FIGURE 5B
Burnout Velocity (V_B) is a function of Initial Weight (W_I) and Ballistic Coefficient (β_t).

\[
\beta_t = \text{Ballistic Coefficient} = \frac{W}{C_D A} = \text{ounces per inch}^2
\]
FIGURE 6A

Burnout Altitude (S_B) as a function of Initial Weight (W_I) and Ballistic Coefficient (β_t).

\[
\beta_t = \text{Ballistic Coefficient} = \frac{W}{C_{DA}} \quad \text{ounces} \div \text{inch}^2
\]
FIGURE 6B
Burnout Velocity (V_B) as a function of Initial Weight (W_I) and Ballistic Coefficient (β_t).

$$\beta_t = \text{Ballistic Coefficient} = \frac{W}{C_{DA}} = \frac{\text{ounces}}{\text{inch}^2}$$
FIGURE 7A
Burnout Altitude (S_B) as a function of Initial Weight (W_I) and Ballistic Coefficient (β_t).

\[\beta_t = \text{Ballistic Coefficient} = \frac{W}{C_{DA}} = \frac{\text{ounces}}{\text{inch}^2} \]
FIGURE 7B

Burnout Velocity (V_B) as a function of Initial Weight (W_I) and Ballistic Coefficient (β_t).

$$\beta_t = \text{Ballistic Coefficient} = \frac{W}{C_D A} = \frac{\text{ounces}}{\text{inch}^2}$$
B14 (no longer available)

FIGURE 8B
Burnout Velocity (V_B) as a function of Initial Weight (W_i) and Ballistic Coefficient (β_t).

$$\beta_t = \text{Ballistic Coefficient} = \frac{W}{C_{DA} \times \text{inches}^2}$$

B14
Burn Time $t_b = 0.35$ Sec.
Propellant Weight $W_p = 0.220$ Oz.
$1/2 W_p = 0.110$ Oz.
Average Thrust $T = 51$ Oz.