SECURITY PRINCIPLES

- Protect the OS from malicious apps
- Protect apps from each other
- Only share the user’s private data with consent

https://wiki.mozilla.org/Apps/Security
FIREFOX OS == B2G

Firefox OS == FFOS == B2G
FIREFOX OS STACK

- Apps
- Gaia – UI
- Gecko – Browser Runtime
- Gonk – Underlying Linux OS
GAIA

- User interface for Firefox OS
- Apps: System, Homescreen & core apps required for phone usage (dialer, SMS, email, camera, music, etc.)
- Entirely HTML, CSS, JavaScript, only interface to underlying operating system is through Gecko Web APIs
- Third-party Apps can be installed alongside Gaia
GECKO

- The "application runtime" for Firefox OS (as well as Firefox, Fennec and Thunderbird)
- Gecko implements the open standards for HTML, CSS, and JS and makes those interfaces run well on all the OSes that Gecko supports
- Gecko consists of, among other things, a networking stack, graphics stack, layout engine, virtual machine (for JS), and porting layers
GONK

• The lower-level "operating system" of FFOS
• Linux kernel and userspace hardware abstraction layer (HAL).
• Common open-source kernel and several userspace libraries: linux, libusb, bluez, etc.
• Parts of the HAL are shared with the android project: GPS, camera, among others.
• Gonk is a **porting target** of Gecko (in the same way as there are Gecko ports for Mac OS X or Android)
BUNDLED & 3RD PARTY APPS

- All in the form of Open Web Apps
- HTML, JavaScript, CSS
TYPES OF APPS IN THE WORLD

- Websites
- Websites bookmarked on your phone homescreen
- Installed apps on your phone
- Installed apps on your computer
NOT JUST FOR FIREFOX OS

- FirefoxOS
- WebRT (Android)
- Firefox (Desktop)
TYPES OF APPS

• Web Content
• Installed Web Apps
• Privileged Apps
• Certified Apps

All just HTML, CSS, JS
REGULAR WEB CONTENT

• Normal web sites should have access to as many rich APIs as can be safely exposed to arbitrary content
• Only expose APIs that are safe to be potentially called by any website (with user consent)
• Permissions not remembered by default
INSTALLED WEB APPS

Essentially the same security model and behavior as normal web content, installable from anywhere

• Website plus a manifest file
• Manifest must be "application/x-web-app-manifest+json"
• Direct fullscreen access
• Higher storage quotas
• Can request access to: Geolocation API, Sensor API, Alarm API, FM Radio
PRIVILEGED APPS

Equivalent in security and functionality to native apps on other mobile platforms

- ZIP file format with manifest
- app://
- Content Security Policy
 - default-src *; script-src 'self'; object-src 'none'; style-src 'self' 'unsafe-inline'
- Reviewed & signed by trusted app store
- Ability to directly access higher-risk APIs: Alarm API, TCP Socket, Contacts API, Device Storage API, Browser API, WiFi Information API
CERTIFIED APPS

Intended for system-critical applications (i.e. Gaia). Very similar to privileged model except

- Ability to access system-critical APIs
- Content Security Policy
 - default-src *; script-src 'self'; object-src 'none'; style-src 'self'
- Never prompt for access (implicit)
- Direct access to: Background services, WebSMS, WebTelephony, WebBluetooth, MobileConnection API, Power Management API, Push Notifications API, Settings API, Permissions API
MANAGING APP DATA

Per-app separation of
• cookies
• localStorage
• appCache
• indexDB
Applications can be started in following ways

- Manually by the user (tap homescreen icon and system app manager launches the app)
- Background apps launched at startup by System App
- Web Activities, Alarm API, Notification API
- Embedding content does NOT run the app
- Apps cannot launch other apps directly
CLOSING APPS

Applications can be closed in following ways:
• Manually closed (via task manager)
• System will kill background apps when memory is low
Apps run inside mozApp iframes:

- Only the system app may embed these type of iframes
- Creates a separate data jar for the App (separate principal)
- Apps run inside a content process (not parent process)
For apps which will load a lot of other web pages
• In child, `window.top===window` (!`window.parent`)
• Parent frame allowed limited cross-domain access, such as getting current location, listen for certain child events
TYING IT TOGETHER

• System embeds app
• App embeds iframes
• Separate cookies for iframe vs. mozBrowser
PERMISSIONS
OBTAINING PERMISSION

All apps follow the same permission model
• Permissions need to be declared in manifest
• Implicit permissions: granted without prompt
• Explicit permissions: granted by user consent
Prompt for permissions only when they’re needed

Permission prompts are managed automatically; app just calls a webAPI
The Power of Defaults

Installed web application: All explicit permissions are requested at runtime . . . and not persisted by default.

Installed privileged application: All explicit permissions are requested at runtime . . . and persisted by default.

https://wiki.mozilla.org/Apps/Security#Types_of_applications

- Non-priviledged app: “Remember my choice” is off by default.
- Priviledged app: “Remember my choice” is on by default.

If “Remember my choice” is not selected, the user is presented with the prompt every time they use the app and encounter the permission need.
CHANGING YOUR MIND

Any decisions you make around permissions can be changed later via settings.
NOTIFICATIONS

Geolocation

Active: an App (foreground or background) is currently using the Geolocation permission.

Recently-active: an App (foreground or background) has used the Geolocation permission in the last X minutes (time TBD).

Audio/Video Recording

Active: an App (foreground or background) is currently using the Audio/Video Recording permission.

Recently-active: an App (foreground or background) has used the Audio/Video Recording permission in the last X minutes (time TBD).

Status Bar Indicators

These indicators appear when an app (foreground or background) is currently using—or has recently used—an explicitly granted permission that meets the criteria for inclusion in the status bar. The criteria is as follows:

• Is an explicitly-granted permission.
• Is in foreground or background app.
• Is currently or recently active.
• Is a known source of security, privacy, and/or financial threats.

See Status Bar specs for additional details.
WEB ACTIVITIES

Let apps communicate with each other. Also useful when an app doesn’t have direct access to an API.

• Apps register to handle certain activities
• Other apps initiate an activity
• ex. Give me a picture
• ex. Give me a contact
• ex. Send an SMS
PRIVACY

- Do-Not-Track
- Ask user for access
- Manage and clear data per-app

Available permissions that are disabled are below, arranged alphabetically. They look faded out. Enabled permissions are at the top, arranged alphabetically.
BOOT SEQUENCE

1. Linux startup
2. FFOS (Gecko)
3. Shell.xul
4. Gaia System App
5. Homescreen App
6. Installed Apps Register
<window> Gecko chrome (shell.xul)
 <iframe> system app
 <iframe> homescreen app
 <iframe> keyboard
 <iframe> lockscreen
 ... more app iframes are created here as apps are loaded
DIALER AND SYSTEM APPS
PROTECTING APPS FROM APPS

Each app runs in its own content process
• Apps cannot see each others data or cookies
• One app can’t directly launch or frame another
• App process permissions == manifest permissions
PROTECTING OS FROM APPS

The OS is protected from direct access by apps
• Apps can only talk to OS via IPC (IPDL)
• App content processes run as low-rights
• App process permissions are limited to itself
OS UPDATES

OS updates are separate from Gecko updates
• Underlying OS can be updated via OTA or USB (i.e. flashing)
• Gecko + Gaia updated via normal Mozilla release
• App updates are handled separately and individually
HOW TO GET INVOLVED

• irc.mozilla.org: #security #privacy

• usenet: mozilla.dev.security mozilla.dev.privacy

• https://wiki.mozilla.org/Apps/Security

• https://wiki.mozilla.org/Gaia/System/Updates

• https://wiki.mozilla.org/B2G/Architecture/Runtime_Security

• https://bugzilla.mozilla.org/show_bug.cgi?id=764189