenolic unit228.

B. Selectivity Transfer from the Narrow to the Wide Rim

Partial (*ipso*) substitutions at the wide rim of calixarenes are known, and in some cases are of preparative importance. The *ipso*-nitration of calix[4]arene tetraethers, for instance,
gives mononitro derivatives in yields up to 75%. These are versatile starting materials for further derivatives.

Each carefully designed selective reaction at the wide rim, however, uses the difference in reactivity between phenol and phenol ether or ester units. The selectivity available in O-alkylation or O-acylation reactions can thus be transferred to the wide rim. Scheme 14 gives a schematic survey of reactions, all of which were realised with calix[4]arenes. The principle can be applied also to the larger calixarenes where, however, less examples have been realised.

In the following, selected examples for these reactions are reported. Reaction a) has been discussed in some detail already in Section IV. C; examples for reaction d) are found in Section VI. A. Selective transbutylation (reaction b)) was achieved for various mono-, di- and triethers or esters of calix[4]arene, leading to tri-, di- and mono-t-butyl calix[4]arene derivatives, from which the O-alkyl and especially the O-acyl residues can be cleaved again if desired, or necessary. A single t-butyl group was also eliminated from the tetramethyl ether of 2b194, the pentamethyl ether of 2c177 and the hepta(p-bromobenzoate) of 2e230. Various other partially debutylated derivatives of 2c have been prepared analogously177,231.

Examples of the selective substitution of phenol units in partially O-alkylated (or O-acylated) calixarenes (reaction c)) are the bromination125,232, i odination233, nitr ation152c,155,177,194,234, formylation235, chloromethylation236, alkylation237 and coupling with diazonium salts238.

Selective ipso-substitutions (reaction e)) are less frequently reported. The ipso-nitration of 1,3-diethers of 2a gave not only the desired product 48a, but by ipso-attack at the methylene bridges also the 6-nitrocyclohexa-2,4-dienone derivative 48b239. The exhaustive substitution of the (remaining) phenol (reaction f))240 or phenol ether units (reaction g))241 usually causes no problems. The bromination (NBS, methyl ethyl ketone, RT) as well as the nitration of p-mono- and p-1,3-bis(acetamido) calix[4]arene tetraethers, however, occurs in the m-position (ortho to the acetamido groups), which is preferred even over the p-substitution of free phenol ether units242. Inherently chiral derivatives were obtained in this way.

C. Modification of Substituents

Substituents introduced at the wide rim by electrophilic substitution can be replaced or modified by further reactions. The following section only contains some typical examples,
SCHEME 14. Selectivity transfer from the narrow to the wide rim, presented schematically for two units of a calix[n]arene

most of them realized for calix[4]arenes222. A complete survey is entirely beyond the scope of this chapter.

Chloromethyl groups243 are an obvious starting point for the introduction of further functions, e.g. via the Arbuzov reaction244. Bidentate N-donor groups were introduced by nucleophilic substitution with suitable diamines245. Especially interesting is the intramolecular bridging of adjacent phenolic units by reaction with bis-nucleophiles. Thus, derivatives with C_2 symmetry have been obtained from chloromethylated calix[4]arenes246, while a
cavity large enough to include C_{60} was constructed on the basis of a calix[6]arene. Trans-cavity bridging of a 1,3-bis(chloromethyl)ated tetramethyl ether led to the first wide rim crown ethers of calix[4]arenes.

Aldehyde functions have been used as such to synthesize Schiff bases, various stilbene derivatives by Wittig–Horner-type olefination or cinnamic acids or by Knoevenagel condensation with malonic acid. They can also be reduced to CH$_2$OH or oxidized to COOH. As examples for derivatives obtained via alcohol functions, the calixsugars can be mentioned, while the cyclopeptide derivatives may serve as an example for the attachment via acid functions.

\begin{align*}
&\text{(48a)} \\
&\text{(48b)} \\
&Y = \text{C}_4\text{H}_9, \text{C}_5\text{H}_{11}
\end{align*}
Aminomethyl groups, introduced by a Mannich reaction with secondary amines, can be quaternized and substituted by various nucleophiles under alkaline conditions, presumably via the intermediate formation of quinone methide units (‘quinone methide route’). Cyanomethyl derivatives, easily available in this way, can be hydrolysed and two or four opposite CH$_2$COOH groups can be converted to cyclic mono- or bisanhydride structures. Their ring opening is possible with various nucleophiles and represents an elegant way for the selective introduction of functionalities to the wide rim (Scheme 15). Bisanhydrides fixed in the 1,3-alternate conformation give chiral (C$_2$-symmetric) derivatives.

\[\text{SCHEME 15. Synthesis of } C_2\text{-symmetric derivatives fixed in the } 1,3\text{-alternate conformation by ring opening of cyclic anhydrides} \]

Nitro groups can be reduced by catalytic hydrogenation, by hydrazine or by Sn(II) and the resulting aminocalixarenes serve as starting materials for the attachment of various residues via acylation or Schiff-base formation. Boc-protection has been used in the calix[4]arene series for the introduction of different acyl groups.

Copper-mediated coupling reactions of p-iodocalixarenes with phthalimide followed by hydrazinolysis should be mentioned as an alternative and independent strategy to obtain p-aminocalixarenes. The carbazole-substituted derivatives (Figure 8) were obtained similarly by Ullman coupling. CMPO derivatives, urea compounds, available also via the isocyanates, may be mentioned additionally. Mono- and diimides with acidic functions pointing towards the cavity, and the calix[6]arene-based acetylcholine esterase mimic are more sophisticated examples.

Complete lithiation of tetrabromo tetraalkoxycalix[4]arenes can be achieved with an excess of BuLi (THF, -78°C) while controlled amounts allow the mono- or 1,3-dilithiation. Subsequent quenching with electrophiles has been used to introduce various p-substituents. 1,3-Di- and tetraboronic acids available in this way could be oxidized (H$_2$O$_2$/OH$^-$) to p-hydroxy derivatives, or underwent Suzuki coupling with iodoarenes. The alternative way, the coupling of p-bromo- or p-iodocalixarene ethers with various boronic acids has been also used to synthesize p-arylcalixarenes. C–C couplings were also achieved by Heck, Negishi or Stille reactions. The oligophenylenevinylene derivative may be cited as a very recent example.
VI. FURTHER REACTIONS OF CALIXPHENOLS

A. Rearrangements

A reaction involving the narrow and the wide rim of a calixarene is the Claisen rearrangement of allyl ethers. In the pioneering times of calixarene chemistry it was regarded as one of the most favourable ways to introduce functionalities onto the wide rim via subsequent modification of the p-allyl groups. Due to its strict intramolecular course it was appropriate also for a selective p-substitution (see Scheme 14, reaction d)), and the first calix[4]arene, monosubstituted at the wide rim, was obtained by Claisen rearrangement of the monoallyl ether obtained from the tribenzoate of 2_{142}. Meanwhile, all variants between mono- and tetraallyl derivatives have been synthesized from calix[4]arenes $143,170,273$. A 1,4-p-allyl calix[6]arene was prepared from the corresponding diallyl ether 274.

A recent improvement involves the rearrangement in the presence of bis(trimethylsilyl)urea to protect immediately the phenolic hydroxy groups formed during the rearrangement. Thus, the p-allylcalix[4]arene was obtained in 99% yield and the larger p-allylcalix[4]arenes also became available 275. Multiple tandem rearrangements have also been used to convert O-linked double calixarenes into p-linked double calixarenes (see Section VIII. A).

The Fries rearrangement of various calix[4]arene esters was also described 276, including the synthesis of inherently chiral derivatives 277, but has by far not attained the importance of the Claisen rearrangement.
B. Modification of the Methylene Bridges

Although more difficult to address, the methylene bridges are potentially also available for chemical modification278. Early attempts at their oxidation to ketone bridges (in the tetraacetate of 2a) and their subsequent reduction to hydroxy groups met with no response279. More recently, the bromination of the tetramethyl ether of 2a was reported to yield a single stereoisomer with four CHBr bridges in rcrc configuration280. Lithiation of this tetramethyl ether (BuLi) and subsequent reaction with electrophiles such as alkyl halides or carbon dioxide gave derivatives, selectively substituted at one of the methylene bridges in yields up to 75\%281. The homologous anionic o-Fries rearrangement (LDA/THF) was studied with 1,3-biscarbamates in the cone, partial cone and 1,3-alternate conformation (Scheme 16)282, and reaction conditions have been found for the latter, under which certain products are formed regio- and stereoselectively. Reactions of the methylene bridges have not yet been reported for larger calixarenes (\(n > 4\)), but the spirodienone route (see below) recently described for the stereoselective functionalization of two distal methylene groups in 2a283 might well be extended to the larger members.
C. Oxidation of the Aromatic Systems

1. Calixquinones

Aromatic systems may be oxidized to quinones and this has been done also with calixarenes. Calix[4]quinone 55a was first prepared from the p-unsubstituted calix[4]arene via azo coupling, reduction to the p-amino derivative (Na₂S₂O₄) and oxidation with K₂CrO₄/FeCl₃. However, the method of choice seems to be the direct oxidation of the phenolic units. Thus, the calixquinones 55b,c were synthesized by oxidation of the corresponding p-unsubstituted calixarene with ClO₂, while with Tl(OC(O)CF₃)₃ even the direct oxidation of 2a to 55a was possible. A selective oxidation of phenol units beside phenol ether or phenol ester units is also possible with Tl(OC(O)CF₃)₃. (Occasionally also Cl₂O, Tl(NO₃)₃·3H₂O or NaBO₃·4H₂O have been used.) Various mono-, di- and triquinones of calix[4]arenes have been obtained in this way, including crown ether derivatives, as well as the di- and triquinones (56a,b) derived from calix[6]arene.

Calixquinones can be easily reduced to the corresponding calixhydroquinones (Zn/HCl or Na₂S₂O₄). The calix[8]hydroquinone 57b, however, was prepared from the octabenzyl ether 57a obtained by one-pot condensation in a mixture with the analogous calix[6]- and -[7]arene. Oxidation of 57b to the respective octaquinone was not reported, but the endo-ether 57c was obtained by exhaustive O-propylation prior to the cleavage of the benzyl ether groups. Inherently chiral derivatives of a calix[4]arene monoquinone have been obtained by 1,4-addition of various nucleophiles to the quinoid system.
2. Spirodienones

Mild oxidation of 2a–c leads to spirodienone derivatives. From 2a, for instance, the three isomers 58a,b,c are obtained with phenyltriethylammonium tribromide, which differ in the arrangement of the carbonyl and ether groups and/or the configurations (R or S) of the spiro centres. The equilibrium mixture of the three interconverting compounds (toluene, 80°C) contains the ratio 65/10/25 for 58a/58b/58c, but 58a can be obtained regio- and stereoselectively in 95% yield by oxidation with I_2/PEG200/25%KOH/CHCl$_3$. Various other calix[4]arenes have been oxidized to bisspirodienones, among them β-naphthol derived calixnaphthols (OH groups in endo
position42c. Oxidation of 2b with K\textsubscript{3}Fe(CN)\textsubscript{6}/base gave a bisspirodienone with alternating arrangement of the carbonyl and ether groups293 and various trisspirodienones have been obtained from 2c293,294 and from the spherand-type calixarene 10b295. The formulae 59 and 60 show the most stable isomer. In all cases (2a–c, 10b) monospirodienones have been prepared using an equimolar amount of the oxidation reagent and a weaker base295,296 and some of these compounds have been found to be useful intermediates for the preparation of aminocalixarenes and monodehydroxylated calixarenes296c,297. The replacement of two distal OH groups of 2a by methyl groups was achieved by the reaction sequence shown in Scheme 17298.

D. Reduction of the Aromatic Systems299

Hydrogenation of the aromatic rings in calixarenes was studied only recently. This may be due to the fact that relatively drastic conditions are required and that numerous new stereocentres are created by this reaction. Therefore, all studies have been carried out with the unsubstituted calix[4]arene 2\textsubscript{Ha}, where ‘only’ 3 new stereocentres per ring (12 per molecule) are formed during a complete reduction to the tetracyclohexanol derivative (compare Scheme 18 below).

The outcome of a complete hydrogenation depends on the reaction conditions. The perhydroxanthenine derivatives 61a and 61b, most probably dehydration products of a calix[4]cyclohexanol, were obtained with Raney-Ni (1450 psi, i-PrOH, 240°C)300 and
SCHEME 17. Replacement of \textit{endo}-OH groups by methyl groups
SCHEME 18. Stereoselective formation of calix[4]cyclohexanone 63 and calix[4]cyclohexanol 64. (a) RhCl₃·3H₂O/Aliquat336/H₂O/CH₂Cl₂, 200 psi H₂, 90 °C. (b) NaOEt/HOEt; (c) NaBH₄. The indicated configuration of 64 was confirmed by X-ray analysis.

Pd/C (120 °C)³⁰¹, respectively. Using Pd/C under more drastic conditions (250 °C, 600 psi H₂) gave the hydrocarbon 62³⁰¹. A single stereoisomer of the calix[4]cyclohexanone 63 was obtained as outlined in Scheme 18. Obviously, the acidity of the α-hydrogen atoms enabled an epimerization of the initially formed mixture to the most stable isomer upon treatment with base. 63 could be reduced stereospecifically to the calix[4]cyclohexanol 64 which assumes a cone-like conformation, and which is substantially more rigid (ΔG‡ = 22.1 kcal mol⁻¹ for the cone-to-cone inversion) than the parent calix[4]phenol³⁰².

The face selectivity of the hydrogenation was established using the conformationally fixed tetrapropyl ether of 2Ha in the cone, partial cone and 1,3-alternate conformation as starting material. An individual product was formed exclusively in each case (Scheme 19) for which X-ray and NMR data indicated that the hydrogenation proceeds in an all-exo fashion³⁰³. Thus, the stereoisomer obtained can be determined by the conformational isomer used as starting material. Using RhCl₃/Aliquat336 at room temperature, a single phenolic ring of 2Ha could also be stereospecifically hydrogenated to a cyclohexanone (RS)³⁰⁴ and, with NaBH₄, further to a cyclohexanol (86% RsS, 2.2% RrS)³⁰⁵. Products with one or two opposite cyclohexanol rings were also produced by hydrogenation with Pd/C (100 °C) when the reaction was stopped before completion³⁰¹.

E. Metallation of the π-Electron System

Tetrapropyl ethers of 2Ha, fixed in various conformations, have been converted into Cr(CO)₃ complexes³⁰⁶, among them chiral mono derivatives of the 1,2-alternate and
the partial cone conformation. Complete or partial \(\pi \)-metallation of the free \(\text{2}_\text{H}_\text{a} \) was achieved by reaction with chlorine-bridged dimers in the presence of silver salts; \([\text{Ru}(\eta^6\text{-}4\text{-MeC}_6\text{H}_4\text{Pr-}i)\text{Cl}(\mu-\text{Cl})]_2\), for instance, leads to \(\text{66} \) in 80\% yield\(^{307}\). In a similar way compound \(\text{67} \) was obtained from \(\text{2b} \). These positively charged calixarene derivatives are able to include anions in their cavity, as shown \textit{inter alia} by several X-ray structures. Simultaneous coordination of two cyclooctadienyl rhodium fragments to adjacent oxygens and to the \(\pi \)-system of \(\text{2a} \) or \(\text{2}_\text{H}_\text{a} \) was recently reported\(^{309}\).
F. Special Reactions with Thiacalixarenes

Thiacalix[4]arenes can undergo, in principle, all reactions described for calixarenes310, including, for instance, the de- or transbutylation or the Newman–Kwart rearrangement311. However, some qualitative differences were found.

The conformational outcome of \(O\)-alkylation reactions is slightly different, with a tendency towards the 1,3-alternate conformation312,313, but tetraethers in the cone (or partial cone) conformation have also been formed314. In contrast to calix[4]arenes, the \(O\)-propyl group is not large enough to fix a conformation and the tetrapropyl ether in the 1,3-alternate conformation originally formed by alkylation with \(\text{PrI/K}_2\text{CO}_3\) in acetone or acetonitrile in 67\% (together with <25\% of the partial cone)315 is converted into 58\% partial cone, 31\% cone, 7\% 1,3- and 4\% 1,2-alternate when heated to 120\textdegree C in \(\text{CDCl}_3/\text{CDCl}_2\) for several months316. A different chemical behaviour (Scheme 20) was also observed for the 1,3-diacids 68a and 68b (or their acid chlorides). They formed the bislactones 69a and 69b in the cone (up to 69\%) and 1,2-alternate conformation (up to 10\%, passage of the \(O\)-alkyl residue through the annulus!)317. Analogous products were never observed for the methylene-bridged analogues.

In addition to reactions known from C-bridged calixarenes, the sulphur bridges may be oxidized to sulphinyl and sulphonyl bridges318. Both reactions have been realized with various tetraethers and recently with the free thiacalixarenes319. The complete oxidation with \(\text{H}_2\text{O}_2\) gives the tetrasulphone usually in high yields (>80\%) while the controlled formation of SO bridges (e.g. by \(\text{NaBO}_3\)) is additionally complicated by the potential formation of diastereomers, differing by the relative configuration at the bridges320. Two of them could be selectively obtained, starting from a tetraether in the cone321 or 1,3-alternate322 conformation.

All possible sulphinyl derivatives (mono-, two di-, tri- and tetra-) of 70 were recently described323. Although the \(S=O\) group gives rise to additional stereoisomers, only one isomer was isolated in each case which was interpreted in connection with the X-ray structure of the tetrabenzyl ether321 by the assumption that the oxidation leads to the equatorial disposition of the \(S=O\) group pointing away from the \(O\)-alkyl group.

Both sulphonyl and sulphenyl bridges enable the nucleophilic substitution of methoxy groups in a chelation-assisted nucleophilic aromatic substitution. Reaction with lithium benzylamide (\(\text{PhCH}_2\text{NHLi}\)) in THF, followed by dehydrogenation (NBS-BPO) and hydrolysis led to calix[4]arene analogues 71 (Scheme 21) in which aniline units are linked via SO\textsubscript{2} (71a), SO (71b) or S-bridges (71c, by reduction of SO). This may well be the breakthrough to another interesting class of macrocycles. Interestingly these

![Diagram](image-url)
SCHEME 21. Preparation of thiacalix[4]anilines: (a) H$_2$O$_2$, CHCl$_3$/CF$_3$COOH, reflux; 86%. (b) PhCH$_2$NLi, THF, rt; 70%. (c) NBS, benzoyl peroxide, benzene, reflux; 90%. (d) conc. HCl, CHCl$_3$, reflux; 78%. The reaction sequence is also possible with the sulphoxides (leading to 71b) which can be finally reduced to compounds with sulphide bridges (71c).

thiacalixanilines 71c assume the 1,3-*alternate* conformation in contrast to the parent thiacalixphenol 25.324

VII. CHEMICAL MODIFICATION OF CALIXRESORCINOLS

There are three obvious places in a calixresorcinol where a chemical reaction may occur: The phenolic hydroxy groups may be esterified or etherified, the 2-positions may be
substituted by mild electrophiles and functional groups introduced with the aldehyde residue R may be modified.

A. Reactions of the Hydroxy Groups

The phenolic hydroxy groups of resorcarenes can be completely acylated and various octaesters of rccc, rett and rctt isomers have been prepared (see Figure 9), initially partly to elucidate the structure of the parent compounds. Various derivatives are given in Figure 9. Recent examples (72) comprise octaphosphates, octaphosphinites, octasulphonates and octatrimethylsilyl derivatives, respectively. Complete O-alkylations of rccc-resorcarenes result in octaethers (73a) (Y = Me to Bu). All twelve OH groups of calix[4]pyrogallol have also been esterified or etherified.

The attachment of eight 3,5-dihydroxybenzyl ether groups to the rccc-resorcarene led to a first-generation dendrimer (73b). Second-generation dendrimers of the same type were prepared, starting with the mixture of rccc- and rett-isomers obtained with p-hydroxy- and 3,5-dihydroxy-benzaldehyde.

FIGURE 9. Examples of octa-O-acyl and -O-alkyl derivatives of calixresorcinols
Alkylation of II with excess of ethyl bromoacetate led to octaesters 74a, which were hydrolysed to the corresponding octaacids 74b³³⁴. Reduction of 74a with LiAlH₄ gave the octol 74c which was converted to the octaphthalimide by Mitsunobu reaction (phthalimide/diethyl azodicarboxylate/PPh₃) and finally by hydrazinolysis of the phthalimido groups to the corresponding octaamine 74d³³⁵. Compounds 74 are versatile starting materials for further derivatization. For instance, aminolysis of 74a with chiral amines and aminoalcohols resulted in chiral octaamide derivatives 75a³³⁶. Reaction of 74d with a lactonolactone gave a water-soluble resorcarene-sugar cluster 75b³³⁵.

Regioselective³³⁷ O-acylations (or O-alkylations) of resorcarenes are rare. Examples of several derivatives are given in Figure 10. Tetraesters 76, in which the four hydroxy groups of two opposite resorcinol units in rccc-isomers are acylated, are the only examples of a more general character (see Figure 9). Initially, a chiral C₄-symmetric arrangement of the phosphoryl groups was postulated^{338,339}, but later the C_{2v}-symmetric structure of 76a (which can be converted to 76b) was unambiguously proved by NMR spectroscopy and single-crystal X-ray analysis³⁴⁰.

Selective acylation was also possible with four equivalents of an arylsulphonyl chloride or an aryl chloride furnishing 76c³⁴¹ and 76d³⁴², in yields up to about 50%, while the regioselective acylation fails with aliphatic acid chlorides. Reaction with benzoyloxybenzoyl chloride (Et₃N, MeCN, RT), however, allowed the partial protection of four hydroxy groups to yield 76e. Compounds 76c–76e (interesting as building blocks for various self-assembled structures³⁴³) may be used for further derivatizations.

The subsequent acylation or alkylation of the remaining hydroxy groups in 76c and 76d resulted in C_{2v}-symmetric derivatives containing two types of functional groups at the wide rim of the resorcarene, among which the tetra-crown ethers obtained with benzo-15-crown-5-sulphonyl chloride should be mentioned^{344,341}.

Exhaustive O-acylation of 76e followed by mild removal of the benzoyloxybenzoyl groups (H₂, Pd/C, dioxane) gave tetraacylated derivatives including the Boc-protected compound 76f which are not available by direct acylation of the parent resorcarene II. The tetraacid 76g was obtained in a similar way by O-alkylation of 76d with ethyl bromoacetate and subsequent hydrolysis³⁴².

\[
\text{FIGURE 10. Examples of tetra-}O\text{-acyl and }O\text{-alkyl derivatives of calixresorcinols}
\]
One example of a mono-O-alkylation has been described so far. The reaction of II with p-methylbenzyl bromide in a 1:1 molar ratio resulted in the chiral resorcarene monoether 77a, which was exhaustively acylated to give resorcarene 77b containing one alkoxy and seven acetox groups. Recently, the chiral resorcarene 77d was obtained in the form of the pure enantiomers by monoacylation of II with camphorsulphonyl chloride, separation of the crude mixture by HPLC (11% for each diastereomer 77c), exhaustive O-methylation of the remaining hydroxy groups and alkaline hydrolysis.

![Diagram](image)

B. Electrophilic Substitutions

The 2-position of the resorcinol rings may undergo substitution by mild electrophiles, such as bromination, coupling with diazonium salts and Mannich-type reactions, while more drastic reactions such as nitration or sulphonation failed.

The exhaustive coupling of II with diazonium salts should also make tetraamino resorcarenes available by reduction of the azo groups, while the tetrabromo resorcarenes are important starting materials for the synthesis of carcerands (see Section VIII. B). The reaction of II with NBS in molar ratios from 1:1 to 1:3 resulted in a mixture of all possible partially brominated resorcarenes, in which the yield of the distal-dibromo derivative was much higher than statistically predicted. Subsequent thiomethylation (CH$_2$O/RSH in AcOH) resulted in C_{2v}-symmetric derivatives containing two different functional groups (Br, CH$_2$SR) at the wide rim of the resorcarene, including distally bridged compounds by reaction with dithiols.

Aminomethylation of II with secondary amines and formaldehyde readily gives the corresponding tetraamines, which exist in apolar solvents in a chiral C_4-symmetric conformation with left- or right-handed orientation of the pendant hydrogen-bonded amino groups. Trisubstituted products have been obtained with bulky amines. Various functional groups including chiral and cation binding functions could be easily attached in this way. Water-soluble derivatives containing four sulphonatomethyl groups were also reported.

The aminomethylation of II with primary amines leads in an entirely regioselective reaction to chiral C_4-symmetric tetrabenzoxazine derivatives as shown by several crystal structures. The subsequent cleavage of the benzoxazine rings (HCl, BuOH, 100 °C) readily gives the corresponding secondary amines as hydrochlorides. If the
aminomethylation is carried out with chiral amines (e.g. α-phenylethylamine or its \(p \)-substituted analogues), only one of the two possible diastereomeric tetrabenzoxazines 78 is formed in high yield\(^{359} \). This was proved in two cases by X-ray analysis. Recent studies show that this high diastereoselectivity is due to the preferred crystallization rather than to the preferred formation of a single epimer\(^{360} \), which is in agreement with the acid-catalysed epimerization in solution already observed earlier.

The diastereomerically pure tetrabenzoxazine derivatives 78a were used as starting material to synthesize other inherently chiral derivatives. Methylation\(^ {361} \) of the hydroxy groups of the chiral tetrabenzoxazines with dimethyl sulphate or methyl triflate at \(-78^\circ C\) using BuLi as base led to the tetramethylated derivative 79 as a single diastereomer, for which an epimerization is no longer possible. Further chemical modifications furnished various tertiary (e.g. 80a and 80c) or secondary (80b) amines or benzoxazines directly as single enantiomers, which remain chiral (80b and 80c) also after cleavage of the chiral auxiliary group (Scheme 22)\(^ {362} \).

The reaction of resorcarenes II with suitable diamines and CH\(_2\)O under high dilution conditions leads to 1,2,3,4-bis-bridged tetrabenzoxazines\(^ {363} \), or in the case of ethylene diamine to a head-to-head connected bis-resorcarene\(^ {364} \). If 2-aminoalcohols are used in the Mannich reaction with resorcarenes, either benzoxazines, oxazine or oxazolidine rings can be formed. In the case of aminooethanol, predominantly the benzoxazine 78 (R\(^ {H} \) = CH\(_2\)CH\(_2\)OH) was detected in solution, while oxazolidines were predominantly obtained with 2-alkylaminoethanols\(^ {365} \).

As with calixphenols I, the different reactivity of \(O \)-acylated and unsubstituted resorcinol rings in the \(C_{2v} \)-symmetric derivatives 76 may be used for selective electrophilic substitutions. Distally disubstituted derivatives were obtained, for instance, by bromination or aminomethylation with secondary amines\(^ {341,342} \). The Mannich reaction of tetrasulphonates 76c and tetrabenzoates 76d with primary amines led to \(C_{2} \)-symmetric bis-benzoxazine derivatives in a regioselective manner\(^ {366} \). Various \(trans \)-cavity bridged compounds were obtained with primary diamines of different length\(^ {366} \), including enantiomerically pure, distally bridged resorcarenes when a chiral secondary diamine was used\(^ {367} \). Removal of the Boc-protection in products obtained by aminomethylation

\[R' = \text{alkyl, aryl} \]
of 76f with secondary amines gave 1,3-diaminomethylated derivatives, which cannot be prepared directly by partial aminomethylation342.

C. Reactions of the Substituents at the Bridges

The acid-catalysed condensation of resorcinol, 2-methylresorcinol and pyrogallol with aldehydes (or their synthetic equivalents) containing hydroxy-, alkoxy-, aryldiazo-, sulphonyl- and B(OH)\textsubscript{2} groups, halogens and double bonds introduces additional functional groups67 which can be further modified.

The tetra-boronic acid 81a was used, for example, to extend the residues R by a phenyl or biphenyl unit368. Acylation of resorcarene 81b containing four pendant double bonds followed by anti-Markovnikov addition of C\textsubscript{10}H\textsubscript{21}SH369 resulted in octaacylated resorcarene derivatives containing four thioether fragments at the narrow rim. The smooth cleavage of acyl groups gave the free octol 81c369. Photochemical addition of AcSH to the double bonds of 81b analogously led to resorcarene 81d footed with four SH groups370. These compounds and their derivatives (Figure 11) were used to form self-assembled monolayers on gold surfaces371.

The selective benzylation (benzyl bromide, K\textsubscript{2}CO\textsubscript{3}, NaI) of the phenolic hydroxy groups in 81e led to the tetrahydroxy derivative 82a. The subsequent mesylation of the aliphatic hydroxy groups with methanesulphonyl chloride and reaction with NaN\textsubscript{3} resulted in the tetraazide 82b. Catalytic hydrogenation (Raney-Ni) and reaction with (Boc)\textsubscript{2}O led to the N-protected amine 82c from which the benzyl groups could be cleaved to give the Boc-protected 81f372. Alternatively, this compound could be prepared by Mitsunobu reaction of 82a with EtOC(O)C(O)NH\textsubscript{Boc}, DEAD (diethyl azodicarboxylate) and PPh\textsubscript{3} in CH\textsubscript{2}Cl\textsubscript{2} followed by saponification/decarboxylation (LiOH/THF–H\textsubscript{2}O)372. A series of amphiphilic resorcarenes with azobenzene residues was prepared starting with 81g which (after etherification of the phenolic hydroxy groups) was converted via the tetraiodide into tetraethers with p-hydroxyazobenzenes373. The analogue of 81e containing four methyl groups at the 2-positions of the resorcinol rings was used to synthesize various cavitands footed with hydroxy, acetoxy and dihydroxyphosphoryl groups67 (see Section VII. D).

Partial epoxidation of the octapivaloate of 81b gave the monooxepoxide. Hydrogenation of the remaining double bonds (H\textsubscript{2}, Pd/C), followed by acid-catalysed hydrolysis of the epoxide ring, oxidative cleavage of the resulting diol and reduction, finally led (after
FIGURE 11. Resorcarene derivatives 81–83 by chemical modification of the substituents at the bridges, introduced by the aldehyde.

D. Cavitands

Probably the most interesting chemical modification of calixresorcinols consists in the intramolecular connection of the adjacent hydroxy functions in neighbouring resorcinol units via suitable bridges. This leads to rigidified, bowl-shaped molecules (general formula III) with an enforced cavity ready to include suitable guest molecules, for which D. Cram has coined the named ‘cavitands’. Examples are given in Figure 12.

The most frequently used bridge is a methylene bridge, easily introduced by reaction with CH₂BrCl in yields up to 65% for the cavitands 84. While originally only the all-cis isomers were used as starting material, leading exclusively to cavitands with an all-axial orientation of the residues R, rctt-isomers derived from 2-methylresorcinol were recently converted in a similar way (6–8 equivalents CH₂BrCl, K₂CO₃, DMF, 60 °C, 10 h) into cavitands with two axial and two equatorial residues R. For rccc-isomers, obviously
FIGURE 12. General formula of resorcarene-derived cavitands. Virtually all residues R discussed above (see Figures 2 and 11) are possible. The indicated modification of the substituent A was mainly done for Y = CH₂. Examples for various bridges Y and their chemical modification are also shown.

the introduction of the last bridge is most difficult, making compounds with only three bridges available in which the two remaining OH groups can be used for the introduction of a different bridge. For rett-isomers this is not possible.

The methyl groups in the 2-position of 84 (A = Me) can be easily brominated with NBS^{380} and the resulting bromomethyl groups can be further substituted by a variety of nucleophiles^{381}. Partial substitution of the bromomethyl groups by potassium phthalimide.
was also reported382. Reduction of the remaining CH\textsubscript{2}Br groups (NaBH\textsubscript{4}) and deprotection by hydrazine led to partially aminomethylated cavitands383 as starting materials for the introduction of various functionalities.

Additional functionalities may also be introduced starting with 84 (A = Br), for instance four CN groups384, or via bromo-lithium exchange and subsequent reaction with appropriate reagents385 four OH386, SH, CHO or COOR groups. Suzuki coupling with phenylboronic acids leads to cavitands with a deeper cavity387 which may be further modified via functional groups introduced in this way by the phenyl residue.

Deepened cavities can be also obtained by bridging with variously substituted benzal bromides388. Although six diastereomers are possible with bridges of this type (CHR), a single isomer was isolated in all cases (85) with yields as high as 56%. Functional groups introduced by the bridging benzal bromide may be used for further reactions389. The cavitand 85a obtained with 3,5-dibromobenzal bromide (85, R' = Br) was further extended by a third row of aromatic residues. Reaction with resorcinol (pyridine, K\textsubscript{2}CO\textsubscript{3}, CuO) led to 85b in an outstanding yield of 88\% (nearly 97\% efficiency for each bridge, more than 98\% for each of the 8 covalent links390; see Scheme 23 below).

Bridging by a single atom was also achieved by silicon (86) and various phosphorus functionalities. Reaction with phenylidichlorophosphine in the presence of pyridine furnished the phosphonito cavitand 87 (X = Ar), a quadridentate ligand for Cu(I), Ag(I), Au(I) and Pt(II)327,391, while bridging with dichloroarylphosphonate gave the phosphate cavitands 88 (X = Ar)392–394. All six possible diastereomers, having different orientations of the P=O group, were isolated in the latter case, while in the former only the isomer with outward-oriented phenyl groups was formed. Reaction with phosphorous di- and triamides gave the cavitands 87 (X = OEt) and 87 (X = NMe\textsubscript{2}, NET\textsubscript{2}), and the latter were converted to the corresponding amidothiophosphates. Bridging with PCl\textsubscript{3}395 and chloromethylidichlorophosphonate396 led to cavitands 87 (X = Cl) and 88 (X = CH\textsubscript{2}Cl) which, due to the presence of four reactive chloro atoms, are starting materials for various further derivatives.

While cavitands with (CH\textsubscript{2})\textsubscript{2} and (CH\textsubscript{2})\textsubscript{3} bridges, less rigid than the single atom bridged compounds, have not gained much interest, cavitands with o-phenylene bridges represent an important class of cavitands with ‘deepened cavities’. Originally they were obtained by reaction with 2,3-dichloroquinoxaline or its 6,7-disubstituted analogues (89)397 while an alternative strategy was recently based on the octanitrocavitand 90 available in yields up to 80\% by reaction with 1,2-difuoro-4,5-dinitrobenzene398. Reduction of the nitro groups and condensation of the resulting phenylene diamine 91 derivatives with 1,2-diketones gave cavitands 92, 93 with cavities large enough in the latter case to accommodate C\textsubscript{60}. Acylation of the eight amino groups in 91, on the other hand, led to cavitands 94 in which the vase conformation399 is stabilized by a seam of intramolecular C=O···H−N hydrogen bonds (self-folding cavitands, see Scheme 23b400). Reaction of calix[4]resorcinols with 5,6-dichloropyrazin-2,3-dicarboxylic acid imide led to 95401, an extended cavitand forming dimers with a large cylindrical cavity, which are held together by intermolecular hydrogen bonds.

Cavitands consisting of more than four resorcinol units have been recently described. Acid-catalysed condensation of 2-methylresorcinol with diethoxymethane in ethanol leads to a mixture of methane-bridged calixresorcinols with different ring size, which was isolated after 30 min. at 60\°C (higher temperature and longer reaction times favour the calix[4]resorcinols as the thermodynamically controlled products). Subsequent reaction with bromochloromethane (DMA, K\textsubscript{2}CO\textsubscript{3}, 60\°C) furnished a mixture of cavitands with different ring size (n = 4–7) which could be separated by column chromatography (3.6\%, 3.6\%, 13.9\% and 1.1\% yields) making these \[n\]cavitands available in gram quantities402. X-ray structures and NMR data revealed a symmetric cone conformation (C\textsubscript{4v}, C\textsubscript{5v}) for
SCHEME 23. (a) Extension of the cavity of 85a by covalent bridging to 85b. (b) Stabilization of the deepened cavity by intramolecular hydrogen bonding in 94. Two enantiomers can be observed due to the directionality of the hydrogen-bonded system

\[n = 4, 5, \text{ while pinched conformations (}C_{2v}\text{ for } n = 6, C_{s}\text{ for } n = 7\text{) are assumed by the larger oligomers.} \]

Cavitands 84 have been used as rigid skeleton to attach four peptide chains as substituent A 403. In these caviteins the four \(\alpha \)-helical peptides are significantly stabilized by their proximity 404. Sugar residues (glucose, maltose, maltotriose) have also been attached to cavitands with A = SH 405.

VIII. MOLECULES CONSISTING OF SEVERAL CALIXARENE STRUCTURES

A. Double Calixarenes

The functional groups and reactions discussed above have been used to synthesize various molecules consisting of two or more covalently linked calixarene structures 406. Figure 13 gives a schematic representation of the main types that have been realized,
illustrating simultaneously the versatility of the calixarene skeleton to build up larger structures. Many examples exist in which two calix[4]arenes are connected via one or two bridges between their narrow rims (A1, A2), their wide rims (B1, B2), or between narrow and wide rims (C2). In the latter case not only was a covalent connection between ‘prefabricated’ calix[4]arenes used, but also a formation of the second calix[4]arene by $2^1 + 1^1$ condensation on the narrow rim.

A highly interesting reaction is the tandem Claisen rearrangement, by which double calix[4/6]arenes singly bridged at the narrow rim (type A1) can be converted into the corresponding double calix[4]arenes singly bridged at the wide rim (type B1). The reaction works even with doubly bridged calix[4/6]arenes as illustrated in Scheme 24.

Oxidation of the t-butylphenol units in the corresponding molecules of type A2 led to tetraquinones of double calix[4]arenes recently described as redox-active ionophors (Cs and Rb selective). Bis calix[4/5/6/8]arenes connected directly via one p-position, a connection easily available by oxidation of the respective tri- to heptaesters, may be seen as a special case of type B1. Triply bridged double calix[6]arenes (analogous to type B2) have been also prepared recently.

Among molecules of type A4, double calix[4]arenes with four ethylene bridges ($X = \text{CH}_2\text{CH}_2$) (calix[4]tubes) should be mentioned as ligands with pronounced selectivity for potassium. They are available in surprisingly good yields (about 50% for the connection of the two calix[4]arenes), while a connection via four bridges at the wide rim (type B4 as analogue to carcerands) is less satisfactory, probably due to the flexibility of calix[4]arenes in comparison with cavitands.

Two calix[4]arenes may be connected also by a spiro-linker derived from pentaerythritol with $X = -(\text{CH}_2\text{O})_2\text{OCH}_2-$ or by two tetravalent atoms ($E, X = \text{Si, Ti}$). In the latter case, centro-symmetric molecules with two open cavities pointing in opposite directions (koilands) are obtained (SiCl$_4$, NaH, THF, 52%) and may form one-dimensional networks in the crystalline state (koilates) when a suitable connector (e.g. hexadiyne) is included in their cavities.

Finally, double calix[4]arenes should be mentioned in which two calix[4]arenes in the 1,3-alternate conformation are connected by two bridges between the narrow (F) or the wide rim (G).

B. Carcerands

‘Carcerands’ are closed-surface, globe-shaped molecules with enforced hollow interiors large enough to incarcerate simple organic compounds (better: molecules), inorganic ions,
or both. Carceplexes are carcerands whose interiors are occupied by prisoner molecules or ions that cannot escape their molecular cells without breaking covalent bonds between atoms that block their escape.\(^{385}\)

The first examples of carceplexes have been synthesized by covalent connection of two cavitand molecules \(\text{III}\) (especially \(\text{79}\)) suitably functionalized in the 2-position of the resorcinol rings (\(A = \text{OH}, \text{CH}_2\text{SH}, \text{CH}_2\text{Br}\) etc.). Figure 14 gives a survey on some of the bridges realized (compounds \(\text{96–105}\)\(^{425}\), illustrating the diversity of molecules thus available, including water-soluble compounds (\(\text{102}\)\(^{425}\) and those with chiral bridges \(Z\) (e.g. \(\text{103, 104}\)\(^{426}\)). While a symmetrical carceplex results if a bifunctional bridging reagent is reacted with a cavitand, desymmetrized carceplexes are available by reaction between two cavitands which are complementarily functionalized; e.g. \(\text{99}\) was obtained by reaction of cavitands with \(A = \text{CH}_2\text{SH}\) and \(A = \text{OCH}_2\text{CH}_2\text{I}\)\(^{427}\). This desymmetrization is more pronounced for molecules composed of a calix[4]resorcinol derived cavitand and a calix[4]phenol (see below).

In general, the formation of the carcerand is not possible in the absence of molecules which can be included, or in other words, the carceplex and not the carcerand is formed. This templating effect was investigated in detail for the smallest bridges (\(4 \times \text{OCH}_2\text{O}\) between the two bowls with \(Y = \text{CH}_2\)) where template ratios between 1 (for \(N\)-methylpyrrolidinone) and 1,000,000 (for pyrazine as the best guest) were established by a series of overlapping competition experiments involving two guests with similar template ratios\(^{431}\). The differences in template ratios are less pronounced for larger bridges within (e.g. \(Y = \text{CH}_2\text{CH}_2\)) and between the bowls (e.g. \(Z = (\text{CH}_3)_4\)\(^{432}\).

Hemicarcerands/hemicarceplexes are similar to carcerands/carceplexes, but distinguished by the possibility of the guest molecule to escape under drastic conditions, e.g. heating under high vacuum. Since the ‘empty’ hemicarcerand cannot collapse, it will uptake any suitable molecule/atom which is offered and this opens the way to include guests which cannot be present (in sufficient concentration) during the closing reaction. The first examples of Cram consisted of cavitands connected by three instead of four bridges, but hemicarcerands with four longer (flexible) bridges have also been prepared (e.g. \(\text{96 (n = 4)}\) or \(\text{105}\)). In principle, the ‘distinction’ between a carceplex and a hemi-carceplex depends on portal size, guest size and shape, solvent, temperature, and even the number of guests\(^{433}\). Hemicarceplexes have been used to study the reactivity of single molecules included in their internal cavity, and isolated in this way from the bulk surrounding medium\(^{434}\).

Cavitands functionalized at the 2-position of the resorcinol rings have been transformed into lantern-shaped derivatives \(\text{106}\), e.g. by bridging the four \(m\)-hydroxybenzyl ether groups (\(A = \text{OCH}_2\text{C}_6\text{H}_4\text{OH}\)) with a suitable tetrakis(bromomethylated) terphenyl derivative. They may exist in two isomeric forms with the functional group \(X\) pointing away from the cavity or into the cavity\(^{435}\). In the latter orientation, it is strongly shielded from the environment with drastic consequences for its reactivity. Photolysis of the \(\beta\)-ketosulphide, for instance, yielded an enol which was stable at room temperature in CDCl\(_3\) in the presence of TFA over days\(^{436}\) (Scheme 25).

C. Further Combinations

The connection of a calix[4]resorcinol-based cavitand and a calix[4]phenol to a carcerand via four bridges at the wide rim was already mentioned. Compounds \(\text{107}\) were prepared by ‘ring closure’ of a precursor, in which the cavitand and the calix[4]arene are connected by two adjacent bridges\(^{263d,437}\). A similar compound with \(\text{O-CH}_2\text{CH}_2\text{-O-bridges}\) was obtained by reaction of a \(p\)-substituted (\(\text{O-CH}_2\text{CH}_2\text{-I}\)) calix[4]arene with the tetrahydroxy cavitand \(\text{84 (A = OH)}\)\(^{338}\). Two different orientations can often
FIGURE 14. General formula IV of carcerands derived from two molecules of III\(^{428}\), and survey on some examples illustrating the variety of different bridges Z. Compounds connected by only three bridges Z have been also synthesized\(^{429}\), as well as compounds with non-identical bridges\(^{426b,430}\).
be distinguished for the included guest (omitted in the formula) in such carcerands with different poles ('carceroisomerism'). An interesting molecule is the ‘head to tail’ combination of a calix[4]arene and calix[8]arene in 108, although the present example shows a collapsed cavity\(^{439}\).

Two calixarenes have also been connected in various ways to porphyrins. 109 may be taken as an example, in which the porphyrin plane separates two ‘chambers’ confined by the calix[4]arenes\(^{440}\). The two self-folding cavitands (compare 94) in the C-shaped isomer of 110 (formed in mixture with the S-shaped isomer) can simultaneously include two different guests\(^{441}\).

An appealing combination of a calixarene with the corresponding calixpyrrole (a *heterocalixarene*\(^{6}\)) was realized with compounds 111, which were synthesized by condensation of the 2-oxopropyl ethers with pyrrole in 32% and 10% yield, respectively\(^{442}\).
There is also the possibility of constructing molecules consisting of several calixarene systems sharing one or two phenolic units. Two opposite phenols are shared (as 1,3,5-substituted branching points) in bicyclocalix[4]arenes 112, which are prepared from \(p \)-bridged calix[4]arenes 7, transforming the \(\text{CH}_2\text{CH}_2\text{COCH}_2\text{CH}_2 \) bridge into a methylene-linked \(\text{p-nitrophenol} \) unit by reaction with nitromalondialdehyde\(^{443}\). Two adjacent phenol units are shared in annelated calix[4]arenes 113, available by direct condensation (in analogy to the \(2+2 \) strategy) of exo-calix[4]arenes with bisbromomethylated dimers\(^{50b,444}\).
Recently, two calix[4]arenes were combined to a catenane via loops connecting the oxygen functions in 1,3-position (114) and calixarenes as stoppers were used in a rotaxane formed by a cyclic amide with a dumbbell of type B1 in Figure 13. Connection of two cavitands via a single C=O bridge between the 2-positions led to a C2-symmetric, propeller-shaped biscavitand.

D. Multicalixarenes

The principles outlined above have also been used to construct even larger molecules consisting of several calixarene substructures. Linear oligomers were constructed by connection between opposite positions at the narrow or wide rim, and cyclic compounds were obtained analogously up to an octamer (analogous to A2 in Figure 13) and a pentamer (analogous to B2). In most cases a mixture of oligomers is formed and single species have to be isolated chromatographically. The quantitative formation of the trimer by metathesis reaction of the diallyl calix[4]arene is a remarkable exception, and also the trimer (compare with E) was formed in 60–69% yield. A trimer consisting of three calix[4]phenols in the 1,3-alternate conformation, linked analogous to F, should also be mentioned. Various branched molecules are known in which calix[4]arenes are linked by a single bridge from the narrow or wide rim to a central molecule, which can be a calixarene again.

Two bridges between adjacent phenolic units were used in the construction of molecules built up by two calix[4]phenols and one cavitand derived from calix[4]resorcinols or vice versa by two cavitands connected by one calix[4]phenol. Examples for...
the corresponding macrocyclic $2 + 2$ combination (holand) were also realized456, but disappointingly these remarkable molecules exhibit no inclusion properties, most probably due to their rigidity.

Cyclization of a tetrahydroxy cavitand (84, $A = \text{OH}$) protected at two opposite rings by benzyl ether groups (117) with bromochloromethane under dilute, basic conditions led to a cyclic trimer (118) and tetramer (119) after hydrogenolysis457 (Scheme 26). The tetramer can again react with CH_2BrCl in the presence of pyrazine, a good guest and template, to form a bis-carceplex (120) with two adjacent cells, each containing one pyrazine457,458. A similar bis-capsule (intramolecularly hydrogen bonded via $\text{O} - \text{H} \cdots \text{O}^-$ bridges) can be formed by deprotonation with DBU (1,3-diazabicyclo[5.4.0]undecene-7) as a bulky base. Different guests could be observed in the two chambers in this case459. A giant carceplex, permanently including 3 DMF molecules, was prepared from the trimer 118 by capping reaction with tris(bromomethylated)mesitylene460, and the construction of even larger carceplexes seems likely in the future.
SCHEME 26. Formation of oligo-cavitands and bis-carceplexes (R = CH₂CH₂C₆H₅, guest pyrazine omitted): (a) Bn-Br, 15%; (b) CH₂BrCl; (c) H₂/cat
IX. CONCLUSIONS AND OUTLOOK

This last example demonstrates already one of the future lines. As the chemistry of calixarenes and resorcarenes is more and more understood, these fascinating molecules lend themselves as building blocks for the construction of increasingly larger and more and more sophisticated structures. It is hoped that this fascination could be transferred at least in part to the reader.

A complete survey on calixarenes was far beyond the scope of this chapter. We therefore concentrated mainly on the chemistry, namely the synthesis and the (basic) chemical modification of calixarenes, which form the basis for all further studies. Further interesting aspects, such as inherent chirality of calixarenes, catalytic or biomimetic effects, larger structures formed via self-assembly in solution or in monolayers could be stressed only shortly. Important properties such as complexation of cations, anions and of neutral guests, including fullerenes, could not be treated at all. The same is true for applications arising from these properties in such different areas as sensor techniques, chromatographic separations or treatment of nuclear wastes. In all these cases, the reader is referred to special reviews.

X. ACKNOWLEDGEMENT

I am very grateful to Prof. Silvio E. Biali (Jerusalem) for critical comments and many valuable suggestions.

XI. REFERENCES AND NOTES

1. For general reviews on calixarenes see:
2. The original description as ‘upper’ and ‘lower rim’ sticks too much to the vision of a calix and is impeding especially for the larger, more flexible members and for molecules built up by several calixarene subunits.
3. No general consent exists on the trivial name of these compounds. This short form ‘resorcarenes’ has the advantage of comprising the same number of syllables as ‘calixarenes’. It would be reasonable to use ‘calixarenes’ as the general name for the whole class of such [1n]metacyclophanes, and to distinguish, where necessary, between calixphenols, calixresorcinols, calixnaphthols, calixpyrogallols etc.
6. Names such as calixpyrroles, calixpyrins, calixfurans, calixpyridines, calixinindoles, calixbenzofurans, calixureas have been created in analogy to calixarenes; cationic macrocycles by N-benzylation of pyridine or pyrimidine and various cyclic oligomers with S, NR, SiR2 or Pt(II)en bridges could be mentioned. For a short review see: M. Vysotsky, M. Saadioui and V. Böhmer, *Heterocalixarenes*, in Reference 1b, p. 250. One of the most recent examples might be the calix[4]azulene: D. A. Colby and T. D. Lash, *J. Org. Chem.*, 67, 1031 (2002).
32. The numbers characterize the phenolic units in the two different fragments.
43. M. Tabatabai and V. Böhmér, unpublished results.

65. Lewis acids have also been used as catalyst:
70. 2-Butyrylresorcinol reacts with para formaldehyde in the presence of KOBut to give 58% of the cyclic tetramer: H. Konishi and Y. Iwasaki, *Synlett*, 612 (1995).

77. This cup-shaped conformation was the reason for the name ‘calixarene’.

78. A regular (or still time-averaged) cone conformation is discussed for calix[5]arenes while calix[8]arenes most probably adopt a ‘pleated loop’ conformation with a regular ‘up and down’ arrangement of the phenolic units.

79. A ‘winged’ or ‘pinched’ conformation has been suggested:

80. This is in contrast to the hydroxy compound, where no intermediate of the cone-to-cone interconversion has yet been detected experimentally.

85. I. Thondorf and J. Brenn, unpublished results.

108. A. Notti, S. Pappalardo and M. F. Parisi, private communication; see also Reference 187.

109. The cholesterol ester shows a coalescence of the signals of the methylene protons at higher temperatures, suggesting a passage of the p-t-butyl groups through the annulus.

115. For the stereochemical outcome of the reaction of 2a with ethyl bromoacetate under different reaction conditions see:

(b) Reference 111.

118. For bis(crown ethers) in the 1,2-alternate conformation see:

120. For recent examples see:

121. See for instance:

19. Calixarenes

129. See for instance:
149. It has been suggested to distinguish the single phenolic units by letters A, B, C, . . . instead of 1, 2, 3, . . . since numbers are also used for the single carbon atoms of the metacyclophane skeleton.
150. The same is true for calix[5]arenes where, however, two regioisomers for trifunctionalized compounds exist: 1,2,3 or A,B,C and 1,2,4 or A,B,D.
1442 Volker Böhmer

(b) For a chiral example derived from a calix[4]arene of the ABAB type (R1 = R3, R2 = R4) see: V. Böhmer, D. Kraft and M. Tabatabai, J. Incl. Phenom., 19, 17 (1994).

165. It was mentioned already earlier by Gutsche that the 1,2-bis(3,5-dinitrobenzoate) of 2\textsubscript{a} can be obtained from the 1,3-isomer in the presence of imidazole; see Reference 147.

(b) An anti--syn orientation is also claimed for several trisulphonates; see Reference 98.

168. Monobenzoylation of 1,3-diethers under similar conditions leads also to the anti–syn isomers; see Reference 122a.

(b) For a chiral example derived from a calix[4]arene of the ABAB type (R1 = R3, R2 = R4) see: V. Böhmer, D. Kraft and M. Tabatabai, J. Incl. Phenom., 19, 17 (1994).

In these series ligands with high selectivity are found.

(c) The first examples were obtained from the 1,2-dimethyl ether; see Reference 158.

(b) S. Kanamathareddy and C. D. Gutsche, *J. Am. Chem. Soc.*, 115, 6572 (1993). Aliphatic diacid dichlorides have been successfully used for 2,5-bridging of 1,4-di-p-tolyl ethers.

For doubly capped phosphates and similar compounds see Reference 190.

214. J. Gloede, S. Ozegowski, D. Matt and A. De Cian, *Tetrahedron Lett.*, 42, 9139 (2001); analogous reactions were carried out with the smaller calixarenes.

221. Perhaps this is also due to the fact that consequently less effort has been invested in the other phenols.

224. For further examples of tetraazo calix[4]arenes see:
19. Calixarenes

19. Calixarenes

278. For the synthesis of calixarenes with one or two CHR bridges by condensation see Sections II.C and II.D.

284. For a review see: S. E. Biali, *Oxidation and Reduction of Aromatic Rings*, in Reference 1b, p. 266.

318. (a) This oxidation may be the reason why attempts of nitration or ipso-nitration were not successful; see however: C. Desroches, S. Parola, F. Vocanson, M. Perrin, J.-M. Létoffé and J. Bouix, *New J. Chem.*, **26**, 651 (2002).

320. Compare the diastereomeric resorcarenes. Unfortunately, a different description is often used (e.g. Reference 319), in which the relative configuration is not related to a reference group but to the preceding S–O group while going around the macrocycle. The following relation exists: \(rccc \equiv ccc, rctt \equiv cct,\) \(rtct \equiv ttt.\)

337. A partial transformation of functional groups should be called selective only, if the yield is (significantly) higher than the statistically expected yield.

339. The reaction of the octamethyl silyl ether of resorcarenec 2 with four equivalents of PF$_2$Cl afforded chiral C$_4$-symmetric tetrakis-difluorophosphites; compare Reference 329b.

343. See for instance:

(c) A. Shivanyuk, *Chem. Commun.*, 1472 (2001).

358. The O-acetylation was also reported (see References 359a,c) but could not be reproduced. Cleavage of the benzoxazines and N-acetylation occurred instead: C. Schmidt, E. F. Paulus, V. Böhmer and W. Vogt, *Tetrahedron*, 53, 10709 (1997).

379. For early examples of cavitands derived from rcct- and rctt-resorcarenes see Reference 86b.

19. Calixarenes

399. Cavitands flutter between a C_{2v}-symmetric kite conformation (favoured at low temperature) and a C_{4v}-symmetric vase conformation (favoured at higher temperatures) in which the walls are upright oriented; see Reference 397a.

407. Examples for A_1:
 (c) See also Reference 122d

408. Examples for A_2:

409. Examples for B_1:
 (c) See also References 229, 234a,c.

410. Examples for B_2:

423. Examples for F:

424. Examples for G:
(c) See also Reference 125a.

433. C. Naumann and J. C. Sherman, Carcerands, in Reference 1b, p. 199.

19. Calixarenes

For similar bis-cavitands with a rigid connection see:

(b) F. Sansone, M. Segura and R. Ungaro, *Calixarenes in Bioorganic and Biomimetic Chemistry*, in Reference 1b, p. 496.

464. For early examples see:

(b) P. Thuéry, M. Nierlich, J. Harrowfield and M. Ogden, *Phenoxide Complexes of f-Elements*, in Reference 1b, p. 561.

469. (a) F. Cadogan, K. Nolan and D. Diamond, *Sensor Applications*, in Reference 1b, p. 627.
(b) N. Sabbatini, M. Guardigli, I. Manet and R. Ziessel, *Luminescent Probes*, in Reference 1b, p. 583.
(c) R. Ludwig, *Turning Ionophores into Chromo- and Fluoro-Ionophores*, in Reference 1b, p. 598.

470. R. Milbradt and V. Böhmer, *Calixarenes as Stationary Phases*, in Reference 1b, p. 663.
Abscisic acids, synthesis of 1237, 1242
Absorption spectroscopy, of phenoxy radicals 1127–1131
Accufluor, as fluorinating agent 655
Acenaphthenequinone monoxime, tautomerism in 360
Acenaphthoquinones—see 2-Hydroxyacenaphthoquinone
Acetonitrile, complexes with phenol 170–177
dielectric constant of 170
Acetophenones—see also Fluoroacetophenones, Hydroxyacetophenones
13C chemical shifts for 338
Acetoxylation 1167
Acetylcholine esterase mimic 1406
α-Acetylhydroxy[2,2]paracyclopahnes 639
Acetylnaphthols, OH chemical shifts for 340
1-Acetylsugars 674
Acid–base dissociation 992
Acid–base equilibria, of phenoxy radicals 1132–1135
Acidity,
gas-phase 5, 97–100
increase upon electronic excitation 108
in solution 101
intrinsic 101–103
Acid strength 224
Acoradienes, electrosynthesis of 1177
Acourtia isocedrene, retrosynthetic pathways toward 1185, 1188
Acrylophenones, formation of 631
Acylation, of phenols 629–632, 933, 934
fluorescent labels for 951
C-Acylation 685, 686
O-Acylation,
of calix[n]arenes 1387–1389
of calixresorcinols 1417, 1418
Acylbenzenediols, thermochemistry of 244
Acylphenols—see also o-Acetylphenol
hydrogen transfer in 1020–1022
thermochemistry of 232, 233
4-Acylphenols, photooxidation of 1084
1-Adamantyl halides, reactions of 677
p-(1-Adamantyl)phenols, synthesis of 606, 607
Aerophobin-1, biosynthesis of 1315, 1316
Aeroplysinin-1, synthesis of 1327, 1328
Aerothionin, biosynthesis of 1315, 1316
Ageing, free-radical theory of 140, 141
Agent Orange 12
Aggregation 365
Alcoholic beverages, analysis of 957, 960, 961, 972, 973, 985, 1000
phenolic compounds in 940
Aldehydes—see also Benzaldehydes
addition of diethylzinc to 693
α-amino—see α-Amino aldehydes
asymmetric silylcyanation of 694, 695
Aldol condensation,
intermolecular 433–437
intramolecular 426–433
Aldol reaction, asymmetric 691
Alizarin, thermochemistry of 248
Alkanols, comparison of phenol with 228, 229
C-Alkenylation 680, 681
Alkenylphenols, addition reactions of 1022–1024
Alkoxides, diasteromeric 1396
4-Alkoxy cyclohexadienones, synthesis of 651, 654
Alkoxyhydroindolenones, synthesis of 652
Alkoxyhydroquinolones, synthesis of 652
Alkoxyphenols, thermochemistry of 236, 237
3-Alkoxyphenols, reactions with aldehydes 1382
2-(Alkylaminomethyl)phenols, IR spectra of 370
Alkylation,
 of calixarenes 1403
 of phenols 606–629, 941
C-Alkylation 676–680
O-Alkylation 662–670
 of calix[n]arenes 1387–1389
 of calixresorcinols 1417–1419
Alkylbenzenediols, thermochemistry of 242, 243
Alkylphenol ions, metastable 268
Alkylphenols — see also Methylphenols,
 n-Pentadecylphenol
 antioxidant activity of 1349
 substituent effects on 860, 861
 fragmentation of 265–270
 in wastewater effluents 1356
 irradiation of 1104
 isomerization of 749
 mass spectra of 288, 298
 photooxidation of 1084
 thermochemistry of 229–231
Alkyl phenyl ethers, ionized 299
Alkyl propiolates, reactions with phenol,
 palladium-catalyzed 681
Alkyl radicals 1103
2-Alkylresorcinols 1382
(1-Alkynyl)carbene tungsten complexes,
 reactions of 669
Allylation, asymmetric 665
C-Allylation 677
O-Allylation 664, 665
Allyl carbonates, as allylating reagents 664
π-Allylpalladium compounds 664
Allylphenols, rearrangement of 750, 752–758
o-Allylphenols 301
 photocyclization of 1038–1047
 competition with dehalogenation 1042
 synthesis of 460–466, 613, 624
Allyl phenyl ethers 301, 302
 rearrangement of 460–466, 613
Aluminum tris(2,6-diphenylphenoxide) 688
Amaryllidaceae alkaloids 1289
 synthesis of 1246, 1249
Aniline, ionized 299
Anilines — see Thiacalix[4]anilines
Anilinyl radicals 1109
Anion/molecule complexes 316, 318
Anions — see also Heteropolyanions
 cresolate 315
 hypericin 345
 naphtholate 506, 512, 515
 phenol 310
 phenolate 93–97, 110, 315, 336, 495–497, 638
 salicylate 371
Anisole,
 proton affinity of 88, 89
 protonated, mass spectrum of 123–125
Anisolines — see also 4-Bromoanisole,
 Fluoroanisolines, Hydroxyanisolines
 anodic oxidation of 1177
Anisotropic solvents 368
Anisotropy, caused by OH group 339
Anthocyanins 957, 960, 965
 IR spectra of 368, 380
 LD spectra of 380, 381
 Raman spectra of 380
 tautomerism in 357
Anthraquinones — see also
 1,8,9-Anthracenetriol 380 — see also
 1,8,9-Trihydroxyanthracene
 Anthracenones — see also
 1,8-Dihydroxy-9(10H)-anthracenone
Anthracin, chemical shifts for, isotope effects on 346
 IR spectra of 368, 380
 LD spectra of 380, 381
 Raman spectra of 380
 tautomerism in 357
Anthraquinones — see also
 Hydroxyanthraquinones
 13C chemical shifts for 338
 synthesis of 444, 446, 447, 1170, 1239, 1240, 1243
Anthrals, enthalpies of formation for 227–229
Anthropogenic compounds, non-estrogenic 925
Antibiotics, phenolic 995
Anticarcinogenicity 913
Antimutagenicity 913
p-Aminophenol,
 as MALDI matrix 324
 ion/molecule adducts of 314
3-Aminophenol, ion/solvent adducts for 296
Aminophenols, thermochemistry of 234, 235
1-Aminopyrene, photoacidity of 503
Aminoquinones, formation of 1076
Aminyl radicals 1110
AM1 method 982
Amperometric detection (AMD) 983, 984
Analytical chemistry, acronyms used in 912
 computational methods used in 929
Anharmonic effects 371, 377, 382
Anharmonicities, of OH and OD stretching modes 82, 83
Aniba neolignans 1180
Aniline, ionized 299
Anilines — see Thiacalix[4]anilines
Anilinyl radicals 1109
Anion/molecule complexes 316, 318
Anions — see also Heteropolyanions
 cresolate 315
 hypericin 345
 naphtholate 506, 512, 515
 phenol 310
 phenolate 93–97, 110, 315, 336, 495–497, 638
 salicylate 371
Anisole,
 proton affinity of 88, 89
 protonated, mass spectrum of 123–125
Anisolines — see also 4-Bromoanisole,
 Fluoroanisolines, Hydroxyanisolines
 anodic oxidation of 1177
Anisotropic solvents 368
Anisotropy, caused by OH group 339
Anthocyanins 957, 960, 965
 IR spectra of 368, 380
 LD spectra of 380, 381
 Raman spectra of 380
 tautomerism in 357
Anthraquinones — see also
 1,8,9-Anthracenetriol 380 — see also
 1,8,9-Trihydroxyanthracene
 Anthracenones — see also
 1,8-Dihydroxy-9(10H)-anthracenone
Anthralin, chemical shifts for, isotope effects on 346
 IR spectra of 368, 380
 LD spectra of 380, 381
 Raman spectra of 380
 tautomerism in 357
Anthraquinones — see also
 Hydroxyanthraquinones
 13C chemical shifts for 338
 synthesis of 444, 446, 447, 1170, 1239, 1240, 1243
Anthrals, enthalpies of formation for 227–229
Anthropogenic compounds, non-estrogenic 925
Antibiotics, phenolic 995
Anticarcinogenicity 913
Antimutagenicity 913
Antioxidant activity 842–845
practical limit to 899, 900
Antioxidants — see also Co-antioxidants
analysis of 941, 947, 949, 955, 956, 960, 961, 981, 982
as food preservatives 982
biologically active 913
calculations on 895–899
chain-breaking 840, 874
efficiency of 850–895, 900
media effects on 876–895
structural effects on 859–876
future prospects for 899–901
hydrogen atom donating ability of 865–867
in aircraft fuel 990
in alcoholic beverages 973
in drinking water 963
induction period for 843
in foodstuffs 925
inhibition rate constants of 992
in lipid membranes 884–895
electrostatic effects on 888, 889
factors controlling 886–892
synergistic effects between 889–891
in liposomes 852, 876
in low-density polyethylene 997
in micelles 852, 876, 884, 894
in plant extracts 966
phenols as 15, 139–143, 839–901, 1349
substituent effects on 860, 861
thermochemistry of 179
reaction products of 845–850
stoichiometric factors for 842–845
measurement of 859
substituent effects on, calculation of 897, 898
water-soluble 885
Antioxygenicity 913
Antipyrine 968
Antitumour agents 641
Arbuzov reaction 1404
Arene oxides, K-region 721
Arenepolyols, thermochemistry of 252, 253
Arenolquinones, thermochemistry of 248–250
Arenols — see also Arenepolyols,
Hydroxyarenes
definition of 225
tautomeric 250–253
thermochemistry of 227–240, 250–253
Aromaticity 95
Arylarnines, as phenol precursors 399, 400
O-Arylation 670–673
Arylazanaphthols, thermochemistry of 252
Arylazophenols,
tautomerism in 724–726
thermochemistry of 252
Aryl benzoates, Fries rearrangement of 642, 643
Arylbismuth 671, 673
Arylboronic acid 671, 673
Arylbutenes, formation of 613
Aryl-2-cyclohexenones 653
Aryl ethers — see also Allyl aryl ethers, Diaryl ethers, Phenyl ethers, Propargyl aryl ethers
formation from calixarenes 1387
Aryl halides, as phenol precursors 396, 397
N-Arylhydroxylamines, isomerization of 801–805
oxidation of 419
3-Arylinoles, synthesis of 1236
Aryl ketones, oxidation of 424, 425
Aryloylum cations 179
Asatone, synthesis of 1178, 1179
Ash, from incineration of municipal waste, phenolic compounds in 938
Asperitinin, synthesis of 1327, 1328
Aspirin 10, 11
Atmospheric pressure chemical ionization (APCI) techniques 319
Atomic emission detection (AED) 937
Atomic softness 90
Atropisomers 1390, 1391
NMR spectra of 1391
Aurones 1297, 1301
Autofluorescence 994
Autoxidation 841, 842
accelerated, of methyl linoleate 982
classical rate law of 885
inhibition by phenols 842–850
deuterium isotope effects on 844
efficiency of 850–895
retarders of 843, 844
Aziridination, asymmetric 702
Azocines, formation of 1060
Azo dyes 950
Azoxy compounds, oxidation of 419

Badger–Bauer rule 555
Badger-type relations 133
Baeyer–Villiger oxidation 424, 647, 701, 799
Baker–Venkataraman rearrangement 740, 743, 778
Bamberger rearrangement 419, 801
Basicity, gas-phase 5, 261
Bastadin-6, synthesis of 1315, 1319
Butzellines 1337
BE-i0988 1306
Benzaldehydes — see also
Fluorobenzaldehydes,
Hydroxybenzaldehydes
oxidation of 419, 420, 422, 423
Benzamides — see 2-Hydroxybenzamide
Benzanilides — see 2-Hydroxybenzamidine
Benzannulation, in synthesis of phenols 450–459
Benzazurins, tautomerism in 357, 358
Benzene,
exposure to 920
oxidation of 17
Benzenediols — see also Aroylbenzenediols,
Alkylbenzenediols, Chlorobenzenediols,
Dihydroxybenzenes, Nitrobenzenediols
thermochemistry of 242–246
Benzimidazoles, hydrogen transfer in 1025
Benzofurans — see also Dibenzofurans,
Dihydrobenzofurans
formation of 1255, 1256
Benzoic acids — see also Hydroxybenzoic acids
fluorination of 646
Benzoamines — see also Hydroxybenzoin
complexes with phenol 177, 178
Benzophenones — see also Hydroxybenzophenones
rearrangement of 723
Benzopyrans, formation of 619
Benzylamines — see p-Hydroxybenzylamine
Benzylic cleavage 272
Benzylphenols, synthesis of 459, 460
Biphenyls — see also Hydroxybiphenyls
polychlorinated, determination of 933
Bis(3-alkoxybenzoyl) peroxides, reactions of 1257, 1260
Bis-anhydrides 1406
Bis-carplexes 1434
Bis-cavitands 1432
Bis-crowns, of calixarenes 1396
2,6-Bis(diethylaminomethyl)phenol di-N-oxide 355
Bishomooxacalix[4]arenes 1378
Bishydroxymethylated phenols, thermal dehydration of 1379, 1380
Bismuth compounds, as oxidants 1330–1332
Bis(1-nitroso-2-naphtholato)metal(II) complexes, as oxidation catalysts 1203, 1204
Bis-phenol A 619, 620, 1348, 1357, 1360, 1487, 1488
Bis-phenols, condensation with formaldehyde 1377
Bis(pyridinium) iodotetrafluoroborate, as iodinating agent 651
Bis-resorcarenes 1420
N,N′-Bis(salicylidene)phenylene diamine, tautomerism in 359
Bis-spirodienones 1410, 1411
Bleaching mills, chlorinated phenolic compounds from 932
B3LYP/cc-pVTZ calculations 372–374
B3LYP/6–31G* calculations 378, 383, 385
Boc-protection 1406
Bond angles, in mono-/poly-hydroxybenzenes 200, 201, 203, 204
Bond dissociation, O–H 129–143
Bond dissociation energy 5, 224, 895
O–H 139, 140, 982
Bond dissociation enthalpy 3
Bond lengths, in mono-/poly-hydroxybenzenes 200, 201, 203, 204
Bond orbitals, natural 3
Borins — see 1,3,2-Dioxaborins
Bovine serum albumin 978
Boyland–Sims oxidation 409
Boyland–Sims rearrangement 801
Bromination 649–651
of calixarenes 1403
Subject Index

of calixresorcinols 1419
para-selective 651
solid-phase 654
solvent effects 650
Bromine atoms, as radiolytic products 1101, 1102
Bromoalkanes, irradiation of 1101
4-Bromoanisole, protonated, mass spectrum of 121, 123
Bromocyclohexadienones, as intermediates in electrophilic bromination of phenols 650
synthesis of 651
Bromonium tetrafluoroborate, as brominating agent 651
4-Bromophenol, protonated, mass spectrum of 121, 123
Bromophenols, electrooxidation of 1159, 1163
fragmentation of 275
photolysis of 1018
N-Bromosuccinimide, as brominating agent 649, 650, 654
Bromoxynil 1073, 1350
Brønsted acidity 498, 499, 507, 524
Brønsted acids, as catalysts 612, 642–645
extremely strong neutral 312
Brønsted basicity 499
Brønsted relation 522
Brunauer–Emmett–Teller (BET) specific surface areas 944
Bucherer reaction 401, 402
Buckingham formula 170
Burechellin, synthesis of 1250, 1251
1-(t-Butylperoxy)-1,2-benziodoxol-3(1H)-one, as oxidant 1224, 1233
n-Butylphenol, mass spectrum of 268
p-t-Butylphenol, acid-catalyzed condensation of 1371, 1372
bromination of 650
formation of 616, 620
sulfur-bridged dimer of 1380
t-Butylphenols, bromination of 654
IR spectra of 369
Cacalal, formation of 1266, 1269
Cacalol, oxidation of 1266, 1269
Caesium carbonate, as catalyst for Williamson synthesis 663
Caffeic acid conjugates 913
Calixarenes—see also Aminocalixarenes,
Calix[8]arenes, Homocalixarenes,
Iodocalixarenes, Multicalixarenes,
Nitrocalixarenes, Thiacalixarenes
as stoppers 1432
chemical shifts for, 17OH 341
chirality of 1385, 1403, 1435
conformation of 1384–1387
1,2-alternate 1384, 1391
1,3-alternate 1384, 1391, 1396, 1427
boat 1385
chair 1385, 1386
cone 1384–1387, 1391
cone-to-cone inversion 1413
diamond 1386
partial cone 1384, 1385, 1391
definitions of 1370
double 1425–1427
hydroxy groups in, position of 1370, 1371
replacement of 1401, 1402
mass spectra of 320–322
monodehydroxylated 1411
nitration of 633–635
spherand-type 1411
synthesis of 1377–1384
by fragment condensations 1374–1376
by one-pot procedures 1371, 1372, 1378
stepwise 1373, 1374, 1380
use in chromatographic separations 1435
Calix[4]arenes—see also
all-homo 1378
annelated 1431
conformation of 1384, 1385, 1389, 1391, 1392, 1427
crown ethers of 1395–1398
wide-rim 1405
diesters of 1393, 1394
diethers of 1393, 1394
exo–endo 1378
monoesters of 1392, 1393
monoethers of 1392, 1393
perhydroxanthene derivatives of 1411, 1413
reactions with di-multi-functional reagents 1395, 1396
synthesis of 1374–1376, 1378
tetracyclohexanol derivatives of 1411, 1413
tetraesters of 1392
triesters of 1393, 1394
triethers of 1393, 1394
with substituted bridges 1378
Calix[5]arenes,
 conformation of 1390
 crown ethers of 1396
 synthesis of 1374, 1375
Calix[6]arenes,
 as catalysts, in phenol O-alkylation 662
 crown ethers of 1397–1400
 partial ethers/esters of 1394, 1395
 synthesis of 1374
Calix[8]arenes,
 crown ethers of 1400, 1401
 protected 1395
 reactions with isopropyl chloride 609, 611
Calix[4]-bis-crowns 1398
Calix[4]crowns, 1,3-dihydroxy- 1395
Calixcryptands 1396
Calix[4]cyclohexanols 1411, 1413
Calix[4]cyclohexanones 1413
Calixhydroquinones 1409, 1410
Calixnaphthols 1410
Calix[4]pyrogallol 1417
Calixpyrroles 1430
Calixquinones 1409, 1410 — see also
Calixhydroquinones
Calixresorcinols 1370 — see also Resorcarenes
 electrophilic substitution reactions of
 1419–1421
 reactions of the hydroxy groups
 1417–1419
 reactions of the substituents at the bridges
 1421, 1422
 synthesis of 1381–1384
 trans-cavity bridged 1420
Calix[4]resorcinols,
 conformation of 1385–1387
 synthesis of 1385–1387
Calix[4]spherands 1396
Calixsugars 1405
Calix[4]tubes 1427
Cannabinols — see Hexahydrocannabinol
Capacity factors 954, 970
Capacity ratios 954
Capillary chromatography 962
Capillary electrochromatography (CEC) 953
Capillary electrophoresis 983
Carbenes,
 formation of 1057–1059, 1072
 insertion into solvent molecules 1042, 1043
Carbon,
 activated 945, 946
 derived from novolac resins 1488
 derived from resole resins 1488–1491
Carbon fibre microelectrodes 982
Carbonization 1489, 1490
Carbon monoxide, expulsion of 275, 302, 314, 315
 from phenol radical cations 263–265, 289
Carbon paste electrodes (CPEs) 955, 981, 982
Carbon tetrachloride solutions, radiolysis of 1100, 1101
Carbonyl reduction, asymmetric 691, 692
Carboxamides — see N-Fluorocarboxamides
2-Carboxy-4′-hydroxyazobenzene, as MALDI matrix 323
C-Carboxylation 685–687
Carceplexes 1428 — see also Bis-carceplexes,
 Hemicarceplexes
Carcerands 1427–1429 — see also
 Hemicarcerands
Carceroisomerism 1430
Carpanone, synthesis of 1311
 electrochemical 1159, 1163, 1206
 using O2—Co(II)(salen) complex 1206,
 1207, 1209
Carvacrol complexes 365
Catalysis, phase-transfer 662
Catechins 934, 965
 as antioxidants 894
Catechol 236
 acylation of 631
 thermochemistry of 242
Catecholamines 871, 956, 978
Catechol monomethyl ether, mass spectrum of 289
Catechol oxidase 978, 981
Catechols 975, 976 — see also
 (ω-Phenylalkyl)catechols
 as antioxidants 872, 895, 901
 calculations for 898, 899
 effect of intramolecular hydrogen bonding on 871
 cytotoxicity of 874
 identification of, in green tea 305
 mass spectra of 272–275
 synthesis of 432
Catenanes 1432
Subject Index 1635

‘Catherine wheel’-type structure 67
Cation exchange resins 620
Cations—see also Dications
arlyloxylium 179
hydroxybenzyl 295
hydroxyphenyl 273–277
phenoxy 273–277, 289
Cavitands—see also Bis-cavitands,
Oligocavitands
resorcarene-derived 1421–1425
self-folding 1430
Caviteins 1425
C18-bonded silica 944
C18 cartridges 946
CEC 953
8,14-Cedranoxide, electrosynthesis of 1186, 1189
2-epi-Cedrene-isoprenologue, electrosynthesis
of 1186, 1189
Cephalamine, synthesis of 1312
Cerium compounds, as oxidants 1333, 1335–1337
Chalcones,
hydrogen transfer in 1027, 1028
photochemical double-bond isomerism in 1030
photochemical oxidative dimerization of 1032
photochromic 1029
photocyclization of 1028–1030
CHAOS-B program 991
Charcoal, activated, phenol adsorption on 944
Charge-stripping (CS) mass spectrometry 275
Charge-transfer (CT) complexes 1021
Chelation, in intramolecular hydrogen bonding
371, 377
Chelation intermediates 683
Chemical ionization (CI) mass spectrometry
291–298
Chemical shifts,
13C 338, 339
isotope effects on 358
patterns of 339
deuterium isotope effects on 342–349
relax effect in 346
19F, isotope effects on 358
for phenolate anion 336
15N, isotope effects on 358
17O,
calculation of 366
in studies of tautomerism 356, 357, 359, 360
OH 336–338
relationship with temperature 336, 337
17OH,
hydrogen bonding effects on 340, 341
solvent effects on 341
substituent effects on 339, 340
Chemiluminescence 981
Chemiluminescence detection (CLD) 995
Chemometrics 929
Chlorination 649
Chlorine atoms, in one-electron oxidation
1100, 1101
Chlorine disinfection 925
Chlorins, reactions of 1082
Chlorobenzenediols, thermochemistry of
244–246
γ-Chlorobutyroyl chloride, as acylating agent 640
Chlorocyclohexadienones, synthesis of 651
4-Chloro-1,2,3-dihydroxybenzenes 1085
4-Chloro-1-hydroxynaphthalene, irradiation of 1073
Chloromethylation, of calixarenes 1403
2-Chloro-4-nitrophenol, gas-phase acidity of
312
p-Chlorophenol, NICI mass spectrum of 314
Chlorophenols—see also Pentachlorophenol,
Polychlorophenols, Tetrachlorophenols
determination of 933, 954, 964
photooxidation of 1085–1087
Chlorous acid, as oxidant 1271, 1272
Chromans, formation of 677
2H-Chromenes, synthesis of 1242, 1246
Chromium compounds, as oxidants 1278, 1288
Chrysazin, IR spectrum of 383, 384
Chrysophanol, synthesis of 444
CI/CID mass spectrometry 296
CIDEP studies, of photooxidation 1017
CIDNP studies 637
Cinnamic acid derivatives 960—see also
2,4-Dimethoxycinnamic acid esters
Cinnamic acids—see Hydroxycinnamic acids,
trans-4-Hydroxy-α-cyanocinnamic acid
Circular dichroism 992
Claisen condensation,
intramolecular 426–433
simultaneous Michael addition with 436, 437
Claisen rearrangement 613, 624, 761–769
aromatic 460–466
asymmetric 693
tandem 1427
Clark oxygen electrode 977, 979
Claycop, use in nitration 633
Cluster formation 929
Clustering energies, gas-phase 224
CMPO derivatives 1406
Co-antioxidants 892
Cobalt–amine complexes, as oxidation
catalysts 1199, 1201, 1205, 1206, 1209, 1211
Cobalt compounds, as oxidants 1287, 1288, 1302, 1303
Cobalt(II)–phthalocyaninetetrasulfonate, as oxidation catalyst 1202
Collision-induced dissociation (CID) mass spectrometry 275, 293
Complexes,
 formation in UV-visible detection methods 988–990
 hydrogen-bonded—see Hydrogen-bonded complexes
 proton-transfer 363, 364
 stereoisomeric 576
 weak 364–366
Concave bases 1399
Condensed phases 224, 225
Conformation maps, of dihydroxybenzenes 205–208, 210
Coniferyl alcohol 868
Copper–amine complexes, as oxidation catalysts 1194, 1197, 1200
Copper compounds, as oxidants 1286, 1288, 1305–1307
Copper(I) complexes, binuclear, as oxidants 1192, 1195, 1198
Copper(II) perchlorate, as allylation catalyst 677
Core valence bifurcation index 75, 76
Coreximine, formation of 1306
Cotitration studies 335
Coulometric arrays 960, 961
Coumarans—see also Phenylcoumarans
 formation of 753–758
Coumaric acid 1057
Coumarin 1058
Coumarinone, synthesis of 1289
Coupled clusters 3
Coupling, with diazonium ions 987, 988
Coupling constants 349, 350
 use in description of tautomeric equilibria 358, 359
anti-Cram addition 688
Cram-model intermediates 683
Cresol oil 1350, 1351
O-Cresol,
 mass spectra of 265, 266, 280, 281
 reactions with cumene hydroperoxide 607
P-Cresol,
 mass spectra of 265, 266
 protonation of 263
 reactions with cumene hydroperoxide 607
4-Cresol, as dopand 365
Cresolate anions 315
Cresols—see also α,α,α-Trifluorocresols
 t-butylation of 319
 electrolysis of 1167
 radiolysis of 1103
M-Cresyl acetate, Fries rearrangement of 640
Crinine 1289
Crininone, synthesis of 1289

Critical points 31
Cross-coupling reactions 1216
 oxidative 1292, 1297, 1299
Crosslinking 1100
Crown ethers, of calixarenes 1396–1399—see also Calix[4]crows
Cryptands—see Calixcryptands
Crystal effects, on LD IR spectroscopy 368
Crystal structure determination,
 computer-based 549
C–S bond fission, homolytic 1079
Cumene, as substrate for antioxidants 859
4-Cumyl-1-naphthol, formation of 607
Cumylxyl radical 877
Cumylphenols, formation of 607
4-Cumylresorcinol, formation of 607
Curcumin 867, 868, 870
Curie-point carbon-isotope-ratio mass spectrometry 303
Curie-point Py/GC/MS 303
Curie-point pyrolizer 938
4-Cyanophenol,
 gas-phase acidity of 494, 498
 theoretical aspects of 78–81
 thermochemistry of 233
Cyanosilylation, asymmetric 691
Cyclic dipeptides, thermochemistry of 231
Cyclic voltammetry 975, 982
Cyclization reactions 425, 426
 radical 438
[3+2]Cycloaddition reactions 1167
[4+2]Cycloaddition reactions 1159
[5+2]Cycloaddition reactions, cationic 1167, 1180, 1183, 1185, 1187, 1250, 1252
Cycloalkenones—see also Cyclobutenones,
 rearrangement of 816, 818–821
Cycloaromatization 439, 440
Cyclobutenones, as dienylketene precursors 450–452
α-Cyclohexadrin, inclusion complexes with phenols 951, 952
β-Cyclohexadrin 971, 982, 990, 992
 complexes of 365
γ-Cyclohexadrin 992
Cyclohexa-1,3-dien-5-one—see o-Isophenol
Cyclohexadienones 1035—see also
 4-Alkoxycyclohexadienones,
 Halocyclohexadienones, o-Isophenol,
 Nitrocyclohexadienones
 heats of formation of 40
 ionized 264, 265
 synthesis of 1080, 1082
Cyclohexanes — see Hydroxyphenylcyclohexanes
Cyclohexanols — see Calix[4]cyclohexanols
Cyclohexanones — see Calix[4]cyclohexanones
Cyclohexenones — see Aryl-2-cyclohexenones
4-Cyclohexylphenol, formation of 613
Cyclopentadiene 5-carboxylic acid 1057
Cyclopropanation, asymmetric 697
Cytochrome P-450 linked microsomal Papaver enzyme 1216
Cytotoxicity 654
CZE 971–974
Dakin oxidation 419, 420
Dakin rearrangement 799, 800
Dehalogenation 1098–1100
Dehydrodiconiferyl alcohol, mass spectrum of 303, 304
Dehydrodieugenol 302–306
Dehydrodiisoeugenol, mass spectrum of 303, 304
Dehydrodivanillin, mass spectrum of 303, 304
Dehydrodianillin, mass spectrum of 304, 305
Dehydrozingerone 868, 870
Delphinium formosum 944
Dendrimers 1387
Dendrograms 929
Density functional theory 3, 368
Denudatin B, synthesis of 1240, 1245
Deoxybouvardin 1315, 1321
synthesis of 1318
Deoxyschizandrin, synthesis of 1278, 1280
Deprotonation 92–105
energy of 3, 97–100
Depsides 942–944
Derivative isothem summation 944
Derivative spectrometry 929, 984
Derivatization, pre-analysis 985–991
DesMarteau sulfonamide, as electrophilic fluorinating agent 647
Desulfurization 1079
Detoxification, of phenolic compounds 1361–1363
Deuterium labelling, exhaustive 314
Diacetylnickel, as catalyst for Williamson synthesis 663
Diacetyl-2,4,6-trihydroxybenzene, solid-state NMR spectra of 366
(Diacetylxyiodo)benzenes, as oxidants 1224, 1226–1228, 1230–1235, 1237, 1239–1242
Diaryl ethers, formation of 670–673
rearrangement of 466–470
2,4-Diaryl-6-(2-hydroxy-4-methoxyphenyl)-1,3,5-triazine 353
Diastereomers, formation of,
in oxidation of thiacalixarenes 1415
in synthesis of resorcarenes 1381
Diazo compounds, reactions of 666, 667
Diazonium compounds, as phenol precursors 402–404
Diazonium coupling,
of calixarenes 1403
of calixresorcinols 1419
Diazotation 402–404
Diazotization 988
Dibenzoazone 1297
synthesis of 1275, 1276
Dibenozodioxepins, reactions with Lewis acids 653
Dibenzo-p-dioxins 1086
Dibenzoicocines 1308, 1309, 1311
Dibenzofurans, formation of 1289, 1291
Dibenzoylepanones, formation of 1257
Dibenzyolmethane enol, IR spectrum of 382
2,6-Di-r-butyl-4-(4′-methoxyphenyl)phenoxy radical 865
2,6-Di-r-butyl-4-methylphenol (BHT) 868
13C chemical shifts for 338
2,6-Di-r-butylphenol 307
complexes of 366
formation of 620
steric effects in 355
3,5-Di-r-butylphenol 307
2,4-Di-r-butylphenols, reactions with cinnamyl alcohol 619
transalkylation of 616
Dications, O,C-diprotonated gitonic 653
2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ), as oxidant 1247–1255
Dichlorophen 1350
2,3-Dichlorophenol, deprotonation of 335
2,4-Dichlorophenol, complex with triethylamine 364
photooxidation of 1086
2,5-Dichlorophenol, complex with N-methylpipерidine 364
deprotonation of 335
p-Dichlorophenoxyacetic acid, irradiation of 1079
Dichlorovamycin aglycone, synthesis of 1318
Dichroic ratio 373
Dielectric constant, of acetonitrile 170
Diels–Alder reactions 692, 693, 1033, 1178, 1192, 1219, 1230, 1237, 1327
in regioselective synthesis of phenols 440–450
of quinone monoketals 1235, 1236
retro- 299, 315
Diene–phenol rearrangement 470–472
Dienones — see also Cyclohexadienones, Estradienones, Homoerysodienones, Spirodienones
enolization constants of 716
rearrangement of 806–818
Dienylketenes, reactions with alkynes 450–453
Diesel fuel, phenolic compounds in 948
N,N-Diethyldiphenylenediamine 987
Difference enthalpies 228, 229
Difference spectra 992
Differential pulse voltammetry (DPV) 981, 982
Difluorocyclohexadienones, formation of 648
Dihalophenols, IR spectra of 370
dithrometry of 239, 240
Dihydrobenzofurans — see also 2-Methyldihydrobenzofuran
electrosynthesis of 1180, 1192
formation of 1240, 1245, 1255, 1256
oxidation of 1333, 1335
Dihydroerysodine 1297
Dihydroflavonols 965
dihydroxyalkylbenzenes, fragmentation of 305, 345
Dihydrofuran, structural chemistry of 204–207
Dihydrofuranones — see also Dihydrobenzofurans, 5-Hydroxy-6,7-dimethyl-2,3-dihydrofurans
formation of 1039
Dihydrogenofurans — see also Dihydrobenzofurans, 5-Hydroxy-6,7-dimethyl-2,3-dihydrofurans
formation of 1039
Dihydropropyrans, formation of 1039
Dihydroquinones, formation of 1039
Dihydroxyacetophenones, isotopic perturbation in 339
Dihydroxyalkylbenzenes, fragmentation of 270, 272, 273
1,4-Dihydroxy-3-aminocyclohexa-2,5-dienyl, as reaction intermediate 1083
1,8-Dihydroxy-9(10H)-anthracenone 380 — see also Anthralin, Dithranol
Dihydroxyanthraquinones, chemical shifts for, isotope effects on 345, 346
Dihydroxybenzenes — see also Benzenediols, 4-Chloro-1,2,3-dihydroxybenzenes, Dihydroxyalkylbenzenes, Hydroxyphenols
methylation of 308
synthesis of 408, 409, 411
1,2-Dihydroxybenzenes, antioxidant activity of 871
17OH chemical shifts for 341
structural chemistry of 204–207
1,3-Dihydroxybenzenes, conformation of 207, 208
structural chemistry of 207, 208
1,4-Dihydroxybenzenes, structural chemistry of 209–211
2,4-Dihydroxybenzoic acid, photoreactions of 1080
2,5-Dihydroxybenzoic acid, as MALDI matrix 323
2,6-Dihydroxybenzoic acid, mass spectrum of 285
2,2'-Dihydroxybenzophenones, chemical shifts for, isotope effects on 346
hydrogen bonding in 352
IR/Raman spectra of 379
Dihydroxybenzoperyylium ions 285, 288
Dihydroxybenzoquinones, IR spectra of 382
3,4-Dihydroxybenzyl carboxylates, deprotonation of 316
Dihydroxybiphenyls 1071, 1072
photooxidation of 1084
3,4-Dihydroxy-3-cyclobutene-1,2-dione, IR spectrum of 382
4,5-Dihydroxynaphthalene-2,7-disulfonates, hydrogen bonding in 352
1,4-Dihydroxy-5,8-naphthoquinones, chemical shifts for, isotope effects on 345
Dihydroxyphenols — see also Trihydroxybenzenes
mass spectra of 305
photooxidation of 1084, 1085
2,6-Dihydroxypyridine, reactions with aldehydes 1382
Dihydroxytoluenes, protonation of 309
Diodotyrosine, reactions with solvated electrons 1099
2,6-Diisopropylphenol, IR spectra of 369
2,2′-Dihydroxybenzophenones, chemical shifts for, isotope effects on 346
hydrogen bonding in 352
Dinaphthyl ketones, electron transfer reactions of 1019
4,8-Dimethoxy-1-naphthol, stereoselective hydroxyalkylation of 623
3-(Dimethylamino)phenol, ion/solvent adducts for 296
p-N,N-Dimethylaminosalicylic acid, hydrogen bonding in 1047
Dimethyl carbonate, as methylating reagent 663
2,2-Dimethylphenol, photooxidation of 1017
2,6-Dimethylphenol, reactions with 1-bromoadamantane 606, 607
Dinaphthyl ketones, electron transfer reactions of 1019
2,4-Dinitrophenol, gas-phase acidity of 312
2,5-Dinitrophenol, complexes of 366
2,6-Dinitrophenol, hydrogen bonding in 352
2,4-Dinitroresorcinol, synthesis of 639
Dinitro 1350
Diode array-UVD (DA-UVD) 953
1,3,2-Dioxaborins, formation of 683
Dioxanes—see 1,3-Benzodioxanes
Dioxepens—see Dibenzo-1,3-dioxins
Dioxiranes, as oxidants 1255, 1257, 1258
Dioxocines—see Dibenzo-1,3-dioxocines
Dioxygen—copper complexes, as oxidants 1194, 1198
Dipeptides, cyclic—see Cyclic dipeptides
1,1′-Diphenylphosphinoferrocene ligand 671
1,3-Diphosphates, rearrangement of 1393, 1394
Dipole moment interactions 955
Diquinocyclobutene, synthesis of 1292
Directed ortho metalation (DoM) reaction 781, 792
Discorhabdins 1337
electrosynthesis of 1178
Discriminating power, evaluation of 929
Disinfectants, analysis of 970
Disinfection by-products (DBPs) 1355
Dispersion forces 955
Distonic ions 285, 305
Dithranol,
chemical shifts for, isotope effects on 346
IR spectra of 368, 380
LD spectra of 380, 381
Raman spectra of 380
tautomerism in 357
[Di(trifluoroacetoxy)iodo]benzene, as oxidant 1224, 1227–1229, 1237, 1240, 1244,
1247
Dityrosines, formation of 1163, 1164, 1166
enzymatic 1224
Divinylbenzene—hydrophilic methacrylate copolymer 944
DNOC 1350
Domesticine 1064
Dötz benzannulation 454–459
Double Fourier transform filtering 984, 985
DRD 953
Drinking water,
analysis of 946, 947, 962, 963, 983
maximum admissible concentration of phenols in 928
regulations for 1358, 1359
Drugs, phenolic compounds as 916, 917
Duff reaction 685
Dyes, phenolic compounds as 921–924
analysis of 970
Dysazecine 1066
EDTA titration 988
Egg lecithin, Vitamin E inhibited oxidation of 884
Elbs reaction 408, 409
Electrochemical detection (ELD) 953, 985
Electrochemical methods,
amperometric detection 983, 984
polarography 984
potentiometric titration 984
voltammetric detection 981–983
Electron affinities 315
Electron-capture detection (ECD) 937
Electron-capture negative-ion (EC-NI) mass spectrometry 315
π-Electron forces 955
Electronic delocalization, in keto form of phenol 39
Electronic excitation 105–110
Electronic Localization Function (ELF) 68–78
topology of 68–70
Electron proton resonance (EPR) spectroscopy 113
Electrons, hydrated 1098
Electron spin resonance (ESR) spectroscopy,
in measurement of antioxidant efficiency 855, 856
of phenoxyl radicals 1120–1127
Electron transfer,
in antioxidant reactions, solvent effects on 880, 881
photochemical 1019, 1020
Electrooxidation,
cationic reactions 1165–1192
compared with (diacetoxyiodo)benzene-promoted oxidation 1227
radical coupling reactions 1156–1165
Electrophilic F+ species 646
Electrophilic substitution positional indices 71
Electrophilic substitution reactions 1402
of calixresorcinols 1419–1421
Electrophoresis,
of biological samples 973
of environmental samples 971, 972
of foodstuffs 972, 973
of industrial samples 974
Electrospray mass ionization (ESI) mass spectrometry 305, 320
Electrostatic potentials 102
Ellagic acid dihydrate, IR spectrum of 375, 376
Emulsion formation, in hydrophobic compounds 338
Ene reactions, asymmetric 693
Engelhard F-24 catalyst 650
Enolization constants 716
Enones—see Futoenones
Enthalpies of formation 5, 224
 of ancilliary deoxygenated compounds related to arenols 226, 227
 of anthrol 227–229
 of arenediols 241–247
 of arenetriols 241, 247, 248
 of arenolquinones 248–250
 of naphthol 227–229
 of phenol 227, 228
 of phenols,
 with carbon-bonded substituents 229–233
 with halogen substituents 237–240
 with nitrogen-bonded substituents 233–236
 with oxygen-bonded substituents 236, 237
 with sulfur-bonded substituents 237
 of tautomeric arenols 250–253
 of trimethoxybenzenes 247, 248
Enthalpies of fusion 225
Enthalpies of sublimation 225
Enthalpies of vaporization 225
Entropy 224
Environmental effects, of substituted phenols 1347–1363
Environmental Protection Agency (EPA) 925, 927
 priority phenols 945, 962, 971, 976
 wastewater methods 932
Environmental samples, preconcentration of 932
Enzymatic oxidation 1216–1224
Enzyme–glutathione binary complexes 105
Epi-deoxyschizandrins, formation of 1278
6a-Epipretazettine, synthesis of 1244, 1248
Epoxidation,
 asymmetric 695
 of alkenes 698, 699
 meso-Epoxides, enantioselective cleavage of 702
1,2-α-Epoxyglucose 674, 675
Epoxyquinomicin B, synthesis of 1262, 1265
Epoxy resins 1492, 1493
 hardeners for 941
Eremopetasidione, racemic, synthesis of 1237, 1239
Erybidine, synthesis of 1278
Eryosidionone, formation of 1297
Erysodines—see Dihydroerysodine
Escherichia coli 981
Estra-4,9-dien-3,7-dione 652
Estradienones—see
 β-Fluoro-1,4-estradien-3-ones
Estradiol, ionized 266
17β-Estradiol 925
17β-Estradiol fatty acid esters, deprotonation of 316
Estrogenic endocrine-disrupting chemicals 925
Etharylation 680
Ethylene, expulsion of 302
C-Ethynylation 682
Eugenol,
 complexes of 365
 dimerization of 1285
 electrolysis of 1158, 1160
 ionized 305
 mass spectra of 302–306
Euglobals 1192
 electrosynthesis of 1193
European Community directives 927
Excitation energies 105
 lowest 108
Extrathermodynamic equation 559

Fats, analysis of 961
Fatty acids, determination of 936
Feces, phenolic compounds in, determination of 969
Fermi coupling 377
Fermi resonance 385
Ferrier reaction 675
Flame-ionization detection (FID) 937
Flame-retardants, in human plasma 931
Flash photolysis 1127
Flash vacuum pyrolysis 1478
Flavanols 960
Flavanones 965
Flavones 957, 965
Flavanoids 913, 934, 935, 965, 967, 973, 982, 992, 994, 1297
 as antioxidants 871–873, 892, 901
 calculations for 898, 899
 in aqueous micelles 894
 in lipid membranes 894, 895
 coronary disease and 920
Flavonols 934, 935, 965—see also
 Dihydroflavonols
Flavor compounds, detection of 938
Flavylium salts 1029
Floating peroxyl radical theory 889
Fluorescence/chemiluminescence techniques, in measurement of antioxidant efficiency 853, 854
Fluorescence detection (FLD) 953, 985
Fluorescence enhancement 950–952, 993
Fluorescence quenching 993, 994
Fluorescence titration 497
Fluorescent labelling 950, 951, 995
Fluorination 646–649
 anodic 648
 ortho-selective 647
oxidative 648, 1227, 1229
solvent effects 646, 647
C-Fluorination 687, 688
Fluoroacetophenones, Baeyer–Villiger oxidation of 647
Fluoroanisoles, proton affinities of 88, 89
Fluorobenzaldehydes, Baeyer–Villiger oxidation of 647
N-Fluorocarboxamides, as electrophilic fluorinating agents 647
Fluorocyclohexadienones—see also Difluorocyclohexadienones
 synthesis of 648, 651, 655
β-Fluoro-1,4-estradien-3-ones, synthesis of 655
Fluorohydroindolenones, synthesis of 652
Fluorohydroquinolenones, synthesis of 652
3-Fluoromethyl-4-nitrophenol 1351
Fluorophenol radical cations 291
N-Fluoropyridinium-2-sulfonates, as electrophilic fluorinating agents 647
Folin–Ciocalteu method 990, 1000, 1001
Folin–Denis reagent 990
Forensic identification, use of phenols in 913
Formylation,
 of calixarenes 1403
 of phenols 626–629
C-Formylation 685
N-Formylwilsonirine, synthesis of 1330
Fürst cycle 493, 495–498, 501, 502, 515, 517, 518, 525
Fourier transform filter 929, 981
Fourier transform IR spectroscopy 547
Fractionation factors 367
Fragmentation, metastable 275
Franck–Condon simulation 107
FRAP (ferric reducing ability of plasma) assay 857
Free radical oxidation, inhibition of, kinetics and mechanism of 842–845
Free radicals, damage caused by 968
Free radical scavenging 982
Fremy’s salt, as oxidant 1259–1265
Friedel–Crafts acylation 606, 629–632, 642, 676, 685, 686
Friedel–Crafts alkylation 606–629, 676
 Brønsted acid catalyzed 612
 Lewis acid catalyzed 607–611
 solid acid catalyzed 612–621
 stereoselective 621–626
 under supercritical conditions 621
Fries rearrangement 472–478, 631, 685, 773, 774, 776, 778
 Brønsted acid catalyzed 642–645
 homo-, anionic 783, 785, 786, 795, 797
 lateral 786, 798
 Lewis acid catalyzed 639–642
 metallo- 783, 794
ortho-, anionic 778, 781–786, 792–798, 1408, 1409
 remote anionic 795, 798
 solvent effects 644
 thia- 776
Fruit juices, analysis of 957–960
FT-ICR mass spectrometry 322
Fuchsones, tautomerism in 357, 358
Fukui function 90
Fulvic acids 946
Furans—see also Benzofurans, Dihydrofurans,
 Tetrahydrobenzonaphthofurans
 rearrangement of 823
Futoenones, formation of 1180, 1184
Futoquinols, formation of 1172
Gallic acid,
 complexes of 365
 ionized, mass spectrum of 285
 irradiation of 1079
 thermochemistry of 247, 248
 Gallium lithium bis(naphthoxide), as catalyst, in asymmetric cleavage of meso-epoxides
Gas chromatography,
 derivatization,
 acylation 933, 934
 alkylation 935–937
 bromination 937
 silylation 934, 935
 end analysis 937, 938
 of environmental samples 938
 of foodstuff samples 938–941
 of industrial samples 941, 942
 sample preparation 1352
 simultaneous distillation and extraction
 931, 932
 solid-phase extraction vs. liquid–liquid extraction
 930, 931
 solid-phase microextraction 932
 supercritical fluid extraction 932
 Gasoline, phenolic compounds in 948
 Gas-phase species, in thermochemistry 224
 GC/MS analysis 319
 GC/MS recognition 314
 Gel permeation chromatography (GPC) 953
 Genistein–piperazine complexes 367
 Gentianaceae 967
 Gibbs energy 224
 Gibbs reagent 990
 Gimnomitrol, synthesis of 1250, 1253
 Glassy carbon electrodes (GCEs) 956, 982, 983
 Glucopyranosylphenols, bromination of 650
β-Glucosidase 969
Subject Index

- α-C-Glucosylphenols 642
- C-Glycosidation 679, 680
- O-Glycosidation 673–675
- Glycosides 958, 965, 967
- Glycosyl fluorides 673, 674, 679, 680
- Glyoxylates, chiral 623
- Gossypol, 13C chemical shifts for, deuterium isotope effects on 345
- GPC 953
- Grapes, resveratrol in 920
- Graphitized carbon black (GCB) 947
- Groundnuts, resveratrol in 920
- Ground water, analysis of 946
- Halocyclohexadienones — see also Bromocyclohexadienones, Chlorocyclohexadienones, Fluorocyclohexadienones
- formation of 648, 650, 652, 654, 655
- Halogenation 985—see also Bromination, Chlorination, Fluorination, Iodination
- anodic 1168
- electrophilic 606, 645–651
- Halomagnesium phenolates, crystal structure of 622
- Halophenols — see also Bromophenols, Chlorophenols, Dihalophenols, Monohalophenols, Pentfluorophenol, Polyhalophenols
- elimination of hydrogen halides from 1057, 1058, 1072–1075
- proton affinities of 86–88
- structural chemistry of 219, 220
- o-Halophenols, intramolecular hydrogen bonding in 47–57
- m-Halophenols, theoretical aspects of 57–64, 66–68
- p-Halophenols, theoretical aspects of 57, 58, 65–68
- 4-Halophenols, photooxidation of 1084
- Hammett constants 71
- Hammett parameters 350
- Hammett plots 999
- Hammett sigma values 522
- Hammett-type structure–acidity correlations 506
- Hartree–Fock method 3, 68
- Heat capacity 224
- Heck reaction 1406
- Helminthosporal, electrosynthesis of 1180, 1185
- Hemicarceplexes 1428
- Hemicarcerands 1428
- Hemodialysis 969
- Henry’s law 984
- Heptabenzoates 1395
- n-Heptylresorcinol, mass spectrum of 272
- Herbicides, analysis of 964
- phenolic 936
- Heterocyclic compounds, hydrogen transfer in 1025–1027
- Heteropolyacids, as oxidation catalysts 1213
- Heteropolyanions, as oxidation catalysts 1204
- Heterotropanone, synthesis of 1178, 1179
- Heterotropatrine, synthesis of 1178, 1179
- Hexahydrocannabinol 1034
- Hexamethylenetetramine–trifluoroacetic acid system 627
- 2-Hexenyl phenyl ether 624
- n-Heptylresorcinol, mass spectrum of 272
- Histograms, of bond lengths,
 in 1,2-dihydroxybenzenes 204, 205
 in 1,4-dihydroxybenzenes 209
 of bond lengths/angles,
 in ortho-substituted phenols 214
 in para-substituted phenols 215
- Hock–Sergeev reaction 799
- Holands 1433
- Homoaoethionin, biosynthesis of 1315, 1316
- Homocalixarenes, synthesis of 1376–1381
- Homoerysodienones, formation of 1297
- B-Homoerythrina alkaloids 1297
 synthesis of 1300
- Honey, analysis of 961, 973
- Horseradish peroxidase 974, 977, 978, 981
 as oxidation catalyst 1216, 1217, 1219–1221, 1224, 1225
- HPLC, normal phase 953
- H-point standard additions method 954
- HSZ-360 catalyst 680
- Hydrocarbons, aromatic, determination of 933
 exposure to 930, 931
 monohydroxylation of 410, 411
 reactions with hydrogen peroxide 404, 405
 condensed polycyclic, exposure to 920
- Hydrogen acceptors 201
- Hydrogenation, catalytic 1406
- Hydrogen atom abstraction 1108, 1109
- Hydrogen atoms, as radiolytic products 1098
 reactions of 1102
- Hydrogen atom transfer (HAT), in antioxidant reactions 896, 897
 solvent effects on 881–884
- Hydrogen-bond acidity 535–546
 from partition coefficients 543–546
 log K scales for 535–540
- Hydrogen-bond basicity 531–535, 876, 877
 spectroscopic scales of 589–593
thermodynamic scales of 586–589
Hydrogen-bonded complexes 312
between phenols and
bis-1,8-(dimethylamino)naphthalene
997
binding energies for 577, 578
dissociation energies for 577, 578
geometry of 579–582
IR spectra of 375–377
thermodynamic properties of 557–577
Hydrogen bonding 224
antioxidant activity, effect on 892–894
between phenol and acetonitrile 170–177
between phenolic hydrogen and solvent
881–883
bifurcated 352
in hydroxyarenes 492, 503, 505, 506, 519,
520, 524
in 2-hydroxybenzoyl compounds 553, 554
in mono-/poly-hydroxybenzenes 200–203
in nitrophenols 216–218
intra molecular 551–557
in antioxidants 867–870, 893, 896, 900
in o-halophenols 47–57
in 2-halophenols 554–556
in 2-hydroxybenzoyl compounds
377–382
in 2-hydroxyphenols 556
in hydroxyquinones 382–384
in ortho-Mannich bases 385, 386
in 2-methoxyphenols 556
in 2-methylaminophenols 556, 557
in 2-methyliminophenols 556, 557
in 2-nitrophenols 384, 385, 553
in 2-nitrosophenols 385
in Schiff bases 385
in stabilization of deepened cavities in
acavittands 1425
resonance-enhanced 370, 371
IR spectra, effect on 370, 371, 375–386
multiple, to the same acceptor 351
protonation and 593–596
ranking of substituents as partners 350, 351
resonance-assisted 342, 344
strength of 350, 378
strong 352, 353
Hydrogen-bonding ability 143–178
Hydrogen-bonding sites 582–585
Hydrogen bonds,
O-H···N, short 178
three-centered 580
Hydrogen/deuterium exchange, in mass
spectrometry 277
Hydrogen donors 201
Hydrogen peroxide, in phenolic samples 941
Hydrogen transfer reactions 280, 1108
photochemical 1020–1028
Hydrophobicity 970

Hydroquinone monomethyl ether, mass
spectrum of 289
Hydroquinones 236
acylation of 631
thermochemistry of 242
p-Hydroquinones, synthesis of 449
1,4-Hydroquinones,
antioxidant activity of 874, 875
cytoxicity of 874
2-Hydroxyacenaphthophenone, steric effects in
355
o-Hydroxyacetophenone 1021
2-Hydroxyacetophenone, IR spectrum of 377,
378
4-Hydroxyacetophenone 639
Hydroxyacetophenones 631—see also
2,6-Dihydroxyacetophenones,
2,4,6-Trihydroxyacetophenone
ion/molecule reactions of 308
mass spectra of 296
synthesis of 434, 644
o-Hydroxyacetyl derivatives,
hydrogen bonding in 350
OH chemical shifts for 338
C-Hydroxalkylation 682–685
Hydroxyanisoles, protonation of 309
Hydroxyanthraquinones—see also
Dihydroxyanthraquinones,
1,3,8-Trihydroxyanthraquinones
photoreactions of 1075, 1076
Hydroxyarenes—see also Arenols
photo acidity of 491–525
3-(2-Hydroxyaryl)-3-hydroxyindolones 608,
610
o-Hydroxyaryl ketones 640
o-Hydroxyazo aromatics, tautomerism in 356,
358
2-Hydroxybenzanilines N-oxide,
thermochemistry of 233
Hydroxybenzaldehydes—see also
4-Hydroxy-3-methoxybenzaldehyde
mass spectra of 296
thermochemistry of 232, 233
2-Hydroxybenzamide, thermochemistry of 232
2-Hydroxybenzaldehyde, thermochemistry of 232
Hydroxybenzenes—see also
Dihydroxybenzenes, Phenols,
Polyhydroxybenzenes,
Trihydroxybenzenes
structural chemistry of 200–203
2-Hydroxy-1,3,5-benzenetricarbaldehyde,
synthesis of 627
p-Hydroxybenzoic acid, as MALDI
matrix 324
Hydroxybenzoic acids—see also
Dihydroxybenzoic acids,
2-Hydroxy-4-trifluoromethylbenzoic acid,
3,4,5-Trihydroxybenzoic acid
Hydroxybenzoic acids — see also Dihydroxybenzoic acids, 2-Hydroxy-4-trifluoromethylbenzoic acid, 3,4,5-Trihydroxybenzoic acid (continued)
 mass spectra of 285
 thermochemistry of 232
4-Hydroxybenzoisonitrile, photoformation of 1054
4-Hydroxybenzonitrile, photorearrangement of 1054
Hydroxybenzophenones — see also 2,2′-Dihydroxybenzophenones
 IR spectra of 380
(2-Hydroxybenzoyl)benzoylmethane, IR spectrum of 382
p-O-Hydroxybenzoyl compounds,
 coupling constants for 349
 IR spectra of 371
2-Hydroxybenzoyl compounds, IR spectra of 377
Hydroxybenzyl alcohols,
 CI mass spectra of 292, 293
 coupling constants for 349
p-2-Hydroxybenzylamine, reactions with model phenols 1474, 1475
Hydroxybenzyl cations 265, 295
2-(Hydroxybenzyl)indanes, mass spectra of 277–279
Hydroxybiphenyls 277 — see also Octachlorodihydroxybiphenyls
β-Hydroxycarbonyl compounds, chelated hydrogen bonding in 377
Hydroxy carbonyl acids,
 decarboxylation of 1079
 reactions in presence of titanium oxide 1080
Hydroxy cinnamic acids 1057 — see also trans-3,5-Dimethoxy-4-hydroxycinnamic acid, trans-3-Methoxy-4-hydroxycinnamic acid mass spectra of 285
trans-4-Hydroxy-α-cyanocinnamic acid, as MALDI matrix 323
Hydroxy cyclohexadienyl radicals 1098, 1100
5-Hydroxy-6,7-dimethyl-2,3-dihydrofurans, as antioxidants 863
8-Hydroxy-N,N-dimethyl-1-naphthylamine, hydrogen bonding in 352
6-Hydroxy-2,5-dimethyl-2-phytyl-7,8-benzochroman, as antioxidant 863
3-Hydroxyhomophthalates, synthesis of 439, 440
Hydroxyamines — see N-Arylhydroxylamines
Hydroxylation 1167
Hydroxyl radicals 1098
2-Hydroxy mandelic acids, formation of 623
4-Hydroxy-3-methoxybenzaldehyde, nitration of 632
1-Hydroxy-2-methoxybenzene, 17OH chemical shift for 341
(Hydroxymethyl)phenols,
 IR spectra of 370
 mass spectra of 281, 282
2-Hydroxy-6-methyl-m-phthalic acid, hydrogen transfer in 1047
2-Hydroxy-1-naphthaldehyde, 17OH chemical shift for 340
Hydroxynaphthalenes — see also 4-Chloro-1-hydroxynaphthalene
 13C chemical shifts for 338
 coupling constants for 350
N-(2-Hydroxy-1-naphthalenylmethylene)amine, tautomerism for 359
2-Hydroxynaphthoquinone, IR spectrum of 382
p-O-Hydroxynitroso compounds, tautomerism for 356, 360, 361
4-Hydroxy[2.2]paracyclophane 640
9-Hydroxyphenalen-1-one, tautomerism in 357
1-(2-Hydroxyphenyl)-3-naphthyl-1,3-propanediones, tautomerism in 357
Hydroxyphenols — see also Dihydroxybenzenes, Dihydroxyphenols, Polyhydroxybenzenes, Trihydroxybenzenes
autoxidation of 1118, 1119
p-Hydroxyphenylacetic acid, formation of 1044
2-Hydroxyphenylacetylene, photohydration of 1022
2-Hydroxyphenylbenzoxazole, hydrogen transfer in 1026
Hydroxyphenyl cations 273–277
Hydroxyphenylcyclohexanes, mass spectra of 265
2-Hydroxyphenyllapazole, hydrogen transfer in 1026
N-(Hydroxyphenyl)maleimide, polymerization of 1498
Hydroxyphenyl radicals 1098, 1099
4-Hydroxyphenyl-5-thio-D-xylene, as MALDI matrix 323
Hydroxyphenyltriazines, hydrogen bonding in 1026
2-[4-(2-Hydroxyphenyl)tricyclo[5.2.1.0(2,6)]-dec-8-yl]phenol 608, 609
3-Hydroxypicolinic acid, as MALDI matrix 323
Hydroxypropionophenones, synthesis of 645
Hydroxypyrenes — see also 8-Hydroxy-1,3,6-tris(N,N-dimethylsulfonamido)pyrene
 13C chemical shifts for 338
α-Hydroxypyridines, 17OH chemical shifts for 341
8-Hydroxyquinoline N-oxides,
chemical shifts for, isotope effects on 348
coupling constants for 349
hydrogen bonding in 352, 353
Hydroxyquinones, IR spectra of 382–384
Hydroxystyrenes,
ionized 265
photohydration of 1022
Hydroxytetrachlorophenoxyl radical anions 1086
Hydroxytetralins, reactions of 652
2-Hydroxy-4-trifluoromethylbenzoic acid,
irradiation of 1079
8-Hydroxy-1,3,6-tris(\(N,N\)-dimethylsulfonamido)pyrene (HPTA),
absorption spectra of 495, 496, 511
fluorescence spectra of 497, 504, 511
hydrogen bonding in 503, 504, 511
photoacidity of 493, 495, 496, 498
Hyperfine coupling constants 113
Hypericin,
anion of 345
irradiation of 1045
vibrational structure of 384
Hypertension, treatment of 913
Hyperthermal negative surface ionization detection 937

IEC 953
Imidazoles — see Benzimidazoles
Imides — see Polyimides
Imine N-oxides, thermochemistry of 233
Imino dyes 950
Indanes — see 2-(Hydroxybenzyl)indanes
Indolenones — see Alkoxyhydroindolenones,
Fluoro hydroindolenones
Indoles — see 3-Arylindoles
Indolones — see 3-(2-Hydroxyaryl)-3-hydroxyindolones
Inductive effects 102
Infrared polarization spectroscopy 368
Infrared spectroscopy 367–386
density functional theory and 368
hydrogen bonding and 368, 370, 371, 375–386
in analysis 997
linear dichroism (LD) 368
near-, overtone and combination bands in 371
proton transfer and 371
tunnelling effects and 371
Inhibited oxygen uptake (IOU) measurement techniques 850, 851
Inhibition rate constants 992
Insecticides 948
Iodination,
of calixarenes 1403
solid-phase 651
Iodine, as oxidant 1266, 1269
Iodine disinfection 928
Iodobenzenes, hypervalent, as oxidants 1224–1247
Iodocalixarenes 1406
Iodonium phenolate, photoreactions of 1075
Ion chromatography 953, 957
Ion exchange chromatography (IEC) 953
Ionic liquids, immobilized 620
Ionization 110–129
Ionization energy 5, 110
Iodination,
formation of 1163, 1164, 1166
isoelectronic relationships 559
Isouoephengenols 868
electrolysis of 1158, 1161
ionized 305
mass spectra of 303, 304
Isoflavones 965
Isoflavonoids 913
Isofutoquinols — see also Isodihydrofutoquinol A
formation of 1172
Isoleucine, electrosynthesis of 1188, 1191
Isonitriles — see 4-Hydroxybenzenoimtrile
\(\text{o-Isophenol} 298–300
2-Isopropyl-5-methylphenol,
photorearrangement of 1048
Isoquinolines — see Tetrahydroisoquinolines
Iosilybin, synthesis of 1308, 1310
Isosteganacins, synthesis of 1300, 1302
Isostegane,
formation of 1242
synthesis of 1278
Isothebaine 1070
o-Isotoluene 298
Isotope effects,
equilibrium 361–363
on chemical shifts 342–349
primary 347–349
solvent 346
vs. bond order 342–344
K-13 1315, 1321
synthesis of 1318
Kalman filter 929, 987
Katsurenone, synthesis of 1240, 1245
Kerosene, phenolic compounds in 948
Ketenes—see Dienylketenes
Ketides—see Polyketides
Keto-enols, formation of 1028
Ketones,
aryl 424, 425
dinaphthyl 1019
o-hydroxyaryl 640
unsaturated diazo- 450, 451, 453
Ketosteroid isomerase, hydrogen bonding in
352
Kinetic energy release 263
Kinetic shifts 275
Kinetic solvent effect (KSE), on antioxidant
activity 877–881
Knoevenagel condensation 1405
Kohn–Sham method 68
Koilates 1427
Kolbe–Schmidt reaction 685–687
König–Knorr method 673
K–T analysis 503, 504, 513, 514
Lactases 976
Lamiaceae 967
Langmuir isotherm 944
Lariciresinol, enzymatic formation of 1216
Lead compounds, as oxidants 1292,
1325–1330
Leguminosae 967
Lewis acid catalysis 607–611, 631
Lignans, synthesis of 1158, 1242, 1274
Lignin model compounds 302–306, 867, 868
phosphitylation of 999
Lignins 962, 997, 998
addition to phenolic resins 1002
characterization of 941
degradation of 928
Lipids, peroxidation of,
inhibition by phenols 884–895
initiators for 885, 900, 901
Lipoproteins, low-density 913
Liquid chromatography,
derivatization 949
fluorescent tags and fluorescence
enhancement 950–952
formation of azo dyes 950
formation of imino dyes 950
end analysis 952–957
of biological samples 965–969
of environmental samples 962–965
of foodstuffs 957–961
of industrial products 969, 970
sample preparation 942–944, 1352
of biological samples 948, 949
of environmental samples 945–947
of foodstuffs 947–949
of industrial products 948
solid-phase extraction vs. liquid–liquid
extraction 944–949
Liquid fuels, analysis of 970
Liquid–liquid extraction (LLE) 930, 931, 936,
942, 944–950, 960, 962, 968, 984, 990, 993
pressurized 933, 935
Localization domains 70–72, 76, 77, 79
Low-density lipoprotein (LDL) 892
Lowenthal’s method 1000
Lucerne cell cultures 978
Luteolin 872, 873
Lüttringhaus rearrangement 759
Magnetic field effects, in cobalt(II)-catalyzed
oxidations 1202
Maize kernels, phenolic compounds in 994
Makaluvamines 1337
synthesis of 1264
MALDI matrices, phenolic compounds as
323–325
Maleimides—see Bis(maleimides),
N-(Hydroxyphenyl)maleimide,
Poly[N-(substituted phenyl)maleimides]
Mandelic acids—see Hydroxymandelic acids
Manganese compounds, as oxidants 1278,
1279, 1282–1288
Mannich bases 353
13C chemical shifts for, isotope effects on
361
elimination of amines from 1034
tautomerism in 356, 358
ortho-Mannich bases, IR spectra of 385, 386
Mannich reaction 684, 1406, 1419, 1420
o-β-C-Mannosylphenols 642
Marcus’ bond-energy–bond-order (MBEBO)
theory 522
Maritidines, synthesis of 1246, 1249, 1278,
1279
Mass scale calibrants 320
Subject Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass spectrometry</td>
<td>121–127, 937, 953</td>
</tr>
<tr>
<td>as analytical method</td>
<td>999, 1000</td>
</tr>
<tr>
<td>CA</td>
<td>123–126</td>
</tr>
<tr>
<td>charge-stripping (CS)</td>
<td>275</td>
</tr>
<tr>
<td>chemical ionization (CI)</td>
<td>291–298</td>
</tr>
<tr>
<td>collision-induced dissociation (CID)</td>
<td>275, 293</td>
</tr>
<tr>
<td>Curie-point carbon-isotope-ratio</td>
<td>303</td>
</tr>
<tr>
<td>electron capture negative-ion (EC-NI)</td>
<td>315</td>
</tr>
<tr>
<td>electrospray mass ionization (ESI)</td>
<td>305, 320</td>
</tr>
<tr>
<td>FT-ICR</td>
<td>322</td>
</tr>
<tr>
<td>MALDI</td>
<td>305, 320, 323–325, 1000</td>
</tr>
<tr>
<td>MIKE</td>
<td>124–126</td>
</tr>
<tr>
<td>negative-ion chemical ionization (NICI)</td>
<td>310, 314–316</td>
</tr>
<tr>
<td>neutralization/reionization (NR)</td>
<td>275</td>
</tr>
<tr>
<td>McConnell relation</td>
<td>113, 136</td>
</tr>
<tr>
<td>McLaugherty reaction</td>
<td>266, 268, 269, 272, 277, 280, 298</td>
</tr>
<tr>
<td>Megaphones, synthesis of</td>
<td>1250, 1252</td>
</tr>
<tr>
<td>Mercapto[4]arenes, synthesis of</td>
<td>1402</td>
</tr>
<tr>
<td>[1.1.1.1]Metacyclophane framework</td>
<td>322</td>
</tr>
<tr>
<td>[1n]Metacyclophanes</td>
<td>1370</td>
</tr>
<tr>
<td>Metalation, directed</td>
<td>677</td>
</tr>
<tr>
<td>Metathesis reactions</td>
<td>1432</td>
</tr>
<tr>
<td>trans-3-Methoxy-4-hydroxycinnamic acid, as MALDI matrix</td>
<td>323</td>
</tr>
<tr>
<td>Methoxylation</td>
<td>1167</td>
</tr>
<tr>
<td>2-Methoxynaphthalene, acylation of</td>
<td>630</td>
</tr>
<tr>
<td>Methoxyphenols, K–T analysis of</td>
<td>504</td>
</tr>
<tr>
<td>4-Methoxyphenol, electron-transfer oxidation of</td>
<td>1019</td>
</tr>
<tr>
<td>nitration of</td>
<td>636</td>
</tr>
<tr>
<td>photooxidation of</td>
<td>1084</td>
</tr>
<tr>
<td>reactions with ethylmagnesium bromide</td>
<td>622</td>
</tr>
<tr>
<td>Methoxyphenols, formylation of</td>
<td>626</td>
</tr>
<tr>
<td>mass spectra of</td>
<td>296</td>
</tr>
<tr>
<td>α-Methoxyphenols, antioxidant activity of</td>
<td>867–870</td>
</tr>
<tr>
<td>p-Methoxyphenols, antioxidant activity of</td>
<td>860, 861</td>
</tr>
<tr>
<td>nitration of</td>
<td>633</td>
</tr>
<tr>
<td>8-Methoxy-1,3,6-tris(N,N-dimethylsulfonamido)pyrene (MPTA), fluorescence spectra of</td>
<td>504, 505</td>
</tr>
<tr>
<td>Methylaluminium bis[2,4,6-tri(tert-butyphenoxoide) (MAT)</td>
<td>688</td>
</tr>
<tr>
<td>3-(Methylamino)phenol, ion/solvent adducts for</td>
<td>296</td>
</tr>
<tr>
<td>Methylation, gas-phase</td>
<td>309</td>
</tr>
<tr>
<td>3-Methyl-2-benzothiazolidinone hydrazone</td>
<td>963</td>
</tr>
<tr>
<td>4-Methylcumarin, formation of</td>
<td>630</td>
</tr>
<tr>
<td>2-Methyl-4-cumylphenol, formation of</td>
<td>607</td>
</tr>
<tr>
<td>4-Methyl-2,6-diacetylphenol, hydrogen transfer in</td>
<td>1021</td>
</tr>
<tr>
<td>4-Methyl-2,6-diamidophenol, hydrogen transfer in</td>
<td>1022</td>
</tr>
<tr>
<td>2-Methylhydrobenzofuran</td>
<td>613</td>
</tr>
<tr>
<td>6,7-Methyleneoxyflav-3-ene, synthesis of</td>
<td>1255</td>
</tr>
<tr>
<td>Methylphenols, MS/MS study of</td>
<td>319</td>
</tr>
<tr>
<td>Methylphenols—see also Polymethylphenols MS/MS study of</td>
<td>319</td>
</tr>
<tr>
<td>reactions with 1-bromoadamantane</td>
<td>606, 607</td>
</tr>
<tr>
<td>Methyne transfer</td>
<td>308</td>
</tr>
<tr>
<td>Micellar electrokinetic chromatography (MEC)</td>
<td>972</td>
</tr>
<tr>
<td>Micellar liquid chromatography (MLC)</td>
<td>953</td>
</tr>
<tr>
<td>Michael addition/aldol condensation, tandem</td>
<td>434</td>
</tr>
<tr>
<td>Microbore columns</td>
<td>953, 955</td>
</tr>
<tr>
<td>Microcolumn chromatography</td>
<td>963</td>
</tr>
<tr>
<td>reversed phase</td>
<td>953</td>
</tr>
<tr>
<td>Microorganisms, incorporated in biosensors</td>
<td>978, 979</td>
</tr>
<tr>
<td>Microspectrofluorometry</td>
<td>994</td>
</tr>
<tr>
<td>Microwave-assisted processes (MAP), during analytical sample preparation</td>
<td>930, 932, 946, 947</td>
</tr>
<tr>
<td>Miltirone, synthesis of</td>
<td>1261, 1264</td>
</tr>
<tr>
<td>Mitsunobu reaction</td>
<td>663, 674, 1418</td>
</tr>
<tr>
<td>MLC</td>
<td>953</td>
</tr>
<tr>
<td>Mobile phase optimization</td>
<td>954</td>
</tr>
<tr>
<td>Molecular geometry, calculations of</td>
<td>895, 896</td>
</tr>
<tr>
<td>Molecular graphs</td>
<td>32</td>
</tr>
<tr>
<td>Molecular orbitals (MOs)</td>
<td>3</td>
</tr>
<tr>
<td>Molecular symmetry, study of</td>
<td>368</td>
</tr>
<tr>
<td>Molybdenum compounds, as allylation catalysts</td>
<td>677</td>
</tr>
<tr>
<td>as oxidants</td>
<td>1273, 1275</td>
</tr>
<tr>
<td>Monobenzylation</td>
<td>1395</td>
</tr>
<tr>
<td>Monocyclic phenols, keto–enol tautomerism in</td>
<td>715–719</td>
</tr>
<tr>
<td>Monohalophenols, thermochemistry of</td>
<td>237–239</td>
</tr>
<tr>
<td>Monohalophenols, thermochemistry of</td>
<td>237–239</td>
</tr>
<tr>
<td>Monolayers, self-assembled</td>
<td>997</td>
</tr>
<tr>
<td>on gold surfaces</td>
<td>1421</td>
</tr>
<tr>
<td>Monte Carlo simulation</td>
<td>107</td>
</tr>
<tr>
<td>Montmorillonite catalysis</td>
<td>613–617, 627, 632</td>
</tr>
<tr>
<td>MOPAC program</td>
<td>954</td>
</tr>
<tr>
<td>Morphine</td>
<td>237</td>
</tr>
<tr>
<td>enzymatic formation of</td>
<td>1216</td>
</tr>
<tr>
<td>Morphine alkaloids, synthesis of</td>
<td>1312</td>
</tr>
<tr>
<td>Mukaiyama asymmetric aldol reaction</td>
<td>702</td>
</tr>
<tr>
<td>Müller–Röscheisen cyclization</td>
<td>1378</td>
</tr>
<tr>
<td>Multicalixarenes</td>
<td>1432–1434</td>
</tr>
<tr>
<td>Multidimensional chromatography</td>
<td>955</td>
</tr>
<tr>
<td>Multilinear regression</td>
<td>929, 984</td>
</tr>
<tr>
<td>Mushroom tyrosinase, as oxidation catalyst</td>
<td>1218–1223</td>
</tr>
</tbody>
</table>
β-NADH 979
Nafion-H catalysis 606, 613
for Fries rearrangements 642–644
Naphthaldehydes—see
2-Hydroxy-1-naphthaldehyde
Naphthalenediols, as antioxidants 899
thermochemistry of 241, 246, 247
Naphthalenes—see Hydroxynaphthalenes, 2-Methoxynaphthalene
Naphthazarin, IR spectrum of 383
Naphtholate anions 506, 512, 515
1-Naphthol/2-naphthol photoacids 510–520, 523, 524
Naphthols—see also Acenaphthols, Arylazonaphthols, Calixnaphthols, Methoxynaphthols, Naphthols—see also (continued)
Methylnaphthols, Nitronaphthols, Nitrosonaphthols, Tetrahydropyranylnaphthols
absorption spectra of 510, 516–518, 520, 521
bromination of 650
enthalpies of formation for 227–229
fluorescence spectra of 512, 513, 516–518
fluorination of 647
glycopyranosides of, rearrangement of 641
hydrogen bonding in 503, 519
nitrilation of 633
nitrosation of 636
photoacidity of 494, 498, 501, 507, 512, 515, 523
reactions of, with 4-alkylcyclohexanones 614, 615
with cumene hydroperoxide 607
synthesis of 401, 402
Naphthoquinone oximes, tautomerism in 251, 252
Naphthoquinones—see also Acenaphthoquinones, 1,4-Dihydroxy-5,8-naphthoquinones, 2-Hydroxynaphthoquinone
synthesis of 444
Naphthyl acetates, Fries rearrangement of 639
Naphthylamines—see also
8-Hydroxy-1,N,N-dimethyl-1-naphthylamine
as phenol precursors 401, 402
Naringin, complexes of 365
National Institute of Health (NIH) shift 14
Negative ion chemical ionization (NICI) mass spectrometry 310, 314–316
Negishi reaction 1406
Nematic liquid crystals 372–375
Neolignans 1278
electrolysis of 1171
synthesis of 1158, 1242, 1244, 1274, 1314
by enzymatic oxidation 1217, 1218
electrochemical 1178–1180, 1184
Neural networks 925, 929
artificial 977
Neutralization/reionization (NR) mass spectrometry 275
Newman–Kwart rearrangement 1401, 1415
Nickel compounds, as oxidants 1287, 1302, 1304
NIOH/OSHA 925, 927
Nishiguchi method 410, 411
Nitrate ion, photoreactions with 1071
Nitrilation 606
by hexanitroethane 638
by metal nitrates 638, 639
by tetrinitromethane 638
ipso 634, 635
of calixarenes 1402, 1403
ortho 633, 634
peroxynitrite-induced 636, 637
regioselectivity of 632–635
Nitric oxide radical 638
Nitriles—see Benzonitriles
Nitroarenes, reactions with peroxides 405, 406
Nitrobenzenediols, thermochemistry of 243, 244
Nitrobenzenes, oxidation of 419
2-Nitro-4-t-butylphenol, synthesis of 639
Nitrocalixarenes, synthesis of 633–635
Nitrocyclohexadienones, formation of 1403
Nitronaphthols, synthesis of 406
Nitronium radical 638
p-Nitrophenol, gas-phase acidity of 312
ion/molecule adducts of 314
mass spectra of 290, 314
Nitrophenols—see also Dinitrophenols, 3-Fluoromethyl-4-nitrophenol, 2,4,6-Trinitrophenol
CI mass spectra of 295
determination of 954, 964
photoacidity of 506
structural chemistry of 216–219
synthesis of 405, 406, 632, 633
theoretical aspects of 78, 81, 82
thermochemistry of 234–236
2-Nitrophenols, IR spectra of 384, 385
3-Nitrophenols, irradiation of 1073
5-Nitrophenols, synthesis of 639
2-Nitroresorcinol, IR LD spectrum of 384, 385
5-Nitrosalicylaldehyde, NMR spectra of 336
Nitrosation 606
by metal nitrites 639
by nitrous acid 638
peroxynitrite-induced 636, 637
Nitrosobenzenes 253
Nitrosonaphthols 385
tautomerism in 251, 252, 360, 361
Nitrosonium ions 637
Nitrosofhenols,
tautomerism in 251, 360, 361, 721–724
thermochemistry of 235
2-Nitrosophenols, IR spectra of 385
4-Nitrosophenols, formation of 637
NO₂ radical 639
Noroxycodaine, synthesis of 1275, 1276
Novolac resins 367, 1457–1460
model compounds of 1463–1469
reactions with HMTA 1470–1475
structure of 1469
synthesis of 1460–1463
Nuclear magnetic resonance spectroscopy
335–367
calculations for 366
chemical shifts 336–341
isotope effects on 342–349
coupling constants 349, 350
fractionation factors and 367
hydrogen bonding and 350–354
in quantitative analysis 997, 998
in structural and functional characterization
998, 999
of atropisomers of calix[4]arene tetraethers
1391
of phenol complexes 363–366
OH exchange and 336
steric effects on 354, 355
proton transfer and 355
solid-state 366, 367
tautomerism and 356–363
Nuclear waste, treatment of 1435
Nucleophilic aromatic substitution,
chelation-assisted 1415
Nucleus-independent chemical shift (NICS) 95
Nylon 6 178
Nylon 66 178
OCTchlorodihydroxybiphenyls 1074
OCTchlorodioxin 1074
Octaphosphates, of calixresorcinols 1417
Octaphosphinites, of calixresorcinols 1417
Octasulfonates, of calixresorcinols 1417
Octatrimethylsilyl derivatives, of
calixresorcinols 1417
sec-Octlyphenols 265
OF 4949-I 1315, 1317, 1321, 1322
OH exchange 336
OH/H increment exchange energies 228, 229
Oils,
analysis of 961, 986
phenolic compounds in 948
Olah’s nitronium/nitrosonium salts 606
Oligocavitands 1434
Oligomerization 998
Olive oil, phenolic compounds in 999, 1000
Optical fibres 981
Organoleptic activity 925
Organometallic compounds, oxidation of
414–419
Orientalinone 1070
Orientation factors 373, 374
Ortho attack, in alkylation of phenols 309
9-Oxaisotwist-8-en-2-one, formation of 1180,
1181
Oxazines — see Benzoazine
Oxazoles — see Benzoazoles
Oxazolidines, formation of 1420
Oxepines, rearrangement of 824, 826–830
Oxetenes, formation of 1059
Oxidants, biologically active 913
Oxidation,
anodic 1158–1165, 1169, 1171, 1172, 1174–1177
enzymatic 1216–1224
Oxidative coupling 985–987
Oxidative stress 968
Oxidizability 842
Oxiran — see Dioxyrane
4-Oxacyclohexa-2,5-dienylidene 1057
Oxodecalines, synthesis of 652
µ-Oxodicopper(III), as oxidant 1194
Oxomethylene ylides 653
Oxygen electrodes 851
Pallescensin B, synthesis of 1237, 1241
Paracyclophanes — see o-
Acethydroxy[2.2]paracyclophanes,
Benzylohydroxy[2.2]paracyclophanes,
4-Hydroxy[2.2]paracyclophane
Partial least squares (PLS) method 929, 981,
987
Partition properties 970
Peanuts, as source of peroxidase 977
Pechman–Duisberg condensation 995
Pechmann reaction 680
Pedaliaceae 967
Pentachlorophenol 1350
complex with 2-methylpyridine 178
photolysis of 1086
theoretical aspects of 81–83
thermochemistry of 240
Pentachlorophenolates, photoreactions of 1086,
1087
n-Pentadecylphenol, mass spectrum of 268
n-Pentadecylresorcinol, mass spectrum of 272
Pentafluorobenzoylation, of phenols 934
Pentafluorobenzylation, of phenols 937
Pentafluorophenol,
reactions with solvated electrons 1099
Subject Index

Pentafluorophenol, (continued)
 thermochrometry of 240
Pentalenene, electrosynthesis of 1183, 1187
Peptides 1117—see also Dipeptides
Perborates, as oxidants 1272, 1273
Perfluoro compounds, as fluorinating agents 647
Periodates, as oxidants 1267, 1270
Periodic acid, as oxidant 1267, 1270, 1271
Permethylation 941
Peroxidases 974
 biosensors based on 977, 978
Peroxides,
 as oxidants 1255, 1257, 1259
 rearrangement of 799–801
Peroxy acids, as oxidizing agents 408–410
Peroxy radicals 841–845
 in one-electron oxidation 1101
 reactions with phenolic antioxidants 850–855
Peroxyoxalates, as oxidants 1255, 1257, 1259
Peroxyl radicals 841–845
Pervaporation 983, 984
Perylenequinones, chemical shifts for, isotope effects on 345
Pesticides,
 determination of 933
 phenolic 936, 1350
Petroleum cracking 7
Pharmaceuticals 916, 917
 analysis of 987, 988, 995
Phase-transfer methods 673
Phellinus igniarius 977
Phenanthrenediols, thermochemistry of 241, 247
Phenol,
 absorption spectra of 495–497
 anions of, gaseous 310
 atom-in-molecule analysis of 31–34
 complexes of 145–178, 364, 377
 enthalpy of formation for 227, 228
 equilibrium structure of 20–25
 functionalization of,
 nucleophilic/electrophilic 748
 geometry of 20, 22, 23
 history of the discovery of 6, 7
 hydrogen bonding in 143–178, 519
 ionized 261, 298–306
 ortho tautomer of 265
 potential energy surface of 31
 IR polarization spectra of 372–375
 keto–enol tautomerism in 38–40, 46, 127–130
 molecular bonding patterns in 21, 26–31
 nitration of 632, 633
 OH group, characteristic vibrations of 369–371
 PE spectra of 112
 phosphorescent 109, 110
 photoacidity of 494, 497, 498, 500, 502
 photooxidation of 1080–1084
 physicochemical properties of 4–6
 protonated 83–86, 261, 282, 285
 radical cation of,
 isomers of 114–121
 molecular and electronic structure of 111–114
 potential energy surface of 116, 119–121
 reactions of 608–610
 with acetone 620
 with bromoadamantane 606, 607
 with exo-2-bromonorbornane 607
 with 2-buten-1-ol 613
 with t-butyl alcohol 616, 620
 with cyclohexanone 613
 with cyclohexyl bromide 607
 with dicyclopentadiene 608
 with β,β-dimethylacrylic acid 631
 with hydroperoxides 607
 with isobutene 620
 with methanol 618
 theoretical structures of 38–41, 44–46
 usage and production of 7–20
 industrial synthesis 18, 19, 22
 vibrational modes in 34–46
Phenol—acetonitrile complexes 170–177
Phenolacetyl nitrate–silica complex 632
Phenol adsorption 1002
Phenol–amine complexes 377
Phenol–ammonia complexes 377
Phenolate anion 93–97
 absorption spectra of 495–497
 chemical shift for 336
 Dewar benzene-type isomer of 315
 reactions with alkyl nitrites 638
 triplet states of 110
Phenolates,
 alkali metal 103–105
 hydrogen-bonded, 17O chemical shifts for 360
Phenol–azaaromate complexes 377
Phenol–benzonitrile complex 177, 178
Phenol–dienone rearrangements 651–655
Phenol–formaldehyde ratio 1457
Phenol–formaldehyde resins 606, 608, 626–628, 1457
 functionality in 1457–1460
Phenolic acids 965–967
 antioxidant efficiency of 982
Phenolic aldehydes 965
Phenolic anion/molecule adducts 312–314
Phenolic esters, rearrangement of 472–478, 773, 774, 776, 778, 781–798
Phenolic ethers, rearrangement of 759–761
Phenol index number 1352
Phenol–ketone novolacs 1487, 1488
Phenol–nitrile complexes 377
Phenol radical cations 1101
fragmentation of 289–291

Phenols—see also Biphenols, Bis-phenols, Hydroxybenzenes, Polyphenols
acidities of, gas-phase 310–312
acylation of 629–632, 933, 934
Lewis acid catalyzed 631
montmorillonite-catalyzed 632
pyridine-catalyzed 631
adsorption of 944
alkylation of 606–629, 941
Brønsted acid catalyzed 612
Lewis acid catalyzed 607–611
solid acid catalyzed 612–621
stereoselective 621–626
under supercritical conditions 621
as antioxidants 139–143, 840–901
ortho-substituted 845
thermochemistry of 139, 140, 179
autoxidation of 1118, 1119
bromination of 649–651
π-cation interaction of 322
chlorination of 649
comparison with isoelectronic methyl, amino and fluoro aromatic derivatives 226
2,6-disubstituted, hydrogen bonding in 378, 379
fluorination of 646–649
hindered, photosensitization of 1018
hydrogen atom abstraction from 141–143
hydrogen-bonding abilities of 143–178
intramolecular 47–57, 384, 385, 553–557
ionized, reversible intramolecular hydrogen transfer in 277–280
mass spectra of 291–298
metal-coordinated, tautomerism in 731, 732, 735
monocyclic—see Monocyclic phenols
nitrination of 632–639
nitrosation of 636–638
octylation of 319
oxidation of 408–410, 1108
electrochemical 1154–1192
enzymatic 1216–1224
with ammonium nitrate–acetic anhydride 1259, 1264, 1265, 1267
with p-benzoquinones 1247–1255
with chlorous acid 1271, 1272
with di-r-butyl peroxides 1255, 1257, 1259
with dioxiranes 1255, 1257, 1258
with dioxygen–r-butoxide 1265, 1266, 1268
with dioxygen–metal complexes 1192, 1194–1207
with free radicals 1110, 1112
with Fremy’s salt 1259–1265
with hydrogen peroxide–metal complexes 1207–1215
with hypervalent iodobenzenes 1224–1247
with iodine 1266, 1269
with metal compounds/ions 1109, 1110, 1273–1337
with perborates 1272, 1273
with periodic acids/periodates 1267, 1270, 1271
with radical cations 1113
polycyclic—see Polycyclic phenols
reactions of,
with aryloxymagnesium bromides 608, 609
with fluorophenyl-7-hydroxyheptanoates 623, 624
with glycosides 642
with hydroxyl radicals 1113–1116
self-association of 377
structural chemistry of 213–216
substituted, ortho effects in 280–288, 295
synthesis of,
biochemical 411–413
by benzannulation 450–459
by condensation 425–438
by cycloaddition 439–459
by hydroxylation 404–414
by oxidation of carbonyl groups 419–425
by oxidation of nitrogen derivatives 419–423
by oxidation of organometallics 414–419
by rearrangement 459–478
from aryl halides 396, 397
from nitrogen derivatives 399–404
from sulfonic acids 397–399

Phenol–Schiff base complexes 377
Phenol–N,N,N-trialkylamine oxide complexes 364
Phenol–triazabicyclodecene base complexes 377
Phenol triethylsilyl ether, fluorination of 647
Phenol–water complexes 145–169
PhOH(H₂O)₁ 149–156
PhOH(H₂O)₂ 149, 150, 152–155
PhOH(H₂O)₃ 156–160
PhOH(H₂O)₄ 160–169

Phenones—see Acenaphthoquinones,
Acetophenones, Acrylophenones,
Phenones—see Acenaphthoquinones, Acetophenones, Acrylophenones, Benzophenones, Hydroxypropophenones, Pivalophenones (continued) Benzophenones, Hydroxypropophenones, Pivalophenones Phenoxenium ion—see Phenoxy cation Phenoxy cation 273–277, 289
Phenoxyl radicals 15, 129, 131–139, 310, 638, 865, 1017–1019, 1098, 1100
acid–base equilibria of 1132–1135
comparison with isoelectronic radicals 1127
decomposition of 137–139
ESR spectra of 1120–1127
fast detection techniques for 1108
formation of 1108–1119
by autoxidation of phenols and hydroxyphenols 1118, 1119
by intramolecular electron transfer 1117
by oxidation of phenols 1109–1113
by oxidative replacement of substituents 1116, 1117
by reaction of hydroxyl radicals with phenols 1113–1116
optical spectra of 1127–1132
reactions of 1135–1140
reduction potentials of 1138, 1140–1143
Phenoxymagnesium halides, alkylation of 622
Phenoxyseleination 669
Phenyl acetates, Fries rearrangement of 639, 644
Phenylalanine 231
(ω-Phenylalkyl)catechols, mass spectra of 272, 273, 275
Phenylalkyl ethers, CI mass spectra of 293
C-Phenylation 680–682
Phenylocoumarans, enzymatic formation of 1216
Phenyl ethers—see Alkyl phenyl ethers, Allyl phenyl ethers, Benzyl phenyl ethers, 2-Hexenyl phenyl ether
Phenylhydrazones, thermochemistry of 252
Phenyliminobenzoxathiole, photoreactions of 1075
Phenyl isocyanate, photoreactions of 1075
ω-Phenylphenol, photodimerization of 1017
2-Phenylphenol 1350
photooxidation of 1084
Phenylpropanoids, CI mass spectra of 293
Phenyl radicals 1100
Phloroglucinol, acylation of 631
thermochemistry of 247
Phosphates—see 1,3-Diphosphates
Phosphatidylcholine liposomes 851
Photoacidity 491–494
current understanding of 523–525
free-energy correlations with reactivity 522, 523
origin of 498–507
thermodynamic aspects of 493, 495–498
Photoacids, electronic structure of 507–522
Photoacoustic methods 897
Photoaddition reactions 1022–1024
Photobasicity 492, 501–503
Photocyclization reactions 1067–1070
involving aryl radicals 1063–1067
of chalcones 1028–1030
of naphthoates 1077
Photocycloaddition reactions, intermolecular 1059–1061
intramolecular 1061–1063
Photodecomposition, solar-induced, of chlorophenols 1085
Photodissociative states 1017
Photoelectron spectroscopy, of phenol 112
Photo-Fenton oxidation 1081
Photoformylation 1071
Photo-Fries reactions 1055
intromolecular 1057
Photoionization 1016
two-photon processes in 1017
Photolabile protecting groups 1043–1045
Photooxidation 1017–1019
of alkylphenols 1084
of chlorophenols 1085–1087
of dihydroxyphenols 1084, 1085
of phenol 1080–1084
Photorearrangements, side-chain 1048–1055
skeletal 1048
with side-chain migration 1055–1057
Physicochemical properties, of phenol 4–6
Physiological monitoring 968, 969
Picolinic acids—see 3-Hydroxypicolinic acid
Picric acid 236
Piezoelectric detection 1001, 1002
Pimentel model 503
Pinoresinol, enzymatic formation of 1216
Piperazinomycin 1315, 1321
synthesis of 1318
Pivalophenones, synthesis of 642
pKₐ values, determination of 954
of phenolphthalein 974
of polychlorophenols 970
of radical species 1133–1135
Plant extracts, analysis of 957, 965–968, 973
phenolic compounds in 942
Plasma, phenolic compounds in 969
Plastics, phenolic compounds in 948
Platt free-electron model 508
Platt notation 495, 508, 509
Subject Index

PLS algorithm 985, 993
Polar solvents 878, 879
Pollutants, phenolic compounds as 927, 976
analysis of,
in environmental and microbial samples 935, 936
in water 938, 945–947, 954, 955, 962–965, 971, 972, 985, 986, 993
estrogenic activity of 925
Polychlorophenols 954
Polycyclic phenols, keto–enol tautomerism in 719–721
Polygalaceae 967
Polyhalophenols—see also Polychlorophenols
thermochemistry of 240
Polyhydroxybenzenes, structural chemistry of 200–204
Polyimides 1493–1502
linear 1494–1496
origins of 1494
Polyketides, synthesis of 426
Polyphenols,
acylation of 631
determination of 1354
Poly(phenylene oxides) 1491, 1492
Polystyrene, free-radical polymerization of 629
Polystyrene–divinylbenzene copolymer 944, 947
Poly[N-(substituted phenyl)maleimides] 1495, 1497, 1498
Porphyrin complexes, as oxidation catalysts 1201, 1205, 1211
Porphyrins—see also meso-
Tetraphenylporphyrin
reactions of 1082
Potential energy surface 3
Potentials, double-minima 371, 377
symmetrical OH stretching 382
Potential well, shape of 349
Preconcentration, of analytical samples 930, 932, 934, 936, 942, 944–949, 955, 962–964, 971, 972, 983–987, 995
Prenylphenols, 13C chemical shifts for 338
Pressure transducers 851
Prestegane A 1244
oxidative coupling of 1286
Principal components regression (PCR) method 929
Proanthocyanidins 948
Prooxidant effect 845, 849, 891, 892, 895, 899
Propargyl aryl ethers, rearrangement of 770, 773, 779–782
α-Propenylphenols 301
5-Propylguaiaicol, mass spectrum of 303, 304
Protocatechuic acid, irradiation of 1079
Proton affinities 3, 5, 86–89, 261
local 261, 262, 296, 308
Protonation 83–92
hydrogen bonding and 593–596
regioselectivity of 89–92
Proton polarizabilities 593
Proton sponges 997
Proton transfer 316, 355, 356, 1108
excited-state intramolecular 729, 730
in hydroxypyrenes 492, 523, 524
in photoacids 502
Pseudomonas cepacia 638
Pseudomonas putida 979
PTFE membranes 945
Pulse radiolysis 1099, 1109, 1113
Pummerer rearrangement 671, 674
Pummerer’s ketone 1158, 1288
Pyranones—see Dibenzopyranones
Pyrans—see also Benzopyrans,
Dihydropyrans
rearrangement of 823, 824
Pyrenes—see 1-Aminopyrene,
Hydroxypyrenes
Pyrenols,
hydrogen bonding in 503
photoacidity of 493, 498, 502, 523
Pyridine methoxy cupric chloride complex, as oxidant 1192
Pyridines—see also
2-Amino-3-hydroxypyridine, 2,6-
Dihydroxypyridine, α-Hydroxypyridines
photoreactions of 1075
Pyrimidinopteridine N-oxide 1019
Pyrogallo[4]arenes 320, 322
Pyrogallols 1382—see also Calix[4]pyrogallol
acylation of 631
thermochemistry of 247
Pyrolysis-gas chromatography 941
α-Pyrones, condensation of 430
Pyrroles—see Calixpyroles
Pyrroloiminoquinone alkaloids 1178, 1264
Pyrroloquinoline quinone-dependent glucose dehydrogenase 979
Pyrylium salts, rearrangement of 823, 825
Quantitative structure–activity relationships (QSAR) 970, 982
Quantitative structure–affinity relationships (QSAR) 992
Quantum Chemistry Library Data Base 4
Quercetin 872, 873
as antioxidant 894
Quinizarin, IR spectrum of 383
Quinolenones—see Alkoxyhydroquinolenones, Fluorohydroquinolenones
Quinolines—see Tetrahydroquinoline
Quinols—see Futoquinols, Isofutoquinols, Ubiquinols
Quinone ketals, formation of 1170, 1171
p-Quinone methide radical 1158
Quinone methides 1217, 1282
dimerization of 1255, 1256
enzymatic formation of 1223
from biphenyl derivatives 1035–1038
from fluorenols 1038
intra molecular cyclization of 1220
reactions of 1308
synthesis of 1253, 1255
m-Quinone methides 1024
formation from phenol derivatives 1035
o-Quinone methides,
formation from phenol derivatives
1032–1035, 1192, 1309, 1311, 1312
in resole formation 1478–1483
p-Quinone methides 1196
dimeric 1159
formation from phenol derivatives 1035, 1307, 1309
Quinone monoketals,
Diels–Alder reactions of 1235
synthesis of 1228, 1231, 1250, 1335
Quinone oxime tautomers 251, 252
Quinones—see also Aminoquinones, Anthraquinones, Arenolquinones, Benzoquinones, Calixquinones, Hydroquinones, Hydroxyquinones, Naphthoquinones, Perylenequinones, Scabequinone
reduction of 1108
Quinone units 1396
Quinopro tin glucose dehydrogenase 977, 978

Radiation chemistry 1097
gas-phase 1104, 1105
in alkane solvents 1102, 1103
in aqueous solution 1098–1100
in organic halogenated solvents 1100–1102
in solid matrices 1103, 1104
of aqueous phenol solutions 1113
of neat phenols 1103
Radical anions,
formation of 1098
hydroxytetrachlorophenoxyl 1086
Radical cations,
fluorophenol 291
gaseous 261–263
in oxidation of phenols 1113
phenol 111–121, 289–291, 1101
Radical coupling reactions 1156–1165
Radicals,
alkyl 1103
aminyl 1110
anilinyl 1109
cumyloxy 877
5, 7-disopropyltocrpohexadienyl 894
hydroxyhexadienyl 1098, 1100
hydroxy 1098
hydroxyp henoxyl 1098, 1099
nitric oxide 638
nitronium 638
NO2 639
peroxy 841–845
phenoxy l 15, 129, 131–139, 310, 638, 865, 1017–1019, 1098, 1100, 1108–1143
phenyl 1100
p-quinone methide 1158
semiquinone 871, 874, 893, 1109
TEMPO 366
α-tocopherol 846, 849
tyrosyl 129, 1130
Radical stabilization energies 140
Radiolysis, gas-phase 307
γ-Rayolysis 1099
Raman spectroscopy 368, 379, 380, 997, 1132
Raschig–Dow process 7
Reactivity indices 89–92
Rearrangements,
hydroxy group migrations 748, 749
isomerizations,
cis–trans 743–745
of alkylphenols 749
of phenols containing unsaturated side-chains 750, 752–758
of functionalized arenes 799–805
of heterocyclic compounds 823–830
of non-aromatic carbocycles 806–822
of O-substituted phenol derivatives 759–798
phenol–dienone 745–748
Reduction potentials,
calculation of 897, 898
of phenoxy l radicals 1138, 1140–1143
one-electron 895, 896
Reichardt’s betaine dye, solvatochromic shifts of 540–543
Reimer–Tiemann reaction 685, 1071
Resole resins 1457, 1458, 1460
model compounds of 1476–1487
synthesis of 1475, 1476
Resol prepolymer 969
Resonance Assisted Hydrogen Bonding (RAHB) 552
Resonance energies, in keto/enol forms of phenol 39
Resonance-enhanced multiphoton ionization
1000
Resorcarenes 1370—see also
Bis-resorcarenes, Calixresorcinols
methylen-bridged 1383
synthesis of 1381–1384
Resore[4]arenes 320, 322
Resorcarene–sugar clusters 1418
Resorcinol benzoates, Fries rearrangement of
645
Resorcinol monomethyl ether, mass spectrum
of 289
Resorcinols 236—see also 2-Alkylresorcinols,
Calixresorcinols, 4-Cumylresorcinol,
4-Heptylresorcinol, 4-Hexylresorcinol,
4-Nitroresorcinol, 4-Pentadecylresorcinol
acylation of 631
mass spectra of 272
reactions with cumene hydroperoxide 607
synthesis of 428, 429, 436, 437
thermochemistry of 242
Resorcylic acids 426, 427, 430, 431
ionized, mass spectra of 285
trans-Resveratrol, determination of 319
Retention times, correlation with boiling points
938
Rhenium compounds, as oxidants 1278, 1286,
1288
Rhodium compounds, as oxidants 1287, 1302,
1304
Rhodium tetracetate, as catalyst, in
O_{\ldots}-alkylation 666
Rhodococcus 978
Ring current effects 336
Ring inversion, cone-to-cone 1385, 1386
Ring-walk isomerization 283
Ripening, state of, effect on organoleptic
properties of foodstuffs 913
River water, analysis of 946, 947, 962, 977
Road particulate matter, phenolic compounds
in 938
Rotation, around C–O bond 353, 354
Rotaxanes 1432
Rubazoic acids 349
tautomerism in 361–363
Rubidium complexes 673
Rubidium compounds,
as oxidants 1286, 1288, 1300, 1302
as oxidation catalysts 1213–1215
Salen complexes 688, 697–701
as catalysts,
in kinetic resolution of racemic
epoxides 667, 668
in oxidation 1199, 1201, 1202, 1205,
1209, 1211
Salicylaldehyde imines, complexes of 697–704
Salicylaldehydes—see also
5-Nitrosalicylaldehyde
chemical shifts for, isotope effects on 348
formation of 626, 627
ionized, mass spectra of 124, 126
IR spectra of 377, 378
Salicylamide, IR spectrum of 377, 378
Salicylate anion, IR spectrum of 371
Salicylates 1021
IR spectra of 377, 378
synthesis of 438
Salicylic acids 232—see also Sulfoisalicylic
acid
mass spectra of 285
photoreactions of 1080
N-Salicylideneaniline, photo-induced
transformation of 1024
Salicylidene derivatives, hydrogen transfer in
1024, 1025
Salting out 983
Sample preservation 945, 946
Scabequinone, synthesis of 1261
Schelhammeridine 1297
Schiarisanrin natural products 653, 654
Schiff bases,
coupling constants for 349
hydrogen transfer in 1024
solid-state 366, 367
synthesis of 1405, 1406
tautomerism in 356, 359, 360, 726–734
Schizandrin 1278
β-Scission reactions 877
Scoulerine, formation of 1306
Seawater, analysis of 982
Secoaglucovancomycin, synthesis of 1324,
1325
Secoisolariciresinol, enzymatic formation of
1216
Selectfluor, as fluorinating agent 646, 647, 655
Selenium compounds, as oxidants 1330,
1332–1334
Self-association 546–550
Semicinoline radical 871, 874, 893, 1109
Sensor techniques, use of calixarenes in 1435
Sequential injection analysis (SIA) 984, 986
Serum, phenolic compounds in 968
Sewage, phenolic pollutants in 931
SFC 953
[2,3]-Sigmatropic rearrangement 677, 697
Silica gel membranes 1082
Silphine, electrosynthesis of 1183, 1187
Silver compounds, as oxidants 1307–1311
Silybin, synthesis of 1308, 1310
Silydianin 1180
Silylation, of phenols 934, 935
Silylation, asymmetric 694, 695, 702
Simmons–Smith cyclopropanation,
asymmetric 694
Subject Index 1655
Simmons—Smith reagent 677, 678
Simultaneous distillation and extraction (SDE) 949
Sinapic acid, electrolysis of 1158, 1159, 1162
Single electron transfer (SET), as antioxidant mechanism 844, 896, 897
Size exclusion chromatography 953
Slash pine bark, phenolic compounds in 944
Smiles rearrangement 466–470, 759
S_NAr reactions 673
Soil samples, phenolic compounds in, analysis of 932, 965, 972, 985
field screening of 938
Sol-gel technique 1082
Solid acid catalysis 612–621
Solvation energy 500, 992
Solvation free energy 5
Solvatochromic comparison method, for solvent hydrogen-bond basicity 591
Solvent effects,
on antioxidant activity of phenols 876–884
on Raman spectra of phenoxy radicals 1132
on reactivity of phenols 179
Solvent interactions 877–880
with phenolic antioxidants 880–884
Solvent parameters 876
Solvent viscosity 883, 884
Sonication methods 932
Soya extracts, analysis of 957
Specific heats 5
Spin density 135–137
substituent effects on 1123
Spin–orbit coupling 110
Spirocyclic cyclohexadienone ring system, synthesis of 653
Spirodienones 1410, 1411—see also Bis-spirodienones, Tris-spirodienones
Spiro-oxazoles, formation of 1172
Square-wave voltammetry 982
S_{RN}1 reactions 1073
Staphylococcus aureus, methicillin-resistant 1318
Steam distillation 931
Steganacin 1278
synthesis of 1281
Steganes 1278
formation of 1242
Stereo electronic effects, on antioxidant activity of phenols 861
Stereoisomeric complexes 576
Steric effects 354, 355
Stilbenes,
irradiation of 1079
synthesis of 1405
Stille reaction 1406
Streptomyces antibioticus 977
Stretching potential, OH 371
Strong anion exchanger (SAX) 947
Structural chemistry 199–220
steric and electronic effects on 212–216
Structure–activity models 925
Styrene, as substrate for antioxidants 858
Styrene–divinylbenzene copolymer 945, 946, 962
Styrenes—see Hydroxy styrenes
Substituent effects, additivity of 263, 899
Sugars—see 1-Acetylsugars, Calixsugars
Sulfides, asymmetric oxidation of 699
Sulfanyl derivatives, formation from thiacalixarenes 1415
Sulfonic acids, as phenol precursors 397–399
Sulfosalicylic acid, thermochemistry of 237
Sulfuryl chloride, as chlorinating agent 649
Supercritical fluid chromatography (SFC) 953, 955
Surface plasmon resonance 1000
Surfactants 948, 972
Suzuki coupling 1406, 1424
Sympathomimetic drugs 995
Synergism 889–891
Syringic acid, irradiation of 1079
Syringyl alcohol, catalytic oxidation of 1205, 1208
Tannic acids, titration of 1000
Tannins 940, 948
use in embalming 913
Tautomerism 356–363
arylazophenol–quinone arylhydrazone 724–726
enol–enol 721
in o-hydroxyazo aromatics 356, 358
in Mannich bases 356, 358
in nitrosophenols 360, 361
in Schiff bases 356, 359, 360
in side-chains 740, 742, 743
interconversion barriers in 359
keto–enol 38–40, 46, 127–130, 714–737
nitrosophenol–quinone oxime 721–724
ring–chain 737–741
Tea catechins,
analysis of 961
biological activity of 913
TEAC (Trolox equivalent antioxidant capacity) 894
Tellurium compounds, as oxidants 1288
Template effect 1428
in formation of calixarenes 1377, 1378
Tetrabenzoxazines,
as precursors of other chiral derivatives
1,2; 3,4-bis-bridged 1420
formation of 1419, 1420

Tetrabromobisphenol A 1351

2,3,5,6-Tetrachlorophenol —
N,N-
dimethylaniline complex 364

Tetrachlorophenols, photoreactions of 1074
Tetrafluoroethylene, addition to sodium
phenoxides 669, 670

2,3,5,6-Tetrachlorophenols, reaction with TEMPO, complexes of 366

Tetrahydrobenzonaphthofurans 614, 615

Tetrahydroisoquinolines,
electrolysis of 1159
oxidation of 1329

Tetrahydropyranylphenols, rearrangement of 641

Tetrahydroquinoline, as arylating agent 653

Tetralsins — see Hydroxyltetralins

2,2,6,6-Tetramethyl-1-piperidinyloxy radical (TEMPO), complexes of 366

Tetratalins — see Hydroxytetralins

2,2,6,6-Tetramethyl-1-piperidinyloxy radical (TEMPO), complexes of 366

Tetrathymethylmethane, photoreactions with 1071
meso-Tetraphenylporphyrin, as electron acceptor 1019

Thallium compounds, as oxidants 1278, 1281, 1286, 1288, 1311–1325

Thebaine, enzymatic formation of 1216

Thermal analysis 1002
Thermal desorption 938
Thermospray techniques 319

Thiaclix[4]anilines, synthesis of 1416
Thiaclixarenes, reactions of 1415, 1416
sulfur bridges in, oxidation of 1415
synthesis of 1380, 1381

Thiaclix[4]arenes, conformation of 1415, 1416

Thiazoles — see Benzthiazoles

Thin layer chromatography (TLC) 953

Thioacyl derivatives, hydrogen bonding in 352

Thiocarbamates, rearrangement of 1401

Thiobenzamides, rearrangement of 1401
Thiobenzamides, rearrangement of 1401

Thiophenols 963

Thiouracil, photochemistry of 1075

Thymol complexes 365

Tissue biosensors 978

Titanium phenoxide 691

Titrations, thermometric 1000

Titrations, of antioxidant efficiency 854, 855
of deprotonation of phenols 335

TLC 953

Tobacco extracts, analysis of 957

Tobacco smoke, phenolic compounds in 932

α-Tocopherol quinone 846

α-Tocopherol radical 846, 849

Toluene — see Dihydroxytoluene

Toxicity of phenols 925, 1359–1361

Toxicological monitoring 968, 969

Transbutylation 1402, 1415
selective 1403

Transition moments 105, 106
direction of 368, 381

Transmembrane diffusion, of α-tocopherol 887, 888

TRAP (total radical antioxidant parameter)
assay 857

Triazacyclononane complexes, as oxidation catalysts 1209, 1212

Triazines — see Hydroxyphenyltriazines

2,3,5-Trichlorophenol, deprotonation of 335

2,4,6-Trichlorophenol, irradiation of 1086, 1087

Trichosporon beigelii 978

Triflates, in ortho-acylation 629, 630
in Fries rearrangements 639, 642

Trifluoroacetalysis, of phenols 934

1-Trifluoroacetyl sugars 674

Trifluoroacetylwilsonirine, synthesis of 1275
α,α,α-Trifluorocresols, mass spectra of 290, 291

4-(2,2,2-Trifluoro-1-hydroxyethyl)phenol 608

Trifluoromethylphenols — see also
2,4,6-Tris(trifluoromethyl)phenol 1862
gas-phase acidity of 312
photooxidation of 1084

4-Trifluoromethylphenol, gas-phase acidity of 312

2,4,6-Trifluorohydroxyacophenone, as MALDI matrix 323, 324

1,8,9-Trifluorohydroxyanthracene, as MALDI matrix 323

1,3,8-Trifluorohydroxyanthraquinones, chemical shifts for, isotope effects on 345

Trihydroxybenzenes — see also
Dihydroxyphenols

structural chemistry of 204, 211, 212

3,4,5-Trifluorohydroxybenzoic acid, mass spectrum of 285

4,4′-(Trimethylene)bis(2,6-di-t-butylphenoxy) diradical 1018

Trimethylolphenol 627

Trimethylsilyloxydienes, in synthesis of phenols 441–443

2,4,6-Trinitrophenol, complexes of 366
hydrogen bonding in 352

Triphenylphosphine oxide, complexes of 367

Triphenylpyrylium tetrafluoroborate, as electron-accepting sensitizer 1040
Index compiled by P. Raven
Author Index

This author index is designed to enable the reader to locate an author's name and work with the aid of the reference numbers appearing in the text. The page numbers are printed in normal type in ascending numerical order, followed by the reference numbers in parentheses. The numbers in italics refer to the pages on which the references are actually listed.

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aakeröy, C. B.</td>
<td>530(17), 597</td>
</tr>
<tr>
<td>Abakumov, G. A.</td>
<td>1109(49, 50), 1144</td>
</tr>
<tr>
<td>Abate, G.</td>
<td>984(383), 1012</td>
</tr>
<tr>
<td>Abboud, J.-L.</td>
<td>503(87–89), 526, 887(219), 907</td>
</tr>
<tr>
<td>Abboud, J.-L.M.</td>
<td>237(61), 256, 261(11), 326, 540(39), 564(170), 575(187), 597, 600</td>
</tr>
<tr>
<td>Abd-El-Ghani, A.</td>
<td>1244(169), 1342</td>
</tr>
<tr>
<td>Abd-Rahman, A. A.-H.</td>
<td>675(113), 707</td>
</tr>
<tr>
<td>Abdi-Oskoui, S. H.</td>
<td>774(188), 835</td>
</tr>
<tr>
<td>Abdul Malek, S. N.</td>
<td>740(67), 832</td>
</tr>
<tr>
<td>Abe, H.</td>
<td>107(409), 143(409), 574–576, 578, 144(574–576), 145(574), 147(574, 578), 188, 192</td>
</tr>
<tr>
<td>Abe, S.</td>
<td>992(430), 1013</td>
</tr>
<tr>
<td>Abell, C.</td>
<td>459(269), 487</td>
</tr>
<tr>
<td>Abeygunawardana, C.</td>
<td>367(180), 390</td>
</tr>
<tr>
<td>Abeygunwardana, C.</td>
<td>352(94), 388</td>
</tr>
<tr>
<td>Abidi, R.</td>
<td>1391(114), 1427(423a), 1440, 1452</td>
</tr>
<tr>
<td>Abis, L.</td>
<td>1386(86a, 86b), 1422(379), 1439, 1450</td>
</tr>
<tr>
<td>Abkowics, A. J.</td>
<td>384(291), 393</td>
</tr>
<tr>
<td>Abkowicz-Bietko, A. J.</td>
<td>20, 22, 23, 35–38(112), 82(288), 144(608), 182, 186, 193, 235(52), 255, 372, 375(236), 384(292), 391, 393</td>
</tr>
<tr>
<td>Abolin, A. H.</td>
<td>432(186), 484</td>
</tr>
<tr>
<td>Abrahim, H.</td>
<td>1392, 1403(125a), 1427(424c), 1441, 1452</td>
</tr>
<tr>
<td>Abraham, M. H.</td>
<td>503(89), 526, 533(22), 534(29), 535(33, 34), 536(33–37), 537(33), 539, 540(37), 544(29), 545(53, 54), 557(33, 145), 560, 564(145), 588(33, 37, 257), 590(145), 591(37), 597–599, 602, 876–878(186), 879(196), 882(186, 196), 887(219), 906, 907</td>
</tr>
<tr>
<td>Abraham, R. H.</td>
<td>68(261, 262), 70(261), 185</td>
</tr>
<tr>
<td>Abraham, W.</td>
<td>1403(237), 1445</td>
</tr>
<tr>
<td>Abramczyk, H.</td>
<td>170, 171(759), 177(759, 769), 197</td>
</tr>
<tr>
<td>Abramo, S. V.</td>
<td>1494(128), 1505</td>
</tr>
<tr>
<td>Abramova, G. V.</td>
<td>230(27), 254</td>
</tr>
<tr>
<td>Abrams, S. R.</td>
<td>1237(164), 1342</td>
</tr>
<tr>
<td>Abu-Amsha, R.</td>
<td>913(30), 1003</td>
</tr>
<tr>
<td>Abuja, P. M.</td>
<td>851(64), 853(64, 87), 854, 857, 858(64), 903</td>
</tr>
<tr>
<td>Abuzar, S.</td>
<td>412(76), 480</td>
</tr>
<tr>
<td>Acero, J. L.</td>
<td>1080(254–256), 1085(345), 1093, 1095, 1362(202), 1368</td>
</tr>
<tr>
<td>Achar, B. N.</td>
<td>990(418), 1012</td>
</tr>
<tr>
<td>Achiba, Y.</td>
<td>143(582), 193</td>
</tr>
<tr>
<td>Achilli, G.</td>
<td>953(216, 263), 957(216), 964(263), 1008, 1009, 1353(82), 1365</td>
</tr>
<tr>
<td>Acker, S. A. B. E. van</td>
<td>871, 873, 898(169), 905</td>
</tr>
<tr>
<td>Acree, W. E. Jr.</td>
<td>227(5, 10), 230(5), 254</td>
</tr>
<tr>
<td>Acuña, A. U.</td>
<td>551(99), 599, 730(45), 831, 1025(70b), 1088</td>
</tr>
<tr>
<td>Acuña, J. A.</td>
<td>982(366), 1011</td>
</tr>
<tr>
<td>Acworth, I. N.</td>
<td>953, 960(227), 1008</td>
</tr>
<tr>
<td>Aczel, T.</td>
<td>265(26), 326</td>
</tr>
<tr>
<td>Adachi, K.</td>
<td>687(225), 709</td>
</tr>
<tr>
<td>Adachi, M.</td>
<td>632(86), 658, 686(214), 709</td>
</tr>
<tr>
<td>Adam, W.</td>
<td>740(61), 832, 1080(259a, 259c), 1093, 1125(248), 1149, 1213(113), 1255(184c), 1340, 1342</td>
</tr>
<tr>
<td>Adami, F.</td>
<td>1157(12), 1337</td>
</tr>
</tbody>
</table>

The Chemistry of Phenols. Edited by Z. Rappoport
1508

Author Index

Adamo, C. 4, 100(2), 132, 133, 136(518), 179, 191, 368, 372, 373(200), 390, 1127(267), 1149
Adamowicz, L. 370, 382(211), 391, 730(46), 831
Adams, C. M. 450(239g), 486
Adams, D. J. 617(33), 656
Adams, G. E. 1113(87), 1115, 1128(92), 1129(299), 1130(299, 322), 1134(92), 1145, 1150
Adams, R. N. 1157(10), 1337
Adams, W. J. 1356(128), 1366
Adeleke, B. B. 1124(239), 1148
Adityachaudhury, N. 409(59), 480
Adkins, K. L. 951, 953(191), 1007
Adler, E. 1267(201, 202b), 1343
Adou, E. 322(248), 331
Aerts, J. 93, 103(363), 187
Afanasev, I. B. 1118(142), 1146
Afee, H. Y. 224(3), 254
Agaev, A. A. 612(20), 656
Agui, B. 1387, 1391(93), 1439
Agarwal, S. K. 830(347), 838
Agarwal, U. P. 174(764), 197
Agavelyan, E. S. 301(130), 197
Agawa, T. 1402, 1409(223), 1149
Agena, C. 320(241), 322(241, 252), 331
Agenda, C. 1419(346), 1450
Agmon, N. 493(48–50, 58, 59, 61, 62), 497(58, 59), 498(59), 502(82), 504, 505(49), 526
Agranat, I. 1124(236), 1148
Agrawal, O. 988(411), 1012
Agüi, M. L. 982(362), 1011
Aguir, S. 631(72), 657
Aguiler, M. P. 913(6), 1091
Ahele, M. 1349(32), 1356(126, 129), 1363, 1366
Ahlbrecht, H. 744(74), 832
Ahluwalia, V. K. 677(126), 707
Ahmed, F. 970(291), 1009
Ahmed, R. 740(66), 832
Ahmed, S. 1086(371), 1096, 1130(306), 1137(366), 1150, 1151
Ahn, B.-H. 1082(289), 1094
Ahn, K. 549(184), 575(185), 580(185, 204), 600, 601
Ahn, K. 1372(13), 1436
Ahtianen, J. 1347(8), 1363
Aihara, K. 1213(112), 1340
Aiken, J. 855(106, 110), 901(110), 904
Aimoto, Y. 1205(103), 1340
Airota, K. 1419(358), 1420(363), 1450
Aizawa, M. 309(173), 310(174), 329
Aizawa, T. 827(340), 838
Ajao, J. F. 1294(253a), 1344
Akabori, S. 1392(131), 1441
Akai, S. 447(222b–e, 222h, 222j), 448(222b, 225, 226), 485
Akao, K. 1400, 1401(210a), 1405(247), 1444, 1445
Akashe, M. 807(275), 837
Akdas, H. 1415(314b), 1448
Akihito, T. 414(90h), 481
Akita, N. 414(90b), 481
Akita, S. 323(256), 331
Akiyama, M. 463(276d), 487
Aksnes, D. W. 338(13), 386
Alagona, H. 551, 553(103), 599
Alam, T. M. 338, 380(15), 386
Aldaron, S. H. 726(33), 831
Aldaron, S. H. H. 359(129), 389
Al-Bahri, T. A. 1362(215), 1368
Albers, P. 1084(327), 1095
Alberti, B. N. 411(70a), 480
Albertini, R. 851(64), 853(64, 87), 854, 857, 858(64), 903
Albarga, J. 551(98), 599
Albini, A. 419(133), 482, 1081(262), 1093
Albrecht, G. 144(607), 193, 364(157), 389, 593, 595(274), 602
Alcini, D. 1359(151), 1366
Alder, A. C. 212(25), 221
Aldini, G. 953, 966(269), 1009
Aldoshin, S. M. 1025(69), 1088
Aldrich, H. S. 139(531), 191
Aldrich, J. E. 1129, 1130(299), 1150
Alegria, A. E. 241(79), 256
Al-Ekabi, H. 1086(366), 1096
Aleksiuk, O. 1410(291b), 1411(295, 296a–c, 297), 1447
Alemdar, I. 972(305), 1010
Alewood, P. F. 774(190), 835
Alexandratos, S. 261(11), 326
Alfano, J. C. 20, 24, 106(118), 182
Alfassi, Z. B. 845(26, 27), 880(26, 201), 902, 906, 1099(9), 1101(37), 1105, 1106, 1110(57), 1111(71, 72), 1128(57), 1135, 1136(353), 1145, 1151
Alfi, A. C. 1395(180), 1442
Al-Hadad, A. 1362(215), 1368
Al-Hassan, G. 1065(194), 1091
Alif, A. 1073(220), 1092
Alimpiev, S. S. 1000(468), 1091
Al Jarjal, N. A. 1060(138–185), 1091
Aljosa, L. A. 236(54), 1091
Alkorta, I. 129(479), 190
Al-Laham, M. A. 4, 100(2), 1081(262), 1093
Al-Munir, G. 1065(194), 1091
Allain, F. 322(249), 331
Allan, E. A. 53(233, 234), 185
Allen, B. T. 1123(199), 1148
Allen, C. F. H. 462(273b), 487
Allen, F. H. 535, 549(32), 550(71), 551(32, 134), 552(134), 597–599
Allen, I. 397(2a), 478
Allerhand, A. 170, 171(745), 196, 589(260), 602
Allott, P. H. 238(68, 69), 239(68), 256
Almedia, L. M. 853, 856, 857(88), 904
Almeida, R. F. 1482(88), 1504
Almi, M. 1404(244), 1445
Alonso, L. 1360(168), 1367
Alonso, M. C. 947, 953(171), 1006
Alpincourt, P. 867, 880, 897(151), 905
Al-Rashid, W. A. L. K. 551(108), 599
Al-Rawi, J. M. A. 359(127), 389
Al-Tamimi, S. A. 995(443), 1013
Altamura, A. 1257(186), 1342
Altman, L. J. 349(58), 387
Alvarez, B. 637(110), 658
Alvarez, R. J. 145(632), 194
Alvarez Rodríguez, L. 988(409, 410), 1012
Alves, R. 901(286), 908
Alvila, L. 997(445, 446), 1013
Alwarthan, A. A. 995(443), 1013
Aly, F. A. 995(443), 1013
Aly, M. M. 1071(201–203), 1091, 1092
Amabilino, D. B. 761(116, 117), 833
Amakura, Y. 953, 957(219), 1008
Amaral, M. T. 961(245), 1008
Amat, A. M. 1079(244), 1093
Amat-Guerr, F. 551(99), 599, 730(45), 831, 1025(70b), 1088
Amborziak, K. 345(48), 387
Amiot, M. J. 953, 958(225), 1008
Ammon, H. L. 216(32), 832, 833
Anderson, S. L. 129(477), 1348
Anderson, S. C. 110–112(426), 1150
Anderson, S. C. 110–112(426), 1150
Anderson, S. L. 129(477), 190
Andersson, G. 1267(202b), 1343
Andersson, T. 970(289), 1009
Ando, I. 1362(211), 1368
Ando, T. 662(6), 702(332), 705, 712
Ando, W. 407(51), 479
Andrade, J. G. 1314(288, 289), 1345
Andrade, P. 961(245), 973, 981(313), 1008, 1010
Andrade, P. B. 913(18, 20), 958(20), 1003
Andreetti, G. D. 1374(42a), 1395(180), 1436, 1442, 1462(24, 28), 1502, 1503
Andres, J. L. 4, 100(2), 179, 368, 372, 373(200), 390
Andrews, L. 129, 131(504), 191
Andriani, A. 359(127), 486
Angele, B. 1086(361), 1096
Andry, P. 631(75), 657
Anelli, P. L. 761(117), 833
Anex, D. S. 137(522), 191
Angel, A. J. 730(47), 832
Angelino, S. 953, 962(247), 1008
Angelon, L. 383(281), 392
Angermann, R. 305(147), 329
Angioli, L. 684(186), 709
Anjed, E. 851, 854(74), 903
Anghes, L. 978(348), 1011
Angot, S. 1388(100a), 1439
Angren, H. 179(775), 197
Ángyán, G. 69(269), 185
Anjaneyulu, A. S. R. 631(84), 658
Ankley, G. T. 1357(133), 1366
Anlauf, S. 300(113), 328
Annanguna, P. 447(222i), 485
Annis, D. A. 668(53), 706
Announa, H. 447(222g), 485
Anoshin, A. N. 383(280), 392
Antes, C. 1462(30), 1503
Antolovich, M. 942(136), 999(466), 1006, 1013
Antona, D. 549(67), 550(68), 598
Antonelli, A. 303(142), 329
Antunes, P. 843(283), 851(60, 70), 852(60), 887(60, 220), 888(60), 901(283, 286, 287), 903, 907, 908
Antus, S. 1122(194), 1129, 1130, 1142(293), 1150, 1227(141), 1315(292), 1341, 1345
Antypas, W. G. 336(6), 386
Anulewicz, R. 93(362), 187
Anvia, F. 311(186), 312(193), 329, 330, 586, 587(245), 602
Aoki, H. 1099(1–13), 1105
Aoki, K. 322(243), 331
Aoki, T. 683(174), 708
Aoki, Y. 694(263), 710
Aono, M. 1380(62), 1438
Aoyagi, K. 1374(44), 1437
Aoyama, T. 699(306), 711
Aoyama, Y. 1383(67e), 1418(335), 1421(67e), 1438, 1448
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker, P. F.</td>
<td>845, 846(38), 902</td>
</tr>
<tr>
<td>Baker, R.</td>
<td>441(206), 484</td>
</tr>
<tr>
<td>Baker, S.</td>
<td>1033(108), 1089</td>
</tr>
<tr>
<td>Baker, W.</td>
<td>408(56, 57), 419(136b), 480, 482</td>
</tr>
<tr>
<td>Baklouti, L.</td>
<td>1391(114), 1440</td>
</tr>
<tr>
<td>Bakry, R. S.</td>
<td>990(423), 1012</td>
</tr>
<tr>
<td>Bala, P.</td>
<td>144(651), 194</td>
</tr>
<tr>
<td>Balaban, A. T.</td>
<td>432(184a, 186), 484, 823(330), 838</td>
</tr>
<tr>
<td>Balachandran, K. S.</td>
<td>745(79), 832</td>
</tr>
<tr>
<td>Balakrishnan, P.</td>
<td>349(75), 388</td>
</tr>
<tr>
<td>Balakrishnan, P.</td>
<td>349(75), 388</td>
</tr>
<tr>
<td>Balani, S. K.</td>
<td>412(71a), 480</td>
</tr>
<tr>
<td>Balasubramanian, K. K.</td>
<td>301(134), 328, 663(23, 25, 115), 680(147), 705, 707, 708, 763(132), 765, 707, 708, 763(132), 834</td>
</tr>
<tr>
<td>Balasubramanian, T.</td>
<td>301(134), 328</td>
</tr>
<tr>
<td>Balasubramanian, V. V.</td>
<td>617(34), 656</td>
</tr>
<tr>
<td>Balavoine, G.</td>
<td>460(285), 487</td>
</tr>
<tr>
<td>Bald, E.</td>
<td>460(283a), 487</td>
</tr>
<tr>
<td>Baldini, L.</td>
<td>1396(185), 1443</td>
</tr>
<tr>
<td>Baldioli, M.</td>
<td>998(452, 453), 1013</td>
</tr>
<tr>
<td>Balduzzi, G.</td>
<td>686(213), 709, 1462, 1463(26), 1503</td>
</tr>
<tr>
<td>Baltas, M.</td>
<td>400(18b), 478</td>
</tr>
<tr>
<td>Balthazor, T. M.</td>
<td>449(234b), 486, 801(240), 836</td>
</tr>
<tr>
<td>Balzani, V.</td>
<td>761(118), 833</td>
</tr>
<tr>
<td>Bamberger, E.</td>
<td>419(122a, 122b), 482, 801(240), 836</td>
</tr>
<tr>
<td>Bandara, J.</td>
<td>1084(327), 1095</td>
</tr>
<tr>
<td>Banerjee, A. K.</td>
<td>471(305), 488</td>
</tr>
<tr>
<td>Banerjee, D. K.</td>
<td>425(159), 483</td>
</tr>
<tr>
<td>Barberis, G.</td>
<td>178(771), 197</td>
</tr>
<tr>
<td>Barberousse, V.</td>
<td>609(17), 656</td>
</tr>
<tr>
<td>Barberi, K.</td>
<td>933(102), 934(108), 937(102, 108), 1005</td>
</tr>
<tr>
<td>Barbeux-Flammang, M.</td>
<td>84(303), 110(448, 449), 115(303), 186, 189, 190</td>
</tr>
<tr>
<td>Barbo, R. B.</td>
<td>424(154b), 444(218), 483, 485</td>
</tr>
<tr>
<td>Balbosa, S.</td>
<td>1389(105), 1391(120c), 1440</td>
</tr>
<tr>
<td>Barbour, L. J.</td>
<td>1372(24b), 1436</td>
</tr>
<tr>
<td>Barcelini, W.</td>
<td>1359(151), 1366</td>
</tr>
<tr>
<td>Barceló, D.</td>
<td>296(86), 319(229), 327, 330, 928(56), 946(158, 159), 947(171), 953(158, 159, 171, 201, 206, 262), 955(201, 206), 964(262), 977(335), 1004, 1006, 1007, 1009, 1010, 1348, 1357(11), 1363</td>
</tr>
<tr>
<td>Barcelo, G.</td>
<td>663(16), 705</td>
</tr>
<tr>
<td>Barclay, L. R. C.</td>
<td>842(15), 843(283), 845(30), 851(44 – 60, 72, 80(56), 855(116), 856(50), 857(62), 858(56, 58), 862(49), 863(49), 55, 868, 870(51), 871(159), 872(50), 876(184), 877(116), 878(50), 882(55), 884(44, 45, 207, 208), 885(45 – 47, 54, 55, 207, 213 – 215), 886(35), 887(52, 55, 60, 220), 888(60), 889(45, 56, 58), 890(53, 214, 238), 893(256), 899(279), 901(279, 283, 284), 902 – 908</td>
</tr>
<tr>
<td>Barcley, L. R. C.</td>
<td>867(150, 152), 868, 869, 871(152), 897(150), 905</td>
</tr>
<tr>
<td>Barich, D. H.</td>
<td>171(762), 197</td>
</tr>
<tr>
<td>Baringer, D.</td>
<td>929, 954(62), 1004</td>
</tr>
<tr>
<td>Barlow, I.</td>
<td>949, 953(185), 1007</td>
</tr>
<tr>
<td>Barluenga, J.</td>
<td>651(172), 660, 770(153), 834</td>
</tr>
<tr>
<td>Barner, R.</td>
<td>460(280a), 487</td>
</tr>
<tr>
<td>Barnes, I.</td>
<td>18(83a), 181</td>
</tr>
<tr>
<td>Barnes, S.</td>
<td>637(110), 658</td>
</tr>
</tbody>
</table>
Bergmann, F. 425(159), 483
Bergvinson, D. 994(438), 1013
Berho, F. 138(527), 191
Berlman, I. 107, 109(411), 188
Berman, Z. 411(70a), 480
Bermejo, J. M. 769(148), 834
Bermudez, G. 143, 147(585), 193
Bernabei, M. 953(209), 962(256), 1009
Bernal, J. L. 953(209, 256), 955(209), 962(256), 1007, 1009
Bernard, A. M. 764(138, 139), 834
Bernardinelli, G. 783(222), 836
Berndt, A. 1123(216), 1124(216, 218), 1148
Berr, C. E. 1494(128), 1505
Berrier, C. 405(39a), 479
Berrueta, L. A. 1353(72), 1364
Berset, C. 856(125), 904, 982(369, 371), 1011
Berthelon, G. 229, 254
Berthelon, G. 229, 230(23), 254
Berthelot, M. 238 – 240(66), 256, 531(18, 19), 532(18), 533(22), 534(23), 543(50), 544, 545(51), 547(18, 51), 548, 549(51), 551, 553(87), 554, 555(138), 558(19, 146), 559(138, 154), 568(154), 575(186, 188), 576(19, 146, 189), 580(188, 211), 581(211), 583(223), 586(18, 19, 23, 146, 154, 186, 188, 241 – 256), 587(18, 19, 23, 146, 186, 188, 241 – 256), 589(19, 18, 244, 248, 252, 254, 256), 590(138), 597 – 602
Berthod, A. 953, 956(210), 1007
Berthomieu, C. 94, 105(366), 132, 133, 135(516), 187, 191, 369(205 – 207), 391
Bertolas, V. 338, 342(9), 363(146), 386, 389, 552(135), 599
Bertolini, F. 1424(389b), 1450
Bertrand, J. 129, 144, 148, 149, 153(473), 190, 577, 581(192), 600, 1362(207), 1368
Bertrand, M. 290(61), 327
Bertrand, W. 115(461), 190
Berzélius, J. 7(36), 37, 180
Besheesh, M. K. 647(147 – 149), 659
Besombes, J. L. 977(343), 1011
Besse, M. 558(19), 559(19, 146), 575(188), 576(19, 146), 580(188), 586, 587(19, 146, 188, 249, 252, 255), 589(19, 252), 597, 599, 600, 602
Besson, T. 680(150), 708
Bester, K. 1356(123), 1366
Bewick, C. 305(147), 329
Bidzilya, V. A. 1118(141), 1146
Bied-Charreton, C. 1201, 1205(92), 1340
Biekofsky, R. R. 366(167), 390
Bielski, B. H. J. 845(37), 902, 1109(51), 1130(305, 307), 1144, 1150
Bienaymé, H. 677(132), 707
Bieniek, G. 920(34), 1003
Bienko, D. C. 20, 22, 23(112), 35(112, 170), 47, 58(170), 82(288), 182, 183, 186, 235(52), 255, 372, 375(236), 384(291, 292), 391, 393
Bienwald, F. 699(304), 711
Bieri, J. H. 212(25), 221
Biermann, H. 300(126), 328
Bierbach, T. 1470(62), 1503
Bieske, E. J. 144(61), 195
Bickers, C. K. 786(229, 230), 836
Bigelli, A. 365(159), 389
Bigi, F. 1255(183), 1342
Bigi, F. (continued) 832, 1374(37), 1378(37, 49a–c), 1436, 1437
Bignan, G. 673(94), 706
Bignoli, F. 1082(287), 1094
Bigot, A. 420(141), 483
Bikádi, Z. 179(782), 198, 369(209), 391
Bilikova, J. 1354(106), 1365
Billard, J.-P. 1054(164), 1091
Billes, F. 20, 22, 23, 35, 36, 38(111), 182, 368, 370–375(198), 390
Billion, M. A. 639(125), 659
Billmers, J. M. 417(117), 482
Bilton, C. 551, 552(134), 599
Bilyk, A. 1413(304, 305), 1447
Binkley, J. S. 368(201), 391
Binkley, R. W. 314, 315(208), 330, 1043(130b), 1090
Biradha, K. 211(21), 221
Birch, A. J. 13(65), 181, 426, 427(166b), 483, 1297(260c), 1344
Bird, C. W. 1294(253a, 253b), 1344
Bird, S. 953, 964(263), 1009, 1355(82), 1365
Birge, R. 93–96(357), 187
Birkett, A. M. 953, 969(281), 1009
Birknes, B. 579(198), 601
Birkofe, L. 823(324, 325), 838
Birney, D. M. 807(274), 837, 1230(149), 1341
Bisarya, S. C. 651(171), 660
Bisby, R. H. 844(20), 902, 1129(282, 283, 299), 1130(299, 306, 322), 1132(339), 1133(282, 340), 1134(283), 1137(366), 1141(282), 1149–1151
Bist, H. D. 35(153, 156, 159), 36, 37, 66, 67(153), 107(156), 183
Bitsch, I. 953, 957(218), 960(226), 1008
Bitter, I. 1387, 1391(93), 1439
Bittner, D. 18(83a), 187
Bock, C. W. 93(362), 187, 551, 553(77, 78), 598, 826(337), 838
Bock, H. 1283(231), 1343
Boddy, C. N. C. 670(71), 706
Bodewes, P. J. 1403(242), 1445
Bodibo, J. P. 631(77), 657
Bogdanov, B. 86(306), 186
Bogdanov, G. N. 745(78), 832, 1119(157), 1123(210), 1147, 1148
Boer, D. L. 450(246), 486, 670(73), 706, 1163(33c), 1338
Boek, W. 1125(245), 1149
Bolli, D. S. 637(113), 658
Bohm, J. L. 929, 954(62). 1004
Blanda, M. T. 322(247, 248), 331, 1399(204), 1427(419b), 1444, 1452
Blank, A. B. 987(407), 1012
Blampain-Avet, P. 1002(482), 1014
Blasco, T. 316(220), 330
Blasko, A. 769(147), 834
Blatt, A. H. 639(127), 659
Blatt, A. M. 472(308d), 488
Blatz, P. E. 593, 595, 596(279), 602
Blazejewski, J.-C. 671(81), 681(163), 706, 708, 1272(205a, 205b), 1343
Blazevic, N. 1470(50, 52), 1503
Blazkova, A. 1082(284), 1094
Blazovics, A. 1129, 1130(294), 1150
Bleten, J. 913(5), 1003
Blixt, J. 1385(82), 1439
Blomberg, M. R. A. 45(196), 184
Blount, J. F. 1278(225), 1343
Blum, W. 291(67), 327
Boatella, J. 961(243), 1008
Bobbitt, J. M. 1159(29), 1338
Bobrowski, K. 1117(130, 132), 1128(281), 1146, 1149
Bocchi, C. 953, 955(203), 1007, 1396(181a, 182a), 1442, 1443
Bocchi, V. 1462(24), 1502
Bocchinfuso, G. 953, 970(288), 1009
Bocchini, P. 303(142), 329, 937, 941(131), 1006
Bobelli, G. 622(52, 53), 623(54), 657, 683(179, 182), 708
Boch, C. W. 82(284), 186
Bok, C. W. 93(362), 187, 551, 553(77, 78), 598, 826(337), 838
Bock, H. 1283(231), 1343
Boddy, C. N. C. 670(71), 706
Bodewes, P. J. 1403(242), 1445
Bodibo, J. P. 631(77), 657
Bodige, S. G. 1427(414b), 1451
Bok, C. W. 93(362), 187, 551, 553(77, 78), 598, 826(337), 838
Bock, H. 1283(231), 1343
Bogdanov, G. N. 745(78), 832, 1119(157), 1123(210), 1147, 1148
Boger, D. L. 450(246), 486, 670(73), 706, 1163(33c), 1338
Bogert, T. M. 1494(124), 1505
Boguslavskaya, N. I. 1104(58), 1106
Boigut, W. 1125(245), 1149
Bolli, D. S. 637(113), 658
Bohm, J. L. 929, 954(62), 1004
Author Index

Botta, B. 1382(74), 1383(75a–e), 1422(75e, 375), 1438, 1439, 1450
Botta, M. 1383(75a–e), 1422(75e), 1439
Böttcher, J. H. 997(444), 1013
Bottino, A. 1401(213), 1403(230), 1427(230, 414a), 1444, 1445, 1451
Bottino, F. 1393(157a), 1442
Bottling, R. M. 10(45), 180
Bouchard, G. 544(52), 598
Boucher, D. 171(762), 197
Bouchoule, C. 405(45), 479
Bouchoux, G. 83(296b), 110(452), 115(461), 186, 190, 299(95), 300(124), 327, 328
Bouchy, M. 1080(249), 1093
Boudenne, J.-L. 1361(192), 1367
Bougauchi, M. 695(270), 710
Boujx, J. 1415(318a), 1448
Boule, P. 1054(164), 1072(210), 1073(217, 220), 1080(251), 1083(300), 1084(319), 1085(344), 1091–1095
Boule, P. 1057(175–177), 1072(177), 1091
Boullais, C. 132, 133, 135(516), 191
Bouma, W. J. 114(460), 190
Bousoit, S. 1402(224e), 1013
Bousoit-Montésinos, S. 1402(224d), 1445
Bourassa-Bataille, H. 47, 53, 56(229), 1151
Bourelle-Wargnier, F. 818(314), 838
Bourgquinon, B. 954, 970(199), 1007
Bourne, L. C. 968(270), 1093
Boussenadji, R. 953, 956(210), 1007
Bowden, B. F. 807(279), 837
Bowen, R. D. 263(19), 300(106), 326, 328
Bower, J. F. 670(72), 706
Bowers, A. R. 178(773), 197
Bowie, J. H. 310(177, 180), 314(209), 315(210), 316(180, 209), 329, 330, 467(296), 488
Bowry, V. W. 141, 142(538), 192, 846(42), 876(185), 892(185, 252, 253), 902, 906, 907
Boyar, W. C. 15(72), 181
Boyatzis, S. 1086(361), 1096
Boyd, D. R. 412(71a, 72), 480, 721(21), 824(21, 335), 829(342, 344, 345), 830(347), 831, 838
Boyd, S. A. 450(235), 486, 1347(6), 1363
Boyd, S. E. 761(116), 1363
Boyd, T. J. 933, 937(100), 1005
Boykin, D. W. 339(22), 340(23, 24, 28, 29), 341(29, 30), 349(29, 30, 75, 76), 350(30), 352(88), 356(108), 386–388, 551(94, 95), 598
Boykin, W. 551, 553(80), 598
Boylan, E. 409(62a, 63b), 480, 801(241, 244), 836
Bozan, B. 944, 953(142), 1006
Bozell, J. J. 676(118), 707, 1205(104), 1265(198), 1340, 1343
Brabant-Govaerts, H. 583(226), 601
Bracchini, C. 1396(185), 1443
Bracey, A. 764(137), 834
Bracht, J. 1169(43), 1338
Brack, T. L. 1028(96), 1089
Braddock, D. C. 1381(65b), 1438
Bragina, N. V. 953, 957(214), 1007
Bram, G. 460(285), 487
Brand, J. C. D. 35(153, 156), 36, 37, 66, 67(153), 107(156), 183
Brandes, B. D. 698(297), 711
Brandsma, L. 677(138), 707
Brandstetterova, E. 1082(271, 272), 1093
Brandt, O. 493(55), 526
Brandvold, T. A. 450(246b), 454(253), 486, 735(52), 832
Brand-Williams, W. 856(125), 904
Brann, E. A. 1359(155), 1366
Brar, J. S. 774(185, 186), 835
Bräse, S. 670(71), 706
Braslavsky, S. E. 1085(330), 1095
Brass, I. J. 559, 574(155), 600
Brassard, P. 441(207), 444(215a, 215b, 216a, 216b), 484, 485
Brattan-Mayer, S. 361(145), 389
Brattun, D. 1072(212), 1092
Brauer, B. 493(63), 526, 948(177, 178), 1007
Brüner, M. 385(302), 393, 1025(70a), 1088
Braughler, J. M. 857(135), 905
Brault, D. 1111(68), 1145
Bruman, J. I. 95, 109(369), 188, 310(183), 312(191), 314(201, 202), 329, 330
Brann, A. M. 1080(253), 1085(334), 1093, 1095
Brann, D. 816(308), 838
Brann, S. 338(11), 386
Bray, T. L. 460(279), 487
Braybrook, C. 121(465), 190
Brede, O. 110(420, 422–424), 114(424), 121(423, 424), 189, 1017(12), 1087, 1101(38–40), 1102(40, 45–47), 1106, 1134(341–343), 1151
Breder, C. V. 650(163), 659
Breen, J. J. 493(21, 23), 525
Bregman-Reisler, H. 1099(9), 1105
Brenner, P. D. 957(220), 1008
Bren, V. A. 729(44), 831
Brenes, M. 930(78), 1004
Brenn, J. 1378, 1386(51), 1411(298), 1437, 1447
Brennan, J. A. 400(16), 478
Brenner, V. 78(282), 129, 144(474), 186, 190, 578(195), 601
Breton, J. 369(205–207), 391
Breuer, S. W. 414(95), 416(112), 481, 482
Breuker, K. 324(269, 275), 325(276), 331, 332
Bubnov, N. N. 1125(254), 1126(257–261), 1149
Bucala, R. 855, 868, 901(111), 904
Buchanan, M. V. 293(70), 327
Buchberger, W. 974(316), 1010
Buche, K. 950(188), 1007
Bucharer, H. T. 402(23), 479
Buchhold, K. 147(714), 195
Buchholz, K. D. 932(88, 89), 1005
Buchi, G. 1250(174–176, 177a, 177b), 1327(315), 1342, 1346
Buchi, G. H. 1180(64), 1339
Buchmeiser, M. R. 945(157), 1006
Buchwald, S. L. 670(74), 671(80), 706
Buck, E. 670(78), 706
Buckingham, D. A. 170(751), 196
Buckman, N. G. 1002(479), 1014
Buczak, G. 146(638), 194, 593, 595(281, 282), 602, 603
Budka, J. 1432(451), 1453
Budzikiewicz, H. 260(1), 310, 315(176, 178), 325, 329
Buehler, C. A. 410(65a), 480
Buerki, S. 1085(334), 1095
Buettner, G. R. 890(239), 896(270), 907, 908
Bugge, G. 6, 7, 133(31), 180
Bühler, R. E. 1113(83), 1145
Bühring, D. 1419(357), 1428(425a), 1450, 1452
Bui, H.-H. 871, 898(164), 905
Buiarelli, F. 942, 943, 953(138), 1006
Buist, G. J. 503(89), 526
Buker, H. H. 93(355), 187
Bungh, W. B. 170(739), 196
Bunnett, J. F. 397, 467(5), 478
Buntowsky, G. 503(90), 527
Bursch, J. C. 4, 100(2), 179, 368, 372, 373(200), 390
Burch, R. 1362(203), 1368
Burckel, P. 233(40), 255
Bureiko, S. F. 143(557–560), 145(626, 627), 146(641), 147(643–645), 192–194, 352(89, 90), 388
Burel, R. 144(691), 195
Burestedt, E. 953, 969(280), 977(335), 1009, 1010
Bürgi, H. B. 147(709), 195
Bürgi, T. 20, 35(122), 36(122, 175), 78(278), 147(122, 175, 709–711), 148(710, 711), 182, 183, 186, 195, 375(242, 243), 392, 577(191), 581(219), 600, 601
Burie, J. 171(762), 197
Burilov, A. R. 1424(396), 1451
Burinske, D. J. 293(76), 308(163), 327, 329
Burke, S. D. 416(109b, 115), 482
Burkert, U. 322(242), 331
Burkharter, R. S. 1414(307a, 308), 1447, 1448
Burlakova, E. B. 891(243), 907, 1108, 1118(6), 1144
Burlingame, A. L. 129(485), 190
Burman, K. S. 725(28), 831
Burman, S. I. 725(28), 831
Burns, E. 934, 937(109), 1005
Burns, R. 1470(55), 1503
Burr, J. A. 845(39), 852(79), 902, 903
Burrini, D. 933(102), 934(108), 937(102, 108), 1005
Burrow, P. D. 315(211), 330
Burrows, C. J. 702(325), 712
Burrows, H. D. 1017(15), 1018(18, 19), 1082(276), 1086(359), 1087, 1093, 1096, 1101(35), 1106
Bursey, J. T. 280(49), 326
Bursey, M. M. 280(49), 299(90, 94), 307(153, 154), 326, 327, 329
Burton, G. W. 15, 129(76), 141(76, 539, 540), 142(76), 143(552), 181, 192, 840(3), 842(14), 844, 847(18), 851(43, 62), 853(92), 855(18), 857(62), 858(43), 860(14, 18, 141), 861, 862(18), 864(18, 143, 144), 865(144), 884(207), 885(207, 212), 887(217), 890(212), 891(241), 897, 898(18), 900(14), 901(288), 902–908, 1108(7, 8), 1111(7), 1120, 1140(184), 1144, 1147
Burton, J. M. 1393(145a), 1441
Burton, R. D. 325(278), 332
Burton, S. G. 411(70b), 480, 980(358), 1011
Buryan, P. 265, 268, 269(27), 326
Busch, J. H. 721(23), 831
Busche-Hünefeld, C. von dem 1428(425a), 1452
Buchmann, H.-J. 1378(48b), 1437
Buser, H. R. 315(216), 330
Bushkov, A. Y. 1025(69), 1088
Bussandri, A. 1016(4), 1087
Bussche, L. von der 681(165), 708
Busto, O. 1352(65), 1364
But, P. P. H. 212(22), 221
Butler, G. B. 1495, 1498(152), 1505
Butler, J. 1100(21), 1105, 1117(123, 126–128), 1130(123), 1146
Butters, B. 1086(366), 1096
Buttery, R. G. 419(134a), 482
Buttrill, S. E. Jr. 291(68), 327
Buvari-Barca, A. 358(117), 388
Buxton, G. V. 1098(2), 1105, 1112(79), 1145
Buzbee, L. R. 398(9b), 478
Buzzard, G. K. 129, 131(503), 191, 1127(273), 1149
Byers, J. R. 400(20), 478
Bythway, I. 1478(85), 1504

Cabaleiro, M. C. 1381(65a), 1438
Cabaleiro-Lago, E. M. 171(762), 174(763), 197
Caballo, R. 110, 121(428), 189
Cabani, S. 101(384), 188
Cabelli, D. E. 1130(307), 1150
Cabiddu, S. 139(532), 191
Cablewski, T. 762(127), 834
Cabot, J. B. 951, 953(191), 1007
Cabra, B. J. C. 179(777), 998
Cabrero, S. 934, 937(107), 1005
Cabrini, L. 852(77), 903
Cabral, B. J. C. 20, 23(117), 182
CAC, F. 307(156), 309(169–171), 329
Caccamise, S. 1392(127), 1394(172c), 1396(172c, 195d), 1441–1443
Cacciapaglia, R. 1392(136), 1394(171), 1396(185), 1397, 1399, 1403(197b), 1441–1443
Caceres, J. 1086(372), 1096
Cadahía, E. 953, 956(267), 1009
Cadenas, E. 1136, 1137(363), 1151
Cadogan, F. 1435(469a), 1454
Cai, L.-N. 674(104), 707
Cai, M.-S. 674(104), 707
Cai, W. 666(48), 705
Cairns, M. R. 550(72), 598
Cain, N. 472(313), 488
Calama, M. C. 1405(256a), 1446
Calba, P. J. 323(259), 331
Calceran, M. T. 1354(103), 1365
Caldwell, G. W. 314(204), 330
Caldewell, J. 935, 937(114), 1005
Califano, S. 4(7), 179
Caliskan, E. 448(228), 485
Callery, P. S. 1335(330), 1346
Callinan, A. 1227(147), 1341
Calloni, M. 953, 966(269), 1009
Callull, M. 1535(92, 93), 1534(104), 1365
Calull, M. 945, 953(152), 971(295), 1006, 1009, 1347, 1353(1), 1354(107), 1363, 1365
Camacho, D. H. 664(35), 705, 763(134), 834
Camacho-Frias, E. 945(150), 1006
Camaioni, D. M. 110, 112(441), 189, 1111(74), 1145
Camaioni, O. M. 405(41d), 479
Camarero, S. 937, 941(131), 1006
Cambi, R. C. 416(114), 482
Cameron, D. 308(163), 329
Cameron, D. W. 444(215c, 216g, 216h), 448(228), 485
Caminiti, W. 551, 553(73), 598
Cammann, K. 1378(48b), 1437
Cammi, R. 4, 100(2), 179, 368, 372, 373(200), 390
Campagnaro, G. E. 85(304), 186
Campana, J. E. 293(76), 327
Campanella, L. 975(321), 977(334), 1010
Campbell, C. B. 749(99), 833
Campbell, C. 367(170), 390
Campbell, D. 1103(51–53), 1106
Campbell, J. M. 170(747), 196
Campbell, R. M. 412(72), 480
Campbell, T. W. 845(28), 902
Camelo, J. M. 608(13), 618(36), 656, 774(182), 835
Campins Falcó, F. 942(135), 1006
Campins-Falcó, P. 953, 954(198), 1007
Camo Dall’Orto, V. 953, 956(211), 1007
Camposstrini, R. 1082(290), 1084(326), 1094, 1095
Camps, F. 422(146), 483, 663(20), 705
Campsteyn, H. 583(224), 601
Camy-Payret, C. 150(738), 196
Cancelli, J. 1370(5), 1435
Canella, K. A. 677(137), 707
Caness, P. 405(45), 479
Canonica, S. 1017(14), 1085(332), 1087, 1095
Cantadori, B. 1424(389b), 1450
Canters, G. W. 977(344), 1011
Cantoni, A. 622(53), 657
Cantoni, O. 895(265), 908
Canuto, S. 728(40), 831
Cao, G. 871(162), 905
Cao, Z. 666(48), 705
Cap, L. 932(87, 90), 937(87), 1005
Capdevielle, P. 1305(270), 1344
Capicchi, T. 462(273a), 487
Capello, A. 953, 961(236), 1008
Cao, M. 750(102, 103), 833
Caponio, F. 913(7), 953
Capponi, M. 38(184), 127(184, 468), 1344
Campagnolo, P. 1370(5), 1435
Campanella, E. M. 171(762), 174(763), 197
Campana, J. M. 170(747), 196
Campbell, R. M. 412(72), 480
Campbell, T. W. 845(28), 902
Campelo, J. M. 608(13), 618(36), 656, 774(182), 835
Campins Falcó, F. 942(135), 1006
Campins-Falcó, P. 953, 954(198), 1007
Campo Dall’Orto, V. 953, 956(211), 1007
Camposstrini, R. 1082(290), 1084(326), 1094, 1095
Camps, F. 422(146), 483, 663(20), 705
Campsteyn, H. 583(224), 601
Camy-Payret, C. 150(738), 196
Cave, G. W. V. 1381(66), 1383, 1421(67o), 1438
Cavicchioli, A. 1082(287), 1094
Caxixach, J. 1355(119), 1365
Cazaux, L. 400(18b), 478
Cecchi, H. M. 944(143), 1006
Cecchin, G. 946, 953(165), 1006
Ceković, Z. 1325(312), 1345
Cela, R. 930(79), 932(94, 97), 937(79, 94), 971(294, 296, 297), 1004, 1005, 1009, 1348(17), 1352, 1353(63), 1354(17, 108, 110), 1363–1365
Cela-Torrijos, R. 933(104), 1005
Celeste, M. 1001(472), 1013
Cellerino, G. P. 953(216, 263), 957(216), 964(263), 1008, 1009, 1353(82), 1365
Centenera, J. I. 953, 969(284), 1009
Centeno, T. A. 1489(106), 1504
Ceppan, M. 1082(284), 1084(328), 1094, 1095
Ceraulo, L. 301(135, 136), 328
Cercek, B. 1099(15), 1105
Cerdà, V. 929, 984(67), 1001(472), 1004, 1013
Cerlier, O. 1361(192), 1367
Cerioni, G. 341(31), 387
Ceroni, P. 1406(272), 1446
Cetina Rosado, R. 551(93), 598
Ceyer, S. T. 83(291), 186
Cha, D. D. 450(239d), 486
Chabanel, M. 559, 568, 586(154), 600
Chadda, S. K. 1048(157), 1090
Chadenson, M. 778(211), 836
Chadha, H. S. 545(54), 598
Chait, B. T. 323(255), 331
Chakrabarthy, D. K. 749(100), 833
Chakrabarty, D. K. 620(42), 657
Chakraborty, R. 774(182), 835
Chakravorty, A. K. 83(289), 89(326, 330, 331, 334–340), 90(326, 330, 331, 334–341, 344), 186, 187
Chandra, R. 1495(139), 1505
Chandrasekar, N. S. 692(249), 710
Chandran, S. S. 19(101), 182
Chandrasekaran, S. 551(95), 598
Chandrasekhar, J. 1047(148), 1090
Chandrasekham, M. 668(57), 706
Chan, A. S. 697(281, 282), 711
Chan, D. M. T. 671(83), 706
Chan, H. W.-S. 852(75, 76, 82), 903
Chan, K. F. 1081(268), 1093
Chan, K. S. 454(253), 486, 697(283), 711, 735(52), 832
Chan, K. S.-M. 1085(337), 1086(370), 1095, 1096
Chang, C.-J. 349(65), 359(121), 387, 389, 874(174), 905
Chang, H. 1290(249), 1344
Chang, H. M. 129, 131(506), 191
Chang, R. C. 1353(84), 1365
Chang, S.-K. 1394(167b), 1406(265a, 265b, 268), 1442, 1446
Chang, S.-M. 1085(337), 1086(370), 1095, 1096
Chantegel, B. 453(244), 486
Chantooni, M. K. Jr. 216(30, 31), 221
Chantaraprompong, L. 93, 94, 97, 132, 133(358), 187
Chantarapromma, S. 377(263), 392
Chao, H. S.-I. 829(343, 344), 838
Chao, P. 1485(95), 1504
Chao, Y.-C. 971(299), 1009
Chapell, B. J. 795(234), 836
Chapman, D. M. 129(478), 144(478, 688), 190, 195
Chapman, F. A. 1351(49), 1364
Chapman, L. 1159, 1207(27), 1338
Chapman, P. J. 1351(42), 1364
Chapman, R. G. 1428(431a, 431b), 1452
Chapoteau, E. 724, 725(27), 831
Charalambous, J. 290(62), 327
Chardin, A. 586(238, 247, 250, 251, 253, 254), 587(247, 250, 251, 253, 254), 589(254), 590(238), 602
Charlen, C. H. 1362(201), 1368
Charles, M. J. 937(119), 1005
Charlton, A. 1495(148), 1505
Charpiot, B. 671(81), 681(163), 706, 708
Chase, R. L. 857(135), 905
Chatfield, D. A. 307(154), 329
Chatrathi, M. P. 971(301), 1010
Chattopadhyay, N. 1022(51), 1025(87), 1088, 1089
Chattopadhyay, S. 786(231), 836
Chau, A. S. Y. 1353(91), 1365
Chauhe, V. D. 645(145), 659
Chaudhary, A. J. 1079(246), 1093
Chauhan, Y.-P. 1294(253a, 253b), 1344
Chavagnac, A. X. 148(724), 196
Chawla, H. M. 634(97), 1407(276), 1445, 1447
Chedekel, M. R. 1136(358, 359), 1151
Chee, K. K. 946, 953(161), 1006
Chee, K. K. 946, 953(161), 1006
Cheeseman, I. R. 368, 372, 373(200), 390
Cheeseman, J. R. 4, 100(2), 1179
Cheeseman, K. H. 141(540), 192
Chen, B. 1362(214), 1368
Chen, C. 378(270), 392
Chen, C.-F. 1409(286a), 1447
Chen, C.-H. 1085(337), 1095, 1236(155, 156), 1237(162a), 1237(162b), 1238, 1239, 1240(214), 1241, 1242(214), 1243, 1244
Chen, C.-P. 1171(47), 1338
Chen, D.-Z. 982(372), 1011
Chen, G. 697(285), 711
Chen, G. Z. 1427(413), 1451
Chen, H. 1432(445), 1453
Chen, J. 937, 940(129), 1006, 1424(400c), 1451
Chen, J.-S. 999(463), 1013
Chen, K. 1361(193), 1367
Chen, L. H. 1018(20), 1087
Chen, P. 855(115), 904
Chen, P. C. 82(285), 186, 236(53), 255
Chen, P. H. 1354, 1355(100), 1365
Chen, S. C. 82(285), 186
Chen, S.-L. 1372(16), 1436
Chen, W. 4, 100(2), 179, 368, 372, 373(200), 390
Chen, X. 1394(167c), 1442
Chen, X.-T. 463(275), 487
Chen, Y. 806(263), 837, 898(396), 1012, 1175(54a, 54b), 1227(54a, 147), 1338, 1339, 1341, 1397(197a, 197c), 1398(197a, 198), 1400(208a), 1403(197a, 197c), 1443, 1444
Chen, Y.-J. 684(191, 192), 709
Chen, Y.-K. 1398(199), 1443
Chen, Y.-Y. 697(285), 711
Cheng, F.-C. 953, 969(283), 1009
Cheng, H. 1495(155), 1505
Cheng, J.-F. 1178, 1337(57a, 57b), 1339
Cheng, J.-P. 5(24), 110(421), 139(24), 180, 189
Cheng, P. C. 82(285), 1094
Cheng, Y. 674(106), 707
Cheong, C. 1086(373), 1096
Chermette, H. 89, 90(321), 187
Cherry, W. R. 477(328), 489
Chesnut, D. B. 136, 137(520), 191
Chessari, G. 1400(209b), 1401(212b), 1444
Cheung, J. 319(223), 320, 931, 937(84), 1005
Cheung, L. M. 1081(268), 1093
Chevalier, Y. 559, 567(156), 600
Chew, W. 1401(211), 1444
Cheynier, V. 949(183), 1007
Cheyran, M. 1000(470), 1013
Chibisova, T. A. 776(200), 835
Chibwe, M. 1202(96), 1340
Chickos, J. S. 225(4), 227(4, 5), 254
Chien, C.-H. 1055(168), 1091
Chien, C. J. 937(119), 1005
Chiesi-Villa, A. 1391(113), 1440
Childs, R. F. 1048(152 – 154, 156, 157), 1090
Chilla, C. 947, 953(175), 1007
Chinchilla, R. 1158(22), 1338
Chiong, K. G. 447(220), 485
Chiu, W. T. 1125(248), 1149
Chipman, D. 129, 131 – 133(510), 191
Chipman, D. M. 1120(187), 1123(198), 1128(187), 1132(187, 198, 332), 1147, 1148, 1150
Chipot, C. 179(780), 198
Chirico, R. D. 226, 227(7), 254
Chi, T. N. 236(53), 255
Chientis, S. R. 763(130), 834
Chiu, W. T. 1125(248), 1149
Chmutova, G. A. 744(74), 832
Cho, H. J. 1406(265a), 1446
Cho, K. 1408(279a), 1447
Cho, M. H. 1427(423b), 1452
Cho, S. H. 663(14), 705
Choe, J.-I. 1394(167b), 1406(265b), 1442, 1446
Choi, H.-J. 1419(357), 1450
Choi, H. S. 149, 158, 161(736), 196
Choi, S. H. 981(361), 1011
Choi, Y. H. 454(258), 487
Chong, W. K. M. 1244(171), 1342
Choo, K. Y. 1124(239), 1148
Chopin, M. J. 778(211), 836
Chopineaux-Courtois, V. 544(52), 598
Chopra, N. 1428(431a), 1433(457, 459, 460), 1452, 1453
Chopra, S. K. 941(134), 1006
Chou, C.-T. 1171(47), 1338
Chou, P.-T. 1022(50), 1025(85b), 1028(94), 1088, 1089
Chou, T. C. 447(224), 485
Choudhury, A. M. 1255(182), 1342
Choudry, C. G. 1074(231), 1092
Choudry, G. G. 1073(215), 1092
Chowdhury, S. 100, 102(381), 188, 1387(95), 1392, 1393(135), 1439, 1441
Choubakov, A. M. 18(90), 181
Choubakov, M. A. 396(1), 478
Church, D. F. 886, 887(216), 906
Chuvylkin, N. D. 1123(200, 201), 1148
Chyall, L. J. 123(467), 190
Churbakhov, A. M. 18(90), 181
Churbakhov, M. A. 396(1), 478
Chuvylkin, N. D. 1123(200, 201), 1148
Chyall, L. J. 123(467), 190
Cichelli, A. 930(77), 1004
Cillard, J. 892(248, 249), 907
Cillard, P. 892(248, 249), 907
Cimerman, Z. 385(298, 300), 393, 726(34, 35), 831
Cinar, Z. 1083(294), 1094
Ciocazanu, I. 230(31), 255
Cioslowski, J. 408(54e), 480, 683(180), 686(210), 708, 709, 1259(188), 1342
Ciuca, A. 976(329), 1010
Ciucu, A. 976(329), 1010
Cladera, A. 929, 984(67), 1001(472), 1004, 1013
Claisen, L. 460(278), 487
Claramunt, R. 559, 572(157), 600
Claramunt, R. M. 349(59), 387
Clardy, J. 454(253), 486, 735(52), 832, 1466(45), 1503
Clardy, J. C. 1159, 1207(27), 1338
Clark, C. T. 405(43a, 43b), 479
Clark, J. H. 493, 498(42), 525, 617(33), 656
Clark, S. 1216(119b), 1340
Claro, T. 385(302), 389
Claro, T. J. 319(225), 330, 932, 937(91), 1005
Clarke, M. F. 399(11), 478
Clary, D. C. 148(721, 724–726), 160(721), 196
Clase, H. J. 1374, 1411(42c), 1437
Claussen-Kaas, N. 432(182b–d, 183a), 484
Claxton, T. A. 137(521), 191
Clayden, J. 786(232), 836
Clays, K. 1391(119), 1440
Clerici, F. 674(102), 707
Clerici, M. G. 414(90a), 481
Clesceri, L. S. 1352(62), 1353, 1354(74), 1364
Clifford, M. N. 1360(177), 1367
Clifford, S. 4, 100(2), 179, 368, 372, 373(200), 390
Clothier, B. 1109, 1120(28), 1144
Cvetkovic, A. 534(26), 597
Cobben, P. L. H. M. 1383, 1421(67d), 1438
Cobos, C. J. 1105(64, 65), 1106
Coburn, C. A. 450(246d), 486
Cocchi, F. 942, 943, 953(138), 1006
Cocco, M. T. 764(138, 139), 834
Cochien, E. D. 1428(431a), 1452
Cochran, J. C. 685(198), 709
Cocivera, M. 1117(115), 1120(115, 179), 1146, 1147
Cockett, M. C. R. 110, 112, 121(444), 129, 144(478), 189, 190
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coda, A.</td>
<td>216(27), 221</td>
</tr>
<tr>
<td>Codding, P. W.</td>
<td>233(41), 255</td>
</tr>
<tr>
<td>Codony, R.</td>
<td>961(243), 1008</td>
</tr>
<tr>
<td>Coelho, A. L.</td>
<td>786(231), 836</td>
</tr>
<tr>
<td>Coffey, D. L.</td>
<td>947, 953(173), 1006</td>
</tr>
<tr>
<td>Cogan, D. A.</td>
<td>699(305), 711</td>
</tr>
<tr>
<td>Cohen, A. O.</td>
<td>522(99), 527</td>
</tr>
<tr>
<td>Cohen, G.</td>
<td>874(173), 905, 1119(161, 162), 1147</td>
</tr>
<tr>
<td>Cohen, S.</td>
<td>1374(39), 1410(291b), 1411(296c), 1436, 1447</td>
</tr>
<tr>
<td>Cohen, T.</td>
<td>404(33), 479</td>
</tr>
<tr>
<td>Colandrea, V. J.</td>
<td>665(41), 705</td>
</tr>
<tr>
<td>Colarusso, P.</td>
<td>1361(195), 1367</td>
</tr>
<tr>
<td>Colby, D. A.</td>
<td>1370, 1430(6), 1435</td>
</tr>
<tr>
<td>Colclough, N.</td>
<td>1211(110), 1340</td>
</tr>
<tr>
<td>Colding, A.</td>
<td>127(469), 190, 718(17), 831</td>
</tr>
<tr>
<td>Cole, B. M.</td>
<td>702(345, 346), 712</td>
</tr>
<tr>
<td>Colebrook, L. D.</td>
<td>1401(211), 1444</td>
</tr>
<tr>
<td>Coleman, C. A.</td>
<td>367(177), 390, 541(44), 597</td>
</tr>
<tr>
<td>Coleman, R. S.</td>
<td>653(187), 660</td>
</tr>
<tr>
<td>Colivicchi, M. A.</td>
<td>953, 968(275), 1009</td>
</tr>
<tr>
<td>Coll, J.</td>
<td>422(146), 483, 663(20), 705</td>
</tr>
<tr>
<td>Collet, A.</td>
<td>1370(5), 1435</td>
</tr>
<tr>
<td>Collette, Y.</td>
<td>609(17), 656</td>
</tr>
<tr>
<td>Collins, C. D.</td>
<td>1356(120), 1365</td>
</tr>
<tr>
<td>Collins, C. J.</td>
<td>470(300b), 488, 806(250), 836</td>
</tr>
<tr>
<td>Collins, J. L.</td>
<td>1250(178), 1342</td>
</tr>
<tr>
<td>Collins, M.</td>
<td>141(540), 192</td>
</tr>
<tr>
<td>Collomb, D.</td>
<td>818(317), 838</td>
</tr>
<tr>
<td>Colombi, A.</td>
<td>1359(151), 1366</td>
</tr>
<tr>
<td>Colombo, L.</td>
<td>953, 966(269), 1009</td>
</tr>
<tr>
<td>Colombo, R.</td>
<td>1000(467), 1013</td>
</tr>
<tr>
<td>Colomina, M.</td>
<td>228, 229(16), 230(25), 232(38), 241(80), 254–256</td>
</tr>
<tr>
<td>Colon, C.</td>
<td>1278(226), 1343</td>
</tr>
<tr>
<td>Colon, G.</td>
<td>1080(248), 1093</td>
</tr>
<tr>
<td>Colonna, F.</td>
<td>69(265, 266), 70(265), 148(266), 185</td>
</tr>
<tr>
<td>Colonna, S.</td>
<td>699(307), 711</td>
</tr>
<tr>
<td>Colosio, C.</td>
<td>1359(151), 1366</td>
</tr>
<tr>
<td>Colson, S. D.</td>
<td>30(134), 129(475), 143(585–587, 591), 147(585–587, 693, 694), 182, 190, 193, 195</td>
</tr>
<tr>
<td>Colthup, N. B.</td>
<td>369, 371(208), 391</td>
</tr>
<tr>
<td>Colton, J. B.</td>
<td>1351(50), 1364</td>
</tr>
<tr>
<td>Coluccia, S.</td>
<td>1083(293), 1084(320), 1094, 1095</td>
</tr>
<tr>
<td>Columbus, I.</td>
<td>1374(34), 1386(87), 1413(301–303), 1436, 1439, 1447</td>
</tr>
<tr>
<td>Colussi, A. J.</td>
<td>5, 137, 138(21), 180</td>
</tr>
<tr>
<td>Comer, F. W.</td>
<td>426(166a), 429(179e), 430(179e), 181e, 483, 484</td>
</tr>
<tr>
<td>Cometti, G.</td>
<td>1382(68), 1417(331), 1438, 1448</td>
</tr>
<tr>
<td>Comer, R. G.</td>
<td>982(368), 1011</td>
</tr>
<tr>
<td>Concepcion, A. B.</td>
<td>689(232), 693(252), 710</td>
</tr>
<tr>
<td>Conde, E.</td>
<td>953, 965(267), 1009</td>
</tr>
<tr>
<td>Conesa, J. C.</td>
<td>1083(296), 1094</td>
</tr>
<tr>
<td>Conforti, G. M. L.</td>
<td>1401(212c), 1444</td>
</tr>
<tr>
<td>Contino, A.</td>
<td>1391, 1396(121b), 1440</td>
</tr>
<tr>
<td>Contrezas, M.</td>
<td>851(63), 903</td>
</tr>
<tr>
<td>Cooke, M.</td>
<td>937, 938(123), 953, 965(266), 1005, 1009</td>
</tr>
<tr>
<td>Cooks, R. G.</td>
<td>110(432, 422), 189, 264(22), 290(61), 308(163–165), 309(165, 166), 326, 327, 329</td>
</tr>
<tr>
<td>Cooke, J.</td>
<td>1223(136), 1341</td>
</tr>
<tr>
<td>Coolen, S. A. J.</td>
<td>953, 968(277, 278), 1009</td>
</tr>
<tr>
<td>Coombs, R. G.</td>
<td>806(270), 837</td>
</tr>
<tr>
<td>Cooney, A. P.</td>
<td>1470(54), 1503</td>
</tr>
<tr>
<td>Cooper, A.</td>
<td>1318(304), 1345</td>
</tr>
<tr>
<td>Cooper, C.</td>
<td>1362(203), 1368</td>
</tr>
<tr>
<td>Cooper, D. L.</td>
<td>89(312), 186</td>
</tr>
<tr>
<td>Cooper, J. B.</td>
<td>1403(234c), 1427(409c), 1445, 1451</td>
</tr>
<tr>
<td>Cooper, M. E.</td>
<td>994(437), 1013</td>
</tr>
<tr>
<td>Cooper, W. C.</td>
<td>1028(94), 1089</td>
</tr>
<tr>
<td>Cooper, W. J.</td>
<td>1100(33), 1106</td>
</tr>
<tr>
<td>Coppalan, R.</td>
<td>1302(265), 1344</td>
</tr>
<tr>
<td>Coppens, F.</td>
<td>413(84), 481</td>
</tr>
<tr>
<td>Cotten, P.</td>
<td>1387(88), 1439</td>
</tr>
<tr>
<td>Copert, D. M.</td>
<td>1255(185), 1342</td>
</tr>
<tr>
<td>Coppier, L.</td>
<td>1393(151), 1441</td>
</tr>
<tr>
<td>Coppinger, G. M.</td>
<td>845(28), 902</td>
</tr>
<tr>
<td>Condes, B. B.</td>
<td>1205(102), 1340</td>
</tr>
<tr>
<td>Cordes, E.</td>
<td>110, 112, 121(444), 129(476), 189, 190</td>
</tr>
<tr>
<td>Cordova, E.</td>
<td>761(117), 833</td>
</tr>
<tr>
<td>Corelli, F.</td>
<td>1383(75a–c), 1422(75e), 1439</td>
</tr>
<tr>
<td>Corey, E. J.</td>
<td>1465(43), 1503</td>
</tr>
<tr>
<td>Coricchiato, M.</td>
<td>365(159), 389</td>
</tr>
<tr>
<td>Corke, H.</td>
<td>990(417), 1012</td>
</tr>
<tr>
<td>Cormier, M.</td>
<td>892(248), 907</td>
</tr>
<tr>
<td>Cornelisse, J.</td>
<td>1117(114), 1146</td>
</tr>
<tr>
<td>Cornforth, J. W.</td>
<td>402(22), 479</td>
</tr>
<tr>
<td>Cornia, M.</td>
<td>680(148), 683(176–178), 708, 1462(24, 26, 27), 1463(26), 1502, 1503</td>
</tr>
<tr>
<td>Cornicelli, J. A.</td>
<td>851, 852, 894(67), 903</td>
</tr>
</tbody>
</table>
Czarniak-Matusiewicz, B. (continued)
371, 372(221), 391, 559, 570, 571(158), 573(181), 575(158), 600
Czech, B. P. 724, 725(27), 831
Czerwinska-Bil, U. 1353(81), 1365
Czira, G. 1388(98), 1394, 1407(170b), 1439, 1442
Czygan, F. C. 913(19), 1003

Dabbagh, Y. A. 913, 920(27), 1003, 1355(116), 1365
Dabo, P. 1361(191), 1367
D’Accolti, L. 1257(186), 1342
Dach, M. 895(265), 908
DaCosta, W. F. 928(55), 1004
Dagley, S. 411(69), 480
Dahhani, F. 300(115), 328
Dai, P.-S.E. 616(30), 656, 763(129), 834
Dai, S. 1086(380), 1096
Daifu, K. 865(149), 905
Dailey, B. P. 20(106), 182
Dainty, F. R. 472(309e), 488
Dainty, R. F. 472(315), 488, 774(173), 835
Daire, E. 413(81), 480
Daishima, S. 295(82), 327
Daitch, E. 1380(55), 1437
Dalcanale, E. 322(250), 480
Dalcanale, E. 322(250), 331, 1382(67c, 68), 1383(67c), 1386(86a, 86b), 1417(331), 1421(67c), 1422(379), 1424(384, 389b, 392, 393, 397a, 399, 397b), 1438, 1439, 1448, 1450, 1451
Dalenko, A. 419(127), 482
d’Alessandro, N. 930(77), 1004, 1136(362), 1151
Dalglish, D. T. 1274(101b), 1285(237), 1343
Dali, H. 748(87), 88, 833
Dalidovich, S. V. 1470(51), 1503
Dalidowicz, P. 1180, 1183, 1186(62), 1339
Dall’Orto, V. C. 976(326), 1010
Dalpra, C. 683(181), 708
D’Alva Torres, G. S. F. 561(164), 600
Daly, J. 405(44), 479
Daly, J. W. 412(72), 480
Damassa, D. A. 1360(172), 1367
Damon, R. E. 1278(225), 1343
Danforth, R. H. 416(110b), 482
D’Angelantonio, M. 1115, 1128(91), 1145
Dangles, O. 871(167), 905
Danheiser, D. L. 450(246h, 246i), 486
Danheiser, R. L. 416(109b, 115), 450(239a, 239c–f, 241a–e), 452(239c), 453(239f, 241c, 241e), 482, 486
Daniel, V. 1359(150), 1366
Danieli, R. 551, 553(73), 598
Daniels, A. D. 4, 100(2), 179, 368, 372, 373(200), 390
Danielsen, K. 338(13), 386
Danielsson, J. 93, 95(361), 187
Danilova, T. 640(132), 659
Danilowicz, C. 953, 956(211), 976(326), 1007, 1010
Danishefsky, S. 441(204, 205, 208–210), 447(224), 484, 485
Danishefsky, S. J. 450(246a), 463(275), 486, 487, 674(110, 111), 707
Danjou, J. 925(46), 1004
Dapprich, S. 4, 100(2), 179, 368, 372, 373(200), 390
Darby, M. R. 265, 319(28), 326
Dargaville, T. R. 1459, 1463(9), 1471(74), 1502, 1504
Dargel, T. K. 110(451), 190
Darling, S. D. 415(105a, 105b), 481
DaRoooge, M. A. 45(189), 184, 889(227), 907, 1111(65), 1145
Das, C. G. 299(98), 328
Das, D. K. 840, 901(10), 902
Das, K. 1025(71a, 71b), 1045(137–139), 1088, 1090
Das, K. G. 110(431), 189
Das, M. R. 1123(203), 1148
Das, P. K. 1021(42), 1088, 1109, 1110, 1112(26), 1144
Das, R. 1017(13), 1021(45–49), 1047(144), 1087, 1088, 1090
Das, T. N. 45(199), 184, 1099(18), 1105, 1128(280), 1129(301, 302), 1130(280, 310), 1134(310), 1137(367), 1142(280, 301, 302, 379), 1143(280), 1149–1151
Dasgupta, A. 934, 937(109), 1005
Dasgupta, P. K. 972(306), 1010
Datta, D. K. 425(160), 483
Datta, S. 1392, 1403(125b), 1441
Dauben, H. J. 95(368), 188
Daum, G. 823(324, 325), 838
Davi, M. L. 1349, 1356(36), 1363
David, B. 1361(194), 1367
David, F. 937, 938(125), 1005
David-oudjehani, K. 1085(344), 1095
Davidson, G. 953, 969(285), 1009
Davies, M. J. 854(95), 904, 1130, 1137, 1138(308), 1150
Davies, M. M. 35(148, 149), 47(202, 221), 48(232), 183–185
Davies, R. E. 852, 854, 855, 857(83), 903
Davieschina, G. R. 1424(396), 1451
Davis, B. 290(59), 327
Davis, C. J. 1383, 1421(67f), 1438
Davis, D. W. 102(393), 188
Davis, F. 1383(67j), 1419(347b), 1421(67j, 370), 1438, 1450
Davis, F. A. 416(116), 417(116–118), 482
Davis, H. F. 1120, 1128, 1132(187), 1147
Davis, J. C. Jr. 336(7), 386
Davis, S. L. 677(124), 707
Davison, J. 37(180), 183
Davydov, I. 1080(252), 1093
Dawson, I. M. 472(311b), 488
Day, A. I. 745, 746(80), 832
Day, A. J. 1485(95), 1504
Day, J. 1025(73), 1088
Day, M. W. 702(328, 330), 712
Day, R. 806(265), 837
De, A. 783(223), 836, 1081(267), 1093
De, R. 1019(25), 1087
Deagro, M. 937, 940(129), 1006
De Angelis, C. 953, 970(288), 1009
Deardorff, D. R. 664(29, 30), 705
Deb, C. 783(223), 836
Deb, K. K. 336(7), 386
Debes, T. P. 110, 112(445), 189
De Blic, A. 400(18b), 478
Debonder-Lardeux, C. 493, 500(31), 525
Debruyn, P. J. 1471(74), 1504
Dec, J. 1352(61), 1364
Decembrini, F. 1356(122), 1366
De Cian, A. 1401(214, 219b, 220b), 1415(311, 314b, 322), 1427(421b), 1444, 1448, 1452
Deck, J. 999(465), 1013
Deck, L. 338, 380(15), 386
Decker, O. H. W. 450(238), 486
Decouzon, M. 322, 325(244), 331
Dedonder-Lardeus, C. 109(414), 189
Dedov, A. G. 985(389), 1012
DeFrees, D. F. 311(189), 330
DeFrees, D. J. 5(22), 83, 84(297), 180, 186, 261, 263(13), 326
Dega-Szafran, S. 580(205), 601
Dega-Szafran, Z. 143(565, 566), 146(638), 192, 194, 593, 595(281, 282), 602, 603
De Giorgi, A. 1082(287), 1094
DeGourrierc, D. 1025(67), 1088
Deguchi, Y. 1109(31), 1144
De Heer, M. I. 45(195), 184
Deiana, M. 851, 854(74), 903
DeJong, J. 1357(130), 1366
De Koning, C. B. 462(273a), 488
delaBreteche, M. L. 639(125), 659
Delaere, D. 127(470), 190
Delaigue, X. 1401(219b, 220b), 1427(421a, 421b), 1432(421b), 1444, 1452
Delaire, J. 1073(216), 1085(353), 1092, 1096
Delaire, S.-M. 1085, 1086(336), 1095
De La Mare, P. B. D. 606, 649(3), 656
DelaMater, M. R. 1117(129), 1142(380), 1146, 1152
Delangle, P. 1424(394), 1450
Delany, D. 1086(366), 1096
Del Carlo, M. 976(326), 1010
Delépine, M. 230(28), 254
Delfly, M. 472(314), 488
Delgado, J. 1040(124), 1042(128), 1090
Delise, M. 1357(130), 1366
Della, E. W. 350(205), 381, 393, 593, 595(281, 282), 602, 603
De Mayo, P. 748(93), 833
Demerseman, P. 472(314), 474(317), 488
De Meyer, C. 110(431), 189
Demidkina, T. V. 748(90), 833
Dering, L. S. 47, 48(217), 184
Demmin, T. R. 1192(80), 1339
Demyanov, P. I. 933, 949(98), 1005
Demyashkevich, A. B. 492, 493, 501(13), 515(96), 525, 527, 1020(35d), 1087
Deng, F. 171(762), 197
Deng, F. H. 621(48), 657
Deng, L. 698(295), 711
Deng, Q. 984(381), 1011
Deniau, E. 784(227), 836
De Nino, A. 953, 961(239), 1008
Denis, A. 664(28), 705
Denis, G. 685(197), 709
Denisenko, V. I. 301(130), 328
Denisov, E. T. 15(77), 181, 1125(249), 1149
Denisov, G. S. 143(554, 555, 557), 145(626), 147(643), 192 – 194, 207(13), 220, 364(155), 366(165), 367(178), 389, 390, 503(90), 527
Denisova, N. K. 887(222), 907
Denney, D. B. 801(238), 836
Denney, D. Z. 801(238), 836
Dennis, M. R. 782(219, 220), 836
Denny, R. W. 853(93), 904
De Palma, D. 47, 143(207), 184
Depew, M. C. 1018(22), 1087, 1120(185), 1147
De Pooter, H. 471(303), 488
De Proft, F. 84(301), 89(301, 319, 324, 331–333, 336), 90(301, 319, 324, 331–333, 336, 341), 186, 187
Derbyshire, D. H. 404(36), 479
Derhaeg, L. 1391(112), 1402, 1405(224b), 1440, 1444
Deril, G. V. M. 953, 957(216), 1008
Dermer, R. 408(54d), 480
De Rosa, M. C. 1383(75b, 75c, 75e), 1422(75e), 1439
De Rossi, R. H. 477(324b, 326b), 489
Derrick, P. J. 260, 325(5), 325
Desai, D. H. 724, 725(27), 831
Desai, P. D. 241(75), 256
Desai, R. B. 409(61), 480
Desaiah, D. 1359(157), 1366
Desarmenien, M. 475(318), 488
Desbene, P. L. 974(317), 1010
Descoings, M.-C. M. 350(83), 388
Descotes, G. 609(17), 656
Deshayes, C. 453(244), 486, 818(317), 838
Deshayes, K. 1428(425c), 1452
Deshpande, S. S. 1000(470), 1013
Desiraju, G. R. 219(35), 221, 530(16), 597
Des Marteau, D. D. 312(193), 330, 647(150), 659, 687(221), 709
De Sousa, B. 419(135b), 482
Desroches, C. 1415(318a), 1448
Dess, D. 673(96), 707
Dessent, C. E. H. 129(478), 144(478, 683), 189, 195
Dessi, M. A. 851, 854(74), 903
De Stefano, A. J. 292, 293(69), 327
De Suzzoni-Dezard, S. 1212(111), 1340
Desvergnes, L. 397(6), 478
De Taeye, J. 145, 146(610, 618), 193, 583(228, 231), 584(234), 601
Detellier, C. 1385(82), 1439
Dettmer, C. A. 336(8), 386
Dettman, H. D. 346, 365(52), 387
De Turi, V. F. 5(20), 180
Deuschle, G. 1122(193), 1148
Deusen, C. 143(577), 144(577, 678), 192, 195, 581(217), 601
Devall, L. J. 851, 852, 894(67), 903
Devlin, J. L. III 263, 296(16), 326
Devoldere, P. 1129(303), 1150
Dillow, A. K. 621(48), 657
Dillow, G. W. 100, 102(381), 188
Di Matteo, A. 132, 133, 136(518), 191, 1127(267), 1149
Dimicoli, B. 578(195), 601
Dimicoli, I. 109(414), 129(474), 144(474, 683), 189, 190, 195
Dimitrov, M. 449(234c), 486
Dimitrova, Y. 581(220), 601
Dimmel, D. R. 1205(104), 1340
Dimoticali, D. 1086(361), 1096
Dimroth, K. 1123(216), 1124(216, 218), 1148
Dinculescu, A. 823(330), 838
Diner, B. A. 15(71), 369(206, 207), 391, 1108(16), 1144
Dinh, P. A. 913(25), 1003
Dinis, T. C. P. 853, 856, 857(88), 904
Dinjus, E. 6(26), 180
Dinsmore, C. J. 1318(301a, 301b), 1345
Diogo, H. P. 148(727), 196
Diosady, L. L. 900(422), 1012
Author Index 1531

Diplock, A. T. 840(6), 902
Dirlam, N. L. 663(22), 705
D’Ischia, M. 1079(242), 1092
Divakar, S. 365(161), 389
Dix, T. A. 855(106, 110), 901(110), 904
Dixon, J. P. 545(54), 598
Dixon, S. L. 925, 929(54), 1004
Dixon, W. T. 113(457), 129, 135(457, 489), 190, 1109(38–41), 43–45, 1113(84, 85), 1117(40, 41), 1120(38, 39, 44, 84, 173, 174), 1121(38), 1122(38, 39), 1123(38), 1124(39, 233, 240), 1125(252), 1133(40, 41), 1135(40), 1144, 1145, 1147–1149
Dizdaroglu 129(486), 190
Dizdaroglu, M. 1100(22, 23), 1105
Djafari, S. 147(714), 195
Djeneye-Boundjou, G. 405(45), 479
Djerassi, C. 260(1), 299(93), 300(118), 325, 327, 328
Dmitrienko, S. G. 987(408), 988(413), 1012
Doamekpor, L. K. 1377(45b, 46a, 46b), 1437
Doba, T. 844, 847, 855, 860–862, 864(18), 885, 890(212), 897, 898(18), 902, 906, 1120, 1140(184), 1147
Dobel, S. 339(18), 386
Dobrodumov, A. V. 1030(105), 1089
Dobson, G. 1128(274), 1149
Dobson, J. F. 70(270), 271), 185
Doctor, B. P. 403(27), 479
Doczi, J. 420(138), 482
Dodd, J. A. 314(201), 330
Dodd, J. P. 928(55), 1004
Dodge, J. A. 814(305), 838
Dodgson, I. 178(771), 197
Dodi, L. 1393(158), 1396(186c), 1442, 1443
Doering, W. E. 425(158), 483
Doherty, R. M. 503(89), 526
Dohrmann, J. K. 1131, 1134(313), 1135(346), 1139, 1141(313), 1150, 1151
D’Oliviera, J. C. 1086(368), 1096
Dolmanova, I. F. 978(347), 1011
Dom, P. B. 1351(54), 1364
Domagala, S. 748(92), 833
Domash, L. 226(6), 254
Domcke, W. 110(109), 182
Donachie, X. 1086(367), 1096
Domenicano, A. 20, 22(109), 182
Domiano, L. F. 1391, 1396(118a), 1409(287), 1440, 1447
Dominguez, E. 953, 969(284), 975(322), 976(330, 332), 977(335), 1009, 1010
Dominguez, J. R. 1362(207), 1368
Dominik, P. 344(44), 387
Dona-Rodriguez, J. M. 1084(324), 1095
Donati, I. 19(100), 182
Dondoni, A. 1403(240b), 1405(255), 1427(408d), 1432(448b), 1445, 1446, 1451, 1453
Dong, C. 1085(343), 1095
Dong, Q. 1084(310), 1094
Dong, S. 976(328), 1010
Dong-Sheng-Ming 121(444), 129(476), 143(591), 144(677, 689, 691), 147(712), 183, 186, 189, 190, 193, 195
Dopico, M. 1260(191), 1342
Dopp, D. 1043(130a), 1090
Doppler, E. 833(326), 838
Doppler, T. 419(135a), 482
Doretti, L. 979(354), 1011
Dorman, L. M. 1098(4), 1105, 1113(83), 1145
Döring, C. E. 319(222), 330
Dorme, R. 1272(205a, 205b), 1343
Dormer, P. G. 670(78), 706
Dorofeenko, G. N. 823(327, 330), 824(333), 838
Dorn, F. 1025(82), 1089
Dörrnabercher, R. 1378(50a), 1431(444), 1437, 1453
Dorrestijn, E. 139(533), 191
Dotsenko, I. N. 631(79), 657
Doty, B. J. 717, 745(13), 831
Dütz, K. H. 450(246e), 451(248a, 251a–c), 454(251a–c), 455(256b), 456(259), 457(262, 264), 486, 487
Doucet, J.-P. 350(83), 364(154), 388, 389, 576(190), 600
Douchal, A. 1025(70b), 1088
Dougherty, A. S. 322(242), 331
Dougherty, R. C. 293(72), 314(203), 327, 330
Doulas, J. L. 429, 430(179a, 179d), 483
Douhal, A. 730(45), 831, 1047(149), 1090
Doutteau, M. 652(185), 660
Doutheau, A. 1453(244), 486, 818(317), 838
Downing, R. D. 405(43b), 479
Downing, R. S. 460(286), 487, 763(128), 834
Doye, S. 670(74), 706
Dozoil, J.-F. 322(249), 331, 1389(105), 1391(120c), 1390(187), 1415(313), 1435(187), 1440, 1443, 1448
Dradi, E. 1395(180), 1442
Dragisich, V. 457(263), 487
Drago, R. S. 548(62), 590(263), 598, 602, 1205(102), 1340
Drake, N. L. 400(18a), 478
Drakenberg, T. 350(80), 388, 998(451), 1013
Dransfeld, A. 95(367), 188
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Watik, L.</td>
<td>229, 250, 251(18), 254</td>
</tr>
<tr>
<td>Emanuel, N. M.</td>
<td>1118, 1119(140), 1128(277), 1130(319), 1146, 1149, 1150</td>
</tr>
<tr>
<td>Emeline, A. V.</td>
<td>1086(369), 1096</td>
</tr>
<tr>
<td>Emery, S.</td>
<td>141(540), 192</td>
</tr>
<tr>
<td>Emmett, J. C.</td>
<td>549(65), 598</td>
</tr>
<tr>
<td>Emni, S. S.</td>
<td>1115, 1128(91), 1145</td>
</tr>
<tr>
<td>Emmons, W. D.</td>
<td>424(152a, 152b, 156), 483</td>
</tr>
<tr>
<td>Emnés, J.</td>
<td>953, 969(280), 974(320), 975(322), 976(324, 329), 977(333, 335, 337), 1009, 1010</td>
</tr>
<tr>
<td>Emori, S.</td>
<td>1018(22), 1087</td>
</tr>
<tr>
<td>Emsley, J.</td>
<td>8, 12(44), 180, 370, 371, 382(210), 391</td>
</tr>
<tr>
<td>Emslie, N. D.</td>
<td>766(141), 834</td>
</tr>
<tr>
<td>Enari, T.</td>
<td>1495(137), 1505</td>
</tr>
<tr>
<td>Enchev, V.</td>
<td>360(136, 140), 361(140), 385(296), 389, 393, 1024(65), 1088</td>
</tr>
<tr>
<td>Encinas, M. V.</td>
<td>1021(42), 1088, 1109, 1110, 1112(26), 1144</td>
</tr>
<tr>
<td>Endo, A.</td>
<td>684(193), 709</td>
</tr>
<tr>
<td>Endo, K.</td>
<td>1080(259d), 1093</td>
</tr>
<tr>
<td>Endres, G. F.</td>
<td>1491(118), 1505</td>
</tr>
<tr>
<td>Endrey, A. L.</td>
<td>1494(126–128), 1505</td>
</tr>
<tr>
<td>Engbersen, J. F. G.</td>
<td>1394(176), 1442</td>
</tr>
<tr>
<td>Engbersen, J. F. J.</td>
<td>1389(104), 1391(112, 119), 1402(224b), 1403(238), 1405(224b, 249a, 249b), 1421(369), 1440, 1444, 1445, 1450</td>
</tr>
<tr>
<td>Engdahl, C.</td>
<td>357(110), 388</td>
</tr>
<tr>
<td>Engel, M. R.</td>
<td>1159, 1207(27), 1338</td>
</tr>
<tr>
<td>Engen, D. V.</td>
<td>674(106), 707</td>
</tr>
<tr>
<td>English, D. S.</td>
<td>1045(136–138), 1090</td>
</tr>
<tr>
<td>Engman, L.</td>
<td>865(145), 905</td>
</tr>
<tr>
<td>Engstrom, M.</td>
<td>179(775), 197</td>
</tr>
<tr>
<td>Engwallin, M. A.</td>
<td>1362(204), 1368</td>
</tr>
<tr>
<td>Enkelmann, V.</td>
<td>211(18), 220</td>
</tr>
<tr>
<td>Enoki, M.</td>
<td>1462(25), 1505</td>
</tr>
<tr>
<td>Enomoto, H.</td>
<td>1163(33a), 1338</td>
</tr>
<tr>
<td>Enyo, K.</td>
<td>1374(38b), 1436</td>
</tr>
<tr>
<td>Enkelmann, V.</td>
<td>211(18), 220</td>
</tr>
<tr>
<td>Erich, N. P.</td>
<td>887(225), 907</td>
</tr>
<tr>
<td>Erickson, S. K.</td>
<td>13(67), 181</td>
</tr>
<tr>
<td>Erickson, L. A.</td>
<td>45(196), 132, 133, 136(517), 143(549), 184, 191, 192</td>
</tr>
<tr>
<td>Erim, F. B.</td>
<td>972(305), 1010</td>
</tr>
<tr>
<td>Escobar, L.</td>
<td>851(63), 903</td>
</tr>
<tr>
<td>Escrig-Tena, I.</td>
<td>988(410), 1012</td>
</tr>
<tr>
<td>Esparza, L.</td>
<td>851(63), 903</td>
</tr>
<tr>
<td>Espadir, I.</td>
<td>1355(119), 1365</td>
</tr>
<tr>
<td>Espenshade, M.</td>
<td>666(49), 705</td>
</tr>
<tr>
<td>Espenson, W.</td>
<td>1121(191), 1147</td>
</tr>
<tr>
<td>Espinado-Pérez, G.</td>
<td>551(93), 598</td>
</tr>
<tr>
<td>Espino, A.</td>
<td>1040(124), 1042(128), 1090</td>
</tr>
<tr>
<td>Espina, G.</td>
<td>651(172), 660</td>
</tr>
<tr>
<td>Essen, G. van</td>
<td>1403(242), 1445</td>
</tr>
<tr>
<td>Estrella, J. M.</td>
<td>929, 984(67), 1001(472), 1004, 1013</td>
</tr>
<tr>
<td>Esterbauer, H.</td>
<td>854(100), 904</td>
</tr>
<tr>
<td>Esteve Romero, J. S.</td>
<td>988(409, 410), 1012</td>
</tr>
<tr>
<td>Estévez, C. M.</td>
<td>551, 553(105), 599</td>
</tr>
<tr>
<td>Esteban, M.</td>
<td>414(91), 481</td>
</tr>
<tr>
<td>Etheredge, S. J.</td>
<td>441(210), 484</td>
</tr>
<tr>
<td>Etievant, P.</td>
<td>948, 953(176), 1007</td>
</tr>
<tr>
<td>Ettorre, C.</td>
<td>345(50), 387</td>
</tr>
</tbody>
</table>
Foresman, J. B. 4, 100(2), 179, 368(194, 200), 372, 373(200), 390
Forest, H. 20(106), 182
Fordo, I. 1495(149), 1505
Formosinho, S. J. 492, 493, 503(15), 525, 1021(37), 1088
Forini, L. 18(87), 179
Foster, D. O. 891(241), 907
Foster, K. L. 1033(108), 1089
Foster, M. D. 997(448), 1013
Foster, W. E. J. 1124(233), 1148
Foti, M. 851, 852(68), 855, 856(112), 871, 891(242), 894(262), 899, 901(279), 903, 904, 908, 992(429), 1013, 1140(373), 1151
Foti, S. 301(135, 136), 328
Foucher, D. 534, 586, 587(23), 597
Fourmentin, S. 992(433), 1013
Fournier, F. 316(218 – 221), 330
Fowler, J. S. 416(111), 482
Fox, D. 4, 100(2), 179
Fox, D. J. 368, 372, 373(200), 390
Fox, M. A. 1100(25, 26), 1105, 1129(284 – 286), 1149
Fox, S. 1192(78e), 1339
Fox, T. 896(271), 908
Fraccaro, C. 646(146), 659
Fradera, X. 69(267), 185
Fradera, X. 69(267), 185
Fradera, X. 69(267), 185
Franco, M. A. 1327(315), 1346
Franck, H.-G. 19(95), 182
Franck, U. Y. 1353(89), 1365
Franckowiak, G. 1297(257), 1344
Francois, J.-P. 83, 84(298), 186, 311(187), 329
Francony, A. 1361(194), 1367
Frange, B. 540(39), 597
Frand, P. 1105(64, 65), 1106
Franke, A. A. 913(24), 1003
Franke, W. 1355(118), 1365
Frankel, E. N. 857, 858(133), 904
Franken, J. R. 1418(334), 1448
Franz, K. J. 219(38), 221
Fraser, D. A. 1462(20, 21), 1502
Fraser, D. L. 1470(63), 1503
Fraser, J. R. 1425(403b), 1451
Fraser, P. K. 782(220), 836
Fraser-Monteiro, L. 110, 112, 121(444), 189, 265(24), 326
Fraser-Monteiro, M. L. 110, 112, 121(444), 189, 265(24), 326
Frater, G. 463(277), 487, 753, 764(105), 833
Frater, B. S. 1391(120b), 1440
Freed, J. H. 1124(217), 1148
Freed, K. F. 93 – 96(357), 187
Freedman, J. 663(24), 705
Freeman, B. A. 636(104), 637(110), 658
Freeman, F. 1192, 1198(76), 1273(207), 1278, 1279(227), 1339, 1343
Freeman, J. H. 1475(81), 1485, 1486(102), 1504
Freeman, W. P. 300(126), 328
Freese, U. 774(178), 835
Frei, R. W. 1353(80), 1365
Freiermuth, B. 229, 250(20), 254
Freidendorf, M. 95, 101(371), 188
Freiser, B. S. 291(65), 327
French, A. 313(200), 330
Frenzel, U. 1065(194), 1091
Frenzel, W. 950, 953(190), 987(404), 1007, 1012
Frére, S. 680(150), 708
Freier, M. 1387, 1392, 1394, 1395(90), 1439
Freudenberg, K. 1108(12), 1118(138, 139), 1144, 1146
Frey, M. H. (97, 98), 1504
Freytag, M. 1383, 1421(67k), 1438
Fridovich, I. 1119(160), 1147
Friebe, S. 1420(359c, 361), 1450
Friedman, J. 405(42), 479
Friedrichsen, W. 1403(233a, 240b), 1408(280), 1445, 1447
Fries, K. 472(308a, 308b), 488
Fries, S. L. 424(157a), 483
Friedel, H. O. 987(403), 1012
Frimer, A. A. 471(302), 488, 806, 814(254), 836
Frings, M. 1378(50a), 1411(295), 1437, 1447
Frisch, M. J. 4, 100(2), 179, 368(194, 200), 201, 372, 373(200), 390, 391
Fritsch, N. 441(205), 484
Fritsch, J. 145(620), 193
Fritsch, K. H. 987(402), 1012
Fritz, B. 953, 963(260), 1009
Fritz, J. S. 1352(66), 1353(84), 1364, 1365
Fruno, P. 932, 937(87), 1005
Frohlich, H. 546, 547(55), 598, 999(460), 1013
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fröhlich, R. 669(59), 706</td>
</tr>
<tr>
<td>Fromentin, E. 630(71), 657</td>
</tr>
<tr>
<td>Fronček, F. R. 1393(147), 1394(147, 165), 1441, 1442</td>
</tr>
<tr>
<td>Frongs, M. 1378, 1386(71), 1387</td>
</tr>
<tr>
<td>Frost, J. W. 19(101, 102), 182</td>
</tr>
<tr>
<td>Frost, T. M. 450(236, 237), 486</td>
</tr>
<tr>
<td>Frostin-Rio, M. 1201, 1205(92), 1340</td>
</tr>
<tr>
<td>Frumin, H. 1104(54), 1106</td>
</tr>
<tr>
<td>Fry, S. C. 1163(34), 1338</td>
</tr>
<tr>
<td>Fu, D. K. 1374(42b), 1436</td>
</tr>
<tr>
<td>Fu, P. P. 425(162), 483</td>
</tr>
<tr>
<td>Fu, Y. J. 1085(355), 1096</td>
</tr>
<tr>
<td>Fuangswasdi, S. 1394(172c), 1396(172c, 181b), 1442, 1443</td>
</tr>
<tr>
<td>Fuchita, Y. 414(86b), 481</td>
</tr>
<tr>
<td>Fuchs, C. 1118, 1130(143), 1146</td>
</tr>
<tr>
<td>Fuente, C.de la 982(366), 1011</td>
</tr>
<tr>
<td>Fuerst, D. E. 463(276a), 487</td>
</tr>
<tr>
<td>Fuertes, A. B. 1489(106), 1504</td>
</tr>
<tr>
<td>Fuhrmann, B. 979(355), 1011</td>
</tr>
<tr>
<td>Fuji, K. 1380(56), 1437</td>
</tr>
<tr>
<td>Fujibayashi, S. 1204(100), 1340</td>
</tr>
<tr>
<td>Fujibuchi, T. 1025(86), 1089</td>
</tr>
<tr>
<td>Fujii, A. 144(598, 686), 147(706, 707), 193, 195, 375(245), 392, 551(85, 130), 598, 599</td>
</tr>
<tr>
<td>Fujii, M. 37, 46, 110, 111(182), 147(692, 703), 149(703), 183, 195</td>
</tr>
<tr>
<td>Fujii, S. 1360(171), 1367</td>
</tr>
<tr>
<td>Fujii, T. 92(347), 187, 937, 938(124), 1005, 1265(199b), 1343</td>
</tr>
<tr>
<td>Fujioka, A. 674(105), 707</td>
</tr>
<tr>
<td>Fukakawa, H. 1357(137), 1366</td>
</tr>
<tr>
<td>Fukami, S. 687(223), 709</td>
</tr>
<tr>
<td>Fukata, F. 447(222a), 485</td>
</tr>
<tr>
<td>Fukata, G. 1290(245), 1344</td>
</tr>
<tr>
<td>Fukazawa, Y. 1374(36b), 1403(240a), 1406(36b, 270a, 270b), 1436, 1445, 1446</td>
</tr>
<tr>
<td>Fuke, K. 107(412a), 143(412a, 581, 582), 147(412a), 189, 192, 193</td>
</tr>
<tr>
<td>Fukuda, A. 674(100), 707, 1495(164–169), 1498(164, 169), 1506</td>
</tr>
<tr>
<td>Fukuda, K. 865(148), 866(147), 890(231), 896(147, 148), 905, 907, 1180(63a), 1339</td>
</tr>
<tr>
<td>Fukuda, T. 697(289, 290), 711</td>
</tr>
<tr>
<td>Fukuhara, T. 648(154), 659</td>
</tr>
<tr>
<td>Fukui, H. 414(87), 481</td>
</tr>
<tr>
<td>Fukumoto, K. 1216(121, 122a), 1275(215), 1283, 1287, 1297(121, 122a), 1340, 1343</td>
</tr>
<tr>
<td>Fukumoto, S. 624(56), 657</td>
</tr>
<tr>
<td>Fukumoto, Y. 891(246), 907</td>
</tr>
<tr>
<td>Fukushima, H. 692(248), 710</td>
</tr>
<tr>
<td>Fukushima, M. 1086(376), 1096, 1362(206), 1368</td>
</tr>
<tr>
<td>Fukushima, N. 1383, 1421(67b), 1438</td>
</tr>
<tr>
<td>Fukushima, T. 951, 953(192), 1007, 1380(61b), 1438</td>
</tr>
<tr>
<td>Fukuyama, T. 684(193), 709</td>
</tr>
<tr>
<td>Fukuzumi, S. 1109, 1128, 1130(32), 1144</td>
</tr>
<tr>
<td>Fulcher, R. G. 994(438), 1013</td>
</tr>
<tr>
<td>Fulian, Q. 982(368), 1011</td>
</tr>
<tr>
<td>Fülöp, F. 740(63), 832</td>
</tr>
<tr>
<td>Fülscher, M. 20, 106(119), 182</td>
</tr>
<tr>
<td>Fun, H. K. 377(263), 392</td>
</tr>
<tr>
<td>Funabashi, K. 695(269), 710</td>
</tr>
<tr>
<td>Funari, E. 1357(130), 1366</td>
</tr>
<tr>
<td>Funayama, H. 1360(166), 1367</td>
</tr>
<tr>
<td>Fung, A. P. 405(37b, 38), 479</td>
</tr>
<tr>
<td>Fung, Y. S. 953, 965(265), 1009</td>
</tr>
<tr>
<td>Funke, T. 948(177, 178), 1007</td>
</tr>
<tr>
<td>Furimsky, E. 1111(63), 1145</td>
</tr>
<tr>
<td>Furka, A. 472(310b, 310c), 488</td>
</tr>
<tr>
<td>Furness, V. I. 1470(65), 1503</td>
</tr>
<tr>
<td>Furriss, B. S. 626(61), 657</td>
</tr>
<tr>
<td>Furstoss, R. 412(74a), 480</td>
</tr>
<tr>
<td>Furukawa, M. 143, 147(580), 192</td>
</tr>
<tr>
<td>Furukawa, N. 398(9a), 478</td>
</tr>
<tr>
<td>Furukawa, Y. 1462(25), 1503</td>
</tr>
<tr>
<td>Furuta, H. 1019(28, 29), 1087</td>
</tr>
<tr>
<td>Furuta, T. 1489(108), 1504</td>
</tr>
<tr>
<td>Fusco, C. 1257(186), 1342</td>
</tr>
<tr>
<td>Fuster, D. 47, 48, 56(220), 71, 73(274), 75(275), 78(276), 89(220, 315, 316, 317b), 90(316), 184–186</td>
</tr>
<tr>
<td>Fyfe, C. A. 1484, 1485(91), 1504</td>
</tr>
<tr>
<td>Fygle, K. E. 851, 852(69), 903</td>
</tr>
<tr>
<td>Fysh, R. R. 290(62), 327</td>
</tr>
</tbody>
</table>
Geraldes, C. F. G. C. 360(138), 838
832
George, B. E. 1048(156), 600
Gentric, E. 575(187), 1004
Genuit, W. 303(143), 1451
Gavuzzo, E. 1401(213), 1427(414a), 1444, 1451
Gawdzik, B. 1353(81), 1365
Gawdzik, J. 1353(81), 1365
Gawlowski, J. 930(82), 1005
Gazaryan, I. G. 977(341), 978(347), 1010, 1011
Gazda, K. 947(169), 1006
Gazy, A. A. K. 995(439), 1013
Gbaria, K. 1411(295), 1447
Gdaniec, M. 207(13), 220
Ge, C.-S. 684(191, 192), 709
Ge, P. 1711(46), 1338
Gebauer, C. R. 724, 725(27), 831
Gebauer, S. 1420(359c, 361), 1450
Gebicki, J. 551(88), 598
Gee, S. K. 450(239a, 239c), 452(239c), 486
Geerlings, P. 84(301), 89(301, 319, 324, 330–333, 336), 90(301, 319, 324, 330–333, 336, 341), 101–103(390), 170(756), 186–188, 197
Geetha, B. 1063(192), 1064(193), 1091
Geetha, N. 763(132), 834
Gefen, S. 110(435), 189
Geiger, H. 913(19), 1008
Giandomenico, S. 953, 962(246), 1008
Ghaffarzadeh, M. 774(188), 835
Geurts, F. A. J. 1427(407a), 1013
Gertoff, N. 110, 129, 131(416), 189, 108(282), 1083(295), 1094, 1098(8), 1100(8, 24), 1105, 1115(99, 100), 1129(300), 1130(99), 1145, 1150
Getrude, F. J. 1427(407a), 1451
Gevert, T. 997(447), 1013
Gfzf, S. 493, 515(27), 525
Ghaemi, E. 632(87), 658
Ghaffar, A. 649(157), 659
Ghaffarzadeh, M. 774(188), 835
Ghesi, E. 558(151), 600
Ghio, A. K. 1025(71b), 1088
Ghosh, P. 735(54, 55), 832
Giacomello, P. 309(169–171), 329
Giacosa, D. 947, 955(170), 1006
Giacomelli, S. 953, 962(246), 1008
Giani, M. 1396(181c), 1443
Giani, P. 101(834), 188
Habicher, W. D. 1419(355), 1450
Hachiya, I. 472(309a, 309b), 473(309b), 488, 629(65, 66), 630(67, 68), 639(65, 67), 657, 686(203, 204), 709, 774(168–172), 835
Hadjoudis, E. 385(299), 393
Hadži, D. 145(624), 193, 385(295), 393, 530(2, 11), 596, 597
Haeberlein, M. 45(193), 105(403), 140(193), 184, 188
Haga, K. 1417(332), 1448
Haglund, E. A. 749(97), 833
Hahn, L. C. 984(383), 1012
Hahn, S. 559(183), 600
Hahn, Y.-S. P. 807(272, 273), 837
Haid, A. 371, 377(233), 391
Haigh, D. 666(46), 705
Hall, A. 548(61), 598
Hall, L. E. 174(765, 766), 197
Hall, R. W. 1462(20, 21), 1470(63), 1502, 1503
Hall, W. L. 823(328), 838
Halley, F. 1330(323), 1346
Ham, S. 807(274), 837
Hamachi, K. 701(321, 322), 712
Hamada, A. 855(117), 904
Hamada, M. 414(90g), 481
Hamada, N. 811(294), 837
Hamada, T. 699(301), 701(322), 711, 712, 1084(322), 1095
Hamaguchi, H. 1027(91, 92), 1089
Hamamoto, K. 419(123a), 482
Hamanaka, N. 211(19), 220
Hamashita, Y. 691(238), 694(267), 710
Hameka, H. F. 93–95, 106, 107, 109, 110(356), 187
Hames, B. R. 676(118), 707, 1205(104), 1340
Hamilton, A. D. 1405(256a, 256b), 1446
Hamilton, G. A. 405(42), 479
Hamilton, G. M. 1216, 1283, 1287, 1297(122b), 1340
Hamilton, J. V. 251(93), 257
Hammond, W. B. 1192(80), 1339
Hammond, P. D. 1380(55, 58f), 1437
Hamuro, Y. 1405(256a), 1446
Han, K. 1224(137), 1341
Han, M. 620(45), 657
Han, S.-K. 874(173), 905
Han, X. 664(36), 705
Hanafusa, T. 93(362), 187, 662(6), 705
Hanai, T. 954(200), 970(291), 1007, 1009
Hancock, K. S. B. 1414(308), 1448
Handrick, G. R. 237(63), 256
Hanessian, S. 1466(44), 1503
Hanf, V. 925, 936(51), 1004
Hanifin, J. W. 405(42), 479
Hannaford, A. J. 626(61), 657
Hannan, R. L. 424(154b), 483
Hanninen, O. 1359, 1360(160), 1367
Hansch, C. 537, 539, 559(38), 597
Hänsel, R. 1308(280), 1344
Hänsel, W. 361(145), 389
Hansen, C. E. M. 1122(194), 1148
Hansen, H.-J. 419(135a), 460(280a, 284), 463(277), 466(291), 482, 487, 753(105), 755(106), 764(105), 823(326), 833, 838
Hansen, P. E. 335(2), 336(4, 5, 39, 40), 338(16, 17), 339(4, 18, 20), 340(28), 342(4, 35, 36, 38), 343(4, 39, 40, 42), 344(4, 20, 39, 40, 43–45), 345(5, 39, 40, 47), 346(35, 36, 47, 51, 52), 347(35, 42, 55), 348(55, 56), 349(55, 60, 62), 350(39, 62, 77), 351(87), 353(56), 354(5, 40, 47, 51), 355(39, 40, 47, 51, 105), 356(42, 47, 357(4, 111), 358(113, 115–117), 359(122, 124), 360(134), 361(47, 115, 122, 142), 363(142), 365(52), 366(39, 40, 51, 166), 386–389, 551(96–98, 128), 598, 599
Hansen, T. K. 1495(148), 1505
Hanson, J. R. 813(295, 296), 837
Hanson, P. 699(311), 711, 1489(117), 1505
Hanus, V. 691(239), 710
Hanzlik, R. P. 320(236), 331
Hapiot, P. 1136(356, 357), 1151
Hassner, R. 252(96), 257
Hastings, T. G. 874(175), 905
Hatakenaka, S. 1025(86), 1089
Hatanaka, K. 1178(58), 1339
Hatano, H. 954(200), 1007
Hatano, T. 744(73), 832
Hayama, A. 699(300), 711
Hatcher, P. G. 1360(180), 1367
Hatfield, G. R. 1470, 1471(58), 1503
Hatori, H. 1495(132, 133), 1509
Hatano, H. 953, 962(255), 1009
Hatano, T. 744(73), 832
Hatayama, A. 699(300), 711
Haw, J. F. 171(762), 197
Hawkins, G. D. 57(242), 185
Hawkins, R. T. 1372(17), 1436
Hawranek, J. P. 377(256), 392
Hayashi, A. 680(156), 708
Hayashi, K. 677(128), 707
Hayashi, M. 702(334, 338), 712
Hayashi, N. 1359(146), 1366
Hayashi, T. 669(66, 67), 706
Hayashi, Y. 360(137), 389, 421(373), 1450
Hayashida, O. 1418(335), 1425(405), 1448, 1451
Hayes, R. N. 314(209), 315(210), 316(209), 330, 467(296), 488
Hayes, W. 761(116), 833
Hayman, G. 1105(65), 1106
Hayon, E. 110(417), 189, 1098(6), 1105, 1128(278), 1129(296, 297), 1130(296, 297, 321), 1131, 1134(278), 1135(296, 345, 351), 1149—1151
Hayashi, Z. 727(39), 831
Heyder, E. 49(22), 53(237), 83, 84(297), 101(388), 180, 185, 186, 188, 261(11, 13), 263(13, 16), 269(16), 311(189), 326, 330
Heid, F. 1406(258a), 1446
Heidemarck, A. 644(142), 659, 774(180, 181), 835
Heikal, A. 493(21, 23), 525
Heikkaala, R. E. 1119(161), 1162
Heiliger, G. 1081(269), 1093
Heimlich, F. 936, 937(116), 1005
Hein, L. J. 1357(133), 1366
Heinonen, P. 1357(134), J366
Heinrich, A. 1025(80), 1089
Heinrich, F. 774(178), 835
Heinrich, N. 300(108), 328
Heinz, T. 1424(401), 1451
Heitner, C. 8(42), 180
Heitzsch, O. 1378(488), 1437
Helaleh, M. I. 1360(171), 1367
Helbert, M. 531, 532, 547(18), 576(189), 586, 587(18, 243—245), 589(18, 244), 591, 592(267), 597, 600, 602
Helgason, A. L. 450(241d), 486
Helgeson, R. C. 1382, 1383(67c), 1419(348), 1421(67c), 1429(429), 1438, 1450, 1452
Heller, D. P. 693(254), 710
Heller, W. 895(269), 908
Hellrung, B. 127(468), 190, 229, 250(20), 254, 716(7), 831, 1017(14), 1035(116), 1087, 1089
Helm, R. M. 147(713, 715), 195, 992(427), 1012
Helma, W. P. 1098(2), 1105, 1112(79), 1145
Hong, R.-K. 664(33), 705
Hong, S.-S. 1082(289), 1094
Hong, Y. 685(199), 709
Hongu, M. 673(98), 707
Hongyou, R. L. 932, 933(95), 1005
Honig, B. 5(12), 179
Honig, M. 296(86), 327
Hontz, B. 1355(115), 1365
Hou, J. H. C. van 941(133), 1006
Hoom, W. P. van 1433(456a), 1453
Horel, H. 673(98), 707
Hori, K. 677(136), 707
Hori, T. 1380(61a), 1438
Horiguchi, A. 674(100), 707
Horiuchi, H. 1029(102), 1089
Hormadaly, J. 542(47), 597
Hormi, O. 1360(182, 183), 1367
Hormi, O. E. O. 668(55), 706
Horne, S. 476(320), 488, 785(228), 836
Horne, L. 801(247), 836
Horning, E. C. 294(79), 312(194), 327, 330
Hornstra, G. 852(78), 903
Horma, J. 438(199), 484
Horswill, E. C. 845(32, 33), 859, 872(138), 902
Hossain, K. 1315(293, 294), 1345
Hoshikawa, M. 769(149), 834
Hoshimoto, E. 1021(36), 1088
Hoshino, K. 1357(137), 1366
Hoshino, M. 1021(39), 1088
Hoshino, O. 1065(195), 1066(196), 1091, 1318(300b), 1330(316, 317), 1345, 1346
Hoshino, O. 693(256), 710
Hosokawa, K. 414(90i), 481
Hosokawa, T. 669(64, 65), 706
Hose, H. 865, 866, 896(146), 905
Hosoya, N. 609(299–301, 312), 702(326), 711, 712
Hosoya, T. 680(145), 708, 776(201), 835
Hosseini, M. W. 1429(430a), 1452
Houle, C. G. 1497, 1498(170), 1506
House, H. O. 676(117), 707
Hovari, J. 856, 857(122), 904
Hoveyda, A. H. 702(345, 346), 712
Howard, J. A. 142(542), 143(543–545), 192, 841, 843(11), 844(17, 19), 859(137), 860(19, 139, 140), 872(139), 877(190), 879(198), 884(206), 902, 905, 906, 1108(5), 1111(62–64), 1140(5, 372, 374), 1144, 1145, 1151
Howard, J. A. K. 551, 552(134), 599, 1036(118), 1089
Howard, J. B. 18(83a), 181
Howard, P. C. 999(465), 1013
Howarth, O. W. 830(347), 838
Hodge-Grant, M. 419(125), 482
Hoyer, H. 234(48), 255
Hoz, A. de la 680(154), 708
Hrbal, R. 1415(316), 1448
Hrdlovic, P. 476(321), 488
Hristova, M. 636(104), 658
Hroch, L. 1459(14), 1502
Hrovat, D. A. 110, 112, 139(442), 189
Hsiao, G. 851, 853, 857(61), 903
Hsieh, C.-T. 944(145), 1006
Hsieh, M.-F. 1236(157), 1342
Hsieh, Y.-H. 1085(338, 341, 342), 1095
Hsiue, G. H. 608(7), 656
Hsu, D.-S. 1337(158, 160a), 1342
Hsu, P.-Y. 1327(160a, 160b), 1342
Hsing, R. P. 454(253, 255), 456(255), 486, 487, 735(52), 832
Hu, C. 1082(280), 1084(306), 1094
Hu, H. 786(229), 230, 836
Hu, L. Q. 312(193), 330
Hu, Q.-S. 694(264, 266), 710
Hu, W. 1417, 1424(327), 1448
Hu, X. 1081(268), 1093, 1427(408d), 1451
Hu, Y. 662(7), 705
Huang, C. C. 82(285), 186
Huang, C. G. 1036(119), 1089
Huang, C. H. 620(41), 657
Huang, C. P. 1085(335), 1086(364), 1095, 1096
Huang, H.-N. 687(221), 709
Huang, H. S. 1361(197), 1367
Huang, K.-S. 1085(341, 342), 1095
Huang, R. 305(151), 329
Huang, S.-D. 953, 970(290), 1009
Huang, T. 684(190), 695(271), 709, 710
Huang, W.-S. 694(264–266), 710
Huang, X. 668(56), 706
Huang, X. 1100(27), 1106
Huang, Y. 523(258), 331
Huang, Z. 1400(206), 1444
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang, Z.-T.</td>
<td>634(99), 658, 1403(236), 1409(286a), 1410(292), 1432(448a, 452), 1445, 1447, 1453</td>
</tr>
<tr>
<td>Huber, E. W.</td>
<td>663(24), 705</td>
</tr>
<tr>
<td>Huber, J. F. K.</td>
<td>953, 962(258), 1009</td>
</tr>
<tr>
<td>Huber, W.</td>
<td>1359(150), 1366</td>
</tr>
<tr>
<td>Huboux, A. H.</td>
<td>450(241b), 486</td>
</tr>
<tr>
<td>Huc, V.</td>
<td>1409(289b), 1447</td>
</tr>
<tr>
<td>Hückel, W.</td>
<td>737(57), 832</td>
</tr>
<tr>
<td>Hudhomme, P.</td>
<td>586, 587(241), 602</td>
</tr>
<tr>
<td>Hudson, E. A.</td>
<td>913(25), 1003</td>
</tr>
<tr>
<td>Hudson, R. A.</td>
<td>47, 143, 170(209), 184, 592(268), 602</td>
</tr>
<tr>
<td>Huf, F. A.</td>
<td>953, 968(277, 278), 1009</td>
</tr>
<tr>
<td>Hug, R.</td>
<td>755(106), 833</td>
</tr>
<tr>
<td>Hughes, D. E.</td>
<td>412(75a), 480</td>
</tr>
<tr>
<td>Hughes, D. L.</td>
<td>663(21), 705</td>
</tr>
<tr>
<td>Hughes, E. D.</td>
<td>801(239), 836</td>
</tr>
<tr>
<td>Hughes, L.</td>
<td>1160(33, 34), 1120, 1124(34), 1144</td>
</tr>
<tr>
<td>Huisgen, R.</td>
<td>467(295b), 488, 802(249), 906(272), 927(25), 593(272), 594(283), 595, 596(272), 597, 602, 603</td>
</tr>
<tr>
<td>Hulme, B. E.</td>
<td>1131, 1134(316), 1150</td>
</tr>
<tr>
<td>Hulme, J. D.</td>
<td>1076(236), 1092</td>
</tr>
<tr>
<td>Hunter, E. P.</td>
<td>5(10), 83(296a), 179, 186</td>
</tr>
<tr>
<td>Hunter, E. P. L.</td>
<td>261, 265, 310(8), 326</td>
</tr>
<tr>
<td>Hunter, J. A.</td>
<td>1076(236), 1092</td>
</tr>
<tr>
<td>Hursthouse, M. B.</td>
<td>1402(228b), 1409(288), 1445, 1447</td>
</tr>
<tr>
<td>Husain, S.</td>
<td>806(269), 837</td>
</tr>
<tr>
<td>Husebye, S.</td>
<td>219(33), 221, 579(199–201), 601</td>
</tr>
<tr>
<td>Huseyin, S.</td>
<td>1242(168), 1342</td>
</tr>
<tr>
<td>Hussain, S. A.</td>
<td>1259(189), 1342</td>
</tr>
<tr>
<td>Husson, H.-P.</td>
<td>1292(252), 1344</td>
</tr>
<tr>
<td>Huter, O.</td>
<td>450(246f), 486</td>
</tr>
<tr>
<td>Huttin, A.</td>
<td>1172(51a), 1338</td>
</tr>
<tr>
<td>Hütter, P.</td>
<td>1169(43), 1338</td>
</tr>
<tr>
<td>Huttl, R.</td>
<td>977(336), 1010</td>
</tr>
<tr>
<td>Huzinger, D.</td>
<td>493(44, 48 – 50, 53, 56 – 62), 497(58–60), 498(59), 504, 505(49), 525, 526, 1020(35c), 1087</td>
</tr>
<tr>
<td>Huynh, P. V.</td>
<td>35(161), 37, 170(179), 183</td>
</tr>
<tr>
<td>Hutter, J. F. K.</td>
<td>1352(67), 1364</td>
</tr>
<tr>
<td>Huy, B.</td>
<td>412(75c), 480</td>
</tr>
<tr>
<td>Huyck, V.</td>
<td>1409(289b), 1447</td>
</tr>
<tr>
<td>Huygens, A.</td>
<td>467(295b), 488, 802(249), 906(272), 927(25), 593(272), 594(283), 595, 596(272), 597, 602, 603</td>
</tr>
<tr>
<td>Huysmans, W. B.</td>
<td>1194(83a), 1339</td>
</tr>
<tr>
<td>Huysmans, W. G. B.</td>
<td>1109(33, 34), 1120, 1124(34), 1144</td>
</tr>
<tr>
<td>Huysste, R. B.</td>
<td>977(342), 1010</td>
</tr>
<tr>
<td>Hwang, D.</td>
<td>1394(167b), 1442</td>
</tr>
<tr>
<td>Hwang, G. T.</td>
<td>1427(410c), 1451</td>
</tr>
<tr>
<td>Hwang, H. I.</td>
<td>937, 940(129), 1006</td>
</tr>
<tr>
<td>Hwang, J.-T.</td>
<td>1237(159), 1342</td>
</tr>
<tr>
<td>Hy, Z. Y.</td>
<td>233(40), 255</td>
</tr>
<tr>
<td>Hyatt, J. A.</td>
<td>206(11), 220</td>
</tr>
<tr>
<td>Hyde, J. S.</td>
<td>1120(188), 1147</td>
</tr>
<tr>
<td>Hynes, J. T.</td>
<td>23, 78, 93–96, 101, 106, 107, 109(115), 182, 493(64–66), 500(78), 502, 507(66), 511(65, 66), 515(66), 522(66), 100, 101, 526, 527</td>
</tr>
<tr>
<td>Hyötyläinen, T.</td>
<td>970(289), 1009</td>
</tr>
<tr>
<td>Iacomacci, P.</td>
<td>1383(75a), 1439</td>
</tr>
<tr>
<td>Iacovino, R.</td>
<td>1383, 1422(75e), 1439</td>
</tr>
<tr>
<td>Iannucci, B.</td>
<td>375(250), 392</td>
</tr>
<tr>
<td>Ibbotson, A.</td>
<td>1383, 1421(67b), 1438</td>
</tr>
<tr>
<td>Ibragimov, B. T.</td>
<td>204(10), 220</td>
</tr>
<tr>
<td>Ibrahim, A. R.</td>
<td>377(263), 392</td>
</tr>
<tr>
<td>Ibsen, S. N.</td>
<td>346, 354, 355, 366(51), 387, 551(96), 598</td>
</tr>
<tr>
<td>Ichikawa, H.</td>
<td>92(347), 187</td>
</tr>
<tr>
<td>Ichimura, K.</td>
<td>1383(67h), 1421(67h, 373), 1438, 1450</td>
</tr>
<tr>
<td>Iden, C. B.</td>
<td>1357(131), 1366</td>
</tr>
<tr>
<td>Ido, Y.</td>
<td>323(256), 331</td>
</tr>
<tr>
<td>Idoux, J. P.</td>
<td>1278(226), 1343</td>
</tr>
<tr>
<td>Igaz, S.</td>
<td>937(120), 1005</td>
</tr>
<tr>
<td>Ignat’ev, N. V.</td>
<td>312(193), 330</td>
</tr>
<tr>
<td>Ignatov, O. V.</td>
<td>979(353), 1011</td>
</tr>
<tr>
<td>Ignatova, Z. N.</td>
<td>953, 957(214), 1007</td>
</tr>
<tr>
<td>Ignelzi, S.</td>
<td>942(137), 1006</td>
</tr>
<tr>
<td>Iguchi, H.</td>
<td>855(104), 904</td>
</tr>
</tbody>
</table>
Author Index

Irico, A. 322(250), 331
Irie, K. 1374(31a), 1436
Irie, R. 699(298–301, 312), 701(321, 322), 702(326), 711, 712
Irth, H. 977(335), 1010
Irto, Y. 702(326), 712
Irwin, J. L. 1432(447), 1453
Isaks, M. 1022(52), 1088
Isern-Flecha, I. 308(164, 165), 309(165), 329
Isernia, A. 1391, 1396(121c), 1440
Ishi, T. 1392(131), 1441
Ishida, H. 211(16), 220, 1084(322), 1095
Ishida, S.-I. 1462(25), 1503
Ishida, T. 424(155b), 483, 866, 896(147), 905
Ishida, Y. 129, 179(491), 190, 881(202), 906
Ishigaki, M. 112(456), 190
Ishihara, K. 677(129), 691(243, 244), 693(257, 259–261), 707, 710, 844, 845(24), 902
Ishihata, K. 414(90c), 481
Ishii, F. 1378(47a, 47b), 1437
Ishii, H. 424(155b), 483, 770(158), 773(158, 159), 834, 874(174), 905
Ishii, S. 1495(137), 1505
Ishii, T. 987(405), 1012, 1302(266), 1344
Ishii, Y. 1204(100), 1340, 1414(309), 1448
Ishikawa, T. 770(158), 773(158–160), 834
Ishikawa, Y. 1345(464b), 1454
Ishihata, A. 559(380), 603
Ishii, F. 415(106a), 481
Ishida, S.-I. 1124(489), 1305
Iwamoto, K. 1372(10b), 1391(111, 115a, 115b, 117), 1393(159), 1394(111, 167a, 172b), 1435, 1440, 1442
Iwamoto, M. 413(77), 480
Iwamori, N. 1162(9), 1163
Iwase, K. 1367(46), 1368
Iwata, K. 1027(91, 92), 1089
Iwata, S. 95, 106, 107(372), 148(729, 730), 149, 153, 156(729), 160(729, 730), 170(729), 188, 196, 1289(242), 1344
Iwata, Y. 1194(86), 1339
Iwatsuki, M. 882(204), 906
Iwatsuki, S. 1498(175), 1506
Iwama Bakker, W. I. 1396(189), 1443
Iwuobu, E. I. 977(339), 1010
Iyengar, N. R. 716(11), 831
Iyer, R. 1311(283), 329
Izatt, R. M. 1372(17), 1436
Izatt, S. R. 1372(17), 1436
Izawa, S. 1374(31b), 1436
Izawa, T. 447(2221), 485, 1337(332), 1346
Izod, T. P. J. 307(152), 329
Itami, T. 1028(99), 1089
Izvekov, V. 244(84), 256, 370(212), 384(293, 294), 385(294), 391, 393, 551, 553(74, 75), 598
Izvekov, V. 82(286), 186
Jabbar, A. 649(157), 659
Jabconova, A. 1082(271), 1093
Jablonski, J. 608(8), 656
Jaccard, G. 340, 341, 352(25), 386
Jachiet, D. 671(86), 706, 1163(33b), 1338
Jereb, M. 655(190), 660
Jerina, D. 405(44), 479
Jerina, D. M. 146(99), 181, 412(72), 480, 721(21, 22), 824(21), 829(344), 831, 838
Jerussi, R. A. 466(292), 487
Jeskey, H. 716(10), 831
Jeuonisse, C. 1435(462a), 1454
Ji, H. 1077(237), 1092
Ji, M. 1394(167c), 1442
Jiang, L. 414(89c), 481
Jiang, L.-F. 414(90d), 481
Jiang, Z. H. 999(464), 1013
Jiao, H. 95(367), 188
Jiao, K. S. 937, 938(126), 1006
Jiménez, A. 913(6), 932(96), 1006
Jiménez, A. I. 987(406), 1012
Jiménez, C. 972(304), 1010
Jimenez, M. C. 744(71, 72), 832
Jiménez, P. 230(25), 232(38), 237(61), 241(80), 254–256
Jimenez, R. 511(94), 527
Jimenez, M. C. 1038(122c), 1039(123), 1040(124–126), 1042(127, 128), 1055(169), 1071(204), 1090–1092
Jin, F. 1136(360), 362, 1151
Jin, T. 1394(172a), 1442
Jin, Z. 377(261), 392
Jing, H. W. 639(124), 659
Jinno, M. 1180(63b), 1339
Jinot, C. 1120, 1122, 1134(186), 1147
Jintoku, T. 414(86a, 86b), 481
Jiye, F. 238, 239(67), 256
Jobling, S. 925(49), 1004, 1349, 1360(34), 1363
Jocelyn Paré, J. R. 930(79), 932(97), 937(79), 1004, 1005
Joerg, E. 953, 961(244), 1008
Joesten, M. D. 368(182), 390, 530, 551, 554, 557, 559, 588–590(4), 596
John, A. 378(271), 392
John, D. M. 1348(31), 1363
John, V. T. 365(164), 389
Johns, R. B. 314(205–207), 330
Johnsen, P. 367(170), 390
Johnson, B. 4, 100(2), 179, 368, 372, 373(200), 390
Johnson, B. J. 1404(245), 1445
Johnson, C. R. 129, 133(493), 191
Johnson, E. 899(277), 908
Johnson, E. R. 31, 45, 140(140), 183, 867, 871, 895–899(154), 905
Johnson, F. 682(167), 708
Johnson, G. J. 405(40), 479
Johnson, P. M. 109(415), 143(583), 189, 193
Johnson, R. A. 405(41c), 479
Johnson, R. L. 1360(162), 1367
Joh, S. A. 1129, 1134(283), 1149
Johnson, W. J. 1104(59), 1106
Johnston, D. E. Jr. 1372(12), 1436
Johnston, L. D. 129, 133(497), 191
Johnston, L. J. 110, 111, 113, 114(425), 189, 860(141), 905, 1019(27a), 1087, 1134(344), 1151
Johri, M. H. 290(62), 327
Jolliffe, K. A. 1406(262b), 1446
Jolly, R. S. 677(126), 707
Joly, G. 651(181), 660
Jona, H. 641(137), 659, 679(142, 143), 708
Jonas, V. 1074(230), 1092
Jonekubo, J. 1351(52), 1364
Jones, A. 774(190), 835
Jones, A. D. 636(104), 637(109), 658
Jones, C. W. 631(75), 657
Jones, D. A. K. 53(235), 185
Jones, E. J. 35(174), 47(216, 217), 48(217), 183, 184
Jones, G. P. 953, 969(281), 1009
Jones, J. 933, 937(101), 1005
Jones, M. N. 1348(20), 1363
Jones, P. G. 1383(67k), 1391(120a), 1417(329a), 1421(67k), 1424(395), 1438, 1440, 1448, 1451
Jones, R. L. 35(149), 183
Jones, R. M. 549(65), 598
Jones, R. O. 6(27), 93, 105(354), 180, 187
Jones, S. A. 1495(157), 1505
Jones, T. K. 1466(45), 1503
Jones, W. A. 647(151), 659
Jones, Z. 1307(273), 1344
Jong, F. de 1391(121a), 1396(121a, 182a, 182b), 1432(455), 1440, 1443, 1453
Jong, J. de 1475, 1486(80), 1504
Jong, R. H. de 1192, 1198(77), 1339
Jonkers, N. 1349(35), 1363
Jönsson, J. Å. 947(168), 953(168, 280), 969(280), 1006, 1009
Jönsson, M. 45(193), 139(534), 140(193), 184, 191, 865(145), 905, 1136(361), 1143(382), 1151, 1152
Jönsson-Pettersson, G. 976(330), 1010
Jordan, J. E. 1111(74), 1145
Jordan, K. D. 20(123), 148, 160(720), 182, 196, 315(211), 330
Jordanov, B. 368(195), 390
Jordon, J. G. 1374(42a), 1436
Jore, D. 1125(246), 1129(246, 304), 1149, 1150
Jørgensen, E. C. 53(239), 185
Jørgensen, K. S. 1347(8), 1363
Jørgensen, M. 1405(251a), 1406(264, 267b), 1446
Jørgensen, T. J. D. 325(277), 332
Jorid, L. 531(21), 559(153), 586(153, 237), 589(237, 262), 590(237), 593(153), 597, 600, 602, 877(187), 906
Josephsen, J. 358(116), 388
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kameyama, H.</td>
<td>1393(160), 1442</td>
</tr>
<tr>
<td>Kamide, K.</td>
<td>1462(19), 1502</td>
</tr>
<tr>
<td>Kamienski, B.</td>
<td>1024(63), 1088</td>
</tr>
<tr>
<td>Kamieth, M.</td>
<td>322(245, 246), 331</td>
</tr>
<tr>
<td>Kamigaito, M.</td>
<td>1388(100b), 1439</td>
</tr>
<tr>
<td>Kamienski, B.</td>
<td>1024(63), 1088</td>
</tr>
<tr>
<td>Kamieth, M.</td>
<td>322(245, 246), 331</td>
</tr>
<tr>
<td>Kamiura, T.</td>
<td>1348(27), 1363</td>
</tr>
<tr>
<td>Kamiya, Y.</td>
<td>853(90), 855, 856(90, 119), 886(233), 887(221), 890(232, 233, 235), 904, 907</td>
</tr>
<tr>
<td>Kamiyama, H.</td>
<td>1380(61a), 1438</td>
</tr>
<tr>
<td>Kamlet, M. J.</td>
<td>503(87 – 89), 526, 541(45), 575(187), 591(264, 265), 592(265), 600, 602, 887(219), 907</td>
</tr>
<tr>
<td>Kammierer, H.</td>
<td>1462(30), 1503</td>
</tr>
<tr>
<td>Kamp, N. W. J.</td>
<td>1209(109), 1340</td>
</tr>
<tr>
<td>Kamura, A.</td>
<td>855(104), 904</td>
</tr>
<tr>
<td>Kan, T.</td>
<td>684(193), 709</td>
</tr>
<tr>
<td>Kanai, M.</td>
<td>691(238), 694(267), 695(269), 710</td>
</tr>
<tr>
<td>Kanai, M. M.</td>
<td>695(268), 710</td>
</tr>
<tr>
<td>Kanamathareddy, S.</td>
<td>1399(200a, 200b), 1403(231b), 1427(424a), 1443, 1445, 1452</td>
</tr>
<tr>
<td>Kanda, F.</td>
<td>295(82), 327</td>
</tr>
<tr>
<td>Kanda, W.</td>
<td>1205(103), 1340</td>
</tr>
<tr>
<td>Kandawasami, C.</td>
<td>894(259), 907</td>
</tr>
<tr>
<td>Kane, S. A.</td>
<td>977(339), 1010</td>
</tr>
<tr>
<td>Kaneeda, M.</td>
<td>691(243, 244), 710</td>
</tr>
<tr>
<td>Kang, N. O.</td>
<td>1400(208b), 1444</td>
</tr>
<tr>
<td>Kang, X.</td>
<td>1081(265), 1093</td>
</tr>
<tr>
<td>Kania, A.</td>
<td>143(565), 192</td>
</tr>
<tr>
<td>Kanki, T.</td>
<td>1083(304), 1094</td>
</tr>
<tr>
<td>Kannan, N.</td>
<td>1356(124), 1366</td>
</tr>
<tr>
<td>Kano, K.</td>
<td>1209(106), 107), 1340</td>
</tr>
<tr>
<td>Kano, T.</td>
<td>681(164), 708</td>
</tr>
<tr>
<td>Kanoh, H.</td>
<td>1498(175), 1506</td>
</tr>
<tr>
<td>Kap, N.</td>
<td>326(105), 1007</td>
</tr>
<tr>
<td>Kaplan, J.-P.</td>
<td>475(318), 488</td>
</tr>
<tr>
<td>Kapoor, V. B.</td>
<td>941(134), 1006</td>
</tr>
<tr>
<td>Kappe, T.</td>
<td>342(38), 387</td>
</tr>
<tr>
<td>Kappus, H.</td>
<td>851, 852, 854, 855(65), 903</td>
</tr>
<tr>
<td>Kar, S.</td>
<td>972(306), 1010</td>
</tr>
<tr>
<td>Karadakov, P. B.</td>
<td>89(312), 186</td>
</tr>
<tr>
<td>Karakulski, K.</td>
<td>1083(305), 1094</td>
</tr>
<tr>
<td>Karam, L. R.</td>
<td>1100(22), 1105</td>
</tr>
<tr>
<td>Karam, O.</td>
<td>648(155), 651(155, 183), 659, 660, 1227(145), 1341</td>
</tr>
<tr>
<td>Karapinka, G. L.</td>
<td>1274(208), 1343</td>
</tr>
<tr>
<td>Karas, M.</td>
<td>260(3), 305(147), 323(3, 253–255, 264), 324(268), 325, 329, 331</td>
</tr>
<tr>
<td>Karaseva, S. Y.</td>
<td>277(13), 254</td>
</tr>
<tr>
<td>Karavaev, S. A.</td>
<td>986(399), 1012</td>
</tr>
<tr>
<td>Karayannis, M. I.</td>
<td>986(398), 1012</td>
</tr>
<tr>
<td>Karbach, S.</td>
<td>1419(348), 1450</td>
</tr>
<tr>
<td>Karbach, V.</td>
<td>323(263), 324(269), 331, 493, 515(27), 525</td>
</tr>
<tr>
<td>Kars, S.</td>
<td>1079(241), 1092</td>
</tr>
<tr>
<td>Kato, T.</td>
<td>686(211), 709, 769(149), 834</td>
</tr>
<tr>
<td>Kato, Y.</td>
<td>856, 863, 864(126), 904, 1159, 1227(30), 1338, 1421(67e), 1438</td>
</tr>
<tr>
<td>Katovic, Z.</td>
<td>1471(72), 1504</td>
</tr>
<tr>
<td>Katritzky, A. R.</td>
<td>434(193, 194), 484</td>
</tr>
<tr>
<td>Katsuki, H.</td>
<td>641(137), 659</td>
</tr>
<tr>
<td>Katsu, T.</td>
<td>1202, 1205(95), 1340</td>
</tr>
<tr>
<td>Katsuki, M.</td>
<td>674(99), 707, 777(202), 835</td>
</tr>
</tbody>
</table>
Author Index

Katsuki, T. 694(262, 263), 697(289, 290), 698(292), 699(28–301, 309, 310, 312, 313), 701(319, 321–323), 702(326, 327), 710–712
Katsumata, S. 844(23), 891(246), 902, 907
Kattner, G. 953, 962(249), 1008
Katuki, M. 679(141–143), 708
Katz, J. L. 671(84), 706
Katzenellenbogen, J. A. 1070(200), 1091
Kauber, O. 402(22), 479
Kauffmann, J. M. 983(376), 1011
Kaufman, R. J. 673(96), 707
Kaufman, K. J. 1020(35c), 1087
Kaufmann, R. 323(262), 331
Kappinnen, T. 1351(43), 1364
Kaur, J. 774(185), 835
Kaus, S. 129(485), 190
Kauschisch, N. 14(69), 181
Kaushal, R. 433(190), 484
Kawada, K. 687(222, 223), 709
Kawada, M. 403(31), 479
Kawaguchi, H. 1081(266), 1084(317), 1085(333), 1093, 1095
Kawaguchi, K.-I. 448(226), 485
Kawaguchi, M. 1427(407b), 1451
Kawahara, F. K. 368(185), 390
Kawahara, S. 1421(373), 1450
Kawahara, S. I. 90(344), 187
Kawakami, A. 886(233), 887(221), 890(233, 235), 907
Kawakishi, S. 1099(11–14), 1105
Kawamoto, A. 219(36), 221
Kawamura, K. 669(63), 706
Kawanashi, Y. 1400(206), 1444
Kawaniishi, M. 398(9a), 478
Kawaiini, M. 1038(122b), 1090
Kawano, Y. 216(26), 221
Kawase, M. 415(107), 481
Kawashima, T. 1428(435a, 435b, 436), 1452
Kawate, T. 662(6), 705
Kawecki, R. 340(28), 387
Kaya, K. 107(412a), 143(412a, 581, 582), 147(412a), 189, 192, 193
Kayami, K. 397(3), 478
Kaysen, K. L. 845, 846(38), 852(79), 902, 903
Kazakova, E. K. 1419(355), 1424(396), 1450, 1451
Kazandjian, R. Z. 1219(132), 1341
Kazantsev, M. V. 730(48), 822
Kazankov, Y. V. 1470(70), 1504
Kazareva, R. 976(331), 1010
Kazlauskas, R. J. 638(121), 658
KcKimmon, J. T. 17(81), 181
Keane, M. A. 178(774), 197
Kearns, D. R. 853(94), 904
Kebarle, P. 5(17), 83(295), 92(350), 100(381), 101(350), 102(381), 180, 186–188, 261(10), 313(197–200), 314(199), 324(271, 272), 326, 330–332
Keck, J. 1026(90), 1089
Kecki, Z. 366(165), 389
Keefe, A. D. 1432(449a), 1453
Keenan, R. E. 1360(167), 1367
Keil, T. 1109, 1128, 1130(32), 1144
Keil, T. 145(629, 630, 632, 633), 194, 593(273), 595(273, 298), 596(298), 602, 603
Keith, L. H. 1348(14, 15), 1363
Keith, T. 4, 100(2), 179, 368, 372, 373(200), 390
Kelder, G. D.-O.den 871, 873, 898(169), 905
Kelderman, E. 1391(112), 1402, 1405(224b), 1440, 1444
Keller, P. 953, 958(224), 1008
Keller, W. E. 662(2), 704
Kelley, W. T. 947, 953(173), 1006
Kelly, D. R. 1466(46), 1503
Kelly, J. 1352(55), 1364
Kelly, S. 89, 90(327), 187
Kelly, T. R. 692(249), 710
Kelsch, L. P. 735, 748(51), 832
Kemister, G. 109(413), 189
Kemp, T. J. 1086(371), 1096, 1101(35), 1106
Kemsley, K. 1110, 1112(53), 1145
Kende, A. S. 807(282), 837
Kende, S. 1278(224), 1294(254), 1343, 1344
Kenis, P. J. A. 1391(119), 1440
Kernard, O. 535, 549(32), 550(71), 551(32), 597, 598
Kennedy, B. R. 1330(322), 1346
Kennedy, D. A. 829(345), 838
Kennedy, J. A. 960(228), 1008
Kennedy, J. P. 621(50), 657
Kentonsova, I. 1082(272), 1093
Keogh, J. P. 179(776), 197, 651(182), 660
Keough, T. 292, 293(69), 327
Keresztury, G. 20, 22, 23, 35, 36, 38(111), 82(286), 179(782), 182, 186, 198, 244(84), 256, 368(198), 369(209), 370–375(198), 384(293, 294), 385(294), 390, 391, 393, 551, 553(74, 75), 598
Kermasha, S. 953(221, 222), 957(221), 958(222), 1008
Kerns, E. 305(151), 329
Kerns, M. L. 1175, 1227(54a), 1338
Kerr, J. A. 1105(64, 65), 1106
Kerr, M. 786(231), 836
Kerr, W. J. 454(256, 257), 487
Kerwin, J. L. 305(148–150), 329
Kessel, J. van 884(207, 208), 885(207), 906
Kettamaa, H. I. 123(467), 190
Kevati, T. 405(37b, 38), 479
Keutgen, W. A. 1457, 1461, 1470(5), 1502
Khodilkar, B. M. 662(10), 680(151), 705, 708, 774(187), 835
Kinoštita, T. 954(200), 970(291), 1007, 1009, 1380(56), 1437
Kinsel, G. R. 323(257), 331
Kintzinger, J.-P. 1427, 1432(421b), 1452
Kinugawa, M. 1048(159), 1091
Kip, C. J. 422(144), 483
Kiparisova, E. G. 235(51), 255
Kiralj, R. 385(300), 393, 726(34), 831
Kirby, G. H. 35(157), 183
Kirby, S. P. 224, 227, 228, 230, 241(2), 254
Kirchner, J. J. 227(10), 254
Kirichenko, A. I. 631(79), 657
Kiricsi, I. 613, 644(23), 656
Kirihar, M. 447(222c–e), 485
Kirch, D. W. 1157(11), 1337
Kirch, M. 637(110), 658
Kirsch, R. S. 1255(185), 1342
Kirste, B. 1123(215), 1148
Kirtaniya, C. L. 409(59), 480
Kirthivasan, N. 619(39), 656
Kirudd, H. 1267(202a), 1343
Kir’yanyan, K. V. 235(51), 255
Kisch, H. 1085(350), 1095
Kise, M. 398(9a), 478
Kishi, H. 100, 102(381), 188, 937, 938(124), 1005
Kishida, E. 855(104), 904
Kishida, S. 1372(14), 1436
Kishimoto, T. 1115(98), 1145
Kishore, K. 359(128), 389, 1129(292), 1150
Kishore, Y. 82(287), 186
Kita, Y. 447(221a, 221b, 222a–e, 222g, 222h, 222j), 448(222b, 225–227), 485, 1178(58), 1227, 1228(144), 1230(148), 1246(172, 173), 1247(173), 1339, 1341, 1342
Kitagaki, S. 447(222b, 222h), 448(222b), 485
Kitagawa, K. 219(36), 221
Kitagawa, S. 275(44), 326
Kitagawa, T. 1209(106), 1340
Kitai, S. 951, 953(196), 1007
Kitajima, H. 694(262), 263, 710
Kitajima, N. 414(87), 481, 1194(86), 1339
Kitamura, T. 1038(122b), 1090
Kitamura, Y. 890(231), 907
Kitano, F. 414(89a), 481
Kitano, T. 414(89a, 89c, 90d), 481
Kitano, Y. 1180(63a), 1339
Kitao, T. 763(135), 834
Kitchin, P. 1330(318), 1346
Kiwi, J. 1084(327), 1086(360), 1095, 1096
Kiyomori, A. 671(80), 806
Kjällstrand, J. 303(141), 329
Klapper, M. H. 1117(129, 131), 1142(380, 381), 1146, 1152
Klärner, F. G. 322(245, 246), 331
Klausner, J. F. 1084(308, 309), 1094
Klecka, G. M. 1351(54), 1364
Klein, C. 992(431), 1013
Klein, P. 1363(220), 1368
Klein, W. J.de 1285(234), 1343
Kleine, H. P. 673(96), 707
Kleitz, D. A. 336(6), 386
Klementova, S. 1079(245), 1093
Klemm, L. H. 807(271), 837
Klenk, H. 631(80), 657
Klenke, B. 1400(233a, 240b), 1408(280), 1445, 1447
Kleshchevnikova, V. N. 737(58), 832
Klessinger, M. 83, 84(298), 186
Kletskii, M. E. 1024(59), 1088
Klibanov, A. M. 411(70a), 480, 1219(132), 1341
Kline, T. B. 1244(170), 1342
Klīnman, J. P. 129(485), 190
Kloc, K. 424(152c), 483
Klockow, D. 936, 937(116), 1005
Klohr, S. 305(151), 329
Klopper, W. 1020(35a), 1087
Klopman, G. 102(395), 188
Klotz, D. 1122(193), 1148
Klotz, D. M. 925(50), 1004
Knapp, F. D.Jr. 1351(50), 1364
Knaudt, J. 1205(101), 1340
Knee, J. L. 143(584), 144(684), 193, 195
Knepper, T. P. 1349(35), 1363
Knežević, A. 261, 263, 296(15), 308(162), 326, 329
Knickmeier, M. 461(290), 487
Knight, A. E. W. 144(681), 195
Knight, M. H. 430(181b), 484
Knights, S. G. 813(295), 837
Knobler, C. B. 651(169), 660, 1382, 1383(67c), 1419(348, 357), 1421(67c), 1424(397a, 399), 1428(425a, 426a, 1429(430a, 430b), 1438, 1450–1452
Knochenmuss, R. 260(4), 323(4, 263, 265, 267), 324(269, 275), 325, 331, 332, 492(18), 493(18, 20, 24–29), 515(18, 25, 27, 28), 525
Knop, A. 1457(3), 1470(3, 60), 1471(73), 1481, 1483–1485(3), 1502–1504
Knuth, M. L. 1357(133), 1366
Knutsson, M. 947(168), 953(168, 280), 969(280), 1006, 1009
Knuttilla, M. 1357(134), 1363(220), 1366, 1368
Knuutinen, J. 1363(220), 1368

Author Index
Kong, D. 851(46, 52), 885(46, 215), 887(52), 903, 906
Kong, S. 770(150, 151), 834
Kongshaug, M. 1099(15), 1105
Königsbacher, K. 433(189c), 484
Konijnenberg, J. 1117(114), 1146
Konishi, H. 275(44), 326, 1164, 1290(36), 1324(309), 1338, 1345, 1382(69a, 69b, 70), 1383(76), 1387(89), 1417(332), 1419(345, 349, 350a, 350b), 1438, 1439, 1448, 1450
Konodo, H. 1470(69), 1504
Konovalev, A. I. 1424(396), 1451
Kontsas, H. 1347(5), 1363
Koo, H. J. 1392(129b), 1441
Kooijman, H. 1405(249b), 1422(378), 1445, 1450
Kooijman, H. 1424(383), 1450
Kook, S.-K. 1393(154), 1394(163), 1441, 1442
Kopac, M. E. 732(50), 735, 748(51), 832
Kopeckova, P. 15(73), 181
Kopecek, J. 15(73), 181
Kopac, M. E. 732(50), 735, 748(51), 832
Kopecni, M. M. 931, 935, 937(85), 1005
Kopel, P. W. 1461, 1463, 1470(18), 1502
Kopf, P. W. 1117(121), 1217
Koppel, A. I. 311(186), 312(193), 329, 330, 589(259), 602
Koppenol, W. H. 637(111, 112), 658
Kopenta, T. S. 383(280), 392
Koptyug, V. A. 744(75, 76), 806(261), 832, 837
Kopylova, T. N. 1017(8), 1087
Koptuv, V. A. 269(34), 326
Kornobits, D. 740(63), 832
Korchagina, D. V. 616(32), 656
Korenaga, T. 1360(171), 1367
Korenman, Ya. I. 930(76, 81), 937(121), 983(374), 984(382), 986(399), 1001(475, 476), 1002(478), 1004, 1005, 1011, 1012, 1014
Korner, S. K. 1424(400b), 1451
Körner, W. 925(51, 52), 936(51), 1004
Korobov, M. S. 1024(66), 1088
Korshak, V. V. 235(51), 255
Korth, H.-G. 45(195), 139(533), 184, 191, 867(153, 155), 876, 882, 892(155), 893(153), 905
Korvenranta, J. 363(141), 389
Korzytowski, W. 852(84), 903, 1136, 1137(364), 1151
Kosciuszko-Panek, B. 726(36), 831
Kosemura, S. 1187(72, 73), 1339
Kozer, G. F. 1224(139), 1341
Kossmehl, G. 950(188), 1007
Köster, R. 415(102), 481, 1117(121), 1146
Kosturkiewicz, Z. 580(205), 601
Kotake, Y. 864, 865(144), 905
Kotani, E. 1288(239, 240), 1289(240), 1344
Kotelevtsev, S. 1359, 1360(160), 1367
Koten, G. van 93(364), 187
Koten, M. A. van 807(279), 837
Kotila, S. 669(59), 706
Kotlan, J. 1325(311a, 311c), 1345
Koto, S. 674(108), 707
Kottas, P. 1082(284), 1094
Kotte, H. 976(327), 1010
Kotulák, L. 874(180), 906
Koutek, B. 1048(155), 1090
Kouwenhoven, H. W. 631, 640(74), 657, 774(175, 179), 835
Kovacek, D. 89(311), 97, 101(374), 186, 188
Kováčik, V. 303, 305(146), 329
Kovacova, J. 1082(272), 1093
Kovács, A. 82(286), 186, 238(71), 244(84), 256, 370(212), 384(293, 294), 385(294), 391, 393, 551(74, 75, 113, 114), 553(74, 75), 555(113, 114), 598, 599, 1100(30), 1106, 1128(275, 276), 1149
Kovacs, P. 759(115), 833
Kovalev, V. 1427(409b), 1451
Kovalev, V. 1372(21), 1436
Kovaleva, T. A. 78(279), 186
Kowalczyk, J. J. 450(241c, 246h), 453(241c), 486
Kowalski, C. J. 452(242), 486
Koyasu, K. 1324(309), 1345
Kozak, V. P. 1359(156), 1366
Kozaki, M. 1018(24), 1087
Kozerski, L. 340(28), 387
Kozikowski, A. P. 443(213), 485
Kozishi, K. A. 414(93), 481
Kozlovskaya, H. 853, 857(89), 904
Kozmin, S. A. 450(239g, 239h), 486
Kozuka, A. 1275(215), 1343
Kozuka, T. 1333(329), 1346
Kozukue, E. 913(13), 1003
Kozukue, N. 913(13), 1003
Kracke, B. 442(212), 485
Kraft, D. 1393(157b), 1396(195a), 1406(257), 1432(449b), 1442, 1443, 1446, 1453
Krajewski, P. 340(28), 387
Krajnik, P. 1100(28), 1106
Kral, V. 1383, 1421(67n), 1430(442b), 1438, 1453
Kramer, H. E. A. 1026(90), 1089
Kramer, K. J. 305(148), 329
Krämer, R. 144(672), 194, 593(275), 595(275, 299), 602, 603
Krantz, A. 551(88), 598
Krapcho, A. P. 397(8), 478
Krasauskas, V. 1020(33), 1087
Krashakov, S. A. 891(243), 907
Krasovskaya, L. I. 1470(51), 1503
Kraus, G. A. 1045(136, 138), 1090, 1264(196), 1343
Kraus, G. J. 1420(359c, 361), 1450
Author Index

Krauss, M. 93–95, 106, 107, 109, 110(356), 112, 129, 132(455), 187, 190
Krauss, P. 1124(242), 1148
Krausz, F. 472(311h), 488
Kravchenko, D. V. 776(200), 835
Kravtsov, D. N. 357(111), 388
Krawiec, M. 1401(220c), 1444
Krawiec, M. 12390, 1392(107), 1440
Krebs, F. C. 1405(251a), 1406(264), 1446
Kreevoy, M. M. 367(178), 390
Kreider, E. M. 467(295a), 487
Krelick, R. W. 1121(191), 1123(211, 214), 1147, 1148
Krekler, S. 950, 953(190), 1007
Kremer, T. 93, 95, 104, 105(352), 187, 311(188), 329
Kremers, F. 460(278), 487
Kresge, A. J. 1034(113), 1089
Kretzschmar, H. J. 953, 963(260), 1009
Krichna Peddinti, R. 1240(166), 1342
Krim, M. Z. 763(131), 834
Krinisky, N. I. 851, 855(73), 903
Krisna, C. M. 1218(130), 1223(135), 1341
Krisna, C. M. 874(177), 906
Krisnanamurthy, R. 811(291), 837
Krisnanamurthy, V. V. 643(141), 659
Krisnanamurthy, G. S. R. 973(314), 1010
Krisnanamurthy, H. 631(83), 658
Kristensen, T. 436, 354, 355, 366(51), 387, 551(96), 598
Krivdina, B. 350(79), 388
Krivopalow, V. P. 340, 341(26), 387
Kroebusch, P. L. 83(291), 186
Krogh-Jespersen, K. 110–112(426), 189
Krol, E. S. 874(178), 906
Krol-Starzomska, I. 1024(64), 1088
Kronberg, L. 1360(178), 179, 185, 1367
Kropf, H. 799(235), 836
Kroschwitiz, J. I. 419(125), 482
Krueger, C. A. 702(345), 346, 712
Krueger, P. J. 234(49), 255
Krüger, C. 461(290), 487
Kryachko, E. 143(551), 192
Kryachko, E. S. 31(145), 47, 48, 56(220), 58(244), 68, 69(145), 83(293, 299), 84–86, 88(299), 89(220, 299, 317a, 317b), 90, 91(299), 144(680), 145(632), 148(722, 723, 731, 732), 149, 158(731), 160(722, 723), 162(723), 171(761), 177(732), 183–186, 194–197
Krygowski, M. T. 353(97), 388
Krygowski, T. M. 93(362), 187
Krylov, A. I. 357(111), 388
Kryzanowski, E. 1067(198), 1091
Krzan, A. 251, 252(92), 257, 385(297), 393
Kryzakowski, J. 724, 725(27), 831
Ksi, Y. 359(131), 389
Ku, M. 1393(152b), 1441
Ku, M.-C. 1394, 1407(170a), 1442
Ku, Y. 1361(193), 1362(213), 1367, 1368
Kuban, P. 971(293), 1009
Kubelka, V. 265, 268, 269(27), 326
Kubicki, M. 233(41), 255
Kubinec, R. 1102(44), 1106
Kubinya, M. 20, 22, 23, 35, 36, 38(111), 182, 368, 370–375(198), 390
Kubo, M. 1396(184), 1443, 1498(175), 1506
Kubo, Y. 1396(184), 1443
Kubota, L. T. 929(65), 974(319), 981(65), 1004, 1010
Kubota, M. 677(129), 707
Kubota, T. 501(79), 526, 1495(160, 162, 163), 1498(160), 1505, 1506
Kuboto, Y. 1362(211), 1368
Kuc, T. 377(262), 392
Kuchel, P. W. 338(16), 386
Kuchmenko, T. A. 930(76), 983(374), 984(382), 985(390), 988(399), 1001(476), 1004, 1011, 1012, 1014
Kuck, D. 83(292), 186, 260(5), 6, 263(6, 17), 265(25), 268(25, 33), 270(25, 35, 36), 273(25), 277(46–48), 284(17, 25, 46, 53, 54), 285(57), 293(17, 25, 46, 74, 75), 296(6), 298(25), 300(111–117), 302(140), 303(25, 54), 325(5), 325–328
Kuck, J. A. 1118(133), 1146
Kudin, K. N. 4, 100(2), 179, 368, 372, 373(200), 390
Kudo, K. 1383, 1421(67h), 1438
Kudo, M. 702(344), 712
Kudryavtsev, V. V. 1030(105), 1089
Kudryavtseva, L. A. 740(64, 65), 832
Kuhn, W. 450(246e), 486
Kuhntert, N. 1406(271), 1446
Kuivilla, H. G. 414(97b), 481
Kulagin, V. N. 235(51), 255
Kulagowski, J. J. 666(47), 705
Kulbida, A. 377(257), 392
Kulbida, A. I. 143(555), 192, 377(258), 392
Kulkarni, G. U. 216(28), 221
Kulkarni, S. J. 630(70), 631(73), 657, 680(152), 708
Kulmacz, R. J. 15(72), 181
Kulshrestha, S. K. 1050(161), 1091
Kumada, H. 1380(63), 1438
Kumagai, H. 1380(61a, 61b, 62), 1438
Kumagai, N. 695(273, 274), 710, 711
Kumamoto, M. 170(740), 196
Kumanotani, J. 272(37), 196
Kumamoto, M. 845, 880(26), 902, 1111(72), 1145, 1374(36c), 1436
Kumar, R. 774(177), 835
Kumar, S. 634(917), 658, 1402(227), 1445
Kumaradhas, P. 216(28), 221
Kunai, A. 414(98c, 90c, 90d), 481
Kündig, E. P. 783(222), 836
Kunert, M. 6(26), 180
Kunitake, T. 1435(464b), 1454
Kunitomo, J. 807(275), 837
Kuntz, K. W. 702(346), 712
Kunz, U. 1374(33a), 1436
Kunze, K. L. 721(23), 831
Kuo, C. H. 1362(201), 1368
Kuo, W. J. 608(7), 636
Kuo, W. S. 1085(349), 1086(363), 1095, 1096
Kuo, Y. H. 1018(20), 1087
Kupchan, S. M. 1275(212, 213), 1278(212, 218), 1343
Küpper, J. 144(679), 195, 377(253), 392, 578(194), 581(216), 601, 992(428), 1012
Kuramoto, R. 1180(63b), 1339
Kuran, P. 1102(43, 44), 1106
Kuramata, A. 844(22), 856, 865(127), 902, 904
Kurdistani, S. K. 1429(429), 1452
Kuribayashi, M. 953, 962(248), 1008
Kurita, H. 693(260), 710
Kurita, E. 1421(373), 1450
Kurita, K. 1495(137), 1505
Kurkovskaya, L. N. 349(66), 387
Kuroda, H. 1216(125), 1341
Kuroda, K. 1159, 1207(28), 1338
Kuroda, N. 951, 953(193, 194), 1007
Kuroda, Y. 414(89a–c, 90d), 1505
Kuriyama, A. 844(22), 856, 865(127), 902, 904
Kuriyama, S. 1429(429), 1452
Kuriyama, T. 344(7), 387
Kuriyama, Y. 1421(421), 1452
Kurasawa, K. 1204(98), 1285(236), 1340, 1343
Kurreck, H. 1123(215), 1148
Kürth, L. 1227(141), 1341
Kuruc, J. 1102(43, 44), 1106
Kurucz, C. N. 1100(33), 1106
Kurur, N. D. 634(97), 658
Kurz, M. E. 405(40), 479
Kusakabe, K. 695(278), 711
Kusama, H. 811(293), 837
Kusano, T. 1385(83), 1439
Kaskov, V. L. 550(71), 598
Kusukawa, T. 1209(108), 1340
Kusunoki, J. 1025(86), 1089
Kutal, C. 1082(270), 1093
Kuthan, J. 823(329), 838
Kutnetsov, S. L. 347(54), 387
Kutty, T. R. N. 1083(299), 1094
Kuzmin, M. G. 492, 493, 501(13), 515(96), 525, 527, 1020(35d), 1073(223), 1087, 1092
Kuzmin, V. A. 1108, 1118(19), 1128(277), 1130(19, 319), 1144, 1149, 1150
Kuznetsov, A. I. 1470(53), 1503
Kuznetsov, E. V. 432(186), 484
Kuznetsov, J. N. 1470(66), 1503
Kuznetsova, N. 1085(356), 1096
Kuznetsova, R. T. 1016(3), 1017(8), 1087
Kwan, K. M. 1374(36a), 1436
Kwart, H. 773(164), 834
Kwiatkowski, E. 726(36), 831
Kwiatkowski, G. T. 1274(208), 1343
Kwiatkowski, M. 726(36), 831
Kwiecien, B. 340(28), 387
Kwo, O. 244(85), 256
Kwon, B. G. 1362(205), 1368
Kwon, O. 242(82), 256, 551(79, 102, 116), 553(79, 102), 556(116), 598, 599
Kwon, Y. 242(82), 244(85), 256, 551(79, 102, 116), 553(79, 102), 556(116), 598, 599
Kynaston, W. 35(163), 50(165), 95, 107, 109(373), 183, 188
Kyritsakas, N. 1401(219b, 220b), 1444
Laaksonen, A. 93, 95(361), 187, 384(290), 393
Laarhoven, L. J. J. 45(197), 139(531), 179(197), 184, 191
Laatikainen, R. 349(74), 388
Labbe, P. 977(343), 1011
Labib, A. 472(311d), 488
Labrosse, J.-R. 664(39), 705
Labudzińska, A. 170, 171, 177(759), 197, 992(426), 1012
Lacaze, P. C. 1157(12), 1337
Lach, F. 462(274), 463(276b), 487
Lachkar, A. 586, 587(243), 602
Lacorte, S. 1348, 1357(11), 1363
Lacour, J. 1318(301b), 1345
Ladd, J. A. 144(602, 603), 193, 363, 364(147), 389
Lafleur, L. E. 933, 937(101), 1005
Lafont, P. 972(304), 1010
Lafontaine, P. 937, 940(130), 1006
Lagier, C. M. 367(172, 173), 390
Lagouri, V. 998(454), 1013
Lahmani, F. 78(282), 186
Lahtipera, M. 1363(220), 1368
Lai, C.-H. 1234(153b), 1341
Lai, D. K. W. 20, 45, 140(125), 182
Lai, J.-Y. 418(120), 482
Laine, J. 1080(247), 1093
Laine, M. 1347(8), 1363
Laines, G. L. 1079(239), 1092
Laing, D. G. 978(345), 1011
Lal, G. S. 452(242), 486, 687(216), 709
Lalande, M. 1002(482), 1014
Lam, E. 1071(207), 1092
Lam, F. L. Y. 1081(268), 1093
Lam, Y. S. 994(436), 1013
Lamare, V. 1415(313), 1448
Lamartine, M. 200(1), 220
Lamartine, R. 609(18), 656, 1372(11, 19, 28, 30), 1378(52b), 1394(169), 1401(216b), 1402(224e–e), 1405(251b), 1415(312,
Le, H. T. 84(303), 110(448-450, 452), 115(303), 123(450), 186, 189, 190
Leaffer, M. A. 400(19), 478
Leahy, D. K. 664(38), 705
Leal, A. I. 1080(254), 1093
Leal, P. 1039(123), 1040(125), 1055(169), 1090, 1091
Leal, P. C. 1285(233), 1343
Leanza, R. 18(87), 181
Leary, G. J. 8(43), 180
Leavy, P. J. 745, 746(80), 832
Lebedev, Y. a. S. 550(71), 598
Lebedev, Y. S. 1104(58), 1106
LeBlanc, J. R. 1459, 1475, 1484(6), 1502
Lebouille, P. H. P. 1406(266), 1446
Le Bras, J. 748(84-86), 832, 833
Lebrun, S. 784(227), 836
Leca, J.-P. 1486(100), 1504
Le Calve, J. 144(682, 683), 195
LeClaire, J. E. 109(415), 189
Leclerc, P. 370(214), 391
Lecombe, L. 663(19), 705
Leiderer, K. 949, 953(186), 1007
Lee, A. W. M. 994(436), 1013
Lee, B. L. 920, 949, 953(33), 1003
Lee, C.-H. 769(147), 834
Lee, D. S. 1085(346), 1095, 1362(205), 1368
Lee, D. W. 946(163), 1006
Lee, F. L. 844, 847, 855, 860-862, 864, 897, 898(18), 902
Lee, G. 631(75), 657
Lee, G.-D. 1082(289), 1094
Lee, G. H. 1407(273b), 1446
Lee, H. 1353(91), 1365
Lee, H. B. 932, 935(95), 1005
Lee, H. C. 1428(427), 1452
Lee, H. K. 946, 953(161), 1006
Lee, J. 493(40, 42, 43), 498(42), 525, 1017(7), 1087
Lee, J. B. 799(237), 836
Lee, J. C. 663(14), 705
Lee, J. L. 149, 158, 161(736), 196
Lee, J. Y. 161(737), 196
Lee, K. 1361(193), 1367
Lee, K.-C. 1362(213), 1368
Lee, L. 1120, 1140(184), 1147
Lee, M. K. T. 555(140), 599
Lee, N. H. 664(31), 705
Lee, S. A. 403(32), 479
Lee, S.-G. 418(120), 482
Lee, S. H. 1347(7), 1363, 1400(208b), 1444
Lee, S. J. 1393(154), 1441
Lee, S. K. 460(286), 487
Lee, T.-H. 1234(153a), 1237(161a, 161b, 162a, 162d), 1341, 1342
Lee, W. 702(339, 340), 712
Lee, W.-H. 944(141), 1006
Lee, Y. 663(17), 705
Lee, Y. C. 1237(160b), 1342
Lee, Y. F. 1082(286), 1094
Lee, Y. R. 1044(133), 1045(135), 1090
Lee, Y. T. 83(291), 137(522), 186, 191
Leese, T. 456(259), 487
Lefebvre, O. 428(171), 483
Legars, P. 663(19), 705
Legnaro, E. 646(146), 659
Legoff, D. 559, 568, 586(154), 600
LeGourrierec, D. 1025(88), 1047(147), 1089, 1090
Le-Gresley, A. 1406(271), 1446
Lehman, L. S. 884(208), 885(210), 906
Lehmann, E. 323(265-267), 331
Lehn, J.-M. 761(119), 833
Lehnert, E. K. 678(140), 707
Lehnig, M. 637(106), 658
Lehotay, J. 953, 962(255), 1009
Lei, B. 1237(164), 1342
Leigh, D. A. 1419(352), 1450
Leigh, W. J. 1021(43, 44), 1088
Lein, E. J. 871, 898(164), 905
Leis, J. R. 638(117), 658
Leitich, J. 1136(360), 1151
Leity, J. L. 95(368), 188
Leize, E. 1427(421a), 1452
Lemaire, J. 1057(175, 176), 1073(217, 220), 1091, 1092
Lemal, D. M. 669(60), 706, 826(338), 838
 Lemanski, D. 580(205), 601
 Lembach, G. 30(136), 183
 Lemercier, J. N. 637(107, 108), 658
 Lemmetyinen, H. 1073(224), 1092, 1117(114), 1146
 Lemon, P. H. R. B. 1489(104), 1504
 Lemoulit, P. 234(50), 251, 252(90), 255, 257
 Lempers, H. E. B. 460(286), 487
 Lenchitz, C. 236(55), 255
 Lenga, R. E. 924, 925, 927(39, 40), 1003, 1004
 Lengfelder, E. 1118(143, 146), 1119(146, 163), 1130(143), 1146, 1147
Lenghaus, K. 1476(84), 1478(85), 1482(84), 1484(94), 1485(84), 1489, 1490(113, 114), 1504
Lencieck, J. 933, 937, 953(99), 1005
Leo, A. 537, 539, 559(38), 597
Leo, A. J. 543(50), 545(54), 598
Leong, K. 724, 725(27), 831
León-González, M. E. 953, 962(253, 257), 1008, 1009
Leonis, M. 1371, 1372(8), 1435
Leonov, A. I. 1470(70), 1504
Lepage, G. 854(102), 904
Le Perchec, P. 559, 567(156), 600
Lepoittevin, J. P. 650(159), 659
Leppard, D. 1026(90), 1089
Leprori, L. 101(384), 188
Le Questel, J.-Y. 575(186), 580, 581(211), 583(223), 586, 587(186, 241, 243–245, 255), 589(244), 600–602
Lerner, R. A. 806(263), 837
Le Roux, E. 949(183), 1007
Leroux, N. 37(181), 145, 146(613), 183, 193, 371, 372, 377(220), 391, 566(174), 573(180), 600
Leroy, E. 236, 237(59), 256
Les, A. 1025(68), 1088
Lesclaux, R. 138(527), 191
Lessard, J. 1361(191), 1365
Lessinger, L. 546(56), 598, 998(459), 1013
Lester, D. J. 681(163), 708
Lester, G. 1470(61), 1503
Lester, G. R. 264(22), 326
Letus, A. 1356(120), 1365
Leszczynska, I. 998(458), 1013
Létotééf, J.-M. 1415(318), 1448
Lettmann, C. 1085(350), 1095
Letzel, M. C. 320(241), 322(241, 252), 331
Letzel, T. 319(232), 331
Leuchs, D. 433(188b), 484
Leunens, V. 566(175), 600
Leung, H. W. 300(109), 328
Lev, O. 1362(210), 1368
Leventhal, A.-M. 1382(68), 1417(331), 1438, 1448
Leverd, P. C. 1409(289b), 1447
Levetsovitz, Z. 942, 943, 953(138), 1006
Levetsovitz, Z. 942, 943, 953(138), 1006
Levett, G. 415(101), 481
Levy, D. H. 20, 24, 106(118), 182
Levy, J. B. 551(125, 129), 599
Ley, N. 1086(366), 1096, 1227(143), 1341
Ley, N. J. 416(113), 482
Ley, R. 1330(324, 325a–c), 1332(325a–c), 1346
Li, A. X. 632(85), 658
Li, C. 968(274), 1009, 1082(274), 1093, 1140(375), 1151
Li, C.-J. 684(37), 39, 705
Li, G. 763(136), 834, 1082(282), 1083(295), 1094, 1354(109), 1365
Li, G.-Y. 1082(285), 1094
Li, H. 670(71), 706, 1318(303), 1345
Li, H.-D. 1082(285), 1094
Li, H. X. 620(41), 657
Li, J. 57(242), 185, 975(323), 1010, 1397, 1398, 1403(197a), 1443
Li, J. P. 424(157b), 483
Li, J.-S. 1427(420a, 420b), 1452
Li, K. 19(102), 182, 930(79), 932(97), 937(79), 1004, 1005
Li, L. 281(51), 327
Li, M. 305(151), 329
Li, N. 95, 101(371), 188
Li, T. S. 632(85), 658
Li, W. 990(417), 1012
Li, X. 1024(61), 1088
Li, X. W. 620(45), 657
Li, Y. 1024(61), 1088
Li, Y.-S. 563(169), 600
Li, Z. 763(136), 834
Li, Z.-J. 674(104), 707
Lialulin, A. L. 977(341), 1010
Lian, X.-D. 1432(445), 1453
Author Index

Lianfeng, Z. 1083(304), 1094
Liang, Y. M. 639(124), 659
Liao, C.-C. 1234(153a, 153b), 1236(154–157), 1237(158, 159, 160a, 160b, 161a, 161b, 162a–e, 163), 1240(166), 1341, 1342
Lias, S. G. 5(10), 83(296a), 98(376), 179, 186, 188, 261(7, 8), 265(8, 29a), 268, 269, 272(29a), 310(8), 311, 312(7), 325, 326
Liashenko, A. 368, 372, 373(200), 390
Liashenko, M. A. 4, 100(2), 179
Liber, K. 1357(133), 1366
Liberatore, L. 930(77), 1004
Liberio, R. 686(212), 709
Libus, W. 558(149), 600
Lichtig, J. 984(383), 1012
Liddel, U. 47(213–215), 184, 555(141), 599
Liebeskind, L. S. 1278(224), 1343
Liebler, D. C. 845(38, 39), 846(38), 852(79), 902, 903
Liebman, J. F. 224(1, 3), 225(1, 4), 227(1, 4, 5), 229(1), 230(5), 233(1), 237(61, 64), 247(89), 254, 256, 257, 261(7), 265, 268, 269, 272(29a), 311, 312(7), 325, 326
Liebskind, L. S. 451(247), 486
Liehr, J. G. 291(68), 301, 302(137), 327, 328
Lieman, J. F. 98(376), 188
Liewa, A. J. 1275(212), 1278(212, 218), 1343
Lipea, J. 1278(221), 1343
Lipins, E. 347(54), 387
Lifshitz, C. 110(435, 436), 121(436), 189, 265(23), 326
Lightner, D. A. 268(30), 326
Ligor, T. 953, 968(278), 1009
Ligtenbarg, A. G. J. 359(130), 389
Liguori, L. 607(6), 656
Likhovych, A. 83(296b), 186
Lilla, G. 274(41), 326
Lillo, M. P. 730(45), 831, 1025(70b), 1088
Lim, A. S. C. 1463(40, 41), 1465, 1467(42), 1471(74), 1503, 1504
Lim, C.-J. 1082(289), 1094
Lim, K.-T. 1082(289), 1094
Lima, A. W. O. 978(348), 1011
Lima, E. C. 984(383), 1012
Lima, J. F. C. 986(395, 397), 1012
Limbach, H.-H. 364(155), 367(171, 178), 389, 390, 503(90), 527
Lin, C.-I. M. 818(321), 838
Lin, C. N. 895(268), 908
Lin, C. Y. 129, 135, 137(487), 190
Lin, G.-Q. 776(199), 835
Lin, J. 1213(113), 1340
Lin, J. G. 1085(340), 1095
Lin, K. J. 1100(33), 1106
Lin, L. 1393(152b), 1441
Lin, L.-G. 1391, 1392(122a), 1393(122a, 142), 1394(142, 168, 170a), 1407(142, 170a), 1440–1442
Lin, M. C. 129, 135(487), 137(487, 524), 138(524, 525), 190, 191
Lin, Q. 493, 515(28), 525, 1405(256b), 1446
Lin, R.-S. 634(98), 658, 1402(225), 1445
Lin, T. 47, 53(224), 184
Lin, W.-L. 1407(273b), 1446
Lin, X.-F. 674(109), 707
Lin, Y.-L. 1236(154), 1341
Lin, Z. 929, 985(69), 1004
Lin, Z.-P. 1432(445), 1453
Lina, M. 616(26), 656
Lind, J. 139(534), 191, 1108(24, 25), 1118(24), 1136(361, 363), 1137(363), 1138–1140(24), 1142(24, 377), 1143(24, 382), 1144, 1151, 1152
Lindberg, J. G. 236, 248(56), 255
Lindblom, R. O. 19(96, 98), 182
Linde, H. v. d. 1115(112), 1146
Linde, R. G. 664(30), 705
Lindeman, S. V. 200(7), 220
Linden, S. M. 575(185), 580(185, 204), 600, 601
Lindgren, A. 976(324), 977(337), 1010
Lindholm, N. 237(61), 256
Lindley, J. 670(68), 706
Lindner, R. 143(591), 193
Lindon, J. C. 359(125), 366(168), 389, 390, 726(30, 31), 831
Lindsay, J. R. 1209(109), 1340
Lindsey, A. S. 716(10), 831
Lindstrom-Seppa, P. 1359, 1360(160), 1367
Lineberger, W. C. 95, 98, 99, 131, 132, 139(370), 188
Linell, R. H. 530, 557(5), 596
Linell, M. 1355(118), 1365
Linnane, P. 1419(352, 354), 1450
Linnell, R. H. 368(183), 390
Linsay Smith, J. R. 1211(110), 1340
Linstrom, P. J. 261(9), 326
Lin-Vien, D. 369, 371(208), 391
Lios, J. L. 357(109), 388
Liott, D. A. 57(242), 185
Liotta, C. L. 621(48, 49), 657, 658
Liou, C. C. 308(160), 329
Liou, J. 296(85), 327
Lipeczynska-Kochany, E. 1072(211), 1073(211, 213, 214), 1092
Lipert, R. J. 30(134), 129(475), 143(585–587), 147(585–587, 693, 694), 182, 190, 193, 195
Lipkowski, J. 1417(328), 1418(340), 1448, 1450
Lipowsky, J. 1393(161), 1442
Lippmann, T. 1417(330b), 1424(392, 393), 1448, 1450
Lis, T. 352(91), 388, 551, 557(121), 580(202), 599, 601
Listá, E. 874(179–181), 906
Liska, I. 1354(106), 1365
Lissel, M. 663(15), 705, 1204(99), 1340
Liti, K. 148, 160(721), 196
Little, R. D. 1156, 1158, 1175(5), 1337
Littlejohn, D. 985(391), 1012
Littler, J. S. 472(311b), 488
Litvinenko, L. M. 631(79), 657
Litwak, A. M. 1410(291a, 291b), 1447
Liu, D. 982(364), 1011
Liu, G. 4, 100(2), 179, 368, 372, 373(200), 390, 699(305), 711
Liu, H. 450(246g), 486, 1084(310), 1087(382), 1094, 1096
Liu, J. 855, 856(105), 904, 929, 985(69), 1004, 1100(31), 1106
Liu, J.-M. 1432(452), 1453
Liu, M. 1081(265), 1093
Liu, M. H. 955(205), 1007
Liu, R. 93, 94(360), 129(509, 510), 131(510), 132(360, 509, 510), 133(509, 510), 137, 138(524), 187, 191, 982(364), 1011
Liu, R.-Z. 148(728), 196
Liu, S. Y. 296(83), 327, 620(41), 657
Liu, W. 1393(152b), 1441
Liu, W.-C. 1237(163), 1342
Liu, W. Z. 311(190), 330
Liu, X. 1361(198), 1367
Liu, X. Y. 620(45), 657
Liu, Y.-C. 855(115), 892(250), 904, 907
Liu, Z.-L. 855(114), 115, 892(250), 904, 907, 1080(258), 1093
Livengood, C. D. 1361(197), 1367
Llamas-Saiz, A. L. 580, 581(212), 601
Llauro, M. F. 559, 567(156), 600
Lломpart, M. 932, 937(94), 1005
Lломpart, M. P. 930(79), 932(97), 937(79), 1004, 1005, 1352, 1353(63), 1364
Lломpart-Vizoso, M. P. 933(104), 1005
Lloyd, G. T. 949, 953(185), 1007
Luch, J. M. 1047(149), 1090
Lo Balbo, A. 953, 956(211), 1007
Lobanov, G. A. 241, 251, 252(81), 256
Lobbes, J. M. 953, 962(249), 1008
Lochmann, L. 677(138), 707
Locke, D. C. 1354(109), 1365
Locke, S. 901(288), 908
Loebach, J. 450, 453(239f), 486
Loebach, J. L. 450, 453(241e), 486, 698(293), 711
Loehlin, J. H. 219(38), 221
Loehr, T. 1216(119d), 1340
LoFaro, A. D. 45, 139, 140(192), 184
Löffler, F. 1397(196), 1399(203), 1443, 1444
Logani, M. K. 852, 854, 855, 857(83), 903
Loginov, D. B. 977(341), 1010
Logue, E. A. 806(256, 257), 837
Loh, E. 1104(57), 1106
Loh, W. 957(213), 1007
Loike, J. C. D. 1216(123), 1341
Loizou, G. 766(141), 834
Lokshin, V. 770(157), 834
Loll, P. J. 11(51, 52), 180
Lombardi, G. 932, 937(93), 1005
Lombardi, P. 953, 961(236), 1008
Lombardo, N. 953, 961(239), 1008
Lommatsch, U. 147(714), 195
Long, Y. H. 953, 965(265), 1009
Longchambon, F. 550(68), 598
Longeray, R. 1372(11), 1436
Longevialle, P. 300(102), 328
Longfield, T. M. 412(74c), 480
Looney, M. A. 807(274), 837, 1230(149), 1341
Looney, M. G. 1459(9), 1463(9, 39, 41), 1465, 1467(42), 1470(59), 1471(59, 74), 1500(178), 1502–1504, 1506
Loos, M. 69(269), 185
Lopes, J. L. C. 895(266), 908
López, J. 932(96), 1005
López-Erroz, C. 932, 937(93), 1005
Lorente, P. 503(90), 711
Lorentzon, J. 1083(296), 1094
Lopez-Prados, J. 1409(287), 1447
Lora, S. 979(354), 1011
Loreng, L. 1325(312), 1345
Lorenz, P. 503(90), 527
Lorentzen, J. 106(119), 182
Lorenzo, R. A. 930(79), 932(97), 937(79), 1004, 1005
Lorenzo-Ferreira, R. A. 933(104), 1005
Lork, E. 743(70), 832
Lossadkin, D. 874, 875, 893(182), 906
Lossing, F. P. 139(529), 191, 274(40), 326
Loth, K. 1120(180), 1122(195), 1123(180), 1125(195), 253–255, 1147–1149
Lotter, A. P. 550(72), 598
Lou, Y.-X. 1403(236), 1445
Louch, J. R. 933, 937(101), 1005
Loudon, J. D. 470(298), 488
Lough, A. 697(285), 711
Lough, A. J. 580(210), 601, 1391(118b), 1393(153), 1440, 1441
Louis, J.-M. 1307(275), 1344
Loupy, A. 662(3, 4), 705
Louw, R. 40, 127(187), 184, 716(8), 831, 1360(163), 1367
Lovell, C. 676(118), 707
Lovilho, J. 952, 953, 990(197), 1007
Lowenstein, J. M. 412(75a), 480
Lowry, T. 7(40), 180
Loyd, K. G. 475(318), 488
Lozach, B. 1370(5), 1435
Mariam, Y. H. 93, 94, 97, 132, 133(358), 187, 383(285), 393
Marigot, E. M. de 689(231), 709
Marín, M. L. 932(96), 1005, 1079(243), 1092
Marinas, J. M. 608(13), 618(36), 656, 774(182), 835, 972(304), 1010
Marín-Hernández, J. J. 953, 960(234), 1008
Marinho, H. S. 901(286), 908
Marino, J. P. 1275(217), 1343
Marjanovic, B. 871(165), 905
Marjasin, I. 1362(210), 1368
Mark, M. 933, 937(101), 1005
Markell, C. G. 1352(66), 1364
Markides, K. E. 953, 955(208), 1007
Marklund, G. 1119(164), 1147
Marklund, S. 1119(164), 1147
Marko-Vargha, G. 953, 969(280), 974(320), 977(333, 335, 337), 1009, 1010
Markovits, Y. 1038(122a), 1090
Markovsky, L. N. 1393(161), 1417(326), 1418(338, 340, 344), 1442, 1448, 1450
Markowsky, L. N. 1417(328), 1448
Marks, V. 471(302), 488, 806, 814(254), 836
Marnet, N. 913(10), 1003
Maroni, M. 1359(151), 1366
Maros, L. 937(120), 1005
Marovatsanga, L. T. 913(14), 1003
Marques, A. 1285(233), 1343
Marquez, F. 744(72), 832, 1038(122c), 1090
Marquis, E. 535, 548(30), 597
Marr, M. C. 1348(30), 1363
Marra, A. 1403(240b), 1405(255), 1427(408d), 1432(448b), 1445, 1446, 1451, 1453
Marsden, J. E. 68(262), 185
Marsel, C. J. 397(2b), 478
Marsh, P. B. 950(189), 1007
Marshall, J. L. 349(61), 387
Marshall, P. J. 15(72), 181
Marta, G. 1083(293), 1094
Martell, A. E. 1192(78c, 78d), 1339
Martell, A. R. 1305(269), 1344
Martin, A. R. 1305(269), 1344
Martin, A. R. 1305(269), 1344
Martin, C. 1084(325, 326), 1095
Martin, C. H. 93–96(357), 187
Martin, F. 985(387), 1012
Martin, I. 1084(325), 1095
Martin, J. B. 405(43b), 479
Martin, J. L. I. 4(8), 83, 84(298), 179, 186, 311(187), 329
Martin, N. H. 551(125), 599
Martin, R. 338(14a, 14b), 386, 472(308f), 311h, 311i, 314), 474(317), 488, 642(138), 659, 773(167), 835, 890(237), 907
Martin, R. L. 4, 100(2), 102(392), 179, 188, 368, 372, 373(200), 390
Martínez, A. T. 937, 941(131), 1006
Martínez, D. 971(295), 1009, 1347, 1353(1), 1354(104, 107), 1363, 1365
Martínez, M. L. 1022(50), 1025(85b), 1028(94), 1088, 1089
Martínez, S. J. III 20, 24, 106(118), 182
Martinho Simões, J. A. 20, 23(117), 45(194), 98(375), 148(727), 179(777), 182, 184, 188, 196, 198, 229(32), 255
Martino, M. 1395(179), 1442
Martins, A. F. 933, 937(103), 1005
Martinsen, D. P. 291(68), 327
Martinson, M. M. 1086(374), 1096
Marrello, A. E. 1192(78c, 78d), 1339
Martell, A. R. 1194(85), 1339
Martrell, E. 535, 548(30), 597
Mascagni, D. 1079(242), 1092
Masci, B. 1379(53, 54c), 1380(57), 1437
Maschini, M. 976(326), 1010
Mashige, F. 953, 962(248), 1008
Mashino, T. 1209(108), 1340
Massart, D. L. 954, 970(199), 1007
Massat, A. 576(190), 600
Massacret, M. 664(37), 705
Massera, C. 1424(389b), 1450
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massey, V.</td>
<td>411(69), 480, 1119(165), 1147</td>
</tr>
<tr>
<td>Masucci, J. A.</td>
<td>314(204), 330</td>
</tr>
<tr>
<td>Mataga, N.</td>
<td>501(79), 526, 1021(41), 1088</td>
</tr>
<tr>
<td>Matarski, Z.</td>
<td>580(202), 203, 601</td>
</tr>
<tr>
<td>Mater, M. E.</td>
<td>179(782), 198</td>
</tr>
<tr>
<td>Mataveosyan, R. O.</td>
<td>301(130), 328</td>
</tr>
<tr>
<td>Mathar, W.</td>
<td>315(215), 330</td>
</tr>
<tr>
<td>Mathias, L.</td>
<td>607(4), 656</td>
</tr>
<tr>
<td>Mathiasson, L.</td>
<td>947(168), 953(168, 280), 969(280), 1006, 1009</td>
</tr>
<tr>
<td>Mathier, E.</td>
<td>35(162), 183</td>
</tr>
<tr>
<td>Mathies, R. A.</td>
<td>551(90), 598</td>
</tr>
<tr>
<td>Mathivanan, N.</td>
<td>129, 133(497), 191</td>
</tr>
<tr>
<td>Mathy, A.</td>
<td>471(304), 488, 806(262), 837</td>
</tr>
<tr>
<td>Matos, J.</td>
<td>1080(247), 1093</td>
</tr>
<tr>
<td>Matouskova, J.</td>
<td>1079(245), 1093</td>
</tr>
<tr>
<td>Matras, G.</td>
<td>1084(320), 1095</td>
</tr>
<tr>
<td>Matsubara, Y.</td>
<td>1409(279a), 1447</td>
</tr>
<tr>
<td>Matsuda, H.</td>
<td>1408(279a), 1447</td>
</tr>
<tr>
<td>Matsuda, T.</td>
<td>1391(115a), 1394(172b), 1435(464b), 1440, 1442, 1454</td>
</tr>
<tr>
<td>Matsuda, Y.</td>
<td>1425(405), 1451</td>
</tr>
<tr>
<td>Matsui, K.</td>
<td>855, 857(108), 904</td>
</tr>
<tr>
<td>Matsui, M. A. R.</td>
<td>229(32), 230(21, 30), 233(30), 242, 247, 248(83), 254 – 256</td>
</tr>
<tr>
<td>Matsui, T.</td>
<td>1419(356a), 1450</td>
</tr>
<tr>
<td>Matsui, Y.</td>
<td>551(133), 599, 1498(175), 1506</td>
</tr>
<tr>
<td>Matsukami, K.</td>
<td>413(77), 480</td>
</tr>
<tr>
<td>Matsunaga, S.</td>
<td>695(273, 274), 710, 711</td>
</tr>
<tr>
<td>Matsuno, G.</td>
<td>377(255), 392</td>
</tr>
<tr>
<td>Matsunaga, K.</td>
<td>632(86), 658</td>
</tr>
<tr>
<td>Matsunaga, S.</td>
<td>695(273, 274), 710, 711</td>
</tr>
<tr>
<td>Matsunaga, T.</td>
<td>1059(100, 102), 1030(103, 104), 1089</td>
</tr>
<tr>
<td>Matsushita, H.</td>
<td>1357(137), 1366</td>
</tr>
<tr>
<td>Matsushita, T.</td>
<td>1059(178), 1091</td>
</tr>
<tr>
<td>Matsushita, Y.</td>
<td>1419(356a), 1450</td>
</tr>
<tr>
<td>Matsushita, S.</td>
<td>409(58), 480</td>
</tr>
<tr>
<td>Matsuura, S.</td>
<td>410(68), 480</td>
</tr>
<tr>
<td>Matsuura, T.</td>
<td>1080(261), 1093, 1198, 1199, 1205(91), 1206(105), 1265(199a, 199b), 1340, 1343</td>
</tr>
<tr>
<td>Matsuura, Y.</td>
<td>1421(373), 1450</td>
</tr>
<tr>
<td>Mattle, D.</td>
<td>1391(120a), 1401(214), 1435(462a), 1440, 1444, 1454</td>
</tr>
<tr>
<td>Mattay, J.</td>
<td>320(241), 322(241, 252), 331, 1059(181, 182), 1091, 1382(71), 1419(346), 1420(359a, 361, 365a), 1438, 1450</td>
</tr>
<tr>
<td>Mathias, C.</td>
<td>300(112 – 114), 328</td>
</tr>
<tr>
<td>Mathies, P. Z.</td>
<td>1118, 1119(136, 137), 1146</td>
</tr>
<tr>
<td>Mattill, H. A.</td>
<td>889(228), 907</td>
</tr>
<tr>
<td>Mattina, J.</td>
<td>143(559), 192, 352(89), 388</td>
</tr>
<tr>
<td>Mattrel, P.</td>
<td>1348(10), 1363</td>
</tr>
<tr>
<td>Matushita, H.</td>
<td>1357(137), 1366</td>
</tr>
<tr>
<td>Mauv, M.</td>
<td>1080(259a), 1093</td>
</tr>
<tr>
<td>Mauym, M.</td>
<td>1305(270), 1344</td>
</tr>
<tr>
<td>Mavilla, L.</td>
<td>1419(348), 1429(430b), 1450, 1452</td>
</tr>
<tr>
<td>Mavre, I.</td>
<td>144(651), 194</td>
</tr>
<tr>
<td>Mayanta, A. G.</td>
<td>638(122), 658</td>
</tr>
<tr>
<td>Mayer, B.</td>
<td>992(431), 1013</td>
</tr>
<tr>
<td>Mayer, G. Y.</td>
<td>1017(8), 1087</td>
</tr>
<tr>
<td>Mayer, I.</td>
<td>69(269), 185, 369(209), 391</td>
</tr>
<tr>
<td>Mayer, J. P.</td>
<td>403(28), 479</td>
</tr>
<tr>
<td>Mayer, P. S.</td>
<td>300(123), 328</td>
</tr>
<tr>
<td>Mayer, R.</td>
<td>1109(27), 1120(168), 1144, 1147, 1290(244), 1344</td>
</tr>
<tr>
<td>Mayer, W.</td>
<td>719(19), 831</td>
</tr>
<tr>
<td>Mayr, E.</td>
<td>345(50), 387</td>
</tr>
<tr>
<td>Mazas, N.</td>
<td>985(386), 1012</td>
</tr>
<tr>
<td>Mazeliers, P.</td>
<td>1085(347), 1095</td>
</tr>
<tr>
<td>Mazur, Y.</td>
<td>340(27), 384(289), 387, 393, 1045(141), 1090, 1289(241), 1344</td>
</tr>
<tr>
<td>Mazurek, A. P.</td>
<td>367(174), 390</td>
</tr>
<tr>
<td>Mazzola, E. P.</td>
<td>358(112), 388</td>
</tr>
<tr>
<td>Mazzola, I.</td>
<td>18(87), 181</td>
</tr>
<tr>
<td>Mazzoni, V.</td>
<td>365(159), 389</td>
</tr>
<tr>
<td>Mbiya, K.</td>
<td>450(246f), 486</td>
</tr>
<tr>
<td>McAdoo, D. J.</td>
<td>300(105, 107), 328</td>
</tr>
</tbody>
</table>
McAllister, K. L. 851, 852, 887, 888(60), 903
McCullum, K. S. 424(152a, 156), 483
McCampa, F. 1297(256b), 1344
McCarn, T. D. 1383, 1421(67f), 1438
McClelland, R. A. 38, 39, 127(186), 184, 419(124a, 124b), 482, 715(6), 830
McCleave, J. D. 410(64b), 480
McCohn, S. 1495(150, 151), 1505
McComb, W. G. 668(58), 706
McCone, H. M. 136, 137(520), 191
McCord, J. D. 953, 960(229), 1008
McCormick, P. M. 410(10), 484
McCorden, J. 427(258, 259, 260b), 1344
McDonald, P. D. 1216, 1287, 1297(122b), 1340
McEneny, B. 1489(105, 107), 1504
McEvoy, S. R. 1082(278), 1094
McEwen, C. N. 291(66), 327
McGeorge, G. 367(172), 390
McGhee, E. M. 415(107), 481
McGibbons, G. A. 110(451), 190
McGillivray, G. 416(110b, 111), 482
McGlashen, M. L. 94, 105(365), 129, 133(496), 187, 191, 997(450), 1013
McGowan, J. 607(4), 656
McGregor, W. M. 1396(188), 1443
McGuickin, M. R. 830(347), 838
McGuire, M. 293(73), 327
McKendel-Petrovsky, N. O. 737(58), 832
McLindoe, M. J. 1382(73), 1438
McIl, R. A. 503(89), 526
McIver, R. T. 92(349, 351), 100(351), 101(349, 351), 187
McIver, R. T. Jr. 5(19, 22), 83(294, 297), 84(297), 180, 186, 261, 263(13), 310(182, 184, 185), 311(189), 312(192), 326, 329, 330
McKague, A. B. 1348(9), 1363
McKay, D. J. 20, 23, 139, 140(116), 182, 897(275), 908
McKee, V. 1432(448a), 1453
McKelvey, M. J. 261(11), 326
McKervey, M. A. 1387(91, 94), 1391(123), 1430(442b), 1432(448c, 448d, 449b), 1435(94), 1439, 1441, 1453
McKillop, A. 416(108, 109a, 110a, 110b, 111), 422(149), 481–483, 1227(146), 1273(206), 1312(284a, 284b), 1314(284a, 284b, 288, 289), 1315(292), 1341, 1343, 1345
McKimmon, M. S. 1484, 1485(91), 1504
McLachlan, J. A. 925(50), 1004
McLaflerty, F. J. 237(61), 256
McLafferty, F. W. 110, 121(434), 189, 260, 264(2), 299(96), 325, 327
McLaren, L. 1227(146), 1341
McLaughlin, K. A. 851(59), 903
McLean, E. J. 580(210), 601
McLuckey, S. A. 310(181), 329
McMahon, T. 83(296b), 186
McMahon, T. B. 92, 101(350), 187, 324(271, 272), 331, 332
McManus, H. J. 1123(206), 1148
McManus, M. J. 829(345), 838
McNelis, E. 1109(35), 1144, 1330(319, 320), 1346
McPartlin, M. 782(220), 836
MCPerson, G. L. 365(164), 389
Mebel, A. M. 137(524), 138(524, 525), 191
Mechan, P. R. 580(209), 601
Mecik, M. 558(149), 600
Mecke, R. 35(150), 47, 53(218), 183, 184, 375(240), 392
Medard, L. 241(78), 256
Medic-Saric, M. 929(63), 953, 967(63, 271), 1004, 1009
Meena 1407(276), 1447
Meerts, W. L. 20, 24, 106(127), 147(698), 182, 195, 581(215), 601
Meetsma, A. 359(130), 389
Meffert, A. 324(273, 274), 325(279), 332
Meggson, N. J. L. 1457(2), 1462(31, 32), 1502, 1503
Meguro, S. 1205(103), 1340
Meharg, A. A. 1362(217), 1368
Meharg, V. E. 397(2a), 478
Mehdizadeh, A. 300(116), 328
Meherle, E. L. 67(254), 110, 113(439), 185, 189
Mehner, R. 1102(45), 1106
Mehra, R. K. 1084(323), 1095
Mehta, P. G. 470(300d), 488
Meijer, G. A. 816(308), 838
Meier, G. A. 426(163), 483
Meijer, W. E. 685(195), 709
Meinland, P. 677(132), 707
Meisel, D. 1118(154), 1119(154, 156), 1126(264), 1130(326), 1131(315), 1141(154), 1147, 1149, 1150
Meissner, F. 1470(48), 1503
Mejanelle, P. 913(5), 1003
Mejuto, M. C. 971(294), 1009, 1348, 1354(17), 1363
Melamud, E. 1124(225), 1148
Melf, M. 110, 112, 121(444), 189
Melikova, S. 371(224), 377(269), 391, 392
Melikova, S. M. 144(649), 145(612, 625), 171, 173(612), 193, 194, 371, 377(230), 386(305, 306), 391, 393
Meli, M. R. 851, 854(74), 903
Melissaris, A. P. 1495(141), 1505
Mell, A. 1359(150), 1366
Mello, C. 929, 981(65), 1004
Mello, R. 1257(186), 1342
Mellors, A. 852, 856(85), 903
Melly, S. J. 925(47), 1004
Melo, T. B. 851, 852(69), 903
Meltzer, R. I. 420(138), 482
Melville, M. G. 685(198), 709
Melzi d’Erl, G. 953, 964(263), 1009, 1353(82), 1365
Melzig, M. 1025(82), 1089
Menard, H. 1361(191), 1367
Mendes, G. C. 913, 958(20), 1003
Mendez, F. 101–103(390), 188
Mendoza, J. de 1374(35), 1385(79a), 1387(90), 1392(90, 125a), 1394(90), 1395(90, 177), 1403(125a), 1406(266), 1409(287), 1427(424c), 1436, 1439, 1441, 1442, 1446, 1447, 1452
Mendoza, S. 1422(377), 1450
Menez, A. 1117(126), 1146
Menezes, M. L. 949(184), 1007
Meng, J. K. 359(131), 389
Meng, Q. J. 685(201), 709
Mennucci, B. 4, 100(2), 179, 368, 372, 373(200), 390
Mentasti, E. 1353(73, 88), 1364, 1365
Menzer, S. 761(118), 833
Meot-Net, M. 273(38), 312(195), 326, 330
Mereiter, K. 350(86), 388, 551(92), 598
Merenyi, G. 139(534), 191, 1108(24, 25), 1118(24), 1136(361, 363), 1137(363), 1138–1140(24), 1142(24, 377), 1143(24, 382), 1144, 1151, 1152
Merino, I. 451, 454(249), 486
Merk, C. 695(272), 710
Merkel, L. 1374(33a), 1436
Merkulov, A. P. 1123(201), 1148
Mermili, L. 338, 345(10), 386, 721(25, 26), 831, 1308(280), 1344
Meroni, P. 1359(151), 1366
Merriman, G. H. 811(291), 837
Merz, H. 145(674), 146(634, 635), 147(613, 614), 148(704, 705), 149(703–705), 150(704, 705)
Messeguer, A. 422(146), 483, 636(103), 658
Metcalf, T. A. 141(539), 192
Metcalf, M. 944(139), 1006
Metelista, A. V. 1024(59, 66), 1025(69), 1088
Metletis, W. 1325(31a, 311c), 1345
Metzger, J. 432(185), 484
Metzger, J. O. 305(147), 329
Metzler, O. 433(189a, 189b), 484
Meunier, B. 1212(11), 1340
Meurs, J. H. 1168(40), 1338
Meusig, R. 1417(300b), 1448
Meutermans, W. D. F. 774(190), 835
Meyer, A. S. 857, 858(133), 904
Meyer, C. D. 299(98), 328
Meyer, K. H. 247, 250(88), 256
Meyer, T. J. 1287(238), 1300(263), 1344
Meyerson, S. 268(32), 326
Meyrants, P. 110(433), 189, 263(20), 301, 302(137), 326, 328
Mezheritskii, V. V. 776(196), 778(213), 823(330), 835, 836, 838
Mezo, A. R. 1383, 1421(671), 1425(403a, 403b, 404), 1438, 1451
Mhamdi, F. 1136(356, 357), 1151
Miah, M. A. J. 786(231), 836
Mian, O. I. 1084(323), 1095
Michael, A. C. 953, 955(207), 1007
Michael, B. D. 1113(87), 1115, 1128, 1134(92), 1145
Michael, J. P. 462(273a), 487
Michaelis, L. 1118–135–135, 1146
Michalak, A. 89, 90(338), 187
Michalowsky, J. 995(441), 1013
Michalska, D. 20, 22, 23(112), 35(112), 38–38(112), 47(170), 58(170, 245), 67(245), 82(288), 182, 183, 185, 186, 235(52), 255, 372, 375(236), 384(291), 391, 393
Michel, C. 855, 856(109), 895(269), 904, 908, 1115(101), 1118(101, 143, 146, 147), 1119(101, 146, 163), 1128(279), 1130(101, 143, 147, 323), 1131(279), 1137(368), 1145–1147, 1149–1151
Michel, P. 1327(315), 1346
Michl, J. 368, 373(190, 197), 374(190), 390, 511(103), 527
Michot, L. J. 944(144), 1006
Middel, O. 1408(282), 1422(378), 1447, 1450
Middleton, E. 894(259), 907
Miderski, C. A. 1120, 1128, 1132(187), 1147
Midland, M. M. 415(98a, 98b), 481
Miere, J. P. 1356(128), 1366
Migchela, P. 565(172, 173), 566(174, 175), 600
Migchels, P. 377(265, 266), 392, 583(232), 584(235), 601
Mighels, P. 377(265, 266), 392, 583(232), 584(235), 601
Mikami, K. 107, 143(574–576, 578), 144(574–576, 598, 599, 686), 145(574), 147(574, 578, 692, 703–707), 148(704, 705), 149(703–705), 150(704, 705)
Mitchell, E. J. 586(237), 589, 590(237, 258), 592(258), 602
Mitchell, J. 454(253), 486, 735(52), 832
Mitchell, S. C. 935, 937(114), 1005
Mitchell, W. L. 677(124), 707
Mitter, J. 265, 268, 269(27), 326
Mitra, A. 620(27), 657, 749(100), 833
Mitra, A. K. 1261(193), 1342
Mitra, S. 1021(45 – 49), 1022(51), 1047(144), 1088, 1090
Mitra, S. S. 170(744), 196
Mitsky, J. 559, 586, 593(153), 600
Mitsuzuka, A. 551(85), 598
Mittal, J. P. 110, 121(423), 189, 1021(38), 1088, 1099(19), 1101(39), 1106, 1130(311, 312), 1131, 1134(314), 317), 1135(314, 350), 1142(311), 1145, 1150, 1151
Miura, H. 353(99), 388, 1380(58e), 1437
Miura, M. 664(34), 705
Miwa, C. 773(160), 834
Mixon, S. T. 69(268), 185
Miyafuji, A. 701(323), 712
Miyagi, Y. 702(334, 338), 712
Miyakawa, K. 1029(100), 1089
Miyakawa, T. 998(455, 456), 1013
Miyahra, Y. 1462(19), 1502
Miyake, M. 1062(186), 1091
Miyake, T. 414(90g), 481
Miyasaka, H. 1021(41), 1088
Miyashi, T. 1380(61b), 1438
Miyashiro, M. 1419(350a, 350b), 1450
Miyata, T. 1100(27), 1106
Miyazaki, M. 144(686), 195
Mizukami, F. 414(91), 481
Mizuno, T. 410(68), 480
Mizutani, A. 773(160), 834
Mlochowski, J. 424(152c), 483
Mlynski, V. V. 1000(468), 1013
Moane, S. 973(311), 1010
Mocharo, M. 1382(73), 1388(97), 1438, 1439
Modena, G. 413(82b, 83, 84), 414(85), 480, 481
Möder, M. 319(233, 234), 331, 1353(89), 1365
Modestov, A. 1362(210), 1368
Moehren, G. 888(226), 907
Moeller, K. D. 1177(56), 1339
Moga-Gheorghe, S. 230(31), 255
Mogek, O. 635(100), 658, 1403(229, 239), 1427(409c), 1432(229, 446), 1445, 1451, 1453
Mogensen, B. B. 339(18), 386
Moghaddam, F. M. 774(188), 835
Moghimi, M. 129, 135(489), 190, 1109, 1120–1123(38), 1144
Moghimi, M. 1124(240), 1148
Mohan, H. 110, 121(423), 189, 1101(39), 1106, 1130, 1142(311), 1150
Mohan, T. 998(455, 456), 1013
Mohanta, P. K. 420(142a), 483
Mohanty, J. 1038(121), 1090
Mohialdin-Khaffaf, S. N. 647(147, 149), 659
Mohri, S. I. 447(222c), 485
Moiseenko, A. P. 1470(66), 1503
Moldeus, P. 890(240), 907
Moldeusman, S. C. 932, 937(86), 1005
Moldrup, P. 1360(174), 1367
Molenveld, P. 1405(249a, 249b), 1445
Molinari, R. 1082(288), 1094
Molins, M. A. 1385(79a), 1406(266), 1439, 1446
Moll, G. 695(273), 710
Möller, J. 987(404), 1012
Möller, K. 997(447), 1013
Mollica, V. 101(384), 188
Molnar, A. 613, 644(23), 656
Montealegre, S. 1216(127), 1341
Monaco, K. L. 671(83), 706
Monde, K. 1394(172a), 1442
Monte, J. S. 764(137), 834
Monte, M. J. S. 234(46), 255
Montedoro, G. F. 998(452, 453), 1013
Monteiro, C. 300(110), 328
Montenay-Garestier, T. 1117(126), 1146
Montgomery, J. A. Jr. 4, 100(2), 179, 368, 372, 373(200), 390
Moody, C. J. 462(274), 463(276b), 487, 666(45, 47), 705, 761(122), 833
Moorkerjee, P. K. 101(383), 188
Moore, A. N. J. 900(282), 908
Moore, B. S. 663(22), 705
<table>
<thead>
<tr>
<th>Author Index 1581</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murty, T. S. R. 586(237), 589, 590(237, 258), 592(258), 602</td>
</tr>
<tr>
<td>Murugesan, R. 874(176, 177), 905, 906</td>
</tr>
<tr>
<td>Murugesan, V. 617(34), 656</td>
</tr>
<tr>
<td>Musgrave, W. K. R. 410(64a), 480</td>
</tr>
<tr>
<td>Musin, R. N. 383(285), 393</td>
</tr>
<tr>
<td>Muslinkin, A. A. 1419(355), 1450</td>
</tr>
<tr>
<td>Muslinkina, L. A. 1419(355), 1450</td>
</tr>
<tr>
<td>Mussmann, P. 930(75), 1004</td>
</tr>
<tr>
<td>Musso, H. 1108, 1109, 1118(18), 1144</td>
</tr>
<tr>
<td>Mustafa, A. 472(311f), 488</td>
</tr>
<tr>
<td>Mustafina, A. R. 1424(396), 1451</td>
</tr>
<tr>
<td>Mustroph, H. 252(96), 257</td>
</tr>
<tr>
<td>Muszyński, A. S. 377(256), 392</td>
</tr>
<tr>
<td>Muthukrishnan, R. 1378(52a), 1437</td>
</tr>
<tr>
<td>Muto, H. 681(164), 708, 1360(166), 1367</td>
</tr>
<tr>
<td>Muus, L. T. 1122(194), 1148</td>
</tr>
<tr>
<td>Naberfeld, G. 695(272), 710</td>
</tr>
<tr>
<td>Nabeta, T. 414(90j), 481</td>
</tr>
<tr>
<td>Naczek, M. 992(425), 1012</td>
</tr>
<tr>
<td>Nadezhdin, A. D. 1118(148), 1146</td>
</tr>
<tr>
<td>Nadkarni, D. V. 1194(82), 1339</td>
</tr>
<tr>
<td>Nagae, K. 769(149), 834</td>
</tr>
<tr>
<td>Nagahata, R. 1417(333), 1448</td>
</tr>
<tr>
<td>Nagai, N. 460(281a, 281b), 487</td>
</tr>
<tr>
<td>Nagai, S. 972(307), 1010</td>
</tr>
<tr>
<td>Nagakura, S. 47(203, 204), 188, 188</td>
</tr>
<tr>
<td>Nagai, K. 1359(150), 1366</td>
</tr>
<tr>
<td>Nagai, S. 972(307), 1010</td>
</tr>
<tr>
<td>Nagakura, S. 47(203, 204), 106(406), 143(203, 204), 144, 184, 188</td>
</tr>
<tr>
<td>Nagao, S. 1021(36), 1025(86), 1088, 1089</td>
</tr>
<tr>
<td>Nagao, S. 47(203, 204), 106(406), 143(203, 204), 144, 184, 188, 188</td>
</tr>
<tr>
<td>Nagao, S. 1021(36), 1025(86), 1088, 1089</td>
</tr>
<tr>
<td>Nagao, S. 1108, 1109, 1118(18), 1144</td>
</tr>
<tr>
<td>Nagao, S. 1108, 1109, 1118(18), 1144</td>
</tr>
<tr>
<td>Nagai, N. 460(281a, 281b), 487</td>
</tr>
<tr>
<td>Nagai, S. 972(307), 1010</td>
</tr>
<tr>
<td>Nakamura, H. 651(170), 660</td>
</tr>
<tr>
<td>Nakamura, I. 664(35), 705, 763(134), 834</td>
</tr>
<tr>
<td>Nakamura, K. 953, 970(292), 1009, 1158(17c), 1164(36), 1172(48), 1175, 1180(53), 1290(36), 1315(297), 1324(307), 1325(310b), 1338, 1345</td>
</tr>
<tr>
<td>Nakamura, M. S. 984(383), 1012</td>
</tr>
<tr>
<td>Nakamura, R. 1405(252), 1446</td>
</tr>
<tr>
<td>Nakamura, S. 691(244), 710, 986(394), 1012</td>
</tr>
<tr>
<td>Nakamura, T. 1163(33a), 1338, 1382(69b), 1438</td>
</tr>
<tr>
<td>Nakamura, Y. 913(28), 1003</td>
</tr>
<tr>
<td>Nakamori, H. 1128(173), 1342</td>
</tr>
<tr>
<td>Nakamura, H. 1419(349), 1450</td>
</tr>
<tr>
<td>Nakamori, H. 1435(464a), 1454, 1462(25), 1503</td>
</tr>
<tr>
<td>Nakamura, H. 651(170), 660</td>
</tr>
<tr>
<td>Nakamura, I. 664(35), 705, 763(134), 834</td>
</tr>
<tr>
<td>Nakamura, K. 953, 970(292), 1009, 1158(17c), 1164(36), 1172(48), 1175, 1180(53), 1290(36), 1315(297), 1324(307), 1325(310b), 1338, 1345</td>
</tr>
<tr>
<td>Nakamura, M. S. 984(383), 1012</td>
</tr>
<tr>
<td>Nakamura, R. 1405(252), 1446</td>
</tr>
<tr>
<td>Nakamura, S. 691(244), 710, 986(394), 1012</td>
</tr>
<tr>
<td>Nakamura, T. 1163(33a), 1338, 1382(69b), 1438</td>
</tr>
<tr>
<td>Nakamura, Y. 913(28), 1003</td>
</tr>
<tr>
<td>Nakamori, H. 1128(173), 1342</td>
</tr>
<tr>
<td>Nakamura, K. 1419(350a), 1450</td>
</tr>
<tr>
<td>Nakashima, A. 1356(125), 1366</td>
</tr>
<tr>
<td>Nakashima, H. 429(172), 483</td>
</tr>
<tr>
<td>Nakashima, K. 319(231), 331, 951, 953(193, 194), 1007</td>
</tr>
<tr>
<td>Nakashima, N. 129, 131(505), 191</td>
</tr>
<tr>
<td>Nakashima, T. 1362(211), 1368</td>
</tr>
<tr>
<td>Nakashima, Y. 345(49), 387</td>
</tr>
<tr>
<td>Nakashio, F. 1372(18), 1436</td>
</tr>
<tr>
<td>Nakasugi, K. 219(36), 221</td>
</tr>
<tr>
<td>Nakata, H. 275(44), 299(92), 326, 327</td>
</tr>
<tr>
<td>Nakata, M. 642(139), 659</td>
</tr>
<tr>
<td>Nakatani, H. 1419(349), 1450</td>
</tr>
<tr>
<td>Nakatani, K. 1034(112), 1089</td>
</tr>
<tr>
<td>Nakatani, M. 1079(241), 1092</td>
</tr>
<tr>
<td>Nakatsuji, H. 148, 149, 158(731), 196</td>
</tr>
<tr>
<td>Nakamura, H. 1018(24), 1087</td>
</tr>
<tr>
<td>Nakayama, K. 699(303), 711, 1204(100), 1340</td>
</tr>
<tr>
<td>Nakayama, T. 1409(289a), 1447</td>
</tr>
<tr>
<td>Nakazaki, M. 692(248), 710</td>
</tr>
<tr>
<td>Nakazawa, H. 987(405), 1012</td>
</tr>
<tr>
<td>Nakajima, K. 424(155b), 483</td>
</tr>
</tbody>
</table>
Nalewajski, R. 89, 90(338), 187
Nam, K. C. 635(102), 658, 1393(144, 148, 154, 155), 1394(155, 163, 164), 1400(208b), 1403(155, 234b), 1407(273a, 274), 1441, 1442, 1444–1446
Nam, K. S. 955(205), 1007
Namba, T. 414(91), 481
Namiki, M. 1099(11–14), 1105
Nanayakkara, A. 4, 100(2), 179, 368, 372, 373(200), 390
Nangia, A. 219(35), 221
Nanni, E. J. 1118(151), 1147
Naota, T. 1214(118), 1340
Napolitano, A. 1079(242), 1092
Napper, S. 1237(164), 1342
Narang, A. S. 1348(19), 1363
Narang, R. S. 1348(19), 1363
Narang, S. C. 606(2), 613(22), 656
Naranjo Rodríguez, I. 982(363), 1011
Narasaka, K. 460(283a), 1013
Narayana, C. 422(148), 483
Narita, N. 407(51), 479
Narri, B. 1290(244), 1344
Narumi, F. 1393(160), 1415(314a), 1442, 1448
Naruta, Y. 460(281a, 281b), 487, 1209(106), 1340
Narváez, A. 977(335), 1010
Nascimento, V. B. 978(348), 1011
Nashed, N. T. 721(22), 831
Nasim, K. T. 778(212), 831
Nassetta, I. 1106 – 1108, 1109 – 1111, 1112 – 1121
Nava, J. A. 1080(248), 1093
Nawata, H. 874(171), 905
Naylor, C. G. 1356(128), 1366
Naylor, G. G. 1348(29), 1363
Naylor, R. D. 224, 227, 228, 230, 241(2), 254
Nayyar, S. 774(185), 835
Nazarov, G. B. 204(10), 220
Neda, I. 1383(67k), 1417(329a, 329b), 1418(339), 1421(67k), 1424(395), 1438, 1448, 1450, 1451
Nedenskov, P. 432(183a), 484
Nefdt, S. 766(143), 834
Neffe, S. 953, 965(264), 1009
Negishi, E. 414(96), 481
Negri, F. 129, 133(497), 191
Neish, A. C. 13(64), 183
Nekrasova, V. V. 985(389), 1012
Nelander, B. 35(163),(166), 183
Nemethy, G. 144(593), 193
Nemoto, H. 665(40), 705
Nenitzescu, C. D. 432(184a), 484
Neri, P. 1387(92), 1388(99, 101), 1391–1394(122b), 1395(99, 178a–c, 179), 1400(209a–c, 210b), 1401(210b, 212a–d, 213), 1402(222), 1403(230), 1404, 1406(222), 1427(230, 414a), 1439, 1440, 1442, 1444, 1445, 1451
Nerini, F. 945, 953(151, 154), 1006, 1354(111), 1365
Neshev, N. 89, 90(325), 187
Nespurek, S. 748(89), 833
Nesterenko, P. N. 962(252), 1008
Nesterova, T. N. 227(13), 231(34), 254, 255
Neta, P. 845(25–27), 880(25, 26, 201), 881(25), 902, 906, 1098(4), 1099(10, 17, 19), 1101(36, 37, 41, 42), 1105, 1106, 1110(52, 55, 59), 1111(69–72, 75, 76), 1112(52, 55, 78, 80), 1115(97), 1117(118–120), 1120–1123(97), 1126, 1127(263), 1128(76, 263, 280), 1129(76), 1130(76, 280, 326), 1131(315), 1135(97), 1136(78, 263, 356, 357), 1137(70, 75, 78), 1138(75, 76, 263), 1139(76), 1140(75, 76), 1141(76), 1142(76, 280, 379), 1143(280), 1144–1146, 1149–1151
Neuer, U. 284(55), 327
Neuhauser, R. G. 30(137), 183
Neuman, B. 663(15), 705
Neumann, B. 978(346, 351), 979(352), 1011
Neumann, J. M. 132, 133, 135(516), 191
Neumann, R. 1204(99), 1340
Neuser, N. J. 147(715), 195
Neusser, H. J. 30(137), 147(713, 716), 183, 195, 992(427), 1012
Neužil, J. I. 892(254), 907
Neves, I. 631(77, 78), 657, 686(205), 709
Neville, D. 776(197, 198), 835
Neville, G. A. 380, 381(275), 392
New, D. G. 1177(56), 1339
Newman, P. A. 806(267), 837
Newmark, R. A. 342(37), 387

1582

Author Index
Neykova, G. A. 1024(65), 1088
Neykov, G. D. 360(136), 389
Ng, C. Y. 83(291), 186
Ng, J. C. F. 170(748, 749), 196, 557(142, 143), 599
Ng, L.-K. 937, 940(130), 1006
Ng, S. W. 377(263), 392, 740(67), 832
Nguyen, T. 786(231), 836
N’Guessan, T. Y. 727(37), 831
Nguyen, A. 226, 227(7), 254
Nguyen, A.-L. 971(298), 1009
Nguyen, L. T. 89(331 – 333, 336), 90(331 – 333, 336, 341), 187
Nguyen, M. T. 47, 48, 56(220), 58(244), 83(289, 293, 299), 84(299, 303), 85, 86, 88(299), 89(220, 299, 313, 317a, 317b, 326 – 340), 90(299, 326 – 341), 91(299, 345, 346), 110(448 – 450, 452), 114(460), 115(303), 119(463), 123(450), 127(470 – 472), 139(530), 143(551), 144(472), 148(732), 171(761), 177(732), 184 – 187, 189 – 192, 196, 197
Nguyen, V. 110(438), 189
Ni, Y. 929, 981(66), 1004
Nibbering, N. M. M. 93(355), 110(427, 429, 430), 187, 189, 264(21), 299(97, 99, 101), 300(21), 302(138), 326 – 328
Nicell, J. A. 1362(208), 1368
Nichel, C. 856(121), 904
Nichols, D. E. 403(28), 479, 764(137), 834
Nichols, P. J. 1372(24b), 1427(418), 1436, 1452
Nicholson, J. L. 776(195), 835
Nickelsen, M. G. 1100(33), 1106
Nicolaisen, F. M. 35, 53(155), 85(305), 183, 186
Nicolaou, K. C. 670(71), 706, 1318(303), 1345
Nicolet, P. 503(89), 526, 740(67), 832
Niemann, H. 1125(245), 1149
Nierengarten, J.-F. 1406(272), 1446
Nierlich, M. 1380(58c), 1409(299b), 1415(313), 1435(465b), 1437, 1447, 1448, 1454
Nierop, K. G. A. 1433(456a), 1453
Niessner, R. 319(232), 331, 1360(164), 1367
Nieto, P. M. 1374(35), 1385(79a), 1387, 1392, 1394(90), 1395(70, 177), 1409(287), 1436, 1439, 1442, 1447
Nieuwenhuyzen, M. 1432(448d), 1453
Niki, E. 851, 852(71), 853(90), 855(90, 113, 119), 856(90, 119, 126, 130, 863, 864(126), 882(204), 886(233), 887(218, 221), 890(232, 233, 235, 236), 892(71, 251), 893(255), 900(281), 903, 904, 906 – 908
Nikiforov, S. M. 1000(468), 1013
Nikitin, P. I. 1000(469), 1013
Nikolaeva, I. L. 1424(396), 1451
Nilsson, M. 414(94c), 481
Nimlos, M. R. 17(81), 181
Nimura, N. 954(200), 1007
Ningagawa, A. 1408(279a), 1447
Nishi, N. 174, 177(766), 197
Nishi, T. 851(57, 60), 852(60), 876(184), 887, 888(60), 903, 906, 1419(347a), 1450
Nishida, A. 450(239e), 486, 650(164), 659
Nishida, S. 1062(186), 1091
Nishiguchi, I. 410(68), 480
Nishihata, N. 1029(100), 1089
Nishikimi, M. 1119(166), 1147
Nishikori, H. 702(327), 712
Nishimoto, A. 1048(158), 1090
Nishimoto, J. 170(740), 196
Nishimura, J. 662(12), 705, 1378(47a – c), 1437
Nishimura, M. 702(332), 712, 856(128), 904, 1470(67), 1504
Nishimura, S.-I. 1495(137), 1505
Nishimura, T. 265, 272(29b), 326, 614(25), 656
Nishimura, Y. 309(172, 173), 310(174), 329, 447(222b), 485
Nishinaga, A. 1206(105), 1209(108), 1265(199a, 199b), 1340, 1343
Nishinguchi, H. 1109(31), 1144
Nishino, H. 1204(98), 1285(236), 1340, 1343
Nishino, R. 937(118), 1005
Nishio, S. 1403(231a), 1445
Nishio, Y. 1071(209b), 1092
Nishiohka, C. 844, 891(21), 902
Nishiohka, Y. 844, 891(21), 902
Nishiwaki, K. 871, 874(160), 905
Nishiya, A. 1158(19 – 21, 23, 24), 1159(24, 25b, 26, 30), 1163(31, 32), 1172(25b), 1178(21), 1227(30), 1315(31, 32), 1338
Nishiya, H. 1356(125), 1366
Nishiyama, K. 1172(50), 1178(57a, 57b), 1224(35), 1290(36), 1314(290), 1315(291, 295a,
Nishiyama, S. (continued)
295b, 296, 297), 1317(298), 1318(299, 306), 1324(307–309), 1325(310a, 310b), 1337(57a, 57b, 332), 1337–1339, 1345, 1346
Nishiyama, T. 143(546, 547), 179(546), 192, 871, 874(160), 905
Nishiyama, Y. 1204(100), 1340
Nishizawa, M. 211(19), 220
Nissen, J. 338(16), 386
Nissinen, M. 1403(229), 1427(409c), 1432(229), 1445, 1451
Nistor, C. 976(329), 1010
Nito, S. 938(128), 1006
Nitta, H. 702(344), 712
Nitta, K. 1406(270b), 1446
Nitta, M. 414(89b), 481
Nivarozhkin, L. E. 1024(66), 1088
Niwa, C. 1362(211), 1368
Niwa, H. 1080(257), 1093, 1188(74), 1339
Niwa, J. 100(379), 188
Niwa, M. 1079(240), 1092, 1172(49), 1218(129), 1338, 1341
Niwa, S.-I. 414(91), 481
Niwa, T. 953, 969(279), 1009
No, K. 634(96), 658, 1374(36a), 1392(129b, 130), 1407(277), 1441, 1447
No, K. H. 1378(52a), 1437
Nobeli, I. 535(31), 597
Noda, H. 1172(49), 1338
Noda, K. 699(298, 312), 702(326), 711, 712
Noda, S. 1214(118), 1340
Nokes, J. T. 141(540), 192
Noël, J.-P. 1212(111), 1340
Nogami, H. 695(268), 710
Nogárdi, M. 1315(292), 1445
Noguchi, I. 1159(29), 1338
Noguchi, N. 856, 863, 864(126), 893(255), 904, 907
Nogu`

Noyer, R. 692(247), 710
Noyori, R. 568(11), 656
Nozal, M. J. 953, 962(256), 1009
Nukatsuka, I. 986(394), 1012
Nummy, L. J. 827(341), 838
Nuñez, L. 234(43), 255
Nurakhmetov, N. N. 230(27), 254
Nygaard, L. 20, 22, 35(107), 182
Nyholm, L. 953, 955(208), 1007
Nyholm, R. S. 68(258), 185
Nyquist, R. A. 53(236), 185, 368–371(188), 390
Oae, S. 398(9a), 407(51), 422(131), 478, 479, 482
Oakes, J. 1209(109), 1340
Ober, L. G. 1347(8), 1352(60), 1363, 1364
Ota, T. 677(135, 136), 707, 1495(158), 1505
Otake, H. 855(117), 904
Othman, A. H. 740(67), 832
Otsubo, T. 1380(56), 1437
Otsuda, K. 414(90j), 481
Otsuki, Y. 662(11), 705
Otsuka, H. 1379(54b), 1388(103), 1394(174), 1400(207a, 207b), 1437, 1440, 1442, 1444
Otsuka, K. 414(90e, 90h), 481
Otsuka, T. 1435(464b), 1454
Otsuki, K. 1495(164–166), 1498(164), 1506
Otsuru, K. 414(90i), 481
Ott, D. E. 987(403), 1012
Otto, C. A. 447(220), 485
Otto, M. 985(387), 1012
Ouchi, K. 1489(111, 112), 1491(111), 1504
Oude Wolbers, M. P. 1427(407a), 1451
Oudjehani, K. 1072(210), 1092
Ougass, Y. 913(4), 1003
Ou, S. 663(19), 705
Ould-Mame, S. M. 1080(249), 1093
Ouvrard, C. 554, 555, 559(138), 586, 587, 589(256), 590(138), 599, 602
Ovelleiro, J. L. 1086(360), 1096
Owen, L. N. 599(11), 678
Owens, M. 1432(449b), 1453
Oyama, K. 674(101), 707
Ozawa, K. 677(134, 135), 707
Ozden, S. 944, 953(142), 1006
Ozegowski, S. 1401(214), 1444
Ozkabak, A. G. 110–112(426), 189
Ozoemen, K. 1085(356), 1096
Ozsoz, M. 978(349), 1011

Paasivirta, J. 1357(134, 135), 1363(219, 220), 1366, 1368
Pac, C. 1306(271), 1344
Pachta, J. 1462(30), 1503
Pachuta, S. J. 308(164), 329
Packer, J. E. 890(230), 907, 1111(66, 67), 1130(324), 1145, 1150
Packer, K. J. 367(170), 390
Packer, L. 840, 871(9), 887(222), 902, 907, 913(21), 1003, 1071(207), 1092
Padilla, F. N. 403(27), 497
Padmaja, S. 637(108, 111, 112), 658
Padwa, A. 449(234c), 486, 668(58), 706, 818(312, 313), 838
Paek, K. 1396(183), 1406(267), 1423(381), 1428(427, 438), 1443, 1446, 1450, 1452, 1453
Paek, K.-S. 1406(268), 1446
Paemel, C. V. 1104(54), 1106
Paeng, K.-J. 946(163), 1006
Paganga, G. 871(161), 894(161, 257), 905, 907, 957(220), 1008
Paganuzzi, D. 1396(188), 1409(288), 1443, 1447
Page, B. D. 925, 961(44), 1004
Page, D. 139(531), 191
Pagoria, P. F. 1372, 1406(26), 1436
Pai, B. R. 1063(192), 1064(193), 1091
Painter, P. 377(252), 392
PaiXO, J. A. 233(39), 255
Pajonk, G.-M. 1084(327), 1095
Paju, A. I. 589(259), 602
Pajunen, A. 1309(281), 1345
Pakarinen, J. M. H. 322(250), 331
Pakhomova, S. 1415(315), 1448
Pakkakan, T. A. 143(548), 192
Pakkane, T. K. 997(445, 446), 1013
Pal, A. 1307(276), 1344
Pal, H. 1038(121), 1090, 1130(312), 1131, 1134(314, 317), 1135(314, 350), 1150, 1151
Pal, T. 1307(276), 1344
Palacin, S. 1409(289b), 1447
Palanichamy, M. 617(34), 656
Palit, D. K. 1021(38), 1088, 1130(312), 1135(350), 1150, 1151
Palkowitz, J. A. 673(88), 706
Pallalardo, S. 1392(138), 1441
Palmacci, E. R. 642(140), 659
Palmer, G. 15(72), 181, 1119(165), 1147
Palmer, M. H. 672(252), 110, 112(443), 185, 189
Palmer, T. F. 274(40), 326
Palinsmiano, L. 1082(288, 290), 1083(293, 301, 302), 1084(320, 325, 326), 1094, 1095
Palominio, N. F. 1354(113), 1365
Palozza, P. 851, 855(73), 903
Palucki, M. 699(311), 711
Palui, G. D. 729(44), 831
Pan, Y. 377(261), 392
Panda, M. 1047(148), 1090
Pandarese, F. 216(27), 221
Pandeay, A. K. 631(76), 657
Pandey, G. 1218(130), 1219(133a, 133b), 1223(135), 1341
Pandiraju, S. 697(285), 711
Pangarkar, V. G. 1084(311), 1094
Panchick, C. Y. 378(271), 392
Panize, P. 1459(12), 1502
Panov, G. I. 18(84, 85), 181, 413(79, 80b), 480
Panster, P. 620(47), 657
Pantani, F. 933(102), 934(108), 937(102, 108), 1005
Paoli, D. De 1378(50a), 1437
Paone, D. V. 450(239g, 239h), 486
Papaconstantinou, E. 1086(361, 361), 1096
Pendery, J. J. 447(220), 485
Pearl, I. A. 462(272), 487
Pearlstein, R. 983(373), 1011
Pearson, A. J. 673(90–92, 94), 706
Pearson, D. E. 650(163), 659
Pearson, R. G. 101(382), 103(396), 188
Pearl, T. E. 932, 933(95), 1005
Pecchi, G. 1087(383), 1096
Pedersen, J. A. 913(17), 1003
Pedersen, J. B. 1122(194), 1148
Pedersen, S. U. 111(454), 190
Pedersen, T. 20, 22, 35(107), 182
Pederson, K. J. 522(98), 527
Pedley, J. B. 224, 227, 228, 230, 241(2), 254
Pedone, C. 1383(75b), 1439
Pedrazza, V. 1352(58), 1364
Pedrielli, P. 139(532), 191, 871, 872(166), 905
Pedulli, G. F. 45(190, 198, 201), 139(532), 140(198, 201), 184, 191, 855(120), 871, 872(166), 877, 878(193), 879, 880(199), 881, 884(193), 900(280), 904–906, 908
Peel, J. B. 144(688), 195
Peer, H. G. 1475, 1486(82, 83), 1504
Peers, K. E. 852(75, 82), 903
Peersoons, A. 1391(119), 1440
Peeters, D. 565(173), 566(175), 600
Pehle, W. 319(222), 330
Pei, Z. F. 620(45), 657
Peinador, C. 1422(377), 1424(402), 1429(428), 1450–1452
Pelizzetti, E. 1082(281), 1086(361, 365, 368), 1094, 1096, 1100(25, 26), 1115, 1129(285, 286), 1149, 1361(195, 196), 1367
Pellet-Rostaing, S. 1401(216b), 1417(330c), 1444, 1448
Pellinghelli, M. A. 1374, 1378(37), 1436
Pellón, R. F. 670(76), 706
Pelter, A. 1224(140), 1227(141), 142a, 142b, 1228(142a, 142b), 1242(168), 1244(169), 1308(280), 1341, 1342, 1344
Pena, P. R. J. 1362(216), 1368
Pendery, J. J. 447(220), 485
Penedo, J. C. 1025(72), 1088
Peng, C. 101(385), 188
Peng, C. Y. 4, 100(2), 179, 368, 372, 373(200), 390
Peng, L. W. 493(21, 23), 525
Peng, S.-M. 1407(273b), 1446
Peng, W. 1002(480), 1014
Penner, N. A. 962(252), 1008
Penetrick, R. A. 1482(88), 1504
Pepe, N. 309(167, 168), 329
Peperle, W. 234(48), 255
Perego, C. 413(80a), 480
Peregrudov, A. S. 357(111), 388
Peres, M. M. 1082(276), 1093
Peremans, A. 78(282), 186
Peres, J. A. 1362(207), 1368
Pérez, J. J. 450, 452(239c), 486
Pérez, M. A. 769(148), 834
Pérez, P. 1352(58), 1364
Pérez-Adelmá, J.-A. 1392, 1403(125a), 1427(424c), 1441, 1452
Pérez-Aribas, L. V. 953, 962(253, 257), 1008, 1009
Perez-Bendito, D. 929, 987(70), 1004
Pérez-Bustamante, J. A. 947(175), 953(175, 232), 960(232), 1007, 1008
Pérez-Casas, S. 546(57, 58), 598
Pérez-García, L. 761(118), 833
Pérez Lamela, C. 937, 941(132), 1006
Pérez-Lustres, J. L. 385(302), 393, 1025(70a), 1088
Pérez-Magariño, S. 961(235), 1008
Pérez Pavón, J. L. 948, 953(179–181), 1007
Pergal, M. 432(184b), 484
Peri, F. 1374(37), 1378(37, 49c), 1436, 1437
Pericás, M. A. 422(146), 483
Peringer, P. 1084(327), 1095
Perkin, M. J. 885, 887(136), 905
Perkins, M. J. 1259(189), 1342
Perl, W. 144(678), 195
Perlat, M. C. 316(221), 330
Perminova, I. R. 339(19), 386
Pernecker, T. 621(50), 657
Perosa, A. 663(18), 705
Pérot, G. 631(77), 657, 686(205), 709
Perrakyla, M. 143(548), 192
Perrée, M. 1201, 1205(92), 1340
Perri, E. 953, 961(239), 1008
Perrin, C. L. 342(34), 387
Perrin, M. 200(1), 220, 549(66), 598, 1372(19, 30), 1378(52b), 1394(173), 1415(312, 318a), 1436, 1437, 1442, 1448
Perrin, R. 200(1), 220, 229, 230(23), 254
Perry, D. H. 1315(292), 1345
Persoons, A. 1391(112), 1402, 1405(224b), 1440, 1444
Persy, G. 127(468), 190, 716(7), 831, 1035(116), 1089
Pertlik, F. 350(85), 388, 551(91), 598
Pervz, H. 633(93), 658
Pesakova, J. 990(416), 1012
Petasis, N. A. 671(85), 706
Petch, W. A. 419(123b), 482
Pete, J.-P. 1062(188–190), 1063(191), 1091
Peteanu, L. A. 551(90), 598
Petek, W. 920(35), 1003
Petek, W. A. 1099(10), 1105
Peterli, S. 229, 250(20), 254
Peters, E. M. 1080(259a), 1093
Peters, K. 1080(259a), 1093
Peters, K. S. 5(23), 180
Petersen, A. 293(74), 327
Petersen, G. A. 456(260), 487
Peterson, J. R. 438(199), 484
Author Index

Popp, P. 1353(89), 1365
Porschmann, J. 933(105), 935, 936(113), 1005
Porta, C. 380(255), 683(170), 708, 740(62), 832, 1374(37), 1378(37, 49a–c), 1436, 1437
Portalone, G. 20, 22(109), 182
Portella, C. 428(171), 483
Porter, G. 129, 131(499, 500), 191, 1127(266, 268, 271, 272), 1128, 1135(272), 1149
Porter, N. A. 852(80, 81), 884(208), 885(81, 209–211), 903, 906
Porter, Q. N. 314(205–207), 330
Porter, R. 1216(119b), 1340
Porthault, M. 953, 956(210), 1007
Porzi, G. 1255(180), 1342
Pöschl, U. 319(232), 331
Posner, G. H. 677(137), 707
Pouilloux, Y. 631(77), 1148
Poulsen, O. K. 338(17), 350(77), 1149
Poullain, D. 1212(111), 1342
Pouyséeu, L. 807(274), 1150
Poupat, C. 1292(252), 1344
Potrzebowksi, M. J. 593, 595(282), 603
Potter, A. C. 1471(74, 75, 77, 78), 1473(75), 1474(77), 1475(78), 1504
Potterat, O. 15(78), 181
Potts, K. T. 448(233), 486
Pouchan, P. 561(164), 600
Pouchat, C. 368(189), 390, 924, 925, 927(36, 37), 1003
Pouiloux, Y. 631(77), 657
Poullain, D. 1212(111), 1340
Poulsen, O. K. 338(17), 350(77), 386, 388
Poupat, C. 1292(252), 1344
Poupio, R. 1124(224), 1148
Pouysé, L. 807(274), 837, 1230(149), 1341
Powell, D. H. 325(278), 332
Powell, D. L. 555(140), 599
Powell, D. R. 1382(72b), 1438
Powell, H. R. 1409(286b), 1447
Powell, T. 1086(366), 1096
Powlsowski, J. B. 411(69), 480
Poznanski, J. 1117(130, 132), 1146
Pozzo, J.-L. 770(157), 834
Pradham, P. 1062(187), 1091
Prados, P. 1374(35), 1385(79a), 1387(90), 1392(90, 125a), 1394(90), 1395(90, 177), 1403(125a), 1406(266), 1409(287), 1427(424c), 1436, 1439, 1441, 1442, 1446, 1447, 1452
Prakash, G. K. S. 613, 645(21), 656, 671(85), 706
Prakash, O. 1224(140a), 1341
Pray, J.-P. 609(17), 656
Pramanic, A. 735(55), 832
Prasad, A. V. R. 631(84), 658
Prasad, L. 844, 847, 855, 860–862, 864, 897, 898(18), 902, 1120, 1140(184), 1147
Pratt, D. A. 45(192, 198, 200), 110, 113(440), 139(192), 140(192, 198), 184, 189, 900(280), 908
Pratt, D. W. 1111(74), 1145
Prayer, C. 493(64, 65), 511(65), 526
Prazeres, A. O. 633(91), 658
Prebenda, M. F. 1132(332), 1150
Predieri, G. 683(170), 686(208), 708, 709
Prein, M. 1080(259a), 1093
Pres, S. 1085(331), 1095
Preslog, V. 433(189a–c), 484
Premjac, G. S. 1495(157), 1505
Prêcipe, T. 1257(186), 1342
Prenzel, P. 942(136), 999(466), 1006, 1013
Prescott, S. 358(112), 388
Preston, P. N. 1076(236), 1092
Preuss, H. 69(263), 185
Price, K. R. 895(267), 908
Price, P. S. 1360(167), 1367
Price, S. L. 535(31), 597
Price, S. P. 953, 960(229), 1008
Prieto, M. J. E. 887(224), 907
Prilipko, L. 887(225), 907
Principato, G. 1394(172c), 1396(172c, 195d), 1442, 1443
Prins, L. J. 1406(262b), 1446
Prins, R. 774(175), 835
Prior, D. V. 503(89), 526, 533(22), 535(33), 536(33, 37), 537(33), 539, 540(37), 557(33, 145), 560, 564(145), 588(33, 37, 257), 590(145), 591(37), 597, 599, 602, 876–878(186), 879(196), 882(186, 196), 906
Prior, R. L. 871(162), 905
Prisbylla, M. P. 441(209), 484
Pritchard, P. H. 1351(42), 1364
Pritzkow, W. 405(48a, 48b), 479
Priyadarsini, K. I. 868(158), 905, 1129(287, 302), 1142(302), 1149, 1150
Procida, G. 930(77), 1004
Procopio, A. 953, 961(239), 1008
Procopio, D. R. 877, 889, 881, 883(192), 906
Prod, L. 761(118), 833
Prokès, I. 252(95), 257
Proko’ev, A. I. 747(83), 832, 1020(32), 1087, 1119(158), 1123(210), 1126(256–261), 1130(319), 1147–1150
Proko’eva, T. I. 747(82, 83), 832
Prosen, E. J. 226(6), 254
Pross, A. 69(253), 99, 100, 103(377), 109(413), 185, 188, 189
Protasiewicz, J. D. 1198(90), 1340
Proudfoot, J. M. 913(30), 1003
Proudfoot, K. 141(540), 192
Prout, K. 549(65), 598
Pruetz, W. A. 1100(21), 1105, 1110(56), 1117(122–128), 1118(124), 1129(56, 122), 1130(56, 122–125), 1145, 1146
Author Index 1593

Pruskil, I. 457(262), 487
Pryce, R. J. 1217(128), 1341
Pryor, W. A. 141(537), 191, 637(107, 108), 658, 851, 852(67), 886, 887(216), 894(67), 901(285), 903, 906, 908
Przeslawska, M. 144(655), 194
Ptasiewicz-Bak, H. 144(664), 194
Pu, L. 691(245), 694(264–266), 710
Puddephatt, R. J. 1417(327), 1424(327, 391), 1448, 1450
Pudsey, I. B. 913(30), 1003
Pudovik, M. A. 1424(396), 1451
Puech-Costes, E. 1080(253), 1093
Puglia, G. 626(59), 657, 683(168), 685(200), 708, 709
Puglisi, C. 953, 969, 1000(286), 1009
Puzhlys, A. 1020(33), 1087
Puig, D. 319(229), 330, 928(56), 946(158, 159), 947(171), 953(158, 159, 171, 201, 206, 262), 955(201, 206), 964(262), 977(335), 1004, 1006, 1007, 1009, 1010, 1352(69), 1364
Pujol, B. 453(244), 486
Pujol, D. 1201, 1205(92), 1340
Pulay, P. 4(6), 129, 131–133(510), 179, 191
Pulgar, R. 1352(58), 1364
Pulgarin, C. 1084(327), 1095
Pulley, S. R. 451(252), 486
Pullin, D. 129, 131(504), 191
Pullman, A. 21, 30, 38(131), 182
Pullman, B. 21, 30, 38(131), 182
Punzalan, E. R. 770(152), 834
Purcher, S. 1463(37), 1503
Purkayastha, M. L. 668(57), 706
Purkayastha, P. 1025(87), 1089
Purrrington, S. T. 647(151), 659, 687(215, 218), 709
Pyreseva, K. G. 638(122), 658
Qian, C. 695(271), 710
Qian, J. 129(477), 190
Qian, X. 365(158), 389
Qian, Z.-H. 776(206), 856
Qiao, G. G. 1476(84), 1478(85, 87), 1482(84), 1484(94), 1485(84), 1486(87), 1489, 1490(113, 114), 1504
Qin, L. 1115(109), 1129, 1132, 1134(288), 1135(109), 1146, 1149
Qin, Y. 31, 111–113(138), 132, 133, 136(511, 513), 183, 191
Quadri, S. M. 170(750), 196
Quail, J. W. 1237(164), 1342
Quain, M. L. C. 1419(357), 1450
Quaraneta, E. 686(212), 709
Quardaoui, A. 1057(172), 1091
Quattrupani, A. 783(222), 836
Quayle, P. 450(246c), 486, 783(224), 836
Quetglas, M. B. 1084(324), 1095
Quick, J. 1274(209), 1343
Quideau, S. 807(274), 837, 1230(149), 1341
Quint, R. 1082(282), 1083(295), 1094
Quint, R. M. 1082(282), 1083(295), 1094, 1100(28), 1106
Qureshi, T. H. 429, 430(179c), 483
Raanan, T. 1359, 1360(160), 1367
Rabalais, J. W. 102(393), 110, 112(445), 188, 189
Rabani, J. 1083(298), 1094
Rabinovich, I. B. 235(51), 255
Rabinovitz, M. 1124(236), 1148
Rablen, P. R. 87(308), 186
Rabold, A. 144(533, 671), 145(628), 147(646), 193, 194, 377(257), 386(304), 392, 393, 551, 594, 595(126), 599
Rabuck, A. D. 4, 100(2), 179, 368, 372, 373(200), 390
Raczynska, E. D. 324(270), 331, 586, 587(239–242, 246, 255), 602
Radeck, W. 930(75), 1004, 1353(90), 1365
Radeke, K. H. 1080(260), 1093
Radi, R. 637(110), 658
Radinov, R. 470(299), 488
Radner, F. 639(126), 659
Radojevic, S. 782(220), 836
Radom, L. 53(237), 67(253), 99, 100, 103(377), 109(413), 114(460), 185, 188–190, 368(202), 391
Radu, C. 1028(96), 1089
Rădulescu, S. 855(118), 904
Radziejewski, P. 144(671), 194, 595, 596(295), 603
Radziszewski, J. G. 129, 132, 133(498), 191, 368(197), 372(237), 373(197, 237), 390, 391
Rae, C. D. 338(16), 386
Rae, W. E. 971, 972(300), 1009
Rafecas, M. 961(243), 1008
Raffaelli, A. 953, 961(239), 1008
Rafla, F. K. 436(197), 484
Ragaiini, V. 1085(339), 1095
Rager, M.-N. 1394(175a, 175b), 1442
Ragg, E. 338, 345(10), 386, 721(25, 26), 831
Ragghavachari, K. 4, 100(2), 179, 368, 372, 373(200), 390
Raghavan, N. V. 1113, 1114(89), 1145
Raghuraman, T. S. 477(327b), 489
Ragone, P. 953, 962(246), 1008
Ragone, P. F. 945, 953(155), 1006
Rahbek-Nielsen, H. 325(277), 332
Rahim, A. 454, 456(255), 487
Rahman, A. R. H. A. 776(205), 835
Rahman, W. 778(212), 836
Rai, M. M. 35(159), 183
Reichard, C. 322(251), 331, 1391(122d),
1406(263a, 263c), 1421(372), 1422(374),
1424(387, 398, 401), 1427(407c),
1430(441a–c), 1432(122d), 1441, 1446,
1450, 1451, 1453
Reichard, J. Jr. 1424(400a–c), 1451
Reber, R. K. 1118(133), 1146
Rechow, D. A. 1360(181), 1367
Reddy, E. P. 1080(252), 1093
Reddy, G. S. 110(431), 189, 299(98), 328
Reddy, J. S. 1213(116), 1340
Reddy, K. R. 420(142a), 483
Reddy, N. K. 422(148), 483
Reddy, P. A. 1391(116), 1409(285, 290),
1440, 1447
Reddy, S. 983(379), 1011
Reddy, S. M. 1001(477), 1014
Redmond, R. W. 1047(146), 1090
Redpath, J. L. 1129(299), 1130(299, 322),
1150
Rée, M. 1495(135, 136), 1505
Reed, A. E. 4(4a, 5), 179
Reed, J. N. 415(106a), 481
Reed, M. W. 450, 452(239b), 486
Reedijk, J. 1194(84), 1339
Rees, L. 633(93), 658
Reese, C. B. 476(322), 488
Reetz, M. T. 695(272), 710
Reeves, L. W. 53(233, 234), 185
Reggiani, M. 1403, 1405(232a), 1445
Regier, K. 1169(44), 1338
Régimbal, J. M. 275, 277(42), 326
Regitz, M. 433(187b), 484
Regnouf de Vains, J.-B. 1372(28), 1394(169,
173), 1401(216b), 1405(251b), 1417(330c),
1436, 1442, 1444, 1446, 1448
Rehman, A.-U. 451(250), 456(261), 486, 487
Reich, L. 1108(4), 1144
Reichardt, P. 1120(190), 1147
Reichardt, C. 540(42), 541(43), 542(48), 597
Reichenbach, C. F. v. 6(30), 180
Reider, P. J. 6707(8), 706
Reijenga, J. C. 953, 968(277), 1009
Reimann, B. 147(714), 195
Reimers, J. R. 171(762), 174(765, 766),
177(766), 197
Reimschüssel, W. 170, 171(759), 177(759,
769), 197
Reinaud, O. 1394(175a, 175b), 1442
Reinholtz, E. 662(5), 705
Reinhoudt, D. N. 377(251), 392, 635(101),
658, 782(218), 836, 1370(4), 1383(67d),
1385(79b, 84), 1386(84), 1387(90),
1388(101), 1391(110, 112, 118a, 119,
121a), 1392(90, 125b, 137), 1393(110,
151, 156), 1394(90, 176), 1395(90, 177),
1396(118a, 121a, 182a, 182b, 189),
1401(220a), 1402(224b), 1403(125b, 234e,
238, 240b, 242), 1405(224b, 248, 249a,
249b, 253, 254a, 254b), 1406(254a, 258a,
259, 262b, 263b, 263d), 1408(282),
1409(287), 1417(4), 1421(67d, 369),
1422(378), 1423(380b), 1424(382a, 382b,
383, 393), 1427(407a, 410b), 1428(263d,
437a, 437b), 1430(440), 1432(449b, 454,
455), 1433(456a, 456b), 1435, 1438–1447,
1450, 1451, 1453
Reinolds, T. 925(49), 1004
Reis, A. M. V. M. 234(46), 255
Reischl, G. 1169(44), 1338
Reiser, G. 143(591), 193
Reisinger, A. 1478(85), 1504
Reitberger, T. 1108(25), 1136(361), 1144,
1151
Reitz, D. C. 1120(169), 1147
Reitz, N. C. 1169(42), 1338
Rella, R. 979(354), 1011
Remaud, B. 316(220), 330
Remorova, A. A. 894(261), 908
Ren, S. 871, 898(164), 905
Ren, T. 1424(402), 1429(428), 1451, 1452
Renberg, L. 1353(83), 1365
Rendon, E. T. 1084(324), 1095
Renner, A. 1495(149), 1505
Renoux, A. 405(39a), 479
Renoux, B. 444(216c–e), 485
Renshaw, R. R. 1494(124), 1505
Rensio, A. R. 1430(441b), 1453
Rentzepis, D. M. 1020(35b), 1087
Rentzepis, P. M. 1025(85a), 1089
Ren-Wang-Jiang 212(22), 221
Repinskyaya, I. B. 744(75, 76), 832
Replogle, E. S. 4, 100(2), 179, 368, 372,
373(200), 390
Reppy, M. A. 994(437), 1013
Resat, M. S. 1084(329), 1095
Rettig, W. 502(82), 526, 1025(67, 88), 1088,
1089
Reuben, J. 350(82), 388
Reunanen, M. 1360(178, 185), 1367
Reverdy, G. 977(343), 1011
Reviejo, A. J. 982(362), 1011
Revill, E. 953, 960(231), 1008
Revilla, I. 961(235), 1008
Rey, M. 403(29), 479
Reyes, P. 1087(383), 1096
Reymond, F. 544(52), 598
Reymond, J.-L. 806(263), 837
Reynolds, W. F. 358(112), 388
Reyntjens-V an Damme, D. 145, 146(117), 193
Reza, J. 944(140), 1006
Reznik, V. S. 1424(396), 1451
Rezzano, I. 953, 956(211), 976(326), 1007,
1010
Rha, S. G. 1394(167b), 1442
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhee, J.-S.</td>
<td>946(163), 1006</td>
</tr>
<tr>
<td>Rhee, K. S.</td>
<td>454(258), 487</td>
</tr>
<tr>
<td>Rheingold, A. L.</td>
<td>693(253), 710</td>
</tr>
<tr>
<td>Rho, H.-S.</td>
<td>664(32), 705</td>
</tr>
<tr>
<td>Rhoads, S. J.</td>
<td>227(15), 228(17), 229(17, 32), 230(21), 234(46), 237(60), 238, 239(67), 241(17, 60, 76), 248(15), 252(94), 254–257</td>
</tr>
<tr>
<td>Ribeiro da Silva, M. D. M. C.</td>
<td>227(15), 228, 229(17), 237(60), 241(17, 60, 76), 248(15), 252(94), 254, 256, 257</td>
</tr>
<tr>
<td>Ricci, A.</td>
<td>418(119), 482</td>
</tr>
<tr>
<td>Ricci, G.</td>
<td>1462(28), 1503</td>
</tr>
<tr>
<td>Ricciardi, P.</td>
<td>1422(375), 1450</td>
</tr>
<tr>
<td>Rice, K. C.</td>
<td>1244(170), 1342</td>
</tr>
<tr>
<td>Rice-Evans, C.</td>
<td>854(95, 96), 857, 858(96), 894(257), 904, 907</td>
</tr>
<tr>
<td>Rice-Evans, C. A.</td>
<td>871, 894(161), 905, 957(220), 968(276), 1008, 1009</td>
</tr>
<tr>
<td>Rich, D. H.</td>
<td>673(93), 706</td>
</tr>
<tr>
<td>Richard, C.</td>
<td>890(237), 907, 1054(163), 1057(171, 174), 1080(251), 1083(300), 1086(357), 1091, 1093, 1094, 1096</td>
</tr>
<tr>
<td>Richard-Viard, M.</td>
<td>144(600), 193, 230(28), 254</td>
</tr>
<tr>
<td>Riebel, P.</td>
<td>670(72), 706</td>
</tr>
<tr>
<td>Riedel, K.</td>
<td>978(351), 979(352), 1011</td>
</tr>
<tr>
<td>Riddick, J. A.</td>
<td>170(739), 196</td>
</tr>
<tr>
<td>Ridge, D. P.</td>
<td>294(80, 81), 327</td>
</tr>
<tr>
<td>Riekkola, M. L.</td>
<td>970(289), 973(312), 1009, 1010</td>
</tr>
<tr>
<td>Rienstra-Kiracofe, J. C.</td>
<td>97, 133(359), 187</td>
</tr>
<tr>
<td>Rijmen, G.</td>
<td>1077(238), 1092</td>
</tr>
<tr>
<td>Rigo, A.</td>
<td>890(234), 907</td>
</tr>
<tr>
<td>Riley, J. S.</td>
<td>288(58), 327</td>
</tr>
<tr>
<td>Riley, P. A.</td>
<td>1223(136), 1341</td>
</tr>
<tr>
<td>Rinaldi, D.</td>
<td>57(242), 181</td>
</tr>
<tr>
<td>Ricketts, K.</td>
<td>550(71), 598</td>
</tr>
<tr>
<td>Ridd, J. H.</td>
<td>638(116), 658</td>
</tr>
<tr>
<td>Riddle, J. A.</td>
<td>170(739), 196</td>
</tr>
<tr>
<td>Riddick, J. A.</td>
<td>170(739), 196</td>
</tr>
<tr>
<td>Riddick, J. A.</td>
<td>170(739), 196</td>
</tr>
<tr>
<td>Riddick, J. A.</td>
<td>170(739), 196</td>
</tr>
<tr>
<td>Riddles, P.</td>
<td>230(28), 254</td>
</tr>
<tr>
<td>Rivas, A. M.</td>
<td>368, 372, 373(200), 390</td>
</tr>
<tr>
<td>Ricks, T. A.</td>
<td>1424(386), 1450</td>
</tr>
<tr>
<td>Roberts, B. A.</td>
<td>1381(66), 1438</td>
</tr>
<tr>
<td>Roberts, E. L.</td>
<td>1025(73), 1088</td>
</tr>
<tr>
<td>Roberts, J. D.</td>
<td>293(72), 314(203), 327, 330, 506(93), 527</td>
</tr>
<tr>
<td>Roberts, J. R.</td>
<td>252(95), 257</td>
</tr>
<tr>
<td>Roberts, S. M.</td>
<td>1216(119e), 1340, 1466(46), 1503</td>
</tr>
<tr>
<td>Robey, R. L.</td>
<td>416(110a), 482</td>
</tr>
<tr>
<td>Robilliard, B.</td>
<td>864, 865(144), 905</td>
</tr>
<tr>
<td>Robin, D.</td>
<td>300(110), 328</td>
</tr>
<tr>
<td>Robin, J.-P.</td>
<td>1278(222, 223), 1286(223), 1300(264), 1343, 1344</td>
</tr>
<tr>
<td>Robinson, E. A.</td>
<td>31(143), 47, 48, 53(222), 68(143), 183, 184</td>
</tr>
<tr>
<td>Robinson, G. W.</td>
<td>493(40–43), 498(42), 525</td>
</tr>
<tr>
<td>Robinson, R.</td>
<td>402(22), 479</td>
</tr>
<tr>
<td>Robson, R.</td>
<td>1380(60a–c), 1438</td>
</tr>
<tr>
<td>Roffe, A. J.</td>
<td>448(229c), 485</td>
</tr>
<tr>
<td>Rochefort, M. P.</td>
<td>1308(280), 1344</td>
</tr>
</tbody>
</table>
Author Index 1597

Rodríguez, M. C. 953, 960(232), 1089
Rodriguez, M. A. 1025(84), 36
Rodriguez, J. G. 211(17), 187

Rokbani, R. 1391(114), 1440

Rodriguez, N. M. 1381(65a), 1091

Rodriguez-Prieto, F. 1025(70a, 72, 74 – 76), 256

Roessner, F. 774(178), 832

Roeschenthaler, G.-V. 743(70), 1147

Rogers, J. S. 1372(29), 1401(220c), 1436, 1444

Rogers, L. B. 498(71), 526

Rogers, M. L. 370(213), 391

Roggero, M. A. 947, 955(170), 1006

Rogić, M. M. 1192(80), 1007

Roginsky, V. A. 872, 872(168), 894(261), 905, 908, 914, 1131(279), 1149

Rohloff, J. C. 1163(33b), 1338

Röm, D. 383(278), 392

Rojano, B. 853(91), 904

Rojstaczer, S. 1495(135), 1505

Rokbani, R. 1391(114), 1440

Rokicki, G. 1403(229), 1427(409c, 412a, 412b), 1431(443b), 1432(229), 1445, 1451, 1453

Roland, B. 93, 103(363), 187

Roland, J. T. 653(187), 660

Rolando, C. 1136(356, 357), 1151

Román, E. 1422(377), 1424(402), 1429(428), 1450–1452

Romanowski, H. 143(569), 192

Romero, A. A. 608(13), 618(36), 656, 774(182), 835

Romero, M. de L. 101–103(390), 188

Romesberg, F. E. 511(94), 527

Rondelez, Y. 1394(175b), 1442

Ronalán, A. 1167, 1168(37), 1338

Rony, C. 974(317), 1010

Rooney, J. R. 633(93), 658

Rooney, L. W. 913(14), 1003

Roos, B. O. 20, 106(119), 182

Rop, J. S. de 365(160), 389

Röpkenack, E. von 913(3), 1003

Rosales, J. 419(135b), 482

Rosas-Romero, A. J. 853(91), 904

Rosatto, S. S. 974(319), 1010

Rosay, M. 338, 380(15), 386

Rose, A. 979(357), 1011

Rose, B. F. 1274(210a), 1343

Rose, P. A. 1237(164), 1342

Rose, P. D. 411(70b), 480

Rosenberg, C. 1347(5), 1363

Rosenberg, E. 319(232), 331

Rosenberg, L. S. 498(72b), 526

Rosenfeld, M. N. 1330, 1332(325a–c), 1346

Ross, J. A. 1000(471), 1013

Rosle, P. 1360(174), 1367

Rospenk, M. 37(181), 38(183), 143(556, 562, 563, 568), 144(568, 609, 650, 652, 653, 670), 183, 192–194, 361(143, 144), 371(219–221), 372(220, 221), 377(219, 220, 257–259), 386(304), 389, 391–393, 583(232), 593(276, 277), 594(276, 287), 595(276, 277), 601–603, 1024(64), 1088

Ross, A. B. 1098(2), 1105, 1112(79, 80), 1145

Ross, H. 1399(202), 1427(408a), 1444, 1451

Ross, J. A. 106, 148(404), 188

Rossetti, I. 18(87), 181

Rossi, A. 1017(17), 1087

Rossi, I. 57(242), 185

Rossi, M. 375(250), 392

Rossi, R. A. 1073(226), 1092

Rossi, R. H. de 365(162), 389

Rossignol, C. 551, 553(87), 598

Rossmy, G. 35(150), 47, 53(218), 183, 184

Rostkowa, H. 370, 382(211), 391

Rostkowski, A. 953, 965(264), 1009

Roth, H. D. 1042(128), 1090

Roth, W. 20, 23(114), 35, 36(169), 78(280), 106(114), 107(114, 169), 145(622, 623), 147, 148, 156, 160(702), 182, 183, 186, 193, 195, 581(221, 222), 601

Rothe, S. 979(352), 1011

Rothenberg, G. 617(33), 656

Rothenberg, S. 53(239), 92(348), 185, 187

Rotkiewicz, P. 929, 977(64), 1004
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundhill, D. M.</td>
<td>1393, 1407(143), 1435(465a), 1441, 1454</td>
</tr>
<tr>
<td>Rouquettte, H.</td>
<td>1389(105), 1440</td>
</tr>
<tr>
<td>Rourick, R.</td>
<td>305(151), 329</td>
</tr>
<tr>
<td>Roush, W. R.</td>
<td>674(109), 707</td>
</tr>
<tr>
<td>Rousseau, C.</td>
<td>890(237), 907</td>
</tr>
<tr>
<td>Rousseau, B.</td>
<td>1126(262), 1149</td>
</tr>
<tr>
<td>Roussel, C.</td>
<td>432(185), 484, 575(187), 600</td>
</tr>
<tr>
<td>Rousslang, K. W.</td>
<td>106, 148(404), 188</td>
</tr>
<tr>
<td>Roux, M. V.</td>
<td>228, 229(16), 230(25), 232(38), 237(61), 241(80), 254 – 256</td>
</tr>
<tr>
<td>Roux, M. V.</td>
<td>228, 229(16), 230(25), 232(38), 237(61), 241(80), 254 – 256</td>
</tr>
<tr>
<td>Rove, B. H.</td>
<td>944(139), 1006</td>
</tr>
<tr>
<td>Rowbotham, J. B.</td>
<td>349(67 – 70), 387</td>
</tr>
<tr>
<td>Rowlands, G. J.</td>
<td>691(246), 710</td>
</tr>
<tr>
<td>Roy, A.</td>
<td>420(142a), 483</td>
</tr>
<tr>
<td>Roy, C. C.</td>
<td>854(102), 904</td>
</tr>
<tr>
<td>Roy, R.</td>
<td>84, 89, 90(301), 186</td>
</tr>
<tr>
<td>Royer, R.</td>
<td>338, 380(15), 386</td>
</tr>
<tr>
<td>Rozas, I.</td>
<td>129(479), 190</td>
</tr>
<tr>
<td>Rozenberg, M. M.</td>
<td>227(11), 254</td>
</tr>
<tr>
<td>Rozhnov, A. M.</td>
<td>227(13), 254, 255</td>
</tr>
<tr>
<td>Rozwadowski, Z.</td>
<td>342(33), 345(48), 348(56), 353(56, 98, 101), 355(105), 359(122, 124, 126), 360(134), 361(122), 386(307), 387–389, 393, 551(128), 599, 1024(63, 64), 1088</td>
</tr>
<tr>
<td>Rulinda, J. B.</td>
<td>559(159 – 161), 568(159, 160), 600</td>
</tr>
<tr>
<td>Rumsfeld, K. W.</td>
<td>148(404), 188</td>
</tr>
<tr>
<td>Rund, M. V.</td>
<td>228, 229(16), 230(25), 232(38), 237(61), 241(80), 254 – 256</td>
</tr>
<tr>
<td>Rupke, B. H. M.</td>
<td>1391(110), 1392(137), 1393(110), 1440, 1441</td>
</tr>
<tr>
<td>Rutter, K.</td>
<td>1357(136), 1366</td>
</tr>
<tr>
<td>Rühling, I.</td>
<td>739(59), 832</td>
</tr>
<tr>
<td>Rui, X.</td>
<td>929, 987(70), 1004</td>
</tr>
<tr>
<td>Ruiz, M. A.</td>
<td>953, 956(212), 1007</td>
</tr>
<tr>
<td>Ruiz-López, M. F.</td>
<td>867, 880, 897(151), 905</td>
</tr>
<tr>
<td>Ruldina, J. B.</td>
<td>559(159 – 161), 568(159, 160), 600</td>
</tr>
<tr>
<td>Rumboldt, G.</td>
<td>1382(74), 1438</td>
</tr>
<tr>
<td>Rummakko, P.</td>
<td>1216(127), 1309(281), 1341, 1345</td>
</tr>
<tr>
<td>Rumynskaya, I. G.</td>
<td>143(556), 192</td>
</tr>
<tr>
<td>Runge, F. F.</td>
<td>6(28, 29), 181</td>
</tr>
<tr>
<td>Runov, V. K.</td>
<td>988(413), 1012</td>
</tr>
<tr>
<td>Ruppert, L.</td>
<td>18(83a), 181</td>
</tr>
<tr>
<td>Rush, J. D.</td>
<td>1109(51), 1144</td>
</tr>
<tr>
<td>Rusin, O.</td>
<td>1383, 1421(67n), 1438</td>
</tr>
<tr>
<td>Russel, D. H.</td>
<td>110(429, 430), 1011</td>
</tr>
<tr>
<td>Russel, R. A.</td>
<td>1171(46), 1338</td>
</tr>
<tr>
<td>Russell, B. S.</td>
<td>1360(172), 1367</td>
</tr>
<tr>
<td>Russell, G. A.</td>
<td>799(197), 906</td>
</tr>
<tr>
<td>Russell, I. M.</td>
<td>980(358), 1011</td>
</tr>
<tr>
<td>Russell, K. E.</td>
<td>1125(247), 1149</td>
</tr>
<tr>
<td>Russell, R. A.</td>
<td>745, 746(80, 81), 832, 1239, 1240(165a, 165b), 1342</td>
</tr>
<tr>
<td>Russo, N.</td>
<td>84(302), 89(302, 323, 325), 90(302, 322, 325, 342), 91(302, 342), 186, 187, 898(276), 908</td>
</tr>
<tr>
<td>Rutgers, M.</td>
<td>1359(159), 1367</td>
</tr>
<tr>
<td>Rutkowski, K.</td>
<td>144(649, 657), 194, 377(269), 392, 551, 557(120), 599</td>
</tr>
<tr>
<td>Rutledge, P. S.</td>
<td>416(114), 482</td>
</tr>
<tr>
<td>Ruzgas, T.</td>
<td>974(320), 976(324), 977(337), 1010</td>
</tr>
<tr>
<td>Ruzicka, L.</td>
<td>433(189b), 484</td>
</tr>
<tr>
<td>Ryabov, M. A.</td>
<td>730(484), 832</td>
</tr>
<tr>
<td>Ryan, D.</td>
<td>942(136), 953, 961(240), 999(466), 1006, 1008, 1013</td>
</tr>
<tr>
<td>Ryan, E.</td>
<td>953, 960(227), 1006</td>
</tr>
<tr>
<td>Ryan, J. D.</td>
<td>429(179b), 483</td>
</tr>
<tr>
<td>Ryan, J. M.</td>
<td>953, 960(231), 1008</td>
</tr>
<tr>
<td>Rybalkin, V. P.</td>
<td>729(44), 831</td>
</tr>
<tr>
<td>Rychnovsky, S. D.</td>
<td>1318(301b), 1345</td>
</tr>
<tr>
<td>Ryo, I.</td>
<td>702(332), 712</td>
</tr>
<tr>
<td>Ryforfs, L.-O.</td>
<td>1267(201), 1343</td>
</tr>
<tr>
<td>Ryskaliev, A.</td>
<td>230(27), 254</td>
</tr>
<tr>
<td>Ryy, E. K.</td>
<td>773(162), 834</td>
</tr>
<tr>
<td>Ryu, S.</td>
<td>1017(7), 1087</td>
</tr>
<tr>
<td>Ruyichi, O.</td>
<td>447(222c), 485</td>
</tr>
<tr>
<td>Ryzhikina, I. S.</td>
<td>740(64, 65), 832</td>
</tr>
<tr>
<td>Saà, J. M.</td>
<td>750(102, 103), 833, 1260(191, 192), 1342</td>
</tr>
<tr>
<td>Saadibou, M.</td>
<td>1370(6), 1391(120c), 1406(262a), 1425(406), 1430(6), 1435, 1440, 1446, 1451</td>
</tr>
<tr>
<td>Sauf, G. W.</td>
<td>466, 467(293), 487</td>
</tr>
</tbody>
</table>
Author Index 1601

Saxo, M. 447(221a, 222a, 222c), 448(227), 485
Sayari, A. 1213(116), 1340
Sayer, J. M. 721(22), 831
Saykally, R. J. 148, 160(721), 196
Sayre, L. M. 1194(82), 1198(90), 1339, 1340
Scaglioni, L. 338, 345(10), 386, 721(25, 26), 831
Scaino, J. C. 8(42), 180, 843, 901(283), 908, 1019(26), 1021(40, 42), 1040(125), 1087, 1088, 1090, 1109, 1110, 1112(26), 1140(372), 1144, 1151
Scaroni, A. 377(252), 392
Scarpa, M. 890(234), 907
Scarpf, W. G. 432(183b), 484
Scavarda, F. 1054(163), 1091
Scheerder, J. 1389(104), 1394(176), 1440, 1442
Scheffler, K. 1109(27, 29, 30), 1120(168, 177), 1123(207, 208), 1124(208), 1144, 1147, 1148, 1209(244), 1344
Scheiner, S. 662(5), 705
Scheler, U. 367(172), 390
Scheller, F. 976(331), 978(351), 979(352), 1010, 1011
Scheller, F. W. 977(344), 979(357), 1011
Schelton, B. W. 1388(97), 1439
Schenck, K. M. 1354, 1355(100), 1365
Scheppingen, W. van 139(333), 191
Scheringer, C. 999(461), 1013
Scherrmann, M.-C. 1405(255), 1446
Schiavello, M. 1082(288, 290), 1083(293, 301), 1084(320, 325), 1094, 1095
Schiavone, S. 1394(171), 1442
Schick, C. P. 110(418, 419), 121(419), 189, 1017(9, 10), 1087
Schieder, A. 953, 958(224), 1008
Schiefke, A. 143, 144(577), 192, 581(217), 601
Schienle, G. 1303(144), 329
Schiff, W. 1024(63), 1088
Schink, B. 15, 129, 141, 142(76), 181
Schiraldi, D. 621(49), 657
Schlag, E. W. 30(135), 143(591), 144(691), 147(718), 182, 193, 195, 196
Schlatter, C. 1360(169), 1367
Schlegel, H. B. 4, 100(2), 179, 368, 372, 373(200), 390
Schlegl, W. R. 1497, 1498(170), 1506
Schlemper, E. O. 207(14), 212(24), 220, 221
Schlessinger, R. H. 1278(225), 1343
Schlesinger, C. 999(461), 1013
Schlosser, M. 93(355), 187
Schlossler, P. 933, 937(103), 1005
Schmeling, U. 13(67), 181
Schmerling, L. 405(37a), 479
Schmidt, C. 1374(33c, 36c), 1419(358), 1420(360), 361, 363, 364, 365b, 366, 1431(443b), 1435(461), 1436, 1450, 1453
Schmidt, D. M. 469(297b), 488
Schmid, E. 753, 764(105), 833
Schmid, H. 419(135a), 460(280a, 284), 463(277), 466(291), 482, 487, 753(105), 755(106), 764(105), 823(326), 833, 838
Schmid, P. 1360(169), 1367
Schmid, S. 1100(28), 1106
Schmid, W. 436(196), 484
Schmieder, H. 144(674), 195
Schmieder, H. L. 71(272), 185
Schmidt, C. 1374(33c, 36c), 1419(358), 1420(360), 361, 363, 364, 365b, 366, 1431(443b), 1435(461), 1436, 1450, 1453
Schmidt, L. 1352(66), 1364
Schmidt, M. 144(682), 195
Schmidt, R. 226, 232(8), 254
Schmidt, R. R. 673(95), 675(113), 707, 776(203–205), 778(209), 835
Schmidt, S. 663(15), 705
Schmidt, U. 429(177, 178), 483
Schmiesing, R. 443(213), 485
Schmitt, A. 662(5), 705
Schmitt, M. 20, 24, 106(127), 143(577), 144(577), 678, 679, 147(695, 697–702), 148(695, 697, 699–702), 149(697, 699), 1503
Schmitt, M. (continued)
156(702), 160(700, 702), 182, 192, 195, 377(253), 392, 578(194), 581(214–217), 601, 992(428), 1012
Schmitt, P. 1427(416a, 416b), 1432(450), 1452, 1453
Schmitting, E. A. 673(87, 88), 706
Schmitz, J. 1378(48a, 48b), 1437
Schmoltener, A. M. 137(522), 191
Schmutzler, R. 1418(339), 1421(67k), 1424(395), 1438, 1448, 1450, 1451
Schnatter, W. F. K. 451(250), 456(261), 486, 487
Schneider, G. 1082(277), 1094
Schneider, H.-J. 365(163), 389, 1419(351), 1450
Schneider, S. 428(168), 483, 1025(82), 1089, 1136(356), 1151
Schneider, U. 365(163), 389, 1419(351), 1450
Schneider, W. F. 138(528), 191, 1104(611), 1106
Schnee, R. 129, 132, 133, 135(514), 191
Schne, R. M. 743(70), 832
Schott, H. H. 13(67), 181
Schwen, R. L. 367(178), 390
Schrader, S. 1353(89), 1365
Schram, K. H. 305(151), 329
Schreiber, H. D. 47, 48, 53(222), 184
Schreiber, V. 377(257, 269), 392
Schreiber, V. M. 143(554–556), 144(648), 192, 194, 377(258), 392
Schreuder, H. A. 412(73), 480
Schöder, D. 731(49), 832
Schroeder, G. 144(609), 145(630), 193, 194, 377(259), 392, 595, 596(298), 603
Schroeder, H. Fr. 1356(123), 1366
Schroth, W. 823(330), 838
Schubert, K. 1123(215), 1148
Schubert, M. P. 1118(133, 134), 1146
Schuchmann, H.-P. 1086(375), 1096, 1100(32), 1106, 1116(113), 1136(362), 1148, 1151
Schuchmann, M. N. 143, 144(550), 192, 1114(90), 1145
Schuetz, G. J. 1045(140), 1090
Schuler, F. 1360(169), 1367
Schuler, P. 1120(177), 1147
Schuller, W. 925, 936(51), 1004
Schulman, S. G. 78(277), 186, 492, 493(11), 498(72a, 72b), 525, 526
Schulte, K. 409(60), 480
Schulte-Frohlinde, D. 1109(46), 1115(112), 1117(116), 1124(243), 1144, 1146, 1148
Schultz, A. G. 570(300c, 300d), 472(307), 488, 816(310, 311), 838
Schultz, B. 1352(64), 1364
Schultz, G. 20, 22(109), 182
Schultz, J. 928(55), 1004
Schultz, M. 1408(279b), 1447
Schulz, M.-F. 229, 250(20), 254
Schule, P. 1120(177), 1147
Schweig, A. 1123, 1124(216), 1148
Schweig, M.-J. 1391(121a), 1396(121a, 182b), 1440, 1443
Schweingruber, M.-J. 1387(94), 1389(105), 1391(120c), 1396(187, 195b), 1435(94, 187), 1439, 1440, 1443
Schweingruber, M. 1391(120b), 1440
Schweiger, P. 1403(240d), 1432(448b), 1445, 1453
Scorrano, G. 89(310), 186
Scott, A. I. 13(62), 181, 426(166a), 429(179b–e), 430(179b–e), 181d, 181e,
Author Index 1603

483, 484, 1158, 1175(14b), 1297(256b), 1337, 1344
Scott, A. P. 368(202), 391
Scott, G. 1108(1), 1109, 1120(28), 1143, 1144
Scott, I. M. 1351(48), 1364
Scott, J. A. 310(184, 185), 329, 470(298), 488
Scott, J. L. 1381(66), 1438
Scott, M. J. 1348(20), 1363
Scott, R. 47, 143(207–209), 170(209), 184
Scott, R. M. 592(268), 593, 595(278), 602
Scott, S. W. 1274(210a), 1275(216), 1343
Scribner, A. W. 1070(200), 1091
Scully, P. A. 1408(281), 1447
Scuseria, G. E. 4, 100(2), 179, 368, 372, 373(200), 390
Seabra, R. M. 913(18, 20), 958(20), 1003
Sealy, R. C. 1120(178, 182, 183, 188), 1124(232), 1147, 1148
Sears, L. J. 315, 316(217), 330
Seaton, A. 1233(150), 1341
Sebastian, R. 349(73), 387
Sebastiano, R. 1259(188), 1342
Secchi, A. 1391(118a), 1396(118a, 188), 1403, 1405(235), 1409(288), 1427(409a, 415), 1430(439), 1432(409a), 1435(467), 1440, 1443, 1445, 1447, 1451–1454
Sedergran, T. C. 665(41), 705
See, K. A. 1393(147, 152a), 1394(147, 165), 1441, 1442
Seebach, D. 105(400), 188
Seeberger, P. H. 642(140), 659
Seeboth, H. 401(21), 479
Seely, J. C. 1348(30), 1363
Sega, M. 1086(365), 1096
Segal, J. A. 673(89), 706
Seguin, J.-P. 350(83), 388
Segura, M. 1435(462b), 1454
Sehested, J. 138(528), 191, 1104(61), 1106
Sehested, K. 1115(93), 1145
Sehil, T. 1084(319), 1095
Seifarth, K. 319(222), 330, 1408(279b), 1447
Seiji, Y. 419(123a), 482
Seiler, J. P. 1359(153), 1366
Seita, J. 350(80), 388
Seithel, D. S. 1220(134), 1341
Seki, S. 232(37), 255
Seki, Y. 1372(14), 1436
Sekiguchi, O. 291(64), 300(125), 327, 328
Sekiguchi, S. 551, 554(110), 599
Sekihachi, J.-I. 447(222c, 222e), 485
Sekiya, A. 219(34), 221
Sekyra, M. 933, 937, 953(99), 1005
Seleznev, V. N. 1076(235), 1092
Selling, B. K. 524(102), 527
Sellens, J. R. 354(103), 388
Selles, E. 985(388), 1012
Selli, E. 1085(339), 1095
Sellstrom, U. 1351(47), 1364
Selva, A. 757(109), 833
Selva, M. 663(18), 705
Selvaggini, R. 998(452, 453), 1013
Selvakumar, N. 1264(196), 1343
Selvam, P. 616(28, 29), 620(43, 44), 656, 657, 1213(115), 1340
Selwyn, M. J. 1359(158), 1367
Selzer, S. 1071(207), 1092
Semenski, V. 748(87, 88), 833
Semrati, R. 619(40), 656
Sen, A. 994(438), 1013
Sen, C. K. 840, 911(10), 902
Sen, S. 451(252), 486
Sénéque, O. 1394(175a), 1442
Senet, J.-P. 663(16), 705
Sengupta, D. 89, 90(334), 187
Senlis, G. 1415(312), 1448
Senney, G. 663(16), 705
Seno, M. 1495, 1498(159), 1505
Seok, W. K. 1287(238), 1300(263), 1344
Sepulveda-Escribano, A. 1489, 1490(114), 1504
Sequin, J. P. 364(154), 389
Sera, A. 448(232a), 486
Serbinova, E. A. 887(222, 225), 907
Sergeevo, E. 640(132), 659
Seri, C. 1383(75e), 1422(75e, 375), 1439, 1450
Serna, M. L. 953(209, 256), 955(209), 962(256), 1007, 1009
Serpone, N. 1082(281), 1084(313, 318), 1086(369), 1094–1096, 1100(25, 26), 1105, 1129(284–286), 1149
Serpone, N. R. 1361(195, 196), 1367
Serra, A. C. 233(39), 255
Serra, F. 1086(367), 1096
Serrano, A. 728(40), 831
Serratos, J. A. 913(2), 1002
Serry, M. M. 913, 920(27), 1003, 1355(116), 1365
Servili, M. 998(452, 453), 1013
Servos, M. R. 1351(48), 1364
Seshadri, T. R. 748(94), 833
Sessler, J. L. 1020(34), 1087
Sessler, J. L. 1430(442a, 442b), 1453
Sestili, P. 895(265), 908
Sethna, S. 409(61), 480, 680(149), 708
Sethna, S. M. 408(54c), 480
Seto, S. 1470(68), 1504
Sevilla, C. L. 1104(59), 1106
Sevilla, M. D. 1104(54, 59), 1106
Sevin, A. 71, 75(274), 89(315), 185, 186
Sexton, K. G. 937(119), 1005
Seya, K. 1080(299d), 1093
Seybold, P. G. 101–103(391), 188
Sgaragli, G. P. 953, 968(275), 1009
Sha, Y. A. 608(7), 656
Shabarov, Yu. S. 763(133), 834
Shackelford, S. A. 627(63), 657
Shimizu, S. 1403, 1406(232b), 1445
Shimizu, T. 1206(105), 1265(199a, 199b), 1340, 1343
Shimizu, Y. 174, 177(766), 197
Shimoto, K. 913(28), 1003
Shin, E.-J. 178(774), 197
Shin, G. C. 454(258), 487
Shin, H. 673(91), 706
Shin, J. M. 1392(130), 1394(163), 1441, 1442
Shin, S. C. 454(258), 487
Shin, S. Y. 773(162), 834
Shine, H. J. 419(121, 128a, 134d), 470(300a), 472(308c), 482, 488
Shinkai, S. 320(240), 331, 419(123a), 482, 633(94), 634(95), 658, 744(77), 832, 1372(10b, 18), 1379(54b, 54d, 54e), 1385(81), 1388(103), 1391(111, 115a, 115b, 117, 122c), 1392(124, 139), 1393(159), 1394(111, 167a, 172b, 174), 1396(186b), 1400(207a, 207b, 201a), 1401(210a, 217, 218), 1402(224a), 1403(231a), 1404(246a, 246b), 1405(247, 252), 1413(306), 1419(347a, 354), 1427(407b, 408b, 419a, 424b), 1432(122c, 242b), 1435(464b, 468), 1435–1437, 1439–1447, 1450–1452, 1454
Shimmyouzu, T. 353(99), 388, 1380(58a, 58b, 58e), 1437
Shinoda, H. 92(347), 187
Shinozuka, N. 953, 962(248), 1008
Shirra, K. 360(137), 389
Shintani, F. 636(105), 658
Shiota, Y. 18(86), 181
Shiozawa, M. 689(233), 710
Shiozawa, T. 1357(137), 1366
Shipp, D. A. 1459(9, 15), 1463(9), 1502
Shiraiishi, M. 624(56), 657, 1489(109, 115), 1495(132, 133), 1504, 1505
Shiraiishi, S. 1201, 1205(92), 1340
Shirakawa, S. 1403, 1406(232b), 1445
Shintani, F. 636(105), 658
Shun, O. J. 1427(423b), 1452
Shono, T. 360(137), 389, 1156, 1158, 1175(2, 9), 1337
Shoolery, J. N. 547(60), 598
Shorshnev, S. V. 776(200), 835
Shorthill, B. J. 1382(72a, 72b), 1438
Shoup, T. M. 415(99), 100, 481
Shoute, L. C. T. 1099(19), 1101(41, 42), 1105, 1106, 1135, 1136(353), 1151
Shipgun, O. A. 962(252), 987(408), 1008, 1012
Shreve, N. R. 397(2b), 478
Shroeder, G. 593, 595(277), 602
Shteingarts, V. D. 1123(201), 1148
Shu, C. 1393(152b), 1441
Shu, C.-M. 1391–1393(122a), 1394(168, 170a), 1407(170a, 273b), 1440, 1442, 1446
Shuely, W. J. 503(89), 526
Shuker, S. B. 1406(257, 260), 1446
Shukla, D. 110, 111, 113, 114(425), 189, 492, 493(16), 525, 1019(27a), 1087, 1134(344), 1151
Shuler, R. H. 1103(49), 1106
Shulgin, A. T. 554, 555(136), 599, 1335(330), 1346
Shulz, R. A. 557, 560, 564, 590(145), 599
Shur, L. A. 1362(218), 1368
Shurukhina, A. 377(269), 392
Shurvell, H. F. 170(747–750), 196, 557(142–144), 599
Shutie, W. M. 290(62), 327
Shutz, M. 581(219), 601
Shyu, S.-F. 378(270), 392
Siahaan, T. J. 677(139), 707
Sibi, M. P. 782(215), 836
Sicuri, A. R. 1396(186a), 1427(410a), 1443, 1451
Siddiq, M. 649(157), 659
Sidhu, R. S. 673(96), 707
Sidorov, V. 1403(241), 1445
Sie, E.-R. H. B. 666(47), 705
Siebert, F. 1117(126), 1146
Siebrand, W. 129, 133(497), 179(779), 191, 198, 371(222), 377(222, 254), 391, 392
Siek, L. W. 312(195), 530
Siedentop, T. 1417(329a), 1448
Siegbehn, P. E. M. 45(196), 184
Siegel, G. G. 145, 146(611), 193, 569(177), 600
Siegel, J. S. 1413(303), 1447
Sieg, R. 949, 953(186), 1007
Siegrist, J. 948, 953(176), 1007
Sieler, J. 6(26), 180
Sienkiewicz, K. 406(49a, 49b), 479
Sienko, G. A. 1482(88), 1504
Sierra, M. G. 367(172), 390
Siglow, K. 30(137), 147(716), 183, 195
Sih, C. J. 1224(137, 138), 1341
Silcoff, E. R. 691(237), 710
Silgower, I. 319(229), 330, 947(171), 953(171, 206), 955(206), 1006, 1007
Silicia, E. 89(323, 325), 90(323, 325, 342), 91(342), 187
Silva, B. M. 913, 958(20), 1003
Silva, J. 853(91), 904
Silva, L. F. Jr. 1312, 1315(285), 1345
Silva, M. 929, 987(70), 1004
Silva, M. C. M. 953, 960(233), 1008
Silva, M. I. F. 360(138), 389
Silva, M. R. 233(39), 255
Silveira, C. G. 1100(34), 1106
Silver, B. L. 1124(220, 221, 224, 225), 1148
Silver, H. B. 460(280b), 487
Silver, J. H. 92, 101(349), 187
Silvers, J. H. 312(192), 330
Silvestro, G. 236(55), 255
Silvestro, T. 100(380), 188
Silvi, B. 47, 48, 56(220), 69(264–266), 70(265), 71, 73(274), 75(275), 78(276), 89(220), 315, 316, 317b, 90(316), 148(266), 184–186
Simal Lozano, J. 937, 941(132), 1006
Simard, M. 551, 553(82), 598
Simchen, G. 783(225), 836
Simone, A. M. 953, 955(207), 1007
Simic, M. 1135(345), 1151
Simic, M. G. 129(486), 190, 868(156), 871(163, 165), 874(170), 897(274), 898(163), 899(170), 905, 908, 1100(22, 23), 1105, 1108(9), 1139(369, 370), 1142(370), 1144, 1151
Simkin, B. Y. 371(217), 391
Simko, P. 947(174), 1006
Simmonds, M. S. J. 913(25), 1003
Simon, J. 671(85), 706
Simonato, J.-P. 677(132), 707
Simonelli, F. 1285(233), 1343
Simonian, A. L. 979(353), 1011
Simonov, Y. A. 1393(161), 1442
Simonov, Yu. A. 1417(328), 1448
Simonyi, M. 179(782), 199, 369(209), 391
Simova, E. 470(299), 488
Simova, S. 470(299), 488
Simperler, A. 378, 379(272), 383(284), 392, 393, 551(81, 123), 553(81), 557(123), 598, 599
Sims, P. 409(62a, 63b), 480, 801(244), 836
Simsiman, G. V. 1359(156), 1366
Simulin, Y. N. 227(11), 254
Sinder, B. B. 438(198), 484
Sindo, M. 447(221a), 485
Sindona, G. 953, 961(239), 1008
Singdren, J. 170(741), 196
Singer, L. S. 1124(237), 1148
Singer, P. C. 1360(181), 1367
Singer, R. A. 702(339–341), 712
Singh, A. K. 477(327a, 327b), 489, 1021(38), 1088
Singh, A. P. 619(38), 631(76), 645(145), 656, 657, 659
Singh, G. P. 420(141), 483
Singh, J. 421(130), 482
Singh, L. W. 434(191), 484
Singh, N. N. 412(76), 480
Singh, P. 232(36), 255, 421(130), 482
Singh, R. K. 441(205, 208), 484
Singh, S. 547, 548(59), 598, 687(221), 709, 856(132), 904
Singleton, V. L. 990(419), 1000(471), 1001(473), 1012–1014, 1108(13), 1144
Sinha, S. 1019(25), 1087
Sinhababu, A. K. 415(107), 481
Sinko, G. C. 238–240(66), 256
Sinn, E. 691(240), 710
Sinou, D. 664(37, 39), 705
Sinwel, F. 1325(311b), 1345
Sio, G. S. 19(100), 182
Siren, H. 973(312), 1010
Sisido, K. 1427(419a), 1452
Sitkoff, D. 5(12), 179
Sitkowski, J. 353(101), 359(122, 123), 361(122), 388, 389
Siukolan, L. M. 336(6), 386
Siuzdak, G. 322(251), 331
Sivasubramanian, S. 459(270), 487
Sjöberg, B.-M. 1108(17), 1144
Sjödin, M. 865(145), 905
Skandaerup, P. R. 675(116), 707
Skals, K. 1360(174), 1367
Skamla, J. 303, 305(146), 329
Skarzynski, J. 998(458), 1013
Skattebol, L. 626(60), 657
Skelton, B. W. 1382(73), 1431(304, 305), 1438, 1447
Skibsted, L. H. 871, 872(166), 905
Skibsted, U. 338(16), 386
Skingle, D. 429(179b), 430(179b, 181d), 483, 484
Skinner, W. A. 845(34, 35), 902
Skopec, S. 978(345), 1011
Skowronek, K. 143(572), 192, 335, 363(1), 386
Skowronska-Ptasinska, M. 382(218), 836
Skupinski, W. 632(88), 658
Skalski, M. 1431(443b), 1453
Slater, T. F. 141(540), 192, 890(230), 907, 1111(67), 1130(324), 1145, 1150
Slavinskaya, R. A. 78(279), 186
Author Index

Solomon, D. H. (continued)
1490(113, 114), 1492(121),
1500(177–179), 1502–1506
Solomon, K. R. 1351(48), 1364
Solomon, M. E. 1318(303), 1345
Solovskaya, N. A. 1030(105), 1089
Solov’yov, A. V. 1417(328), 1448
Soloway, A. H. 424(157a), 483
Soltani, H. 432(185), 484
Somathanan, R. 806(264), 837
Somassari, E. S. R. 1100(34), 1106
Somlai, L. 607(4), 656
Sommer, J. 613, 645(21), 656
Sommerdijk, N. A. J. M. 1000(469), 1013
Sonar, S. M. 477(327a), 489
Soncini, P. 683(184), 708, 1424(397b), 1451
Sone, T. 419(123a), 482, 633(94), 658,
1022(54, 55), 1088, 1374(31a, 31b),
1380(58g, 59, 63), 1436–1438
Song, L.-D. 1234(153a), 1237(161a), 1341, 1342
Song, W. 171(762), 197
Song, W.-L. 987(401), 1012
Song, Z. J. 670(78), 706
Sonnenberg, F. M. 460(282), 487
Sonnenschein, C. 925(48), 1004, 1349(33),
1352(58), 1360(33), 1363, 1364
Sonntag, C. von 143, 144(550), 192,
1086(375), 1096, 1100(32), 1106,
1114(90), 1116(113), 1124(243), 1129,
1134(289), 1136(360, 362), 1145, 1146,
1148, 1149, 1151
Sonoyama, J. 1192(75b), 1339
Sontag, G. 953, 961(244), 1008
Sopher, D. W. 1168(40), 1338
Soria, J. 1083(296), 1094
Sorokin, A. 1212(111), 1340
Sorrell, T. N. 1378(50b), 1423(380a),
1431(50b), 1437, 1450
Sosnovsky, G. 414(92), 481
Sosnowski, A. 1110(53), 1112(53, 77), 1145
Soto, A. M. 925(48), 1004, 1352(58),
1360(172), 1364, 1367
Soto, A. M. H. 1349, 1360(33), 1363
Soukhomlinov, B. P. 987(407), 1012
Souley, B. 1372(24a), 1436
Soundararajan, N. 665(41), 705
Souquet, J. M. 949(183), 1007
Sousa, M. H. F. A. 229(32), 255
Sousa Lopes, M. S. 170(743), 196
Southwell-Keely, P. T. 880(200), 906
Sowmya, S. 675(115), 707
Sozzi, G. 300(122), 328
Spacek, W. 1081(269), 1093
Spadoni, M. 699(307), 711
Spagnol, M. 617(35), 656
Spandet-Larsen, J. 368, 373(196), 390
Spange, S. 542(48), 597
Spangenberg, D. 145(622, 623), 147, 148(697,
702), 149(697), 156, 160(702), 193, 195,
581(216, 221, 222), 601, 992(428), 1012
Spanget-Larsen, J. 129, 132, 133(498), 191,
368(199, 204), 371(204), 373(238),
380(274), 381, 382(199), 383(238, 282),
384(238), 390–393
Sparapani, C. 274(41), 307(155), 326, 329,
1104(60), 1106
Spatz, M. 874(174), 905
Speers, L. 425(158), 483
Speirs, M. 67(252), 110, 112(443), 185, 189
Spek, A. L. 93(364), 187, 1390(106),
1405(249b, 254b), 1422(378), 1424(383),
1440, 1445, 1446, 1450
Spencer, D. J. E. 1404(245), 1445
Spencer, J. N. 47, 48, 53(222), 184
Spengler, B. 323(262), 331
Spenser, N. 761(117), 833
Spera, S. 1386(86a, 86b), 1422(379),
1424(392, 393), 1439, 1450
Speranza, M. 274(41), 307(155, 156),
309(167, 168), 326, 329, 1104(60), 1106
Spikes, J. D. 15(73), 181
Spinelli, D. 301(135, 136), 328
Spinks, J. W. T. 1098(1), 1105
Spirina, S. N. 748(90), 833
Špirko, V. 144(691), 195
Spiro, T. G. 94, 105(365), 129, 133(496), 187,
191, 997(450), 1013
Spivack, J. D. 1495(147), 1505
Spoettl, R. 1118, 1130(143), 1146
Spohn, U. 979(355), 1011
Spoliti, M. 375(241), 392
Spoor, P. 677(125), 707
Sprecher, M. 806, 814(254), 836
Sprecher, M. 471(302), 488
Sprengling, G. R. 1462(29), 1503
Springer, J. P. 1159, 1207(27), 1338
Springs, S. L. 1020(34), 1087
Sprous, D. 5(13), 179
Spyroudis, S. P. 1075(232a–c, 233), 1092
Squadrito, G. L. 1037(107, 108), 658
Squire, R. H. 419(134c), 482
Sraidí, K. 531, 532(18), 540(40, 41), 541,
542(41), 547(18), 559, 572(157), 575(187),
586, 587, 589(18), 597, 600
Sridar, V. 774(184), 835
Srinivas, R. 293(77), 294(78), 327
Srinivasa, R. 1074(228, 229), 1092
Srivastava, R. G. 1283(232), 1343
Sroog, C. E. 1494(128), 1503
Stack, T. D. P. 1196(88), 1012
Stadelhofer, J. W. 19(95), 1340
Staeger, M. A. 450(235), 1341
Stadhoven, J. W. 19(95), 182
Staden, J. F. van 986(393), 1012
Stadler, R. 1216(124), 1341
Staeger, M. A. 450(235), 486
Stone, L. 891(241), 907
Stone, T. J. 129, 135(488), 190, 1109(36, 37),
1120(36, 37, 171, 172), 1124(226, 227),
1144, 1147, 1148
Storer, J. W. 57(242), 185
Storey, K. B. 854(97), 904
Stork, K. C. 735, 748(51),
832
Storz hoch, N. M. 891(243),
907
Stottmeister, U. 976(327), 1010
Stout, T. J. 1466(45),
1503
Stoytchev, Ts. S. 887(225),
907
St. Pierre, M. J. 1021(43, 44),
1088
Straccia, A. M. 138(528),
191, 1104(61),
1106
Strachan, E. 129, 131(500),
191,
1127(271),
1149
Strachan, M. G. 314(205–207),
330
Stradins, J. 1354(112),
1365
Strain, M. C. 4, 100(2),
179, 368, 372,
373(200),
390
Stranadko, T. N. 962(252),
1008
Strangeland, L. J. 558(147),
600
Strasburg, G. M. 895(264),
908
Strashnikova, N. 493, 506, 509, 512–514, 520, 521(51),
526
Stratmann, R. E. 4, 100(2),
179, 368, 372,
373(200),
390
Straub, T. 1420(365b),
1450
Strauss, C. R. 762(127),
834
Streffer, K. 977(344),
1011
Strehlitz, B. 976(327),
1010
Strein, T. G. 951, 953(191),
1007
Streitwiesser, A. Jr. 261(11),
326
Stremple, P. 935, 937(111),
1005
Strickland, T. 886, 887(216),
906
Strigun, L. M. 1118, 1119(140),
1146
Struchkov, Y. T. 432(186), 484, 1290,
1292(247), 1344
Struchkov, Yu. T. 200(7), 220, 824(331), 838
Struck, O. 1391, 1396(118a), 1405(253, 254b),
1427(410b),
1440, 1446, 1451
Struik, H. 1396(182a),
1443
Strukul, G. 701(318), 712
Strupat, K. 305(147),
329
Stubbe, J. 129(481),
190
Stubbe, J. A. 1108, 1117, 1200(14),
1144
Studer, S. H. 1360(167),
1367
Su, Y. 975(321), 1010
Suammons, R. E. 1278(221), 1343
Suarna, C. 880(200), 906
Suau, R. 477(325), 489
Subbarao, K. V. 1136(359),
1151
Subba Rao, Y. V. 680(152), 708
Subotkowski, W. 419(134d),
482
Subra, R. 132, 133, 136(518),
191, 1127(267),
1149
Subrahmanyam, M. 630(70), 631(73), 657
Subramanian, R. 682(167), 708
Subramanian, R. S. 663(23, 26),
705
Subramanian, S. 530(15), 597, 620(42),
749(100), 833
Subramanyam, M. 680(152), 708
Suckling, C. J. 633(93),
658
Sudalai, A. 616(27), 656, 1202, 1205(94),
1340
Sudha, M. S. 301(132–134), 328
Sueda, T. 1233(151a),
1343
Sueishi, Y. 992(432),
1013
Sugawara, T. 632(86), 658, 686(209, 214), 709
Sugawa, Y. 1380(61a), 1438
Sugawara, A. 1415(319),
1448
Sugawara, S. 1489(108, 110), 1491(110), 1504
Sugie, S. 1361(187),
1367
Sugita, J. 1302(267a, 267b, 268), 1344
Sugitani, Y. 662(12), 705
Sugiura, K. 219(36), 221
Sugiura, N. 748(87, 88), 833
Suguna, H. 1063(192), 1064(193), 1091
Suh, Y. 1423(381), 1450
Sujatha, E. S. 628(64), 657
Sujeeth, P. K. 1392(132),
1401(220c), 1441, 1444
Suksamrarn, A. 1297(258),
1344
Sukumar, N. 82(283), 186
Sulek, W. 558(149), 600
Sullivan, P. D. 1123, 1124(213),
1126(262),
1148, 1149
Sul’timova, N. B. 1016(3),
1087
Sumarso, M. 880(200),
906
Sumelius, S. 1290(250),
1344
Sumi, S. 662(6), 705
Summanen, D. 953, 968(273),
1009
Summanen, J. 973(312),
1010
Sumpter, J. P. 925(49, 53), 1004, 1349, 1360(34),
1363
Sun, G. 925(47), 1004
Sun, H. 365(158), 389, 1082(273),
1093
Sun, J. J. 1352(66),
1364
Sun, Q. 1115(111), 1129(290), 1132,
1133(335), 1134(290),
1139, 1142,
1143(371), 1146, 1150, 1151
Sun, Y.-M. 982(372),
1011
Sund, B. C. 668(55), 706
Sund, R. B. 856(123), 904
Sundaram, K. M. S. 948, 953(182), 1007
Sundaresan, M. 237(62), 256
Sundhöm, E. G. 336(3), 386
Sundius, T. 20, 22, 23, 35, 36, 38(111), 182, 368, 370–375(198), 390
Sunesen, L. 127(469), 190, 718(17), 831
Sung, K. S. 312(193), 330
Sunjic, V. 1470(50, 52), 1503
Sur, A. 143(583), 193
Surduran, E. 662(9), 705
Surduran, V. 662(9), 705
Suren, J. 1457(4), 1502
Surpateanu, G. 992(433), 1013
Suschik, N. N. 1362(218), 1368
Susalov, S. G. 985(389), 1012
Sussman, S. 408(52b), 479
Sußmuth, W. 925, 936(51), 1004
Suzuki, E. 413(78a), 480
Suter, H. U. 93, 94, 105, 132(353), 187
Sutherland, I. O. 806(264), 837
Sutton, K. H. 913(11, 12), 1003
Suyama, K. 1158(17c), 1180(66), 1338, 1339
Suzdak, K. F. 823(327), 838
Suzukamo, G. 1335(331), 1346
Suzuki, H. 636(105), 658
Suzuki, I. 134(659), 193
Suzuki, J. 1071(209a, 209b), 1092
Suzuki, K. 447(223), 485, 641(137), 659, 674(99), 679(141–143), 680(145), 699(301), 707, 708, 711, 776(201, 202), 835
Suzuki, M. 770(158), 773(158, 159), 834, 1029(101), 1089, 1315(293), 1330(316, 317), 1345, 1346
Suzuki, S. 47, 143(205), 144(594), 184, 193, 493, 503, 519, 520(34), 525, 1071(209a, 209b), 1092
Suzuki, T. 143, 147(580), 192, 669(63), 695(273, 279), 706, 710, 711, 913(29), 1003, 1315(296b, 296, 297), 1317(298), 1318(299), 1345, 1380(62), 1392(139), 1405(247), 1438, 1441, 1445
Suzuki, Y. 1318(306), 1324(308), 1345, 1379(54d), 1400(207b), 1437, 1444, 1495(137), 1505
Svobodova, D. 986(400), 1012
Swager, T. M. 1374(42b), 1396(191a, 191b, 193), 1436, 1443
Swain, C. J. 441(206), 484
Swaim, K. 1348(19), 1363
Swanson, E. G. 451(252), 486
Swanson, S. E. 1352(60), 1364
Swarts, F. 237, 238(65), 256
Swenton, J. S. 1170(45), 1171(47), 1180, 1183, 1186(62), 1227(147), 1228, 1234(45), 1240(167), 1338, 1339, 1341, 1342
Swentoff, S. 1175(54a, 54b), 1227(54a), 1338, 1339
Swetlichnyi, V. A. 1017(8), 1087
Swientoslawski, W. 227, 248, 249(14), 251(14, 91), 252(14, 94), 253(91), 254, 257
Syage, J. A. 143(589), 147(719), 193, 196, 296(87), 298(88), 327, 493(23, 30), 525
Syamala, M. S. 477(324a), 488
Sykes, B. D. 346, 365(52), 387
Sykora, J. 1082(270–272), 1093, 1415(317), 1448
Symonds, M. 859(137), 905
Symons, M. C. R. 1103(52, 53), 1104(55), 1105
Syper, L. 422(147a), 424(152c), 483, 608(12, 656
Syrrjänen, K. 1216(126a, 126b), 1341
Sytnyk, W. 1124(229), 1148
Svyret, R. G. 687(216), 709
Szady-Chelmieniecka, A. 1024(63), 1088
Szafrań, M. 143(564–566), 146(638), 192, 194, 364(156), 389, 580(205), 593(269), 281, 282), 594(289), 595(281, 282, 289), 601–603
Szalontai, G. 1388(98), 1394, 1407(170b), 1439, 1442
Szanaty, C. 759(115), 833
Szczodrowska, B. 353(96), 388, 551(127), 599
Szczybiak, K. 1086(377), 1096
Szegstaj, M. 1462(23), 1502
Szele, I. 402(26a, 26b), 479
Szél, T. 472(310b, 310c), 488
Szemes, F. 1393, 1403(152c), 1432(453), 1441, 1453
Szemik-Hojniak, A. 144(658), 194
Szewczyńska, M. 976(325), 1010
Szmant, H. H. 15, 100(80), 181
Taagepera, M. 101(388), 188
Tabakovich, I. 1219(131), 1341
Tabassum, N. 1129(282), 1133(282, 340), 1141(282), 1149, 1150
Tabata, M. 170(740), 196, 1352(57), 1364
Tabatabai, M. 1374(41, 42a, 43), 1385(83), 1393(157b), 1436, 1437, 1439, 1442
Tabatchikova, N. V. 977(342), 1010
Tabet, J. C. 316(218–221), 322(249), 330, 331
Tabul, A. 448(229a, 229b), 485
Tachi, Y. 1209(106, 107), 1340
Tada, M. 1180(63a, 63b), 1192(75a, 75b), 1202, 1205(95), 1339, 1340
Taddei, H. 418(119), 482
Tadros, S. P. 1482(88), 1504
Tait, A. 1383(75a, 75b, 75d, 75e), 1422(75e), 1439
Author Index

Taniguchi, H. 414(86a), 481, 662(11), 705, 1054(162), 1091, 1402, 1409(223), 1444
Taniguchi, M. 447(21a, 221b), 485
Taniguchi, S. 874(171), 905
Tanikaga, R. 419(132), 482
Tanimoto, N. 551, 554(110), 599
Tanimoto, Y. 692(247), 710
Tanimura, R. 853, 855, 856(90), 890(232), 904, 907
Tannenbaum, H. P. 293(72), 314(203), 327, 330
Tanzocs, I. 974(316), 1010
Tao, X.-L. 1178, 1337(57a, 57b), 1339
Taphanel, M. H. 300(123), 328
Tapia, R. 813(301, 303), 837, 838
Tappel, A. L. 852, 856(85), 890(229), 903, 907
Tapramaz, R. 1104(56), 1106
Tarakeshwar, P. 161(737), 196
Taraschi, T. F. 888(226), 907
Tarbell, D. S. 459(268), 472(311g), 487, 488
Tarbin, J. 1237(206), 1343
Tascón, M. L. 982(366), 1011
Tashiro, M. 1290(245), 1344, 1377(45a), 1437
Tashiro, Y. 1024(58), 1088
Taskinen, E. 237(61), 256
Tata, M. 365(164), 389
Tatarkovicova, V. 1354(105), 1365
Tatchell, A. R. 626(61), 657
Tateiwa, J. 265, 272(29b), 326
Tatematsu, A. 275(44), 299(92), 326, 327
Tatikolov, A. S. 1130(319), 1150
Taton, D. 1388(100a), 1439
Tatsukawa, R. 1351(46), 1364
Tatsuma, T. 1362(211), 1368
Tatsumi, K. 1086(376), 1096, 1362(206), 1368
Tatsumi, T. 414(90), 481
Tatsuta, K. 680(146), 708
Taub, I. A. 1113(83), 1145
Taurins, A. 420(139), 482
Tauszik, G. 178(771), 197
Tavani, C. 1073(225), 1092
Taveras, A. G. 470(300d), 488
Taverna, M. 19(99), 100, 182
Tayima, Y. 1348(27), 1363
Taylor, A. 78(278), 147, 148(710), 186, 195, 375(242), 392
Taylor, D. R. 807(271), 837
Taylor, E. C. 416(108, 109a, 110b, 111), 481, 482, 1312(284a, 284b), 1314(284a, 284b, 288, 289), 1315(292), 1345
Taylor, G. A. 1123(212), 1148
Taylor, J. K. 1227(146), 1341
Taylor, J. R. N. 913(14), 1003
Taylor, M. 665(44), 705
Taylor, N. J. 795(234), 836, 1408(282), 1447
Taylor, P. 367(180), 390
Taylor, P. J. 503(89), 526, 533(22), 555(33), 556(33, 36, 37), 537(33), 539, 540(37), 557(33, 145), 560, 564(145), 588(33, 37, 257), 590(145), 591(37), 597, 599, 602, 876–878(186), 879(196), 882(186, 196), 906
Taylor, R. 535(31), 597
Taylor, R. J. 666(45), 705
Taylor, W. C. 807(279–281), 837
Taylor, W. I. 1158, 1175(14a), 1337
Tazaki, M. 677(134, 135), 707
Tchaikovskaya, O. N. 1016(3), 1017(8), 1087
Tchapla, A. 913(5), 1003
Tchir, W. J. 1484, 1485(91), 1504
Teat, S. J. 691(241), 710
Tebben, A. 1180, 1183, 1186(62), 1339
Tee, O. S. 38, 127(185), 184, 716(11), 831
Teitzel, H. 933, 937(101), 1005
Teixeira, J. A. S. 227, 248(15), 252(94), 254, 257
Teixeira-Dias, J. J. C. 561(164, 165), 600
Tellgren, R. 144(664), 194
Telliard, W. A. 1348(14), 1363
Temple, R. G. 19(96, 98), 182
Teng, C.-M. 851, 853, 857(61), 895(268), 903, 908
Teng, H. 944(145), 1006
Tenon, J. A. 727(37, 38), 831
Tepper, A. W. J. W. 977(344), 1011
Tepper, D. 493, 506(46), 526
Terabe, S. 972(307), 1010
Terada, M. 695(275), 711
Terada, Y. 1158(19–21, 23, 24), 1159(24, 25a, 25b), 1172(25a, 25b), 1178(21), 1324(309), 1338, 1345
Teralo, J. 891(247), 894(263), 907, 908
Terao, S. 624(56), 657
Terao, Y. 1357(137), 1366
Terashita, Z. 624(56), 657
Terashita, S. 871, 874(160), 905
Terenghi, M. G. 626(59), 637
Terent'ev, P. B. 301(130), 328
Tereschenko, L. Ya. 1081(263, 264), 1093
Terlouw, J. K. 110(451), 190
Ternes, W. 739(59), 832
Terpauer, I. 373, 383, 384(238), 392
Terriere, G. 1489(109, 115), 1504
Terry, K. A. 930, 937(80), 1004
Tersch, R. L. v. 57(243), 185
Tersch, R. L. von 99, 101(378), 188
Terzian, P. 1361(195, 196), 1367
Terzian, R. 1084(313, 318), 1095, 1100(26), 1105, 1129(284, 286), 1149
Tesfai, Z. 1177(56), 1339
Testa, G. 1079(242), 1092
Tetenbaum, M. T. 425(161), 483
Teuber, H.-J. 1257, 1260(187a–c), 1342
Tevesz, M. J. S. 314, 315(208), 330
Texier, H. 928(61), 929, 954(62), 1004
Texier, I. 1073(216), 1085(336, 353), 1086(336, 369), 1092, 1095, 1096
Tezuka, T. 407(51), 479
Thalladi, V. R. 219(35), 221
Theilacker, W. 436(196), 484
Theissen, H. 335(2), 386
Theissling, C. B. 110(427), 189, 299(99), 328
Theobald, N. 1356(123), 1366
Theriault, R. J. 412(74c), 480
Thiebaud, S. 663(19), 705
Thiel, W. 1025(84), 1089
Thiele, J. 715(4), 830
Thielking, G. 283(52), 327
Thiéra, V. 680(150), 708
Thigpen, K. 607(4), 656
Thirring, K. 1244(171), 1342
Thistlethwaite, P. J. 493(40), 525
Thoden van Velzen, E. U. 1421(369), 1450
Thoennessen, H. 1417(329a), 1448
Thom, R. 68, 70(260), 185
Thomas, B. 1482(88), 1504
Thompson, A. 1136(358, 359), 1151
Titheridge, K. 1342, 1344
Thusselsai, P. J. 493(40), 525
Thomson, B. 1461(16), 1502
Thomson, R. H. 715, 718, 720(1b), 830
Thondorf, I. 1374(34, 39), 1378(50a, 51), 1385(85), 1386(51, 85, 87), 1402, 1404, 1406(222), 1411(295, 298), 1419(358), 1420(359c, 361, 364), 1436, 1437, 1439, 1444, 1447, 1450
Thonnessen, H. 1383, 1421(67k), 1424(395), 1438, 1451
Thormann, Th. 375, 376(249), 392
Thorpe, F. G. 416(112), 482
Thozet, A. 200(1), 219(37), 220, 221, 549(66), 598
Thruston, A. D. Jr. 1354, 1355(100), 1365
Thuéry, P. 1380(58c), 1415(313), 1435(465b), 1437, 1448, 1454
Thulstrup, E. W. 368, 373(190, 196), 374(190), 383(282), 390, 393
Thulstrup, P. W. 375, 376(248), 392
Thurkauf, A. 429(173), 483
Thurman, C. 1348(26), 1363
Thurman, E. M. 1353(79), 1365
Tiainen, E. 998(451), 1013
Tian, B. M. 971(301), 1010
Tian, Y. 697(283), 711
Tiedemann, P. W. 83(254), 907
Tietz, P. S. 19(101), 182
Tietz, T. D. 102(394), 188
Tiefenbrunn, F. A. 973(309), 1010
Thompson, A. 1136(358, 359), 1151
Timmerman, P. 1370(4), 1393(110), 1403(242), 1406(262b, 263b, 263d), 1417(4), 1428(263d, 437b), 1432(454), 1433(456a), 1435, 1440, 1445, 1446, 1453
Timmermann, B. 305(151), 329
Ting, Y. 1401(220a), 1444
Tinucci, L. 683(180), 686(210), 708, 709, 1082(281), 1094
Tipikin, D. S. 1018(23), 1087
Tischendorf, V. 47, 48, 56(220), 58(244), 83–86, 88(299), 89(220, 299, 317b), 90, 91(299), 143(551), 144(680), 184–186, 192, 195
Tishchenko, V. 18(90), 181
Tismoaneanu, R. 619(40), 656
Tisnes, P. 400(18b), 478
Tissot, A. 1073(217), 1092
Tissot, G. T. 801, 802(245), 836
Tite, E. L. 1383, 1421(67a, 67b), 1438
Titov, A. I. 638(120), 658
Tobinaga, S. 1462(35, 36), 1503
Tobita, S. 1216, 1283, 1287(122c), 1288(239), 1289(240), 1297(122c), 1340, 1344
Tobita, S. 291(63), 327, 493(36, 37), 525
Tobin, W. 826(339), 838
Toda, F. 1289(242), 1344
Tod, M. H. 459(269), 487
Todorovic, M. 931, 935, 937(85), 1005
Tofield, P. 1109(46), 1144
Togashi, H. 432(182a, 183c), 484
Tora, F. 1178(58), 1230(148), 1246(172, 173), 1247(173), 1339, 1341, 1342
Topham, S. 684(193), 709
Toki, L. 1387, 1391(93), 1439
Tokia, K. 143(557), 192
Tokiita, S. 1396(184), 1443
Tokito, K. 1399(201a), 1443
Tokita, H. 92(347), 187
Tokuda, Y. 410(68), 480
Treleaven, W. D. 1383, 1421(67f), 1438
Trelloa, P. 983(379), 1011
Tremlay, J.-F. 19(92), 182, 1348(24), 1363
Trem, J. 1348(10), 1363
Treater, D. 913(1), 1002, 1355(114), 1365
Trevor, D. J. 83(291), 186
Trifunac, A. D. 1103(48), 1106
Trillas, M. 1086(367), 1096
Trindle, C. 111(453), 190
Trinoga, M. 868, 870(157), 905, 1108(10), 1144
Tripathi, G. N. R. 129(494, 495), 132(512), 133(494, 495, 512), 191, 1115(109–111), 1120(187), 1123(196, 197), 1128(187, 197), 1129(197, 288, 291), 1130(320), 1132(187, 196, 197, 288, 321), 1133(197), 1134(288), 1135(109, 352), 1136(352), 1146–1151
Tripathi, H. B. 1047(148), 1090
Trivedi, B. K. 851, 852, 894(67), 903
Trivedi, G. K. 1311(283), 1345
Trivedi, N. R. 650(166), 659
Trivunac, K. V. 1001(476), 1014
Troc, J. 1105(64, 65), 1106
Tropper, F. 673(97), 707
Trotter, B. W. 1318(302), 1345
Trova, M. P. 450(239e, 246i), 486
Truanjowicz, M. 929(64), 976(325), 977(64), 1004, 1010, 1100(29), 1106
Tromelin, A. 472(314), 488
Trommsdorf, H. P. 371(223), 391
Trommsdorff, H. P. 371(228), 391
Tromp, M. N. J. L. 871, 873, 898(169), 905
Tropp, F. 673(97), 707
Trost, B. W. 1318(302), 1345
Trove, J. 1105(64, 65), 1106
Tropfer, F. 673(97), 707
Tsuchiya, J. 853(90), 855(90, 119), 882(204), 887(219, 221), 890(232), 904, 906, 907
Tsuchiya, K. 763(135), 834
Tsuchiya, S. 855(117), 904
Tsuchiya, T. 674(108), 707
Tsuchida, H. 913(13), 1003
Tsuchiya, W. E. 467(295a), 487, 685(194), 709, 818(321), 838
T suchiya, K. 673(98), 707
Tsuchiya, M. 786(231), 836
Tsuchiya, T. 448(231), 486, 1062(186), 1091
Tsuchijara, K. 673(98), 707
Tsuchi, J. 664(27), 705, 710, 766, 767(145), 834
Tsuchi, M. 953, 957(219), 1008
Tsuchi, T. 448(231), 486, 1062(186), 1091
Tsuchi, Y. 951, 953(195, 196), 1007
Tsuchi, T. 1359(146), 1366
Tsuchi, K. 493, 512(38, 39), 525
Tsuchi, S. 20, 44(120), 90(344), 182, 187, 551, 556(117), 599
Tsuchi, T. 1417(224), 1451, 1453
Tsuchi, Y. P. 296(83), 327
Tubul, A. 448(230), 485
Tuccu, F. C. 1424(398), 1430(441b, 441c), 1451, 1453
Tuck, D. G. 580(207), 601
Tucker, J. A. 1382, 1383, 1421(67c), 1438
Tucker, W. P. 1290(249), 1344
Tudos, F. 1462(23), 1502
Tümmler, R. 310(175), 329
Tundo, P. 663(18), 705
Tung, C. 1077(237), 1092
Tunikova, S. A. 1001(475), 1002(478), 1014
Tunnel, R. L. 1357(133), 1366
Tunstad, L. M. 1382, 1383, 1421(67c), 1438
Tuomi, W. V. 638(121), 658
Tupparinen, K. 349(74), 388
Turchi, I. J. 1314(289), 1345
Ursini, F. 890(234), 907
Ursini, O. 274(41), 326
Ushijima, H. 1411(299), 1447
Usui, S. 1084(322), 1095
Utley, J. H. P. 1282(229), 1343
Utsumi, H. 855(117), 904
Uyemura, S. A. 895(266), 908
Uzhinov, B. M. 492, 493, 501(10), 525
Van der Greef, J. 110(430), 189
Van der Wiel, V. W. M. 1074(231), 1092
Van Dorsselaer, A. 1427(421a), 1452
Vane, J. 11(50), 180
Vane, J. R. 10(45), 180
Van Gelder, J. M. 1411(298), 1447
Van Haverbeke, A. Y. 110(431), 189
Van Haverbeke, Y. 121(465, 466), 190
Van Hulst, N. F. 1391(112), 1440
vanKessel, J. 851, 885(46), 903
Vankoten, M. A. 640(74), 657
Van Lerberghe, D. 534(26), 597
Van Lieshout, M. 953, 968(277, 278), 1009
Van Loon, J.-D. 1393(151, 156), 1401(220a), 1403(234e, 240b), 1405(248), 1406(258a), 1432(449b), 1441, 1442, 1444–1446, 1453
Van Miller, J. P. 1348(30), 1363
Van Mourik, T. 1487(276), 196
Van Nest, W. 1123(199), 1148
Van Poucke, L. C. 83, 84(298), 186, 311(187), 329
Vanquickenborne, L. G. 89, 90(328), 119(463), 127, 144(472), 187, 190
Vanwilligen, H. 1057(172), 1091
Varadarajan, A. 1048(154), 1090
Varadarajan, R. 634(97), 658, 1402(227), 1445
Varfolomeyev, S. D. 979(353), 1101
Varghese, H. T. 378(271), 392
Varma, A. 1085(352), 1095
Varma, C. 1117(114), 1146
Varma, C. A. G. O. 1047(150), 1090
Varma, K. S. 1495(148), 1505
Varma, R. S. 422(143), 483
Varquez-Lopez, E. M. 580(207), 601
Vartanian, G. 35, 36, 66, 78(167), 183, 368, 375(187), 390
Vartanyan, L. S. 1108(20), 1118, 1119(20, 140), 1144, 1146
Varvoglis, A. 1075(232b, 232c), 1092, 1224(140e–e), 1341
Vasak, M. 511(103), 527
Vasilyev, A. N. 620(46), 657
Vaz, R. J. 983(373), 1011
Vaziri-Zand, F. 662(3), 705
Vázquez, E. 680(154), 708
Vázquez, M. D. 982(366), 1011
Veen, N. J. van der 1403(238), 1445
Veening, H. 951, 953(191), 1007
Vega, J. R. de la 721(23), 831
Veggels, F. C. J. M. van 1385(79b, 84), 1386(84), 1391(119), 1406(263d), 1427(407a), 1428(263d, 437b), 1432(455), 1433(456a), 1439, 1440, 1446, 1451, 1453
Veggel, F. J. C. M. van 1403(238), 1445
Veglia, A. V. 365(162), 389, 477(324b, 326b), 489
Vega, L. A. de la 233(39), 255
Veijanen, A. 1363(220), 1368
Veit, M. 913(19), 1003
Velasco, A. 929, 987(70), 1004
Watts, R. J. 1348, 1350, 1352(12), 1363
Wawer, I. 366(165), 389
Wayland, B. B. 548(62), 598
Wayner, D. D. M. 45(191, 197), 139(191, 531), 179(197), 184, 191, 851, 857(62), 897(273), 901(288), 903, 908
Weatherhead, R. H. 1393(146), 1441
Weaver, L. K. 1361(199, 200), 1368
Weber, B. A. 885(209, 210), 897(273), 901(288), 903, 908
Weber, A. C. 141(539), 192
Weber, G. A. 359(123), 389
Weber, J. 1044(131), 1090
Weber, P. M. 110(418, 419), 121(419), 189, 1017(9, 10), 1087
Webster, C. 937, 938(123), 953, 965(266), 1005, 1009
Webster, G. B. 429, 430(179c, 179e), 483, 484
Webster, G. R. B. 1073(215), 1074(231), 1092
Wedemeyer, K.-F. 715, 724(3), 749(96), 750(101), 759(111, 112), 761(124), 799, 801, 814, 822(3), 830(348), 830, 833, 838
Weeding, T. L. 293(71), 327
Wee, C.-P. 1237(162e), 1342
Wei, D. 1361(198), 1367
Wei, H. 1082(283), 1094
Wei, H. F. 608(7), 656
Wei, J. 416, 417(116), 482
Wei, T. Y. 1082(279), 1083(292, 303), 1094
Weichert, A. 145, 156(636), 179(781), 194, 198
Weickhardt, K. 701(315, 316), 711
Well, A. H. 1459(12), 1502
Weniger, K. 701(315, 316), 711
Wethermark, G. 558–560(150), 600
West, F. 1307(278), 1344
West, P. R. 1120(176, 178), 1147
West, R. 555(140), 599
West, T. R. 671(84), 706
Westin, G. 1267(202a), 1343
Westlund, N. 786(232), 836
West-Nielsen, M. 344(44), 387
Westphal, A. 144(679), 195, 377(253), 392, 578(194), 581(216), 601, 992(428), 1012
Westra, J. G. 1194(83a), 1339
Westrum, E. F. Jr. 238–240(66), 256
Whang, C.-W. 971(299), 972(302), 1009, 1010
Whangbo, M.-H. 669(61), 706
Whatley, L. S. 555(140), 599
Wheatley, P. J. 11(53), 232(36), 255
Wheeler, R. A. 31(138), 35(168), 111, 112(138, 168), 113(138), 114(168), 132, 133, 136(511, 513), 183, 191
Whelan, B. A. 448(226), 485
Whiffen, D. H. 36(176), 183
Whipple, M. R. 511(103), 527
Whitakker, J. M. 129(484), 190
Whitakker, M. M. 129(484), 190
White, A. H. 1382(73), 1388(97), 1413(304, 305), 1438, 1449, 1447
White, A. J. P. 761(119), 833
White, D. 1244(170), 1342
White, D. M. 466(292), 487
Author Index

White, G. F. 1348(31), 1363
White, J. D. 1244(171), 1342
White, R. 925(49), 1004
White, R. L. 370(213), 391
White, S. C. 170, 171, 174(742), 196
White, W. N. 460(271b), 463(276c), 487
Whiting, A. 692(249), 710
Whiting, D. A. 12(58), 181, 806(252), 836
Whitney, J. 305(151), 329
Whitson, P. E. 1167(38), 1338
Whittaker, A. K. 1470, 1471(59), 1503
Wiberg, K. B. 87(308), 186
Wicki, M. 786(231), 836
Wickler, C. 493(26, 27), 515(27), 836
Wicki, M. 786(231), 1344
Widdowson, D. A. 1297(257), 1444
Widén, C.-J. 349(63), 387
Widmer, U. 466(291), 487
Wieghardt, K. 129, 132, 133, 135(514), 191
Wieland, S. 620(47), 657
Wierzchowski, K. L. 1117(130, 132), 1146
Wierznejewska, M. 144(604), 193, 594, 595(285), 603
Wiesen, P. 18(83a), 181
Wiesli, U. 324(269), 331
Wijmenga, S. S. 1405(248), 1445
Wilde, H. 1424(392), 1450
Wilderer, P. A. 303(144), 329
Wilhoit, R. C. 241(75), 256
Wilkins, J. P. G. 319(228), 330
Wilkins, R. F. 684(188), 189, 709
Wilkinson, F. 1057(173), 1091
Willberg, D. M. 493(21, 23), 303
Williams, A. 1393(146), 1441
Williams, A. R. 730(47), 832
Williams, D. H. 260(1), 263(19), 290(59), 325–327
Williams, D. J. 761(117), 118, 833, 1432(449a), 1453
Williams, D. L. H. 419(123b), 482
Williams, D. R. 35(153, 156), 36, 37, 66, 67(153), 107(156), 183
Williams, D. T. 319(230), 330
Williams, E. L. 449(234b), 486
Williams, P. 343(42), 347(42, 55), 348, 349(55), 356(42), 387
Williams, R. J. J. 1459(7, 8), 1502
Williamson, B. L. 307(157), 158, 308(158), 329
Williamson, G. 895(267), 908
Willigen, H. van 1016(4), 1087
Willmore, W. G. 854(97), 904
Willson, J. M. 1071(208), 1092
Willson, R. L. 1110(54), 1111(66, 67), 1119, 1128(155), 1129(299), 1130(299, 308, 324), 1131(155), 1134(155, 347, 348), 1137, 1138(308), 1145, 1147, 1150, 1151
Wilson, C. C. 178(770), 197, 579(196), 601
Wilson, D. 1494(129), 1505
Wilson, E. B. 375(239), 392
Wilson, F. X. 786(232), 836
Wilson, G. 933, 937(101), 1005
Wilson, H. W. 35(154, 160), 36(154), 183
Wilson, J. D. 95(368), 188
Wilson, K. 617(33), 656
Wilson, K. J. 735(53), 832
Wilson, P. 953, 965(266), 1009
Wilson, R. L. 890(230), 907
Wilson, S. R. 698(293), 711
Wilson, W. D. 356(108), 388
Wimalasena, K. 612(19), 656
Winfried, H. 716(9), 831
Winer, A. M. 1105(63), 1106
Wingbermühle, D. 461(290), 487
Winget, P. 57(242), 185
Winiarski, J. 405(46a), 479
Winkler, E. L. 1459(13), 1502
Winkler, M. R. 319(228), 330
Winnik, W. 314, 315(208), 330
Winter, T. J. 438(199), 484
Winter, W. 1169(43), 1338
Winterle, J. 845, 846(31), 902
Winters, M. P. 671(83), 706
Wintgens, D. 229, 250(20), 254
Wipf, P. 461(289), 487, 677(120), 707
Wipf, G. 1391(120b), 1440
Wirz, J. 38(184), 127(184, 468), 184, 190, 229, 250(20), 254, 716(7), 831, 1017(14), 1035(116), 1087, 1089
Wiseman, A. 412(71b), 480
Wiseman, G. H. 430(180a), 484
Wiseman, J. R. 447(220), 485
Wisted, E. E. 1352(66), 1364
Wit, J. de 110, 112, 121(444), 189, 265(24), 326
Witanowski, M. 144(655), 194
Witiak, D. T. 851, 852, 894(67), 903
Witkop, B. 405(44), 479
Wittek, H. 35(147), 183
Wittek, P. J. 429(174), 483
Witter, D. 141(539), 192
Wittkowski, R. 315(215), 330
Wittmann, H. 818(315), 838
Witz, M. 647(150), 659, 687(221), 709
Wöhler, J. 1378, 1386(51), 1437
Wohrl, D. 1082(277), 1094
Wojciechowski, G. 377(263, 264), 386(307), 392, 393
Wojciechowski, W. 35, 47, 58(170), 183
Wojcierchowski, K. 405(46b), 479
Wojnarovits, L. 1100(30), 1102(47), 1106, 1115(91), 1128(91, 275, 276), 1142(378), 1145, 1149, 1151
Wolf, A. 977(336), 1010
Wolf, C. 1420(365a), 1450
Wolf, G. 977(336), 1010
Wolf, J. F. 263, 296(16), 326
Author Index

Wolff, K. 383(284), 393
Wolfle, J. P. 671(80), 706
Wolfender, J. L. 953, 967(270), 1009
Wolff, A. 1374(33b, 42a), 1436
Wolff, C. 826(339), 838, 1419(346), 1450
Wolff, J. 211, 216(20), 221
Wolff, L. 450(240), 486
Wolff, S. P. 856, 857(131), 904
Wollenberger, U. 976(331), 977(344), 978(346), 979(357), 1010, 1011
Wollschann, P. 358(119, 120), 388
Wolschann, P. 144(647, 656, 667), 194, 370(215), 386(215), 305, 306, 391, 393, 551, 556(118), 599, 992(431), 1013
Won, M. S. 982(367), 1011
Wonchoba, E. R. 669(62), 706
Wong, A. S. 1360(165), 1367
Wong, C. S. 1351(51), 1364
Wong, H. N. C. 448(229d), 485
Wong, M. K. 946, 953(161), 1006
Wong, M. W. 4, 100(2), 179, 368(200, 203), 372, 373(200), 390, 391, 1478, 1486(87), 1504
Wong, S. K. 1124(229, 230), 1148
Wong, T. S. 1470(56), 1503
Woo, H.-G. 667(50), 705
Wood, C. E. C. 230(29), 254
Wood, J. L. 85(304), 186, 548(61), 598
Wood, K. V. 308(163, 165), 309(165), 329
Wood, M. R. 1318(302), 1345
Wood, P. M. 1118(153), 1147
Woodbrey, J. C. 1462(22), 1502
Woodgate, P. D. 416(114), 482
Woodin, R. L. 291(65), 327
Woodrow, D. 933, 937(101), 1005
Woods, R. J. 1098(1), 1105
Woodward, D. L. 687(218), 709
Woodward, R. B. 717(12), 831
Woodward, S. 691(240–242), 710, 782(219, 220), 836
Woolard, A. C. S. 856, 857(131), 904
Woolfe, G. J. 1025(82), 1089
Worms, P. 475(318), 488
Worrall, D. 1057(173), 1091
Worth, B. R. 1261(194), 1342
Wozniak, K. 336, 343(40), 344(40, 44), 345, 354, 355, 366(40), 387
Wray, J. W. 1349, 1360(33), 1363
Wray, V. 350(78), 388
Wright, A. J. 1383, 1421(67m), 1438
Wright, F. G. 129, 131(499), 191
Wright, F. J. 1127(268), 1149
Wright, I. G. 429, 430(179e), 484
Wright, J. D. 1000(469), 1013
Wright, J. S. 20, 23(116), 31(140), 44(188), 45(140, 192), 110, 113(440), 139(116, 192), 140(116, 140, 192), 182–184, 189, 867, 871, 895, 896(154), 897(154, 275), 898(154), 899(154, 278), 905, 908
Wright, T. G. 30(136), 110, 112, 121(444), 129(476), 144(677), 183, 189, 190, 195
Wronska, U. 891(241), 907
Wrzeszcz, J. 608(8, 9, 12), 656
Wu, C. 1361(198), 1367
Wu, C.-L. 851, 853, 857(61), 903
Wu, D. 231, 234, 241(33), 255
Wu, H.-D. 367(175), 390
Wu, J. 1100(31), 1106
Wu, J. G. 639(124), 659
Wu, J. M. 1361(197), 1367
Wu, K. J. 323(260), 331
Wu, M. 851, 852, 894(67), 903
Wu, M. H. 698(291), 711
Wu, N. C. 410(66a), 480
Wu, S. 1380(58f), 1437
Wu, S.-H. 1391–1393(122a), 1394(168), 1440, 1442
Wu, S.-S. 1085(343), 1095
Wu, T. 449(234e), 486
Wu, Y.-D. 20, 45(125), 104(399), 140(125), 182, 188
Wuest, J. D. 551, 553(82), 598
Wujek, D. G. 852(80), 903
Wulf, O. R. 35(174), 47(213–217), 48(217), 183, 184, 555(141), 599
Wulf, W. D. 450(246b), 486
Wulff, W. D. 454(253, 255), 456(255, 260), 457(263), 486, 487, 693(253, 254), 710, 735(52, 53), 832
Wunderlich, H. 200(5), 220, 550(69), 598
Würsch, J. 433(189c), 484
Wuts, P. G. M. 662, 666(1), 704
Wyatt, A. H. 498(75), 526
Wyatt, P. A. H. 492, 493, 501, 507(12), 525
Wylie, R. 1297(260b), 1344
Wynberg, H. 685(195), 709, 1292(251), 1344
Wyness, P. 1084(308, 309), 1094
Wysong, R. D. 650(163), 659
Wyssbrod, H. R. 106, 148(404), 188

Xi, B. 1087(382), 1096
Xi, F. 843(283), 851(48), 867–869(152), 871(152, 159), 901(283), 903, 905, 908
Xi, H. 1424(388a, 389a), 1450
Xia, G. 1045(142), 1090
Xia, Y. 1432(445), 1453
Xiang, S. H. 620(41), 657
Xiangge, Z. 702(335, 336), 712
Xiao, G. 15(72), 181
Xie, D. 1392(133), 1441
Xie, J. 1432(452), 1453
Xing, Y. D. 448(229d), 485
Xing, Z. 662(7), 705
Y ao, B. 609(18), 1344
Y ang, W. 89, 90(320, 322), 187
Y ang, S. S. 110, 112, 139(442), 1092
Y ang, N. C. 1073(218), 1367
Y ang, L.-M. 1403(236), 1445
Y ao, Q. 894(263), 908
Y aozhong, J. 702(335, 336), 712
Y arboro, T. L. 414(97a), 481
Y aremko, A. M. 371(229), 391
Y aropolov, A. I. 977(333), 1010
Y arwood, J. 170(754), 174(764), 197
Y asuda, M. 1022(54, 55), 1088
Y asuda, T. 551, 554(110), 599
Yasu, T. 1352(56), 1364
Yasumatsu, M. 1377(46b, 46c), 1437
Yates, J. R.III 305(148), 329
Yates, K. 1022(52, 53), 1088
Yates, P. 1180(60a, 60b), 1327(60a, 60b, 313, 1339, 1345
Yawalkar, A. A. 1084(311), 1094
Ye, M. 1098(7), 1105, 1135, 1136(354), 1151
Yeddanapalli, L. M. 1461(17), 1502
Yeh, M. 1393(152b), 1441
Yenes, S. 636(103), 658
Yenkie, M. K. N. 1002(481), 1014
Yeo, A. M. H. 300(118), 328
Yeoh, S. L. 535(31), 597
Yi, M. 144(597), 193
Yiannni, P. 1495(150, 151), 1505
Yildiz, M. 551, 557(122), 599, 729(43), 831
Yip, C.-W. 697(281), 711
Yododzinski, L. H. 469(297a), 488
Yohann, D. 1163(33c), 1338
Yohannes, D. 670(73), 706
Yohihara, K. 129, 131(481), 191
Yokawa, A. 1029(102), 1089
Yokosu, H. 951, 953(192), 1007
Yokota, Y. 935(115), 1005
Yonedo, N. 648(154), 659
Yonehara, H. 1306(271), 1344
Yoo, M. R. 1086(373), 1096
Yoon, D. Y. 1495(135, 136), 1505
Yoon, J. 1085(346), 1095, 1362(205), 1368, 1423(381), 1428(425b, 426b, 434a), 1429(426b, 430a, 430b), 1433(458), 1450, 1452, 1453
Yoon, M. 1047(151), 1090
Yoon, T. H. 1407(273a), 1446
Yoon, T. Y. 447(224), 485
Yorke, C. P. 319(228), 330
Yoshida, H. 1124(231, 234), 1148
Yoshida, K. 1175(52), 1338
Yoshida, M. 665(40), 669(63), 705, 706
Yoshida, T. 323(256), 331, 855(117), 904
Yoshida, Y. 323(256), 331, 447, 448(222b), 485, 953, 961(241), 1008
Yoshihara, M. 1495(133), 1505
Yoshikawa, N. 695(273, 274), 710, 711
Yoshikawa, T. 913(22), 1003
Yoshikawa, Y. 851, 852, 892(71), 903
Yoshimi, N. 1361(187), 1367
Yoshimura, K. 1380(58a, 58d), 1437
Yoshimura, M. 1379(54d), 1404(246b), 1437, 1445
Yoshimura, Y. 987(405), 1012
Yoshino, A. 345(49), 387
Yoshino, N. 1383, 1421(671), 1438
Yoshioka, H. 412(74b), 480
Yoshiuchi, H. 143(582), 193
Yoshiya, H. 1290(245), 1344
Yoshizawa, I. 874(172), 905
Yoshizawa, K. 18(86), 181
You, X. Z. 685(201), 709
Young, D. C. 749(99), 833
Young, W. F. 1358(141), 1366
Yperman, J. 83, 84(298), 1366, 311(187), 329
Yrjonen, T. 953, 968(273), 1009
Yü, A.-M. 983(378), 1011
Yü, C.-M. 664(32), 705
Yü, D. 702(344), 712
Yü, H. 129, 132(50b), 191
Yü, I. Y. 1427(423b), 1452
Yü, S. K.-T. 934, 937(106), 1005
Yü, W. 1080(258), 1093
Yü, Y.-H. 1432(445), 1453
Yuan, H. 1378(50b), 1400(206), 1431(50b), 1437, 1444
Yuan, H. L. 403(32), 479
Yuan, Z.-H. 1082(291), 1094
Yusa, K. 414(90o), 481
Yusa, M. 1318(300a, 300b), 1345
Yudilevich, I. A. 432(186), 484
Yudin, A. K. 697(285), 711
Yue, T.-Y. 670(71), 706
Yufit, D. S. 824(331), 838
Yuk, J. Y. 663(14), 705
Yumanaka, I. 414(90e), 481
Yumura, T. 18(86), 181
Yun, S. 1428(427), 1452
Yurchenko, V. N. 235(51), 255
Yusubov, N. N. 640(134), 659
Yutaka, Y. 447(222h), 485
Zabel, F. 5, 137, 138(21), 180
Zabik, M. J. 315(212), 330
Zaborovska, M. 493, 512, 513(35), 525
Zacharias, J. D. E. 375(250), 392
Zhao, Q. 352(92, 94), 367(180), 388, 390
Zhao, W. 1085(354), 1096
Zhao, X. S. 1081(268), 1093
Zhao, X. S. 1081(268), 1093
Zheng, D. K. 359(131), 389
Zheng, Q. 1305(269), 1344
Zheng, Q.-Y. 1409(286a), 1432(452), 1447, 1453
Zheng, X.-F. 694(266), 710
Zheng, Y. J. 105(402), 188
Zheng, Y.-S. 634(99), 658, 1432(448a, 452), 1453
Zhi, L. 702(336), 712
Zhi, Z. L. 986(392), 987(401), 1012
Zhidomirov, G. M. 1123(200), 1148
Zhigulev, A. V. 987(408), 1012
Zhilinskaya, K. I. 930(81), 1004
Zhong, M. 776(199), 835
Zhong, Z. 1379(54e), 1427(420b), 1437, 1452
Zhong, Z.-L. 1435(468), 1454
Zhou, J. 359(131), 389, 990(417), 1012, 1400(206), 1444
Zhou, M. 593, 595(278), 602
Zhou, T. 986(396), 1012
Zhou, X. 93, 94(360), 129(509, 510), 131(510), 132(360, 509, 510), 133(509, 510), 187, 191
Zhou, Y. 1045(142), 1090
Zhu, C. 695(271), 710
Zhu, F. 1082(285), 1094
Zhu, G.-D. 450(235), 486
Zhu, H.-W. 593, 595(278), 602
Zhu, J. 420(141), 483, 670(69), 706, 1045(135), 1090, 1094(59), 1106
Zhu, L. 1362(214), 1368
Zhu, P. Y. 673(92), 706
Zhu, S. Z. 312(193), 330
Zhu, Y. 1034(113), 1089
Zhu, Z. 666(49), 705
Zhuang, H.-S. 995(442), 1013
Zhou, H.-W. 593, 595(278), 602
Zhu, J. 420(141), 483, 670(69), 706, 1045(135), 1090, 1104(59), 1106
Zhu, L. 1362(214), 1368
Zhu, T. 986(396), 1012
Zhu, X. 93, 94(360), 129(509, 510), 131(510), 132(360, 509, 510), 133(509, 510), 187, 191
Zhou, Y. 1045(142), 1090
Zhu, C. 695(271), 710
Zhu, F. 1082(285), 1094
Zhu, G.-D. 450(235), 486
Zhu, H.-W. 593, 595(278), 602
Zhu, J. 420(141), 483, 670(69), 706, 1045(135), 1090, 1104(59), 1106
Zhu, L. 1362(214), 1368
Zhu, P. Y. 673(92), 706
Zhu, S. Z. 312(193), 330
Zhu, Y. 1034(113), 1089
Zhu, Z. 666(49), 705
Zhuang, H.-S. 995(442), 1013
Zhou, H.-W. 593, 595(278), 602
Zhu, J. 420(141), 483, 670(69), 706, 1045(135), 1090, 1104(59), 1106
Zhu, L. 1362(214), 1368
Zhu, T. 986(396), 1012
Zhu, X. 93, 94(360), 129(509, 510), 131(510), 132(360, 509, 510), 133(509, 510), 187, 191
Zhou, Y. 1045(142), 1090
Zhu, C. 695(271), 710
Zhu, F. 1082(285), 1094
Zhu, G.-D. 450(235), 486
Zhu, H.-W. 593, 595(278), 602
Zhu, J. 420(141), 483, 670(69), 706, 1045(135), 1090, 1104(59), 1106
Zhu, L. 1362(214), 1368
Zhu, P. Y. 673(92), 706
Zhu, S. Z. 312(193), 330
Zhu, Y. 1034(113), 1089
Zhu, Z. 666(49), 705
Zhuang, H.-S. 995(442), 1013
Zhou, H.-W. 593, 595(278), 602
Zhu, J. 420(141), 483, 670(69), 706, 1045(135), 1090, 1104(59), 1106
Zupan, M. 655(190), 660, 687(219), 709
Zwaal, R. F. A. 852(78), 903
Zweifel, G. 414(97c), 481
Zweifel, H. 748(89), 833
Zwicker, E. F. 1127(270), 1149
Zwier, T. S. 148, 160(720), 196
Zwolinski, B. J. 241(75), 256
Zydowsky, T. M. 813(297), 837
Zyubin, A. S. 129, 131(507), 191

Index compiled by K. Raven
CHAPTER 20

Polymers based on phenols

D. H. SOLOMON, G. G. QIAO and M. J. CAULFIELD

Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
Phone: +61 038344 8200; Fax: +61 038344 4153; e-mail: davids@unimelb.edu.au

I. INTRODUCTION 1456
A. The Chemistry 1456

II. PHENOL—CARBONYL RESINS 1457
A. Phenol—Formaldehyde Resins 1457
B. Functionality in Phenol—Formaldehyde Resins 1457
C. Novolac Resin Synthesis 1460
1. Statistical Novolac resins 1461
2. High ortho—ortho linked Novolac resins 1461
3. Structurally uniform ‘pure’ Novolac structures 1462
D. Model Compounds of Novolac Resins 1463
1. Ortho-linked pure compounds 1463
2. Other structural isomers 1465
3. Para-linked compounds 1465
E. The Structure of Novolac Resins 1469
F. Reaction of Novolacs with HMT A 1470
1. Hexamethylenetetramine (HMT A) 1470
2. Chemistry of crosslinking reactions involving HMT A 1470
3. Reactions of model compounds with HMT A 1471
G. Synthesis of Resole Resins 1475
H. Model Compounds of Resoles 1476
1. Ortho-hydroxyl model studies 1476
2. Ortho-quinone methide 1478
3. Ether exchange reactions 1483
4. PF ratio effects 1484
I. Phenol—Ketone Novolacs 1487

III. CARBON DERIVED FROM PHENOLIC RESINS 1488
A. From Novolacs 1488
B. From Resoles 1488

The Chemistry of Phenols. Edited by Z. Rappoport

1455
I. INTRODUCTION

Polymers derived from phenols find use in a vast array of industries and the property/cost relationships mean that various phenol-based polymers find applications in areas as diverse and challenging as commodity polymers through to the much more technically demanding fields of specialty polymers with high added value and stringent property requirements. Examples are phenolic photoresists, carbonless copying paper and polymers used as a source of carbon. The latter is a relatively new area of particular importance to revolutionary changes in the steel and aluminium industries where phenolic resins are used as a replacement for coal tar pitch as precursors for carbon because of environmental and property advantages. Phenolic resins are also used as binders for composite materials in producing, for example, electrolytic cells and refractory castings.

There is a vast literature on phenol polymerization and this chapter will only review specific points of interests and recent progress in this field.

In the polymer industry phenolic compounds are important stabilizers; they are used to prevent the free-radical induced polymerization of monomers (e.g. methyl methacrylate, styrene) during transit and as stabilizers for polymer systems where radical induced decomposition and decay mechanisms operate. Examples of the latter include polyolefins, such as polyethylenes or polypropylenes, and polyvinyl chlorides. However, these uses of phenols and phenolic polymers are not considered in this chapter (refer to Chapter 12).

A. The Chemistry

From a chemical point of view the reactions used to prepare polymers from phenol involve either (a) electrophilic substitution at free positions ortho and para to the hydroxy substituent, or (b) dehydrogenation (oxidation) of the phenol by removing the phenolic hydrogen and an aromatic proton.

Thus much of the challenge to the scientist comes from ways in which to control the polymer-forming reaction by limiting the number of points of attack in, for example, the phenol molecule. In polymer terms this means that the functionality of the phenol is modified by the use of substituents to block reactive positions or by controlling the stoichiometry. For convenience, these aspects are discussed in detail under appropriate sections below but we point out here that the approaches have general application.
II. PHENOL–CARBONYL RESINS

Carbonyl compounds react with phenols at positions ortho or para to the hydroxy substituents as shown in the generalized Scheme 1. By far the most important aldehyde is formaldehyde, and acetone is the ketone most studied.

![Scheme 1. Reaction of carbonyl compounds with phenols](image)

A. Phenol–Formaldehyde Resins

Historically, the reaction of phenol with formaldehyde was of vital importance to the polymer industry, being one of the first totally synthetic commercial polymer resin systems developed. In 1907, Leo H. Baekeland commercialized, under the tradename ‘Bakelite’, a range of cured phenol–formaldehyde resins, which were useful in producing heat-resistant molded products. Since this early work, phenol–formaldehyde resins have been used in many applications, including refractory compounds, adhesives, thermal insulation and electrical industries.

Some of the factors identified in determining the final properties of these resins are the phenol–formaldehyde ratio, pH, temperature and the type of catalyst (acid or alkaline) used in the preparation of the resin. The phenol–formaldehyde ratio (P/F) (or formaldehyde to phenol ratio, F/P) is a most important factor as it leads to two different classes of synthetic polymers, namely Novolacs and resoles. The first class of resins, Novolacs, is produced by the reaction of phenol with formaldehyde with a P/F > 1 usually under acidic conditions (Scheme 2a). Resoles are produced by the reaction of phenol and formaldehyde with a P/F < 1 usually under basic conditions (Scheme 2b).

Novolacs are thermoplastic polymers that require an ‘additive’ to enable further curing and the formation of insoluble and infusible products. Often, the additive is a formaldehyde source such as hexamethylenetetramine (HMTA). On the other hand, a resole is capable of forming a network structure by the application of heat.

In effect, the two resin classes result from the deliberate selection of the reaction conditions to control the functionality of the system. However, since there is some confusion and contradiction in the literature regarding functionality in these systems, we will attempt to clarify this issue here.

B. Functionality in Phenol–Formaldehyde Resins

It is important to define the terms used in describing functionality and to clearly distinguish between the actual and potential functionality and to show the relationship between stoichiometry and functionality. Functionality can be defined as the number of other molecules that a compound can react with. This definition of functionality also means that within step-growth polymerizations the actual functionality is dependent on stoichiometry. The phenol–formaldehyde reaction is a typical step-growth reaction in
SCHEME 2. Formation of phenol–formaldehyde resins: (a) Novolac resin, (b) resole resin

which the reactants are not present in the required stoichiometric amounts for complete reaction of all functional groups and hence the actual and potential functionalities need to be considered.

Consider phenol that has two ortho and one para position available for reaction (with either formaldehyde or the methylol group of the reaction product of phenol with formaldehyde). Clearly, phenol has a potential functionality of three and similarly formaldehyde has a potential functionality of two (Scheme 3).

SCHEME 3. Functionality of phenol and formaldehyde

For phenol and formaldehyde to achieve their full potential functionality they require the appropriate stoichiometry. In the above equation, phenol cannot react at three centres as there is insufficient formaldehyde. In fact, the actual functionality (f_{actual}) is only one in the equation shown. That of formaldehyde is two.

If we now extend this argument to a Novolac resin, we can clearly conclude that in these systems formaldehyde achieves its full potential functionality of two, which is when the potential and actual functionality are the same. On the other hand, phenol on average
Polymers based on phenols achieves a functionality of <2; within chain phenol residues have a functionality of two and the two end groups a functionality of one. In other words, the potential functionality of three for phenols is never achieved in a Novolac resin and the actual functionality is <2. We note that some scientists use 2.31 as the functionality of phenol in modelling calculations on Novolacs, even though it is acknowledged that this value has ‘no reliable scientific foundation’.

In the commercial synthesis of Novolac resin there exists the strong possibility that some chain branching will occur (Figure 1). Thus the actual functionality of individual phenols will vary depending on its position in the network.

Thus a fully branched phenol residue \(f_{\text{actual}} = 3 \) is counter-balanced by both linking phenol residues \(f_{\text{actual}} = 2 \) and chain ends \(f_{\text{actual}} = 1 \). Hence, the functionality of the phenols in Figure 1 averages out to 1.6. If we now consider the calculated value of \(f_{\text{actual}} = 2.31 \), it is clear that a highly crosslinked structure is required. That is, it is necessary to have extensive crosslinking to minimize phenol end groups \(f_{\text{actual}} = 1 \). Consequently, to approach a phenol functionality of 2.31, within the established molecular weight ranges for Novolacs (i.e. less than 1000), a structure as depicted in Figure 2 is required. Such a structure is extremely unlikely and, in any case, would not be expected to be soluble.

Therefore, the actual functionality of phenol in a Novolac must be less than 2. The figure often quoted of 2.31 has no chemical or physical meaning in terms of the structure of a phenol–formaldehyde resin. An actual functionality above 2 can only eventuate when the P/F ratio is greater than 1, that is, when gelation can occur.

Hence, by controlling the stoichiometry we can control the functionality and the molecular weight of the Novolac. The closer the P/F ratio approaches one, the higher the molecular weight.

In resoles, the actual functionality of the formaldehyde is controlled to be less than 2 and the actual functionality of the phenol may be 3 if sufficient formaldehyde is used or slightly less than 3 (Figure 3). In other words, every formaldehyde molecule that only

![FIGURE 1. A model Novolac structure where \(f_{\text{actual}}(\text{phenol}) = 1.6 \)](image)
FIGURE 2. A Novolac-type structure required to give a phenol functionality of $f_{\text{actual}} = 2.22$

FIGURE 3. A model resole structure which has $f_{\text{actual}}(\text{phenol}) = 2.5$ and $f_{\text{actual}}(\text{formaldehyde}) = 1.25$

reacts to the methylol stage has an actual functionality of 1 and contributes to the average figure of less than 2.

C. Novolac Resin Synthesis

Novolac resins are generally prepared by the acid-catalysed reaction of phenol and aqueous formaldehyde under reflux. Although strong acids such as sulphuric and hydrochloric acid can be used, the weaker oxalic and phosphoric acids give a less exothermic and more
controllable reaction. When the formaldehyde has been consumed, the volatile materials, including water, methanol and phenol are removed by vacuum distillation at temperatures up to 150°C.

1. Statistical Novolac resins

Under acidic conditions, hydroxymethylation and methylene bridge formation occur preferably at the para position. 13C NMR studies have shown that para–para bridges are the first to be formed followed by the ortho–para, and finally the ortho–ortho linkages.5,16 A study by Natesan and Yeddanapalli showed that para-hydroxymethylated phenol condenses more readily than its ortho-counterpart at 80°C and pH of ca 1.17 This observation was supported by Kopf and Wagner and rationalized by proposing that the ortho-hydroxymethylphenol may be stabilized by internal hydrogen bonding.18 Furthermore, both the ortho- and para-substituted phenols preferentially condensed with the para positions of either phenol or dimers.

Thus, in general, Novolac resins typically consist of 8 to 10 phenol units linked via methylene bridges (−CH$_2$−) either ortho or para to the hydroxy group. A statistical Novolac resin is illustrated in Figure 4.

2. High ortho–ortho linked Novolac resins

The structure of the Novolac resin can be manipulated by adjusting the pH and by the addition of divalent metal salts of Ca, Mg, Zn, Cd, Pb, Cu, Co and Ni as catalysts.
These are commonly termed ‘high ortho’ Novolacs. Zinc acetate is the most commonly used catalyst. The initial reaction is proposed to occur through chelation of phenol and formaldehyde through the metal acetate (Scheme 4).

The chelated intermediate is then transformed into ortho-methylolphenol, as evidenced by both 1H NMR and gel permeation chromatography (GPC) studies.

A series of exclusively ortho–ortho linked low molecular weight Novolac resins derived from phenol and formaldehyde, acetaldehyde, and isobutyraldehyde has also been synthesized.

An interesting property of ortho-linked Novolacs is their high acidity, referred to as ‘hyperacidity’. Sprengling proposed that the strongly acidic proportion of linear ortho-linked di-, tri- and tetra-nuclear oligomers (in comparison to similar isomers) was accounted for by stabilization of the mono-anion via strong intramolecular hydrogen bonding (Scheme 5).

Many workers have since investigated this phenomenon in higher oligomers. Higher acidity values are observed with increasing chain length as found for linear oligomers with a terminal p-nitrophenol unit, which may stabilize the mono-anion. Bulky ortho substituents at the other end of the molecule resulted in even higher acidity. An even greater increase in acidity was found when the p-nitrophenol was positioned along the chain interior.

3. Structurally uniform ‘pure’ Novolac structures

Novolac resins may contain a highly complex mixture of homologous compounds. Over 10,000 isomers are possible for linear Novolac containing 10 phenolic nuclei, while branched and cyclic variations further increase this number. Possibly of greater importance is the molecular conformations and entanglement encountered by these isomers as a result of intra- and inter-molecular hydrogen bonding. Investigations of the reactivity of ortho-linked oligomers towards formaldehyde under acidic conditions showed that as the chain length is increased, the shielding and deactivating effects of intramolecular hydrogen bonding decreased the reactivity. There is recent evidence to suggest that in solution at least, a large proportion of the ortho-linked oligomers adopt pseudo-cyclic conformations. The molecular freedom of liquid resins may be somewhat restricted by such hydrogen bonding, thereby hindering their ability to adopt conformations favourable for chain extension or crosslinking.
The commercial importance of phenol–formaldehyde resins has resulted in extensive studies of these systems, with the aim of identifying the reaction mechanisms and intermediates that occur during subsequent polymerization reactions. However, the complexity of Novolac-type systems has made a detailed understanding of the subsequent chemical processes and their relationship to the physical properties of the final polymerized product difficult. Thus, it is necessary to simplify the system in order to more readily unravel this complexity. Model compounds are frequently used to understand complicated chemical systems and their application to phenol–formaldehyde systems has been well documented18,37,38.

D. Model Compounds of Novolac Resins

Recently, pure compounds which have molecular weights of the same order as commercial Novolacs have been prepared9,39–40 and used to calibrate GPC systems and to study the chemical reaction, for example, with HMTA.

1. Ortho-linked pure compounds

The synthetic scheme used for the preparation of the pure compounds is based on the reported ion-assisted ortho-specific phenol–formaldehyde reaction developed by Casiraghi and coworkers26. Thus a series of ortho-linked pure phenolic compounds, e.g. 2, can be synthesized which contain the maximum number of para-reactive sites and a small number of ortho-sites from 1 (Scheme 6)41.

Manipulation of the reaction conditions can result in the preparation of a series of pure ortho-linked homologues, like those shown below.
SCHEME 6. Reagents and conditions: i. EtMgBr (1 equiv), Et₂O, 25°C, 30 min, then benzene, 25°C to 80°C, paraformaldehyde (0.5 equiv), 20 h
2. Other structural isomers

The synthetic methodology can also be extended to generate a series of compounds 6 that only contain para-reactive sites. Thus ortho-cresol 3 was directly coupled with 4 to give dimer 5 (Scheme 7). Theoretically, conversion of 3 to 5 requires 0.5 equivalents of formaldehyde. When the amount of formaldehyde is increased, trace amounts of an aldehydic product are formed. This is confirmed by the characteristic 1H NMR signals of the hydroxyl and aldehydic protons. This strongly suggests that excess formaldehyde hinders the coupling of two phenolic units due to the complexing nature of formaldehyde with the metal phenoxide intermediate\footnote{42}.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=0.8\textwidth]{scheme7.png}};
\end{tikzpicture}
\end{center}

\textbf{SCHEME 7.} Reagents and conditions: i. EtMgBr (3 equiv), Et$_2$O, 25$^\circ$C, 30 min, then benzene, 25$^\circ$C to 80$^\circ$C; ii. EtMgBr (2 equiv), Et$_2$O, 25$^\circ$C, 30 min, then benzene, 25$^\circ$C to 80$^\circ$C, para-formaldehyde (0.5 equiv), 20 h

3. Para-linked compounds

The synthesis of an analogous series of model compounds containing the maximum number of free ortho positions is more complex, requiring protection/deprotection methodology to control the regioselectivity of the coupling reaction. This type of methodology has been applied to prepare a series of structurally controlled model compounds from 7 via 8 and 9 (Scheme 8).

Compound 9 is a key intermediate in the synthesis of both linear and branched model octamers containing only free ortho positions. The tetramer 9 can be conveniently deprotected using tetrabutylammonium fluoride (TBAF)\footnote{13} to afford the first model compound, tetramer 10.

The synthesis of the branched system was carried out in two steps from tetramer 9, where coupling of the magnesium bromide salt of bis(silylated) tetramer 9, using the
SCHEME 8. Reagents and conditions: i. TBSCl (1.2 equiv), imidazole, DMF, 25°C, 5 h; ii. Mg (1 equiv), EtBr (1 equiv), Et$_2$O, 25°C, 30 min; iii. 6, Et$_2$O, 25°C, 30 min, then benzene, 25°C to 80°C; iv. paraformaldehyde (0.5 equiv), 80°C, 20 h; v. TBAF, THF, 0°C, 30 min

standard conditions, afforded the carbon skeleton 11 required for the branched octamer, which can be deprotected to afford the free phenolic compound 12 (Scheme 9).

Preparation of the analogous linear system is more complex, since coupling at the alternate ortho position requires an additional protection step followed by a deprotection to unmask the para terminal end of 9. The desired tetramer 13 was generated by treating 9 with the more robust silyl protecting group tert-butyldiphenylsilyl chloride44 (TBDP-SCl). Selective deprotection of the fully protected tetramer 13 is achieved by employing hydrogen fluoride/pyridine45 or boron trifluoride etherate46 at 0°C to afford 14. Selective
coupling through the \textit{para}-cresol terminus affords octamer 15 and full deprotection with TBAF gives the linear octamer 16 (Scheme 10).

By applying this methodology a series of \textit{para}-linked structural isomers (17–20) has also been synthesized via coupling of the \textit{ortho–para} dimer42.

\textbf{SCHEME 9. \textit{Reagents and conditions:} i. Mg (2 equiv), EtBr (2 equiv), Et_2O, 25°C, 30 min; ii. 9, Et_2O, 25°C, 30 min, then benzene 25°C to 80°C; iii. Paraformaldehyde (0.5 equiv), 80°C, 20 h; iv. TBAF, THF, 0°C, 10 min}
SCHEME 10. Reagents and conditions: i. TBDPSCI (4.5 equiv), imidazole (4.5 equiv), DMF, 60°C, 10 h; ii. HF–pyridine, pyridine, THF, 0°C to 25°C, 4.5 h or BF₃•Et₂O, CHCl₃, 0°C to 25°C, 3 h; iii. EtMgBr (2 equiv), Et₂O, 25°C, 30 min, then benzene, 25°C to 80°C, paraformaldehyde (0.5 equiv) 20 h; iv. TBAF, THF, 25°C, 6 h
E. The Structure of Novolac Resins

In theory, Novolacs can have ‘ortho–ortho’, ‘ortho–para’ and ‘para–para’ methylene bridges. A consequence of the different linking structures is that they dictate the free ortho or para position and, of course, the structure of the Novolac resin.

Similarly, in the preparation of low molecular weight analogue, bis-phenol F, preferential reaction to form ‘para–para’ links is achieved using acid catalysis. Bis-phenol F is an important intermediate in the synthesis of epoxy resins (see Section IV.B).
F. Reaction of Novolacs with HMTA

Novolacs are thermoplastic polymers that require the addition of a formaldehyde source to enable further curing and the formation of insoluble and infusible products.

1. Hexamethylenetetramine (HMTA)

The most commonly used crosslinking agent is hexamethylenetetramine (HMTA), which is produced by the reaction of formaldehyde and ammonia, as detailed in Scheme 11:

\[
6\text{CH}_2\text{O} + 4\text{NH}_3 \rightleftharpoons \text{N} = \text{N} = \text{N} + 6\text{H}_2\text{O}
\]

SCHEME 11. Formation of hexamethylenetetramine (HMTA)

HMTA is very soluble in water, with 87.4 g dissolving in 100 g of water at 20°C. However, it is less soluble in alcohols such as ethanol or methanol. HMTA readily sublimes at 150°C, while decomposition occurs at elevated temperatures, generally above 250°C. The thermal decomposition of HMTA occurs via cleavage of N−C bonds to yield methylamines as initial products. Its use as a reagent in organic synthesis has been reviewed as has its derivatives, preparation and properties. In aqueous acid solutions, HMTA will only hydrolyse after several hours at reflux despite having a pK_a value of 4.89 at 25°C. The hydrogen bonding characteristics of HMTA with water, CHCl_3 and CHBr_3 have been reported. Hydrogen bonded adducts with phenols and salts with acids are also known.

13C-labelled or 15N-labelled derivatives of HMTA have been synthesized together with 13C- and 15N-labelled HMTA.

2. Chemistry of crosslinking reactions involving HMTA

The reaction between Novolac resins and HMTA forms methylene linkages between the phenolic rings, resulting in an insoluble, infusible polymeric network. The advantages of using HMTA over other formaldehyde sources (e.g. paraformaldehyde or trioxane) include the absence of large amounts of gaseous products (such as formaldehyde or water) and the reduction of the temperature at which crosslinking occurs. Although the properties of the final resin are readily determined, relating these properties to the chemistry of the phenol−formaldehyde resin is more difficult and extremely challenging.

Various reports in the literature suggest that the reaction of a Novolac resin and HMTA proceeds faster at a free para position and hence a resin with predominantly 'ortho–ortho' linkages is desirable. Several mechanisms for the initial stages of curing of Novolac resins with HMTA have been proposed. Early studies suggested that the initial curing is a homogenous acid-catalysed reaction involving a trace amount of water in the Novolac to hydrolyse HMTA to α-amino alcohol. The acidic phenolic units would generate carberium ions from these α-amino alcohols, which then react with phenolic units to form benzylamines. This postulate is supported by the fact that the reaction rate increases with decreasing pH for both the Novolac resins and model systems and increasing phenol or water content. Other claims suggested that excess...
water could decrease the reaction rate. Katovic and Stefanic proposed an intermolecular hydrogen-bonding mechanism between Novolac and HMTA. The nitrogens of HMTA can hydrogen bond to the phenolic hydroxyl protons in Novolac chains that are originally self-associated through hydrogen bonding. As the temperature increases, two consecutive and temperature-dependent steps occur in the Novolac reaction with HMTA: (i) the hydrogen of the phenolic hydroxyl transfers to the HMTA nitrogen with the formation of ionized species; (ii) a hydrogen shifts from the ortho position of the ring to the oxygen anion. Then the nucleophilic ring carbon anion attacks a methylene group of HMTA and forms an initial methylene bridge at the ortho position of the phenolic rings. Once the breakdown of the HMTA molecule has begun, further reactions occur via either protonation of the tertiary amine or all amines, and gives rise to derivatives of Novolac.

The reactions between Novolac resins and HMTA have been examined using a variety of techniques. Recent studies have used NMR and have described the reactions between ortho- and para-phenolic reactive sites of Novolac resins and HMTA. Thus a combination of 13C and 15N high-resolution solution and solid-state NMR studies has been used to trace the changes in chemical structures through the curing process. As discussed earlier, before curing, the Novolac and HMTA are hydrogen bonded through the phenolic hydroxy group and the nitrogen of HMTA. As the curing temperature initially increases to 90–120°C, the curing reactions start, and the initial intermediates formed are various substituted benzoazole and benzylamine-type molecules. Triazine diamine and ether-type structures are also formed during the initial curing stage. The reaction mechanisms involved are complicated and a number of different mechanisms may occur concurrently. A further increase in temperature causes decomposition and reactions of these initial intermediates to produce methylene linkages between phenolic rings for chain extension and crosslinking, together with amide-, imide- and imine-type intermediates by side-reactions such as oxidation and dehydrogenation, whereby NH$_3$ is liberated from the resins. Methyl-substituted products are also formed in the decomposition/reaction. A small amount of formaldehyde, liberated from the decomposition of the ether intermediates to produce methylene linkages, could also play a role in side-reactions. At high temperatures, various benzoazole, benzylamine and imine intermediates can be oxidized by air to form numerous amide and imide structures. The aldehyde groups and perhaps even carboxyl groups also form in the oxidation. The various proposed reaction intermediates are outlined in Scheme 12.

3. Reactions of model compounds with HMTA

Hatfield and Maciel identified 15 possible intermediates involved in the curing of Novolac with HMTA. Recently, the Solomon Group conducted a major study investigating the mechanism of the reaction between Novolac and HMTA. Model compounds, the possible reaction intermediates, were produced and their subsequent thermal reactions were investigated. Knop and coworkers reviewed the work recently and this chapter will briefly describe the major findings from these studies.

The study initially established that benzoazines and benzyl amines are the key intermediates in the curing of the Novolac with HMTA. Benzoazine was formed by reaction of HMTA with 2,4-xylenol while benzyl amines and are formed with 2,6-xylenol (Scheme 13).

The study found that the reaction pathways for the ortho and para sites are different and that distinctly different mechanisms apply. In the case of the free ortho site, the reaction is dependent on the breakdown of the hydrogen bonding complex to form benzoazine, in contrast to the free para position where the reaction is governed by the breakdown of the amine intermediates. These results strongly suggested that interaction between phenolic entities is primarily controlled by hydrogen bonding, especially when...
SCHEME 12. Proposed reaction between Novolac and HMTA and involved reaction intermediates
a vacant ortho site was present. Although this interaction is relatively strong in the 2,4-xylenol individual case, when subjected to competing conditions such as for a Novolac resin, with 2,6-xylenol present, the reaction is strongly directed to the ortho position. An acid–base type relationship must be considered in the case of the 2,6-xylenol–HMTA reaction and, if significant concentrations of 2,4-xylenol are present in the mixture, the HMTA tended to preferentially hydrogen bond to the 2,4-xylenol. Therefore, in a mixed system containing both vacant ortho and para positions, the ortho site was found to preferentially react and the para positions take part in the secondary reactions. So only at low concentrations of 2,4-xylenol does the para position of the 2,6-xylenol begin to react with HMTA.

The study then investigates the decomposition of these intermediates or their reaction with model compounds.

a. Reactions of benzoxazine with itself and with model phenols. A model benzoxazine, 22, was heated under carefully controlled conditions, and the structural changes were studied by 13C and 15N NMR spectroscopy. The benzoxazine structure is relatively stable, and detectable decomposition only occurred at about 155 °C with the formation of methylene linkages between phenol rings. Various nitrogen-containing structures, such as amines, amides and imines, together with an alcohol etc. were also formed as side products. At 240 °C, the dominant product is methylene diphenol (26). The benzoxazine was then heated in the presence of 2,4-xylenol (21) or 2,6-xylenol (23) and the formation of the products followed by NMR spectroscopy. The study provided direct evidence of the formation of methylene linkages between phenol rings from the reaction of 22 with 21 or 23. The reaction pathways of the two systems were found to be different. The benzoxazine can react with 21 at low temperature (even at 90 °C), but with 23, reaction only occurred
SCHEME 13. Reaction of xylenol 21 and 23 with HMTA

above 135°C. In addition, 21 can react with 22 directly to form ortho-ortho dimer, while 23 reacts with the decomposition species of 22 to form ortho-ortho, ortho-para and para-para dimers.

b. Reactions of para-hydroxybenzylamine with itself and with model phenols. Benzyl amines 24 and 25 were heated and the decomposition products were monitored by NMR spectroscopy. The thermal decomposition resulted in the formation of para-para...
methylene linkages between phenolic rings. Only minor side products formed after heating to 205 °C. The bis(amine) \(24\) could form a methylene linkage via direct decomposition while the tris(amine) \(25\) broke down to bis(amine) \(24\) at about 90–120 °C. Side reactions resulted in the formation of various products during the process, but most of these were converted to the methylene linkage after heating to higher temperatures. When amines \(24\) and \(25\) were reacted in the presence of 2,4-xylenol \(21\) or 2,6-xylenol \(23\), the results\(^7\) indicate that \(24/25\) reacted with \(21\) to produce \(para–para\), \(ortho–para\) and \(ortho–ortho\) methylene linkages between phenolic rings. Heating \(24/25\) with \(23\) only produced \(para–para\) methylene linkages and the reaction occurred at a relatively lower temperature compared to the self-decomposition of \(24/25\). Numerous side-products were produced during the process, but most of these reacted further to form methylene linkage. Similarly, when \(25\) was heated with \(21\) or \(23\)^7, both the decomposition of \(25\) and the reaction between them lead to methylene-bridged phenolic structures.

G. Synthesis of Resole Resins

Resoles are synthesized from a phenol to formaldehyde mole ratio less than one. They will harden (cure) on heating and in this respect contrast with Novolacs, which require an additional crosslinking agent for curing to occur.

Resoles are typically generated in aqueous solution under base-catalysed conditions. Early work focused on the rate of reaction, either by the disappearance of phenol and formaldehyde\(^8\) or by the appearance of hydroxymethyl phenols\(^8\)\(^1\)–\(^8\)\(^3\). It was shown that the rate of reaction between phenol and formaldehyde is a function of pH\(^8\), suggesting that the overall reaction proceeds with the generation of a phenolic anion, followed by the addition of formaldehyde\(^1\)–\(^6\), generating a complex mixture of different hydroxymethyl phenol compounds—the resole resin (Scheme 14).

Addition of formaldehyde can occur at three sites; the two sites \(ortho\) to the phenolic \(OH\) and one site \(para\) to the \(OH\). Once hydroxymethyl compounds are available, there is the potential for reactions that generate dimers, trimers and higher units. These units can further condense to form \(ortho–ortho\), \(ortho–para\) or \(para–para\) methylene linkages.
Research has been aimed at understanding the mechanism of these linking reactions. This includes the reactivity of the ortho and para sites, possible intermediates involved in these linking reactions and behaviour of these higher units to further crosslinking. Attempts have been made to link the properties of the cured resin or carbon derived from these resins to the initial resin formulation and structure. As the crosslinking in a resole is very complicated, various model compounds have been used to investigate the chemistry.

H. Model Compounds of Resoles

Although the overall reaction mechanism is generally understood, the vast commercial importance of phenol–formaldehyde resins has seen numerous studies aimed at a more detailed understanding of the chemistry involved and the structures formed. In these studies extensive use has been made of model compounds, that is, compounds in which the reaction pathways are restricted, and these studies will be considered in this section.

1. Ortho-hydroxyl model studies

Cured Resole resins are hard and insoluble, which makes it difficult to study the reaction by conventional analytic techniques. By using model compounds which have two of the three reactive sites on the aromatic ring blocked, the products of the reaction become relative simple to separate, analyse and characterize. Solomon and coworkers84 used the model compounds 2,4-dimethylphenol (21), 2,6-dimethylphenol (23) and 2-hydroxymethyl-4,6-dimethylphenol (27), which contain some of the functional groups found in resole resins, to gain an insight into the curing process for ortho-hydroxymethyl groups.

\[\text{(21)} \quad \text{(23)} \quad \text{(27)} \]

\textit{a. Reaction of 27.} The self-reaction of 2-hydroxymethyl-4,6-dimethylphenol (27) at 120 °C produced bis(2-hydroxy-3,5-dimethylbenzyl) methane (26) and bis(2-hydroxy-3,5-dimethylbenzyl) ether (28) as major products (Scheme 15), with the ether being produced much faster than the methylene compound.

In contrast to the self-reaction of 27, the reaction of 27 with one and two molar equivalents of 2,4-dimethylphenol (21) gave three products (Scheme 16): the ether (28), the methylene compound (26) and a phenoxy compound (29).

The initial rates of ether formation in the case of a 1:1 mixture of 21 and 27 and the self-reaction of 21 are approximately the same. As more 21 is added, the effect of dilution becomes apparent and the rate of ether formation falls.

The methylene compound 26 forms much faster in the presence of 2,4-dimethylphenol (21) than by self-reaction. However, the relative rate of methylene formation does not
20. Polymers based on phenols

SCHEME 15. Products from the self-reaction of 27

SCHEME 16. Products from the reaction of 27 with 2,4-dimethylphenol (21)
change between one and two equivalents of 21; the time taken to convert a given fraction of 27, and hence reach a given yield, is independent of the amount of 21 present.

The behaviour of 2-hydroxymethyl-4,6-dimethylphenol (27) in the presence of 2,6-dimethylphenol (23) was virtually indistinguishable from the self-reaction of 2-hydroxymethyl-4,6-dimethylphenol; thus the rates of formation of ether and methylene compounds are similar. No significant quantities of ortho–para linked methylene compound were generated over the timescale studied. A small quantity of the phenoxy derivative 30 was isolated.

\[
\text{\chem{OH}} \quad \text{\chem{O}} \quad \text{\chem{\backslash O - \backslash}} \\
\text{(30)}
\]

Compound 27 was then heated with 21 and 23 in a 1:1:1 molar ratio, and similar trends were observed. Methylene formation in the 1:1:1 mixture initially (<150 minutes) followed the curve of 1:1 and 1:2, but then dropped away. Ether formation fell midway between 1:1 and 1:2 in the 1:1:1 mixture. The limiting ether yield tended towards an asymptote in the following order: self-reaction of 27 (80%) > 1:1 of 21 and 27 (60%) > 1:1:1 of 21, 23 and 27 (50%) > 1:2 of 21 and 27 (35%).

2. Ortho-quinone methide

Quinone methide has been previously suggested in resole formation3. Solomon, and Wentrup and coworkers85 have recently observed and isolated quinone methide 31 at low temperature by flash vacuum pyrolysis86,87 (FVP) of 27, which was sublimed at \(ca\ 45^\circ C\) in high vacuum (ca \(4 \times 10^{-6}\) mbar). The vapour of sublimed 27 was mixed with argon as a carrier gas and passed through a pyrolysis tube. The pyrolysate was immediately condensed on a KBr, BaF\(_2\) or CsI target as an argon matrix at 7–12 K and IR spectroscopy of the matrix was conducted at that temperature. At a pyrolysis temperature of 500 \(^\circ\)C, 4,6-dimethyl-o-quinone methide (31) was observed in the matrix together with unchanged 27 (Scheme 17). Above 650 \(^\circ\)C, no starting material 27 survived, and 31 and the eliminated H\(_2\)O were trapped on the target. The IR spectrum of 31 was generated by pyrolysis of 27 at 600 \(^\circ\)C and 31 was isolated in an Ar matrix (Figure 5). The main bands of 31 were shown at 1668, 1642/1637 and 1569 cm\(^{-1}\), due to C=O and C=CH\(_2\) stretching.

FVP was then performed on a preparative scale, whereby the thermolysate was isolated in a U-tube at 77 K. The use of a U-tube87, rather than a cold finger, avoids regeneration of the starting material by reaction of quinone methide 31 with eliminated H\(_2\)O. At a pyrolysis temperature of 800 \(^\circ\)C, all starting material had reacted, and a mixture of trimer 32 and tetramer 33 of the quinone methide 31 was isolated from the U-tube in a nearly 1:1 molar ratio and in 98% absolute yield (Scheme 18).

The same trimer and tetramer were also observed by IR spectroscopy in a warm-up experiment of quinone methide 31 isolated neat at 7.6 K on a KBr target. In this
SCHEME 17. Formation of quinone methide 31 by FVP

FIGURE 5. IR spectrum of o-quinone methide 31 (positive peaks) at 7.6 K in an Ar matrix, generated by FVP of 27 (negative peaks, arising from a subtraction of the spectrum of 27 from the FVP spectrum) at 650°C
SCHEME 18. Formation of dimer 34, trimer 32, tetramer 33 and substituted ethane 35
experiment, the FVP was conducted at 700°C without Ar as a carrier gas. A very slow sublimation rate of the precursor 27 was used, since this permits complete conversion of 27 as demonstrated by the IR spectrum. After deposition, the target was slowly warmed to room temperature. IR spectroscopy revealed that the quinone methide 31 had disappeared and precursor 27 had regenerated on the target (reaction starting above −90°C). Because the water eliminated from 27 was co-condensed on the target, the regeneration of 27 was simply due to reaction of 31 with H₂O. Other major peaks appeared at 1732 and 1696 cm⁻¹ and correspond to the main bands of trimer 32 (1695 cm⁻¹) and tetramer 33 (1695 and 1731 cm⁻¹). The material on the target was dissolved in chloroform and examined by GC-MS. Three peaks were observed. Peak 1, containing 94.6% of the mixture according to integration, is the precursor 27. Peak 2 corresponded to ca 3% of the mixture and is due to trimer 32. The third peak represented ca 2.5% of the mixture and had a mass of 270 a.m.u. This is different from the tetramer 33 observed by IR spectroscopy at room temperature in the warm-up experiment. This compound was confirmed as bis(2-hydroxy-3,5-dimethylphenyl)ethane (35) (Scheme 18). A quantitative yield of compound 35 was obtained when trimer 32 was thermolysed in the presence of water. The mass spectrum of trimer 32 indicates that its molecular ion can easily fragment into dimer and monomer. This suggests that 32 is a better precursor of quinone methide 31, as no by-products would be formed, thus allowing an investigation of the behavior of quinone methide without by-product interference.

Pyrolysis of 32 was carried out at 850°C. The trimer was sublimed at ca 105°C with argon as a carrier gas. Under these conditions, pure quinone methide 31 was matrix isolated on a 7.6 K KBr target as evidenced by the IR spectrum. In a similar experiment, the pyrolysis of trimer 32 was carried out without argon. When the neat quinone methide 31 was warmed above −92°C, new IR bands appeared, and the absorptions due to the quinone methide decreased. These newly formed bands became much stronger when the target was warmed further to −65°C, and they are attributed to the formation of dimer 34 and trimer 32 by comparison with the IR spectrum of the trimer obtained in the preparative FVP work. Moreover, a low temperature NMR experiment revealed the existence of dimer 34. After the target was warmed to room temperature, additional bands due to the tetramer appeared. It was readily concluded that dimerization would be the first step of reaction of quinone methide 31.

a. First-order behaviour. The observed behaviour by which both the ether 28 and methylene compound 26 were formed strongly suggests that in both cases the reaction mechanism includes a first-order rate-limiting step. In a first-order step, the time taken for a given fraction of the starting material to react is independent of the starting material concentration. The rate of formation of 26 when 21 and 27 were reacted together was unaffected by doubling the ratio of 21 to 27. When the concentration of 27 was halved by addition of 23, the rate of methylene formation and ether formation was unchanged from the self-reaction case.

The presence of a first-order rate-limiting step suggests that the active species is ortho-quinone methide (31), formed by the intramolecular loss of water from 27. As described in the previous section, it is the proximity of the hydroxymethyl group to the phenolic OH which allows water loss to occur intramolecularly, and this step would be first-order in 27.

Compound 23 was found to have minimal reactivity towards 27 in the melt reaction, suggesting that ortho-quinone methide does not react with the available para position. This was unexpected since para preference is observed in phenolic resins. Therefore, this behaviour was further investigated with the quinone methide trimer 32.

The trimer 32 was heated separately in glass ampules at 150°C by itself, and with phenol, 2-methylphenol, 2,4-dimethylphenol (21) and 2,6-dimethylphenol (23) in a 3:1
phenol trimer molar ratio. Under self-reaction conditions a partial retro-Diels–Alder reac-
tion occurred, giving one equivalent each of the *ortho*-quinone methide (31) and the
bis(2-hydroxy-3,5-dimethylphenyl) ethane (35) (Scheme 19).

![Scheme 19](image)

SCHEME 19. The partial retro-Diels–Alder reaction of 32 at 150 °C

The generation of 31 was deduced from the formation of methylene-bridged phe-
nol derivative 36 (Scheme 20). The isolation and direct observation of 31 at cryogenic
temperatures has been described previously.

With phenol or 2-methylphenol, the *ortho*-quinone methide (31) was found to react
tirely at free *ortho* sites. The exclusive *ortho* attack was demonstrated by the distinctive
\(^{13}\text{C}\) signal of an *ortho–ortho* methylene bridge at 30 ppm\(^{84}\) with no signal observed at
35 ppm, where an *ortho–para* methylene bridge would appear\(^^{88}\). The \(^1\text{H}\) NMR of the
crude reaction mixtures shows the 1:1 molar ratio of methylene bridge to ethylene bridge.

With 2,4-dimethylphenol (21) the reaction was found to proceed much faster than with 2,6-
dimethylphenol (23); the \(^1\text{H}\) NMR show much greater loss of trimer 32, and corresponding
formation of products, in the presence of 21 compared with 23.
SCHEME 20. The exclusive reaction of 31 at the free ortho site of phenol and 2-methylphenol

From these results we would predict that a high ortho-bridged resin would be formed when conditions favour the production of ortho-quinone methide. This would require a resin which contains predominately ortho-hydroxymethyl substituents, and condensation at high temperature, preferably in solvents which encourage dehydration of the ortho-hydroxymethyl functionality. The conditions which have been demonstrated to generate a high ortho-phenol formaldehyde resin are high condensation temperatures in solvents which generate an azeotrope with water. The catalysts used have been shown to promote ortho addition of formaldehyde; subsequent involvement in the condensation reaction has not been demonstrated.

Higuchi and coworkers also demonstrated a genuine first-order kinetics in the condensation reaction of 2-(hydroxymethyl)phenol under basic catalysis. They used LC-MS to monitor the reactant and reaction products. Three main products, dimer 39, trimer 40 and tetramer 41 (Scheme 21), were observed. By measuring the disappearance of the reactant 2-(hydroxymethyl)phenol, the first-order kinetics is confirmed.

3. Ether exchange reactions

The phenoxy-linked compounds 29 and 30 were isolated from both the reaction of 27 with 21 and 23. Such phenoxy compounds were not observed in the reaction of ortho-quinone methide 31 with any of the phenol and methylphenols. When the ether 28 was heated in the presence of D$_2$O, it decomposed slowly to 27. When mixed with 21, the phenoxy compound 29 was rapidly generated, along with 27 and 26. From this, it was concluded that the phenolic OH undergoes an ether exchange (Scheme 22), and it is the subsequent reaction of 27 with 21 which generates 26.
4. PF ratio effects

Many different structures have been identified within cured resole resins. The most common crosslink is the methylene bridge, though ethers can also be present in significant amounts. Phenoxy bridge, and carbonyl and methyl groups, have also been identified within the cured structure.

Model studies have shown that the ether can react with unsubstituted phenol to generate a phenoxy bridge. Reaction of the ether bridges has also been suggested as the source of the observed carbonyl and methyl functionalities observed in a cured resole. An alternative proposal involves the oxidation of hydroxymethyl groups, and scission of methylene bridges, respectively. Carbonyl and methyl groups can be regarded as broken crosslinks, and may well affect the final properties of the carbonized resin by reducing the degree of crosslinking and by decomposing more readily at high temperatures. If the structure of the cured resin is to be controlled, it is important to understand the processes which result in these types of groups and their subsequent behaviour at higher temperatures. Solomon and coworkers compared the curing and carbonization behaviour of two resole-type resins with a molar formaldehyde to phenol (FP) ratio of 1.2 and 1.8. They focused on the formation of carbonyl and methyl groups during curing, and the differences between the two materials during the heating.
SCHEME 22. Ether exchange between 28 and 21 generates 27 and the phenoxy derivative 29. 27 will either self-react, regenerating 28, or react with 21 to give the methylene 26.

There are significant differences between the 13C CP-MAS spectra of the cured resins with a formaldehyde/phenol (FP) ratio = 1.2 and FP = 1.8. There is no peak at 110 ppm in the FP = 1.8 resin, indicating complete substitution at the ortho position95,96, unlike in the FP = 1.2 resin. The cured FP = 1.8 resin contains methyl (10 ppm), phenoxy (150 ppm) and carbonyl groups (190 ppm)3,91 while the cured FP = 1.2 resin does not. Interrupted decoupling101,102 identifies the carbonyl in this material as an aldehyde.

The differences between FP = 1.2 and 1.8 materials do not support the interpretation that the carbonyl was generated by oxidation of a hydroxymethyl and the methyl generated by scission of a methylene bridge at typical curing temperatures (up to 200$^\circ$C). If the carbonyl and methyl groups were derived from hydroxymethyl and methylene bridges respectively, then the carbonyl and methyl intensities should change in proportion with the FP ratio. But they are undetectable in the FP = 1.2 material, while they are readily apparent in the FP = 1.8 material. It is also unlikely that hydroxymethyl groups will survive to sufficiently high temperatures to be oxidized. These are quite labile groups, readily generating quinone methides which subsequently react to give ether or methylene bridges84. Clearly, this mechanism cannot be the primary source of carbonyl and methyl groups.
The compounds with the linkage of ortho–ortho (42), para–para (43) and ortho–para (44) were heated to different temperatures. The CP-MAS spectra obtained from these materials showed that the carbonyl group is detectable after 4 hours at 160 °C and always appears first, and this observation is clearly not consistent with the previously proposed ether fragmentation mechanism, which requires simultaneous formation of the carbonyl and methyl functional groups. The CP-MAS spectra showed the material with all three possible ether orientations and crosslinking with bis(3,5-dihydroxymethyl-4-hydroxyphenyl)methane (THBF) 45 is an example. At the hardened stage and after heating at 160 °C for 4 hours the formation of carbonyl groups (190 ppm) without the corresponding generation of methyl groups can be seen.

The different behaviour of the FP = 1.2 and FP = 1.8 material shows that the formation of carbonyl and methyl groups is in some way dependent on the formaldehyde content of the starting resin. Hemiformal groups have been found in resole resins, and it was considered possible that they might be contributing to the formation of either or both the methyl and carbonyl groups, since the hemiformal content would be expected to increase with a higher initial formaldehyde content. However, the materials with large quantities of hemiformal groups were not observed to produce either methyl or carbonyl groups at a lower temperature than the THBF 45 cured materials.

Other points of difference between the FP = 1.2 and FP = 1.8 resins were considered. Phenoxy bridges, shown to be a product of ether exchange at a bridging ether87, are evident in the FP = 1.8 resin, and not in the FP = 1.2 resin, and it was concluded that the FP = 1.8 material contained significantly more ether bridges than the FP = 1.2 material at some stage of the curing process. Hydroxymethylphenols react faster with formaldehyde than unsubstituted phenols80,82,83,99–102, and hence hydroxymethyl groups are not distributed evenly on all phenol rings in the resin; instead, a mixture of heavily hydroxymethyl-substituted and much less substituted phenols is created. The formation of dibenzyl ether bridges requires hydroxymethyl groups on separate phenols. The distribution of hydroxymethyl groups makes this situation less likely in the FP = 1.2 resin, compared with the FP = 1.8 resin, than a simple consideration of the formaldehyde to phenol ratio would indicate.

If it is possible for quinone methides to be reduced to methyl phenols, we would predict this to be more strongly favoured, from a kinetic perspective, when the quinone
methide is generated in a highly crosslinked material with few or no free aromatic sites available for reaction; that is, when the quinone methide is unable to gain access to all but the nearest phenol rings and the reactive sites on those rings are already occupied. This extreme was tested by hardening THBF 45 itself. As predicted, methyl groups (5 ppm) are observable after 4 hours at 180°C in this material, but still unobservable in the formaldehyde and THBF 45 hardened resins at these conditions, and higher temperatures are required before methyl groups are observed. The overall proposed mechanism is summarized in Scheme 23.

Scheme 23. Proposed mechanism of ether scission, generating a hydroxymethylphenol and quinone methide, which subsequently react to give a carbonyl and methyl group, respectively

I. Phenol–Ketone Novolacs

Resins derived from ketones are not nearly as common as those prepared from aldehydes. However, an important industrial dimer is Bis-phenol A, made by the controlled condensation of acetone and phenol.
Bis-phenol A is an important intermediate in the manufacture of epoxy resins (see Section IV.B).

III. CARBON DERIVED FROM PHENOLIC RESINS

Phenolic resins have been used commercially as starting materials to produce glassy carbons with high carbon yields. The carbonization reactions of phenolic resins and the properties of the carbon materials derived from the resins have been investigated a great deal for several decades. The resins have also been applied as binding materials in carbon composites, reduction composites and refractories in the aluminium and steel industries. An understanding of the relationship between the structures of the starting polymer resins, the carbonization chemistry and the properties of the carbon materials obtained after pyrolysis is fundamental to the application and modification of the carbon materials. However, few studies have addressed the chemical processes that occur from curing through to subsequent carbonization of phenolic resins. The following section describes some recent publications addressing this area.

A. From Novolacs

Recently, Zhang and Solomon100 reported on the chemistry of reacting Novolac/furfuryl alcohol (FA) resins with HMTA. A highly crosslinked homogeneous network that incorporates both Novolac and furan entities is formed after curing the mixture to 205°C. Minor amounts of nitrogen-containing structures are generated in the process. The pyrolysis of Novolac and FA resins proceed by different reaction pathways; therefore, it was of interest to study the carbonization process of the homogeneous mixture of Novolac/FA resins. The chemical structure, especially the nitrogen structure in the carbon products obtained, is another interesting issue to be examined. They further reported the study on the carbonization reactions of HMTA-cured Novolac/FA resins. High-resolution, solid-state NMR techniques were used to follow the changes of chemical structure during the pyrolysis up to 800°C.

Two different Novolac resins in two Novolac/HMTA/FA formulations were studied with one being a high ortho-linked resin and the other a conventional resin. Carbonization reactions of Novolac/HMTA/FA resins mainly occur at a temperature range of 300—600°C, and aliphatic species disappear above 800°C. About 2–3% nitrogen still remains in the carbon materials obtained after baking to 800°C. The pyrolysis process can be influenced by the chemical structure of the starting Novolac resins (ca the ratio of ortho/para reactive sites) and the FA content in the mixed systems. Where a Novolac resin contains a high ratio of para-unsubstituted phenolic positions as reactive sites, the system undergoes a relatively fast reaction and the carbonization occurs at relatively lower temperatures, because the para sites are more reactive in both the curing and initial pyrolysis processes. A high FA content slows down the carbonization process, causing the intensities of aliphatic carbons to decrease more slowly and reactions occur at relatively high temperatures. Original Novolac structures and FA content in the systems also vary the nitrogen structures during the carbonization process and the structure distribution in the carbon materials obtained at 800°C.

B. From Resoles

Carbonized phenolic resins are usually highly microporous, with the amount of open micropores passing through a maximum at a carbonization temperature of 700°C to
20. Polymers based on phenols

800 °C and then falling at higher carbonization temperatures. Attempts to use this property to make molecular sieves have shown some success, but information on how micropores form and develop in carbonizing resins is limited.

Carbon precursors can be broadly divided into two different classes, graphitizable and non-graphitizable. Graphitizable materials develop a graphitic structure on heating to temperatures approaching 3000 °C. Phenol–formaldehyde resins are precursors for non-graphitic carbon, which remains highly disordered even on heat treatment to 3000 °C.

Graphitizable materials pass through a liquid crystalline (LC) phase while carbonizing, and it is probable that this ordered fluid phase is necessary for graphitization to occur. At its onset, parallel aromatic sheets start to form and grow. As the temperature is increased, this short-range order extends to larger and larger scales, the distance between aromatic sheets starts to approach that of graphite and ripples in the aromatic sheets are smoothed out. Phenol-derived resins are not observed to pass through this liquid crystalline phase. The extended, rigid network formed on the curing of a phenol–formaldehyde resin presumably works against the formation of a fluid phase during carbonization. So it is something of a puzzle that, although phenol-based resins are not graphitizable, 3,5-dimethylphenol (3,5-DMP) resins are reported to be graphitizable.

Solomon and coworkers have recently reported investigations into the carbonization behaviour of a range of resins derived from phenol, para-alkylphenols and 3,5-dimethylphenol with particular emphasis on the micropore structure of these carbonized materials. It was anticipated that through comparison of the carbonization behaviours of non-graphitizable (normal resole-type phenols) and graphitizable (3,5-DMP resoles) resins, the mechanism of the carbonization process from phenol could be further understood.

1. Early stage of carbonization

Three novel model compounds, bis(2-hydroxy-4,6-dimethylphenyl)methane (46), (2-hydroxy-4,6-dimethylphenyl-4′-hydroxy-2′,6′-dimethylphenyl)methane (47) and bis(4-hydroxy-2,6-dimethylphenyl)methane (48), were synthesized from 3,5-dimethylphenol. These were used to show that a resole-type resin formed from 3,5-dimethylphenol had a highly condensed, predominately linear structure, linked by ortho–ortho and ortho–para methylene bridges. This is quite unlike the behaviour of phenol-derived resole resins.

It was found that 46 would form 1,3,6,8-tetramethylxanthene 49 on heating in dilute solution (Scheme 24), and would crosslink if heated by itself. 13C CP-MAS solid-state NMR showed that the crosslinked material had a new carbon resonance at 30 ppm, and this was shown to be due to a CH2 group. Neither of these reactions occurred when bis(2-hydroxyphenyl)methane was used. Solid-state NMR was used to show that the resole resin from 3,5-dimethylphenol also had a CH2 peak at 30 ppm when heated to 300 °C.

It was concluded that the formation of a xanthene is a key step in the graphitization of 3,5-dimethylphenol resins. Xanthene formation is an efficient way of removing heteroatoms. This step would not be possible if the 3,5-dimethylphenol resin was not significantly ortho–ortho linked. However, the ortho–ortho methylene orientation, though essential, is not the only influencing factor. The methyl groups in the 3- and 5-positions also influence the xanthene formation process, as this reaction was not detectable in bis(2-hydroxyphenyl)methane under comparable conditions.

The formation of the xanthene also offers an explanation for the reports that contact with air must be avoided during the resin’s synthesis and curing, if a graphitizable material is to be obtained. Oxidation sensitivity is entirely consistent with a xanthene compound being the key intermediate, since they can be readily oxidized to form a xanthene-9-one.
2. Carbon from resole resins

The rewards for being able to understand and control the process of carbonization to give a particular pore structure are potentially enormous, with applications which include catalysis, carbon-in-pulp metal adsorption and separation processing, molecular sieves and bioethical applications.

Investigations into the carbonization behaviour of a range of resins derived from phenol, para-alkylphenols and 3,5-dimethylphenol with particular emphasis on the micropore structure of these carbonized materials has been carried out by Solomon and coworkers.113,114

Carbonized materials based on para-alkylphenols (50–53) had an unusually high degree of microporosity when compared with conventional phenol–formaldehyde resins. It was possible to generate high surface area materials from conventional phenol–formaldehyde resins by grinding the cured resin prior to carbonization. Carbonization of four phenol–formaldehyde powders containing a narrow particle size distribution showed that surface area increased rapidly as the resin particle size fell. The effect is extremely pronounced, and has not been previously reported.
It is not clear at this stage if the increase in surface area on grinding is due to the same mechanism responsible for the high surface area of the para-alkylphenol material. The para-alkyl material is extremely brittle and crumbly in texture, and it seems possible that the reduced functionality of the material has created a system of small domains, which on carbonization behave like finely ground phenol–formaldehyde resin.

A resin based on 3,5-dimethylphenol, reported110,111,116 to pass through a liquid crystal phase and to be graphitizable, was synthesized and carbonized. It was found that the differences between ground and unground samples were much less pronounced with this resin.

A range of behaviours and surface areas is obtainable from carbonized phenolic resins. This extreme variability means that care should be taken when comparing carbonized materials. However, it also potentially gives these materials the ability to be used in a wide range of applications where a well-defined pore size is important, including their use as molecular sieves, catalyst supports and as model carbons for investigating adsorption processes.

IV. OTHER POLYMERS WITH PHENOLIC COMPONENTS

Here we briefly mention some of the commercially important polymers with phenolic components.

A. Poly(phenylene oxides)

Oxidative coupling of phenols was first reported by Hay and coworkers in 1959118 and has since been developed to produce commercially useful polymers. In these reactions the parent compound, phenol, has a potential functionality of four, that is the two ortho and the one para position of the aromatic ring and the phenolic group. Not surprisingly, the commercially useful polymers are made from substituted phenols in which the potential functionality is reduced to two. Of these phenols 2,6-dimethylphenol or ortho-xylene has been developed to a commercial polymer, poly(2,6-dimethyl-1,4-phenylene oxide) (54). The General Electric Company sells this as a blend with polystyrene under the trade name Noryl.
The oxidative coupling uses a copper-catalysed system and a base, usually an aliphatic or heterocyclic amine, and oxygen as the oxidizing agent. In broad terms, free-radical processes are involved to explain the polymerization pathway which involves formation of the phenoxy radical, and coupling of two radicals through the attack by an oxygen-centred radical at the para position of another phenolic molecule (Scheme 25).

Scheme 25. Polymerization pathway of phenols under oxidation conditions

B. Epoxy Resins

Polymers that contain an epoxide group include various carbon skeletons, but by far the most important group commercially are formed from reaction of bisphenol A or bisphenol F with epichlorohydrin. By manipulation of the mole ratio of reactants and of the reaction conditions, a range of polymers is formed in which the value of \(n \) in formulas A–C varies from 0 up to about 12. Formulas A–C are idealized formulas and it is believed that variations from this occur. However, discussion of such matters is beyond the scope of this chapter and the reader is referred elsewhere\(^{119–121}\).
20. Polymers based on phenols

FORMULA A. Bisphenol A diglycidyl ethers ($n = 0, 1, 2, 3, \ldots$)

FORMULA B. Bisphenol F diglycidyl ethers

FORMULA C. Epoxy Novolac

Alternatively, a Novolac resin can be used in place of the bisphenol A or F and this gives rise to an epoxy resin with a higher functionality in terms of epoxide groups per molecules, such as formula D. Thus, whilst the bisphenol resins have a maximum of two epoxides per molecule (theoretical maximum, the actual value is slightly less), the Novolac can have up to about 10, the average chain length of commercial Novolacs.

C. Polyimides

The development of high-performance polymeric materials has been at the forefront of scientific endeavours due to the demands of the modern electronic and aerospace industries. Many classes of high-performance polymers have been reported, including poly(aryleneether)s, poly(phenylenesulphide)s, polymaleimides, polybenzimidazoles and polyimides. Polyimides combine good physical properties (i.e. durability, toughness etc.) with excellent thermo-oxidative stability, and as a consequence the markets and applications for polyimides have been expanding at an ever increasing rate. The number of literature references pertaining to polyimides has grown to more than 20,000 since their discovery^{122,123}. Further, the number of patents arising from basic research in polyimides has begun to outnumber the journal references, indicating the potential commercial significance of much of the work.
1. Historical perspectives

Historically, the origins of polyimides can be dated back to 1908, when Bogert and Renshaw124 reported that 4-aminophthalic anhydride 55 evolved water upon heating with the possible formation of a ‘polymolecular imide’ 56 (Scheme 26).

\[\text{Heat} \]

\[\begin{align*}
\text{(55)} & \rightarrow \left[\begin{array}{c}
\text{Heat} \\
\text{(56)}
\end{array} \right] + \text{H}_2\text{O}
\end{align*} \]

SCHEME 26. First reported reaction to form a polyimide

Improvements to the solubility and processability of the polyimides since then have resulted in a plethora of new discoveries and applications125–128. The growth in research and new developments has mirrored the needs of the electronics and aerospace industries for high-performance materials129.

2. Linear polyimides

Linear polyimides were one of the first types of polyimides to be used industrially. They are generally synthesized via a two-step scheme; one such example is the reaction

FORMULA D. Tri(hydroxyphenylene)methane triglycidyl ether
of the diamine with a dianhydride, in a 1:1 mole ratio, to form a polyamic acid. Following a cyclodehydration reaction, the linear polyimide and water is produced, as outlined in Scheme 27.

Polyimides of this type are extremely thermally stable, often with glass transition temperatures \(T_g \) above 300°C and good graphitizability. However, their brittleness and insolubility cause severe fabrication problems. Modification of the physical characteristics of the polyimides (i.e. molecular weight, fracture toughness, \(T_g \) etc.) can be achieved by altering the nature of the polymeric backbone.

A single material does not generally meet the requirements on high-performance polymers in modern applications. This problem can often be addressed by using a blend of two or more components whereby the desirable physical properties of both components can be expressed in a composite material. The general insolubility and infusability of linear polyimides do not often allow effective blending with other components. It has been found that by blending the polyimide at the polyamic acid stage, prior to the cyclodehydration reaction, some of the fabrication problems can be overcome. However, a satisfactory solution is yet to be developed for all the problems associated with linear polyimides.

3. Bis(maleimides)

Bis(maleimides) (BMI) are an important class of polyimides that are characterized by excellent thermal, electrical and mechanical properties. Bis(maleimides) are low molecular weight oligomers, generally containing terminal reactive groups. A general structure of a bis(maleimide) is shown in Scheme 28.

The maleimide group can undergo a variety of chemical reactions, including polymerizations induced by free radicals or anions. Nucleophiles such as primary and secondary amines, as well as thiophenoxides, can react via a classical Michael-type addition mechanism. The maleimide group can also act as a very reactive dienophile and is thus used in a variety of Diels–Alder reactions. By varying the nature of the linkages between the maleimide rings, the physical properties of the bis(maleimide) can be altered.

Bis(maleimides) have been useful in many applications, including the electronic industries, as materials for printed circuit boards and insulators, and in the aerospace industries in matrix resins for structural composites. Alternative polyimide systems have been investigated which are formed via the free-radical polymerization of the maleimide ring.

4. Poly(N-(substituted phenyl)maleimides)

The thermal and oxidative stability of polyimides is thought to be related to the combination of both the five-membered cyclic imide ring and the nature of the aromatic ring directly connected to the nitrogen (Figure 6).

Poly(N-substituted maleimides) are formed by the free-radical chain polymerization of the corresponding maleimide monomer. Unlike bis(maleimides), this class of polyimide contains only one reactive maleimide ring, producing a polymeric material characterized by high thermo-oxidative stability together with good physical properties (i.e. solubility, tensile strength, flexibility etc.). By altering the nature of the aromatic ring, the chemistry of the polyimide can be manipulated to suit the desired application. Recent studies have focussed on polyimides with phenolic ring substituents, as shown in Figure 7.

Matsumoto and coworkers have described the use of poly(N-(hydroxyphenyl)maleimides) in blends with phenol–formaldehyde resins which, following crosslinking
SCHEME 27. Synthesis of linear polyimides, where R = alkene, aromatic moiety etc.
with hexamethylenetetramine (HMTA), produce thermally stable composite materials. Other workers170,171 have incorporated poly(\(N\)-(hydroxyphenyl)maleimides) into the production of photoresists for integrated circuit (IC) technologies.

Copolymerization of the \(N\)-(hydroxyphenyl)maleimides with other monomers can produce polyimides with characteristics different from the homopolymer of either monomer. This has been utilized by Chiang and Lu172–174, who claimed that useful physical characteristics are exhibited by the copolymer of \(N\)-(hydroxyphenyl)maleimide with \(p\)-trimethylsilylstyrene (TMMS). Polyimide residue of the copolymer contributes
excellent thermal stability, while the TMMS component facilitates in the fabrication of the photoresist.

5. Synthesis and polymerization of N-(substituted phenyl)maleimide

The free-radical chain polymerization of maleimides and the N-substituted derivatives has been extensively studied and both homo- and copolymerization reactions occur readily with a variety of N-substituents and comonomers. Their reactivity is a consequence of the electron-withdrawing nature of the two adjacent carbonyl groups, which creates a very electron-deficient double bond.

Matsumoto and coworkers incorporated poly(N-(hydroxyphenyl)maleimides) into composite materials with phenol–formaldehyde resins. Poly(N-(4-hydroxyphenyl)maleimide) has been shown to form miscible blends with phenolic resins and, after crosslinking, produces composites with good thermal and chemical stability. The hardening or crosslinking agent most commonly used is hexamethylenetetramine (HMTA), to form an insoluble and infusable three-dimensional polymeric network (Scheme 29).

![Scheme 29](image)

SCHEME 29. Formation of phenol–formaldehyde/polyimide composite materials

The controlled free-radical chain polymerization to form poly(N-(hydroxyphenyl)maleimides) is poorly understood. The choice of solvent for the polymerizations is limited due to the poor solubility of both the monomeric and polymeric materials. Consequently, polar solvents that are often undesirable in free-radical polymerizations are employed (e.g. DMF). The free-radical chain polymerization of N-(hydroxyphenyl)maleimide monomers gives polymers in relatively poor yields with low molecular weights, which has been attributed to the free phenolic group and chain transfer to the solvent. Masking the phenolic functionality with an acetoxy group gives marginally higher molecular weights, but the effects of the solvent were still controlling the polymerizations.

Protection using a tetrahydropyranyl (THP) protecting substituent gives a similar polymerization pattern (Scheme 30).
SCHEME 30. Synthesis of N-(THP-oxyphenyl)maleimides

$$\text{N-O} \quad \text{O} \quad \text{O} \quad \text{R} \quad \text{N-O} \quad \text{O} \quad \text{O} \quad \text{R} \quad \text{O} \quad \text{O} \quad \text{PPTS}$$

SCHEME 31. Reaction between generalized N-(hydroxyphenyl)succinimides and HMTA to form substituted benzoxazines
The THP protected monomers have increased solubility in non-polar solvents, such as benzene, and when polymerized in this solvent they give significantly higher molecular weight polymers. The reactivity of the maleimide monomer was dependent on the substitution pattern of the phenyl ring, with the substituents in the ortho position tending to lower the molecular weight of the polymer formed. The THP substituent is readily removed either chemically or thermally to yield poly(N-(hydroxyphenyl)maleimides). All polymers exhibited excellent thermal stability and showed no evidence of degradation below 360°C. Reaction occurs between the phenolic ring of the polyimide and HMTA, to form benzoxazine-type derivatives. These reactions have been studied comprehensively using the monomeric model systems, N-(hydroxyphenyl)succinimides (Figure 8).
SCHEME 33. Reaction of benzoxazine succinimide derivative with a vacant p-position

+ tribenzylamine derivative
The mechanistic pathway taken during the reaction of the N-(hydroxyphenyl)succinimides and HMTA is dependent on the substitution of the phenolic ring. With compounds containing a free ortho position, the initial intermediates are benzoxazine-type species (Scheme 31).

If there is only a free para position, benzyamines are the initial intermediates, with both di- and tri-benzyamines observed (Scheme 32).

Compounds which contain both a vacant ortho and para position react initially at the ortho position to form benzoxazine-type intermediates until most of the ortho sites have been consumed; then reaction at the para position occurs to form the benzyamine-type products (Scheme 33).

The five-membered succinimide ring does not change the reactive intermediates observed, although it has a marked effect on the rate of their formation. N-(Hydroxyphenyl)succinimides, which have the succinimide ring ortho disposed relative to the hydroxyl substituent and which have a free ortho position, react up to 7 times faster than the corresponding phenolic compound without a succinimide ring. This increase in reactivity is thought to stem from the effects of the intramolecular hydrogen bonding and its possible consequences on the intermolecular bonding. Intramolecular hydrogen bonding would be most pronounced in the models that contain the succinimide ring ortho disposed relative to the hydroxyl group, which is reflected in the increased relative reactivity of those models towards HMTA compared to the models with the succinimide ring meta and para disposed.

V. REFERENCES

20. Polymers based on phenols

