
Scientific but Not Academical Overview of Malware Anti-Debugging, Anti-Disassembly and Anti-
VM Technologies

Rodrigo Rubira Branco, Gabriel Negreira Barbosa, Pedro Drimel Neto
{rbranco,gbarbosa,pdrimel} *NOSPAM* qualys.com

Qualys – Vulnerability & Malware Research Labs (VMRL)

Version 1.0

Abstract

Malware is widely acknowledged as a growing threat with hundreds of thousands of new samples
reported each week. Analysis of these malware samples has to deal with this significant quantity but

also with the defensive capabilities built into malware; Malware authors use a range of evasion
techniques to harden their creations against accurate analysis. The evasion techniques aim to disrupt

attempts of disassembly, debugging or analyse in a virtualized environment.

This talk catalogs the common evasion techniques malware authors employ, applying over 50 different
static detections, combined with a few dynamic ones for completeness. We validate our catalog by

running these detections against a database of 4 million samples (the system is constantly running and
the numbers will be updated for the presentation), enabling us to present an analysis on the real state of

evasion techniques in use by malware today. The resulting data will help security companies and
researchers around the world to focus their attention on making their tools and processes more efficient

to rapidly avoid the malware authors' countermeasures.

This first of its kind, comprehensive catalog of countermeasures was compiled by the paper's authors
by researching each of the known techniques employed by malware, and in the process new detections
were proposed and developed. The underlying malware sample database has an open architecture that

allows researchers not only to see the results of the analysis, but also to develop and plug-in new
analysis capabilities. The system will be made available in beta at Black Hat, with the purpose of

serving as a basis for innovative community research.

1. Introduction

Besides the common sentences among researchers
and industry regarding the amount of new samples
every day (near to the hundred thousand daily), still
the analysis efforts focus on automating a specific
task or automate the analysis of only one sample.
Researchers around the globe have many
challenges to contribute in combating new
malware, since they either lacks the access to the
samples or access to the computing power to
process them (or both). This limits the amount of
contributions coming from the academia and from
individual contributors.
The situation created an industry full of incomplete
results and opinions. Analysis comprising just a
few thousands of malware samples are not a

basement for decisions, but still they are the
majority of the cases.
This works analyzed millions of malwares focusing
in their protection mechanisms. We divided the
protection mechanisms in 4 different categories:

• Anti-Debugging: Techniques to
compromise debuggers and/or the
debugging process

• Anti-Disassembly: Techniques to
compromise disassemblers and/or the
disassembling process

• Obfuscation: Techniques to make the
signatures creation more difficult and the
disassembled code harder to be analyzed by
a professional

• Anti-VM: Techniques to detect and/or

compromise virtual machines

Techniques that are not being currently being
detected in the malware samples are also explained:
we are constantly updating the system.

The paper is organized as follows. Section 1.1
discusses our methodology, the automated analysis
system and some other choices made for this
research. Section 2 provides the results of our
analysis, while the rest of the paper discusses the
technical details of the implementations
themselves. Section 3 enumerates and details each
of the anti-debugging techniques. Section 4
discusses disassembly concepts and anti-
disassembly and obfuscation techniques. Section 5
discusses anti-VM techniques. Section 6 illustrates
new techniques and advancements proposed by this
work. Section 7 comprises the downloading links
for getting updated versions of this paper and for
downloading the developed examples to validate
each of the detection anti-reverse engineering
mechanisms. Section 8 concludes and provides
future directions. Section 9 has some
acknowledges. Finally, in Section 10, the
references used in this work.

1.1. Methodology

The analysis performed in this work relied in a total
of 72 cores and a 100GB of RAM distributed in 9
different machines.
We analyzed a bit more than 4 million samples
(4,030,945). Packed samples were not analyzed
individually: all packed samples using the same
packer have been considered as one single unique
sample.
All our samples were 3.9MB or less in size
(performance reasons). The only exception was the
Flame malware due to its importance.
We used mostly static techniques, but included a
few dynamic ones for completeness: some
techniques cannot be detect using only a static
approach.
The automated malware analysis system, called
Dissect || PE, relies in plugins. Each application
that reads a malware and produces an output is
considered a plugin. There are:

• Dynamic plugins: plugins that run inside a

Windows VM;
• Static plugins: plugins that run outside of

the VM

It was developed a plugin that is a framework for
disassembly-related analysis:

• Facilitates the development of disassembly
analysis code;

• Speeds up the disassembly process for
plugins;

• Calls-back the plugins for specific
instruction types;

• Disassembly once, analyze all;
• Care must be taken to detect disassembly

attacks themselves.

For this work, we disassembled and analyzed only
PE sections explicitly marked as executable or
where the entry point is located.

The anti-reverse engineering techniques were
detected in the malware samples through plugins.
Before its deploy, each plugin was tested against
883 PE files looking for bugs and for the quality of
the detection coverage itself.

2. Executive Summary

For this research, we analyzed 4.030.945 malware
samples in our lab. As depicted in Chart 1, 34,79%
were packed, and the top packer families are shown
in Chart 2.

Chart 1 – Packer Statistics

Chart 2 – Top Packer Families

Looking for anti-reverse engineering techniques in
the top packer families, we had different results for
the same packer family because of different
versions. Being so, we detailed the techniques
found in each version in Table 1.

1 UPX
UPXV200V290MarkusOberhumerLaszloMolnarJohnR
eiser

Anti-VM (SLDT)
Anti-VM (IN)
Push Pop Math
Instruction Counting
PEB NtGlobalFlag
PEB's BeingDebugged (Stealth
IsDebuggerPresent)

UPXv20MarkusLaszloReiser
Anti-VM (SLDT)
Anti-VM (IN)
Push Pop Math
Instruction Counting
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SS register

UPX290LZMAMarkusOberhumerLaszloMolnarJohnR
eiser

Anti-VM (IN)
Push Pop Math
Instruction Counting
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SS register

UPX20030XMarkusOberhumerLaszloMolnarJohnReis
er

Anti-VM (IN)
Push Pop Math
Instruction Counting
PEB's BeingDebugged (Stealth
IsDebuggerPresent)

UPX293300LZMAMarkusOberhumerLaszloMolnarJoh
nReiser

Anti-VM (IN)
Instruction Counting
PEB NtGlobalFlag
PEB's BeingDebugged (Stealth
IsDebuggerPresent)

UPXProtectorv10x2
Nothing

2 Armadillo
Armadillov171

Instruction Counting
Instruction Substitution (push – ret)

Armadillov1xxv2xx
Nothing

3 PECompact
Anti-VM (STR)
Anti-VM (SLDT)
Anti-VM (IN)
Push Pop Math
PEB NtGlobalFlag
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SoftICE – Interrupt 1
Software Breakpoint Detection
SS register

4 BobSoftMiniDelphiBoBBobSoft
Anti-VM (STR)
Anti-VM (SLDT)
Anti-VM (IN)
Push Pop Math
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SoftICE – Interrupt 1
SS register

5 ASPack
ASPackv212AlexeySolodovnikov
ASProtectV2XDLLAlexeySolodo

Anti-VM (IN)
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SS register

ASPackv10803AlexeySolodovnikov
Anti-VM (IN)
PEB's BeingDebugged (Stealth
IsDebuggerPresent)

ASPackv21AlexeySolodovnikov
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SS register

6 ProtectSharewareV11eCompservCMS
Anti-VM (SLDT)

Anti-VM (IN)
Instruction Counting
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
Instruction Substitution (push – ret)

7
ASProtect13321RegisteredAlexeySolodovni
kov ASProtectv12
Anti-VM (STR)
Anti-VM (SLDT)
Anti-VM (IN)
Push Pop Math
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SoftICE – Interrupt 1
Software Breakpoint Detection
SS register

8 WiseInstallerStub
Nothing

9 MaskPEV20yzkzero
Anti-VM (SLDT)
Anti-VM (IN)
Push Pop Math
PEB's BeingDebugged (Stealth
IsDebuggerPresent)
SS register

Table 1 – Packers Anti-Reverse Engineering

The top packer families for malware samples
targeting brazilian banks were also analyzed. As
shown in Chart 3, we found that 50,49% were
packed, and the top packer families are depicted in
Chart 4.

Chart 3 – Packer Statistics of Samples Targeting
Brazilian Banks

Chart 4 – Packer Families of Malware Samples
Targeting Brazilian Banks

From this point on, and according to the proposed
methodology in which each packer was analyzed
once, the following numbers are related to the not
packed samples. Additionally, in the next statistics,
malware analysis algorithms that produce
evidences were not considered.

Chart 5 shows that 88,96% of the samples had at
least one anti-reverse engineering technique
detected.

Chart 5 – Samples with Anti-Reverse Engineering

As shown in Chart 6, 6,42% of the analyzed
samples have implemented at least one protection
mechanism in each of the four categories (named as
fully armored samples in this work).

Chart 6 – Fully Armored Samples

For a sample to be considered as part of a category,
at least one technique of such a category have to be
detected. The prevalence of each considered anti-
reversing engineering categories in the analyzed
samples are detailed in Chart 7.

Chart 7 – Anti-Reverse Engineering Categories

So, anti-VM and obfuscation categories are
considerably more prevalent in the samples with,
respectively, 81,40% and 68,95%.

The considered anti-debugging techniques in all of
the statistics in this work relied on the techniques
depicted in Chart 8. Additionally, the percentage of
each considered anti-debugging technique

regarding the total samples in this category is also
present in Chart 8.
The same information are present in charts 9, 10
and 11, but for, respectively, anti-disassembly,
obfuscation and anti-VM categories.

Chart 8 – Anti-Debugging Techniques

Chart 9 – Anti-Disassembly Techniques

Chart 10 – Obfuscation Techniques

Chart 11 – Anti-VM Techniques

3. Anti-Debugging Techniques

Some anti-debugging techniques are described in
the next sections.
Techniques currently covered by detection plugins
will have an additional information: the algorithm
used to detect such a technique.

3.1. PEB NtGlobalFlag

NtGlobalFlag is a field of PEB at offset 0x68 [1].
The presence of such values is not a reliable
debugger detection technique, but can be
considered as an evidence:
FLG_HEAP_ENABLE_TAIL_CHECK (0x10),
FLG_HEAP_ENABLE_FREE_CHECK (0x20)
and FLG_HEAP_VALIDATE_PARAMETERS
(0x40). This might be used to detect the presence of
a debugger.

Adopted Static Detection:

A MOV instruction (mov, movsx, movzx) copying
PEB address (fs:[0x30]) somewhere (X) is looked
for and X is saved for future use:

mov/movsx/movzx X,fs:[0x30]

Then, later in the same function, a CMP (cmp,
cmpxchg) or a MOV (mov, movsx, movzx)
instruction referencing the NtGlobalFlag
([X+0x68] in some of the operands) is looked for:

cmp/cmpxchg/mov/movsx/movzx op1,op2 →
where [X+0x68] is a substring of op1 or op2

RET was used to consider the end of a function.

If this scenario happens, this anti-debugging
technique is considered as detected.

3.2. IsDebuggerPresent

IsDebuggerPresent() is a kernel32 function that
returns TRUE if a debugger is present [1].
Internally, it uses PEB's BeingDebugged Field.
Such approaches can be used to detect the presence
of a debugger.

Adopted Static Detection:

(1)

IsDebuggerPresent is looked for in IAT. If found,
the technique is considered as detected.

(2)

A MOV instruction (mov, movsx, movzx) copying
PEB address (fs:[0x30]) somewhere (X) is looked
for and X is saved for future use:

mov/movsx/movzx X,fs:[0x30]

Then, later in the same function, another MOV
instruction (mov, movsx, movzx) referencing the
BeingDebugged field ([X+0x2] in some of the
operands) is looked for:

mov/movsx/movzx op1,op2 → where “[X+0x2]” is
a substring of op1 or op2

RET was used to consider the end of a function.

If this scenario happens, this anti-debugging
technique is considered as detected.

3.3. CheckRemoteDebuggerPresent

CheckRemoteDebuggerPresent() is a kernel32
function that sets 0xffffffff in pbDebuggerPresent
parameter if a debugger is present [1]. Internally, it
uses NtQueryInformationProcess() with
ProcessDebugPort as a ProcessInformationClass
parameter. This function can be used to detect the
presence of a debugger.

Adopted Static Detection:

(1)

CheckRemoteDebuggerPresent is looked for in
IAT. If found, the technique is considered as
detected.

(2)

NtQueryInformationProcess is looked for in IAT. If

found, the technique is considered as an evidence
detected.

3.4. Heap flags

Process default heap (retrieved through
GetProcessHeap() or PEB) has the following two
fields of interest that are influenced by PEB-
>NtGlobalFlags: Flags, at offset 0x0c in the heap,
and ForceFlags at offset 0x10 in the heap [1]. The
following values for each of the fields are not a
reliable approach to detect a debugger, but can be
considered as an evidence:

• Flags: HEAP_GROWABLE (2),
HEAP_TAIL_CHECKING_ENABLED
(0x20),
HEAP_FREE_CHECKING_ENABLED
(0x40),
HEAP_SKIP_VALIDATION_CHECKS
(0x10000000) and
HEAP_VALIDATE_PARAMETERS_ENA
BLED (0x40000000).

• ForceFlags:
HEAP_TAIL_CHECKING_ENABLED
(0x20),
HEAP_FREE_CHECKING_ENABLED
(0x40) and
HEAP_VALIDATE_PARAMETERS_ENA
BLED (0x40000000).

Adopted Static Detection:

(1)

GetProcessHeap is looked for in IAT. If found, the
technique is considered as an evidence detected.

(2)

An instruction referencing PEB (fs:[0x30]) is
looked for. If found, the first operand (X) is saved
for future use:

? X,? →The substring “fs:[0x30]” is looked for in
all the operands. If found, the first operand (X) is
saved

Then, later in the same function, any other
instruction referencing the process default heap

([X+0x18] in some of the operands) is looked for:

? operands → where “[X+0x18]” is a substring of
any of the operands

RET was used to consider the end of a function.

If this scenario happens, this anti-debugging
technique is considered as detected.

3.5. NtQueryInformationProcess –
ProcessDebugPort

Calling NtQueryInformationProcess() with
ProcessDebugPort as a ProcessInformationClass
parameter will set 0xffffffff in the
ProcessInformation parameter if a process is being
debugged [1]. Internally, such function queries for
a non-zero state of EPROCESS->DebugPort. This
function can be used to detect a debugger.

Adopted Static Detection:

NtQueryInformationProcess is looked for in IAT. If
found, the technique is considered as evidence
detected.

3.6. Debug Objects –
ProcessDebugObjectHandle Class

A debug object is created and a handle is associated
to it when a debugging session begins [1].
NtQueryInformationProcess() can be called with
ProcessDebugObjectHandle as a
ProcessInformationClass parameter to query for the
debug object handle. This can be used to detect the
presence of a debugger.

Adopted Static Detection:

NtQueryInformationProcess is looked for in IAT. If
found, the technique is considered as an evidence
detected.

3.7. Debug Objects – ProcessDebugFlags Class

NtQueryInformationProcess() can be called with
ProcessDebugFlags as a ProcessInformationClass
parameter to set the inverse of EPROCESS-

>NoDebugInherit bit in ProcessInformation
parameter [1]. So, FALSE is set when a debugger is
present. This can be used to detect a debugger.

Adopted Static Detection:

NtQueryInformationProcess is looked for in IAT. If
found, the technique is considered as evidence
detected.

3.8. NtQuerySystemInformation –
SystemKernelDebuggerInformation

NtQuerySystemInformation() function of ntdll can
be used with the undocumented
SystemKernelDebuggerInformation as a
SystemInformationClass parameter to detect the
presence of a debugger [1]. The result, that is
stored in the buffer pointed by SystemInformation
parameter [23], has 2 bytes representing two flags,
each one with 8 bits: KdDebuggerEnabled (least
significant bye) and KdDebuggerNotPresent (most
significant byte). KdDebuggerNotPresent is
FALSE if a debugger is present.
It is possible to obfuscate such a function call by
retrieving KdDebuggerNotPresent directly from
KUSER_SHARED_DATA, at offset 0x7ffe02d4
for 2Gb user-space configurations. The value
retrieved by the NtQuerySustemInformation() call
does not come from this location. [2]
This can be used to the detect the presence of a
kernel-mode debugger [22].

Adopted Static Detection:

NtQuerySystemInformation is looked for in IAT. If
found, the technique is considered as evidence
detected.

3.9. OpenProcess – SeDebugPrivilege

With SeDebugPrivilege privilege, a non-default
privilege [5], a process can gain full control over
the system process CSRSS.exe [1]. Additionally,
such a privilege is passed to child processes. So, if
a debugger acquires such a privielge, the debugged
binary can have full control over CSRSS.exe also.
[5] This technique has 2 steps:

1. Enumerate processes to get the process ID

of CSRSS.exe. This can be achieve through
CreateToolhelp32Snapshot()+
(Process32First())+Process32Next().
Another way could be using
NtQuerySystemInformation() with
SystemProcessInformation as a
SystemInformationClass parameter.
Alternatively, Windows XP introduced the
ntdll CsrGetProcessId() which makes such a
task easier and can also be used.

2. Open CSRSS.exe process with full access.
If the operation succeeds, than it is an
evidence of the presence of a debugger.
This task can be achieved with
OpenProcess() using
PROCESS_ALL_ACCESS as a
dwDesiredAccess parameter.

OllyDbg and WinDbg acquires SeDebugPrivilege
privilege.
This technique might be used to indirectly detect
the presence of some debuggers.

Adopted Static Detection:

The string “csrss.exe” is looked for in the binary in
a case-insensitive way. If found, this technique is
considered as evidence detected.

3.10. Alternative Desktop

Windows NT-based platforms supports multiple
desktops, and it is possible to select a different
active desktop, hiding the windows of the
previously selected one with no obvious way to
switch back to the old desktop [1]. This can be
done calling CreateDesktop() followed by
SwitchDesktop(). The dwDesiresAccess parameter
of CreateDesktop() can be:
DESKTOP_CREATEWINDOW |
DESKTOP_WRITEOBJECTS |
DESKTOP_SWITCHDESKTOP. This technique
can be used to make the debugging process harder
for an analyst.

Adopted Static Detection:

CreateDesktopA/CreateDesktopW are looked for in
IAT. If found, and SwitchDesktop is also present,

the technique is considered as detected.

3.11. Self-Debugging

“Self-debugging is the act of running a copy of a
process, and attach to it as a debugger.” [1]. Since
only one debugger can be attached to a process,
such process could not be debugger by ordinary
means (there are bypasses). It is possible to execute
this technique creating a copy of the process to be
debugged (CreateProcessA() with
DEBUG_PROCESS as a dwCreationFlags
parameter), and handling its debug events
(WaitForDebugEvent() and
ContinueDebugEvent()). This technique can be
used to difficult a debugger to be attached to the
process.

Adopted Static Detection:

CreateProcessA/CreateProcessW are looked for in
IAT. If found, and both WaitForDebugEvent and
ContinueDebugEvent are also present, the
technique is considered as evidence detected.

3.12. RtlQueryProcessDebugInformation

RtlQueryProcessDebugInformation() is used to
load some process information in DebugBuffer
parameter including some heap information (heap
flags is among them) [2][3][4]. This call can be
made with PDI_HEAPS | PDI_HEAP_BLOCKS as
a DebugInfoClassMask parameter. Internally, it
uses RtlQueryProcessHeapInformation(), and this
function can be used to develop a variation of this
technique. The following heap flags value indicates
that a process is being debugged: GROWABLE |
TAIL_CHECKING_ENABLED |
FREE_CHECKING_ENABLED |
VALIDATE_PARAMETERS_ENABLED. This
technique can be used to detect the presence of a
debugger.

Adopted Static Detection:

RtlQueryProcessDebugInformation and
RtlQueryProcessHeapInformation are looked for in
IAT. If some ot them are found, technique is
considered as evidence detected.

3.13. Hardware Breakpoints

When an exception occurs, Windows passes to the
exception handler a context structure which have,
among other information, the debug registers
content [1]. If there is a debugger with hardware
breakpoints being used and it passes the exception
to the debuggee, then the debug registers can be
analyzed looking for a debugger. This can be used
to detect the presence of a debugger.

Adopted Static Detection:

A MOV instruction (mov, movsx, movzx) copying
the ESP register to the SEH (fs:[0x0]) is looked for:

mov/movsx/movzx op1,esp → Where “fs:[0x0]” is
a substring of op1

Then, later in the same function, another MOV
instruction (mov, movsx, movzx) referencing the
CONTEXT ([esp+0xc]) is looked for in the source
operand and the destination one (X) is saved for
future use:

mov/movsx/movzx X,op2 → where “[esp+0xc]” is
a substring of op2

Then, later in the same function, instructions CMP
(cmp, cmpxchg), MOV (mov, movsx, movzx) or
OR, both with, in the source operand, having an
offset of a debug register relative to the saved X
(0x4, 0x8, 0xC 0x10) is looked for:
mov/mosx/mozx op1,op2
cmp/cmpxchg op1,op2
or op1,op2
→ All op2 having “[X+0x4]”, “[X+0x8]”,
“[X+0xC]” or “[X+0x10]” substrings.

RET was used to consider the end of a function.

If this scenario happens, this anti-debugging
technique is considered as detected.

3.14. OutputDebugString

The kernel32 OutputDebugString() has different
behavior depending on the presence, or not, of
debugger [1]. One of them is that kernel32

GetLastError() returns 0 if the debugger is present.
This technique can be used to detect the presence
of a debugger.

Adopted Static Detection:

OutputDebugStringA/OutputDebugStringW are
looked for in IAT. If found, and GetLastError is
also present, the technique is considered as
detected.

3.15. BlockInput

BlockInput() function “Blocks keyboard and mouse
input events from reaching applications.” [6]. This
function can be used to difficult the access of an
analyst to the debugger [1][5].

Adopted Static Detection:

BlockInput is looked for in IAT. If found, the
technique is considered as evidence detected.

3.16. Parent Process

The parent process of an application executed by an
user will usually be “Explorer.exe”, and it can be
considered as a debugger evidence when such a
characteristic does not happen [1]. The following
functions can be used for this purpose:

• GetCurrentProcessId() +
CreateToolhelp32Snapshot()+
(Process32First())+Process32Next().

• GetCurrentProcessId() +
NtQuerySystemInformation() with
SystemProcessInformation as a
SystemInformationClass parameter.

• A simpler method: get Explorer.exe process
ID (GetShellWindow()
+GetWindowThreadProcessId()) and get the
parent process ID
(NtQueryInformationProcess() with
ProcessBasicInformation as a
ProcessInformationClass parameter).

This technique might be used to detect the presence
of a debugger.

Adopted Static Detection:

(1)

GetCurrentProcessId and
CreateToolhelp32Snapshot are looked for in IAT. If
both are found, this technique is considered as
evidence detected.

(2)

GetCurrentProcessID and
NtQuerySystemInformation are looked for in IAT.
If both are found, the technique is considered as
evidence detected.

(3)

GetShellWindow, GetWindowThreadProcessId and
NtQueryInformationProcess are looked for in IAT.
If both are found, this technique is considered as
evidence detected.

3.17. Device Names

Debuggers that uses kernel-mode drivers may use
named devices to communicate with them [1]. So,
if an open attempt in such devices succeeds, it does
not necessarily means that a debugger is active, but
that it is present. The implementation can use
CreateFile() function with OPEN_EXISTING as a
dwCreationDisposition parameter. Some device
names:

• SoftICE: \\.\SICE, \\.\SIWVID, \\.\NTICE
• RegMon: \\.\FILEVXG, \\.\REGSYS
• FileMon: \\.\FILEVXG, \\.\FILEM
• \\.\TRW
• SoftICE extender: \\.\ICEEXT

This technique might be used to detect the presence
of a debugger. The presence of a debugger does not
necessarily means that the debugger is active.

Adopted Static Detection:

Device name strings (“\\.\SICE”, “\\.\SIWVID”,
“\\.\NTICE”, “\\.\FILEVXG”, “\\.\REGSYS”,
“\\.\FILEM”, “\\.\TRW”, “\\.\ICEEXT”) are looked

for in the binary itself in a case insensitive way. If
found, this technique is considered as detected.

3.18. OllyDbg – OutputDebugString

OllyDbg is a debugger that have a format string
vulnerability with the kernel32
OutputDebugString() function, leading to a crash or
an arbitrary code execution [1][5]. The current final
version (1.10) is still vulnerable. This can be used
to break a debugging process with an affected
version of OllyDbg.

Adopted Static Detection:

OutputDebugStringA/OutputDebugStringW are
looked for in IAT. If found, this technique is
considered as evidence detected.

3.19. FindWindow

FindWindow() function can be used to find opened
debuggers using both parameters, lpClassName and
lpWindowName [1]. Some parameters that can be
used:

• lpClassName: OllyDbg: “OLLYDBG”;
WinDbg: “WinDbgFrameClass”; MSLRH:
“TESTDBG”, “kk1”, “Eew57”, “Shadow”.

• lpWindowName: MSLRH: “Import
REConstructor v1.6 FINAL (C) 2001-2003
MackT/uCF”.

This can be used to detect the presence of a
debugger.

Adopted Static Detection:

FindWindowA/FindWindowW are looked for in
IAT. If found, this technique is considered as
evidence detected.

3.20. SuspendThread

User-mode debuggers like OllyDbg and Turbo
Debug can be disabled by calling kernel32
SuspendThread() (or the ntdll NtSuspendThread())
in its threads [1][2]. To find the threads, process
enumeration and named window searching are two
methods that can be used.

Adopted Static Detection:

SuspendThread and NtSuspendThread are looked
for in IAT. If some of them found, this technique is
considered as evidence detected.

3.21. SoftICE – Interrupt 1

Normally, the DPL of interrupt 1 is set to 0,
meaning that a ring 3 attempt to execute int 1
(“0xcd01”) results in a CPU general protection
fault (int “0x0d”) and in the end Windows raises an
EXCEPTION_ACCESS_VIOLATION
(0xc0000005) [1].
SoftICE hooks IDT entry of interrupt 1 and sets the
DPL to 3, allowing it to single-step from user-mode
code. The problem is that SoftICE does not identify
and handle differently the situations that caused
such an int 1, and always execute the default
interrupt 1 handler.
So, a ring 3 attempt to execute int 1 results in the
Windows raising EXCEPTION_SINGLE_STEP
instead of EXCEPTION_ACCESS_VIOLATION
(0x80000004). This characteristic can be used to
detect if the SoftICE is running.

Adopted Static Detection:

INT1 instruction is looked for. Then, later in the
same function, a CMP instruction with 0x80000004
in any of the operands is looked for:

…
int1
…
cmp operands → where any of the operands are
0x80000004
...

RET was used to consider the end of a function.

If this scenario happens, this anti-debugging
technique is considered as detected.

3.22. SS register

While single-stepping through trap flag, debuggers
typically try to clean such a flag when it is pushed
in the stack [1][2][7].
When SS register is loaded (POP SS, for example),
the interrupts are disabled until the end of the next
instruction to avoid invalid stack troubles in some
cases [8].
So, after the SS loading, the next instruction will be
executed but the debugger will not break on it.
With the debugger unaware of the flags pushing
(PUSHFD, for example), the trap flags will not be
cleaned in the stack and its presence indicates a
single-stepping thought trap flags debugging.

Adopted Static Detection:

A POP instruction with SS register as operand, or a
MOV instruction (mov, movsx, movzx) having SS
register as a destination operand are looked for:

pop ss

mov/movsx/movzx ss,? → It does not matter what
is the second operand

Then, the next instruction is analyzed to check if
the next mnemonic starts with the string “pushf”.

If this scenario happens, this anti-debugging
technique is considered as detected.

3.23. UnhandledExceptionFilter

When an exception is generated and there was no
exception handlers to processes it, a default handler
exists to do such a job [1][5][7]. As part of the
default handler procedures, kernel32
UnhandledExceptionFilter() is called. In such a
function, NtQueryInformationProcess() is called
with ProcessDebugPort as a
ProcessInformationClass parameter to detect if the
process that raised the exception is being debugged.
If SetUnhandledExceptionFilter() was used and the
process is not being debugged, the top-level
exception filter set by such a function will be
executed. Otherwise, if the process is being
debugged, the debugger will be notified about the

exception. [9]
This behavior can be used to detect the presence of
a debugger by defining a top-level exception filter
through SetUnhandledExceptionFilter() and then
forcing an exception to occur. If the top-level
exception filter gets executed, then the process is
not being debugged.

Adopted Static Detection:

SetUnhandledExceptionFilter is looked for in IAT.
If found, this technique is considered as evidence
detected.

3.24. Guard Pages

An attempt to access an address within a guard
page (page marked with PAGE_GUARD) results in
a STATUS_GUARD_PAGE_VIOLATION
(0x80000001) being raised by the system [1][10].
If a debugger is present, it might handle such an
exception and allow the access. This behavior
might be used to detect the presence of a debugger.
An implementation of such a technique, as shown
in [1], relies on writing 0xC3 (RET instruction) in a
memory area and marking this page with
PAGE_GUARD. If the RET gets executed, the
debugger is detected; otherwise, a crafted exception
handler is executed meaning that the debugger was
not detected.

Adopted Static Detection:

VirtualAlloc/VirtualAllocEx and
VirtualProtect/VirtualProtectEx are looked for in
IAT. If found, this technique is considered as
evidence detected.

3.25. Execution Timing

When a debugger is present, the time elapsed
between subsequent instructions execution might
be higher than without it [1][2][7]. The idea is to
measure time elapsed between some instructions
execution and based on such a value, infer the
presence of a debugger. Some methods can be used
to implement this technique (each method has its
own characteristics):

• RDTSC instruction (it is a popular anti-

debugging technique [1] [2] [7] [11] but
there are some issues to be aware of [8] [11]
[12] [13])

• RDPMC instruction [2] [8]
• RDMSR instruction [2] [8]
• kernel32 GetTickCount() [14]
• winmm timeGetTime [1] [15]
• kernel32 GetLocalTime() [2] [16]
• kernel32 GetSystemTime() [2] [17]
• kernel32 QueryPerformanceCounter() [2]

[7] [18].

Adopted Static Detection:

GetTickCount, timeGetTime, GetLocalTime,
GetSystemTime and QueryPerformanceCounter are
looked for in IAT. If some of them are found, this
technique is considered as evidence detected.

3.26. Software Breakpoint Detection

Software breakpoint is a single-byte instruction
(0xCC – INT 3) that stops the execution of the
debugged process and passes control to the
debugger [5]. The original byte is saved by the
debugger before setting the breakpoint, this way the
original instruction can be executed in the correct
time. [19]
Code areas in memory are scanned for 0xCC byte
that was not set by the code itself. To make such a
check not so obvious, it is possible to use some
operation in the compared by, such as [5]:

if(byte XOR 0x55 == 0x99) then breakpoint found

Note that 0xCC XOR 0x55 = 0x99.

Adopted Static Detection:

A CMP instruction (cmp, cmpxchg) with 0xCC in
any of its operands is looked for. If found, this anti-
debugging technique is considered as detected.

3.27. Thread Hiding

According to MSDN [20] [21], ntdll
NtSetInformationThread() sets the priority of a
thread [1][5][7]. However, its

ThreadInformationClass parameter has an
undocumented value, ThreadHideFromDebugger
(0x11), which prevents debugging events to be sent
to the debugger [5]. This can be used to difficult the
debugging.

Adopted Static Detection:

NtSetInformationThread is looked for in IAT. If
ound, this technique is considered as evidence
detected.

3.28. NtSetDebugFilterState

The ntdll DbgSetDebugFilterState (or ntdll
NtSetDebugFilterState) call succeeds in the
presence of some debuggers [2]. This is a side-
effect of the debugger's behaviour: the process
SeDebugPrivilege privilege. SeDebugPrivilege is
not a default privilege [5], so this technique might
be used to indirectly detect the presence of some
debuggers.

Adopted Static Detection:

DbgSetDebugFilterState and
NtSetDebugFilterState are looked for in IAT. If
some of them are found, this technique is
considered as detected.

3.29. Instruction Counting

An exception handler is registered to deal with the
EXCEPTION_SINGLE_STEP (0x80000004)
exception [1].
Then, some hardware breakpoints are set in specific
instructions. Debug registers cannot be accessed
directly in user-mode [32], so a context structure is
needed and the following procedures can be used to
get it:

• Calling kernel32 GetThreadContext().
• Forcing an exception to occur and handling

it, because the context structure is passed to
the exception handler. This is more stealth
than the previous procedure.

As instructions with hardware breakpoints are
being reached, the previously registered exception
handler is supposed to deal with the raised

exceptions. Such handler will simply count how
many times it was reached and then can change the
EIP to point to a new instruction and resume the
execution.
Some debuggers do not deal correctly with
hardware breakpoints that were set by them, and
some of the raised EXCEPTION_SINGLE_STEP
might not be handled by the previously set
exception handler.
After all hardware breakpoints got reached and its
exception handlers finished, the total counter used
by them should have the number of hardware
breakpoints initially set. If the value was different,
it indicates the presence of a debugger.

3.30. Header Entrypoint

File sections that do not include the attribute
IMAGE_SCN_MEM_WRITE (write) is read-only
by default to a remote debugger [1].
Additionally, there is no section that describes the
PE header, it will be also considered as read-only;
there is an exception when the PE-
>SectionAlignment is less than 4kb, which causes
it to be marked internally as both writable and
executable [1].
Being so, if the debugger does detect such situation
and does not set a write privilege in such a section,
the debugger might allow the application to run
freely.

Adopted Static Detection:

The entrypoint section is analyzed to check if it has
the IMAGE_SCN_MEM_WRITE attribute. If it
does not have, then this technique is considered as
detected.

3.31. Self-Execution

This technique relies on a process to create another
process of itself [1]. This way, the second process
will not be debugged. Usually this trick is used
with a mutex to prevent many copies of the process
to be in execution.

Adopted Static Detection:

CreateProcessA/CreateProcessW, CreateMutex and

WaitForSingleObject functions are looked for in
IAT. If some of them are found, this technique is
considered as evidence detected.

3.32. Hook Detection

Some hook techniques relies on overwriting the
first instruction of the hooked function by a JMP
instruction pointing to another place. [48]

Regarding Microsoft Detours, some characteristics
exist that can be used as a signature, such as
.detours section and the presence of detoured.dll.
[49] [50]

Detecting the presence of a hook might detect some
binary analysis procedures.

Adopted Static Detection:

(1)

A CMP instruction with 0xE9 in some of its
operands is looked for. If found this technique is
considered as evidence detected.

(2)

The string “.detour” is looked for in the binary with
the exception of its sections. The string
“detoured.dll” is also looked for in the binary, but
with the exception of the imports. If some of them
were found, the technique is considered as
detected.

Section 3.33. DbgBreakPoint Overwrite

When a debugger attaches to a process, an
exception is raised by DbgBreakPoint() function in
NTDLL (called at attach time) [2]. Handling such
an exception the debugger gains control of the
debugee.

By marking the page(s) of DbgBreakPoint() as
EXECUTE_READWRITE and overwriting it with,
for example, a RET instruction, when a debugger
attaches to the process the thread will exit
immediately, thus, not breaking in.

4. Obfuscation and Anti-Disassembly
Techniques

Both obfuscation and anti-disassembly techniques
relies on a disassembly. Being so, they were put
together in the same section.
Obfuscation is a kind of technique to make the
disassembly result harder to be analyzed by a
professional.
Anti-disassembly is a kind of technique to
compromise disassemblers and/or the
disassembling process.
Section 4.1 discusses some disassembly concepts.
Section 4.2 and Section 4.3 describes, respectively,
some obfuscation and anti-disassembly techniques.

4.1. Disassembly Concepts

It is possible to disassemble a binary with a static
and a dynamic approach [39]. The former relies on
executing the program and tracking instruction as
they are being executed. The latter relies on
analyzing the program bytes and finding
instructions without executing it.
Static disassembling can be categorized in two
main classes: linear sweep and recursive traversal.
Linear sweep approach starts from a given byte (for
example, the first byte of the entry point) and from
this point on analyzes byte after byte until a
predefined end (for example, the end of the PE
section). The main drawback of this approach is
that data placed in the middle of code instructions
may generate some noise, because they will be
interpreted as code. An example of disassembler
that uses linear sweep approach is objdump [26].
Recursive traversal is an approach that follows the
program control flow instead of simply
disassembling each byte. It is not vulnerable to the
simple fact of data existing in the middle of code
instructions, but it has another main drawback: it is
not always possible to statically predict the exact
program control flow. It may result in some parts
not being disassembled and also the generation of
some noise. The unreachable areas can be
submitted to a linear sweep processing, and such a
variation is called speculative disassembly. An
example of disassembler that uses recursive
traversal approach is IDA [40].

Anti-disassembly techniques are discussed in
section 4.2 and obfuscation techniques in section
4.3.

4.2. Anti-Disassembly Techniques

Some anti-disassembly techniques are described in
the next sections.
Techniques currently covered by detection plugins
will have an additional information: the algorithm
used to detect such a technique.

4.2.1. Garbage Bytes

This technique relies on adding additional bytes
that will never be executed in run-time. [5] [38]
This may break both linear sweep and recursive
traversal approaches.

A liner sweep approach could interpret such bytes
as being code-related bytes, breaking the
alignment. As a result, such garbage bytes could be
joined with valid bytes from next instructions
generating wrong instructions instead of the correct
ones. For example:

jmp .destination
db 0x6a ; garbage byte technique

.destination:
pop eax

Such example generates the following disassembly
by a objdump:

eb 01 jmp 0x401003
6a 58 push 0x58

Recursive traversal algorithms might also be
compromised through garbage bytes if a situation
in which the same set of bytes with more than one
interpretation could be forced. In this case, the lack
of alignment due to the interpretation of the
garbage bytes as a valid code bytes might lead the
disassembler to produce a wrong disassembly. For
example, a Fake Conditional Jump implementation
could be used for that:

mov eax,eax
jz .destination

db 0x6a ; garbage byte technique
.destination:

; rest of the code
pop eax

Such example produces the following IDA output:

IDA output

Adopted Static Detection:

(1)

A PUSH instruction immediately followed by a
RET is looked for. If found, the technique is
considered as evidence detected.

(2)

A XOR instruction with two equal operands is
looked for. If found and is immediately followed by
a JNZ instruction, the technique is considered as
evidence detected. The same happens for STC
instruction immediately followed by JNC or JAE
and for CLC instruction immediately followed by
JC or JB.

4.2.2. Program Control Flow Change

This technique relies on unconditionally forcing a
program control flow change to occur, leaving an
area with other anti-disassemble technique(s)
unreachable in run-time. Disassemblers using linear
sweep approach will disassemble such an area and
the resulting assembly code may be compromised.

An unconditional JMP is an example that can be
used to implement this technique. [38] For
example, the following JMP instruction jumps an
unreachable area populated with Garbage Byte
anti-disassembly technique, avoiding its execution.
But objdump will disassemble such an area and the
resulting output is compromised:

jmp .destination
db 0x6a ; garbage byte technique

.destination:
; rest of the code
pop eax

…

Resulting objdump output:

eb 01 jmp 0x401003
6a 58 push 0x58

Another example of implementation is the
Instruction Substitution that uses a Push followed
by RET to replace a conventional JMP.

It is also possible to use this technique to
compromise recursive traversal algorithms by using
indirection. An indirect jump, for example, is an
approach that can be used for such a purpose. [39]
[41] The previous example was modified to use an
indirect jump:

push DWORD .destination
jmp DWORD [esp]
db 0x6a ; garbage byte technique

.destination:
pop eax

IDA output

Adopted Static Detection:

A PUSH instruction immediately followed by a
RET is looked for. If found, the technique is
considered as evidence detected.

4.2.3. Fake Conditional Jumps

This technique, based on [5] and [38], relies on
creating conditional jumps which conditions are
always the same. For example:

(1)
...
xor eax,eax
jz .destination1 ; always true
…

(2)
...
xor eax,eax
jnz .destination2 ; always false
…

In the first example, the JZ instructions will be
always true independently of the EAX content, the
instructions before XOR and the instructions after
JZ. The same happens for the second example, but
the JNZ instruction will be always false.
Recursive traversal approach may disassemble
areas that will never be executed, and such
unreachable areas can be populated with other anti-
disassembly techniques, such as Garbage Bytes,
that creates two different interpretations for the
same set of bytes.
Each disassembler has its own way to handle such
a conflict, but most of them, trust its first
interpretation [38]; IDA seems to be an example of
this, because it first disassembles the false branch
[38].

The following approaches are examples that can be
used to implement this technique:

• xor x,x (XOR with two equal operands)
◦ True branch: JZ
◦ False branch: JNZ

• STC instruction
◦ True branch: JC or JB
◦ False branch: JNC or JAE

• CLC instruction
◦ True branch: JNC or JAE
◦ False branch: JC or JB

Adopted Static Detection:

A XOR instruction with two equal operands is
looked for. If it is immediately followed by JNZ
instruction, the technique is considered as detected.
The same happens for STC instruction immediately
followed by JNC or JAE and for CLC instruction
immediately followed by JC or JB.

4.2.4. Call Trick

This technique relies on changing the default
function's return address.[39] [41] In conjunction
with other techniques such as Garbage Bytes, this
trick may break all kind of disassemblers.
Recursive traversal disassemblers may disassemble
the next instruction after the CALL, but the correct
next instruction was actually changed by the called

function. After the CALL and before the next
executed instruction, other anti-disassembly
techniques, such as Garbage Bytes, can be used.
Linear sweep is also affected because they do not
interpret instructions and may also disassemble the
next instruction after the call, getting vulnerable to
other anti-disassembly techniques such as Garbage
Bytes.
The following example, which also employs
Garbage Bytes technique, may break for both,
recursive traversal and linear sweep approaches:

call .function
db 0x6a ; garbage byte

.correct_return:
; rest of the code
pop eax
…

.function:
push DWORD .correct_return
ret

The following output is produced by objdump:

401000: e8 02 00 00 00 call 0x401007
401005: 6a 58 push 0x58
401007: 68 06 10 40 00 push 0x401006
40100c: c3 ret

The following output is produced by IDA:

IDA output

4.2.5. Flow Redirection to the Middle of an
Instruction

This technique relies on redirecting the program
flow to the middle of an instruction. [38] This
might compromise both linear sweep and recursive
traversal algorithms.

An implementation example could be hiding an
instruction in the middle of another. So, the
disassembler would show an instruction that is not
executed in run-time instead of the correct
instruction that resides in the middle of its bytes.
Linear sweep approaches could be bypassed
because the instruction aligned to the rest of the

bytes are the wrong one. Recursive traversal
algorithms could be affected by making the same
set of bytes to have more than one interpretation;
this can be achieved, for example, by using the
Fake Conditional Jump technique.
The following example illustrates such a scenario
with a code that affects both, linear sweep and
recursive traversal approaches:

; Fake Conditional Jump
xor eax,eax
jz +4 ; jump to the ret

; 0xc3 = ret
mov eax,0xc3abcdef

In such an example, the RET instruction does not
directly appear in the disassembly outputs, but is
executed in run-time, as shown in the objdump and
IDA outputs below.

Output of objdump:

31 c0 xor eax,eax
74 04 je 0x401008
b8 ef cd ab c3 mov eax,0xc3abcdef

Output of IDA:

IDA output

Another implementation example could be using
this anti-disassembly technique to break the
alignment and generate a set of wrong instruction
instead of simply hiding one in the middle of
another. The following example, that is based on
[38], does this:

mov ax,0x05eb
xor eax,eax

; jump to “jmp 5” (0xeb 0xe5)
; last bytes of mov instruction is 0xeb 0xe5
; such “jmp 5” redirects the flow to the rest
; of the code
jz -6 ;

db 0xe8 ; garbage byte

; rest of the code
xor eax,eax
pop eax
mov eax,esp
push ecx

Output of objdump:

66 b8 eb 05 mov ax,0x5eb
31 c0 xor eax,eax
74 f9 je 0x401001
e8 31 c0 58 89 call 0x8998d03e
e0 51 loopne 0x401060

Output of IDA:

IDA output

This technique could also be used to make
recursive traversal algorithms to generate two
different interpretations for the same set of bytes
without using conditional jumps: jumping into
itself [38]. Additionally, because it breaks the
alignment, linear sweep algorithms may also be
affected. The following example, based on [38],
illustrates such a scenario:

; All bytes of the example:
; 0xeb 0xff 0xc0 0x48

; jmp -1 = 0xeb 0xff
; jumps to itself: 0xff
jmp -1

; 0xff 0xc0 = inc eax
db 0xc0

; 0x48 = dec eax
db 0x48

Output of IDA:

IDA output

Output of objdump:

eb ff jmp 0x401001
c0 byte 0xc0
48 dec eax

Adopted Static Detection:

(1)

A PUSH instruction immediately followed by a
RET is looked for. If found, the technique is
considered as evidence detected.

(2)

A XOR instruction with two equal operands is
looked for. If found and is immediately followed by
a JNZ instruction, the technique is considered as
evidence detected. The same happens for STC
instruction immediately followed by JNC or JAE
and for CLC instruction immediately followed by
JC or JB.

4.3. Obfuscation Techniques

Some obfuscation techniques are described in the
next sections.
Techniques currently covered by detection plugins
will have an additional information: the algorithm
used to detect such a technique.

4.3.1. Push Pop Math

This technique can be used to obfuscate a value and
relies in three steps [24]:

• Push a known immediate
• Pop such an immediate into a register
• Do some math on the register

At the end, the register will have the desired value,
but such a value does not explicitly appear in the
code itself.

Adopted Static Detection:

A PUSH instruction with an immediate operand is
looked for:

push immediate

If found, the next instruction is compared against a
POP: if it is true, the destination (X) is saved for

future use:

pop X

Then, the next instruction is compared against
AND, OR and XOR with the destination operand
being the saved one (X) and the other one being an
immediate:

and/or/xor X,immediate

If this scenario happens, the technique is
considered as detected.

4.3.2. NOP Sequence

This type of dead-code insertion relies on adding a
sequence of NOP instructions in the middle of the
code [25]. This can make the disassembly analysis
harder by reducing the legibility of the code and
bypassing some signature-based algorithms.

Adopted Static Detection:

A sequence of 5 NOPs is looked for in the same
function. RET was used to consider the end of a
function.
If found, this technique is considered as detected.

4.3.3. Instruction Substitution

This technique relies on changing a instruction, or a
set of them, by equivalent ones. [25] [45] It can be
used to make the analysis process by a professional
harder and also to bypass signatures. Some
examples are:

• “xor eax,eax → jz” to replace a JMP
◦ For example, “jmp .destination” can be

replaced by “xor eax,eax → jz
.destination”

• “push → pop” to replace a MOV
◦ For example, “mov eax,0x1” can be

replaced by “push 0x1 → pop eax”
• “sub” to replace a XOR

◦ For example, “xor eax,eax” can be
replaced by “sub eax,eax”

Another example, that will be discussed in more

details, is to replace a JMP by “push → ret”.

According to [8], RET “transfers program control
to a return address located on the top of the stack”
and, additionally, it pops such an address to EIP.
So, if the stack gets manipulates to put in its top the
desired address to transfer the program control flow
to, RET and its variations, such as RETN and
RETF, can be used as an obfuscated JMP.
The most known way to implement such a
technique is the Push Ret: the address to redirect
the flow to is pushed and then RET is called
effectively changing the flow:

push .destination
ret

Although Push Ret is the most known approach,
there are other variations, for example:

mov [esp],DWORD .destination
ret

RET is often used to return from a procedure.
Being so, if the alternative jump variation seems
like a given calling convention function prolog, it
would be more stealth and more difficult to
automatically detect. For example:

push .destination
push ebp
mov ebp,esp
leave
ret

Adopted Static Detection:

PUSH instruction is looked for. If found and the
next instruction is a RET, then the technique is
considered as detected.

4.3.4. Code Transposition

This technique relies on shuffling instructions so
that the order they appear in the binary gets
different from the order they were executed [25]
[45].
The following two methods can be used for such a
purpose:

• Shuffle the instructions and make them to
be executed in the correct order by using
program control flow changes. This can be
achieved, for example, by using
unconditional jumps and some Instruction
Substitutions of it such as “xor eax,eax – jz”
being used instead of a JMP instruction.

• Choose and reorder set of instructions that
does not interfere in each other results. So,
such a shuffling process will change the
order of instructions in the binary and at the
time does not change the program results

As an example, the following code is considered as
the binary before the obfuscation process:

xor eax,eax
inc eax
push ebx
...

The following code is an example of the original
binary obfuscated with the program control flow
changes approach:

jmp .first
.second:

push ebx
jmp .continuation

.first:
xor eax,eax
inc eax
jmp .second

.continuation:
…

The following code is an example of the original
binary obfuscated with the reordering approach:

push ebx

; inc depends on xor
; so such instruction order was not changed
xor eax,eax
inc eax

4.3.5. Register Reassignment

This technique relies on changing the registers used
by a program or part of it [25][45].
For example, the following code shows a program
before the obfuscation:

xor eax,eax
inc ebx

After a fictitious obfuscation which exchanges
EAX by EBX and vice-versa, the following code
will be generated:

xor ebx,ebx
inc eax

Although this technique does not make an analysis
much more complicated, it can be used to bypass
signatures.

4.3.6. Code Integration

This technique relies on disassembling a target
program file, inserting the code to be obfuscated
inside it [45][46]. In order to do that, the target
program needs to be fixed. This way, the code to be
obfuscated is hidden in the middle of the other
program.

4.3.7. Fake Code Insertion

This is a variation of Garbage Bytes anti-
disassembly technique. The idea is to insert
instructions that will never be executed [38],
making them to appear in the generated
disassembly. This can, for example, confuse the
professional that is analyzing the disassembly with
lots of fake code and bypass signature-based
algorithms.
The implementation is exactly the same as Garbage
Bytes technique, but instead of adding garbage
bytes, valid instructions are added.

jmp .destination
push 0x12345678 ; fake code
inc eax ; fake code
mov esp,eax ; fake code
; more fake code here

.destination:
…

Instead of using a simple JMP instruction, any
other technique that can be used to redirect the
program control flow, such as Fake Conditional
Jump and Code Substitution, could be used. For
example:

(1) Fake Conditional Jump example
xor eax,eax
jnz .fake_code
jmp .destination

.fake_code:
push 0x12345678 ; fake code
inc eax ; fake code
mov esp,eax ; fake code
; more fake code here

.destination:
...

(2) Code Substitution example
push .destination
ret
push 0x12345678 ; fake code
inc eax ; fake code
mov esp,eax ; fake code
; more fake code here

.destination:
...

Adopted Static Detection:

(1)

A PUSH instruction immediately followed by a
RET is looked for. If found, the technique is
considered as evidence detected.

(2)

A XOR instruction with two equal operands is
looked for. If found and is immediately followed by
a JNZ instruction, the technique is considered as
evidence detected. The same happens for STC
instruction immediately followed by JNC or JAE
and for CLC instruction immediately followed by
JC or JB.

4.3.8. PEB->Ldr Address Resolving

PEB is a structure that contains process
information. Among its fields, there is the Ldr,
which points to a structure that contains
information about the loaded modules for the
process. [34]
It is possible to retrieve the PEB (fs:[0x30]) and
access its Ldr field (0x0c). So, the loaded modules
can be accessed and function addresses resolved.
[34] [35] [36]

Adopted Static Detection:

A MOV instruction (mov, movsx, movzx) copying
PEB address (fs:[0x30]) somewhere (X) is looked
for and X is saved for future use:

mov/movsx/movzx X,op2 → Where “fs:[0x30]” is
inside op2

Then, later in the same function, a MOV (mov,
movsx, movzx) or a CMP (cmp, cmpxchg)
instructions referencing the Ldr ([X+0x0c] in some
of the operands) are looked for:

mov/movsx/movzx/cmp/cmpxchg op1,op2 →
where [X+0xC] is a substring of op1 or op2

RET was used to consider the end of a function.

If this scenario happens, the technique is
considered as detected.

4.3.9. Stealth Import of the Windows API

Regardless of the import table, ntdll.dll and
kernel32.dll are automatically mapped into process
address space [37]. It means that it is possible to
access them even in an executable with no imports.
Such DLLs can be access through SEH, because its
first record normally points to either ntdll.dll or
kernel32.dll.
To get the DLL address, the SEH could be walked
until the first element, which 0x4 offset is the
handler field. Then, it is possible to scan the
memory looking for 'MZ' and, once found, check if
it is in the correct place through 0x3C offset that is
supposed to be “PE\0\0”: a handle to the module

has been found. From this point on, the
IMAGE_DATA_DIRECTORY entry of the DLL
can be found using the 0x78 offset to get the RVA
to the export directory, which, together with the
previously found handle, results in the Export
Directory Table address.

Adopted Static Detection:

(1)

A MOV instruction (mov, movsx, movzx) copying
SEH address (fs:[0x0]) somewhere (X) is looked
for and X is saved for future use:

mov/movsx/movzx X,op2 → Where “fs:[0x0]” is
inside op2

Then, later in the same function, a MOV (mov,
movsx, movzx) instruction referencing the PEB (fs:
[0x30]) in the second operand is looked for and, if
found, the algorithm is reseted.
Continuing with the next lines, a MOV instruction
(mov, movsx, movzx) referencing the exception
handler ([X+0x4]) in the second operand is looked
for and, if found, the first operand (Y) is saved for
future used:

mov/movsx/movzx Y,op2 → where “[X+0x4]” is a
substring of op2

Later in the same function, a CMP instruction
(cmp, cmpxchg) referencing Y in the first operand
is looked for:

cmp/cmpxchg op1,? → Where Y is a substring of
op1

Later in the same function, a MOV instruction
(mov, movsx, movzx) with the “PE\0\0” offset
relative to Y ([Y+0x3c]) in the second operand is
looked for:

mov/movsx/movzx ?,op2 → Where [Y+0x3c] is a
substring of op2

Later in the same function, instructions AND, OR,
XOR, ADD or SUB CMP referencing the
IMAGE_DATA_DIRECTORY offset (0x78) in

some of the operands is looked for

and/or/xor/add/sub ? → Where “0x78” is a
substring in any of the operands

RET was used to consider the end of a function.

If this scenario happens, the technique is
considered as detected.

(2)

If the IAT is empty, this technique is considered as
evidence detected.

4.3.10. Function Call Obfuscation

LoadLibrary and GetProcAddress functions can be
used to call any other. By only importing these two
functions is possible to obfuscate function calls.

Adopted Static Detection:

If
LoadLibraryA/LoadLibraryW/LoadLibraryExA/Lo
adLibraryExW and GetProcAddress are both found
in IAT, this technique is considered as detected.

5. Anti-Virtual Machine

Some anti-virtual machine techniques are described
in the next sections.
Techniques currently covered by detection plugins
will have an additional information: the algorithm
used to detect such a technique.

5.1. CPU Instructions Results Comparison

Some CPU instructions, due to their specific
nature, have characteristic results when executed
inside virtual machine solutions that can be used to
infer its presence. [28]
The following instructions are examples that can be
used for such a purpose:

• SIDT: Stores the Interrupt Descriptor Table
Register (IDTR) content. [8] [27]. [28] [29]
[30]

• SLDT: Stores the segment selector from the
Local Descriptor Table Register (LDTR).

[8] [27] [28] [30]
• SGDT: Stores the Global Descriptor Table

Register (GDTR) content. [8] [27] [28] [30]
• STR: Stores the segment selector from the

Task Register (TR). [8] [27] [28] [30]
• SMSW: Stores the machine status word into

the destination operand . [8] [30] [42]

Adopted Static Detection:

Instructions SIDT, SLDT, SGDT and STR are
looked for. If some of them are found, this
technique is considered as detected.

5.2. VMWare – IN Instruction

I/O ports can be accessed through the privileged
instructions IN and OUT: in normal cases [31] an
attempt to run such instructions in user-mode will
generate an exception. [28] [31]
VMWare [43] uses IN instruction in a special port
(VX), that exists only inside its virtual machines, as
an interface between virtual machines and
VMWare software itself. So, such operation will
not generate an exception if executed in user-mode
inside a VMWare virtual machine. [28] [31]
This can be used to detect if an application is
running inside a VMWare virtual machine.

Adopted Static Detection:

IN instruction is looked for. If it is found, this
technique is considered as detected.

5.3. VirtualPC – Invalid Instruction

When an invalid instruction is executed, an
exception is raised and it can be handled by the
software using try/catch mechanism [31].
VirtualPC [44] relies on invalid instructions to
interface between virtual machines and VirtualPC
software itself. An example is the invalid
instruction “0x0F 0x3F 0x07 0x0B”, which does
not generate an exception inside a VirtualPC virtual
machine.
This can be used to detect if an application is
running inside a VirtualPC virtual machine.

Adopted Static Detection:

Starting at a byte that were not recognize as valid
by the disassembler, the following four byte
sequence are looked for:

0x0F 0x3F 0x07 0x0B

If this scenario happens, the technique is
considered as detected.

6. New Techniques

The new techniques implemented by this work are
described by the next sections.

6.1. Dynamic Approach

The static techniques in the previous section, which
relied on function calls or function calls with
specific parameters, are not reliably detected using
only the static approach.
Being so, a dynamic approach was develop that
puts a software breakpoint in the target functions.
When such functions are reached, it is possible to
more reliably detect the call and extract the
parameters.

6.2. SSEXY Detection

SSEXY [33] is a tool developed by Jurriaan
Bremer that, given a binary, obfuscates it
converting many “conventional” assembly
instructions to an SSE-based version. In this work,
it was considered as an obfuscation technique.
There were some troubles running SSEXY in the
883 executables used to test all plugins and
techniques in this work because such a tool is still
in an early development stage. So, it was developed
some simple binaries for the specific purpose of
testing the SSE obfuscation provided by SSEXY.
At the end, together with the two demo binaries
distributed with SSEXY, there were 9 cases to
study the SSEXY obfuscation. The following
pattern was identified in all the 9 cases:

66 0F 70 ?? ?? 66 0F DB ?? ?? ?? ?? ?? 66
0F DB ?? ?? ?? ?? ?? 66 0F EF

This pattern generated no false-positives when
tested against the 883 executables and correctly
detected SSEXY encryption in all the 9 cases.
SSEXY was released in May/2012 and in more or
less one month later a detection plugin was
finished, tested and running in the Dissect || PE
system.

Adopted Static Detection:

The following pattern is looked for in the binary:

66 0F 70 ?? ?? 66 0F DB ?? ?? ?? ?? ?? 66
0F DB ?? ?? ?? ?? ?? 66 0F EF

If found, the technique is considered as detected.

6.3. Flame Detection

The Flame malware made the news due to its rich
capabilities and to the fact that it remained
undetected for long time. Many researchers quickly
noted the existence of embedded scripting language
within the malware and pointed this as a new
enhancement for malwares. We wrote a detection
script to inspect all our samples for the presence of
embedded scripting language, such as Lua [47].

7. Resources

The most updated version of this document can be
found at: http://research.dissect.pe.
Additionally, examples for each of the attacking
techniques discussed in this paper are available at:
ht tps://github.com/rrbranco/blackhat2012 .

8. Conclusions and Future Directions

This research provides a guidance on protecting
techniques used by malware, more specifically the
anti-debugging, anti-disassembly, obfuscation and
anti-VM ones. It also extrapolates the current
standards in malware analysis providing the results
against millions of samples.
We created examples for each of the techniques
discussed in this paper, facilitating the development
of the detection codes. Additionally, such codes are
publicly available.
For validation purposes, this work explains how the

http://research.dissect.pe/
https://github.com/rrbranco/blackhat2012
https://github.com/rrbranco/blackhat2012

detections are being executed.

The research results can be expanded and hopefully
we will publicly release more information, such as:

• More anti-reverse engineering techniques
• More statistics with more analyzed samples

9. Acknowledgement

Ronaldo Pinheiro de Lima – Joined our team a bit
later in the research process, but gave amazing
contributions.

Peter Ferrie – Great papers and
feedback/discussions by email.

Jurriaan Bremer – SSEXY.

ReversingLabs for the TitaniumCore

10. References

[1] Peter Ferrie – Anti-Unpacker Tricks
[2] Peter Ferrie – The “Ultimate” Anti-Debugging
Reference
[3] Peter Ferrie – Anti-Unpacker Tricks – Part
Eight
[4] Evilcodecave's Weblog -
RtlQueryProcessHeapInformation As Anti-Dbg
Trick - http://evilcodecave.wordpress.com/2009/04
(Last access: 04/May/2012)
[5] Mark Vincent Yason – The Art Of Unpacking
[6] MSDN - BlockInput function -
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms646290%28v=vs.85
%29.aspx (Last Access: 05/May/2012)
[7] Nicolas Falliere – Windows Anti-Debug
Reference -
http://www.symantec.com/connect/articles/window
s-anti-debug-reference (Last access: 24/June/2012)
[8] Intel - Intel® 64 and IA-32 Architectures
Software Developer’s Manual - Volume 2B:
Instruction Set Reference, N-Z -
http://download.intel.com/design/processor/manual
s/253667.pdf (Last Access: 24/June/2012)
[9] Matt Pietrek - A Crash Course on the Depths of
Win32™ Structured Exception Handling -
http://www.microsoft.com/msj/0197/exception/exc
eption.aspx (Last Access: 24/June/2012)

[10] MSDN – Creating Guard Pages -
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa366549%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[11] Josh_Jackson - An Anti-Reverse Engineering
Guide -
http://www.codeproject.com/Articles/30815/An-
Anti-Reverse-Engineering-Guide (Last Access:
25/June/2012)
[12] Chuck Walbourn - Game Timing and
Multicore Processors -
http://msdn.microsoft.com/en-
us/library/windows/desktop/ee417693%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[13] Intel - Using the RDTSC Instruction for
Performance Monitoring -
http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf
(Last Access: 25/June/2012)
[14] MSDN – GetTickCount function -
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms724408%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[15] MSDN - timeGetTime function -
http://msdn.microsoft.com/en-
us/library/windows/desktop/dd757629%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[16] MSDN - GetLocalTime function
 - http://msdn.microsoft.com/en-
us/library/windows/desktop/ms724338%28v=vs.85
%29.aspx (LastAccess: 25/June/2012)
[17] MSDN - GetSystemTime function
 - http://msdn.microsoft.com/en-
us/library/windows/desktop/ms724390%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[18] MSDN - QueryPerformanceCounter function
 - http://msdn.microsoft.com/en-
us/library/windows/desktop/ms644904%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[19] Justin Seitz - Gray Hat Python – Python
Programming for Hackers and Reverse Engineers
[20] MSDN - NtSetInformationThread
 - http://msdn.microsoft.com/en-
us/library/windows/hardware/ff557675%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[21] MSDN - ZwSetInformationThread routine
 - http://msdn.microsoft.com/en-
us/library/windows/hardware/ff567101%28v=vs.85
%29.aspx (Last Access: 25/June/2012)
[22] Mark Stamp – Anti-Reversing Techniques -

http://msdn.microsoft.com/en-us/library/windows/hardware/ff567101(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567101(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567101(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557675(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557675(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557675(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724390(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724390(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724390(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724338(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757629(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757629(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757629(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx
http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693(v=vs.85).aspx
http://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide
http://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366549(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366549(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366549(v=vs.85).aspx
http://www.microsoft.com/msj/0197/exception/exception.aspx
http://www.microsoft.com/msj/0197/exception/exception.aspx
http://download.intel.com/design/processor/manuals/253667.pdf
http://download.intel.com/design/processor/manuals/253667.pdf
http://www.symantec.com/connect/articles/windows-anti-debug-reference
http://www.symantec.com/connect/articles/windows-anti-debug-reference
http://msdn.microsoft.com/en-us/library/windows/desktop/ms646290(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms646290(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms646290(v=vs.85).aspx
http://evilcodecave.wordpress.com/2009/04

http://www.cs.sjsu.edu/~stamp/CS286/pptSRE/SR
E_anti-reversing.ppt (Last Access: 04/July/2012)
[23] MSDN - NtQuerySystemInformation function
 - http://msdn.microsoft.com/en-
us/library/windows/desktop/ms724509%28v=vs.85
%29.aspx (Last Access: 04/July/2012)
[24] Laspe Raber, Jason Raber - BlackHat 2008 -
Deobfuscator: An Automated Approach to the
Identification and Removal of Code Obfuscation
[25] Mihai Christodorescu and Somesh Jha -
Proceedings of the 12th USENIX Security
Symposium - Static Analysis of Executables to
Detect Malicious Patterns
[26] objdump -
http://www.gnu.org/software/binutils/ (Last Access:
12/July/2012)
[27] Intel - Intel® 64 and IA-32 Architectures
Software Developer’s Manual - Volume 3A:
System Programming Guide, Part 1 -
http://download.intel.com/products/processor/manu
al/253668.pdf (Last Access: 12/July/2012)
[28] Stefan Bühlmann - Master Thesis – Detection
of Virtual Machine Aware Malware
[29] Joanna Rutkowska - Red Pill
[30] John Scott Robin, Cynthia E. Irvine – Analysis
of the Intel Pentium’s Ability to Support a
Secure Virtual Machine Monitor
[31] Elias Bachaalany - Detect if your program is
running inside a Virtual Machine -
http://www.codeproject.com/Articles/9823/Detect-
if-your-program-is-running-inside-a-Virtual (Last
Access: 12/July/2012)
[32] halfdead – Phrack Magazine - Volume 0x0c,
Issue 0x41, Phile #0x08 of 0x0f -
http://www.phrack.org/issues.html?issue=65&id=8
(Last Access: 12/July/2012)
[33] Jurriaan Bremer - SSEXY -
https://github.com/jbremer/ssexy (Last Access:
12/July/2012)
[34] MSDN - PEB structure
h ttp://msdn.microsoft.com/en-
us/library/windows/desktop/aa813706%28v=vs.85
%29.aspx (Last Access: 12/July/2012)
[35] MSDN - PEB_LDR_DATA structure -
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa813708%28v=vs.85
%29.aspx (Last Access: 12/July/2012)
[36] Harmony Security – Blog - Retrieving
Kernel32's Base Address -

http://blog.harmonysecurity.com/2009/06/retrieving
-kernel32s-base-address.html (Last Access:
12/July/2012)
[37] Alexey Lyashko - Stealth Import of Windows
API -
http://syprog.blogspot.com.br/2011/10/stealth-
import-of-windows-api.html (Last Access:
12/July/2012)
[38] Nick Harbour – Advanced Software Armoring
and Polymorphic Jung-Fu
[39] Christopher Kruegel, William Robertson,
Fredrik Valeur and Giovanni Vigna – Proceedings
of the 13th USENIX Security Symposium - Static
Disassembly of Obfuscated Binaries
[40] IDA – http://www.hex-rays.com (Last Access:
12/July/2012)
[41] Cullen Linn and Saumya Debray -
Obfuscation of Executable Code to Improve
Resistance to Static Disassembly
[42] Boris Lau and Vanja Svajcer - EICAR 2008
EXTENDED VERSION - Measuring virtual
machine detection in malware using DSD tracer
[43] VMWare – http://www.vmware.com (Last
Access: 12/July/2012)
[44] VirtualPC -
http://www.microsoft.com/windows/virtual-pc/
(Last Access: 12/July/2012)
[45] Ilsun You and Kangbin Yim – 2010
International Conference on Broadband, Wireless
Computing, Communication and Applications -
Malware Obfuscation Techniques: A Brief Survey
[46] Péter Ször and Peter Ferrie – VIRUS
BULLETIN CONFERENCE, SEPTEMBER 2001
– Hunting for Metamorphic
[47] The Programming Language Lua -
http://www.lua.org (Last Access: 12/July/2012)
[48] AlexAbramov - API Hooking with MS
Detours -
http://www.codeproject.com/Articles/30140/API-
Hooking-with-MS-Detours (Last Access:
12/July/2012)
[49] Galen Hunt and Doug Brubacher – Microsoft
Research - Detours: Binary Interception of Win32
Functions -
http://research.microsoft.com/pubs/68568/huntusen
ixnt99.pdf (Last Access: 12/July/2012)
[50] coderrr -
http://coderrr.wordpress.com/2008/08/27/how-to-
get-rid-of-microsoft-detours-detoureddll/ (Last

http://www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual
http://download.intel.com/products/processor/manual/253668.pdf
http://download.intel.com/products/processor/manual/253668.pdf
http://www.gnu.org/software/binutils/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724509(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724509(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms724509(v=vs.85).aspx
http://www.cs.sjsu.edu/~stamp/CS286/pptSRE/SRE_anti-reversing.ppt
http://www.cs.sjsu.edu/~stamp/CS286/pptSRE/SRE_anti-reversing.ppt

Access: 12/July/2012)

http://coderrr.wordpress.com/2008/08/27/how-to-get-rid-of-microsoft-detours-detoureddll/
http://coderrr.wordpress.com/2008/08/27/how-to-get-rid-of-microsoft-detours-detoureddll/
http://research.microsoft.com/pubs/68568/huntusenixnt99.pdf
http://research.microsoft.com/pubs/68568/huntusenixnt99.pdf
http://www.codeproject.com/Articles/30140/API-Hooking-with-MS-Detours
http://www.codeproject.com/Articles/30140/API-Hooking-with-MS-Detours
http://www.lua.org/
http://www.microsoft.com/windows/virtual-pc/
http://www.vmware.com/
http://www.hex-rays.com/
http://syprog.blogspot.com.br/2011/10/stealth-import-of-windows-api.html
http://syprog.blogspot.com.br/2011/10/stealth-import-of-windows-api.html
http://blog.harmonysecurity.com/2009/06/retrieving-kernel32s-base-address.html
http://blog.harmonysecurity.com/2009/06/retrieving-kernel32s-base-address.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813708(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813708(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813708(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
https://github.com/jbremer/ssexy
http://www.phrack.org/issues.html?issue=65&id=8
http://www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual

