The Convenient Preparation of Per-acids

BY FRANK P. GREENSPAN

The commercial availability of concentrated hydrogen peroxide (90% by weight) has now made possible a convenient, safe and rapid preparation of per-acids by simple interaction with aliphatic acids in the presence of 1% sulfuric acid as a catalyst. The procedure used is substantially the same as that employed by D'Ans and Frey\(^1,2\) in their classical study of per-aliphatic acids.

Because of interest in the aliphatic per-acids for oxidation and hydroxylation reactions,\(^3\) an investigation has been made of the comparative rate of per-acid formation with concentrated hydrogen peroxide (90%) and more dilute hydrogen peroxide (30%). With 90% hydrogen peroxide, it has been possible to prepare 46.0% peracetic acid solutions and 35.8% performic acid solutions, six- to seven-fold higher concentrations than obtained with previously used procedures employing 30% hydrogen peroxide. Results with 90% hydrogen peroxide check well with those obtained by D'Ans and Frey\(^1,3\) using specially prepared 98–100% hydrogen peroxide.

Experimental

Peracetic Acid Formation with 90% Hydrogen Peroxide.—Ten grams of glacial acetic acid was added to specially cleaned volumetric flasks containing 0.11 ml. of concentrated sulfuric acid (1% concentration on total contents). The flask was immersed in a water-bath, agitated with an air stirrer, and maintained at 22–23°. 9.1 g. of 90% hydrogen peroxide was then added to the flask contents—the mole ratio of hydrogen peroxide to acetic acid being 1.5 to 1.0 as for succeeding experiments; 1 ml. aliquots were withdrawn at intervals, diluted to 100 ml. with ice cold water, and a 20-ml. aliquot titrated in the cold for hydroxylation. The procedure used is substantially the same as that by D'Ans and Frey\(^2\). Results are plotted as the number of moles of peracid formed per mole aliphatic acid vs. time, Curve 1. At the end of four hours, peracetic acid concentration is 48.0%, rising to a maximum of 48.0% within twelve to fifteen hours. D'Ans and Frey obtained an equilibrium within twelve to sixteen hours at a peracetic acid concentration of 51.5%.

Peracetic Acid Formation with 30% Hydrogen Peroxide.—Procedure was same as above using 28.8 g. of 30% hydrogen peroxide and 0.4 g. of sulfuric acid, Curve 2. Maximum peracetic acid concentration is 8.6% reached in eighty to ninety hours.

Performic Acid Formation with 90% Hydrogen Peroxide.—The procedure is same as for peracetic acid; 23.0 g. of formic acid (98–100%) reacted with 28.4 g. of 90% hydrogen peroxide in the presence of 1% sulfuric acid, Curve 3. Maximum performic acid concentration is 35.8% reached within thirty minutes compared to that of 48% reported by D'Ans and Frey in two hours.

Peracetic Acid Formation with 30% Hydrogen Peroxide.—The procedure is same as above using 9.2 g. of formic acid and 33.7 g. of 30% hydrogen peroxide in the presence of 1% sulfuric acid, Curve 4. Maximum performic acid concentration is 4.7% reached within two hours.

Stability and Storage.—Peracetic acid prepared from 90% hydrogen peroxide shows surprisingly good storage stability—75% of the peracid remaining after forty-nine days at room temperature for a typical unstabilized preparation, with still greater stabilities being shown by specially stabilized solutions (a sample containing 100 pts. per million of sodium pyrophosphate when tested after forty-nine days showed 94% of the original peracetic acid remaining). Performic acid is less stable, gassing being noticeable after a few hours of standing, and the effective concentration showing a definite decline in two hours. De-

\[\text{Fig. 1.} \quad \text{Curve 1, peracetic formation with 90\% hydrogen peroxide; curve 2, peracetic formation with 30\% hydrogen peroxide; curve 3, performic formation with 90\% hydrogen peroxide (showing some decomposition); curve 4, performic formation with 30\% hydrogen peroxide.}\]

\[\text{Time in hours.}\]

\[\text{Maximum performic acid concentration is 4.7\% reached within two hours.}\]

\[\text{Maximum peracetic acid concentration is 8.6\% reached in eighty to ninety hours.}\]

\[\text{Peracetic Acid Formation with 30\% Hydrogen Peroxide.}\]

\[\text{Procedure was same as above using 28.8 g. of 30\% hydrogen peroxide and 0.4 g. of sulfuric acid, Curve 2.}\]

\[\text{Maximum peracetic acid concentration is 8.6\% reached in eighty to ninety hours.}\]

\[\text{Performic Acid Formation with 90\% Hydrogen Peroxide.}\]

\[\text{The procedure is same as for peracetic acid; 23.0 g. of formic acid (98–100\%) reacted with 28.4 g. of 90\% hydrogen peroxide in the presence of 1\% sulfuric acid, Curve 3.}\]

\[\text{Maximum performic acid concentration is 35.8\% reached within thirty minutes compared to that of 48\% reported by D'Ans and Frey in two hours.}\]

\[\text{Peracetic Acid Formation with 30\% Hydrogen Peroxide.}\]

\[\text{The procedure is same as above using 9.2 g. of formic acid and 33.7 g. of 30\% hydrogen peroxide in the presence of 1\% sulfuric acid, Curve 4.}\]

\[\text{Maximum performic acid concentration is 4.7\% reached within two hours.}\]

\[\text{Stability and Storage.}\]

\[\text{Peracetic acid prepared from 90\% hydrogen peroxide shows surprisingly good storage stability—75\% of the peracid remaining after forty-nine days at room temperature for a typical unstabilized preparation, with still greater stabilities being shown by specially stabilized solutions (a sample containing 100 pts. per million of sodium pyrophosphate when tested after forty-nine days showed 94\% of the original peracetic acid remaining).}\]

\[\text{Performic acid is less stable, gassing being noticeable after a few hours of standing, and the effective concentration showing a definite decline in two hours.}\]

\[\text{De-}\]

\[\text{composition of the peracids is exothermic. It is therefore advisable to maintain peracetic acid during formation and storage below 30°.}\]

\[\text{Acknowledgment.}\]

\[\text{The author wishes to thank Patricia Hogan and A. June Menge for aid in phases of the analytical work.}\]

\[\text{CONTRIBUTION FROM THE RESEARCH DEPARTMENT OF THE BUFFALO ELECTRO-CHEMICAL CO., INC.}\]

\[\text{BUFFALO, N. Y. RECEIVED DECEMBER 26, 1945}\]

\[\text{\boldmathβ,β'-Dipyridyl Ketone}\]

BY FRED LINSKER AND RALPH L. EVANS

Although no dipyridyl ketone has been reported to date, mention is made in the older literature\(^1\) of a high-boiling base which was obtained in small amount in the dry distillation of calcium nicotinate. From 20 g. of the calcium salt was obtained 0.6 g. of a new base which was analyzed as the chloroplatinate and at that time believed to be a dipyridyl compound.

In our search for a suitable method of preparing \(\beta,\beta'$-dipyridyl ketone we repeated Laiblin's experiment and confirmed his observations. A some-

\[\text{(1) Laiblin, Ann., 196, 160 (1879)}\]

\[\text{(2) D'Ans and Frey, Z. anorg. Chem., 84, 145–164 (1913).}\]

\[\text{(3) Swern, Billen, Findley and Scanlan, THIS JOURNAL, 62, 2305 (1940).}\]